Assessment of postural instability in patients with Parkinson's disease.
Błaszczyk, J W; Orawiec, R; Duda-Kłodowska, D; Opala, G
2007-10-01
Postural instability is one of the most disabling features of idiopathic Parkinson's disease (PD). In this study, we focused on postural instability as the main factor predisposing parkinsonians to falls. For this purpose, changes in sway characteristics during quiet stance due to visual feedback exclusion were studied. We searched for postural sway measures that could be potential discriminators for an increased fall risk. A group of 110 subjects: 55 parkinsonians (Hoehn and Yahr: 1-3), and 55 age-matched healthy volunteers participated in the experiment. Their spontaneous sway characteristics while standing quiet with eyes open and eyes closed were analyzed. We found that an increased mediolateral sway and sway area while standing with eyes closed are characteristic of parkinsonian postural instability and may serve to quantify well a tendency to fall. These sway indices significantly correlated with disease severity rated both by the Hoehn and Yahr scale as well as by the Motor Section of the UPDRS. A forward shift of a mean COP position in parkinsonians which reflects their flexed posture was also significantly greater to compare with the elderly subjects and exhibited a high sensitivity to visual conditions. Both groups of postural sway abnormalities identified here may be used as accessible and reliable measures which allow for quantitative assessment of postural instability in Parkinson's disease.
Postural Stability in Older Adults With Alzheimer Disease.
Mesbah, Normala; Perry, Meredith; Hill, Keith D; Kaur, Mandeep; Hale, Leigh
2017-03-01
The prevalence of adults with Alzheimer disease (AD) aged >65 years is increasing and estimated to quadruple by 2051. The aim of this study was to investigate postural stability in people with mild to moderate AD and factors contributing to postural instability compared with healthy peers (controls). A computerized systematic search of databases and a hand search of reference lists for articles published from 1984 onward (English-language articles only) were conducted on June 2, 2015, using the main key words "postural stability" and "Alzheimer's disease." Sixty-seven studies were assessed for eligibility (a confirmed diagnosis of AD, comparison of measured postural stability between participants with AD and controls, measured factors potentially contributing to postural instability). Data were extracted, and Downs and Black criteria were applied to evaluate study quality. Eighteen articles were analyzed using qualitative synthesis and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Strength of evidence was guided by the Grading of Recommendations Assessment, Development and Evaluation. Strong evidence was found that: (1) older adults with mild to moderate AD have reduced static and functional postural stability compared with healthy peers (controls) and (2) attentional demand during dual-task activity and loss of visual input were key factors contributing to postural instability. Deta-analysis was not possible due to heterogeneity of the data. Postural stability is impaired in older adults with mild to moderate AD. Decreasing visual input and concentrating on multiple tasks decrease postural stability. To reduce falls risk, more research discerning appropriate strategies for the early identification of impairment of postural stability is needed. Standardization of population description and consensus on outcome measures and the variables used to measure postural -instability and its contributing factors are necessary to ensure meaningful synthesis of data. © 2017 American Physical Therapy Association
Postural control assessment in students with normal hearing and sensorineural hearing loss.
Melo, Renato de Souza; Lemos, Andrea; Macky, Carla Fabiana da Silva Toscano; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2015-01-01
Children with sensorineural hearing loss can present with instabilities in postural control, possibly as a consequence of hypoactivity of their vestibular system due to internal ear injury. To assess postural control stability in students with normal hearing (i.e., listeners) and with sensorineural hearing loss, and to compare data between groups, considering gender and age. This cross-sectional study evaluated the postural control of 96 students, 48 listeners and 48 with sensorineural hearing loss, aged between 7 and 18 years, of both genders, through the Balance Error Scoring Systems scale. This tool assesses postural control in two sensory conditions: stable surface and unstable surface. For statistical data analysis between groups, the Wilcoxon test for paired samples was used. Students with hearing loss showed more instability in postural control than those with normal hearing, with significant differences between groups (stable surface, unstable surface) (p<0.001). Students with sensorineural hearing loss showed greater instability in the postural control compared to normal hearing students of the same gender and age. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Matsuura, Yukako; Fujino, Haruo; Hashimoto, Ryota; Yasuda, Yuka; Yamamori, Hidenaga; Ohi, Kazutaka; Takeda, Masatoshi; Imura, Osamu
2015-03-01
The purpose of this study was to assess postural instability in patients with schizophrenia using a pressure-sensitive platform and to examine the effects of anxiety, psychiatric symptoms, and the use of neuroleptic medications on postural sway. Participants were 23 patients with schizophrenia and 23 healthy controls. We found that the patients showed greater overall postural instability than the controls. Furthermore, they demonstrated greater instability when the test was performed with the eyes closed than with the eyes open. However, removal of visual input had less impact on the indices of postural instability in the patients than in the controls, suggesting that schizophrenia is associated with difficulties in integrating visual information and proprioceptive signals. Furthermore, in contrast to the controls, anxiety exacerbated postural instability in the patients. There were significant associations between postural stability and psychiatric symptoms in the patients without extrapyramidal symptoms, whereas medication dose did not significantly correlate with postural stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Hogan, Kathleen K; Powden, Cameron J; Hoch, Matthew C
2016-10-01
To investigate the effect of foot posture on postural control and dorsiflexion range of motion in individuals with chronic ankle instability. The study employed a cross-sectional, single-blinded design. Twenty-one individuals with self-reported chronic ankle instability (male=5; age=23.76(4.18)years; height=169.27(11.46)cm; weight=73.65(13.37)kg; number of past ankle sprains=4.71(4.10); episode of giving way=17.00(18.20); Cumberland Ankle Instability Score=18.24(4.52); Ankle Instability Index=5.86(1.39)) participated. The foot posture index was used to categorize subjects into pronated (n=8; Foot Posture Index=7.50(0.93)) and neutral (n=13; Foot Posture Index=3.08(1.93)) groups. The dependent variables of dorsiflexion ROM and dynamic and static postural control were collected for both groups at a single session. There were no significant differences in dorsiflexion range of motion between groups (p=0.22) or any of the eyes open time-to-boundary variables (p>0.13). The pronated group had significantly less dynamic postural control than the neutral group as assessed by the anterior direction of the Star Excursion Balance Test (p<0.04). However, the pronated group had significantly higher time-to-boundary values than the neutral group for all eyes closed time-to-boundary variables (p≤0.05), which indicates better eyes closed static postural control. Foot posture had a significant effect on dynamic postural control and eyes closed static postural control in individuals with chronic ankle instability. These findings suggest that foot posture may influence postural control in those with chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability.
de Azevedo, Alexandre Kretzer E Castro; Claudino, Renato; Conceição, Josilene Souza; Swarowsky, Alessandra; Santos, Márcio José Dos
2016-01-01
The purpose of this study was to investigate the anticipatory (APA) and compensatory (CPA) postural adjustments in individuals with Parkinson's disease (PD) during lateral instability of posture. Twenty-six subjects (13 individuals with PD and 13 healthy matched controls) were exposed to predictable lateral postural perturbations. The electromyographic (EMG) activity of the lateral muscles and the displacement of the center of pressure (COP) were recorded during four time intervals that are typical for postural adjustments, i.e., immediately before (APA1, APA2) and after (CPA1 and CPA2) the postural disturbances. The magnitude of the activity of the lateral muscles in the group with PD was lower only during the CPA time intervals and not during the anticipatory adjustments (APAs). Despite this finding, subjects with PD exhibit smaller COP excursions before and after the disturbance, probably due to lack of flexibility and proprioceptive impairments. The results of this study suggest that postural instability in subjects with PD can be partially explained by decreased postural sway, before and after perturbations, and reduced muscular activity after body disturbances. Our findings can motivate new studies to investigate therapeutic interventions that optimize the use of postural adjustment strategies in subjects with PD.
Hadadi, Mohammad; Ebrahimi, Ismaeil; Mousavi, Mohammad Ebrahim; Aminian, Gholamreza; Esteki, Ali; Rahgozar, Mehdi
2017-02-01
Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients. The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients. Cross-sectional study. An ankle support with combined mechanism was designed based on most effective action mechanisms of foot and ankle orthoses. The effect of this orthosis on postural control was evaluated in 20 participants with chronic ankle instability and 20 matched healthy participants. The single-limb stance balance test was measured in both groups with and without the new orthosis using a force platform. The results showed that application of combined mechanism ankle support significantly improved all postural sway parameters in chronic ankle instability patients. There were no differences in means of investigated parameters with and without the orthosis in the healthy group. No statistically significant differences were found in postural sway between chronic ankle instability patients and healthy participants after applying the combined mechanism ankle support. The combined mechanism ankle support is effective in improving static postural control of chronic ankle instability patients to close to the postural sway of healthy individual. the orthosis had no adverse effects on balance performance of healthy individuals. Clinical relevance Application of the combined mechanism ankle support for patients with chronic ankle instability is effective in improving static balance. This may be helpful in reduction of recurrence of ankle sprain although further research about dynamic conditions is needed.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. Data Extraction: We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Data Synthesis: Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Conclusions: Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability. PMID:18523566
Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B
2003-07-01
To determine the influence of refractive blur on postural stability during somatosensory and vestibular system perturbation and dual tasking. Fifteen healthy, elderly subjects (mean age, 71 +/- 5 years), who had no history of falls and had normal vision, were recruited. Postural stability during standing was assessed using a force platform, and was determined as the root mean square (RMS) of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions collected over a 30-second period. Data were collected under normal standing conditions and with somatosensory and vestibular system perturbations. Measurements were repeated with an additional physical and/or cognitive task. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with eyes closed. The data were analyzed with a population-averaged linear model. The greatest increases in postural instability were due to disruptions of the somatosensory and vestibular systems. Increasing refractive blur caused increasing postural instability, and its effect was greater when the input from the other sensory systems was disrupted. Performing an additional cognitive and physical task increased A-P RMS COP further. All these detrimental effects on postural stability were cumulative. The findings highlight the multifactorial nature of postural stability and indicate why the elderly, many of whom have poor vision and musculoskeletal and central nervous system degeneration, are at greater risk of falling. The findings also highlight that standing instability in both normal and perturbed conditions was significantly increased with refractive blur. Correcting visual impairment caused by uncorrected refractive error could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.
Shiravi, Zeinab; Shadmehr, Azadeh; Moghadam, Saeed Talebian; Moghadam, Behrouz Attarbashi
2017-01-01
Many ankle injuries occur while participating in sports that require jumping and landing such as basketball, volleyball and soccer. Most recent studies have investigated dynamic postural stability of patients with chronic ankle instability after landing from a forward jump. The present study aimed to investigate the dynamic postural stability of the athletes who suffer from chronic ankle sprain while landing from a lateral jump. Twelve athletes with self-reported unilateral chronic ankle instability (4 females and 8 males) and 12 matched controls (3 females and 9 males) voluntarily participated in the study. Dynamic postural stability index and its directional indices were measured while performing lateral jump landing test. No differences were found between athletes with and without chronic ankle instability during our landing protocol by means of the dynamic postural stability index and its directional indices. Findings showed that in each group, medial/lateral stability index is significantly higher than anterior/posterior and vertical stability indexes. Findings showed that dynamic postural stability was not significantly different between the two groups. Future studies should examine chronic ankle instability patients with more severe disabilities and expose them to more challenging dynamic balance conditions to further explore postural stability. IIIa.
Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl
2016-01-01
Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362
Meyns, Pieter; Duysens, Jacques; Desloovere, Kaat
2016-09-01
In this observational case-control study we aimed to determine whether altered arm postures in children with unilateral CP (uniCP) are related to gait instability in a specific direction. Antero-posterior and medio-lateral Foot Placement Estimator instability measures and arm posture measures (vertical and antero-posterior hand position, sagittal and frontal upper arm elevation angle) were determined in eleven uniCP (7 years-10 months) and twenty-four typically developing children (9 years-6 months) at two walking speeds. Spearman-rank correlation analyses were made to examine the relationship between antero-posterior and medio-lateral arm posture and gait instability. Arm posture in both planes was related to antero-posterior instability (e.g. sagittal and frontal upper arm elevation angle correlated moderately with antero-posterior instability; R=0.41, p<0.001, R=-0.47, p<0.001). In uniCP, increased antero-posterior instability was associated with a higher (R=-0.62, p=0.002) and more frontal position of the hemiplegic hand (R=-0.58, p=0.005), while the non-hemiplegic upper arm was rotated more backward (R=0.63, p=0.002) and both upper arms rotated more sideways (hemiplegic: R=-0.58, p=0.004; non-hemiplegic: R=-0.55, p=0.008). The altered non-hemiplegic (sagittal and frontal) arm posture in uniCP may be a compensation to reduce antero-posterior gait instability. Copyright © 2016 Elsevier B.V. All rights reserved.
Ebrahimabadi, Zahra; Naimi, Sedigheh Sadat; Rahimi, Abbas; Sadeghi, Heydar; Hosseini, Seyed Majid; Baghban, Alireza Akbarzadeh; Arslan, Syed Asadullah
2018-01-01
The main objective of the present study was to analyze how supra spinal motor control mechanisms are altered in different directions during anticipatory postural phase of gait initiation in chronic ankle instability patients. It seems that supra spinal pathways modulate anticipatory postural adjustment phase of gait initiation. Yet, there is a dearth of research on the effect of chronic ankle instability on the anticipatory postural adjustment phase of gait initiation in different directions. A total of 20 chronic ankle instability participants and 20 healthy individuals initiated gait on a force plate in forward, 30° lateral, and 30° medial directions. According to the results of the present study, the peak lateral center of pressure shift decreased in forward direction compared to that in other directions in both groups. Also, it was found that the peak lateral center of pressure shift and the vertical center of mass velocity decreased significantly in chronic ankle instability patients, as compared with those of the healthy individuals. According to the results of the present study, it seems that chronic ankle instability patients modulate the anticipatory postural adjustment phase of gait initiation, compared with healthy control group, in order to maintain postural stability. These changes were observed in different directions, too. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cinerama sickness and postural instability.
Bos, Jelte E; Ledegang, Wietse D; Lubeck, Astrid J A; Stins, John F
2013-01-01
Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min after watching a 1 h 3D aviation documentary in a cinema. Sickness was significantly larger right after the movie than before, and in a lesser extent still so after 45 min. The average standard deviation of the lateral centre of pressure excursions was significantly larger only right afterwards. When low-pass filtered at 0.1 Hz, lateral and for-aft excursions were both significantly larger right after the movie, while for-aft excursions then remained larger even after 45 min. Speculating on previous findings, we predict more sickness and postural instability in 3D than in 2D movies, also suggesting a possible, but yet unknown risk for work-related activities and vehicle operation. Watching motion pictures may be sickening and posturally destabilising, but effects in a cinema are unknown. We, therefore, carried out an observational study showing that sickness then is mainly an issue during the exposure while postural instability is an issue afterwards.
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s2 vs. 6.69 ± 0.87 cm/s2), and sway area (1.77 ± 0.22 cm2 vs. 1.04 ± 0.25 cm2). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness. PMID:29930534
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine.
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s 2 vs. 6.69 ± 0.87 cm/s 2 ), and sway area (1.77 ± 0.22 cm 2 vs. 1.04 ± 0.25 cm 2 ). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness.
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.
Impaired perception of surface tilt in progressive supranuclear palsy
Dale, Marian L.; Horak, Fay B.; Wright, W. Geoffrey; Schoneburg, Bernadette M.; Nutt, John G.; Mancini, Martina
2017-01-01
Introduction Progressive supranuclear palsy (PSP) is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality. Methods We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson’s Disease (PD) and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance. Results Perception of toes up (but not toes down) surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated) and subjects with PD (p≤0.03 standing, p≤0.04 seated). Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts. Discussion Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP. PMID:28267762
Cybersickness without the wobble: Experimental results speak against postural instability theory.
Dennison, Mark Stephen; D'Zmura, Michael
2017-01-01
It has been suggested that postural instability is necessary for cybersickness to occur. Seated and standing subjects used a head-mounted display to view a virtual tunnel that rotated about their line of sight. We found that the offset direction of perceived vertical settings matched the direction of the tunnel's rotation, so replicating earlier findings. Increasing rotation speed caused cybersickness to increase, but had no significant impact on perceived vertical settings. Postural sway during rotation was similar to postural sway during rest. While a minority of subjects exhibited postural sway in response to the onset of tunnel rotation, the majority did not. Furthermore, cybersickness increased with rotation speed similarly for the seated and standing conditions. Finally, subjects with greater levels of cybersickness exhibited less variation in postural sway. These results lead us to conclude that the link between postural instability and cybersickness is a weak one in the present experiment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wikstrom, Erik A; Song, Kyeongtak; Lea, Ashley; Brown, Nastassia
2017-07-01
One of the major concerns after an acute lateral ankle sprain is the potential for development of chronic ankle instability (CAI). The existing research has determined that clinician-delivered plantar massage improves postural control in those with CAI. However, the effectiveness of self-administered treatments and the underlying cause of any improvements remain unclear. To determine (1) the effectiveness of a self-administered plantar-massage treatment in those with CAI and (2) whether the postural-control improvements were due to the stimulation of the plantar cutaneous receptors. Crossover study. University setting. A total of 20 physically active individuals (6 men and 14 women) with self-reported CAI. All participants completed 3 test sessions involving 3 treatments: a clinician-delivered manual plantar massage, a patient-delivered self-massage with a ball, and a clinician-delivered sensory brush massage. Postural control was assessed using single-legged balance with eyes open and the Star Excursion Balance Test. Static postural control improved (P ≤ .014) after each of the interventions. However, no changes in dynamic postural control after any of the interventions were observed (P > .05). No differences were observed between a clinician-delivered manual plantar massage and either a patient-delivered self-massage with a ball or a clinician-delivered sensory brush massage in any postural-control outcome. In those with CAI, single 5-minute sessions of traditional plantar massage, self-administered massage, and sensory brush massage each resulted in comparable static postural-control improvements. The results also provide empirical evidence suggesting that the mechanism for the postural-control improvements is the stimulation of the plantar cutaneous receptors.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567
Nonnekes, Jorik; de Kam, Digna; Geurts, Alexander C H; Weerdesteyn, Vivian; Bloem, Bastiaan R
2013-12-01
Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also improve our ability to timely identify patients at risk of falling. Dynamic posturography is a promising avenue to achieve these goals. The latest moveable platforms can deliver 'real-life' balance perturbations, permitting study of everyday fall circumstances. Dynamic posturography studies have shown that PD patients have fundamental problems in scaling their postural responses in accordance with the need of the actual balance task at hand. On-going studies evaluate the predictive ability of impaired posturography performance for daily life falls. We also review recent work aimed at exploring balance correcting steps in PD, and the presumed interaction between startle pathways and postural responses.
Nishiike, Suetaka; Okazaki, Suzuyo; Watanabe, Hiroshi; Akizuki, Hironori; Imai, Takao; Uno, Atsuhiko; Kitahara, Tadashi; Horii, Arata; Takeda, Noriaki; Inohara, Hidenori
2013-01-01
In this study, we examined the effects of sensory inputs of visual-vestibulosomatosensory conflict induced by virtual reality (VR) on subjective dizziness, posture stability and visual dependency on postural control in humans. Eleven healthy young volunteers were immersed in two different VR conditions. In the control condition, subjects walked voluntarily with the background images of interactive computer graphics proportionally synchronized to their walking pace. In the visual-vestibulosomatosensory conflict condition, subjects kept still, but the background images that subjects experienced in the control condition were presented. The scores of both Graybiel's and Hamilton's criteria, postural instability and Romberg ratio were measured before and after the two conditions. After immersion in the conflict condition, both subjective dizziness and objective postural instability were significantly increased, and Romberg ratio, an index of the visual dependency on postural control, was slightly decreased. These findings suggest that sensory inputs of visual-vestibulosomatosensory conflict induced by VR induced motion sickness, resulting in subjective dizziness and postural instability. They also suggest that adaptation to the conflict condition decreases the contribution of visual inputs to postural control with re-weighing of vestibulosomatosensory inputs. VR may be used as a rehabilitation tool for dizzy patients by its ability to induce sensory re-weighing of postural control.
Pilot Study: Measuring the Effects of Center of Gravity Shift on Postural Stability
NASA Technical Reports Server (NTRS)
Times-Marshall, Chelsea; Reschke, Millard
2009-01-01
It has been shown that astronauts returning from space often experience postural instability due to the stimulus rearrangement of the visual, vestibular, and proprioceptive systems. However, postural control may also be influenced by the head-ward shift in their center of gravity (CG) that occurs as a result of the expansion of their spinal column by as much as two inches during long duration space flight, as well as the CG shift that occurs from the Life Support Pack on the extra-vehicular activity (EVA) suit. This study investigated the effect on postural stability after (1) an immediate shift in the CG towards the head, (2) a 30 minute adaptation to the shifted CG, and (3) immediate shift of the CG back to normal, accomplished by donning and removing a modified backpack. We hypothesized that at each immediate shift in CG, postural performance will be compromised.
Difference in postural control between patients with functional and mechanical ankle instability.
Chen, Henry; Li, Hong-Yun; Zhang, Jian; Hua, Ying-Hui; Chen, Shi-Yi
2014-10-01
Lateral ankle sprain is one of the most common injuries. Since the structural and pathological differences in mechanical ankle instability (MAI) and functional ankle instability (FAI) may not be the same, it may be better to treat these as separate groups. The purpose of this study was to compare the difference in postural sway between MAI and FAI in patients with chronic ankle instability (CAI). Twenty-six patients with CAI and 14 healthy control participants were included in the study. The CAI patients were subdivided into MAI (15 patients) and FAI (11 patients) groups. Patients who were diagnosed with lateral ankle ligaments rupture by magnetic resonance imaging and ultrasonography were assigned to the MAI group. All participants performed single-limb postural sway tests 3 times on each leg with eyes closed and open. The average distances from the mean center of pressure position in the mediolateral and anteroposterior directions were recorded and compared among the 3 groups. The unstable ankles in the MAI group showed significantly greater postural sway in the anterior, posterior, and medial directions compared with those in the control group with eyes closed. With eyes open, significantly greater postural sway was found in the anterior direction. In the FAI group, no difference was found in postural sway compared with those in the control group. The MAI group showed significantly greater postural sway in the anterior direction compared with the FAI group with eyes closed and open. No significant difference in postural sway was found between the unstable and stable ankles in the MAI or FAI groups, with or without vision. Patients with MAI have deficits in postural control, especially in anterior-posterior directions. However, no difference was found in postural sway in patients with FAI compared with healthy people. As MAI patients suffer from deficits in postural control, balance training should be applied in those patients. In addition, special training should also include the contralateral side after a unilateral ankle ligament injured. © The Author(s) 2014.
Li, Hong-Yun; Zheng, Jie-Jiao; Zhang, Jian; Cai, Ye-Hua; Hua, Ying-Hui; Chen, Shi-Yi
2016-04-01
Lateral ankle sprain is the most common injury. A previous study demonstrated that patients with mechanical ankle instability suffered deficits in postural control, indicating that structural damage of the lateral ankle ligaments may produce a balance deficit. The purpose of this study was to confirm that lateral ligaments reconstruction could improve postural control in patients with mechanical ankle instability. A total of 15 patients were included in the study. Each patient had a history of an ankle sprain with persistent symptoms of ankle instability and a positive anterior drawer test and had been treated nonoperatively for at least 3 months. All patients were diagnosed with lateral ankle ligaments tear by ultrasonography and magnetic resonance imaging. They underwent arthroscopic debridement and open lateral ankle ligaments reconstruction with a modified Broström procedure. One day before and 6 months after the operation, all of the participants underwent single-limb postural sway tests. The anterior drawer test and the American Orthopedic Foot and Ankle Society scale score were used to evaluate the clinical results in these patients. At 6 months after the operation, with the patients' eyes closed, there was significantly decreased postural sway in the anteroposterior direction, the circumferential area, and the total path length on the operated ankles compared with those measurements before the operation. With eyes open, however, no difference was found in postural sway before and after the operation. Postural control was improved by reconstructing the lateral ligaments. IV.
Disruption of postural readaptation by inertial stimuli following space flight
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.
1999-01-01
Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.
Méndez-Rebolledo, Guillermo; Guzmán-Muñoz, Eduardo; Gatica-Rojas, Valeska; Zbinden-Foncea, Hermann
2015-08-01
Motor control evaluation in subjects with functional ankle instability is questionable when both ankles of the same subject are compared (affected vs non-affected). To compare the postural control and reaction time of ankle muscles among: basketball players with FAI (instability group), basketball players without FAI (non-instability group) and healthy non-basketball-playing participants (control group). Case-control study. Laboratory. Instability (n = 10), non-instability (n = 10), and control groups (n = 11). Centre of pressure variables (area, velocity and sway) were measured with a force platform. Reaction time of ankle muscles was measured via electromyography. A one-way ANOVA demonstrated that there were significant differences between the instability and non-instability groups in the fibularis longus (p < 0.001), fibularis brevis (p = 0.031) and tibialis anterior (p = 0.049) muscles. Repeated-measures ANOVA and post hoc analysis determined significant differences for the area between the instability and non-instability groups (p = 0.001). Basketball players with FAI have reduced postural control and longer reaction time of the fibularis and tibialis anterior muscles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Trial-to-trial adaptation in control of arm reaching and standing posture
Pienciak-Siewert, Alison; Horan, Dylan P.
2016-01-01
Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. PMID:27683888
Trial-to-trial adaptation in control of arm reaching and standing posture.
Pienciak-Siewert, Alison; Horan, Dylan P; Ahmed, Alaa A
2016-12-01
Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. Copyright © 2016 the American Physiological Society.
Nobile, Cameron W; Palmateer, Julie M; Kane, Jackie; Hurn, Patricia D; Schallert, Timothy; Adkins, DeAnna L
2014-10-01
Clinical stroke often results in impaired balance and increased vulnerability to severe injuries due to falling. To evaluate potential preclinical treatments that might target these deficits, it will be important to include tests capable of assessing these impairments chronically in animal models. Previously, we developed a postural instability test (PIT) that revealed chronic, unilateral impairments in postural stability in rat models of hemi-Parkinson's disease (PD) and of unilateral cervical spinal cord injury. Here, we investigated whether this test was also capable of revealing long-term stroke-induced impairments in postural support in rats. Additionally, we examined the ability of more common tests of sensorimotor function to detect chronic impairments. We found that the PIT detected chronic deficits in postural stability/balance enduring for up to 6 weeks post-stroke, outlasting impairments detected in other tests of forelimb sensorimotor function, including asymmetries in upright postural support (cylinder test) and vibrissae-evoked forelimb placing.
Missori, Paolo; Trompetto, Carlo; Fattapposta, Francesco
2016-01-01
Introduction Polyneuropathy leads to postural instability and an increased risk of falling. We investigated how impaired motor impairment and proprioceptive input due to neuropathy influences postural strategies. Methods Platformless bisegmental posturography data were recorded in healthy subjects and patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Each subject stood on the floor, wore a head and a hip electromagnetic tracker. Sway amplitude and velocity were recorded and the mean direction difference (MDD) in the velocity vector between trackers was calculated as a flexibility index. Results Head and hip postural sway increased more in patients with CIDP than in healthy controls. MDD values reflecting hip strategies also increased more in patients than in controls. In the eyes closed condition MDD values in healthy subjects decreased but in patients remained unchanged. Discussion Sensori-motor impairment changes the balance between postural strategies that patients adopt to maintain upright quiet stance. Motor impairment leads to hip postural strategy overweight (eyes open), and prevents strategy re-balancing when the sensory context predominantly relies on proprioceptive input (eyes closed). PMID:26977594
Effects of foot orthoses on patients with chronic ankle instability.
Richie, Douglas H
2007-01-01
Chronic instability of the ankle can be the result of mechanical and functional deficits. An acute ankle sprain can cause mechanical and functional instability, which may or may not respond to standard rehabilitation programs. Chronic instability results when there is persistent joint laxity of the ankle or when one or more components of neuromuscular control of the ankle are compromised. A loss of balance or postural control seems to be the most consistent finding among athletes with chronic instability of the ankle. Recent research in patients with acute and chronic ankle instability has revealed positive effects of foot orthoses on postural control. This article reviews the current research relevant to the use of foot orthoses in patients with chronic ankle instability and clarifies the suggested benefits and the shortcomings of these investigations.
The influence of the aquatic environment on the control of postural sway.
Marinho-Buzelli, Andresa R; Rouhani, Hossein; Masani, Kei; Verrier, Mary C; Popovic, Milos R
2017-01-01
Balance training in the aquatic environment is often used in rehabilitation practice to improve static and dynamic balance. Although aquatic therapy is widely used in clinical practice, we still lack evidence on how immersion in water actually impacts postural control. We examined how postural sway measured using centre of pressure and trunk acceleration parameters are influenced by the aquatic environment along with the effects of visual information. Our results suggest that the aquatic environment increases postural instability, measured by the centre of pressure parameters in the time-domain. The mean velocity and area were more significantly affected when individuals stood with eyes closed in the aquatic environment. In addition, a more forward posture was assumed in water with eyes closed in comparison to standing on land. In water, the low frequencies of sway were more dominant compared to standing on dry land. Trunk acceleration differed in water and dry land only for the larger upper trunk acceleration in mediolateral direction during standing in water. This finding shows that the study participants potentially resorted to using their upper trunk to compensate for postural instability in mediolateral direction. Only the lower trunk seemed to change acceleration pattern in anteroposterior and mediolateral directions when the eyes were closed, and it did so depending on the environment conditions. The increased postural instability and the change in postural control strategies that the aquatic environment offers may be a beneficial stimulus for improving balance control. Copyright © 2016 Elsevier B.V. All rights reserved.
Postural stability changes in the elderly with cataract simulation and refractive blur.
Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B
2003-11-01
To determine the influence of cataractous and refractive blur on postural stability and limb-load asymmetry (LLA) and to establish how postural stability changes with the spatial frequency and contrast of the visual stimulus. Thirteen elderly subjects (mean age, 70.76 +/- 4.14 [SD] years) with no history of falls and normal vision were recruited. Postural stability was determined as the root mean square [RMS] of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions and LLA was determined as the ratio of the average body weight placed on the more-loaded limb to the less-loaded limb, recorded during a 30-second period. Data were collected under normal standing conditions and with somatosensory system input disrupted. Measurements were repeated with four visual targets with high (8 cyc/deg) or low (2 cyc/deg) spatial frequency and high (Weber contrast, approximately 95%) or low (Weber contrast, approximately 25%) contrast. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with cataract simulation. The data were analyzed in a population-averaged linear model. The cataract simulation caused significant increases in postural instability equivalent to that caused by 8-D blur conditions, and its effect was greater when the input from the somatosensory system was disrupted. High spatial frequency targets increased postural instability. Refractive blur, cataract simulation, or eye closure had no effect on LLA. Findings indicate that cataractous and refractive blur increase postural instability, and show why the elderly, many of whom have poor vision along with musculoskeletal and central nervous system degeneration, are at greater risk of falling. Findings also highlight that changes in contrast sensitivity rather than resolution changes are responsible for increasing postural instability. Providing low spatial frequency information in certain environments may be useful in maintaining postural stability. Correcting visual impairment caused by uncorrected refractive error and cataracts could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.
Is PIGD a legitimate motor subtype in Parkinson disease?
Kotagal, Vikas
2016-06-01
Parkinson disease is a chronic progressive syndrome with a broad array of clinical features. Different investigators have suggested the heterogeneous motor manifestations of early Parkinson disease can be conceptualized through a taxonomy of clinical subtypes including tremor-predominant and postural instability and gait difficulty-predominant subtypes. Although it is theoretically valuable to distinguish subtypes of Parkinson disease, the reality is that few patients fit these discrete categories well and many transition from exhibiting elements of one subtype to elements of another. In the time since the initial description of the postural instability and gait difficulty-predominant subtype, Parkinson disease clinical research has blossomed in many ways - including an increased emphasis on the role of medical comorbidities and extranigral pathologies in Parkinson disease as markers of prognostic significance. By conceptualizing the pathogenesis of an expansive disease process in the limited terms of categorical motor subtypes, we run the risk of overlooking or misclassifying clinically significant pathogenic risk factors that lead to the development of motor milestones such as falls and related axial motor disability. Given its critical influence on quality of life and overall prognosis, we are in need of a model of postural instability and gait difficulty-predominant features in Parkinson disease that emphasizes the overlooked pathological influence of aging and medical comorbidities on the development of axial motor burden and postural instability and gait difficulty-predominant features. This Point of View proposes thinking of postural instability and gait difficulties in Parkinson disease not as a discrete subtype, but rather as multidimensional continuum influenced by several overlapping age-related pathologies.
Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind
2017-07-26
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recovery of postural equilibrium control following spaceflight
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.
1992-01-01
Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.
Golestanirad, Laleh; Elahi, Behzad; Graham, Simon J; Das, Sunit; Wald, Lawrence L
2016-01-01
Pedunculopontine nucleus (PPN) has complex reciprocal connections with basal ganglia, especially with internal globus pallidus and substantia nigra, and it has been postulated that PPN stimulation may improve gait instability and freezing of gait. In this meta-analysis, we will assess the evidence for PPN deep brain stimulation in treatment of gait and motor abnormalities especially focusing on Parkinson disease patients. PubMed and Scopus electronic databases were searched for related studies published before February 2014. Medline (1966-2014), Embase (1974-2010), CINAHL, Web of Science, Scopus bibliographic, and Google Scholar databases (1960-2014) were also searched for studies investigating effect of PPN deep brain stimulation in treatment of postural and postural instability and total of ten studies met the inclusion criteria for this analysis. Our findings showed a significant improvement in postural instability (p<0.001) and motor symptoms of Parkinson disease on and off medications (p<0.05), but failed to show improvement in freezing of gait. Despite significant improvement in postural instability observed in included studies, evidence from current literature is not sufficient to generalize these findings to the majority of patients.
Postural time-to-contact as a precursor of visually induced motion sickness.
Li, Ruixuan; Walter, Hannah; Curry, Christopher; Rath, Ruth; Peterson, Nicolette; Stoffregen, Thomas A
2018-06-01
The postural instability theory of motion sickness predicts that subjective symptoms of motion sickness will be preceded by unstable control of posture. In previous studies, this prediction has been confirmed with measures of the spatial magnitude and the temporal dynamics of postural activity. In the present study, we examine whether precursors of visually induced motion sickness might exist in postural time-to-contact, a measure of postural activity that is related to the risk of falling. Standing participants were exposed to oscillating visual motion stimuli in a standard laboratory protocol. Both before and during exposure to visual motion stimuli, we monitored the kinematics of the body's center of pressure. We predicted that postural activity would differ between participants who reported motion sickness and those who did not, and that these differences would exist before participants experienced subjective symptoms of motion sickness. During exposure to visual motion stimuli, the multifractality of sway differed between the Well and Sick groups. Postural time-to-contact differed between the Well and Sick groups during exposure to visual motion stimuli, but also before exposure to any motion stimuli. The results provide a qualitatively new type of support for the postural instability theory of motion sickness.
Tabara, Yasuharu; Okada, Yoko; Ohara, Maya; Uetani, Eri; Kido, Tomoko; Ochi, Namiko; Nagai, Tokihisa; Igase, Michiya; Miki, Tetsuro; Matsuda, Fumihiko; Kohara, Katsuhiko
2015-01-01
Asymptomatic cerebral small-vessel disease (cSVD) in elderly individuals are potent risk factors for stroke. In addition to common clinical risk factors, postural instability has been postulated to be associated with cSVD in older frail patients. Here, we conducted a cross-sectional study to understand the possible link between postural instability and asymptomatic cSVD further, namely periventricular hyperintensity, lacunar infarction, and microbleeds, as well as cognitive function, in a middle-aged to elderly general population (n=1387). Postural instability was assessed based on one-leg standing time (OLST) and posturography findings. cSVD was evaluated by brain MRI. Mild cognitive impairment was assessed using a computer-based questionnaire, and carotid intima-media thickness as an index of atherosclerosis was measured via ultrasonography. Frequency of short OLST, in particular <20 s, increased linearly with severity of cSVD (lacunar infarction lesion: none, 9.7%; 1, 16.0%; >2, 34.5%; microbleeds lesion: none, 10.1%; 1, 15.3%; >2, 30.0%; periventricular hyperintensity grade: 0, 5.7%; 1, 11.5%; >2, 23.7%). The association of short OLST with lacunar infarction and microbleeds but not periventricular hyperintensity remained significant even after adjustment for possible covariates (lacunar infarction, P=0.009; microbleeds, P=0.003; periventricular hyperintensity, P=0.601). In contrast, no significant association was found between posturographic parameters and cSVD, whereas these parameters were linearly associated with OLST. Short OLST was also significantly associated with reduced cognitive function independent of covariates, including cSVD (P=0.002). Postural instability was found to be associated with early pathological changes in the brain and functional decline, even in apparently healthy subjects. © 2014 American Heart Association, Inc.
Gabriner, Michael L; Braun, Brittany A; Houston, Megan N; Hoch, Matthew C
2015-02-01
Chronic ankle instability (CAI) is a condition commonly experienced by physically active individuals. It has been suggested that foot orthotics may increase a CAI patient's postural control. For patients with CAI, is there evidence to suggest that an orthotic intervention will help improve postural control? The literature was searched for studies of level 2 evidence or higher that investigated the effects of foot orthotics on postural control in patients with CAI. The search of the literature produced 5 possible studies for inclusion; 2 studies met the inclusion criteria and were included. One randomized controlled trial and 1 outcomes study were included. Foot orthotics appear to be effective at improving postural control in patients with CAI. There is moderate evidence to support the use of foot orthotics in the treatment of CAI to help improve postural control. There is grade B evidence that foot orthotics help improve postural control in people with CAI. The Centre of Evidence Based Medicine recommends a grade of B for level 2 evidence with consistent findings.
Yiou, Eric; Mezaour, Malha; Le Bozec, Serge
2009-04-01
This study investigated how young healthy subjects control their equilibrium in situations of instability specifically elicited by a reduced capacity of force production in the postural muscle system. Ten subjects displaced a bar forward with both hands at maximal velocity toward a target while standing on the dominant leg (UNID), on the nondominant leg (UNIND), or on both legs. In each stance condition, anticipatory postural adjustments (APAs) were elicited. Along the anteroposterior axis, APAs were two-times longer in UNID and UNIND than in bipedal stance, while the anticipatory inertia forces remained equivalent. The focal performance was maintained without any additive postural perturbation. A small effect of leg dominance could be detected on APAs along the mediolateral axis (i.e., anticipatory inertia forces were higher in UNIND than in UNID). These results stress the adaptability of the central nervous system to the instability specifically elicited by reduced postural muscle system efficiency.
Gait, posture and cognition in Parkinson's disease
Barbosa, Alessandra Ferreira; Chen, Janini; Freitag, Fernanda; Valente, Debora; Souza, Carolina de Oliveira; Voos, Mariana Callil; Chien, Hsin Fen
2016-01-01
Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD). Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD. PMID:29213470
Ross, Scott E; Arnold, Brent L; Blackburn, J Troy; Brown, Cathleen N; Guskiewicz, Kevin M
2007-12-17
Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 +/- 0.4 cm/s vs. 2.7 +/- 0.6 cm/s), M/L COPvel (2.6 +/- 0.5 cm/s vs. 2.9 +/- 0.5 cm/s), M/L COPsd (0.63 +/- 0.12 cm vs. 0.73 +/- 0.11 cm), M/L COPmax (1.76 +/- 0.25 cm vs. 1.98 +/- 0.25 cm), and COParea (0.13 +/- 0.03 cm2 vs. 0.16 +/- 0.04 cm2) than the pooled means of the CCT and control groups (P < 0.05). Reduced values in COP measures indicated postural stability improvements. Thus, six weeks of coordination training with SR stimulation enhanced postural stability. Future research should examine the use of SR stimulation for decreasing recurrent ankle sprain injury in physically active individuals with FAI.
Ross, Scott E; Arnold, Brent L; Blackburn, J Troy; Brown, Cathleen N; Guskiewicz, Kevin M
2007-01-01
Background Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. Methods This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Results Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 ± 0.4 cm/s vs. 2.7 ± 0.6 cm/s), M/L COPvel (2.6 ± 0.5 cm/s vs. 2.9 ± 0.5 cm/s), M/L COPsd (0.63 ± 0.12 cm vs. 0.73 ± 0.11 cm), M/L COPmax (1.76 ± 0.25 cm vs. 1.98 ± 0.25 cm), and COParea (0.13 ± 0.03 cm2 vs. 0.16 ± 0.04 cm2) than the pooled means of the CCT and control groups (P < 0.05). Conclusion Reduced values in COP measures indicated postural stability improvements. Thus, six weeks of coordination training with SR stimulation enhanced postural stability. Future research should examine the use of SR stimulation for decreasing recurrent ankle sprain injury in physically active individuals with FAI. PMID:18086314
Postural and Cortical Responses Following Visual Occlusion in Adults with and without ASD
ERIC Educational Resources Information Center
Goh, Kwang Leng; Morris, Susan; Parsons, Richard; Ring, Alexander; Tan, Tele
2018-01-01
Autism is associated with differences in sensory processing and motor coordination. Evidence from electroencephalography suggests individual perturbation evoked response (PER) components represent specific aspects of postural disturbance processing; P1 reflects the detection and N1 reflects the evaluation of postural instability. Despite the…
Neural basis of postural instability identified by VTC and EEG
Cao, Cheng; Jaiswal, Niharika; Newell, Karl M.
2010-01-01
In this study, we investigated the neural basis of virtual time to contact (VTC) and the hypothesis that VTC provides predictive information for future postural instability. A novel approach to differentiate stable pre-falling and transition-to-instability stages within a single postural trial while a subject was performing a challenging single leg stance with eyes closed was developed. Specifically, we utilized wavelet transform and stage segmentation algorithms using VTC time series data set as an input. The VTC time series was time-locked with multichannel (n = 64) EEG signals to examine its underlying neural substrates. To identify the focal sources of neural substrates of VTC, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) of multichannel EEG. There were two major findings: (1) a significant increase of VTC minimal values (along with enhanced variability of VTC) was observed during the transition-to-instability stage with progression to ultimate loss of balance and falling; and (2) this VTC dynamics was associated with pronounced modulation of EEG predominantly within theta, alpha and gamma frequency bands. The sources of this EEG modulation were identified at the cingulate cortex (ACC) and the junction of precuneus and parietal lobe, as well as at the occipital cortex. The findings support the hypothesis that the systematic increase of minimal values of VTC concomitant with modulation of EEG signals at the frontal-central and parietal–occipital areas serve collectively to predict the future instability in posture. PMID:19655130
Predictors of vertigo in patients with untreated vestibular schwannoma.
Andersen, Jan Fredrik; Nilsen, Kathrin Skorpa; Vassbotn, Flemming Slinning; Møller, Per; Myrseth, Erling; Lund-Johansen, Morten; Goplen, Frederik Kragerud
2015-04-01
Previous studies have shown that vertigo is the most powerful negative predictor of quality of life in patients with vestibular schwannomas, but the variability in vertigo symptom severity is still poorly understood. We wanted to find out whether vertigo could be related to objective parameters such as tumor size, location, vestibular nerve function, hearing, and postural stability in patients with untreated vestibular schwannomas. Baseline data from prospective cohort study. Tertiary referral center. Four hundred thirty-four consecutive patients with unilateral VS diagnosed on MRI. Mean age 56 years (range 16-84 yr). Fifty-three percent women. Diagnostic, with a medical history, otolaryngological examination, pure-tone and speech audiometry, MRI, posturography, and videonystagmography with bithermal caloric tests. Dizziness measured on a 100-mm visual analog scale (VAS). Secondary outcome measures were canal paresis and postural imbalance (static and dynamic posturography). Three hundred three patients (70%) completed the VAS. Severe dizziness, defined as VAS 75 or greater, was reported by 9% of the patients. Larger tumors were associated with higher risk of postural instability and canal paresis. Moderate to severe dizziness was associated with postural imbalance and canal paresis, and possibly with small to medium-sized tumors. Postural instability was related to tumor size and canal paresis when measured by dynamic, but not with static, posturography. A minority of VS patients experience severe vestibular symptoms related to canal paresis and postural instability. A curvilinear relationship is hypothesized between tumor size and dizziness.
Three-dimensional evaluation of postural stability in Parkinson's disease with mobile technology.
Ozinga, Sarah J; Koop, Mandy Miller; Linder, Susan M; Machado, Andre G; Dey, Tanujit; Alberts, Jay L
2017-01-01
Postural instability is a hallmark of Parkinson's disease. Objective metrics to characterize postural stability are necessary for the development of treatment algorithms to aid in the clinical setting. The aim of this project was to validate a mobile device platform and resultant three-dimensional balance metric that characterizes postural stability. A mobile Application was developed, in which biomechanical data from inertial sensors within a mobile device were processed to characterize movement of center of mass in the medial-lateral, anterior-posterior and trunk rotation directions. Twenty-seven individuals with Parkinson's disease and 27 age-matched controls completed various balance tasks. A postural stability metric quantifying the amplitude (peak-to-peak) of sway acceleration in each movement direction was compared between groups. The peak-to-peak value in each direction for each individual with Parkinson's disease across all trials was expressed as a normalized value of the control data to identify individuals with severe postural instability, termed Cleveland Clinic-Postural Stability Index. In all conditions, the balance metric for peak-to-peak was significantly greater in Parkinson's disease compared to controls (p < 0.01 for all tests). The balance metric, in conjunction with mobile device sensors, provides a rapid and systematic metric for quantifying postural stability in Parkinson's disease.
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review.
Mustapa, Amirah; Justine, Maria; Mohd Mustafah, Nadia; Jamil, Nursuriati; Manaf, Haidzir
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were "postural control," "balance," "gait performance," "diabetes mellitus," and "diabetic peripheral neuropathy." Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults.
Modulation of Excitability in the Temporoparietal Junction Relieves Virtual Reality Sickness.
Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Izumi, Shin-Ichi
2018-06-01
Virtual reality (VR) immersion often provokes subjective discomfort and postural instability, so called VR sickness. The neural mechanism of VR sickness is speculated to be related to visual-vestibular information mismatch and/or postural instability. However, the approaches proposed to relieve VR sickness through modulation of brain activity are poorly understood. Using transcranial direct current stimulation (tDCS), we aimed to investigate whether VR sickness could be relieved by the modulation of cortical excitability in the temporoparietal junction (TPJ), which is known to be involved in processing of both vestibular and visual information. Twenty healthy subjects received tDCS over right TPJ before VR immersion. The order of the three types of tDCS (anodal, cathodal, and sham) was counterbalanced across subjects. We evaluated the subjective symptoms, heart rate, and center of pressure at baseline, after tDCS, and after VR immersion. VR immersion using head-mounted displays provoked subjective discomfort and postural instability. However, anodal tDCS over right TPJ ameliorated subjective disorientation symptoms and postural instability induced by VR immersion compared with sham condition. The amelioration of VR sickness by anodal tDCS over the right TPJ might result from relief of the sensory conflict and/or facilitation of vestibular function. Our result not only has potential clinical implications for the neuromodulation approach of VR sickness but also implies a causal role of the TPJ in VR sickness.
Postural control system influences intrinsic alerting state.
Barra, Julien; Auclair, Laurent; Charvillat, Agnès; Vidal, Manuel; Pérennou, Dominic
2015-03-01
Numerous studies using dual-task paradigms (postural and cognitive) have shown that postural control requires cognitive resources. However, the influence of postural control on attention components has never been directly addressed. Using the attention network test (ANT), which assesses specifically each of the 3 components of attention-alertness, orientation, and executive control-within a single paradigm, we investigated the effect of postural balance demand on these 3 components. Forty-two participants completed the ANT in 3 postural conditions: (a) supine, a very stable position; (b) sitting on a chair, an intermediate position; and (c) standing with feet lined up heel to toe, a very instable position known as the Romberg position. Our results revealed that the difficulty of postural control does modulate alerting in such a way that it improves with the level of instability of the position. Regarding the orienting and executive control components of attention, performance was not different when participants were standing upright or seated, whereas in the supine position, performance dropped. The strong and specific interaction between postural control and the alerting system suggests that these mechanisms may share parts of the underlying neural circuits. We discuss the possible implication of the locus coeruleus, known to be involved in both postural balance and alerting. Also, our findings concerning orienting and executive control systems suggest that supine posture could have a specific effect on cognitive activities. These effects are discussed in terms of particularities resulting from the supine position. PsycINFO Database Record (c) 2015 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Forth, Katharine E.; Taylor, Laura C.; Paloski, William H.
2006-01-01
The purpose of the present experiment was to compare in normal human subjects the differential effects on postural stability of introducing somatosensory noise via compliant and/or sway-referenced support surfaces during quiet standing. The use of foam surfaces (two thicknesses: thin (0.95cm) and thick (7.62cm)) and sway-referenced support allowed comparison between two different types of destabilizing factors that increased ankle/foot somatosensory noise. Under some conditions neck extensions were used to increase sensory noise by deviating the vestibular system from its optimal orientation for balance control. The impact of these conditions on postural control was assessed through objective measures of instability. Thick foam and sway-referenced support conditions generated comparable instability in subjects, as measured by equilibrium score and minimum time-to-contact. However, simultaneous application of the conditions resulted in greater instability, suggesting a higher level of generated sensory noise and thus, different receptor types affected during each manipulation. Indeed, sway-referenced support generated greater anterior-posterior center-of-mass (COM) sway, while thick foam generated greater medio-lateral COM sway and velocity. Neck extension had minimal effect on postural stability until combined with simultaneous thick foam and sway-referenced support. Thin foam never generated enough sensory noise to affect postural stability even with noise added by sway-reference support or neck extension. These results provide an interesting window into the central integration of redundant sensory information and indicate the postural impact of sensory inputs is not solely based on their existence, but also their level of noise.
Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro
2016-01-01
To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review
Mustapa, Amirah; Mohd Mustafah, Nadia; Jamil, Nursuriati
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were “postural control,” “balance,” “gait performance,” “diabetes mellitus,” and “diabetic peripheral neuropathy.” Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults. PMID:27525281
Primary postural instability: a cause of recurrent sudden falls in the elderly.
Djaldetti, R; Lorberboym, M; Melamed, E
2006-12-01
Elderly patients with recurrent falls are frequently diagnosed with an extrapyramidal syndrome. This study aims to characterise a distinct group of patients with recurrent falls and postural instability as a hallmark of the clinical examination. The study took place in the Movement Disorders Unit, Rabin Medical Center, Petah Tiqva, Israel among 26 patients with recurrent falls who had no clinical evidence of a neurodegenerative disease. Medical records, neurological examination and brain imaging studies were assessed. Falls in these patients were sudden, unprovoked, with no vertigo or loss of consciousness. All had postural instability with minimal or no abnormality on the neurological examination. Brain imaging showed diffuse ischaemic changes in 65%. [(123)I]-FPCIT SPECT with the dopamine transporter ligand, performed in five patients, was normal in all. Recurrent falls might be caused by a neurological syndrome that primarily affects balance control. The importance of identifying this disorder is its distinction from other parkinsonian syndromes causing falls.
Effects of joint mobilization on chronic ankle instability: a randomized controlled trial.
Cruz-Díaz, David; Lomas Vega, Rafael; Osuna-Pérez, Maria Catalina; Hita-Contreras, Fidel; Martínez-Amat, Antonio
2015-01-01
To evaluate the effects of joint mobilization, in which movement is applied to the ankle's dorsiflexion range of motion, on dynamic postural control and on the self-reported instability of patients with chronic ankle instability (CAI). A double-blind, placebo-controlled, randomized trial with repeated measures and a follow-up period. Ninety patients with a history of recurrent ankle sprain, self-reported instability, and a limited dorsiflexion range of motion, were randomly assigned to either the intervention group (Joint Mobilizations, 3 weeks, two sessions per week) the placebo group (Sham Mobilizations, same duration as joint mobilization) or the control group, with a 6 months follow-up. Dorsiflexion Range of Motion (DFROM), Star Excursion Balance Test (SEBT) and CAI Tool (CAIT) were outcome measures. A separate 3 × 4 mixed model analysis of variance was performed to examine the effect of treatment conditions and time, and intention-to-treat (ITT) analysis was applied to evaluate the effect of the independent variable. The application of joint mobilization resulted in better scores of DFROM, CAIT, and SEBTs in the intervention group when compared with the placebo or the control groups (p < 0.001). The effect sizes of group-by-time interaction, measured with eta-squared, oscillated between 0.954 for DFROM and 0.288 for SEBT posteromedial distance. In within-group analysis, the manipulation group showed an improvement at 6 months follow-up in CAIT [mean = 5.23, CI 95% (4.63-5.84)], DFROM [mean = 6.77, CI 95% (6.45-7.08)], anterior SEBT [mean = 7.35, CI 95% (6.59-8.12)], posteromedial SEBT [mean = 3.32, CI 95% (0.95-5.69)], and posterolateral SEBT [mean = 2.55, CI 95% (2.20-2.89)]. Joint mobilization techniques applied to subjects suffering from CAI were able to improve ankle DFROM, postural control, and self-reported instability. These results suggest that joint mobilization could be applied to patients with recurrent ankle sprain to help restore their functional stability. Implications for Rehabilitation Functional instability is a very common sequela in patients with CAI, resulting in reduced quality of living due to the limitations it imposes on daily life activities. The mobilization with movement technique presented by Mulligan, and based on the joint mobilization accompanied by active movement, appears as a valuable tool to be employed by physical therapists to restore ankle function after a recurrent ankle sprain history. ROM restriction, subjective feeling of instability and dynamic postural control are benefiting from the joint mobilization application.
Geroin, Christian; Dimitrova, Eleonora; Boldrini, Paolo; Waldner, Andreas; Bonadiman, Silvia; Regazzo, Sara; Stirbu, Elena; Primon, Daniela; Bosello, Christian; Gravina, Aristide Roberto; Peron, Luca; Trevisan, Monica; Garcia, Alberto Carreño; Menel, Alessia; Bloccari, Laura; Valè, Nicola; Saltuari, Leopold; Tinazzi, Michele
2017-01-01
Introduction Telerehabilitation enables patients to access remote rehabilitation services for patient-physiotherapist videoconferencing in their own homes. Home-based virtual reality (VR) balance training has been shown to reduce postural instability in patients with Parkinson's disease (PD). The primary aim was to compare improvements in postural stability after remotely supervised in-home VR balance training and in-clinic sensory integration balance training (SIBT). Methods In this multicenter study, 76 PD patients (modified Hoehn and Yahr stages 2.5–3) were randomly assigned to receive either in-home VR telerehabilitation (n = 38) or in-clinic SIBT (n = 38) in 21 sessions of 50 minutes each, 3 days/week for 7 consecutive weeks. VR telerehabilitation consisted of graded exergames using the Nintendo Wii Fit system; SIBT included exercises to improve postural stability. Patients were evaluated before treatment, after treatment, and at 1-month follow-up. Results Analysis revealed significant between-group differences in improvement on the Berg Balance Scale for the VR telerehabilitation group (p = 0.04) and significant Time × Group interactions in the Dynamic Gait Index (p = 0.04) for the in-clinic group. Both groups showed differences in all outcome measures over time, except for fall frequency. Cost comparison yielded between-group differences in treatment and equipment costs. Conclusions VR is a feasible alternative to in-clinic SIBT for reducing postural instability in PD patients having a caregiver. PMID:29333454
Effect of visual distortion on postural balance in a full immersion stereoscopic environment
NASA Astrophysics Data System (ADS)
Faubert, Jocelyn; Allard, Remy
2004-05-01
This study attempted to determine the influence of non-linear visual movements on our capacity to maintain postural control. An 8x8x8 foot CAVE immersive virtual environment was used. Body sway recordings were obtained for both head and lower back (lumbar 2-3) positions. The subjects were presented with visual stimuli for periods of 62.5 seconds. Subjects were asked to stand still on one foot while viewing stimuli consisting of multiplied sine waves generating movement undulation of a textured surface (waves moving in checkerboard pattern). Three wave amplitudes were tested: 4 feet, 2 feet, and 1 foot. Two viewing conditions were also used; observers looking at 36 inches in front of their feet; observers looking at a distance near the horizon. The results were compiled using an instability index and the data showed a profound and consistent effect of visual disturbances on postural balance in particular for the x (side-to-side) movement. We have demonstrated that non-linear visual distortions similar to those generated by progressive ophthalmic lenses of the kind used for presbyopia corrections, can generate significant postural instability. This instability is particularly evident for the side-to-side body movement and is most evident for the near viewing condition.
Lee, Nam G; You, Joshua Sung H; Kim, Tae H; Choi, Bong S
2015-02-01
The exact neuromechanical nature and relative contribution of the abdominal drawing-in maneuver (ADIM) to postural instability warrants further investigation in uninjured and injured populations. To determine the effects of the ADIM on static core and unipedal postural stability in nonathletes with core instability. Controlled laboratory study. University research laboratory. A total of 19 nonathletes (4 women: age = 22.3 ± 1.3 years, height = 164.0 ± 1.7 cm, mass = 56.0 ± 4.6 kg; 15 men: age = 24.6 ± 2.8 years, height = 172.6 ± 4.7 cm, mass = 66.8 ± 7.6 kg) with core instability. Participants received ADIM training with visual feedback 20 minutes each day for 7 days each week over a 2-week period. Core instability was determined using a prone formal test and measured by a pressure biofeedback unit. Unipedal postural stability was determined by measuring the center-of-pressure sway and associated changes in the abdominal muscle-thickness ratios. Electromyographic activity was measured concurrently in the external oblique, erector spinae, gluteus medius, vastus medialis oblique, tibialis anterior, and medial gastrocnemius muscles. All participants initially were unable to complete the formal test. However, after the 2-week ADIM training period, all participants were able to reduce the pressure biofeedback unit by a range of 4 to 10 mm Hg from an initial 70 mm Hg and maintain it at 60 to 66 mm Hg with minimal activation of the external oblique (t(18) = 3.691, P = .002) and erector spinae (t(18) = 2.823, P = .01) muscles. Monitoring of the pressure biofeedback unit and other muscle activations confirmed that the correct muscle contraction defining the ADIM was accomplished. This core stabilization was well maintained in the unipedal-stance position, as evidenced by a decrease in the center-of-pressure sway measures (t(18) range, 3.953-5.775, P < .001), an increased muscle-thickness ratio for the transverse abdominis (t(18) = -2.327, P = .03), and a reduction in external oblique muscle activity (t(18) = 3.172, P = .005). We provide the first evidence to highlight the positive effects of ADIM training on core and postural stability in nonathletes with core instability.
Lee, Nam G.; You, Joshua (Sung) H.; Kim, Tae H.; Choi, Bong S.
2015-01-01
Context: The exact neuromechanical nature and relative contribution of the abdominal drawing-in maneuver (ADIM) to postural instability warrants further investigation in uninjured and injured populations. Objective: To determine the effects of the ADIM on static core and unipedal postural stability in nonathletes with core instability. Design: Controlled laboratory study. Setting: University research laboratory. Patients or Other Participants: A total of 19 nonathletes (4 women: age = 22.3 ± 1.3 years, height = 164.0 ± 1.7 cm, mass = 56.0 ± 4.6 kg; 15 men: age = 24.6 ± 2.8 years, height = 172.6 ± 4.7 cm, mass = 66.8 ± 7.6 kg) with core instability. Intervention(s): Participants received ADIM training with visual feedback 20 minutes each day for 7 days each week over a 2-week period. Main Outcome Measures(s): Core instability was determined using a prone formal test and measured by a pressure biofeedback unit. Unipedal postural stability was determined by measuring the center-of-pressure sway and associated changes in the abdominal muscle-thickness ratios. Electromyographic activity was measured concurrently in the external oblique, erector spinae, gluteus medius, vastus medialis oblique, tibialis anterior, and medial gastrocnemius muscles. Results: All participants initially were unable to complete the formal test. However, after the 2-week ADIM training period, all participants were able to reduce the pressure biofeedback unit by a range of 4 to 10 mm Hg from an initial 70 mm Hg and maintain it at 60 to 66 mm Hg with minimal activation of the external oblique (t18 = 3.691, P = .002) and erector spinae (t18 = 2.823, P = .01) muscles. Monitoring of the pressure biofeedback unit and other muscle activations confirmed that the correct muscle contraction defining the ADIM was accomplished. This core stabilization was well maintained in the unipedal-stance position, as evidenced by a decrease in the center-of-pressure sway measures (t18 range, 3.953–5.775, P < .001), an increased muscle-thickness ratio for the transverse abdominis (t18 = −2.327, P = .03), and a reduction in external oblique muscle activity (t18 = 3.172, P = .005). Conclusions: We provide the first evidence to highlight the positive effects of ADIM training on core and postural stability in nonathletes with core instability. PMID:25531145
Allum, J H J; Tang, K-S; Carpenter, M G; Oude Nijhuis, L B; Bloem, B R
2011-04-01
The reaction to an unexpected balance disturbance is unpracticed, often startling and frequently associated with falls. This everyday situation can be reproduced in an experimental setting by exposing standing humans to sudden, unexpected and controlled movements of a support surface. In this review, we focus on the responses to the very first balance perturbation, the so-called first trial reactions (FTRs). Detailed analysis of FTRs may have important implications, both for clinical practice (providing new insights into the pathophysiological mechanisms underlying accidental falls in real life) and for understanding human physiology (what triggers and mediates these FTRs, and what is the relation to startle responses?). Several aspects of the FTRs have become clear. FTRs are characterized by an exaggerated postural reaction, with large EMG responses and co-contracting muscles in multiple body segments. This balance reaction is associated with marked postural instability (greater body sway to the perturbation). When the same perturbation is repeated, the size of the postural response habituates and the instability disappears. Other issues about FTRs remain largely unresolved, and these are addressed here. First, the functional role of FTRs is discussed. It appears that FTRs produce primarily increased trunk flexion during the multi-segmental response to postural perturbations, thus producing instability. Second, we consider which sensory signals trigger and modulate FTRs, placing specific emphasis on the role of vestibular signals. Surprisingly, vestibular signals appear to have no triggering role, but vestibular loss leads to excessive upper body FTRs due to loss of the normal modulatory influence. Third, we address the question whether startle-like responses are contributing to FTRs triggered by proprioceptive signals. We explain why this issue is still unresolved, mainly because of methodological difficulties involved in separating FTRs from 'pure' startle responses. Fourth, we review new work about the influence of perturbation direction on FTRs. Recent work from our group shows that the largest FTRs are obtained for toe-up support surface rotations which perturb the COM in the posterior direction. This direction corresponds to the directional preponderance for falls seen both in the balance laboratory and in daily life. Finally, we briefly touch upon clinical diagnostic issues, addressing whether FTRs (as opposed to habituated responses) could provide a more ecologically valid perspective of postural instability in patients compared to healthy subjects. We conclude that FTRs are an important source of information about human balance performance, both in health and disease. Future studies should no longer discard FTRs, but routinely include these in their analyses. Particular emphasis should be placed on the link between FTRs and everyday balance performance (including falls), and on the possible role played by startle reactions in triggering or modulating FTRs. Copyright © 2011 Elsevier B.V. All rights reserved.
Trunk Accelerometry Reveals Postural Instability in Untreated Parkinson's Disease
Mancini, Martina; Horak, Fay B.; Zampieri, Cris; Carlson-Kuhta, Patricia; Nutt, John G.; Chiari, Lorenzo
2017-01-01
While several studies have shown that subjects with advanced Parkinson's disease (PD) exhibit abnormalities in sway parameters during quiet standing, abnormalities of postural sway associated with untreated PD have not been reported. Although not clinically apparent, we hypothesized that spontaneous sway in quiet stance is abnormal in people with untreated PD. We examined 13 subjects, recently diagnosed with PD, who were not yet taking any anti-parkinsonian medications and 12 healthy, age-matched control subjects. Postural sway was measured with a linear accelerometer on the posterior trunk (L5 level) and compared with traditional forceplate measures of sway. Subjects stood for two minutes under two conditions: eyes open (EO) and eyes closed (EC). One of the most discriminative measures of postural changes in subjects with untreated PD was the increased ‘JERK’ of lower trunk in the EO condition, measured with the accelerometer. Root mean square and the frequency dispersion of postural sway in the EO condition also discriminated sway in untreated PD subjects compared to controls subjects. We conclude that accelerometer-based sway metrics could be used as objective measures of postural instability in untreated PD. Accelerometer-based analysis of spontaneous sway may provide a powerful tool for early clinical trials and for monitoring the effects of treatment of balance disorders in subjects with PD. PMID:21641263
The influence of aging and attentional demands on recovery from postural instability.
Stelmach, G E; Zelaznik, H N; Lowe, D
1990-06-01
It is well known that the risk of a debilitating injury from a fall is much higher for elderly than for young individuals. In addition, it is well documented that healthy elderly subjects exhibit increased postural sway during normal stance tasks. In the present experiment, we explored the notion that control of minor postural instability in elderly subjects is attention demanding. Postural sway of eight elderly (mean age = 70.0 years) and eight young (mean age = 20.0 years) subjects was measured under two different secondary demands during stable and mildly unstable upright stance. There were two types of work loads. Either a cognitive (math task) or motor (hand-squeeze) task was performed during the second segment of a 50-second standing trial. The effect of these work loads on mean velocity, range, and variability of range of center of foot pressure was measured during the destabilizing activity of arm swinging and subsequent recovery period. Following seven seconds of 1 Hz arm-swinging activity, elderly subjects showed a marked increase in recovery time to normal stance when concurrently performing an arithmetic task. This result suggests that recovery from a posturally destabilizing activity, involving proprioceptive and vestibular information, places increased attentional demands on the postural support system of the elderly.
Benefit of bi-ocular visual stimulation for postural control in children with strabismus.
Gaertner, Chrystal; Creux, Charlotte; Espinasse-Berrod, Marie-Andrée; Orssaud, Christophe; Dufier, Jean-Louis; Kapoula, Zoï
2013-01-01
Vision is important for postural control as is shown by the Romberg quotient (RQ): with eyes closed, postural instability increases relative to eyes open (RQ = 2). Yet while fixating at far distance, postural stability is similar with eyes open and eyes closed (RQ = 1). Postural stability can be better with both eyes viewing than one eye, but such effect is not consistent among healthy subjects. The first goal of the study is to test the RQ as a function of distance for children with convergent versus divergent strabismus. The second goal is to test whether vision from two eyes relative to vision from one eye provides better postural stability. Thirteen children with divergent strabismus and eleven with convergent strabismus participated in this study. Posturtography was done with the Techno concept device. Experiment 1, four conditions: fixation at 40 cm and at 200 cm both with eyes open and eyes covered (evaluation of RQ). Experiment 2, six conditions: fixation at 40 cm and at 200 cm, with both eyes viewing or under monocular vision (dominant and non-dominant eye). For convergent strabismus, the groups mean value of RQ was 1.3 at near and 0.94 at far distance; for divergent, it was 1.06 at near and 1.68 at far. For all children, the surface of body sway was significantly smaller under both eyes viewing than monocular viewing (either eye). Increased RQ value at near for convergent and at far for divergent strabismus is attributed to the influence of the default strabismus angle and to better use of ocular motor signals. Vision with the two eyes improves postural control for both viewing distances and for both types of strabismus. Such benefit can be due to complementary mechanisms: larger visual field, better quality of fixation and vergence angle due to the use of visual inputs from both eyes.
Characteristics of hand tremor and postural sway in patients with fetal-type Minamata disease.
Iwata, Toyoto; Takaoka, Shigeru; Sakamoto, Mineshi; Maeda, Eri; Nakamura, Masaaki; Liu, Xiao-Jie; Murata, Katsuyuki
2016-01-01
About forty certified patients aged around 50 years old existed as living witnesses to fetal-type Minamata disease (methylmercury poisoning due to in utero exposure) in Minamata, Japan in 2006. Computerized hand tremor and postural sway tests with spectral analysis were conducted for 24 of them and in matched control subjects to examine the pathophysiological feature of neuromotor function. The tremor intensities of the patients with fetal-type Minamata disease were significantly larger than those of the 67 controls at every frequency band for both hands. In the patients, proportions for intensity at 1-6 Hz of both hands were larger, but those of the intensity at 6-10 Hz were smaller compared with the controls. The center frequency of a tremor was significantly lower in the patients than in the controls. Only eight males of the 24 patients were examined to evaluate postural sway because of extremely low scores in activities of daily living in the remaining. Most of the postural sway parameters obtained with eyes open and closed were significantly larger in the patients than in the male controls. Likewise, Romberg quotients of postural sway in anterior-posterior direction were significantly higher in the patients. In conclusion, the patients with fetal-type Minamata disease of our study showed a larger tremor of low frequency at less than 6 Hz and postural instability. Spectral analyses of computerized hand tremor and postural sway are suggested to be useful for assessing the pathophysiological change, related to a lesion of the cerebellum, resulting from prenatal methylmercury exposure.
Rugless, Fedoria; Bhattacharya, Amit; Succop, Paul; Dietrich, Kim N.; Cox, Cyndy; Alden, Jody; Kuhnell, Pierce; Barnas, Mary; Wright, Robert; Parsons, Patrick J.; Praamsma, Meredith L.; Palmer, Christopher D.; Beidler, Caroline; Wittberg, Richard; Haynes, Erin N.
2014-01-01
Airborne manganese (Mn) exposure can result in neurotoxicity and postural instability in occupationally exposed workers, yet few studies have explored the association ambient exposure to Mn in children and postural stability. The goal of this study was to determine the association between Mn and lead (Pb) exposure, as measured by blood Pb, blood and hair Mn and time weighted distance (TWD) from a ferromanganese refinery, and postural stability in children. A subset of children ages 7–9 years enrolled in the Marietta Community Actively Researching Exposure Study (CARES) were invited to participate. Postural balance was conducted on 55 children residing in Marietta, Ohio and the surrounding area. Samples of blood were collected and analyzed for Mn and Pb, and samples of hair were analyzed for Mn. Neuromotor performance was assessed using postural balance testing with a computer force platform system. Pearson correlations were calculated to identify key covariates. Associations between postural balance testing conditions and Mn and Pb exposure were estimated with linear regression analyses adjusting for gender, age, parent IQ, parent age. Mean blood Mn was 10 μg/L (SEM=0.36), mean blood Pb was 0.85 μg/dL (SEM=0.05), and mean hair Mn was 0.76 μg/g (SEM=0.16). Mean residential distance from the refinery was 11.5 km (SEM=0.46). All three measures of Mn exposure were significantly associated with poor postural balance. In addition, low-level blood Pb was also negatively associated with balance outcomes. We conclude that Mn exposure and low-level blood Pb are significantly associated with poor postural balance. PMID:24370548
Postural Stability in Cigarette Smokers and During Abstinence from Alcohol
Schmidt, Thomas Paul; Pennington, David Louis; Durazzo, Timothy Craig; Meyerhoff, Dieter Johannes
2014-01-01
Background Static postural instability is common in alcohol dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. Methods A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and non-smoking ALC (nsALC) and to 74 smoking (sCON) and non-smoking light/non-drinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (approximately 1 week, 5 weeks, 34 weeks of abstinence from alcohol); a subset of nsCON was re-tested at 40 weeks. We tested if cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across time points within ALC. Results Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all three time points and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks was non-significant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Conclusions Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. PMID:24721012
Postural stability in cigarette smokers and during abstinence from alcohol.
Schmidt, Thomas P; Pennington, David L; Durazzo, Timothy C; Meyerhoff, Dieter J
2014-06-01
Static postural instability is common in alcohol-dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and nonsmoking ALC (nsALC) and to 71 smoking (sCON) and nonsmoking light/nondrinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (TPs; approximately 1, 5, 34 weeks of abstinence from alcohol); a subset of nsCON was retested at 40 weeks. We tested whether cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across TPs within ALC. Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all 3 TPs and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks were nonsignificant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. Copyright © 2014 by the Research Society on Alcoholism.
Shannon and Renyi Entropies to Classify Effects of Mild Traumatic Brain Injury on Postural Sway
Gao, Jianbo; Hu, Jing; Buckley, Thomas; White, Keith; Hass, Chris
2011-01-01
Background Mild Traumatic Brain Injury (mTBI) has been identified as a major public and military health concern both in the United States and worldwide. Characterizing the effects of mTBI on postural sway could be an important tool for assessing recovery from the injury. Methodology/Principal Findings We assess postural sway by motion of the center of pressure (COP). Methods for data reduction include calculation of area of COP and fractal analysis of COP motion time courses. We found that fractal scaling appears applicable to sway power above about 0.5 Hz, thus fractal characterization is only quantifying the secondary effects (a small fraction of total power) in the sway time series, and is not effective in quantifying long-term effects of mTBI on postural sway. We also found that the area of COP sensitively depends on the length of data series over which the COP is obtained. These weaknesses motivated us to use instead Shannon and Renyi entropies to assess postural instability following mTBI. These entropy measures have a number of appealing properties, including capacity for determination of the optimal length of the time series for analysis and a new interpretation of the area of COP. Conclusions Entropy analysis can readily detect postural instability in athletes at least 10 days post-concussion so that it appears promising as a sensitive measure of effects of mTBI on postural sway. Availability The programs for analyses may be obtained from the authors. PMID:21931720
Shannon and Renyi entropies to classify effects of Mild Traumatic Brain Injury on postural sway.
Gao, Jianbo; Hu, Jing; Buckley, Thomas; White, Keith; Hass, Chris
2011-01-01
Mild Traumatic Brain Injury (mTBI) has been identified as a major public and military health concern both in the United States and worldwide. Characterizing the effects of mTBI on postural sway could be an important tool for assessing recovery from the injury. We assess postural sway by motion of the center of pressure (COP). Methods for data reduction include calculation of area of COP and fractal analysis of COP motion time courses. We found that fractal scaling appears applicable to sway power above about 0.5 Hz, thus fractal characterization is only quantifying the secondary effects (a small fraction of total power) in the sway time series, and is not effective in quantifying long-term effects of mTBI on postural sway. We also found that the area of COP sensitively depends on the length of data series over which the COP is obtained. These weaknesses motivated us to use instead Shannon and Renyi entropies to assess postural instability following mTBI. These entropy measures have a number of appealing properties, including capacity for determination of the optimal length of the time series for analysis and a new interpretation of the area of COP. Entropy analysis can readily detect postural instability in athletes at least 10 days post-concussion so that it appears promising as a sensitive measure of effects of mTBI on postural sway. The programs for analyses may be obtained from the authors.
Postural steadiness and ankle force variability in peripheral neuropathy
Paxton, Roger J.; Feldman-Kothe, Caitlin; Trabert, Megan K.; Hitchcock, Leah N.; Reiser, Raoul F.; Tracy, Brian L.
2015-01-01
Introduction The purpose was to determine the effect of peripheral neuropathy (PN) on motor output variability for ankle muscles of older adults, and the relation between ankle motor variability and postural stability in PN patients. Methods Older adults with (O-PN) and without PN (O), and young adults (Y) underwent assessment of standing postural stability and ankle muscle force steadiness. Results O-PN displayed impaired ankle muscle force control and postural stability compared with O and Y groups. For O-PN, the amplitude of plantarflexor force fluctuations was moderately correlated with postural stability under no-vision conditions (r = 0.54, P = 0.01). Discussion The correlation of variations in ankle force with postural stability in PN suggests a contribution of ankle muscle dyscontrol to the postural instability that impacts physical function for older adults with PN. PMID:26284897
Kim, Kyung-Min; Hart, Joseph M.; Saliba, Susan A.; Hertel, Jay
2016-01-01
Context: Individuals with chronic ankle instability (CAI) present with decreased modulation of the Hoffmann reflex (H-reflex) from a simple to a more challenging task. The neural alteration is associated with impaired postural control, but the relationship has not been investigated in individuals with CAI. Objective: To determine differences in H-reflex modulation and postural control between individuals with or without CAI and to identify if they are correlated in individuals with CAI. Design: Descriptive laboratory study. Setting: Laboratory. Patients or Other Participants: A total of 15 volunteers with CAI (9 males, 6 females; age = 22.6 ± 5.8 years, height = 174.7 ± 8.1 cm, mass = 74.9 ± 12.8 kg) and 15 healthy sex-matched volunteers serving as controls (9 males, 6 females; age = 23.8 ± 5.8 years, height = 171.9 ± 9.9 cm, mass = 68.9 ± 15.5 kg) participated. Intervention(s): Maximum H-reflex (Hmax) and motor wave (Mmax) from the soleus and fibularis longus were recorded while participants lay prone and then stood in unipedal stance. We assessed postural tasks of unipedal stance with participants' eyes closed for 10 seconds using a forceplate. Main Outcome Measure(s): We normalized Hmax to Mmax to obtain Hmax : Mmax ratios for the 2 positions. For each muscle, H-reflex modulation was quantified using the percentage change scores in Hmax : Mmax ratios calculated from prone position to unipedal stance. Center-of-pressure data were used to compute 4 time-to-boundary variables. Separate independent-samples t tests were performed to determine group differences. Pearson product moment correlation coefficients were calculated between the modulation and balance measures in the CAI group. Results: The CAI group presented less H-reflex modulation in the soleus (t26 = −3.77, P = .001) and fibularis longus (t25 = −2.59, P = .02). The mean of the time-to-boundary minima in the anteroposterior direction was lower in the CAI group (t28 = −2.06, P = .048). We observed a correlation (r = 0.578, P = .049) between the fibular longus modulation and mean of time-to-boundary minima in the anteroposterior direction. Conclusions: The strong relationship indicated that, as H-reflex amplitude in unipedal stance was less down modulated, unipedal postural control was more impaired. Given the deficits in H-reflex modulation and postural control in the CAI group, the relationship may provide insights into the neurophysiologic mechanism of postural instability. PMID:27583692
Simpson, Jeffrey D; Stewart, Ethan M; Macias, David M; Chander, Harish; Knight, Adam C
2018-06-13
To evaluate the literature regarding unilateral landing biomechanics and dynamic postural stability in individuals with and without chronic ankle instability (CAI). Four online databases (PubMed, ScienceDirect, Scopus, and SportDiscus) were searched from the earliest records to 31 January 2018, as well as reference sections of related journal articles, to complete the systematic search. Studies investigating the influence of CAI on unilateral landing biomechanics and dynamic postural stability were systematically reviewed and evaluated. Twenty articles met the criteria and were included in the systematic review. Individuals with CAI were found to have deficits in dynamic postural stability on the affected limb with medium to large effect sizes and altered lower extremity kinematics, most notably in the ankle and knee, with medium to large effect sizes. Additionally, greater loading rates and peak ground reaction forces, in addition to reductions in ankle muscle activity were also found in individuals with CAI during unilateral jump-landing tasks. Individuals with CAI demonstrate dynamic postural stability deficits, lower extremity kinematic alterations, and reduced neuromuscular control during unilateral jump-landings. These are likely factors that contribute recurrent lateral ankle sprain injuries during dynamic activity in individuals with CAI. Copyright © 2018 Elsevier Ltd. All rights reserved.
Childhood obesity affects postural control and aiming performance during an upper limb movement.
Boucher, François; Handrigan, Grant A; Mackrous, Isabelle; Hue, Olivier
2015-07-01
Obesity reduces the efficiency of postural and movement control mechanisms. However, the effects of obesity on a functional motor task and postural control in standing and seated position have not been closely quantified among children. The aim of this study is to examine the effects of obesity on the execution of aiming tasks performed in standing and seated conditions in children. Twelve healthy weight children and eleven obese children aged between 8 and 11 years pointed to a target in standing and seated position. The difficulty of the aiming task was varied by using 2 target sizes (1.0 cm and 5.0 cm width; pointing to the smaller target size needs a more precise movement and constitutes a more difficult task). Hand movement time (MT) and its phases were measured to quantify the aiming task. Mean speed of the center of pressure displacement (COP speed) was calculated to assess postural stability during the movement. Obese children had significantly higher MTs compared to healthy-weight children in seated and standing conditions explained by greater durations of deceleration phase when aiming. Concerning the COP speed during the movement, obese children showed significantly higher values when standing compared to healthy-weight children. This was also observed in the seated position. In conclusion, obesity adds a postural constraint during an aiming task in both seated and standing conditions and requires obese children to take more time to correct their movements due to a greater postural instability of the body when pointing to a target with the upper-limb. Copyright © 2015 Elsevier B.V. All rights reserved.
Alves, Yanina; Ribeiro, Fernando; Silva, Anabela G
2017-07-05
Chronic ankle instability presents a high incidence and prevalence in basketbal players. It's important to develop strategies to reduce the functional and mechanical limitations resulting from this condition. To compare the effect of Mulligan ́s fibular repositioning taping with a placebo taping immediatly after application and after a running test (Yo-Yo IRT). 16 adult basketball players (10 male, 6 female) with chronic ankle instability and mean age 21.50 ± 2.76 years old. Assessment of static postural control (15 seconds of unipedal stance test with eyes closed in a force platform), functional performance (figure 8 hop test and lateral hop test) and neuromuscular control (peroneus longus latency time in sudden inversion) in two conditions: Mulligan and Placebo. No significant effect was found for the intervantion factor in both hop tests (p>0.170), but there was a significant effect for the time factor (p<0.03). For the peroneus longus latency time, there was a significant interaction between factors (p=0.028) and also for time (p=0.042). No significant effect was found for any of the static postural control variables (area, speed and total displacement) (p≥0.10). There was no differences between Mulligan's fibular repositioning taping and Placebo taping in postural control and functional performance in basketball players with chronic ankle instability. However, Mulligan's taping appears to reduce peroneus longus latency time after a running when compared with a placebo taping.
Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia
2018-04-01
The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.
The effects of narrow and elevated path walking on aperture crossing.
Hackney, Amy L; Cinelli, Michael E; Denomme, Luke T; Frank, James S
2015-06-01
The study investigated the impact that action capabilities have on identifying possibilities for action, particularly how postural threat influences the passability of apertures. To do this, the ability to maintain balance was challenged by manipulating the level of postural threat while walking. First, participants walked along a 7m path and passed through two vertical obstacles spaced 1.1-1.5×the shoulder width apart during normal walking. Next, postural threat was manipulated by having participants complete the task either walking on a narrow, ground level path or on an elevated/narrow path. Despite a decrease in walking speed as well as an increase in trunk sway in both the narrow and elevated/narrow walking conditions, the passability of apertures was only affected when the consequence of instability was greatest. In the elevated/narrow walking condition, individuals maintained a larger critical point (rotated their shoulders for larger aperture widths) compared to normal walking. However, this effect was not observed for the narrow path walking suggesting that the level of postural threat was not enough to impose similar changes to the critical point. Therefore, it appears that manipulating action capabilities by increasing postural threat does indeed influence aperture crossing behavior, however the consequence associated with instability must be high before both gait characteristics and the critical point are affected. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Riva, Dario; Rossitto, Franco; Battocchio, Luciano
2009-09-01
The difficulty in applying active exercises during space flights increases the importance of passive countermeasures, but coupling load and instability remains indispensable for generating high frequency (HF) proprioceptive flows and preventing muscle atrophy and osteoporosis. The present study, in microgravity conditions during a parabolic flight, verified whether an electronic system, composed of a rocking board, a postural reader and a bungee-cord loading apparatus creates HF postural instability comparable to that reachable on the Earth. Tracking the subject, in single stance, to real-time visual signals is necessary to obtain HF instability situations. The bungee-cord loading apparatus allowed the subject to manage the 81.5% body weight load (100% could easily be exceeded). A preliminary training programme schedule on the Earth and in space is suggested. Comparison with a pathological muscle atrophy is presented. The possibility of generating HF proprioceptive flows could complement current countermeasures for the prevention and recovery of muscle atrophy and osteoporosis in terrestrial and space environments. These exercises combine massive activation of spindles and joint receptors, applying simultaneously HF variations of pressure to different areas of the sole of the foot. This class of exercises could improve the effectiveness of current countermeasures, reducing working time and fatigue.
Static Postural Stability in Chronic Ankle Instability, An Ankle Sprain and Healthy Ankles.
Kwon, Yong Ung
2018-05-18
To identify the single leg balance (SLB) test that discriminates among healthy, coper, and chronic ankle instability (CAI) groups and to determine effects of ankle muscles on the balance error scoring system (BESS) among the three populations. 60 subjects (20 per group) performed the SLB test with eyes open (EO) and eyes closed (EC). Normalized mean amplitude (NMA) of the tibia anterior (TA), fibularis longus (FL), and medial gastrocnemius (MG) muscles and BESS were measured while performing the SLB test. The coper group had a lower error score than the CAI group in the EC. NMA was greater in the CAI group compared to in the healthy and coper groups regardless of muscle type. NMA of the TA was less than the PL and MG regardless of the group in the EO. The CAI group demonstrated greater NMAs of the PL and MG than the healthy and coper groups in the EC. The CAI group demonstrated greater NMA of the PL and MG by compensating their ankle muscles in the EO and EC. BESS suggests that the coper group may have coping mechanisms to stabilize static postural control compared to the CAI group. The EC may be better to detect static postural instability in the CAI or coper group. © Georg Thieme Verlag KG Stuttgart · New York.
The clinical utility of posturography.
Visser, Jasper E; Carpenter, Mark G; van der Kooij, Herman; Bloem, Bastiaan R
2008-11-01
Postural instability and falls are common and devastating features of ageing and many neurological, visual, vestibular or orthopedic disorders. Current management of these problems is hampered by the subjective and variable nature of the available clinical balance measures. In this narrative review, we discuss the clinical utility of posturography as a more objective and quantitative measure of balance and postural instability, focusing on several areas where clinicians presently experience the greatest difficulties in managing their patients: (a) to make an appropriate differential diagnosis in patients presenting with falls or balance impairment; (b) to reliably identify those subjects who are at risk of falling; (c) to objectively and quantitatively document the outcome of therapeutic interventions; and (d) to gain a better pathophysiological understanding of postural instability and falls, as a basis for the development of improved treatment strategies to prevent falling. In each of these fields, posturography offers several theoretical advantages and, when applied correctly, provides a useful tool to gain a better understanding of pathophysiological mechanisms in patients with balance disorders, at the group level. However, based on the available evidence, none of the existing techniques is currently able to significantly influence the clinical decision making in individual patients. We critically review the shortcomings of posturography as it is presently used, and conclude with several recommendations for future research.
Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E
2016-01-01
Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. Copyright © 2016 by the American Occupational Therapy Association, Inc.
Baumberger, Bernard; Isableu, Brice; Flückiger, Michelangelo
2004-11-01
The aim of this research was to analyse the development of postural reactions to approaching (AOF) and receding (ROF) ground rectilinear optical flows. Optical flows were shaped by a pattern of circular spots of light projected on the ground surface by a texture flow generator. The geometrical structure of the projected scenes corresponded to the spatial organisation of visual flows encountered in open outdoor settings. Postural readjustments of 56 children, ranging from 7 to 11 years old, and 12 adults were recorded by the changes of the centre of foot pressure (CoP) on a force platform during 44-s exposures to the moving texture. Before and after the optical flows exposure, a 24-s motionless texture served as a reference condition. Effect of ground rectilinear optical flows on postural control development was assessed by analysing sway latencies (SL), stability performances and postural orientation. The main results that emerge from this experiment show that postural responses are directionally specific to optical flow pattern and that they vary as a function of the motion onset and offset. Results showed that greater developmental changes in postural control occurred in an AOF (both at the onset and offset of the optical flow) than in an ROF. Onset of an approaching flow induced postural instability, canonical shifts in postural orientation and long latencies in children which were stronger than in the receding flow. This pattern of responses evolved with age towards an improvement in stability performances and shorter SL. The backward decreasing shift of the CoP in children evolved in adults towards forward postural tilt, i.show $132#e. in the opposite direction of the texture's motion. Offset of an AOF motion induced very short SL in children (which became longer in adult subjects), strong postural instability, but weaker shift of orientation compared to the receding one. Postural stability improved and orientation shift evolved to forward inclinations with age. SL remained almost constant across age at both onset and offset of the receding flow. Critical developmental periods seem to occur by the age of 8 and 10 years, as suggested by the transient 'neglect' of the children to optical flows. Linear vection was felt by 90% of the 7 year olds and decreased with age to reach 55% in adult subjects. The mature sensorimotor coordination subserving the postural organisation shown in adult subjects is an example aiming at reducing the postural effects induced by optical flows. The data are discussed in relation to the perceptual importance of mobile visual references on a ground support.
Laterality of repetitive finger movement performance and clinical features of Parkinson's disease.
Stegemöller, Elizabeth; Zaman, Andrew; MacKinnon, Colum D; Tillman, Mark D; Hass, Chris J; Okun, Michael S
2016-10-01
Impairments in acoustically cued repetitive finger movement often emerge at rates near to and above 2Hz in persons with Parkinson's Disease (PD) in which some patients move faster (hastening) and others move slower (bradykinetic). The clinical features impacting this differential performance of repetitive finger movement remain unknown. The purpose of this study was to compare repetitive finger movement performance between the more and less affected side, and the difference in clinical ratings among performance groups. Forty-one participants diagnosed with idiopathic PD completed an acoustically cued repetitive finger movement task while "on" medication. Eighteen participants moved faster, 10 moved slower, and 13 were able to maintain the appropriate rate at rates above 2Hz. Clinical measures of laterality, disease severity, and the UPDRS were obtained. There were no significant differences between the more and less affected sides regardless of performance group. Comparison of disease severity, tremor, and rigidity among performance groups revealed no significant differences. Comparison of posture and postural instability scores revealed that the participants that demonstrated hastening had worse posture and postural instability scores. Consideration of movement rate during the clinical evaluation of repetitive finger movement may provide additional insight into varying disease features in persons with PD. Copyright © 2016 Elsevier B.V. All rights reserved.
Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Doxey-Gasway, D. D.; Reschke, M. F.
1995-01-01
Results of previous studies suggested that the vestibular mediated postural instability observed in astronauts upon return to earth from orbital spaceflight may be exacerbated by an increased weighting of visual inputs for spatial orientation and control of movement. This study was performed to better understand the roles of visual and somatosensory contributions to recovery of normal sensori-motor postural control in returning astronauts. Preflight and postflight, 23 astronaut volunteers were presented randomly with three trials of six sensory organization test (SOT) conditions in the EquiTest system test battery. Sagittal plane center-of-gravity (COG) excursions computed from ground reaction forces were significantly higher on landing day than preflight for those test conditions presenting sway-referenced visual and/or somatosensory orientation cues. The ratio of summed peak-to-peak COG sway amplitudes on the two sway-referenced vision tests (SOTs 3 + 6) compared to the two eyes closed tests (SOTs 2 + 5) was increased on landing day, indicating an increased reliance on visual orientation cues for postural control. The ratio of peak-to-peak COG excursions on sway-referenced surfaces (SOTs 4, 5 & 6) to an earth fixed support surfaces (SOTs 1, 2 & 3) increased even more after landing suggesting primary reliance on somatosensory orientation cues for recovery of postflight postural stability. Readaptation to sway-referenced support surfaces took longer than readaptation to sway-referenced vision. The increased reliance on visual and somatosensory inputs disappeared in all astronauts 4-8 days following return to earth.
Peters, Ryan M.; McKeown, Monica D.; Carpenter, Mark G.
2016-01-01
Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also explain greater instability in older adults and has yet to be investigated. We replicated the age-related decline in sensitivity by assessing monofilament and vibrotactile (30 and 250 Hz) detection thresholds near the first metatarsal head bilaterally in healthy young and older adults. We additionally applied continuous 30- and 250-Hz vibration to drive mechanically evoked reflex responses in the tibialis anterior muscle, measured via surface electromyography. To investigate potential relationships between plantar sensitivity, cutaneous reflex strength, and postural stability, we performed posturography in subjects during quiet standing without vision. Anteroposterior and mediolateral postural stability decreased with age, and increases in postural sway amplitude and frequency were significantly correlated with increases in plantar detection thresholds. With 30-Hz vibration, cutaneous reflexes were observed in 95% of young adults but in only 53% of older adults, and reflex gain, coherence, and cumulant density at 30 Hz were lower in older adults. Reflexes were not observed with 250-Hz vibration, suggesting this high-frequency cutaneous input is filtered out by motoneurons innervating tibialis anterior. Our findings have important implications for assessing the risk of balance impairment in older adults. PMID:27489366
Prediction of Post-stroke Falls by Quantitative Assessment of Balance.
Lee, Hyun Haeng; Jung, Se Hee
2017-06-01
To evaluate characteristics of the postural instability in patients with stroke and to present a prediction model of post-stroke falls. Patients with a first-ever stroke who had been evaluated by the Balance Master (BM) at post-stroke 3 months (±1 month) between August 2011 and December 2015 were enrolled. Parameters for the postural instability, such as the weight bearing asymmetry (WBA) and postural sway velocity (PSV), were obtained. The fall events in daily lives were assessed via structured telephone interview with a fall related questionnaire. A total of 71 patients (45 men; 45 with ischemic stroke) were enrolled in this study. All subjects underwent BM evaluation at 3.03±0.40 months after stroke. The mean WBA was 17.18%±13.10% and mean PSV (measured as °/s) were noted as 0.66±0.37 (eyes-open on firm surface), 0.89±0.75 (eyes-closed on firm surface), 1.45±1.09 (eyes-open on soft surface), and 3.10±1.76 (eyes-closed on soft surface). A prediction model of post-stroke falls was drawn by multiple logistic regression analysis as follows: Risk of post-stroke falls = -2.848 + 1.878 x (PSV ECSS ) + 0.154 x (age=1 if age≥65; age=0 if age<65). The weight bearing asymmetry and postural sway were significantly increased in patients with stroke. Older age and impaired postural control increased the risk of post-stroke falls.
Footwear for the neuropathic patient: offloading and stability.
van Deursen, Robert
2008-01-01
Diabetic neuropathy is related to plantar ulceration through a variety of factors of which increased plantar pressures and loss of protective sensation are the most important. Loss of sensation in the lower limbs is also related to postural instability and an increased risk of falling. Ankle and foot proprioception play an important role in postural control and this sensory function is also affected by neuropathy. It is conceivable that footwear, orthotics, casts and braces used for treatment or prevention of plantar ulceration through offloading of the injured or at-risk foot area can exacerbate the postural instability and risk of falling. This has, however, received very limited attention in the literature. There are studies that have demonstrated that footwear adjustments can influence balance and stability in healthy, elderly subjects. The adjustments made to footwear for the diabetic foot are generally more dramatic and, therefore, are expected to have a greater influence on postural stability. Furthermore, casts and braces tend to deviate even more from normal footwear. This may seriously interfere with normal gait and posture and, therefore, stability. So far the evidence suggests that patients wearing such devices demonstrate markedly reduced activity levels. This reduced activity could add to the effect of offloading. This could also be interpreted to indicate problems with stability. This presentation will review the different types of offloading interventions frequently used for ulcer treatment and prevention and will consider the mechanical effect of these interventions on stability.
Step-Down Test Assessment of Postural Stability in Patients With Chronic Ankle Instability.
Bolt, Doris; Giger, René; Wirth, Stefan; Swanenburg, Jaap
2018-01-23
The underlying mechanism in 27% of ankle sprains is a fall while navigating stairs. Therefore, the step-down test (SDT) may be useful to investigate dynamic postural stability deficits in individuals with chronic ankle instability (CAI). To investigate the test-retest reliability and validity of the forward and lateral SDT protocol between individuals with CAI and uninjured controls. Test-retest study. University hospital. A total of 46 individuals, 23 with CAI and 23 uninjured controls. Time to stabilization of the forward and lateral SDT. The absolute reliability (SEM = 0.04-0.12 s; SDD = 0.11-0.33 s) of the SDT protocol was acceptable, whereas the relative reliability (ICC 3 , k = 0.12-0.63) and discriminant validity (P = .42-.99; AUC = 0.50-0.57) were not. The SDT appears to not be challenging enough to detect dynamic postural stability differences between individuals with and without CAI. However, the SDT may be capable of measuring change over time based on its good absolute reliability.
Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L
2017-12-01
peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.
Impact of soft and hard insole density on postural stability in older adults.
Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Palacios Peña, Domingo
2012-01-01
A significant predictor of falls in the elderly population is attributed to postural instability. Thus, it is important to identify and implement practical clinical interventions to enhance postural stability in older adults. Shoe insoles have been identified as a mechanism to enhance postural control, and our study aimed to evaluate the impact of 2 shoe insoles on static standing balance in healthy, older adults compared with standing posture while barefoot. We hypothesized that both hard and soft shoe insoles would decrease postural sway compared with the barefoot condition. Indeed, excursion distances and sway areas were reduced, and sway velocity was decreased when wearing insoles. The hard insole was also effective when visual feedback was removed, suggesting that the more rigid an insole, the greater potential reduction in fall risk. Thus, shoe insoles may be a cost-effective, clinical intervention that is easy to implement to reduce the risk of falling in the elderly population. Copyright © 2012 Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kenyon, R. V.; Young, L. R.
1986-01-01
The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.
Shoulder Impingement Treatment
... imbalance in the rotator cuff or scapular muscles, postural abnormalities, shoulder joint instability, or improper training or ... and corrected. Phase Goals Methods Comments I Pain control Limit overhead activity or anything that causes pain. ...
Abnormal posturing - decorticate posture; Traumatic brain injury - decorticate posture ... Brain problem due to drugs, poisoning, or infection Traumatic brain injury Brain problem due to liver failure Increased pressure ...
A Simple Postflight Measure of Postural Atania in Astronauts
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Harm, D. I.; Kofman, I. S.; Wood, S. J.; Bloomberg, J. J.
2011-01-01
Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior (AP) plane. The current investigation, as a part of a larger functional study, concentrated on characterizing postural instability using dynamic stabilographic sway patterns in both the AP and medial-lateral (ML) planes. To accomplish this goal, six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 30 days after flight. Anterior-posterior and ML center-of-pressure (COP) coordinates were calculated from the ground reaction forces collected at 500 Hz. The 3-minute quiet stance trial was broken into three 1-minute segments for stabilogram diffusion analysis. A mean sway speed (rate of change of COP displacement) was also calculated as an additional postural stability parameter. While there was considerable variation, most of crewmembers tested exhibited increased stochastic activity evidenced by larger short-term COP diffusion coefficients postflight in both the AP and ML planes, suggesting significant changes in postural control mechanisms, particularly control of lower limb muscle function. As expected, postural instability of ISS astronauts on the first day postflight was similar to that of Shuttle crewmembers on landing day. Recoveries of stochastic activity and mean sway speed to baseline levels were typically observed by the 30th day postflight for both long-duration and short-duration crewmembers. Dynamic postural stability characteristics obtained in this low-impact study complement the data measured with computerized dynamic posturography.
Horak, Fay B
2006-09-01
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf
2010-03-01
Excessive sway during quiet standing is a common sequela of chronic alcoholism even with prolonged sobriety. Whether alcoholic men and women who have remained abstinent from alcohol for weeks to months differ from each other in the degree of residual postural instability and biomechanical control mechanisms has not been directly tested. We used a force platform to characterize center-of-pressure biomechanical features of postural sway, with and without stabilizing conditions from touch, vision, and stance, in 34 alcoholic men, 15 alcoholic women, 22 control men, and 29 control women. Groups were matched in age (49.4 years), general intelligence, socioeconomic status, and handedness. Each alcoholic group was sober for an average of 75 days. Analysis of postural sway when using all 3 stabilizing conditions versus none revealed diagnosis and sex differences in ability to balance. Alcoholics had significantly longer sway paths, especially in the anterior-posterior direction, than controls when maintaining erect posture without balance aids. With stabilizing conditions the sway paths of all groups shortened significantly, especially those of alcoholic men, who demonstrated a 3.1-fold improvement in sway path difference between the easiest and most challenging conditions; the remaining 3 groups, each showed a approximately 2.4-fold improvement. Application of a mechanical model to partition sway paths into open-loop and closed-loop postural control systems revealed that the sway paths of the alcoholic men but not alcoholic women were characterized by greater short-term (open-loop) diffusion coefficients without aids, often associated with muscle stiffening response. With stabilizing factors, all 4 groups showed similar long-term (closed loop) postural control. Correlations between cognitive abilities and closed-loop sway indices were more robust in alcoholic men than alcoholic women. Reduction in sway and closed-loop activity during quiet standing with stabilizing factors shows some differential expression in men and women with histories of alcohol dependence. Nonetheless, enduring deficits in postural instability of both alcoholic men and alcoholic women suggest persisting liability for falling.
Brandt, Thomas; Grill, Eva; Strupp, Michael; Huppert, Doreen
2018-01-01
Aims: To determine the susceptibility to visual height intolerance (vHI) in patients with acquired bilateral vestibulopathy (BVP). The question was whether postural instability in BVP, which is partially compensated for by visual substitution of the impaired vestibular control of balance, leads to an increased susceptibility. This is of particular importance since fear of heights is dependent on body posture, and visual control of balance at heights can no longer substitute vestibular input. For comparison susceptibility to vHI was determined in patients with other vestibular or functional disorders. Methods: A total of 150 patients aged 18 or above who had been referred to the German Center for Vertigo and Balance Disorders and diagnosed to have BVP were surveyed with a standardized questionnaire by specifically trained neurological professionals. Further, 481 patients with other vestibular or functional disorders were included. Results: Susceptibility to vHI was reported by 29% (32 % in females, 25% in males) of the patients with BVP. Patients with vHI were slightly younger (67 vs. 71 years). Seventy percent of those with vHI reported avoidance of climbing, hiking, stairs, darkness, cycling or swimming (84% of those without vHI). Mean age for onset of vHI was 40 years. Susceptibility to vHI was higher in patients with other vertigo disorders than in those with BVP: 64% in those with phobic postural vertigo, 61% in vestibular migraine, 56% in vestibular paroxysmia, 54% in benign paroxysmal positional vertigo, 49% in unilateral vestibulopathy and 48% in Menière's disease. Conclusions: The susceptibility to vHI in BVP was not higher than that of the general population (28%).This allows two explanations that need not be alternatives but contribute to each other: (1) Patients with a bilateral peripheral vestibular deficit largely avoid exposure to heights because of their postural instability. (2) The irrational anxiety to fall from heights triggers increased susceptibility to vHI, not the objective postural instability. However, patients with BVP do not exhibit increased comorbid anxiety disorders. This view is supported by the significantly increased susceptibility to vHI in other vestibular syndromes, which are characterized by an increased comorbidity of anxiety disorders.
Genetics Home Reference: multiple system atrophy
... inability to hold the body upright and balanced (postural instability). The other type of multiple system atrophy , ... cells in parts of the nervous system that control movement, balance and coordination, and autonomic functioning. The ...
Jones, Pete R
2018-05-16
During psychophysical testing, a loss of concentration can cause observers to answer incorrectly, even when the stimulus is clearly perceptible. Such lapses limit the accuracy and speed of many psychophysical measurements. This study evaluates an automated technique for detecting lapses based on body movement (postural instability). Thirty-five children (8-11 years of age) and 34 adults performed a typical psychophysical task (orientation discrimination) while seated on a Wii Fit Balance Board: a gaming device that measures center of pressure (CoP). Incorrect responses on suprathreshold catch trials provided the "reference standard" measure of when lapses in concentration occurred. Children exhibited significantly greater variability in CoP on lapse trials, indicating that postural instability provides a feasible, real-time index of concentration. Limitations and potential applications of this method are discussed.
Schallert, Timothy; Schmidt, Christine E.
2013-01-01
Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. A majority of the spinal cord injuries in humans occur at the cervical levels. Therefore, developing cervical injury models and developing relevant and sensitive behavioral tests is of great importance. Here we describe the use of a newly developed forelimb step-alternation test after cervical spinal cord injury in rats. In addition, we describe two behavioral tests that have not been used after spinal cord injury: a postural instability test (PIT), and a pasta-handling test. All three behavioral tests are highly sensitive to injury and are easy to use. Therefore, we feel that these behavioral tests can be instrumental in investigating therapeutic strategies after cSCI. PMID:24084700
Khaing, Zin Z; Geissler, Sydney A; Schallert, Timothy; Schmidt, Christine E
2013-09-16
Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. A majority of the spinal cord injuries in humans occur at the cervical levels. Therefore, developing cervical injury models and developing relevant and sensitive behavioral tests is of great importance. Here we describe the use of a newly developed forelimb step-alternation test after cervical spinal cord injury in rats. In addition, we describe two behavioral tests that have not been used after spinal cord injury: a postural instability test (PIT), and a pasta-handling test. All three behavioral tests are highly sensitive to injury and are easy to use. Therefore, we feel that these behavioral tests can be instrumental in investigating therapeutic strategies after cSCI.
Parkinsonism in fragile X-associated tremor/ataxia syndrome (FXTAS): revisited.
Niu, Yu-Qiong; Yang, Jin-Chen; Hall, Deborah A; Leehey, Maureen A; Tassone, Flora; Olichney, John M; Hagerman, Randi J; Zhang, Lin
2014-04-01
Parkinsonian features have been used as a minor diagnostic criterion for fragile X-associated tremor/ataxia syndrome (FXTAS). However, prior studies have examined parkinsonism (defined as having bradykinesia with at least rest tremor or postural instability) mostly in premutation carriers without a diagnosis of FXTAS. The current study was intended to elaborate this important aspect of the FXTAS spectrum, and to quantify the relationships between parkinsonism, FXTAS clinical staging and genetic/molecular measures. Thirty eight (38) FXTAS patients and 10 age-matched normal controls underwent a detailed neurological examination that included all but one item (i.e. rigidity) of the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS). The FXTAS patient group displayed substantially higher prevalence of parkinsonian features including body bradykinesia (57%) and rest tremor (26%), compared to the control group. Furthermore, parkinsonism was identified in 29% of FXTAS patients. Across all patients, body bradykinesia scores significantly correlated with FXTAS clinical stage, FMR1 mRNA level, and ataxic gait of cerebellar origin, while postural instability was associated with intention tremor. Parkinsonian features in FXTAS appear to be characterized as bradykinesia concurrent with cerebellar gait ataxia, postural instability accompanied by intention tremor, and frequent rest tremor, representing distinctive patterns that highlight the need for further clinical studies including genetic testing for the FMR1 premutation. The association between FMR1 mRNA level and bradykinesia implicates pathophysiological mechanisms which may link FMR1 mRNA toxicity, dopamine deficiency and parkinsonism in FXTAS. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wikstrom, Erik A; McKeon, Patrick O
2017-04-01
Sensory Targeted Ankle Rehabilitation Strategies that stimulate sensory receptors improve postural control in chronic ankle instability participants. However, not all participants have equal responses. Therefore, identifying predictors of treatment success is needed to improve clinician efficiency when treating chronic ankle instability. Therefore, the purpose was to identify predictors of successfully improving postural control in chronic ankle instability participants. Secondary data analysis. Fifty-nine participants with self-reported chronic ankle instability participated. The condition was defined as a history of at least two episodes of "giving way" within the past 6 months; and limitations in self-reported function as measured by the Foot and Ankle Ability Measure. Participants were randomized into three treatment groups (plantar massage, ankle joint mobilization, calf stretching) that received 6, 5-min treatment sessions over a 2-week period. The main outcome measure was treatment success, defined as a participant exceeding the minimal detectable change score for a clinician-oriented single limb balance test. Participants with ≥3 balance test errors had a 73% probability of treatment success following ankle joint mobilizations. Participants with a self-reported function between limb difference <16.07% and who made >2.5 errors had a 99% probability of treatment success following plantar massage. Those who sustained ≥11 ankle sprains had a 94% treatment success probability following calf stretching. Self-reported functional deficits, worse single limb balance, and number of previous ankle sprains are important characteristics when determining if chronic ankle instability participants will have an increased probability of treatment success. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Chang, Minsu; Kim, Yeongmin; Lee, Yoseph; Jeon, Doyoung
2017-07-01
This paper proposes a method of detecting the postural stability of a person wearing the lower limb exoskeletal robot with the HAT(Head-Arm-Trunk) model. Previous studies have shown that the human posture is stable when the CoM(Center of Mass) of the human body is placed on the BoS(Base of Support). In the case of the lower limb exoskeletal robot, the motion data, which are used for the CoM estimation, are acquired by sensors in the robot. The upper body, however, does not have sensors in each segment so that it may cause the error of the CoM estimation. In this paper, the HAT(Head-Arm-Trunk) model which combines head, arms, and torso into a single segment is considered because the motion of head and arms are unknown due to the lack of sensors. To verify the feasibility of HAT model, the reflecting markers are attached to each segment of the whole human body and the exact motion data are acquired by the VICON to compare the COM of the full body model and HAT model. The difference between the CoM with full body and that with HAT model is within 20mm for the various motions of head and arms. Based on the HAT model, the XCoM(Extrapolated Center of Mass) which includes the velocity of the CoM is used for prediction of the postural stability. The experiment of making unstable posture shows that the XCoM of the whole body based on the HAT model is feasible to detect the instance of postural instability earlier than the CoM by 20-250 msec. This result may be used for the lower limb exoskeletal robot to prepare for any action to prevent the falling down.
van der Spek, Jaap H; Veltink, Peter H; Hermens, Hermie J; Koopman, Bart F J M; Boom, Herman B K
2003-12-01
The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N x m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur.
Galli, Manuela; Cimolin, Veronica; Vismara, Luca; Grugni, Graziano; Camerota, Filippo; Celletti, Claudia; Albertini, Giorgio; Rigoldi, Chiara; Capodaglio, Paolo
2011-01-01
Prader-Willi syndrome (PWS) and Ehlers-Danlos syndrome (EDS) are two different genetical disorders both characterized, among other features, by muscular hypotonia. Postural control seems to be impaired in both conditions. The aim of the present study was to quantitatively compare postural control in adult PWS and EDS using stabilometric platform to unveil possible common determinants of impaired balance. We enrolled 11 PWS and 21 EDS adult patients and 20 age-matched controls. They were instructed to maintain an upright standing position for 30s with open eyes (OEs) focusing on a 6 cm black circle positioned at a distance of 1.5m. Both PWS and EDS patients were characterized by higher RANGEML, RANGEAP and trajectory length of CoP values as compared to CG. No statistically differences were found between PWS and EDS in terms of any of these parameters. The results demonstrated that both PWS and EDS are characterized by a severe postural instability. Muscle hypotonia and weakness may account for reduced balance capacity. Quantitative characterization of instability is important to identify, develop and enhance rehabilitation interventions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kanekar, Neeta; Aruin, Alexander S
2015-04-01
Humans use anticipatory and compensatory postural strategies to maintain and restore balance when perturbed. Inefficient generation and utilization of anticipatory postural adjustments (APAs) is one of the reasons for postural instability. The aim of the study was to investigate the role of training in improvement of APAs and its effect on subsequent control of posture. Thirteen healthy young adults were exposed to predictable external perturbations before and after a single training session consisting of catches of a medicine ball thrown at the shoulder level. 3-D body kinematics, EMG activity of thirteen trunk and lower limb muscles, and ground reaction forces were recorded before and immediately after a single training session. Muscle onsets, EMG integrals, center of pressure (COP), and center of mass (COM) displacements were analyzed during the anticipatory and compensatory phases of postural control. The effect of a single training session was seen as significantly early muscle onsets and larger anticipatory COP displacements. As a result, significantly smaller peak COM displacements were observed after the perturbation indicating greater postural stability. The outcome of this study provides a background for examining the role of training in improvement of APAs and its effect on postural stability in individuals in need. Copyright © 2014 Elsevier Ltd. All rights reserved.
Duclos, Noémie C; Maynard, Luc; Abbas, Djawad; Mesure, Serge
2015-11-02
Right brain damage (RBD) following stroke often causes significant postural instability. In standing (without vision), patients with RBD are more unstable than those with left brain damage (LBD). We hypothesised that this postural instability would relate to the cortical integration of proprioceptive afferents. The aim of this study was to use tendon vibration to investigate whether these changes were specific to the paretic or non-paretic limbs. 14 LBD, 12 RBD patients and 20 healthy subjects were included. Displacement of the Centre of Pressure (CoP) was recorded during quiet standing, then during 3 vibration conditions (80 Hz - 20s): paretic limb, non-paretic limb (left and right limbs for control subjects) and bilateral. Vibration was applied separately to the peroneal and Achilles tendons. Mean antero-posterior position of the CoP, variability and velocity were calculated before (4s), during and after (24s) vibration. For all parameters, the strongest perturbation was during Achilles vibrations. The Achilles non-paretic condition induced a larger backward displacement than the Achilles paretic condition. This condition caused specific behaviour on the velocity: the LBD group was perturbed at the onset of the vibrations, but gradually recovered their stability; the RBD group was significantly perturbed thereafter. After bilateral Achilles vibration, RBD patients required the most time to restore initial posture. The reduction in use of information from the paretic limb may be a central strategy to deal with risk-of-fall situations such as during Achilles vibration. The postural behaviour is profoundly altered by lesions of the right hemisphere when proprioception is perturbed. Copyright © 2015 Elsevier B.V. All rights reserved.
Postflight Quiet Stance Stability of Astronauts Following Recovery From a Simulated Fall
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kofman, I. S.; Fisher, E. A.; Cerisano, J. M.; Lawrence, E. L.; Peters, B. T.; Harm, D. L.; Kulecz, W.; Mulavara, A. P.; Fiedler, M. J.;
2010-01-01
INTRODUCTION: Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior plane. Implementation of an interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes has allowed the investigation of postural instability by characterizing dynamic stabilographic sway patterns. METHODS: Six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 30 days after flight. Anterior-posterior (AP) and medial-lateral (ML) center-of-pressure (COP) coordinates were calculated from the ground reaction forces collected at 500 Hz. The 3-minute quiet stance trial was broken into three 1-minute segments for stabilogram diffusion analysis. A mean sway speed (rate of change of COP displacement) was also calculated as an additional postural stability parameter. RESULTS/CONCLUSION: While there was considerable variation, most of crewmembers tested exhibited increased stochastic activity evidenced by larger short-term COP diffusion coefficients postflight in both the AP and ML planes, suggesting significant changes in postural control mechanisms, particularly control of lower limb muscle function. As expected, postural instability of ISS astronauts on the first day postflight was similar to that of Shuttle crewmembers on landing day. Recoveries of stochastic activity and mean sway speed to baseline levels were typically observed by the 30th day postflight for both long-duration and short-duration crewmembers. Dynamic postural stability characteristics obtained in this low-impact study complement the data measured with computerized dynamic posturography.
Height effects in real and virtual environments.
Simeonov, Peter I; Hsiao, Hongwei; Dotson, Brian W; Ammons, Douglas E
2005-01-01
The study compared human perceptions of height, danger, and anxiety, as well as skin conductance and heart rate responses and postural instability effects, in real and virtual height environments. The 24 participants (12 men, 12 women), whose average age was 23.6 years, performed "lean-over-the-railing" and standing tasks on real and comparable virtual balconies, using a surround-screen virtual reality (SSVR) system. The results indicate that the virtual display of elevation provided realistic perceptual experience and induced some physiological responses and postural instability effects comparable to those found in a real environment. It appears that a simulation of elevated work environment in a SSVR system, although with reduced visual fidelity, is a valid tool for safety research. Potential applications of this study include the design of virtual environments that will help in safe evaluation of human performance at elevation, identification of risk factors leading to fall incidents, and assessment of new fall prevention strategies.
Conceição, Josilene Souza; Schaefer de Araújo, Felipe Gustavo; Santos, Gilmar Moraes; Keighley, John
2016-01-01
Context: Rehabilitation programs for patients with chronic ankle instability (CAI) generally involve balance-perturbation training (BPT). Anticipatory postural adjustments (APAs) and compensatory postural adjustments (CPAs) are the primary strategies used to maintain equilibrium during body perturbations. Little is known, however, about how APAs and CPAs are modified to promote better postural control for individuals with CAI after BPT. Objective: To investigate the effect of BPT that involves kicking a ball on postural-control strategies in individuals with CAI. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: We randomly assigned 44 volunteers with CAI to either a training group (TG; 11 women, 11 men; age = 24 ± 4 years, height = 173.0 ± 9.8 cm, mass = 72.64 ± 11.98 kg) or control group (CG; 11 women, 11 men; age = 22 ± 3 years, height = 171.0 ± 9.7 cm, mass = 70.00 ± 11.03 kg). Intervention(s): The TG performed a single 30-minute training session that involved kicking a ball while standing on 1 foot. The CG received no intervention. Main Outcome Measure(s): The primary outcome was the sum of the integrated electromyographic activity (∑∫EMG) of the lower extremity muscles in the supporting limb that were calculated during typical intervals for APAs and CPAs. A secondary outcome was center-of-pressure displacement during similar intervals. Results: In the TG after training, the ∑∫EMG decreased in both dorsal and ventral muscles during compensatory adjustment (ie, the time interval that followed lower limb movement). During this interval, muscle activity (∑∫EMG) was less in the TG than in the CG. Consequently, center-of-pressure displacement increased during the task after training. Conclusions: A single session of ball-kicking BPT promoted changes in postural-control strategies in individuals with CAI. These results should stimulate new and more comprehensive studies to investigate the effect of this and other BPT techniques on postural control in patients with CAI. PMID:27295488
NASA Astrophysics Data System (ADS)
Muslim, Choirul; Nurul Kamila, Santi
2018-03-01
This research is aimed to understand the effect of paraquat herbicide inhalation on Parkinsonism, morphology and anatomy change in mice, and its recovery with Etliringea hemisphaerica crude extract application. Sixty mice were placed into three following groups: group R0 were mice receiving standard food ransom, R1 were a group of mice receiving the regular food ransom plus inhalation of 1% paraquat, and R2 were a group of R1 plus obtaining 0,39mg/bw extract E. hemisphaerica (Bl.) R.M. Smith). After 2 X 7 days of sub-sequential application of both paraquat and “helani tulip” extract, we observed the effects. The examination included bradikinesia attitude, postural instability and rigidity, morphology and anatomy of brain, liver, blood, lung, and kidney. The data were tabulated and analyzed qualitative and semi quantitative description on the behavioural disorder, the alteration of morphology and anatomy, and their remedy based on Sander 2004, Junqueira and Carneiro, 2007. The results showed that the application of paraquat caused strong bradikinesia, postural instability and rigidity. The treatment of the extract was only resulting in the bradikinesia removal but was minor improving the consequence of postural instability and rigidity. Paraquat was not affecting the morphology of neural brain but was altering the morphology and anatomy of lung, liver, blood, and the kidney. In general, the negative impact of the paraquat was weakly eliminated by the treatment of “helani tulip” extract.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg's ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg's ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
Background The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. Objectives The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Methods Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Results Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg’s ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg’s ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Conclusions Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia. PMID:28056109
Effect of smart phone use on dynamic postural balance.
Cho, Sung-Hak; Choi, Mun-Hee; Goo, Bong-Oh
2014-07-01
[Purpose] The present study investigated what kind of effect smart phone use has on dynamic postural balance. [Subjects] The study subjects were 30 healthy students in their 20's who were recruited from a University in Busan, Korea. [Methods] The present experiment was quasi-experimental research which measured the postural balance (Biodex) of subjects while they sent text messages via smart phones in the standing position with the eyes open, and while they used two-way SNS. [Results] There were significant differences between standing and the dual-task situations. Among dual tasks using smart phones, SNS using situations showed the highest instability. [Conclusion] The use of smart phones in less stable conditions such as while walking or in moving vehicles should be discouraged.
Madeleine, Pascal; Prietzel, Hanne; Svarrer, Heine; Arendt-Nielsen, Lars
2004-03-01
To quantify neck mobility and posture with and without various postural perturbations. A multivariable 2-group study with repeated measures and treatments. A human performance laboratory. Eleven patients with chronic whiplash injury (mean age, 33.3+/-6.7 y; weight, 73.4+/-11.4 kg; height, 173.3+/-7.2 cm) with a sex- and age-matched control group (mean age, 33.1+/-6.8 y; weight, 68+/-12.5 kg; height, 171.5+/-6.3 cm). Neck mobility and the effects of postural perturbations affecting the visual, vestibular, cutaneous, proprioceptive, and nociceptive systems were measured. Active range of motion, neck position sense, and postural activity. We found significantly reduced neck mobility and increased postural activity in the patient group compared with the control group. In patients, there was significantly greater postural activity with eyes closed, eyes open and speaking, and eyes closed with Achilles' tendons vibrations compared with eyes open with no vibrations. In the controls, there was no significant effect of experimental muscle pain on postural activity. Patients with chronic whiplash injury had a protective response to neck movement and different tuning, sequencing, and execution of the postural synergies probably because of excessive reliance on visual input despite a possible deficit and altered vestibular and/or proprioceptive activity. In healthy volunteers, the pain induced by a single bolus injection of hypertonic saline was probably too limited in intensity and spreading to decrease postural stability.
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.
Pelosin, Elisa; Bisio, Ambra; Pozzo, Thierry; Lagravinese, Giovanna; Crisafulli, Oscar; Marchese, Roberta; Abbruzzese, Giovanni; Avanzino, Laura
2018-01-01
Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect) showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD) is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition) and during a point-light display of a gymnast balancing on a rope (biological stimulus). Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries. PMID:29545771
Kazemi, Khadijeh; Arab, Amir Massoud; Abdollahi, Iraj; López-López, Daniel; Calvo-Lobo, César
2017-10-01
Ankle sprain is one of the most common injuries among athletes and the general population. Most ankle injuries commonly affect the lateral ligament complex. Changes in postural sway and hip abductor muscle strength may be generated after inversion ankle sprain. Therefore, the consequences of ankle injury may affect proximal structures of the lower limb. The aim is to describe and compare the activity patterns of distal and proximal lower limb muscles following external perturbation in individuals with and without functional ankle instability. The sample consisted of 16 women with functional ankle instability and 18 healthy women were recruited to participate in this research. The external perturbation via body jacket using surface electromyography, amplitude and onset of muscle activity of gluteus maximums, gluteus medius, tibialis anterior, and peroneus longus was recorded and analyzed during external perturbation. There were differences between the onset of muscles activity due to perturbation direction in the two groups (healthy and functional ankle instability). In the healthy group, there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during front perturbation with eyes open and closed. In the functional ankle instability group; there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during perturbation of the front and back with eyes open. There were statistically significant differences in the onset of muscle activity and amplitude of muscle activity, with-in and between groups (P<0.05). Therefore, in the presence of functional ankle instability, activation patterns of the lower limb proximal muscles may be altered. Copyright © 2017 Elsevier B.V. All rights reserved.
Rhine, Tara D; Byczkowski, Terri L; Clark, Ross A; Babcock, Lynn
2016-05-01
To examine postural instability in children acutely after concussion, using the Wii Balance Board (WBB). We hypothesized that children with traumatic brain injury would have significantly worse balance relative to children without brain injury. Prospective case-control pilot study. Emergency department of a tertiary urban pediatric hospital. Cases were a convenience sample 11-16 years old who presented within 6 hours of sustaining concussion. Two controls, matched on gender, height, and age, were enrolled for each case that completed study procedures. Controls were children who presented for a minor complaint that was unlikely to affect balance. Not applicable. The participant's postural sway expressed as the displacement in centimeters of the center of pressure during a timed balance task. Balance testing was performed using 4 stances (single or double limb, eyes open or closed). Three of the 17 (17.6%) cases were too dizzy to complete testing. One stance, double limbs eyes open, was significantly higher in cases versus controls (85.6 vs 64.3 cm, P = 0.04). A simple test on the WBB consisting of a 2-legged standing balance task with eyes open discriminated children with concussion from non-head-injured controls. The low cost and feasibility of this device make it a potentially viable tool for assessing postural stability in children with concussion for both longitudinal research studies and clinical care. These pilot data suggest that the WBB is an inexpensive tool that can be used on the sideline or in the outpatient setting to objectively identify and quantify postural instability.
The effect of cinnarizine and cocculus indicus on simulator sickness.
Lucertini, Marco; Mirante, Nadia; Casagrande, Maria; Trivelloni, Pierandrea; Lugli, Vittoria
2007-05-16
Pensacola Simulator Sickness Questionnaire (SSQ) is a valuable method to analyse symptoms evoked by exposure to a flight simulator environment that can also be adopted to evaluate the effectiveness of preventive tools, aiming at reducing simulator sickness (SS). In this study we analysed SSQ data in subjects undergoing a standard ground based spatial disorientation training inside a flight simulator, in order to evaluate the SS prevention obtained with two different pharmacological tools. Twelve males volunteers participated to an experimental design based on a double-blind, balanced administration of either 30 mg cinnarizine (CIN), or Cocculus Indicus 6CH (COC), or placebo (PLC) before one trial of about one hour spent inside a spatial disorientation trainer. All subjects underwent the three different conditions (CIN, COC, PLC) during 3 non-consecutive days separated by at least 2 weeks. During each experimental day, all subjects filled in SSQ. In addition, both postural instability (with the use of a static stabilometric platform), and sleepiness symptoms were evaluated. All the tests were performed before and after the simulated flight, at different times, in one-and-half-hour intervals. Results indicated a strong increase of sickness after flight simulation that linearly decreased, showing pre-simulator scores after 1.30 hours. In contrast to both PLC and COC, CIN showed significant side effects immediately following flight simulation, with no benefit at the simultaneous SSQ scores. Globally, no highly significant differences between COC and PLC were observed, although a minor degree of postural instability could be detected after COC administration. As far as the present exposure to a simulator environment is concerned, none of the pharmacological tools administered in this study resulted effective in reducing SS symptoms as detected by the SSQ. Moreover, CIN significantly increased sleepiness and postural instability in most subjects.
Asymmetrical Pedaling Patterns in Parkinson's Disease Patients
Penko, Amanda L.; Hirsch, Joshua R.; Voelcker-Rehage, Claudia; Martin, Philip E.; Blackburn, Gordon; Alberts, Jay L.
2015-01-01
Background Approximately 1.5 million Americans are affected by Parkinson's disease [1] which includes the symptoms of postural instability and gait dysfunction. Currently, clinical evaluations of postural instability and gait dysfunction consist of a subjective rater assessment of gait patterns using items from the Unified Parkinson's Disease Rating Scale, and assessments can be insensitive to the effectiveness of medical interventions. Current research suggests the importance of cycling for Parkinson's disease patients, and while Parkinson's gait has been evaluated in previous studies, little is known about lower extremity control during cycling. The purpose of this study is to examine the lower extremity coordination patterns of Parkinson's patients during cycling. Methods Twenty five participants, ages 44-72, with a clinical diagnosis of idiopathic Parkinson's disease participated in an exercise test on a cycle ergometer that was equipped with pedal force measurements. Crank torque, crank angle and power produced by right and left leg were measured throughout the test to calculate Symmetry Index at three stages of exercise (20 Watt, 60 Watt, maximum performance). Findings Decreases in Symmetry Index were observed for average power output in Parkinson's patients as workload increased. Maximum power Symmetry Index showed a significant difference in symmetry between performance at both the 20 Watt and 60 Watt stage and the maximal resistance stage. Minimum power Symmetry Index did not show significant differences across the stages of the test. While lower extremity asymmetries were present in Parkinson's patients during pedaling, these asymmetries did not correlate to postural instability and gait dysfunction Unified Parkinson's Disease Rating Scale scores. Interpretation This pedaling analysis allows for a more sensitive measure of lower extremity function than the Unified Parkinson's Disease Rating Scale and may help to provide unique insight into current and future lower extremity function. PMID:25467810
Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay
2015-01-01
Application of cryotherapy over an injured joint has been shown to improve muscle function, yet it is unknown how ankle cryotherapy affects postural control. Our purpose was to determine the effects of a 20-min focal ankle joint cooling on unipedal static stance in individuals with and without chronic ankle instability (CAI). Fifteen young subjects with CAI (9 males, 6 females) and 15 healthy gender-matched controls participated. All subjects underwent two intervention sessions on different days in which they had a 1.5L plastic bag filled with either crushed ice (active treatment) or candy corn (sham) applied to the ankle. Unipedal stance with eyes closed for 10s were assessed with a forceplate before and after each intervention. Center of pressure (COP) data were used to compute 10 specific dependent measures including velocity, area, standard deviation (SD), and percent range of COP excursions, and mean and SD of time-to-boundary (TTB) minima in the anterior-posterior (AP) and mediolateral directions. For each measure a three-way (Group-Intervention-Time) repeated ANOVAs found no significant interactions and main effects involving intervention (all Ps > 0.05). There were group main effects found for mean velocity (F(1,28) = 6.46, P = .017), area (F(1,28) = 12.83, P = .001), and mean of TTB minima in the AP direction (F(1,28) = 5.19, P = .031) indicating that the CAI group demonstrated greater postural instability compared to the healthy group. Postural control of unipedal stance was not significantly altered following focal ankle joint cooling in groups both with and without CAI. Ankle joint cryotherapy was neither beneficial nor harmful to single leg balance. Copyright © 2014 Elsevier B.V. All rights reserved.
Neural Control of Posture in Individuals with Persisting Postconcussion Symptoms.
Helmich, Ingo; Berger, Alisa; Lausberg, Hedda
2016-12-01
Postural instability has been shown to characterize individuals who suffered from long-term symptoms after mild traumatic brain injury. However, recordings of neural processes during postural control are difficult to realize with standard neuroimaging techniques. Thus, we used functional nearinfrared spectroscopy to investigate brain oxygenation of individuals with persistent postconcussion symptoms (pPCS) during postural control in altered environments. We compared brain oxygenation and postural sway during balance control in three groups: individuals suffering from pPCS, individuals with a history of mild traumatic brain injury but without pPCS, and healthy controls. Individuals were investigated during postural control tasks with six different conditions: i) eyes opened, ii) eyes closed, and iii) blurred visual input, each while standing a) on a stable and b) an unstable surface. In all groups, during the eyes closed/unstable surface condition as compared with the other conditions, the postural sway increased as well as the brain oxygenation in frontal brain cortices. In the most difficult balance condition, as compared with the other two groups, subjects with pPCS applied more force over time to keep balance as measured by the force plate system with a significantly greater activation in frontopolar/orbitofrontal areas of the right hemisphere. As subjects with pPCS applied more force over time to control balance, we propose that with regard to cognitive processes, the increase of cerebral activation in these individuals indicates an increase of attention-demanding processes during postural control in altered environments.
Bekkers, Esther M J; Dockx, Kim; Heremans, Elke; Vercruysse, Sarah; Verschueren, Sabine M P; Mirelman, Anat; Nieuwboer, Alice
2014-01-01
Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson's disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior-posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p < 0.001) and showed increased CoP displacements when relying on proprioception only compared to standing with normal sensory input. This implies a similar role of the proprioceptive system in postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects.
Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E.; Eckhardt-Henn, Annegret; Dieterich, Marianne
2015-01-01
Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles. PMID:26843786
Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E; Eckhardt-Henn, Annegret; Dieterich, Marianne
2015-01-01
Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V ), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles.
Identifying postural control and thresholds of instability utilizing a motion-based ATV simulator.
DOT National Transportation Integrated Search
2017-01-01
Our ATV simulator is currently the only one in existence that allows studies of human subjects engaged in active riding, a process that is necessary for ATV operators to perform in order to maintain vehicle control, in a virtual reality environ...
Chiarovano, Elodie; Vidal, Pierre-Paul; Magnani, Christophe; Lamas, Georges; Curthoys, Ian S; de Waele, Catherine
2016-01-01
Falls in seniors are a major public health problem. Falls lead to fear of falling, reduced mobility, and decreased quality of life. Vestibular dysfunction is one of the fall risk factors. The relationship between objective measures of vestibular responses and age has been studied. However, the effects of age on vestibular perception during caloric stimulation have not been studied. Twenty senior subjects were included in the study, and separated in two groups: 10 seniors reporting postural instability (PI) and exhibiting absence of vestibular perception when they tested with caloric stimulation and 10 sex- and age-matched seniors with no such problems (controls). We assessed vestibular perception on a binary rating scale during the warm irrigation of the caloric test. The function of the various vestibular receptors was assessed using video head impulse test (vHIT), caloric tests, and cervical and ocular vestibular-evoked myogenic potentials. The Equitest was used to evaluate balance. No horizontal canal dysfunction assessed using both caloric test and vHIT was detected in either group. No significant difference was detected between PI and control groups for the peak SPV of caloric-induced ocular nystagmus or for the HVOR gain. All the controls perceived rotation when the maximal SPV during warm irrigation was equal to or ≥15°/s. None of the subjects in the PI group perceived rotation even while the peak SPV exceeded 15°/s, providing objective evidence of normal peripheral horizontal canal function. All the PI group had abnormal Equitest results, particularly in the two last conditions. These investigations show for the first time that vestibular perception can be absent during a caloric test despite normal horizontal canal function. We call this as dissociation vestibular neglect. Patients with poor vestibular perception may not be aware of postural perturbations and so will not correct for them. Thus, falls in the elderly may result, among other factors, from a vestibular neglect due to an inappropriate central processing of normal vestibular peripheral inputs. That is, failure to perceive rotation during caloric testing when the SPV is >15°/s, should prompt the clinician to envisage preventive actions to avoid future falls such as rehabilitation.
More falls in cerebellar ataxia when standing on a slow up-moving tilt of the support surface
PAQUETTE, Caroline; FRANZÉN, Erika; HORAK, Fay B
2016-01-01
We investigated how subjects with cerebellar ataxia (CA) adapt their postural stability and alignment to a slow and small tilt of the support surface allowing for online postural corrections. Eight subjects with CA and eight age- and gender-matched healthy control subjects participated in the study. Subjects stood eyes closed for 1 minute after which the support surface was tilted 5° toes-up at a ramp velocity of 1°/s. The toes-up position was held for 2.5 minutes after which the surface rotated back down to level with identical tilt characteristics. As reflected by the large number of falls, subjects with CA had marked difficulty adapting their posture to the up-moving incline in contrast to control subjects. Subjects with CA who lost their balance had faster trunk velocity and excessive backward trunk reorientation beginning within the first second after onset of the tilting surface. In contrast, the down-moving tilt to level did not result in instability in CA subjects. These results suggest that instability and falls associated with CA derives from an inability to maintain trunk orientation to vertical while standing on a slow-moving or unstable surface. This study underscores the importance of the cerebellum in the online sensory control of the upper body orientation during small amplitude and slow velocity movements of the support surface. PMID:26202671
Güler, Sibel; Bir, Levent Sinan; Akdag, Beyza; Ardıc, Fusun
2012-01-01
The aim of this study was to determine balance problems and severity and ratio of postural instability of newly diagnosed, early stage Parkinson's patients who did not receive any antiparkinson treatment before, to evaluate fall risk clinically and posturographically and to examine the effects of pramipexole on these signs and symptoms. Detailed posturographic assessments which involved central vestibular, visual, peripheric vestibular somatosensory field tests were applied to both patient and control subjects and fall risk was determined. There was not statistically significant difference between patients and control subjects before and after drug therapy in the assesment of fall risk in posturography and there was not any improvement with drug usage in the patient group. However, in the analysis of subsystems separately, only the involvement in central vestibular field was more severe and could appear at all positions in Parkinson's patients comparing with the control group, and pramipexole was partially effective in improving this disorder. Central vestibular field is the subsystem that should be examined with first priority. Posturography is relatively reliable in defining fall risk and postural instability ratio in Parkinson's disease. But it should be considered that clinical assessment tools can be more sensitive in the evaluation of balance and postural disorders and in the follow-up of the response to drug therapy.
More Falls in Cerebellar Ataxia When Standing on a Slow Up-Moving Tilt of the Support Surface.
Paquette, Caroline; Franzén, Erika; Horak, Fay B
2016-06-01
We investigated how subjects with cerebellar ataxia (CA) adapt their postural stability and alignment to a slow and small tilt of the support surface allowing for online postural corrections. Eight subjects with CA and eight age- and gender-matched healthy control subjects participated in the study. Subjects stood eyes closed for 1 min after which the support surface was tilted 5° toes-up at a ramp velocity of 1°/s. The toes-up position was held for 2.5 min after which the surface rotated back down to level with identical tilt characteristics. As reflected by the large number of falls, subjects with CA had marked difficulty adapting their posture to the up-moving incline in contrast to control subjects. Subjects with CA who lost their balance had faster trunk velocity and excessive backward trunk reorientation beginning within the first second after onset of the tilting surface. In contrast, the down-moving tilt to level did not result in instability in CA subjects. These results suggest that instability and falls associated with CA derive from an inability to maintain trunk orientation to vertical while standing on a slow-moving or unstable surface. This study underscores the importance of the cerebellum in the online sensory control of the upper body orientation during small amplitude and slow velocity movements of the support surface.
Ozinga, Sarah J; Linder, Susan M; Alberts, Jay L
2017-04-01
To determine the accuracy of inertial measurement unit data from a mobile device using the mobile device relative to posturography to quantify postural stability in individuals with Parkinson disease (PD). Criterion standard. Motor control laboratory at a clinic. A sample (N=28) of individuals with mild to moderate PD (n=14) and age-matched community-dwelling individuals without PD (n=14) completed the study. Not applicable. Center of mass (COM) acceleration measures were compared between the mobile device and the NeuroCom force platform to determine the accuracy of mobile device measurements during performance of the Sensory Organization Test (SOT). Analyses examined test-retest reliability of both systems and sensitivity of (1) the equilibrium score from the SOT and (2) COM acceleration measures from the force platform and mobile device to quantify postural stability across populations. Metrics of COM acceleration from inertial measurement unit data and the NeuroCom force platform were significantly correlated across balance conditions and groups (Pearson r range, .35 to .97). The SOT equilibrium scores failed to discriminate individuals with and without PD. However, the multiplanar measures of COM acceleration from the mobile device exhibited good to excellent reliability across SOT conditions and were able to discriminate individuals with and without PD in conditions with the greatest balance demands. Metrics employing medial-lateral movement produce a more sensitive outcome than the equilibrium score in identifying postural instability associated with PD. Overall, the output from the mobile device provides an accurate and reliable method of rapidly quantifying balance in individuals with PD. The portable and affordable nature of a mobile device with the application makes it ideally suited to use biomechanical data to aid in clinical decision making. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Does robotic gait training improve balance in Parkinson's disease? A randomized controlled trial.
Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Waldner, Andreas; Gimigliano, Raffaele; Smania, Nicola
2012-09-01
Treadmill training (with or without robotic assistance) has been reported to improve balance skills in patients with Parkinson's disease (PD). However, its effectiveness on postural instability has been evaluated mainly in patients with mild to moderate PD (Hoehn & Yahr stage ≤3). Patients with more severe disease may benefit from robot-assisted gait training performed by the Gait-Trainer GT1, as a harness supports them with their feet placed on motor-driven footplates. The aim of this study was to determine whether robot-assisted gait training could have a positive influence on postural stability in patients with PD at Hoehn & Yahr stage 3-4. Thirty-four patients with PD at Hoehn & Yahr stage 3-4 were randomly assigned into two groups. All patients received twelve, 40-min treatment sessions, three days/week, for four consecutive weeks. The Robotic Training group (n = 17) underwent robot-assisted gait training, while the Physical Therapy group (n = 17) underwent a training program not specifically aimed at improving postural stability. Patients were evaluated before, immediately after and 1-month post-treatment. Primary outcomes were: Berg Balance scale; Nutt's rating. A significant improvement was found after treatment on the Berg Balance Scale and the Nutt's rating in favor of the Robotic Training group (Berg: 43.44 ± 2.73; Nutt: 1.38 ± 0.50) compared to the Physical Therapy group (Berg: 37.27 ± 5.68; Nutt: 2.07 ± 0.59). All improvements were maintained at the 1-month follow-up evaluation. Robot-assisted gait training may improve postural instability in patients with PD at Hoehn & Yahr stage 3-4. Copyright © 2012 Elsevier Ltd. All rights reserved.
Attention is associated with postural control in those with chronic ankle instability.
Rosen, Adam B; Than, Nicholas T; Smith, William Z; Yentes, Jennifer M; McGrath, Melanie L; Mukherjee, Mukul; Myers, Sara A; Maerlender, Arthur C
2017-05-01
Chronic ankle instability (CAI) is often debilitating and may be affected by a number of intrinsic and environmental factors. Alterations in neurocognitive function and attention may contribute to repetitive injury in those with CAI and influence postural control strategies. Thus, the purpose of this study was to determine if there was a difference in attentional functioning and static postural control among groups of Comparison, Coper and CAI participants and assess the relationship between them within each of the groups. Recruited participants performed single-limb balance trials and completed the CNS Vital Signs (CNSVS) computer-based assessment to assess their attentional function. Center of pressure (COP) velocity (COPv) and maximum range (COPr), in both the anteroposterior (AP) and mediolateral (ML) directions were calculated from force plate data. Simple attention (SA), which measures self-regulation and attention control was extracted from the CNSVS. Data from 45 participants (15 in each group, 27=female, 18=male) was analyzed for this study. No significant differences were observed between attention or COP variables among each of the groups. However, significant relationships were present between attention and COP variables within the CAI group. CAI participants displayed significant moderate to large correlations between SA and AP COPr (r=-0.59, p=0.010), AP COPv (r=-0.48, p=0.038) and ML COPr (r=-0.47, p=0.034). The results suggest a linear relationship of stability and attention in the CAI group. Attentional self-regulation may moderate how those with CAI control postural stability. Incorporating neurocognitive training focused on attentional control may improve outcomes in those with CAI. Copyright © 2017 Elsevier B.V. All rights reserved.
Understanding Cognitive Deficits in Parkinson's Disease: Lessons from Preclinical Animal Models
ERIC Educational Resources Information Center
Solari, Nicola; Bonito-Oliva, Alessandra; Fisone, Gilberto; Brambilla, Riccardo
2013-01-01
Parkinson's disease (PD) has been, until recently, mainly defined by the presence of characteristic motor symptoms, such as rigidity, tremor, bradykinesia/akinesia, and postural instability. Accordingly, pharmacological and surgical treatments have so far addressed these motor disturbances, leaving nonmotor, cognitive deficits an unmet…
Soreq, Lilach; Lobo, Patrícia P.; Mestre, Tiago; Coelho, Miguel; Rosa, Mário M.; Gonçalves, Nilza; Wales, Pauline; Mendes, Tiago; Gerhardt, Ellen; Fahlbusch, Christiane; Bonifati, Vincenzo; Bonin, Michael; Miltenberger-Miltényi, Gabriel; Borovecki, Fran; Soreq, Hermona; Ferreira, Joaquim J.; F. Outeiro, Tiago
2016-01-01
The prognosis of neurodegenerative disorders is clinically challenging due to the inexistence of established biomarkers for predicting disease progression. Here, we performed an exploratory cross-sectional, case-control study aimed at determining whether gene expression differences in peripheral blood may be used as a signature of Parkinson’s disease (PD) progression, thereby shedding light into potential molecular mechanisms underlying disease development. We compared transcriptional profiles in the blood from 34 PD patients who developed postural instability within ten years with those of 33 patients who did not develop postural instability within this time frame. Our study identified >200 differentially expressed genes between the two groups. The expression of several of the genes identified was previously found deregulated in animal models of PD and in PD patients. Relevant genes were selected for validation by real-time PCR in a subset of patients. The genes validated were linked to nucleic acid metabolism, mitochondria, immune response and intracellular-transport. Interestingly, we also found deregulation of these genes in a dopaminergic cell model of PD, a simple paradigm that can now be used to further dissect the role of these molecular players on dopaminergic cell loss. Altogether, our study provides preliminary evidence that expression changes in specific groups of genes and pathways, detected in peripheral blood samples, may be correlated with differential PD progression. Our exploratory study suggests that peripheral gene expression profiling may prove valuable for assisting in prediction of PD prognosis, and identifies novel culprits possibly involved in dopaminergic cell death. Given the exploratory nature of our study, further investigations using independent, well-characterized cohorts will be essential in order to validate our candidates as predictors of PD prognosis and to definitively confirm the value of gene expression analysis in aiding patient stratification and therapeutic intervention. PMID:27322389
Yim, JongEun; Petrofsky, Jerrold; Lee, Haneul
2018-03-01
Ankle and foot injuries are common among athletes and physically active individuals. The most common residual disability, ankle sprain, is characterized by instability along with postural sway. If the supporting structures around a joint become lax, posture stability and balance are also affected. Previous studies have examined muscle stiffness and elasticity and postural sway separately; however, the relationship between these factors is yet unknown. It is well known that the levels of sex hormones, especially estrogen, change in women over the phase of the menstrual cycle. Therefore, this study examined the relationship between the mechanical properties of tissue and balance activity using a non-invasive digital palpation device to determine if they undergo any changes over the menstrual cycle in young women. Sixteen young women with regular menstrual cycles completed the study. Tone, stiffness, and elasticity of the ankle muscles (lateral gastrocnemius, peroneus longus, and tibialis anterior) were measured using a non-invasive digital palpation device. Postural sway was recorded while the participants performed balance tasks during ovulation and menstruation. Significantly greater posture sway characteristics and ankle muscle elasticity were found during ovulation than during menstruation; lower tone and stiffness of the ankle muscles were observed at ovulation (p < 0.05). Additionally, weak-to-strong relationships between ankle muscle mechanical properties and postural sway characteristics were found (p < 0.05). These results suggest the effect of estrogen on human connective tissues. We therefore postulate that estrogen increases joint and muscle laxity and affects posture stability according to the phase of the menstrual cycle.
Postural control and balance self-efficacy in women with fibromyalgia: are there differences?
Muto, L H A; Sauer, J F; Yuan, S L K; Sousa, A; Mango, P C; Marques, A P
2015-04-01
Fibromyalgia (FM) is a rheumatic disease characterized by chronic widespread pain and symptoms such as fatigue, sleep disturbances, cognitive difficulties, and depression. Postural instability is a debilitating disorder increasingly recognized as part of FM. To assess and compare postural control and balance self-efficacy in women with and without FM and verify the association of these variables with pain, symptom severity, and strength. Case-control study Physiotherapeutic Clinical Research and Electromyography Laboratory Department of Physical Therapy, Speech Therapy, and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil. Case-control study of 117 women ranging from age 35 to 60 years. Of these, 67 had FM. Posture control was assessed with the modified clinical test of sensory interaction on balance with patients in forceplates, balance self-efficacy with the Activities-specific Balance Confidence Scale, pain severity with the Visual Analog Scale, tender point pain threshold with digital algometry, symptom severity with the fibromyalgia impact questionnaire, and lower limb strength with a dynamometer. Individuals with FM had impaired postural control showing increased speed of oscillation of the center of gravity (P=0.004) and decreased balance self-efficacy (P<0.001). They had moderate to excellent correlations of balance self-efficacy with pain (r=0.7, P<0.01), muscle strength (r=0.52, P<0.01), and symptom severity (r=0.78, P<0.10) compared with the control group. Correlation of postural control with the same variables was weak. Patients with FM have impaired postural control and low balance self-efficacy that are associated with pain, muscle strength, and symptom severity. Postural control and balance self-efficacy needs to be assessed in patients with FM and the treatment goals should be the improvement of postural control and balance self-efficacy.
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2014-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older. PMID:24474907
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2013-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.
ERIC Educational Resources Information Center
Carvalho, R. L.; Almeida, G. L.
2009-01-01
Background: The purpose of this study was to investigate the kinematic and electromyography strategy used by individuals with intellectual disability to keep equilibrium during anterior-posterior balance on seesaws with different degrees of instability. Method: Six individuals with Down syndrome (DS) and six control group individuals (CG) balanced…
Sudden Sensorineural Hearing Loss: The Question of Perilymph Fistula.
ERIC Educational Resources Information Center
Backous, Douglas D.; Niparko, John K.
1997-01-01
Perilymph fistula (PLF) is an abnormal communication between the fluid-containing spaces of the inner ear and the air-containing spaces of the temporal bone that can cause hearing loss, tinnitus, aural fullness, vertigo, and postural instability. Diagnosis of PLF and management of those with presumed PLF are discussed. (Contains extensive…
Baumbach, Sebastian Felix; Fasser, Mariette; Polzer, Hans; Sieb, Michael; Regauer, Markus; Mutschler, Wolf; Schieker, Matthias; Blauth, Michael
2013-01-14
Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. 60 patients, aged 18-40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for patients with acute unstable inversion ankle sprains. NCT01702597.
2013-01-01
Background Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. Methods/Design 60 patients, aged 18–40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. Discussion This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for patients with acute unstable inversion ankle sprains. Trial registration NCT01702597 PMID:23316791
Evalution of the effectiveness of multimodal approach to the management of cervical vertigo.
Jaroshevskyi, Olexandr A; Payenok, Oleksandr S; Logvinenko, Anna V
2017-01-01
Vertigo is one of the most common complaints among patients consulting neurologists and general practitioners - family medicine. A special form of dizziness is cervical vertigo. However, the presence of chronic vertigo and imbalance in this group of patients makes it possible to include the treatment of vestibular rehabilitation in the program. Evalution of the effectiveness of multimodal approach to the management of cervical vertigo. 109 patients aged from 18 to 45 with vertigo together with myofascial pain syndrome of neck and shoulder area were examined. The survey included a sample of Dix-Hallpike, neurological and otoneurological examinations, Doppler ultrasound of the main arteries of the head and neck, brain MRI, functional spondylography of the cervical spine. For quantitive evaluation of the impact of vertigo on daily life the questionnaire DHI (Dizziness Handicap Inventory) was used. Testing was performed in two stages - before treatment and in 2 weeks' time. Patients were randomly divided into 3 groups which differ in their therapeutic tactics. In all three groups the normalization of the biomechanical pattern and elimination of musculo-tonic disorders accompanied by a decrease of a pain syndrome and a decrease in the severity or complete regression of dizziness and postural instability. At the same time, in groups 2 and 3, in which in addition to manual therapy, patients received acupuncture, there was a distinct positive dynamics of a pain syndrome according to VAS, Neck Disability Index and the Dizziness Handicap Inventory. A marked regression of vertigo and postural instability can be observed in patients in which the treatment along with manual therapy and acupuncture, a complex of vestibular rehabilitation was used. The multimodal approach using manual therapy in combination with acupuncture and vestibular rehabilitation showed the maximum therapeutic effect on elimination of musculo-tonic disorders, reduction of a pain syndrome with a complete regression of vertigo and postural instability.
Crews, Ryan T; Shen, Biing-Jiun; Campbell, Laura; Lamont, Peter J; Boulton, Andrew J M; Peyrot, Mark; Kirsner, Robert S; Vileikyte, Loretta
2016-08-01
Studies indicate that off-loading adherence is low in patients with diabetic foot ulcers (DFUs), which may subsequently delay healing. However, there is little empirical evidence for this relationship or the factors that influence adherence. This prospective, multicenter, international study of 79 (46 from the U.K. and 33 the U.S.) persons with type 2 diabetes and plantar DFUs assessed the association between off-loading adherence and DFU healing over a 6-week period. Additionally, potential demographic, disease, and psychological determinants of adherence were examined. DFUs were off-loaded with a removable device (77% a removable cast walker). Off-loading adherence was assessed objectively by activity monitors. Patient-reported measures included Hospital Anxiety and Depression Scale (HADS), Neuropathy and Foot Ulcer Quality of Life (NeuroQoL) instrument, and Revised Illness Perception Questionnaire (IPQ-R). Off-loading adherence was monitored for 35 ± 10 days, and devices were used during 59 ± 22% of subjects' activity. In multivariate analyses, smaller baseline DFU size, U.K. study site, and better off-loading adherence predicted smaller DFU size at 6 weeks (P < 0.05). Better off-loading adherence was, in turn, predicted by larger and more severe baseline DFUs, more severe neuropathy, and NeuroQoL foot pain (P < 0.05). In contrast, greater NeuroQoL postural instability predicted worse off-loading adherence (P < 0.001). HADS and IPQ-R measures were not significantly associated with off-loading adherence. Off-loading adherence is associated with the amount of DFU healing that occurs, while postural instability is a powerful predictor of nonadherence. Clinicians should take this neuropathic symptom into consideration when selecting an off-loading device, as off-loading-induced postural instability may further contribute to nonadherence. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Falaki, Ali; Huang, Xuemei; Lewis, Mechelle M.; Latash, Mark L.
2017-01-01
Background Postural instability is one of most disabling motor symptoms in Parkinson’s disease. Indices of multi-muscle synergies are new measurements of postural stability. Objectives We explored the effects of dopamine-replacement drugs on multi-muscle synergies stabilizing center of pressure coordinate and their adjustments prior to a self-triggered perturbation in patients with Parkinson’s disease. We hypothesized that both synergy indices and synergy adjustments would be improved on dopaminergic drugs. Methods Patients at Hoehn-Yahr stages II and III performed whole-body tasks both off- and on-drugs while standing. Muscle modes were identified as factors in the muscle activation space. Synergy indices stabilizing center of pressure in the anterior-posterior direction were quantified in the muscle mode space during a load-release task. Results Dopamine-replacement drugs led to more consistent organization of muscles in stable groups (muscle modes). On-drugs patients showed larger indices of synergies and anticipatory synergy adjustments. In contrast, no medication effects were seen on anticipatory postural adjustments or other performance indices. Conclusions Dopamine-replacement drugs lead to significant changes in characteristics of multi-muscle synergies in Parkinson’s disease. Studies of synergies may provide a biomarker sensitive to problems with postural stability and agility and to efficacy of dopamine-replacement therapy. PMID:28110044
Resolving Sensory Conflict: the Effect of Muscle Vibration on Postural Stability
NASA Technical Reports Server (NTRS)
Layne, Charles S.
1991-01-01
The otolith-tilt reinterpretation hypothesis (OTTR) proposes that the central nervous system adapts to weightlessness by reinterpreting all otolith input as linear motion. While interpreting otolith input exclusively as linear motion is functionally useful in space, it is maladaptive upon return to Earth. Astronauts have reported experiencing illusory sensations during head movement which contributes to postural instability. The effect is assessed of muscle vibration in combination with a variety of sensory conflicts on postural equilibrium. The equilibrium of six healthy subjects was tested using the EquiTest sensory test protocol, with and without the confounding influence of triceps surea vibration. The data were analyzed with repeated measures with vibration, vision status, and platform status as independent variables. All main effects and an interaction between the presence of vision and platform sway referencing were found to be significant. Overall, a 4.5 pct. decrease in postural stability was observed with vibration. The trend of the difference scores between conditions with and without vibration suggests that vibration is most destabilizing when the triceps surea is able to change length during postural sway (i.e., conditions with a fixed support surface). The impact of sway referencing vision was virtually identical to that of eye closure, providing compelling evidence that sway referencing 'nulls out' useful cues about subject sway.
Postural stability of biped robots and the foot-rotation indicator (FRI) point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, A.
1999-06-01
The focus of this paper is the problem of foot rotation in biped robots during the single-support phase. Foot rotation is an indication of postural instability, which should be carefully treated in a dynamically stable walk and avoided altogether in a statically stable walk. The author introduces the foot-rotation indicator (FRI) point, which is a point on the foot/ground-contact surface where the net ground-reaction force would have to act to keep the foot stationary. To ensure no foot rotation, the FRI point must remain within the convex hull of the foot-support area. In contrast with the ground projection of themore » center of mass (GCoM), which is a static criterion, the FRI point incorporates robot dynamics. As opposed to the center of pressure (CoP) -- better known as the zero-moment point (ZMP) in the robotics literature -- which may not leave the support area, the FRI point may leave the area. In fact, the position of the FRI point outside the footprint indicates the direction of the impending rotation and the magnitude of rotational moment acting on the foot. Owing to these important properties, the FRI point helps not only to monitor the state of postural stability of a biped robot during the entire gait cycle, but indicates the severity of instability of the gait as well. In response to a recent need, the paper also resolves the misconceptions surrounding the CoP/ZMP equivalence.« less
Altered characteristics of balance control in obese older adults.
Melzer, Itshak; Oddsson, Lars I E
2016-01-01
Obesity is one of the most significant epidemiological trends of the last decades. Recently it was found that obese individuals show postural instability. Balance control mechanisms in obese older adults were less studied. Therefore we aimed to investigate the effect of obesity on balance control mechanisms in older adults. Parameters from Stabilogram-Diffusion Analysis (SDA) and measures from summary statistics of foot centre-of-pressure (COP) displacements along the anterior-posterior (AP) and mediolateral (ML) directions in eyes open and eyes closed conditions were used to characterize postural control in 22 obese (30-<35kg/m(2)), 26 overweight (25-<30kg/m(2)), and 18 normal weight subjects (18.5-<25kg/m(2)). Obese group subjects demonstrated significantly greater transition displacement, transition time interval, and short-term scaling exponent in the ML-direction compared with the normal weight group (eyes open and closed). In the AP-direction the obese group showed greater transition displacement (eyes open) and short-term scaling exponent (eyes open and closed). Average AP-COP and ML-COP ranges of COP sway were higher in the obese group compared with the normal weight group (eyes open and closed). This work indicates an altered postural control process in obese older adults. A greater sway displacement before closed-loop feedback mechanisms are called into play was seen in the ML direction that may lead to a higher risk of instability and fall events. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Evaluation of a smartphone-based assessment system in subjects with chronic ankle instability.
Chiu, Ya-Lan; Tsai, Yi-Ju; Lin, Chueh-Ho; Hou, You-Ruei; Sung, Wen-Hsu
2017-02-01
Ankle sprain is the most common sports-related injury, and approximately 80% of patients studied suffered recurrent sprains. These repeated ankle injuries could cause chronic ankle instability, a decrease in sports performance, and a decrease in postural control ability. At the present time, smartphones have become very popular and powerful devices, and smartphone applications (apps) that have been shown to have good validity have been designed to measure human body motion. However, the app focusing on ankle function assessment and rehabilitation is still not widely used and has very limited functions. The purpose of this study is to evaluate the feasibility of smartphone-based systems in the assessment of postural control ability for patients with chronic ankle instability. Fifteen physically active adults (6 male, 9 female; aged = 23.4 ± 5.28 years; height = 167.13 ± 7.3 cm; weight = 62.06 ± 10.82 kg; BMI = 22.08 ± 2.57 kg/ m 2 ) were recruited, and these participants had at least one leg that was evaluated as scoring lower than 27 points according to the Cumberland Ankle Instability Tool (CAIT). The smartphone used in the study was ASUS Zenfone 2, and an app developed using MIT App Inventor was used to record built-in accelerometer data during the assessment process. Subjects were asked to perform single leg stance for 20 s in eyes-open and eyes-closed conditions with each leg. The smartphone was fixed in an upright position on the middle of the shin, using an exercise armband, with the screen facing forward. The average of recorded acceleration data was used to represent the postural control performance, and higher values indicated more instability. Data were analyzed with a paired t-test with SPSS 17.0, and the statistical significance was set as alpha <0.05. A significant difference was found between CAIT scores from the healthier leg and injured leg (healthier leg 23.07 ± 3.80 vs. injured leg 18.27 ± 3.92, p < 0.001). Significant differences were also found between the scores for the healthier leg and injured leg during both eyes-open and eyes-closed conditions (eyes-open: healthier leg 0.051 ± 0.018 vs. injured leg 0.072 ± 0.034, p = 0.027; eyes-closed: healthier leg 0.100 ± 0.031 vs. injured leg 0.123 ± 0.038, p = 0.001, unit: m/s 2 ). Significant differences were also found between eyes-open and eyes-closed conditions during both single leg standing with healthier leg and injured leg (healthier leg: eyes-open 0.051 ± 0.018 vs. eyes-closed 0.100 ± 0.031, p < 0.001; injured leg: eyes-open 0.072 ± 0.034 vs. eyes-closed 0.123 ± 0.038, p = 0.001, unit: m/s 2 ). The results demonstrate that the smartphone software can be used to discriminate between the different performances of the healthier leg and injured leg, and also between eyes-open and eyes-closed conditions. The smartphone may have the potential to be a convenient, easy-to-use, and feasible tool for the assessment of postural control ability on subjects with chronic ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Rougier, Patrice R; Boudrahem, Samir
2017-09-01
The technique of additional visual feedback has been shown to significantly decrease the center of pressure (CP) displacements of a standing subject. Body-weight asymmetry is known to increase postural instability due to difficulties in coordinating the reaction forces exerted under each foot and is often a cardinal feature of various neurological and traumatic diseases. To examine the possible interactions between additional visual feedback and body-weight asymmetry effects, healthy adults were recruited in a protocol with and without additional visual feedback, with different levels of body-weight asymmetry. CP displacements under each foot were recorded and used to compute the resultant CP displacements (CP Res ) and to estimate vertically projected center of gravity (CG v ) and CP Res -CG v displacements. Overall, six conditions were randomly proposed combining two factors: asymmetry with three BW percentage distributions (50/50, 35/65 and 20/80; left/right leg) and feedback (with or without additional VFB). The additional visual feedback technique principally reduces CG v displacements, whereas asymmetry increases CP Res -CG v displacements along the mediolateral axis. Some effects on plantar CP displacements were also observed, but only under the unloaded foot. Interestingly, no interaction between additional visual feedback and body-weight asymmetry was reported. These results suggest that the various postural effects that ensue from manipulating additional visual feedback parameters, shown previously in healthy subjects in various studies, could also apply independently of the level of asymmetry. Visual feedback effects could be observed in patients presenting weight-bearing asymmetries. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Ajemba, Peter O.; Durdle, Nelson G.; Hill, Doug L.; Raso, V. J.
2006-02-01
The influence of posture and re-positioning (sway and breathing) on the accuracy of a torso imaging system for assessing scoliosis was evaluated. The system comprised of a rotating positioning platform and one or two laser digitizers. It required four partial-scans taken at 90 ° intervals over 10 seconds to generate two complete torso scans. Its accuracy was previously determined to be 1.1+/-0.9mm. Ten evenly spaced cross-sections obtained from forty scans of five volunteers in four postures (free-standing, holding side supports, holding front supports and with their hands on their shoulders) were used to assess the variability due to posture. Twenty cross-sections from twenty scans of two volunteers holding side supports were used to assess the variability due to positioning. The variability due to posture was less than 4mm at each cross-section for all volunteers. Variability due to sway ranged from 0-3.5mm while that due to breathing ranged from 0-3mm for both volunteers. Holding side supports was the best posture. Taking the four shots within 10 seconds was optimal. As major torso features that are indicative of scoliosis are larger than 4mm in size, the system could be used in obtaining complete torso images used in assessing and managing scoliosis.
Bonnet, Cédrick T; Delval, Arnaud; Defebvre, Luc
2014-11-15
Patients with Parkinson's disease display impairments of postural control most particularly in active, challenging conditions. The objective of the present study was to analyze early signs of disease-related and also age-related impairments in mediolateral body extension and postural control. Fifty-five participants (18 Hoehn and Yahr stage 2 patients in the off-drug condition, 18 healthy elderly control subjects, and 19 young adults) were included in the study. The participants performed a quiet stance task and two active tasks that analyzed the performance in mediolateral body motion: a limit of stability and a rhythmic weight shift task. As expected, the patients displayed significantly lower and slower body displacement (head, neck, lower back, center of pressure) than elderly control subjects when performing the two body excursion tasks. However, the behavioral variability in both tasks was similar between the groups. Under these active conditions, the patients showed significantly lower contribution of the hip postural control mechanisms compared with the elderly control subjects. Overall, the patients seemed to lower their performance in order to prevent a mediolateral postural instability. However, these patients, at an early stage of their disease, were not unstable in quiet stance. Complementarily, elderly control subjects displayed slower body performance than young adults, which therefore showed an additional age-related impairment in mediolateral postural control. Overall, the study illustrated markers of age-related and Parkinson's disease impairments in mediolateral postural control that may constrain everyday activities in elderly adults and even more in patients with Parkinson's disease. Copyright © 2014 the American Physiological Society.
Bekkers, Esther M. J.; Dockx, Kim; Heremans, Elke; Vercruysse, Sarah; Verschueren, Sabine M. P.; Mirelman, Anat; Nieuwboer, Alice
2014-01-01
Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson’s disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior–posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p < 0.001) and showed increased CoP displacements when relying on proprioception only compared to standing with normal sensory input. This implies a similar role of the proprioceptive system in postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects. PMID:25505395
The effects of feedback on computer workstation posture habits.
Epstein, Rhonda; Colford, Sean; Epstein, Ethan; Loye, Brandon; Walsh, Michael
2012-01-01
Repetitive stress injuries (RSI) and musculoskeletal disorders in the United States and worldwide are increasing at an alarming rate due to the advent of ubiquitous computer usage. Factors that lead to computer-related musculoskeletal disorders (MSD) include inadequately designed workstations, poor posture, and lack of knowledge about proper ergonomics and use habits. Studies have documented the negative impact of improper posture and the MSD seen in students and office workers due to frequent computer usage. Determine if the frequency (single vs. continuous reminder) and/or use of feedback affects posture at a computer workstation. Observations of posture habits were made in three local schools and one local company. Feedback effects were tested on the students (ages 10-15). Real time feedback was given in two studies. In one study, instructions and a verbal reminder were given to students and in a second study, a prototype 'Posture Pad' was developed to provide continuous feedback to the user. Verbal reminders to sit correctly led to transient improvement of posture. Use of the 'Posture Pad' resulted in significant improvement in posture with subjects exhibiting correct posture 98 ± 5% of the time. Real time feedback about how one is sitting is an effective mechanism for non-transient improvement of posture at computer workstations.
Treatment of common deficits associated with chronic ankle instability.
Holmes, Alison; Delahunt, Eamonn
2009-01-01
Lateral ankle sprains are amongst the most common injuries incurred by athletes, with the high rate of reoccurrence after initial injury becoming of great concern. Chronic ankle instability (CAI) refers to the development of repetitive ankle sprains and persistent residual symptoms post-injury. Some of the initial symptoms that occur in acute sprains may persist for at least 6 months post-injury in the absence of recurrent sprains, despite the athlete having returned to full functional activity. CAI is generally thought to be caused by mechanical instability (MI) or functional instability (FI), or both. Although previously discussed as separate entities, recent research has demonstrated that deficits associated with both MI and FI may co-exist to result in CAI. For clinicians, the main deficits associated with CAI include deficits in proprioception, neuromuscular control, strength and postural control. Based on the literature reviewed, it does seem that subjects with CAI have a deficit in frontal plane ankle joint positional sense. Subjects with CAI do not appear to exhibit any increased latency in the peroneal muscles in response to an external perturbation. Preliminary data suggest that feed-forward neuromuscular control may be more important than feed-back neuromuscular control and interventions are now required to address deficits in feed-forward neuromuscular control. Balance training protocols have consistently been shown to improve postural stability in subjects with CAI. Subjects with CAI do not experience decreased peroneus longus strength, but instead may experience strength deficits in the ankle joint invertor muscles. These findings are of great clinical significance in terms of understanding the mechanisms and deficits associated with CAI. An appreciation of these is vital to allow clinicians to develop effective prevention and treatment programmes in relation to CAI.
ERIC Educational Resources Information Center
Kane, Jacqueline R.; Ciucci, Michelle R.; Jacobs, Amber N.; Tews, Nathan; Russell, John A.; Ahrens, Allison M.; Ma, Sean T.; Britt, Joshua M.; Cormack, Lawrence K.; Schallert, Timothy
2011-01-01
Parkinson's disease (PD) is a neurodegenerative disorder primarily characterized by sensorimotor dysfunction. The neuropathology of PD includes a loss of dopamine (DA) neurons of the nigrostriatal pathway. Classic signs of the disease include rigidity, bradykinesia, and postural instability. However, as many as 90% of patients also experience…
Contribution of supraspinal systems to generation of automatic postural responses
Deliagina, Tatiana G.; Beloozerova, Irina N.; Orlovsky, Grigori N.; Zelenin, Pavel V.
2014-01-01
Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms – spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741
The relationship between foot posture and lower limb kinematics during walking: A systematic review.
Buldt, Andrew K; Murley, George S; Butterworth, Paul; Levinger, Pazit; Menz, Hylton B; Landorf, Karl B
2013-07-01
Variations in foot posture, such as pes planus (low-arched foot) or pes cavus (high-arched foot), are thought to be an intrinsic risk factor for injury due to altered motion of the lower extremity. Hence, the aim of this systematic review was to investigate the relationship between foot posture and lower limb kinematics during walking. A systematic database search of MEDLINE, CINAHL, SPORTDiscus, Embase and Inspec was undertaken in March 2012. Two independent reviewers applied predetermined inclusion criteria to selected articles for review and selected articles were assessed for quality. Articles were then grouped into two broad categories: (i) those comparing mean kinematic parameters between different foot postures, and (ii) those examining associations between foot posture and kinematics using correlation analysis. A final selection of 12 articles was reviewed. Meta-analysis was not conducted due to heterogeneity between studies. Selected articles primarily focused on comparing planus and normal foot postures. Five articles compared kinematic parameters between different foot postures - there was some evidence for increased motion in planus feet, but this was limited by small effect sizes. Seven articles investigated associations between foot posture and kinematics - there was evidence that increasing planus foot posture was positively associated with increased frontal plane motion of the rearfoot. The body of literature provides some evidence of a relationship between pes planus and increased lower limb motion during gait, however this was not conclusive due to heterogeneity between studies and small effect sizes. Copyright © 2013 Elsevier B.V. All rights reserved.
[Posturographic study of total prostheses in the leg. Apropos of 88 patients examined].
Lord, G; Gentaz, R; Gagey, P M; Baron, J B
1976-01-01
By suppressing certain articular sensory receptors, the reconstructive surgery of joints using total prostheses modifies tonic postural activity and, by this means, alters the regulation of balance in the subjects of operation. This doubtless explains certain discrepancies between the apparently excellent results in respect of joint movement and muscle strength and poor utilisation of the joint in every day life (instability, use of sticks or failure to use the joint in walking). Drawing on the experience and basic work of specialists in posture, the authors have undertaken a study of tonic postural activity in patients who had received a total prosthesis in the lower limb, both from the clinical aspect and by graphic measurement using an electronic apparatus, the statokinesiometer. Fourteen normal subjects were tested to calibrate the apparatus and 8 patients suffering from established osteoarthritis of the hip were studied as controls. Analysis of tonic postural activity was made in 66 patients who had received total prostheses in the lower limb. The results showed significant disturbance in balance in ankle prostheses, minimal disturbance in knee prostheses and not significant disturbance in hip prostheses. Certain therapeutic implications are derived from this study.
Huntley, Andrew H; Zettel, John L; Vallis, Lori Ann
2016-01-01
A "reach and transport object" task that represents common activities of daily living may provide improved insight into dynamic postural stability and movement variability deficits in older adults compared to previous lean to reach and functional reach tests. Healthy young and older, community dwelling adults performed three same elevation object transport tasks and two multiple elevation object transport tasks under two self-selected speeds, self-paced and fast-paced. Dynamic postural stability and movement variability was quantified by whole-body center of mass motion. Older adults demonstrated significant decrements in frontal plane stability during the multiple elevation tasks while exhibiting the same movement variability as their younger counterparts, regardless of task speed. Interestingly, older adults did not exhibit a tradeoff in maneuverability in favour of maintaining stability throughout the tasks, as has previously been reported. In conclusion, the multi-planar, ecologically relevant tasks employed in the current study were specific enough to elucidate decrements in dynamic stability, and thus may be useful for assessing fall risk in older adults with suspected postural instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The effect of vision on postural strategies in Prader-Willi patients.
Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Grugni, Graziano; Priano, Lorenzo; Capodaglio, Paolo
2011-01-01
The aim of this study was to quantify the role of visual contribution in patients with Prader-Willi syndrome (PWS) on balance maintenance using a force platform. We enrolled 14 individuals with PWS free from conditions associated with impaired balance, 44 obese (OG) and 20 healthy controls (CG). Postural sway was measured for 60s while standing on a force platform (Kistler, CH; acquisition frequency: 500 Hz) integrated with a video system. Patients maintained an upright standing position with Open Eyes (OE) and then with Closed Eyes (CE). The ratio between the value of the parameter under OE and CE conditions was measured. Under OE condition PWS and OG were characterized by higher postural instability than CG, with the PWS group showing poorer balance capacity than OG. The Romberg ratio showed that while OG and CG had lower balance without vision, PWS maintained the same performance changing from OE to CE. The integration of different sensory inputs appears similar in OG and CG with higher postural stability under OE than CE. Balance in PWS is not influenced by the elimination of visual input. Copyright © 2011 Elsevier Ltd. All rights reserved.
Huang, Pi-Yin; Chen, Wen-Ling; Lin, Cheng-Feng; Lee, Heng-Ju
2014-01-01
Context: Plyometric exercise has been recommended to prevent lower limb injury, but its feasibility in and effects on those with functional ankle instability (FAI) are unclear. Objective: To investigate the effect of integrated plyometric and balance training in participants with FAI during a single-legged drop landing and single-legged standing position. Design: Randomized controlled clinical trial. Setting: University motion-analysis laboratory. Patients or Other Participants: Thirty athletes with FAI were divided into 3 groups: plyometric group (8 men, 2 women, age = 23.20 ± 2.82 years; 10 unstable ankles), plyometric-balance (integrated)–training group (8 men, 2 women, age = 23.80 ± 4.13 years; 10 unstable ankles), and control group (7 men, 3 women, age = 23.50 ± 3.00 years; 10 unstable ankles). Intervention(s): A 6-week plyometric-training program versus a 6-week integrated-training program. Main Outcome Measure(s): Postural sway during single-legged standing with eyes open and closed was measured before and after training. Kinematic data were recorded during medial and lateral single-legged drop landings after a 5-second single-legged stance. Results: Reduced postural sway in the medial-lateral direction and reduced sway area occurred in the plyometric- and integrated-training groups. Generally, the plyometric training and integrated training increased the maximum angles at the hip and knee in the sagittal plane, reduced the maximum angles at the hip and ankle in the frontal and transverse planes in the lateral drop landing, and reduced the time to stabilization for knee flexion in the medial drop landing. Conclusions: After 6 weeks of plyometric training or integrated training, individuals with FAI used a softer landing strategy during drop landings and decreased their postural sway during the single-legged stance. Plyometric training improved static and dynamic postural control and should be incorporated into rehabilitation programs for those with FAI. PMID:24568224
Bączkowicz, Dawid; Falkowski, Krzysztof; Majorczyk, Edyta
2017-08-01
Study Design Controlled laboratory study, cross-sectional. Background Lateral ankle sprains are among the most common injuries encountered during athletic participation. Following the initial injury, there is an alarmingly high risk of reinjury and development of chronic ankle instability (CAI), which is dependent on a combination of factors, including sensorimotor deficits and changes in the biomechanical environment of the ankle joint. Objective To evaluate CAI-related disturbances in arthrokinematic motion quality and postural control and the relationships between them. Methods Sixty-three male subjects (31 with CAI and 32 healthy controls) were enrolled in the study. For arthrokinematic motion quality analysis, the vibroarthrographic signals were collected during ankle flexion/extension motion using an acceleration sensor and described by variability (variance of mean squares [VMS]), amplitude (mean of 4 maximal and 4 minimal values [R4]), and frequency (vibroarthrographic signal bands of 50 to 250 Hz [P1] and 250 to 450 Hz [P2]) parameters. Using the Biodex Balance System, single-leg dynamic balance was measured by overall, anteroposterior, and mediolateral stability indices. Results Values of vibroarthrographic parameters (VMS, R4, P1 and P2) were significantly higher in the CAI group than those in the control group (P<.01). Similar results were obtained for all postural control parameters (overall, anteroposterior, and mediolateral stability indices; P<.05). Moreover, correlations between the overall stability index and VMS, and P1 and P2, as well as between the anteroposterior stability index and P1 and P2, were observed in the CAI patient group, but not in controls. Conclusion In patients with CAI, deficits in both quality of ankle arthrokinematic motion and postural control were present. Therefore, physical therapy interventions focused on improving ankle neuromuscular control and arthrokinematic function are necessary in CAI patient care. J Orthop Sports Phys Ther 2017;47(8):570-577. Epub 4 Nov 2016. doi:10.2519/jospt.2017.6836.
Ruhe, Alexander; Fejer, René; Walker, Bruce
2011-07-15
Increased center of pressure excursions are well documented in patients suffering from non-specific low back pain, whereby the altered postural sway includes both higher mean sway velocities and larger sway area. No investigation has been conducted to evaluate a relationship between pain intensity and postural sway in adults (aged 50 or less) with non-specific low back pain. Seventy-seven patients with non-specific low back pain and a matching number of healthy controls were enrolled. Center of pressure parameters were measured by three static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11), an equal number of patients (n = 11) was enrolled per pain score. Generally, our results confirmed increased postural instability in pain sufferers compared to healthy controls. In addition, regression analysis revealed a significant and linear increase in postural sway with higher pain ratings for all included COP parameters. Statistically significant changes in mean sway velocity in antero-posterior and medio-lateral direction and sway area were reached with an incremental change in NRS scores of two to three points. COP mean velocity and sway area are closely related to self-reported pain scores. This relationship may be of clinical use as an objective monitoring tool for patients under treatment or rehabilitation.
Effects of Age-Related Macular Degeneration on Postural Sway
Chatard, Hortense; Tepenier, Laure; Jankowski, Olivier; Aussems, Antoine; Allieta, Alain; Beydoun, Talal; Salah, Sawsen; Bucci, Maria P.
2017-01-01
Purpose: To compare the impact of unilateral vs. bilateral age-related macular degeneration (AMD) on postural sway, and the influence of different visual conditions. The hypothesis of our study was that the impact of AMD will be different between unilateral and bilateral AMD subjects compared to age-matched healthy elderly. Methods: Postural stability was measured with a platform (TechnoConcept®) in 10 elderly unilateral AMD subjects (mean age: 71.1 ± 4.6 years), 10 elderly bilateral AMD subjects (mean age: 70.8 ± 6.1 years), and 10 healthy age-matched control subjects (mean age: 69.8 ± 6.3 years). Four visual conditions were tested: both eyes viewing condition (BEV), dominant eye viewing (DEV), non-dominant eye viewing (NDEV), and eyes closed (EC). We analyzed the surface area, the length, the mean speed, the anteroposterior (AP), and mediolateral (ML) displacement of the center of pressure (CoP). Results: Bilateral AMD subjects had a surface area (p < 0.05) and AP displacement of the CoP (p < 0.01) higher than healthy elderly. Unilateral AMD subjects had more AP displacement of the CoP (p < 0.05) than healthy elderly. Conclusions: We suggest that ADM subjects could have poor postural adaptive mechanisms leading to increase their postural instability. Further studies will aim to improve knowledge on such issue and to develop reeducation techniques in these patients. PMID:28408876
Marchese, Roberta; Bove, Marco; Abbruzzese, Giovanni
2003-06-01
To analyse the effect of concomitant cognitive or motor task performance on balance control in Parkinson's disease (PD), we performed a posturographic study in 24 PD patients and in 20 sex- and age-matched control subjects. Postural sway was measured with eyes open (EO) and eyes closed (EC) during quiet stance and during performance of calculation or motor sequence of thumb opposition to the other fingers. No difference of centre of foot pressure (COP) parameters was observed during quiet standing (either EO or EC) between patients and controls, but visual deprivation induced in both groups a worsening of postural stability. COP area was significantly increased in PD patients during dual task performance, whereas no difference of COP path and x-y axes was observed. The effects induced by the performance of cognitive or motor task were significantly more evident in PD patients with clinical evidence of postural instability (presence of prior falls in the history). This study demonstrates that dual task interference on postural control can be observed in PD patients during performance of cognitive as well as motor tasks. The balance deterioration during dual task performance was significantly enhanced in patients with history of prior falls. These findings have some implications for the strategies to be used in reducing the risk of fall in PD. Copyright 2003 Movement Disorder Society
Medio-lateral postural instability in subjects with tinnitus.
Kapoula, Zoi; Yang, Qing; Lê, Thanh-Thuan; Vernet, Marine; Berbey, Nolwenn; Orssaud, Christophe; Londero, Alain; Bonfils, Pierre
2011-01-01
Many patients show modulation of tinnitus by gaze, jaw or neck movements, reflecting abnormal sensorimotor integration, and interaction between various inputs. Postural control is based on multi-sensory integration (visual, vestibular, somatosensory, and oculomotor) and indeed there is now evidence that posture can also be influenced by sound. Perhaps tinnitus influences posture similarly to external sound. This study examines the quality of postural performance in quiet stance in patients with modulated tinnitus. Twenty-three patients with highly modulated tinnitus were selected in the ENT service. Twelve reported exclusively or predominately left tinnitus, eight right, and three bilateral. Eighteen control subjects were also tested. Subjects were asked to fixate a target at 40 cm for 51 s; posturography was performed with the platform (Technoconcept, 40 Hz) for both the eyes open and eyes closed conditions. For both conditions, tinnitus subjects showed abnormally high lateral body sway (SDx). This was corroborated by fast Fourrier Transformation (FFTx) and wavelet analysis. For patients with left tinnitus only, medio-lateral sway increased significantly when looking away from the center. Similarly to external sound stimulation, tinnitus could influence lateral sway by activating attention shift, and perhaps vestibular responses. Poor integration of sensorimotor signals is another possibility. Such abnormalities would be accentuated in left tinnitus because of the importance of the right cerebral cortex in processing both auditory-tinnitus eye position and attention.
Abnormal gastric myoelectrical activity in postural tachycardia syndrome.
Seligman, William H; Low, David A; Asahina, Masato; Mathias, Christopher J
2013-04-01
Postural tachycardia syndrome (PoTS) is an important cause of orthostatic intolerance resulting from cardiovascular autonomic dysfunction. In addition to postural symptoms, PoTS patients may have allied features, including gastrointestinal (GI) symptoms, which have not yet been thoroughly investigated. We evaluated gastric myoelectrical activity in PoTS patients. Using cutaneous electrogastrography (EGG), we recorded gastric myoelectrical activity before and after standard liquid meal ingestion in 15 PoTS patients (age 27 ± 4 years); including 7 with and 8 without GI symptoms, and in 11 healthy individuals (age 23 ± 7 years). We performed spectral analysis of EGG recordings to obtain the dominant frequency of gastric pacemaker rhythm (DF), instability coefficient of DF (ICDF), and low (LFR%), normal (NFR%), and high (HFR%) range power percentages of the total power. Instability coefficient of DF, an index of variability of gastric pacemaker rhythm, was significantly elevated both pre- and post-prandially (30-45 min after the meal) in the PoTS group (8.8 ± 6, 10.0 ± 8 %) compared with controls (4.0 ± 3, 4.0 ± 3 %; both p < 0.05). Patients with GI symptoms had significantly higher post-prandial ICDF (15.0 ± 5 %) than those without GI symptoms (5.6 ± 4 %; p < 0.05). There were no significant differences in DF, LFR%, NFR% and HFR% before and after the meal between the PoTS and control groups, or between PoTS patients with and without GI symptoms. Our study revealed increased variability of gastric pacemaker rhythm in PoTS, and these findings might be related to pathophysiology of functional GI symptoms in PoTS.
Hoshikawa, Masako; Hashimoto, Shiori; Kawahara, Takashi; Ide, Rika
2010-10-01
To clarify the effects of altitude acclimatization on postural instability at altitudes, six female climbers stood with their eyes open or closed on a force-measuring platform under normoxia (NC) and hypobaric hypoxia, equivalent to a 5,000 m altitude (HC), before and after an expedition to Mt. Cho-Oyu (8,201 m). The expedition extended over 84 days. We recorded sways in the center of foot pressure, electromyograms (EMGs) of lower-leg muscles, blood components and arterial oxygen saturation (SpO(2)). Before the expedition, the maximum amplitude of sway with the eyes open and integrated EMG from the medial gastrocnemius increased for HC. After the expedition, red blood cell (from 423.4 ± 15.4 to 498.0 ± 24.5 × 10(4) μl(-1)), hemoglobin content (from 12.6 ± 0.32 to 14.5 ± 1.00 g/dl) and 2,3-diphosphoglycerate (from 1.93 ± 0.21 to 2.24 ± 0.34 μmol/ml) increased. The SpO(2) under HC increased from 69.2 ± 9.6 to 77.2 ± 10.0%. The maximum amplitude of sway with the eyes open decreased for HC. No difference in the sway path length and integrated EMGs was observed between NC and HC. These results suggest that acclimatization can improve the impaired postural stability on initial arrival at altitudes. However, it is still unclear how long acclimatization period is needed. Further studies are needed to reveal this point.
Kosik, Kyle B; Gribble, Phillip A
2018-01-01
Clinical Scenario: Dorsiflexion range of motion is an important factor in the performance of the Star Excursion Balance Test (SEBT). While patients with chronic ankle instability (CAI) commonly experience decreased reach distances on the SEBT, ankle joint mobilization has been suggested to be an effective therapeutic intervention for targeting dorsiflexion range of motion. What is the evidence to support ankle joint mobilization for improving performance on the SEBT in patients with CAI? Summary of Key Findings: The literature was searched for articles examining the effects of ankle joint mobilization on scores of the SEBT. A total of 3 peer-reviewed articles were retrieved, 2 prospective individual cohort studies and 1 randomized controlled trial. Only 2 articles demonstrated favorable results following 6 sessions of ankle joint mobilization. Clinical Bottom Line: Despite the mixed results, the majority of the available evidence suggests that ankle joint mobilization improves dynamic postural control. Strength of Recommendation: In accordance with the Centre of Evidence Based Medicine, the inconsistent results and the limited high-quality studies indicate that there is level C evidence to support the use of ankle joint mobilization to improve performance on the SEBT in patients with CAI.
Variation in vocal-motor development in infant siblings of children with autism.
Iverson, Jana M; Wozniak, Robert H
2007-01-01
In this study we examined early motor, vocal, and communicative development in a group of younger siblings of children diagnosed with autism (Infant Siblings). Infant Siblings and no-risk comparison later-born infants were videotaped at home with a primary caregiver each month from 5 to 14 months, with follow-up at 18 months. As a group, Infant Siblings were delayed in the onset of early developmental milestones and spent significantly less time in a greater number of postures, suggestive of relative postural instability. In addition, they demonstrated attenuated patterns of change in rhythmic arm activity around the time of reduplicated babble onset; and they were highly likely to exhibit delayed language development at 18 months.
McFarland, Joshua C; Meyers, Ron A
2008-08-01
Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.
Comparison of Postural Recovery Following Short and Long Duration Spaceflights
NASA Technical Reports Server (NTRS)
Wood, S. J.; Fiedler, J.; Taylor, L. C.; Kozlovskaya, I.; Black, F. O.; Paloski, W. H.
2010-01-01
INTRODUCTION: Post-flight postural ataxia reflects adaptive changes to vestibulo-spinal reflexes and control strategies adopted for movement in weightlessness. Quantitative measures obtained during computerized dynamic posturography (CDP) from US and Russian programs provide insight into the effect of spaceflight duration in terms of both the initial decrements and recovery of postural stability. METHODS: CDP was obtained on 117 crewmembers following Shuttle flights lasting 4-17 days, and on 64 crewmembers following long-duration missions lasting 48-380 days. Although the number and timing of sessions varied, the goal was to characterize postural recovery pooling similar measures from different research and flight medicine programs. This report focuses on eyes closed, head erect conditions with either a fixed or sway-referenced base of support. A smaller subset of subjects repeated the sway-referenced condition while making pitch head movements (+/- 20deg at 0.33Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Fall probability was modeled using Bayesian statistical methods to estimate parameters of a logit function. RESULTS: The standard Romberg condition was the least sensitive. Longer duration flights led to larger decrements in stability with sway-reference support during the first 1-2 days, although the timecourse of recovery was similar across flight duration with head erect. Head movements led to increased incidence of falls during the first week, with a significantly longer recovery following long duration flights. CONCLUSIONS: The diagnostic assessment of postural instability, and differences in the timecourse of postural recovery between short and long flight durations, are more pronounced during unstable support conditions requiring active head movements.
Predicting Dynamic Postural Instability Using Center of Mass Time-to-Contact Information
Hasson, Christopher J.; Van Emmerik, Richard E.A.; Caldwell, Graham E.
2008-01-01
Our purpose was to determine whether spatiotemporal measures of center of mass motion relative to the base of support boundary could predict stepping strategies after upper-body postural perturbations in humans. We expected that inclusion of center of mass acceleration in such time-to-contact (TtC) calculations would give better predictions and more advanced warning of perturbation severity. TtC measures were compared with traditional postural variables, which don’t consider support boundaries, and with an inverted pendulum model of dynamic stability developed by Hof et al. (2005). A pendulum was used to deliver sequentially increasing perturbations to 10 young adults, who were strapped to a wooden backboard that constrained motion to sagittal plane rotation about the ankle joint. Subjects were instructed to resist the perturbations, stepping only if necessary to prevent a fall. Peak center of mass and center of pressure velocity and acceleration demonstrated linear increases with postural challenge. In contrast, boundary relevant minimum TtC values decreased nonlinearly with postural challenge, enabling prediction of stepping responses using quadratic equations. When TtC calculations incorporated center of mass acceleration, the quadratic fits were better and gave more accurate predictions of the TtC values that would trigger stepping responses. In addition, TtC minima occurred earlier with acceleration inclusion, giving more advanced warning of perturbation severity. Our results were in agreement with TtC predictions based on Hof’s model, and suggest that TtC may function as a control parameter, influencing the postural control system’s decision to transition from a stationary base of support to a stepping strategy. PMID:18556003
On the Brink: Instability and the Prospect of State Failure in Pakistan
2010-04-12
unpredictable posture. Most importantly, these historical events, coupled with current political , economic, and security related issues, have created a...current political , economic, and security related issues, have created a fragile state with the propensity to fail. Therefore, this monograph highlights...hardships that have affected the state’s political stability, economic performance, and security. These unrelenting problems lie at the foundation
NASA Astrophysics Data System (ADS)
Singh, Neeraj Kumar; Snoussi, Hichem; Hewson, David; Duchêne, Jacques
The aim of this study was to develop a method to detecting the critical point interval (CPI) when sensory feedback is used as part of a closed-loop postural control strategy. Postural balance was evaluated using centre of pressure (COP) displacements from a force plate for 17 control and 10 elderly subjects under eyes open, eyes closed, and vibration conditions. A modified local-maximum-modulus wavelet transform analysis using the power spectrum of COP signals was used to calculate CPI. Lower CPI values indicate increased closed-loop postural control with a quicker response to sensory input. Such a strategy requires greater energy expenditure due to the repeated muscular interventions to remain stable. The CPI for elderly occurred significantly quicker than for controls, indicating tighter control of posture. Similar results were observed for eyes closed and vibration conditions. The CPI parameter can be used to detect differences in postural control due to ageing.
iBEST: intelligent Balance assessment and Stability Training system using smartphone.
Wai, Aung Aung Phyo; Duc, Pham Duy; Syin, Chan; Zhang, Haihong
2014-01-01
Patients with postural instability could lead to falls and injuries while walking due to balance disorders. So those patients need regular balance training and evaluation to improve and examine balance deficiencies. But many do not notice such balance issues; resulting lack of timely preventive measures. This shows the needs of affordable and accessible solution for balance training and assessment. So iBEST (intelligent Balance assessment and Stability Training) is proposed enabling to train and assess balance conveniently anywhere anytime. Moreover, therapists can remotely evaluate and manage their recovery progress. These benefits can be realized leveraging sensors from smartphone, cloud-based data analytics and web applications. iBEST employs sensorised automated balance assessment in digitizing Berg Balance Scale (BBS) clinical risk assessment tool. The initial feasibility study showed average accuracy of 90.22% using smartphone in classifying the specified BBS test items.
Abram, Katrin; Bohne, Silvia; Bublak, Peter; Karvouniari, Panagiota; Klingner, Carsten M; Witte, Otto W; Guntinas-Lichius, Orlando; Axer, Hubertus
2016-01-01
Postural instability in patients with normal pressure hydrocephalus (NPH) is a most crucial symptom leading to falls with secondary complications. The aim of the current study was to evaluate the therapeutic effect of spinal tap on postural stability in these patients. Seventeen patients with clinical symptoms of NPH were examined using gait scale, computerized dynamic posturography (CDP), and neuropsychological assessment. Examinations were done before and after spinal tap test. The gait score showed a significant improvement 24 h after spinal tap test in all subtests and in the sum score (p < 0.003), while neuropsychological assessment did not reveal significant differences 72 h after spinal tap test. CDP showed significant improvements after spinal tap test in the Sensory Organization Tests 2 (p = 0.017), 4 (p = 0.001), and 5 (p = 0.009) and the composite score (p = 0.01). Patients showed best performance in somatosensory and worst performance in vestibular dominated tests. Vestibular dominated tests did not improve significantly after spinal tap test, while somatosensory and visual dominated tests did. Postural stability in NPH is predominantly affected by deficient vestibular functions, which did not improve after spinal tap test. Conditions which improved best were mainly independent from visual control and are based on proprioceptive functions.
Effects of Spaceflight and Hindlimb Suspension on the Posture and Gait of Rats
NASA Technical Reports Server (NTRS)
Fox, R. A.; Corcoran, M.; Daunton, N. G.; Morey-Holton, E.
1994-01-01
Instability of posture and gait in astronauts following spaceflight (SF) is thought to result from muscle atrophy and from changes in sensory-motor integration in the CNS (central nervous system) that occur during adaptation to microgravity (micro-G). Individuals are thought to have developed, during SF, adaptive changes for the processing of proprioceptive, vestibular and visual sensory inputs with reduced weighting of gravity-based signals and increased weighting of visual and tactile cues. This sensory-motor rearrangement in the CNS apparently occurs to optimize neuromuscular system function for effective movement and postural control in micro-G. However, these adaptive changes are inappropriate for the 1 g environment and lead to disruptions in posture and gait on return to Earth. Few reports are available on the effects of SF on the motor behavior of animals. Rats studied following 18.5 - 19.5 days of SF in the COSMOS program were described as being ..'inert, apathetic, slow'.. and generally unstable. The hindlimbs of these rats were ..'thrust out from the body with fingers pulled apart and the shin unnaturally pronated'. On the 6th postflight day motor behavior was described as similar to that observed in preflight observations. Improved understanding of the mechanisms leading to these changes can be obtained in animal models through detailed analysis of neural and molecular mechanisms related to gait. To begin this process the posture and gait of rats were examined following exposure to either SF or hindlimb suspension (HLS), and during recovery from these conditions.
Albiol-Pérez, Sergio; Gil-Gómez, José-Antonio; Muñoz-Tomás, María-Teresa; Gil-Gómez, Hermenegildo; Vial-Escolano, Raquel; Lozano-Quilis, José-Antonio
2017-03-23
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor clinical alterations among others. Postural problems have serious consequences for patients, not only limiting their daily life but also increasing some risks, like the risk of fall. Inadequate postural control and postural instability is a major problem in PD patients. A Virtual Motor Rehabilitation System (VMR) has been tested in patients with PD in the intervention period. Our purpose was to analyze the evolution of the spatial postural control during the intervention period, to see if there are any changes caused precisely by this intervention. Ten people with PD carried out 15 virtual rehabilitation sessions. We tested a groundbreaking system based on Virtual Motor Rehabilitation in two periods of time (baseline evaluation and final evaluation). In the training sessions, the participants performed a customizable treatment using a low-cost system, the Active Balance Rehabilitation system (ABAR). We stored the pressure performed by the participants every five hundredths of a second, and we analyzed the patients' pressure when they maintained their body on the left, on the right, and in the center in sitting position. Our system was able to measure postural control in every patient in each of the virtual rehabilitation sessions. There are no significant differences in the performance of postural control in any of the positions evaluated throughout the sessions. Moreover, the results show a trend to an improvement in all positions. This improvement is especially remarkable in the left/right positions, which are the most important positions in order to avoid problems such as the risk of fall. With regard to the suitability of the ABAR system, we have found outstanding results in enjoyment, success, clarity, and helpfulness. Although PD is a progressive neurodegenerative disorder, the results demonstrate that patients with PD maintain or even improve their postural control in all positions. We think that the main factor influencing these results is that patients use more of their available cognitive processing to improve their postural control. The ABAR system allows us to make this assumption because the system requires the continuous attention of patients, promoting cognitive processing.
COMPARISON OF ORGAN DOSES IN HUMAN PHANTOMS: VARIATIONS DUE TO BODY SIZE AND POSTURE.
Feng, Xu; Xiang-Hong, Jia; Qian, Liu; Xue-Jun, Yu; Zhan-Chun, Pan; Chun-Xin, Yang
2017-04-20
Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryosection images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4 × 4 × 4 mm3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hale, Sheri A; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly
2014-01-01
Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Cohort study. University clinical research laboratory. A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Balance training twice weekly for 4 weeks. Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation.
Song, Kyeongtak; Kang, Tae Kyu; Wikstrom, Erik A; Jun, Hyung-Pil; Lee, Sae Yong
2017-10-01
The purpose of this study was to determine how reduced plantar cutaneous sensation influences static postural control in individuals with and without CAI. A case-control study design. Twenty-six individuals with self-reported CAI and 26 matched healthy controls participated in this study. The plantar aspect of the participants' foot was then submersed in ice water (0°C) for 10min to reduce plantar sensation. Before and after the cooling procedure, plantar cutaneous sensation thresholds and single leg balance with eyes open and closed were assessed. Significantly, higher scores were observed in both groups after ice water submersion (p<0.001) indicating a significant reduction in the plantar cutaneous sensitivity after the cooling procedure. In single limb balance with eyes open, there were significant intervention main effects for the TTB ML mean (p<0.001), TTB AP mean (p=0.035) and TTB ML SD (p=0.021); indicating postural control improvement in both groups post-cooling. In single limb balance with eyes closed, Group×Intervention interactions were observed for the TTB AP mean (p=0.003) and TTB AP SD (p=0.017); indicating postural control deficits in CAI group post-cooling, but no changes in the control group. The main finding of this study was that reduced plantar cutaneous sensation induced by an ice submersion procedure caused eyes closed postural control impairments in those with CAI but not healthy controls. The present investigation demonstrated that the ability to dynamically reweight among sensory inputs to maintain postural stability appears to be diminished in CAI patients compared to healthy controls. Copyright © 2016. Published by Elsevier Ltd.
Postural control and freezing of gait in Parkinson's disease.
Schlenstedt, Christian; Muthuraman, Muthuraman; Witt, Karsten; Weisser, Burkhard; Fasano, Alfonso; Deuschl, Günther
2016-03-01
The relationship between freezing of gait (FOG) and postural instability in Parkinson's disease (PD) is unclear. We analyzed the impact of FOG on postural control. 31 PD patients with FOG (PD+FOG), 27 PD patients without FOG (PD-FOG) and 22 healthy control (HC) were assessed in the ON state. Postural control was measured with the Fullerton Advanced Balance (FAB) scale and with center of pressure (COP) analysis during quiet stance and maximal voluntary forward/backward leaning. The groups were balanced concerning age, disease duration and disease severity. PD+FOG performed significantly worse in the FAB scale (21.8 ± 5.8) compared to PD-FOG (25.6 ± 5.0) and HC (34.9 ± 2.4) (mean ± SD, p < 0.01). PD+FOG had impaired ability to voluntary lean forward, difficulties to stand on foam with eyes closed and reduced limits of stability compared to PD-FOG (p < 0.05). During quiet stance the average anterior-posterior COP position was significantly displaced towards posterior in PD+FOG in comparison to PD-FOG and HC (p < 0.05). The COP position correlated with severity of FOG (p < 0.01). PD+FOG and PD-FOG did not differ in average COP sway excursion, sway velocity, sway regularity and postural control asymmetry. PD+FOG have reduced postural control compared to PD-FOG and HC. Our results show a relationship between the anterior-posterior COP position during quiet stance and FOG. The COP shift towards posterior in PD+FOG leads to a restricted precondition to generate forward progression during gait initiation. This may contribute to the occurrence of FOG or might be a compensatory strategy to avoid forward falls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Grewal, Gurtej S; Sayeed, Rashad; Schwenk, Michael; Bharara, Manish; Menzies, Robert; Talal, Talal K; Armstrong, David G; Najafi, Bijan
2013-01-01
Individuals with diabetic peripheral neuropathy frequently experience concomitant impaired proprioception and postural instability. Conventional exercise training has been demonstrated to be effective in improving balance but does not incorporate visual feedback targeting joint perception, which is an integral mechanism that helps compensate for impaired proprioception in diabetic peripheral neuropathy. This prospective cohort study recruited 29 participants (mean ± SD: age, 57 ± 10 years; body mass index [calculated as weight in kilograms divided by height in meters squared], 26.9 ± 3.1). Participants satisfying the inclusion criteria performed predefined ankle exercises through reaching tasks, with visual feedback from the ankle joint projected on a screen. Ankle motion in the mediolateral and anteroposterior directions was captured using wearable sensors attached to the participant's shank. Improvements in postural stability were quantified by measuring center of mass sway area and the reciprocal compensatory index before and after training using validated body-worn sensor technology. Findings revealed a significant reduction in center of mass sway after training (mean, 22%; P = .02). A higher postural stability deficit (high body sway) at baseline was associated with higher training gains in postural balance (reduction in center of mass sway) (r = -0.52, P < .05). In addition, significant improvement was observed in postural coordination between the ankle and hip joints (mean, 10.4%; P = .04). The present research implemented a novel balance rehabilitation strategy based on virtual reality technology. The method included wearable sensors and an interactive user interface for real-time visual feedback based on ankle joint motion, similar to a video gaming environment, for compensating impaired joint proprioception. These findings support that visual feedback generated from the ankle joint coupled with motor learning may be effective in improving postural stability in patients with diabetic peripheral neuropathy.
Melecky, Roman; Socha, Vladimir; Kutilek, Patrik; Hanakova, Lenka; Takac, Peter; Schlenker, Jakub; Svoboda, Zdenek
2016-01-01
Techniques to quantify postural stability usually rely on the evaluation of only two variables, that is, two coordinates of COP. However, by using three variables, that is, three components of acceleration vector, it is possible to describe human movement more precisely. For this purpose, a single three-axis accelerometer was used, making it possible to evaluate 3D movement by use of a novel method, convex polyhedron (CP), together with a traditional method, based on area of the confidence ellipse (ACE). Ten patients (Pts) with cerebellar ataxia and eleven healthy individuals of control group (CG) participated in the study. The results show a significant increase of volume of the CP (CPV) in Pts or CG standing on foam surface with eyes open (EO) and eyes closed (EC) after the EC phase. Significant difference between Pts and CG was found in all cases as well. Correlation coefficient indicates strong correlation between the CPV and ACE in most cases of patient examinations, thus confirming the possibility of quantification of postural instability by the introduced method of CPV. PMID:27195465
Melecky, Roman; Socha, Vladimir; Kutilek, Patrik; Hanakova, Lenka; Takac, Peter; Schlenker, Jakub; Svoboda, Zdenek
2016-01-01
Techniques to quantify postural stability usually rely on the evaluation of only two variables, that is, two coordinates of COP. However, by using three variables, that is, three components of acceleration vector, it is possible to describe human movement more precisely. For this purpose, a single three-axis accelerometer was used, making it possible to evaluate 3D movement by use of a novel method, convex polyhedron (CP), together with a traditional method, based on area of the confidence ellipse (ACE). Ten patients (Pts) with cerebellar ataxia and eleven healthy individuals of control group (CG) participated in the study. The results show a significant increase of volume of the CP (CPV) in Pts or CG standing on foam surface with eyes open (EO) and eyes closed (EC) after the EC phase. Significant difference between Pts and CG was found in all cases as well. Correlation coefficient indicates strong correlation between the CPV and ACE in most cases of patient examinations, thus confirming the possibility of quantification of postural instability by the introduced method of CPV.
An evaluation of low back pain among female brick field workers of West Bengal, India.
Das, Banibrata
2015-09-01
The purpose of the study was to determine the prevalence of low back pain (LBP) among brick field workers and to explore attributed causes of LBP, investigate the relationship between LBP and psychophysical and psychosocial factors and measure the impact of LBP. A modified Nordic Musculoskeletal Disorder Questionnaire along with Body Part Discomfort scale were administered to brick field workers (N = 148). Working posture of the participants was assessed using Rapid Entire Body Assessment (REBA) method. The study showed that 70 % of the female workers reported LBP due to awkward working posture for prolonged period of time. This was mainly reported by brick moulders. 45 % reported LBP due to manual material handling (MMH) and 40 % due to awkward lifting of heavy objects (brick). The study shows that the LBP is more prevalent (OR 1.59 and 95 % CI 0.411-6.207). 78 % of the female workers want the job rotation to relieve from their job monotony. LBP occurred among female workers due to awkward posture, repetitive work and MMH. This study also stated that psychosocial cause of LBP is inadequacy income, monotony work, job dissatisfaction. Working posture analysis REBA suggests that all the working postures are high-risk level.
Cucca, A; Biagioni, M C; Sharma, K; Golomb, J; Gilbert, R M; Di Rocco, A; Fleisher, J E
2018-01-01
Idiopathic normal pressure hydrocephalus (iNPH) is the most common cause of hydrocephalus in adults. The diagnosis may be challenging, requiring collaborative efforts between different specialists. According to the International Society for Hydrocephalus and Cerebrospinal Fluid Disorders, iNPH should be considered in the differential of any unexplained gait failure with insidious onset. Recognizing iNPH can be even more difficult in the presence of comorbid neurologic disorders. Among these, idiopathic Parkinson's disease (PD) is one of the major neurologic causes of gait dysfunction in the elderly. Both conditions have their peak prevalence between the 6th and the 7th decade. Importantly, postural instability and gait dysfunction are core clinical features in both iNPH and PD. Therefore, diagnosing iNPH where diagnostic criteria of PD have been met represents an additional clinical challenge. Here, we report a patient with parkinsonism initially consistent with PD who subsequently displayed rapidly progressive postural instability and gait dysfunction leading to the diagnosis of concomitant iNPH. In the following sections, we will review the clinical features of iNPH, as well as the overlapping and discriminating features when degenerative parkinsonism is in the differential diagnosis. Understanding and recognizing the potential for concomitant disease are critical when treating both conditions.
Khurana, Navneet; Gajbhiye, Asmita
2013-12-01
Present study focused on the evaluation of aqueous extract of Sida cordifolia (AESC), and its different fractions; hexane (HFSC), chloroform (CFSC) and aqueous (AFSC), against rotenone induced biochemical, neurochemical, histopathological and behavioral alterations in a rat model of Parkinson's disease (PD). An estimation of the level of thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and catalase (CAT) along with superoxide anion generation (SAG) in different brain regions (cortex, midbrain and cerebellum) was carried out to assess biochemical changes. Behavioral evaluation tests (catalepsy, rearing behavior and posture instability) and neurochemical estimations (norepinephrine, dopamine and serotonin level) along with histopathological evaluations of different brain regions were also performed. The varying doses (50, 100, 250mg/kg; p.o.) of different test treatments (AESC, HFSC, CFSC and AFSC) were co-administered along with rotenone (2mg/kg; s.c.), for a period of 35 days to rats of various groups and compared with rotenone per se (negative control) and l-deprenyl (positive control; 10mg/kg; p.o.) treated groups for the above mentioned parameters. The increase in catalepsy and posture instability along with decrease in rearing behavior observed due to rotenone treatment was significantly attenuated by co-treatment with varying doses of AESC and AFSC. Results of the histopathological studies of different brain regions of rats showed eosinophilic lesions in the mid brain region due to rotenone treatment. The eosinophilic lesions were significantly attenuated in co-treated groups of AESC-100mg/kg and AFSC-100mg/kg. Rotenone induced oxidative damage, revealed by increased level of TBARS, SAG and decreased level of GSH and CAT in mid brain region of rats, was attenuated by the co-treatment of AESC and AFSC. The rotenone induced decrease of dopamine level in the midbrain region of rats was also attenuated by co-treatment of AESC-100mg/kg and AFSC-100mg/kg. The maximum effect in all the above activities was observed in AFSC (100mg/kg) treated group, which was comparable to l-deprenyl treated group. The HFSC and CFSC co-treatment failed to show significant attenuation of rotenone induced damage. These results indicate the possible therapeutic potential of most polar fraction of AESC i.e. AFSC in PD by virtue of its antioxidative actions. Copyright © 2013 Elsevier Inc. All rights reserved.
Kapoula, Zoi; Gaertner, Chrystal; Matheron, Eric
2012-01-01
There is controversy as to whether dyslexic children present systematic postural deficiency. Clinicians use a combination of ophthalmic prisms and proprioceptive soles to improve postural performances. This study examines the effects of convergent prisms and spherical lenses on posture. Fourteen dyslexics (13–17 years-old) and 11 non dyslexics (13–16 years-old) participated in the study. Quiet stance posturography was performed with the TechnoConcept device while subjects fixated a target at eye-level from a distance of 1_m. Four conditions were run: normal viewing; viewing the target with spherical lenses of −1 diopter (ACCOM1) over each eye; viewing with −3 diopters over each eye (ACCOM3); viewing with a convergent prism of 8 diopters per eye. Relative to normal viewing, the −1 lenses increased the surface of body sway significantly whereas the −3 diopter lenses only resulted in a significant increase of antero-posterior body sway. Thus, adolescents would appear to cope more effectively with stronger conflicts rather than subtle ones. The prism condition resulted in a significant increase in both the surface and the antero-posterior body sway. Importantly, all of these effects were similar for the two groups. Wavelet analysis (time frequency domain) revealed high spectral power of antero-posterior sway for the prism condition in both groups. In the ACCOM3 condition, the spectral power of antero-posterior sway decreased for non dyslexics but increased for dyslexics suggesting that dyslexics encounter more difficulty with accommodation. The cancelling time for medium range frequency (believed to be controlled by the cerebellum), was shorter in dyslexics, suggesting fewer instances of optimal control. We conclude that dyslexics achieve similar postural performances albeit less efficiently. Prisms and lenses destabilize posture for all teenagers. Thus, contrary to adults, adolescents do not seem to use efferent, proprioceptive ocular motor signals to improve their posture, at least not immediately when confronted to convergence accommodation conflict. PMID:23144786
Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat
2013-09-01
The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.
Jacobs, J V; Horak, F B; Tran, V K; Nutt, J G
2006-01-01
Objectives Clinicians often base the implementation of therapies on the presence of postural instability in subjects with Parkinson's disease (PD). These decisions are frequently based on the pull test from the Unified Parkinson's Disease Rating Scale (UPDRS). We sought to determine whether combining the pull test, the one‐leg stance test, the functional reach test, and UPDRS items 27–29 (arise from chair, posture, and gait) predicts balance confidence and falling better than any test alone. Methods The study included 67 subjects with PD. Subjects performed the one‐leg stance test, the functional reach test, and the UPDRS motor exam. Subjects also responded to the Activities‐specific Balance Confidence (ABC) scale and reported how many times they fell during the previous year. Regression models determined the combination of tests that optimally predicted mean ABC scores or categorised fall frequency. Results When all tests were included in a stepwise linear regression, only gait (UPDRS item 29), the pull test (UPDRS item 30), and the one‐leg stance test, in combination, represented significant predictor variables for mean ABC scores (r2 = 0.51). A multinomial logistic regression model including the one‐leg stance test and gait represented the model with the fewest significant predictor variables that correctly identified the most subjects as fallers or non‐fallers (85% of subjects were correctly identified). Conclusions Multiple balance tests (including the one‐leg stance test, and the gait and pull test items of the UPDRS) that assess different types of postural stress provide an optimal assessment of postural stability in subjects with PD. PMID:16484639
Yiou, Eric; Fourcade, Paul; Artico, Romain; Caderby, Teddy
2016-06-01
Many daily motor tasks have to be performed under a temporal pressure constraint. This study aimed to explore the influence of such constraint on motor performance and postural stability during gait initiation. Young healthy participants initiated gait at maximal velocity under two conditions of temporal pressure: in the low-pressure condition, gait was self-initiated (self-initiated condition, SI); in the high-pressure condition, it was initiated as soon as possible after an acoustic signal (reaction-time condition, RT). Gait was initiated with and without an environmental constraint in the form of an obstacle to be cleared placed in front of participants. Results showed that the duration of postural adjustments preceding swing heel-off ("anticipatory postural adjustments", APAs) was shorter, while their amplitude was larger in RT compared to SI. These larger APAs allowed the participants to reach equivalent postural stability and motor performance in both RT and SI. In addition, the duration of the execution phase of gait initiation increased greatly in the condition with an obstacle to be cleared (OBST) compared to the condition without an obstacle (NO OBST), thereby increasing lateral instability and thus involving larger mediolateral APA. Similar effects of temporal pressure were obtained in NO OBST and OBST. This study shows the adaptability of the postural system to temporal pressure in healthy young adults initiating gait. The outcome of this study may provide a basis for better understanding the aetiology of balance impairments with the risk of falling in frail populations while performing daily complex tasks involving a whole-body progression.
Muir, Jesse; Judex, Stefan; Qin, Yi-Xian; Rubin, Clinton
2011-01-01
Loss of postural stability, as exacerbated by chronic bed rest, aging, neuromuscular injury or disease, results in a marked increase in the risk of falls, potentiating severe injury and even death. To investigate the capacity of low magnitude mechanical signals (LMMS) to retain postural stability under conditions conducive to its decline, twenty-nine healthy adult subjects underwent 90 days of 6-degree head down tilt bed-rest. Treated subjects underwent a daily 10 minute regimen of 30 Hz LMMS at either a 0.3g-force (n=12) or 0.5g force (n=5). Control subjects (n=13) received no LMMS treatment. Postural stability, quantified by dispersions of the plantar-based center of pressure, deteriorated significantly from baseline in control subjects, with displacement and velocity at 60d increasing 98.7% and 193% respectively, while the LMMS group increased only 26.7% and 6.4%, reflecting a 73% and 97% relative retention in stability as compared to control. Increasing LMMS magnitude from 0.3 to 0.5g had no significant influence on outcomes. LMMS failed to spare loss of muscle extension strength, but helped to retain flexion strength (e.g., 46.2% improved retention of baseline concentric flexion strength vs. untreated controls; p=0.01). These data suggest the potential of extremely small mechanical signals as a non-invasive means of preserving postural control under the challenge of chronic bed rest, and may ultimately represent non-pharmacologic means of reducing the risk of debilitating falls in elderly and infirm. PMID:21273076
Kidgell, Dawson J; Horvath, Deanna M; Jackson, Brendan M; Seymour, Philip J
2007-05-01
Lateral ankle sprain (LAS) is one of the most common injuries incurred during sporting activities, and effective rehabilitation programs for this condition are challenging to develop. The purpose of this research was to compare the effect of 6 weeks of balance training on either a mini-trampoline or a dura disc on postural sway and to determine if the mini-trampoline or the dura disc is more effective in improving postural sway. Twenty subjects (11 men, 9 women) with a mean age of 25.4 +/- 4.2 years were randomly allocated into a control group, a dura disc training (DT) group, or a mini-trampoline (MT) group. Subjects completed 6 weeks of balance training. Postural sway was measured by subjects performing a single limb stance on a force plate. The disbursement of the center of pressure was obtained from the force plate in the medial-lateral and the anterior-posterior sway path and was subsequently used for pretest and posttest analysis. After the 6-week training intervention, there was a significant (p < 0.05) difference in postural sway between pre- and posttesting for both the MT (pretest = 56.8 +/- 20.5 mm, posttest = 33.3 +/- 8.5 mm) and DT (pretest = 41.3 +/- 2.6 mm, posttest = 27.2 +/- 4.8 mm) groups. There was no significant (p > 0.05) difference detected for improvements between the MT and DT groups. These results indicate that not only is the mini-trampoline an effective tool for improving balance after LAS, but it is equally as effective as the dura disc.
Clinical differentiation of parkinsonian syndromes: prognostic and therapeutic relevance.
Christine, Chadwick W; Aminoff, Michael J
2004-09-15
Parkinson disease is the most common cause of parkinsonism, but other causes should always be excluded because they have a different prognosis, respond differently to medical treatment, and should not be managed by surgical means. However, diagnosis, even by experts, is challenging; one autopsy series showed an error rate of 24%. Distinction between various diagnostic possibilities depends on the history and examination findings. The use of certain medications, the rapid rate of disease progression, early onset of falling, the presence of certain dysautonomic symptoms, cognitive or behavioral changes, or a history of poor response to dopaminergic therapy may suggest an atypical form of parkinsonism. Postural hypotension, dementia, supranuclear ophthalmoparesis, or early postural instability should alert the examiner to consider an atypical cause of parkinsonism. Tests of autonomic function and brain imaging are often helpful in distinguishing these diseases. Copyright 2004 Elsevier Inc.
Measuring postural control during mini-squat posture in men with early knee osteoarthritis.
Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M
2017-04-01
Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=<0.001), stiffness (p=0.001) and physical function (p<0.001) were found for the OAG. Moderate and negative correlations were found between the AP COP amplitude of displacement and physical function (ρ=-0.40, p=0.02). Moderate and negative correlations were observed between the AP COP velocity of displacement and physical function (ρ=0.47, p=0.01) and stiffness (ρ=-0.45, p=0.02). The findings of the present study emphasize the importance of rehabilitation from the early degrees of knee OA to prevent postural instability and the need to include quadriceps muscle strengthening, especially by eccentric contractions. The relationship between the self-reported symptoms and a lower and slower COP displacement suggest that the postural control strategy during tasks with a semi-flexed knee should be further investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko
2010-03-10
The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.
Foreman, K Bo; Singer, Madeline L; Addison, Odessa; Marcus, Robin L; LaStayo, Paul C; Dibble, Leland E
2014-01-01
Postural instability appears to be a dopamine resistance motor deficit in persons with Parkinson disease (PD); however, little is known about the effects of dopamine replacement on the relative biomechanical contributions of individual lower extremity joints during postural control tasks. To gain insight, we examined persons with PD using both clinical and laboratory measures. For a clinical measure of motor severity we utilized the Unified Parkinson Disease Rating Scale motor subsection during both OFF and ON medication conditions. For the laboratory measure we utilized data gathered during a rapid lower extremity force production task. Kinematic and kinetic variables at the hip, knee, and ankle were gathered during a counter movement jump during both OFF and ON medication conditions. Sixteen persons with PD with a median Hoehn and Yahr severity of 2.5 completed the study. Medication resulted in significant improvements of angular displacement for the hip, knee, and ankle. Furthermore, significant improvements were revealed only at the hip for peak net moments and average angular velocity compared to the OFF medication condition. These results suggest that dopamine replacement medication result in decreased clinical motor disease severity and have a greater influence on kinetics and kinematics proximally. This proximally focused improvement may be due to active recruitment of muscle force and reductions in passive restraint during lower extremity rapid force production. Copyright © 2013 Elsevier B.V. All rights reserved.
Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.
Slobounov, Semyon M; Ray, William; Johnson, Brian; Slobounov, Elena; Newell, Karl M
2015-03-01
There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings. Copyright © 2014 Elsevier B.V. All rights reserved.
Barnacle geese achieve significant energetic savings by changing posture.
Tickle, Peter G; Nudds, Robert L; Codd, Jonathan R
2012-01-01
Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.
Postural Control and Emotion in Children with Autism Spectrum Disorders
Gouleme, Nathalie; Scheid, Isabelle; Peyre, Hugo; Seassau, Magali; Maruani, Anna; Clarke, Julia; Delorme, Richard; Bucci, Maria Pia
2017-01-01
Abstract Autism Spectrum Disorders subjects (ASD) are well known to have deficits in social interaction. We recorded simultaneously eye movements and postural sway during exploration of emotional faces in children with ASD and typically developing children (TD). We analyzed several postural and ocular parameters. The results showed that all postural parameters were significantly greater in children with ASD; ASD made significantly fewer saccades and had shorter fixation time than TD, particularly in the eyes, and especially for unpleasant emotions. These results suggest that poor postural control of ASD and their impaired visual strategies could be due to a lack of interest in social cognition, causing a delay in the development of the cortical areas, and thus could have an effect on their postural control. PMID:29177103
Barnacle Geese Achieve Significant Energetic Savings by Changing Posture
Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.
2012-01-01
Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture. PMID:23071672
Gao, Chao; Sun, Hanbo; Wang, Tuo; Tang, Ming; Bohnen, Nicolaas I; Müller, Martijn L T M; Herman, Talia; Giladi, Nir; Kalinin, Alexandr; Spino, Cathie; Dauer, William; Hausdorff, Jeffrey M; Dinov, Ivo D
2018-05-08
In this study, we apply a multidisciplinary approach to investigate falls in PD patients using clinical, demographic and neuroimaging data from two independent initiatives (University of Michigan and Tel Aviv Sourasky Medical Center). Using machine learning techniques, we construct predictive models to discriminate fallers and non-fallers. Through controlled feature selection, we identified the most salient predictors of patient falls including gait speed, Hoehn and Yahr stage, postural instability and gait difficulty-related measurements. The model-based and model-free analytical methods we employed included logistic regression, random forests, support vector machines, and XGboost. The reliability of the forecasts was assessed by internal statistical (5-fold) cross validation as well as by external out-of-bag validation. Four specific challenges were addressed in the study: Challenge 1, develop a protocol for harmonizing and aggregating complex, multisource, and multi-site Parkinson's disease data; Challenge 2, identify salient predictive features associated with specific clinical traits, e.g., patient falls; Challenge 3, forecast patient falls and evaluate the classification performance; and Challenge 4, predict tremor dominance (TD) vs. posture instability and gait difficulty (PIGD). Our findings suggest that, compared to other approaches, model-free machine learning based techniques provide a more reliable clinical outcome forecasting of falls in Parkinson's patients, for example, with a classification accuracy of about 70-80%.
Gokalp, Oguzhan; Akkaya, Semih; Akkaya, Nuray; Buker, Nihal; Gungor, Harun R; Ok, Nusret; Yorukoglu, Cagdas
2016-04-27
Impaired postural balance due to somatosensory data loss with mechanical instability has been shown in patients with ACL deficiency. To assess postural balance in patients with ACL insufficiency prior to surgery and following reconstruction with serial evaluations. Thirty patients (mean age of 27.7 ± 6.7 years) who underwent arthroscopic reconstruction of ACL with bone-patellar tendon-bone autograft were examined for clinical and functional variables at preoperative day and postoperative 12th week. Posturographic analysis were performed by using Tetrax Interactive Balance System (Sunlight Medical Ltd, Israel) at preoperative day, at 4th, 8th, and 12th weeks following reconstruction. Data computed by posturographic software by the considerations of the oscillation velocities of body sways is fall risk as a numeric value (0-100, lower values indicate better condition). All of the patients (mean age of 27.7 ± 6.7 years) had significant improvements for clinical, functional evaluations and fall risk (p< 0.05). Mean fall risk was within high-risk category (59.9 ± 22.8) preoperatively. The highest fall risk was detected at postoperative 4th week. Patients had high fall risk at 8th week similar to preoperative value. Mean fall risk decreased to low level risk at 12th week. Preoperative symptom duration had relationships with preoperative fall risk and postoperative improvement of fall risk (p= 0.001, r= -0.632, p= 0.001, r= -0.870, respectively). The improvement of fall risk was higher in patients with symptoms shorter than 6 months (p= 0.001). According to these results, mean fall risk of patients with ACL insufficiency was within high risk category preoperatively, and fall risk improves after surgical reconstruction, but as the duration of complaints lengthens especially longer than 6 months, the improvement of fall risk decreases following reconstruction.
Unilateral pedunculopontine stimulation improves falls in Parkinson's disease.
Moro, Elena; Hamani, Clement; Poon, Yu-Yan; Al-Khairallah, Thamar; Dostrovsky, Jonathan O; Hutchison, William D; Lozano, Andres M
2010-01-01
Postural instability and falls are a major source of disability in patients with advanced Parkinson's disease. These problems are currently not well addressed by either pharmacotherapy nor by subthalamic nucleus deep-brain stimulation surgery. The neuroanatomical substrates of posture and gait are poorly understood but a number of important observations suggest a major role for the pedunculopontine nucleus and adjacent areas in the brainstem. We conducted a double-blinded evaluation of unilateral pedunculopontine nucleus deep-brain stimulation in a pilot study in six advanced Parkinson's disease patients with significant gait and postural abnormalities. There was no significant difference in the double-blinded on versus off stimulation Unified Parkinson's Disease Rating Scale motor scores after 3 or 12 months of continuous stimulation and no improvements in the Unified Parkinson's Disease Rating Scale part III scores compared to baseline. In contrast, patients reported a significant reduction in falls in the on and off medication states both at 3 and 12 months after pedunculopontine nucleus deep-brain stimulation as captured in the Unified Parkinson's Disease Rating Scale part II scores. Our results suggest that pedunculopontine nucleus deep-brain stimulation may be effective in preventing falls in patients with advanced Parkinson's disease but that further evaluation of this procedure is required.
Cortical-basal ganglionic degeneration.
Riley, D E; Lang, A E; Lewis, A; Resch, L; Ashby, P; Hornykiewicz, O; Black, S
1990-08-01
We report our experience with 15 patients believed to have cortical-basal ganglionic degeneration. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Characteristic manifestations include cortical sensory loss, focal reflex myoclonus, "alien limb" phenomena, apraxia, rigidity and akinesia, a postural-action tremor, limb dystonia, hyperreflexia, and postural instability. The asymmetry of symptoms and signs is often striking. Brain imaging may demonstrate greater abnormalities contralateral to the more affected side. Postmortem studies in 2 patients revealed the characteristic pathologic features of swollen, poorly staining (achromatic) neurons and degeneration of cerebral cortex and substantia nigra. Biochemical analysis of 1 brain showed a severe, diffuse loss of dopamine in the striatum. This condition is more frequent than previously believed, and the diagnosis can be predicted during life on the basis of clinical findings. However, as with other "degenerative" diseases of the nervous system, a definitive diagnosis of cortical-basal ganglionic degeneration requires confirmation by autopsy.
Effects of space flight on locomotor control
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Layne, Charles S.; McDonald, P. Vernon; Peters, Brian T.; Huebner, William P.; Reschke, Millard F.; Berthoz, Alain; Glasauer, Stefan; Newman, Dava; Jackson, D. Keoki
1999-01-01
In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.
Congenital Partial Absence of Trapezius with Variant Pattern of Rectus Sheath.
Tigga, Sarika Rachel; Goswami, Preeti; Khanna, Jugesh
2016-04-01
Musculocutaneous pedicled/free flaps are an essential prerequisite for reconstructive surgery. Amongst the trunk muscles commonly harvested for flaps, the trapezius and rectus abdominis provide satisfactory coverage for cranial and trunk defects. unilateral/bilateral or partial congenital absence of trapezius muscle is well documented and may result in muscular imbalances compromising posture and limb movements. During routine cadaveric dissection, we encountered a case of bilateral partial absence of occipital part of the trapezius muscle. Concurrently, the ventral abdominal musculature displayed the aponeurosis of transversus abdominis muscle solely forming the posterior wall of the rectus sheath. These conjointly occurring anomalies advocate a compensatory strengthening of the anterior wall of rectus sheath in response to the congenital absence of occipital part of the trapezius, probably to counteract the postural instability. The present study focuses on recognition of compensatory mechanisms resulting from congenital variations as identification of such processes may prevent chronic debilitating conditions.
Adaptive Gait Control for a Quadruped Robot on 3D Path Planning
NASA Astrophysics Data System (ADS)
Igarashi, Hiroshi; Kakikura, Masayoshi
A legged walking robot is able to not only move on irregular terrain but also change its posture. For example, the robot can pass under overhead obstacles by crouching. The purpose of our research is to realize efficient path planning with a quadruped robot. Therefore, the path planning is expected to extended in three dimensions because of the mobility. However, some issues of the quadruped robot, which are instability, workspace limitation, deadlock and slippage, complicate realizing such application. In order to improve these issues and reinforce the mobility, a new static gait pattern for a quadruped robot, called TFG: Trajectory Following Gait, is proposed. The TFG intends to obtain high controllability like a wheel robot. Additionally, the TFG allows to change it posture during the walk. In this paper, some experimental results show that the TFG improves the issues and it is available for efficient locomotion in three dimensional environment.
Duncan, Carolyn A; Ingram, Tony G J; Mansfield, Avril; Byrne, Jeannette M; McIlroy, William E
2016-01-01
Central or postural set theory suggests that the central nervous system uses short term, trial to trial adaptation associated with repeated exposure to a perturbation in order to improve postural responses and stability. It is not known if longer-term prior experiences requiring challenging balance control carryover as long-term adaptations that influence ability to react in response to novel stimuli. The purpose of this study was to determine if individuals who had long-term exposure to balance instability, such as those who train on specific skills that demand balance control, will have improved ability to adapt to complex continuous multidirectional perturbations. Healthy adults from three groups: 1) experienced maritime workers (n = 14), 2) novice individuals with no experience working in maritime environments (n = 12) and 3) individuals with training in dance (n = 13) participated in the study. All participants performed a stationary standing task while being exposed to five 6 degree of freedom motions designed to mimic the motions of a ship at sea. The balance reactions (change-in-support (CS) event occurrences and characteristics) were compared between groups. Results indicate dancers demonstrated significantly fewer CS events than novices during the first trial, but did not perform as well as those with offshore experience. Linear trend analyses revealed that short-term adaptation across all five trials was dependent on the nature of participant experience, with dancers achieving postural stability earlier than novices, but later than those with offshore experience. These results suggest that long term previous experiences also have a significant influence on the neural control of posture and balance in the development of compensatory responses.
Changes in postural control in patients with Parkinson's disease: a posturographic study.
Doná, F; Aquino, C C; Gazzola, J M; Borges, V; Silva, S M C A; Ganança, F F; Caovilla, H H; Ferraz, H B
2016-09-01
Postural instability is one of the most disabling features in Parkinson's disease (PD), and often leads to falls that reduce mobility and functional capacity. The objectives of this study were to analyse the limit of stability (LOS) and influence of the manipulation of visual, somatosensorial and visual-vestibular information on postural control in patients with PD and healthy subjects. Cross-sectional. Movement Disorders Unit, university setting. Eighty-two subjects aged between 37 and 83 years: 41 with Parkinson's disease in the 'on' state and 41 healthy subjects with no neurological disorders. Both groups were matched in terms of sex and age. Unified Parkinson's Disease Rating Scale (UPDRS)-motor score, modified Hoehn and Yahr staging, Dynamic Gait Index (DGI) and posturography with integrated virtual reality. The parameters analysed by posturography were LOS area, area of body centre of pressure excursion and balance functional reserve in the standing position in 10 conditions (open and closed eyes, unstable surface with eyes closed, saccadic and optokinetic stimuli, and visual-vestibular interaction). The mean UPDRS motor score and DGI score were 27 [standard deviation (SD) 14] and 21 (SD 3), respectively. Thirteen participants scored between 0 and 19 points, indicating major risk of falls. Posturographic assessment showed that patients with PD had significantly lower LOS area and balance functional reserve values, and greater body sway area in all posturographic conditions compared with healthy subjects. Patients with PD have reduced LOS area and greater postural sway compared with healthy subjects. The deterioration in postural control was significantly associated with major risk of falls. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Posture, head stability, and orientation recovery during vestibular regeneration in pigeons.
Dickman, J David; Lim, Insook
2004-09-01
Compensatory behavior such as oculomotor, gaze, and postural responses that occur during movement largely depend upon a functioning vestibular system. In the present study, the initial loss and subsequent recovery of postural and head stability in pigeons undergoing vestibular regeneration were examined. Adult pigeons were trained to manipulate a straight run chamber to peck an illuminated key for fluid reward. Six behavioral measures assessing performance, posture, and head stability were quantified. These included run latency, steps (walking), path negotiation (lane changes), gaze saccades, head bobs, and head shakes. Once normative values were obtained for four birds, complete lesion of all receptor cells and denervation of the epithelia in the vestibular endorgans were produced using a single intralabyrinthine application of streptomycin sulfate. Each bird was then tested at specific times during regeneration and the same behavioral measures examined. At 7 days post-streptomycin treatment (PST), all birds exhibited severe postural and head instability, with tremors, head shakes, staggering, and circling predominating. No normal trial runs, walking, gaze saccades, or head bobs were present. Many of these dysfunctions persisted through 3-4 weeks PST. Gradually, tremor and head shakes diminished and were replaced with an increasing number of normal head bobs during steps and gaze saccades. Beginning at 4 weeks PST, but largely inaccurate, was the observed initiation of directed steps, less staggering, and some successful path negotiation. As regeneration progressed, spatial orientation and navigation ability increased and, by 49 days PST, most trials were successful. By 70 days PST, all birds had recovered to pretreatment levels. Thus, it was observed that ataxia must subside, coincident with normalized head and postural stability prior to the recovery of spatial orientation and path navigation recovery. Parallels in recovery were drawn to hair cell regeneration and afferent responsiveness, as inferred from present results and those in other investigations.
Magnusson, Anna K; Tham, Richard
A sudden unilateral loss of peripheral vestibular input results in the onset of acute dizziness and imbalance associated with spontaneous nystagmus, postural instability and nausea. Fortunately, these symptoms ameliorate rapidly, even without treatment, due to central nervous plastic changes which are collectively termed "vestibular compensation". This concept has become a widely accepted research model for studying lesion-induced plasticity. Recent research has dealt in particular with the plasticity of the medial vestibular nuclei that mediate the horizontal vestibulo-ocular reflex. Studies range from a cellular level in vitro to a functional level in vivo. Taken together, results from such studies have contributed greatly to what is known of vestibular compensation today. This article summarises evidence for several plasticity mechanisms that drive the recovery of spontaneous nystagmus, one of which is dependent on an endocrine stress-response. In the long run, such knowledge might influence the management and treatment of patients with balance disorders.
The effect of aging on anticipatory postural control
Kanekar, Neeta; Aruin, Alexander S.
2014-01-01
The aim of the study was to investigate the differences in anticipatory (APAs) postural adjustments between young and older adults and its effect on subsequent control of posture. Ten healthy older adults and thirteen healthy young adults were exposed to predictable external perturbations using the pendulum-impact paradigm. EMG activity of the trunk and leg muscles, the center of pressure (COP), and center of mass (COM) displacements in the anterior-posterior (AP) direction were recorded and analyzed during the anticipatory and compensatory (CPAs) phases of postural control. The effect of aging was seen as delayed anticipatory muscle activity and larger compensatory muscle responses in older adults as compared to young adults. Moreover, in spite of such larger reactive responses, older adults were still more unstable, exhibiting larger COP and COM peak displacements after the perturbation than young adults when exposed to similar postural disturbances. Nonetheless, while APAs are impaired in older adults, the ability to recruit muscles anticipatorily is largely preserved, however, due to their smaller magnitudes and delayed onsets, it is likely that their effectiveness in reducing the magnitude of CPAs is smaller. The outcome of the study lends support towards investigating the ways of improving anticipatory postural control in people with balance impairments due to aging or neurological disorders. PMID:24449006
Powden, Cameron J; Hogan, Kathleen K; Wikstrom, Erik A; Hoch, Matthew C
2017-05-01
Talocrural joint mobilizations are commonly used to address deficits associated with chronic ankle instability (CAI). Examine the immediate effects of talocrural joint traction in those with CAI. Blinded, crossover. Laboratory. Twenty adults (14 females; age = 23.80 ± 4.02 y; height = 169.55 ± 12.38 cm; weight = 78.34 ± 16.32 kg) with self-reported CAI participated. Inclusion criteria consisted of a history of ≥1 ankle sprain, ≥2 episodes of giving way in the previous 3 mo, answering "yes" to ≥4 questions on the Ankle Instability Instrument, and ≤24 on the Cumberland Ankle Instability Tool. Subjects participated in 3 sessions in which they received a single treatment session of sustained traction (ST), oscillatory traction (OT), or a sham condition in a randomized order. Interventions consisted of four 30-s sets of traction with 1 min of rest between sets. During ST and OT, the talus was distracted distally from the ankle mortise to the end-range of accessory motion. ST consisted of continuous distraction and OT involved 1-s oscillations between the mid and end-range of accessory motion. The sham condition consisted of physical contact without force application. Preintervention and postintervention measurements of weight-bearing dorsiflexion, dynamic balance, and static single-limb balance were collected. The independent variable was treatment (ST, OT, sham). The dependent variables included pre-to-posttreatment change scores for the WBLT (cm), normalized SEBTAR (%), and time-to-boundary (TTB) variables(s). Separate 1-way ANOVAs examined differences between treatments for each dependent variable. Alpha was set a priori at P < .05. No significant treatment effects were identified for any variables. A single intervention of ST or OT did not produce significant changes in weight-bearing dorsiflexion range of motion or postural control in individuals with CAI. Future research should investigate the effects of repeated talocrural traction treatments and the effects of this technique when combined with other manual therapies.
Terada, Masafumi; Harkey, Matthew S; Wells, Ashley M; Pietrosimone, Brian G; Gribble, Phillip A
2014-01-01
We investigated the influence of ankle dorsiflexion range of motion (DF-ROM) and self-reported patient outcomes on dynamic postural control assessed with the Star Excursion Balance Test (SEBT) in individuals with chronic ankle instability (CAI). Twenty-nine participants with self-reported CAI volunteered. The primary outcome measurements were categorized into clinician-and patient-generated. Clinician-generated outcome measurements included anterior (SEBT-A), posteriormedial (SEBT-PM) and posteriorlateral (SEBT-PL) reach distances (cm) normalized by leg length (cm) of the SEBT, maximum weight-bearing dorsiflexion (WB-DF) (cm), and open-chain DF-ROM (°). Self-reported patient-generated outcome measures included the foot and ankle ability measure and the level of perceived pain, stiffness, stability, and function of their involved ankle on a 10-cm visual analog scale (VAS). Pearson product moment correlations were used to examine the relationship of the SEBT performances with DF-ROM and self-reported patient outcome measures. A multiple linear regression was performed to determine the influence of patient- and clinician-generated measures on the SEBT. SEBT-A performance was significantly and fairly correlated with WB-DF (r=0.410, p=0.014), perceived ankle stiffness (r=0.477, p=0.014), and open-chain DF-ROM (r=0.404, p=0.015). The strongest predictor of the variance in SEBT-A was the combination of the variance in WB-DF and VAS-stiffness (R2=0.348, p=0.004). There were no significant correlations with the SEBT-PM and SEBT-PL. WB-DF and VAS-stiffness may represent targets for intervention that need to be addressed to produce the best outcome in participants with CAI when altered dynamic postural control is detected on the SEBT-A. Copyright © 2014 Elsevier B.V. All rights reserved.
Hale, Sheri A.; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly
2014-01-01
Context: Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. Objective: To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Design: Cohort study. Setting: University clinical research laboratory. Patients or Other Participants: A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Intervention(s): Balance training twice weekly for 4 weeks. Main Outcome Measure(s): Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. Results: The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Conclusions: Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation. PMID:24568231
Malakhov, M V; Makarenkova, E A; Mel'nikov, A A; Vikulov, A D
2014-01-01
The influence of breath holding and voluntary hyperventilation on the classic stabilometric parameters and the frequency characteristic of stabilographic signal were studied. We measured the stabilometric parameters on the force platform ("Ritm", Russia) on the healthy volunteers (n = 107) during quiet breath, voluntary hyperventilation (20 seconds) and maximal inspiratory breath holding (20 seconds). Respiratory frequency, respiratory amplitude and ventilation were estimated with strain gauge. We found that antero-posterior and medio-lateral sway amplitude and velocity as well as sway surface at breath-holding and at quiet breathing were the same, so breath holding didn't influence the postural stability. However the spectral parameters shifted to the high frequency range due to alteration of the respiratory muscles contractions during breath-holding versus quiet breath. Voluntary hyperventilation caused significant increase of all stabilographic indices that implied an impairment of postural stability, which was due to the increase of respiration frequency and amplitude. We also found that the spectral indices moved toward the high-frequency range with more pronounced degree of this shift versus breath holding. Besides, amplitudes of spectral peaks also increased. Perhaps such change of spectral indices was due to distortion of proprioceptive information because of increased excitability of nerve fibers during hyperventilation. Maximal inspiration breath holding causes strain of the postural control mechanisms that is reflected as elevation of postural sway frequency with no postural stability changes. Hyperventilation leads to the most prominent strain of balance function and decrease of steadiness that is manifested as increase of center of pressure oscillations amplitude and frequency.
Brunetti, O; Filippi, G M; Lorenzini, M; Liti, A; Panichi, R; Roscini, M; Pettorossi, V E; Cerulli, G
2006-11-01
Surgical reconstruction of the anterior cruciate ligament (ACL) may reduce, but it does not always eliminate, knee and body instability because of a persisting proprioceptive deficit. In order to enhance body stability, a new protocol of treatment has been proposed consisting of mechanical vibration (100 Hz frequency and < 20 microm amplitude) of the quadriceps muscle in the leg that has undergone ACL reconstruction. In our trials, stimulation was performed when the quadriceps muscle was kept isometrically contracted. Treatment was started one month after surgery. Vibration was applied for short periods over three consecutive days. Nine months after treatment, postural stability was re-evaluated with the subjects standing on one leg with open and with closed eyes. The postural stability of the subjects having undergone vibration treatment, standing on the operated leg was significantly improved one day after treatment when evaluated as mean of speed and elliptic area of the center of pressure. The improvement persisted and increased during the following weeks. Peak torques of the operated leg extensor muscles also increased and reached values close to that of the leg, which had not been operated. Conversely, the balance of the untreated subjects standing on the operated leg did not improve and the restoration of the extensor muscle peak torque was poor. It is concluded that short lasting proprioceptive activation by vibration may lead to a faster and more complete equilibrium recovery probably by permanently changing the network controlling knee posture.
Postural control and head stability during natural gaze behaviour in 6- to 12-year-old children.
Schärli, A M; van de Langenberg, R; Murer, K; Müller, R M
2013-06-01
We investigated how the influence of natural exploratory gaze behaviour on postural control develops from childhood into adulthood. In a cross-sectional design, we compared four age groups: 6-, 9-, 12-year-olds and young adults. Two experimental trials were performed: quiet stance with a fixed gaze (fixed) and quiet stance with natural exploratory gaze behaviour (exploratory). The latter was elicited by having participants watch an animated short film on a large screen in front of them. 3D head rotations in space and centre of pressure (COP) excursions on the ground plane were measured. Across conditions, both head rotation and COP displacement decreased with increasing age. Head movement was greater in the exploratory condition in all age groups. In all children-but not in adults-COP displacement was markedly greater in the exploratory condition. Bivariate correlations across groups showed highly significant positive correlations between COP displacement in ML direction and head rotation in yaw, roll, and pitch in both conditions. The regularity of COP displacements did not show a clear developmental trend, which indicates that COP dynamics were qualitatively similar across age groups. Together, the results suggest that the contribution of head movement to eye-head saccades decreases with age and that head instability-in part resulting from such gaze-related head movements-is an important limiting factor in children's postural control. The lack of head stabilisation might particularly affect children in everyday activities in which both postural control and visual exploration are required.
Sumukadas, Deepa; Price, Rosemary; McMurdo, Marion E T; Rauchhaus, Petra; Struthers, Allan; McSwiggan, Stephen; Arnold, Graham; Abboud, Rami; Witham, Miles
2018-01-01
double-blind, parallel group, placebo-controlled randomised trial. we recruited people aged >65 years with at least one fall in the previous year. Participants received 4 mg perindopril or placebo daily for 15 weeks. The primary outcome was the between-group difference in force-plate measured anteroposterior (AP) sway at 15 weeks. Secondary outcomes included other measures of postural sway, limits of stability during maximal forward, right and left leaning, blood pressure, muscle strength, 6-min walk distance and falls. The primary outcome was assessed using two-way ANOVA, adjusted for baseline factors. we randomised 80 participants. Mean age was 78.0 (SD 7.4) years; 60 (75%) were female. About 77/80 (96%) completed the trial. At 15 weeks there were no significant between-group differences in AP sway with eyes open (mean difference 0 mm, 95% CI -8 to 7 mm, P = 0.91) or eyes closed (mean difference 2 mm, 95% CI -7 to 12 mm, P = 0.59); no differences in other measures of postural stability, muscle strength or function. About 16/40 (42%) of patients in each group had orthostatic hypotension at follow-up. The median number (IQR) of falls was 1 (0,4) in the perindopril versus 1 (0,2) in the placebo group (P = 0.24). perindopril did not improve postural sway in older people at risk of falls. ISRCTN58995463. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.
[Posture and gait disorders and the incidence of falling in patients with Parkinson].
Cano-de la Cuerda, R; Macías-Jiménez, A I; Cuadrado-Pérez, M L; Miangolarra-Page, J C; Morales-Cabezas, M
Although falls are one of the main causes of morbidity and mortality in patients with Parkinson's disease, studies about its incidence and predicting factors are scarce. Our study involved 25 patients with PD (15 males and 10 females; age: 75.8 +/- 6.5 years). A closed survey was used to determine a retrospective record of falls during the last year. An analysis was performed to examine whether there was a relationship with Hoehn and Yahr staging, the score on the Up and Go scale or the Barthel index and with possible risk factors for falls. All the patients had suffered falls at some time over the last year (mean number of falls: 6.5 +/- 3.8). 56% of the falls happened during the phases of the day when patient mobility was at its highest. A significant correlation was found between the number of falls and the Hoehn and Yahr and the Up and Go scores. The number of falls was significantly higher in patients with loss of postural reflexes, the need for help in order to walk, and blockage and festination phenomena. No association was found with fear of falling, visual alterations or postural lateralisation. Association with the Barthel index and dependence for activities of daily living reached almost significant levels. Postural instability and disorders affecting gait appear to be the factors that give patients with PD a greater propensity to fall. Patients who present such alterations should be submitted to rehabilitation therapy aimed at preventing them from falling.
Postural control deficits in people with fibromyalgia: a pilot study
2011-01-01
Introduction Postural instability and falls are increasingly recognized problems in patients with fibromyalgia (FM). The purpose of this study was to determine whether FM patients, compared to age-matched healthy controls (HCs), have differences in dynamic posturography, including sensory, motor, and limits of stability. We further sought to determine whether postural instability is associated with strength, proprioception and lower-extremity myofascial trigger points (MTPs); FM symptoms and physical function; dyscognition; balance confidence; and medication use. Last, we evaluated self-reported of falls over the past six months. Methods In this cross-sectional study, we compared middle-aged FM patients and age-matched HCs who underwent computerized dynamic posturography testing and completed the Fibromyalgia Impact Questionnaire-Revised (FIQR) and balance and fall questionnaires. All subjects underwent a neurological and musculoskeletal examination. Descriptive statistics were used to characterize the sample and explore the relationships between variables. The relationships between subjective, clinical and objective variables were evaluated by correlation and regression analyses. Results Twenty-five FM patients and twenty-seven HCs (combined mean age ± standard deviation (SD): 48.6 ± 9.7 years) completed testing. FM patients scored statistically lower on composite sensory organization tests (primary outcome; P < 0.010), as well as with regard to vestibular, visual and somatosensory ratio scores on dynamic posturography. Balance confidence was significantly different between groups, with FM patients reporting less confidence than HCs (mean ± SD: 81.24 ± 19.52 vs. 98.52 ± 2.45; P < 0.001). Interestingly, 76% to 84% of FM patients had gastrocnemius and/or anterior tibialis MTPs. Postural stability was best predicted by dyscognition, FIQR score and body mass index. Regarding falls, 3 (11%) of 27 HCs had fallen only once during the past 6 months, whereas 18 (72%) of 25 FM patients had fallen at least once. Fifteen FM patients (60%) reported falling at least three times in the past six months. Conclusions In this study, we report that middle-aged FM patients have consistent objective sensory deficits on dynamic posturography, despite having a normal clinical neurological examination. Further study is needed to determine prospective fall rates and the significance of lower-extremity MTPs. The development of interventions to improve balance and reduce falls in FM patients may need to combine balance training with exercise and cognitive training. PMID:21810264
Development of Testing Methodologies to Evaluate Postflight Locomotor Performance
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.
2006-01-01
Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).
2011-06-10
recognizes as freedom fighters (Ibid.). Most likely for the above reasons, the DOS has refrained from removing the 17 year old designation of State...extreme Islamic models as a way to fight the radicalism. Malwal believes the Egyptian government will continue to support the NCP post -referendum...system in support of its energy concerns (Dagne 2010). Furthermore, according to an April 2010 Congressional Reseach Paper, China not only has provided
NASA Technical Reports Server (NTRS)
Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Peters, B.; Cohen, H.;
2015-01-01
Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). The goal of this project was to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection.
Aquatic rehabilitation for the treatment of neurological disorders.
Morris, D M
1994-01-01
Patients with neurological disorders present therapists with complex challenges for treatment, including weakness, hypertonicity, voluntary movement deficit, limited range of motion, sensory loss, incoordination, and postural instability. The presence of one or more of these impairments negatively influences these patients by contributing to problems in walking, transferring, and reaching. Aquatic rehabilitation offers a unique, versatile approach to the treatment of these disabilities. This article examines the problems encountered by patients with neurological disorders, general principles guiding neurotreatment, and aquatic neurorehabilitation approaches.
... and vertebral instability. Vertebral instability due to acute traumatic injury or cervical disc herniation is often treated by ... and vertebral instability. Vertebral instability due to acute traumatic injury or cervical disc herniation is often treated by ...
McCriskin, Brendan J; Cameron, Kenneth L; Orr, Justin D; Waterman, Brian R
2015-01-01
Acute and chronic lateral ankle instability are common in high-demand patient populations. If not managed appropriately, patients may experience recurrent instability, chronic pain, osteochondral lesions of the talus, premature osteoarthritis, and other significant long-term disability. Certain populations, including young athletes, military personnel and those involved in frequent running, jumping, and cutting motions, are at increased risk. Proposed risk factors include prior ankle sprain, elevated body weight or body mass index, female gender, neuromuscular deficits, postural imbalance, foot/ankle malalignment, and exposure to at-risk athletic activity. Prompt, accurate diagnosis is crucial, and evidence-based, functional rehabilitation regimens have a proven track record in returning active patients to work and sport. When patients fail to improve with physical therapy and external bracing, multiple surgical techniques have been described with reliable results, including both anatomic and non-anatomic reconstructive methods. Anatomic repair of the lateral ligamentous complex remains the gold standard for recurrent ankle instability, and it effectively restores native ankle anatomy and joint kinematics while preserving physiologic ankle and subtalar motion. Further preventative measures may minimize the risk of ankle instability in athletic cohorts, including prophylactic bracing and combined neuromuscular and proprioceptive training programs. These interventions have demonstrated benefit in patients at heightened risk for lateral ankle sprain and allow active cohorts to return to full activity without adversely affecting athletic performance. PMID:25793157
McCriskin, Brendan J; Cameron, Kenneth L; Orr, Justin D; Waterman, Brian R
2015-03-18
Acute and chronic lateral ankle instability are common in high-demand patient populations. If not managed appropriately, patients may experience recurrent instability, chronic pain, osteochondral lesions of the talus, premature osteoarthritis, and other significant long-term disability. Certain populations, including young athletes, military personnel and those involved in frequent running, jumping, and cutting motions, are at increased risk. Proposed risk factors include prior ankle sprain, elevated body weight or body mass index, female gender, neuromuscular deficits, postural imbalance, foot/ankle malalignment, and exposure to at-risk athletic activity. Prompt, accurate diagnosis is crucial, and evidence-based, functional rehabilitation regimens have a proven track record in returning active patients to work and sport. When patients fail to improve with physical therapy and external bracing, multiple surgical techniques have been described with reliable results, including both anatomic and non-anatomic reconstructive methods. Anatomic repair of the lateral ligamentous complex remains the gold standard for recurrent ankle instability, and it effectively restores native ankle anatomy and joint kinematics while preserving physiologic ankle and subtalar motion. Further preventative measures may minimize the risk of ankle instability in athletic cohorts, including prophylactic bracing and combined neuromuscular and proprioceptive training programs. These interventions have demonstrated benefit in patients at heightened risk for lateral ankle sprain and allow active cohorts to return to full activity without adversely affecting athletic performance.
Altered astronaut lower limb and mass center kinematics in downward jumping following space flight
NASA Technical Reports Server (NTRS)
Newman, D. J.; Jackson, D. K.; Bloomberg, J. J.
1997-01-01
Astronauts exposed to the microgravity conditions encountered during space flight exhibit postural and gait instabilities upon return to earth that could impair critical postflight performance. The aim of the present study was to determine the effects of microgravity exposure on astronauts' performance of two-footed jump landings. Nine astronauts from several Space Shuttle missions were tested both preflight and postflight with a series of voluntary, two-footed downward hops from a 30-cm-high step. A video-based, three-dimensional motion-analysis system permitted calculation of body segment positions and joint angular displacements. Phase-plane plots of knee, hip, and ankle angular velocities compared with the corresponding joint angles were used to describe the lower limb kinematics during jump landings. The position of the whole-body center of mass (COM) was also estimated in the sagittal plane using an eight-segment body model. Four of nine subjects exhibited expanded phase-plane portraits postflight, with significant increases in peak joint flexion angles and flexion rates following space flight. In contrast, two subjects showed significant contractions of their phase-plane portraits postflight and three subjects showed insignificant overall changes after space flight. Analysis of the vertical COM motion generally supported the joint angle results. Subjects with expanded joint angle phase-plane portraits postflight exhibited larger downward deviations of the COM and longer times from impact to peak deflection, as well as lower upward recovery velocities. Subjects with postflight joint angle phase-plane contraction demonstrated opposite effects in the COM motion. The joint kinematics results indicated the existence of two contrasting response modes due to microgravity exposure. Most subjects exhibited "compliant" impact absorption postflight, consistent with decreased limb stiffness and damping, and a reduction in the bandwidth of the postural control system. Fewer subjects showed "stiff" behavior after space flight, where contractions in the phase-plane portraits pointed to an increase in control bandwidth. The changes appeared to result from adaptive modifications in the control of lower limb impedance. A simple 2nd-order model of the vertical COM motion indicated that changes in the effective vertical stiffness of the legs can predict key features of the postflight performance. Compliant responses may reflect inflight adaptation due to altered demands on the postural control system in microgravity, while stiff behavior may result from overcompensation postflight for the presumed reduction in limb stiffness inflight.
Otolith and Vertical Canal Contributions to Dynamic Postural Control
NASA Technical Reports Server (NTRS)
Black, F. Owen
1999-01-01
The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.
2012-01-01
Background In rehabilitation, training intensity is usually adapted to optimize the trained system to attain better performance (overload principle). However, in balance rehabilitation, the level of intensity required during training exercises to optimize improvement in balance has rarely been studied, probably due to the difficulty in quantifying the stability level during these exercises. The goal of the present study was to test whether the stabilizing/destabilizing forces model could be used to analyze how stability is challenged during several exergames, that are more and more used in balance rehabilitation, and a dynamic functional task, such as gait. Methods Seven healthy older adults were evaluated with three-dimensional motion analysis during gait at natural and fast speed, and during three balance exergames (50/50 Challenge, Ski Slalom and Soccer). Mean and extreme values for stabilizing force, destabilizing force and the ratio of the two forces (stability index) were computed from kinematic and kinetic data to determine the mean and least level of dynamic, postural and overall balance stability, respectively. Results Mean postural stability was lower (lower mean destabilizing force) during the 50/50 Challenge game than during all the other tasks, but peak postural instability moments were less challenging during this game than during any of the other tasks, as shown by the minimum destabilizing force values. Dynamic stability was progressively more challenged (higher mean and maximum stabilizing force) from the 50/50 Challenge to the Soccer and Slalom games, to the natural gait speed task and to the fast gait speed task, increasing the overall stability difficulty (mean and minimum stability index) in the same manner. Conclusions The stabilizing/destabilizing forces model can be used to rate the level of balance requirements during different tasks such as gait or exergames. The results of our study showed that postural stability did not differ much between the evaluated tasks (except for the 50/50 Challenge), compared to dynamic stability, which was significantly less challenged during the games than during the functional tasks. Games with greater centre of mass displacements and changes in the base of support are likely to stimulate balance control enough to see improvements in balance during dynamic functional tasks, and could be tested in pathological populations with the approach used here. PMID:22607025
Evaluation of work posture and quantification of fatigue by Rapid Entire Body Assessment (REBA)
NASA Astrophysics Data System (ADS)
Rizkya, I.; Syahputri, K.; Sari, R. M.; Anizar; Siregar, I.
2018-02-01
Work related musculoskeletal disorders (MSDs), poor body postures, and low back injuries are the most common problems occurring in many industries including small-medium industries. This study presents assessment and evaluation of ergonomic postures of material handling worker. That evaluation was carried out using REBA (Rapid Entire Body Assessment). REBA is a technique to quantize the fatigue experienced by the worker while manually lifting loads. Fatigue due to abnormal work posture leads to complaints of labor-perceived pain. REBA methods were used to an assessment of working postures for the existing process by a procedural analysis of body postures involved. This study shows that parts of the body have a high risk of work are the back, neck, and upper arms with REBA score 9, so action should be taken as soon as possible. Controlling actions were implemented to those process with high risk then substantial risk reduction was achieved.
Standing working posture compared in pregnant and non-pregnant conditions.
Paul, J A; Frings-Dresen, M H
1994-09-01
During pregnancy, an increase in body weight occurs together with changes in body weight distribution and in fit between body dimensions and workplace layout. These changes may cause alterations in working posture which may, in turn, have adverse consequences for the biomechanical load on the musculoskeletal system and so increase the risk of musculoskeletal disorders. Using photographic posture registration, the standing working posture was studied in 27 women during the last stage of pregnancy and after delivery (the experimental group). The women performed an assembly task while standing at various workplace layouts. The postural differences between the pregnant condition and the non-pregnant condition were studied and the effect of the various workplace layouts assessed. Ten non-pregnant controls were also studied twice to establish the effect of the time interval between the measuring occasions. We found that the women of the experimental group stood further from the work surface in the pregnant condition compared to the non-pregnant condition, the hips were positioned more backwards, and, in order to reach the tesk, they increased the flexion of the trunk, increased the anteflexion of the upper arms, and extended the arms more. At the workplace layout in which the work surface height was self-selected, the postural differences due to pregnancy were smallest or even absent, compared to the postural differences in the other workplace layouts studied. Ergonomists and workers in occupational health services should be alert to the consequences for the biomechanical load on the musculoskeletal system and the risk of development of health complaints caused by postural changes due to pregnancy. An adjustable workplace layout may prevent some problems.
Kinect Posture Reconstruction Based on a Local Mixture of Gaussian Process Models.
Liu, Zhiguang; Zhou, Liuyang; Leung, Howard; Shum, Hubert P H
2016-11-01
Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system. We also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between successive frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set of joint reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning complexity when dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new method based on a local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space. Due to the significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time, the prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only. Our system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of adapting to run-time postures that are different from those in the database. Experimental results demonstrate that our system can generate high quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as motion-based gaming and sport training.
Regional differences in lumbar spinal posture and the influence of low back pain
Mitchell, Tim; O'Sullivan, Peter B; Burnett, Angus F; Straker, Leon; Smith, Anne
2008-01-01
Background Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP. Methods One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks. Results Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007). Conclusion This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load. PMID:19014712
Pionnier, Raphaël; Découfour, Nicolas; Barbier, Franck; Popineau, Christophe; Simoneau-Buessinger, Emilie
2016-03-01
The purpose of this study was to quantitatively and qualitatively assess dynamic balance with accuracy in individuals with chronic ankle instability (CAI). To this aim, a motion capture system was used while participants performed the Star Excursion Balance Test (SEBT). Reached distances for the 8 points of the star were automatically computed, thereby excluding any dependence to the experimenter. In addition, new relevant variables were also computed, such as absolute time needed to reach each distance, lower limb ranges of motion during unipodal stance, as well as absolute error of pointing. Velocity of the center of pressure and range of variation of ground reaction forces have also been assessed during the unipodal phase of the SEBT thanks to force plates. CAI group exhibited smaller reached distances and greater absolute error of pointing than the control group (p<0.05). Moreover, the ranges of motion of lower limbs joints, the velocity of the center of pressure and the range of variation of the ground reaction forces were all significantly smaller in the CAI group (p<0.05). These reduced quantitative and qualitative performances highlighted a lower dynamic postural control. The limited body movements and accelerations during the unipodal stance in the CAI group could highlight a protective strategy. The present findings could help clinicians to better understand the motor strategies used by CAI patients during dynamic balance and may guide the rehabilitation process. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Li; Li, Tian-Nv; Yuan, Yong-Sheng; Jiang, Si-Ming; Tong, Qing; Wang, Min; Wang, Jian-Wei; Chen, Hua-Jun; Ding, Jian; Xu, Qin-Rong; Zhang, Ke-Zhong
2016-05-01
The aim of this study is to further uncover the neural basis of postural instability gait disorder (PIGD) subtype of Parkinson's disease. With F-18 fluorodeoxyglucose PET (FDG-PET), brain glucose metabolism of patients with PIGD (n = 15) was compared with healthy controls (n = 17) and tremor-dominant (TD) patients (n = 15), and the correlation between metabolism and PIGD symptoms was also assessed. Within PIGD symptom-correlated hypometabolic areas, the relationship of functional connectivity (FC) with motor and cognitive symptoms was examined by using functional MRI. Compared with controls, patients with PIGD displayed a distributed pattern of brain hypometabolism including striatal, frontal, and parietal areas. Relative to the pattern of TD patients, the pattern of patients with PIGD had additional metabolic decreases in caudate and inferior parietal lobule (IPL, Brodmann area [BA] 40). In PIGD group, the metabolic reductions in IPL (BA 40), middle frontal gyrus (MFG, BA 9) and fusiform gyrus (FG, BA 20) were associated with severe PIGD symptoms. Regions showing such correlation were chosen for further seed-based FC analysis. Decreased FC within the prefrontal-parietal network (between the MFG and IPL) was associated with severe PIGD symptoms. The involvement of the caudate, FG, and prefrontal-parietal network may be associated with the prominent gait impairments of PIGD subtype. Our findings expand the pathophysiological knowledge of PIGD subtype and provide valuable information for potential neuromodulation therapies alleviating gait disorders. © 2016 John Wiley & Sons Ltd.
Allali, Gilles; Ayers, Emmeline I; Holtzer, Roee; Verghese, Joe
Postural instability/gait difficulty (PIGD) and fear of falling (FoF) frequently co-exist, but their individual predictive values for falls have not been compared in aging. This study aims to determine both independent and combined effect of PIGD and FoF to falls in older adults without dementia. PIGD and other extrapyramidal signs were systematically assessed in 449 community-dwelling participants without Parkinson's disease (76.48±6.61 ys; 56.8% female) enrolled in this longitudinal cohort study. Presence of FoF was measured by a single-item question (Do you have a FoF?) and self-confidence by the Activities-specific Balance Confidence scale (ABC scale). One hundred sixty-nine participants (38%) had an incident fall over a mean follow-up of 20.1±12.2months. PIGD was present in 32% and FoF in 23% of the participants. Both PIGD (adjusted hazard ratio (aHR): 2.28; p=0.016) and self-confidence (aHR: 0.99; p=0.040) predicted falls when entered simultaneously in the Cox model. However, presence of FoF (aHR: 1.99; p=0.021) and self-confidence (aHR: 0.98; p=0.006) predicted falls only in individuals with PIGD. PIGD and FoF were associated with future falls in older adults without dementia but FoF was a fall's predictor only in individuals with PIGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zuo, Li-Jun; Piao, Ying-Shan; Li, Li-Xia; Yu, Shu-Yang; Guo, Peng; Hu, Yang; Lian, Teng-Hong; Wang, Rui-Dan; Yu, Qiu-Jin; Jin, Zhao; Wang, Ya-Jie; Wang, Xiao-Min; Chan, Piu; Chen, Sheng-Di; Wang, Yong-Jun; Zhang, Wei
2017-01-01
Parkinson disease (PD) is identified as tremor-dominant (TD) and postural instability and gait difficulty (PIGD) phenotypes. The relationships between motor phenotypes and cognitive impairment and the underlying mechanisms relating pathological proteins and neurotransmitters in cerebrospinal fluid (CSF) are unknown. We evaluated the motor symptoms and cognitive function by scales, and detected the levels of pathological proteins and neurotransmitters in CSF. TD group and PIGD group had significantly higher levels of total tau, tau phosphorylated at the position of threonine 181(P-tau181t), threonine 231, serine 396, serine 199 and lower β amyloid (Aβ)1–42 level in CSF than those in control group; PIGD group had significantly higher P-tau181t level and lower Aβ1–42 level than those in TD group. In PD group, PIGD severity was negatively correlated with MoCA score and Aβ1–42 level in CSF, and positively correlated with Hoehn-Yahr stage and P-tau181t level in CSF. In PIGD group, PIGD severity was negatively correlated with homovanillic acid (HVA) level in CSF, and HVA level was positively correlated with Aβ1–42 level in CSF. PIGD was significantly correlated with cognitive impairment, which underlying mechanism might be involved in Aβ1–42 aggregation in brain and relevant neurochemical disturbance featured by the depletion of HVA in CSF. PMID:28332604
Gabapentin can improve postural stability and quality of life in primary orthostatic tremor.
Rodrigues, Julian P; Edwards, Dylan J; Walters, Susan E; Byrnes, Michelle L; Thickbroom, Gary; Stell, Rick; Mastaglia, Frank L
2005-07-01
Primary orthostatic tremor (OT) is characterized by leg tremor and instability on standing. High frequency (13-18 Hz) tremor bursting is present in leg muscles during stance, and posturography has shown greater than normal sway. We report on an open-label add-on study of gabapentin in 6 patients with OT. Six patients were studied with surface electromyography, force platform posturography, and a modified Parkinson's disease questionnaire (PDQ-39) quality of life (QOL) scale before and during treatment with gabapentin 300 mg t.d.s. If on other medications for OT, these were continued unchanged. Of the 6 patients, 4 reported a subjective benefit of 50 to 75% with gabapentin, 3 of whom showed reduced tremor amplitude and postural sway of up to 70%. Dynamic balance improved in all 3 patients who completed the protocol. QOL data from 5 patients showed improvement in all cases. No adverse effects were noted. Gabapentin may improve tremor, stability, and QOL in patients with OT, and symptomatic response correlated with a reduction in tremor amplitude and postural sway. The findings confirm previous reports of symptomatic benefit with gabapentin and provide justification for larger controlled clinical trials. Further work is required to establish the optimal dosage and to validate the methods used to quantify the response to treatment. Copyright 2005 Movement Disorder Society.
Malling, Anne Sofie B; Jensen, Bente R
2016-01-01
Recent studies indicate that the effect of training on motor performance in persons with Parkinson's disease (PDP) is dependent on motor intensity. However, training of high motor intensity can be hard to apply in PDP due to e.g. bradykinesia, rigidity, tremor and postural instability. Therefore, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development, directional changes and force variance. STS completion time improved by 24% to the level of CON which was explained by shorter sitting-time and standing-time and larger numeric rate of force change during lowering to the chair, indicating faster vertical directional change and improved relaxation. DPB completion time tended to improve and was accompanied by improvements of functional medial and lateral rates of force development and higher vertical force variance during DPB. Our results suggest that the performance improvements may relate to improved inter-limb coordination. It is concluded that 8 weeks of motor intensive training in a safe LBPP environment improved performance during dynamic balance related tasks in PDP. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Han Suk; Chung, Hyung Kuk; Park, Sun Wook
2015-01-01
Objective. To assess the correlation of abnormal trunk postures and reposition sense of subjects with forward head neck posture (FHP). Methods. In all, postures of 41 subjects were evaluated and the FHP and trunk posture including shoulder, scapular level, pelvic side, and anterior tilting degrees were analyzed. We used the head repositioning accuracy (HRA) test to evaluate neck position senses of neck flexion, neck extension, neck right and left side flexion, and neck right and left rotation and calculated the root mean square error in trials for each subject. Spearman's rank correlation coefficients and regression analysis were used to assess the degree of correlation between the trunk posture and HRA value, and a significance level of α = 0.05 was considered. Results. There were significant correlations between the HRA value of right side neck flexion and pelvic side tilt angle (p < 0.05). If pelvic side tilting angle increases by 1 degree, right side neck flexion increased by 0.76 degrees (p = 0.026). However, there were no significant correlations between other neck motions and trunk postures. Conclusion. Verifying pelvic postures should be prioritized when movement is limited due to the vitiation of the proprioceptive sense of neck caused by FHP. PMID:26583125
[A case with apraxia of tool use: selective inability to form a hand posture for a tool].
Hayakawa, Yuko; Fujii, Toshikatsu; Yamadori, Atsushi; Meguro, Kenichi; Suzuki, Kyoko
2015-03-01
Impaired tool use is recognized as a symptom of ideational apraxia. While many studies have focused on difficulties in producing gestures as a whole, using tools involves several steps; these include forming hand postures appropriate for the use of certain tool, selecting objects or body parts to act on, and producing gestures. In previously reported cases, both producing and recognizing hand postures were impaired. Here we report the first case showing a selective impairment of forming hand postures appropriate for tools with preserved recognition of the required hand postures. A 24-year-old, right-handed man was admitted to hospital because of sensory impairment of the right side of the body, mild aphasia, and impaired tool use due to left parietal subcortical hemorrhage. His ability to make symbolic gestures, copy finger postures, and orient his hand to pass a slit was well preserved. Semantic knowledge for tools and hand postures was also intact. He could flawlessly select the correct hand postures in recognition tasks. He only demonstrated difficulties in forming a hand posture appropriate for a tool. Once he properly grasped a tool by trial and error, he could use it without hesitation. These observations suggest that each step of tool use should be thoroughly examined in patients with ideational apraxia.
Comparison of Biodynamic Responses in Standing and Seated Human Bodies
NASA Astrophysics Data System (ADS)
MATSUMOTO, Y.; GRIFFIN, M. J.
2000-12-01
The dynamic responses of the human body in a standing position and in a sitting position have been compared. The apparent mass and transmissibilities to the head, six locations along the spine, and the pelvis were measured with eight male subjects exposed to vertical whole-body vibration. In both postures, the principal resonance in the apparent mass occurred in the range 5-6 Hz, with slightly higher frequencies and lower apparent mass in the standing posture. There was greater transmission of vertical vibration to the pelvis and the lower spine and greater relative motion within the lower spine in the standing posture than in the sitting posture at the principal resonance and at higher frequencies. Transmissibilities from the supporting surface (floor or seat) to the thoracic region had similar magnitudes for both standing and sitting subjects. The lumbar spine has less lordosis and may be more compressed and less flexible in the sitting posture than in the standing posture. This may have reduced the relative motions between lumbar vertebrae and both the supporting vibrating surface and the other vertebrae in the sitting posture. The characteristics of the vibration transmitted to the pelvis may have differed in the two postures due to different transmission paths. Increased forward rotation of the pelvis in the standing posture may have caused the differences in responses of the pelvis and the lower spine that were observed between the two postures.
Do dental students have a neutral working posture?
Movahhed, Taraneh; Dehghani, Mahboobe; Arghami, Shirazeh; Arghami, Afarin
2016-11-21
Dentists are susceptible to Musculoskeletal Disorders (MSDs) due to prolonged static postures. To prevent MSDs, working postures of dental students should be assessed and corrected in early career life. This study estimated the risk of developing musculoskeletal disorders in dental students using Rapid Upper Limb Assessment (RULA) tool. A number of 103 undergraduate dental students from fourth and fifth academic years participated. Postures of these students were assessed using RULA tool while working in the dental clinic. They also answered a questionnaire regarding their knowledge about postural dental ergonomic principles. The majority of the students (66%) were at intermediate and high risk levels to develop MSDs and their postures needed to be corrected. There was no significant correlation between RULA score and gender, academic year and different wards of dental clinics. There was no significant correlation between knowledge and RULA scores. Dental students did not have favorable working postures. They were at an intermediate to high risk for developing MSDs which calls for a change in their working postures. Therefore students should be trained with ergonomic principles and to achieve the best results, ergonomic lessons should be accompanied by practice and periodical evaluations.
Escamilla-Martínez, Elena; Martínez-Nova, Alfonso; Gómez-Martín, Beatriz; Sánchez-Rodríguez, Raquel; Fernández-Seguín, Lourdes María
2013-01-01
Fatigue due to running has been shown to contribute to changes in plantar pressure distribution. However, little is known about changes in foot posture after running. We sought to compare the foot posture index before and after moderate exercise and to relate any changes to plantar pressure patterns. A baropodometric evaluation was made, using the FootScan platform (RSscan International, Olen, Belgium), of 30 men who were regular runners and their foot posture was examined using the Foot Posture Index before and after a 60-min continuous run at a moderate pace (3.3 m/sec). Foot posture showed a tendency toward pronation after the 60-min run, gaining 2 points in the foot posture index. The total support and medial heel contact areas increased, as did pressures under the second metatarsal head and medial heel. Continuous running at a moderate speed (3.3 m/sec) induced changes in heel strike related to enhanced pronation posture, indicative of greater stress on that zone after physical activity. This observation may help us understand the functioning of the foot, prevent injuries, and design effective plantar orthoses in sport.
The use of instability to train the core musculature.
Behm, David G; Drinkwater, Eric J; Willardson, Jeffrey M; Cowley, Patrick M
2010-02-01
Training of the trunk or core muscles for enhanced health, rehabilitation, and athletic performance has received renewed emphasis. Instability resistance exercises have become a popular means of training the core and improving balance. Whether instability resistance training is as, more, or less effective than traditional ground-based resistance training is not fully resolved. The purpose of this review is to address the effectiveness of instability resistance training for athletic, nonathletic, and rehabilitation conditioning. The anatomical core is defined as the axial skeleton and all soft tissues with a proximal attachment on the axial skeleton. Spinal stability is an interaction of passive and active muscle and neural subsystems. Training programs must prepare athletes for a wide variety of postures and external forces, and should include exercises with a destabilizing component. While unstable devices have been shown to be effective in decreasing the incidence of low back pain and increasing the sensory efficiency of soft tissues, they are not recommended as the primary exercises for hypertrophy, absolute strength, or power, especially in trained athletes. For athletes, ground-based free-weight exercises with moderate levels of instability should form the foundation of exercises to train the core musculature. Instability resistance exercises can play an important role in periodization and rehabilitation, and as alternative exercises for the recreationally active individual with less interest or access to ground-based free-weight exercises. Based on the relatively high proportion of type I fibers, the core musculature might respond well to multiple sets with high repetitions (e.g., >15 per set); however, a particular sport may necessitate fewer repetitions.
Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time
Saenz-de-Urturi, Zelai; Garcia-Zapirain Soto, Begonya
2016-01-01
Poor posture can result in loss of physical function, which is necessary to preserving independence in later life. Its decline is often the determining factor for loss of independence in the elderly. To avoid this, a system to correct poor posture in the elderly, designed for Kinect-based indoor applications, is proposed in this paper. Due to the importance of maintaining a healthy life style in senior citizens, the system has been integrated into a game which focuses on their physical stimulation. The game encourages users to perform physical activities while the posture correction system helps them to adopt proper posture. The system captures limb node data received from the Kinect sensor in order to detect posture variations in real time. The DTW algorithm compares the original posture with the current one to detect any deviation from the original correct position. The system was tested and achieved a successful detection percentage of 95.20%. Experimental tests performed in a nursing home with different users show the effectiveness of the proposed solution. PMID:27196903
NASA Astrophysics Data System (ADS)
Magnusson, M. L.; Pope, M. H.
1998-08-01
Many vibrational environments also subject the worker to awkward, asymmetric and prolonged postures. This paper reviews the epidemiological, biomechanical and physiological factors involved in working postures which could lead to musculoskeletal problems. Too little or too much sitting leads to low back pain. Sedentary postures, including driving, also lead to a higher risk of a herniated disc. In sitting the pelvis rotates and higher pressures exist in the disk. A backrest inclined to 110° or more and with a lumbar support will reduce the disk pressure. Jobs involving excessive force application will be more apt to cause muscular and ligamentous damage. However, these excessive demands can occur in whole body vibration environments too. Neck, shoulder and arm problems are usually related to posture but can occur in WBV environments. Knee problems, in the standing worker, may be due to a flexed knee posture in an attempt to attenuate vibrations. Excessive postural demands on the neck, shoulder and arm will lead to higher muscle forces and higher joint forces. Recommendations are given to reduce risk of disability.
An optimal state estimation model of sensory integration in human postural balance
NASA Astrophysics Data System (ADS)
Kuo, Arthur D.
2005-09-01
We propose a model for human postural balance, combining state feedback control with optimal state estimation. State estimation uses an internal model of body and sensor dynamics to process sensor information and determine body orientation. Three sensory modalities are modeled: joint proprioception, vestibular organs in the inner ear, and vision. These are mated with a two degree-of-freedom model of body dynamics in the sagittal plane. Linear quadratic optimal control is used to design state feedback and estimation gains. Nine free parameters define the control objective and the signal-to-noise ratios of the sensors. The model predicts statistical properties of human sway in terms of covariance of ankle and hip motion. These predictions are compared with normal human responses to alterations in sensory conditions. With a single parameter set, the model successfully reproduces the general nature of postural motion as a function of sensory environment. Parameter variations reveal that the model is highly robust under normal sensory conditions, but not when two or more sensors are inaccurate. This behavior is similar to that of normal human subjects. We propose that age-related sensory changes may be modeled with decreased signal-to-noise ratios, and compare the model's behavior with degraded sensors against experimental measurements from older adults. We also examine removal of the model's vestibular sense, which leads to instability similar to that observed in bilateral vestibular loss subjects. The model may be useful for predicting which sensors are most critical for balance, and how much they can deteriorate before posture becomes unstable.
Assessing Sensorimotor Function Following ISS with Computerized Dynamic Posturography.
Wood, Scott J; Paloski, William H; Clark, Jonathan B
2015-12-01
Postflight postural ataxia reflects both the control strategies adopted for movement in microgravity and the direct effects of deconditioning. Computerized dynamic posturography (CDP) has been used during the first decade of the International Space Station (ISS) expeditions to quantify the initial postflight decrements and recovery of postural stability. The CDP data were obtained on 37 crewmembers as part of their pre- and postflight medical examinations. Sensory organization tests evaluated the ability to make effective use of (or suppress inappropriate) visual, vestibular, and somatosensory information for balance control. This report focuses on eyes closed conditions with either a fixed or sway-referenced base of support, with the head erect or during pitch-head tilts (± 20° at 0.33 Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Motor-control tests were also used to evaluate a crewmember's ability to automatically recover from unexpected support-surface perturbations. The standard Romberg condition was the least sensitive. Dynamic head tilts led to increased incidence of falls and revealed significantly longer recovery than head-erect conditions. Improvements in postflight postural performance during the later expeditions may be attributable to higher preflight baselines and/or advanced exercise capabilities aboard the ISS. The diagnostic assessment of postural instability is more pronounced during unstable-support conditions requiring active head movements. In addition to supporting return-to-duty decisions by flight surgeons, the CDP provides a standardized sensorimotor measure that can be used to evaluate the effectiveness of countermeasures designed to either minimize deconditioning on orbit or promote reconditioning upon return to Earth.
Osler, Callum J; Tersteeg, M C A; Reynolds, Raymond F; Loram, Ian D
2013-10-01
Circumstances may render the consequence of falling quite severe, thus maximising the motivation to control postural sway. This commonly occurs when exposed to height and may result from the interaction of many factors, including fear, arousal, sensory information and perception. Here, we examined human vestibular-evoked balance responses during exposure to a highly threatening postural context. Nine subjects stood with eyes closed on a narrow walkway elevated 3.85 m above ground level. This evoked an altered psycho-physiological state, demonstrated by a twofold increase in skin conductance. Balance responses were then evoked by galvanic vestibular stimulation. The sway response, which comprised a whole-body lean in the direction of the edge of the walkway, was significantly and substantially attenuated after ~800 ms. This demonstrates that a strong reason to modify the balance control strategy was created and subjects were highly motivated to minimise sway. Despite this, the initial response remained unchanged. This suggests little effect on the feedforward settings of the nervous system responsible for coupling pure vestibular input to functional motor output. The much stronger, later effect can be attributed to an integration of balance-relevant sensory feedback once the body was in motion. These results demonstrate that the feedforward and feedback components of a vestibular-evoked balance response are differently affected by postural threat. Although a fear of falling has previously been linked with instability and even falling itself, our findings suggest that this relationship is not attributable to changes in the feedforward vestibular control of balance. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Directional measures of postural sway as predictors of balance instability and accidental falls
Janusz, Błaszczyk W.; Beck, Monika; Szczepańska, Justyna; Sadowska, Dorota; Bacik, Bogdan; Juras, Grzegorz
2016-01-01
Abstract Despite the obvious advantages and popularity of static posturography, universal standards for posturographic tests have not been developed thus far. Most of the center-of-foot pressure (COP) indices are strongly dependent on an individual experimental design, and are susceptible to distortions, which makes results of their analysis incomparable. In this research, we present a novel approach to the analysis of the COP trajectory based on the directional features of postural sway. Our novel output measures: the sway directional indices (DI) and sway vector (SV) were applied to assess the postural stability in the group of young able-bodied subjects. Towards this aim, the COP trajectories were recorded in 100 students standing still for 60 s, with eyes open (EO) and then, with eyes closed (EC). Each record was subdivided then into 20, 30 and 60 s samples. Interclass correlation coefficients were calculated from the samples. The controlled variables (visual conditions) uniquely affected the output measures, but only in case of proper signal pretreatment (low-pass filtering). In filtering below 6 Hz, the DI and SV provided a unique set of descriptors for postural control. Both sway measures were highly independent of the trial length and the sampling frequency, and were unaffected by the sampling noise. Directional indices of COP filtered at 6 Hz showed high to very high reliability, with ICC range of 0.7-0.9. Results of a single 60 s trial are sufficient to reach acceptable reliability for both DI and SV. In conclusion, the directional sway measures may be recommended as the primary standard in static posturography. PMID:28149395
Steib, Simon; Hentschke, Christian; Welsch, Goetz; Pfeifer, Klaus; Zech, Astrid
2013-08-01
Sensorimotor control is permanently impaired following functional ankle instability and temporarily decreased following fatigue. Little is known on potential interactions between both conditions. The purpose was to investigate the effect of fatiguing exercise on sensorimotor control in athletes with and without (coper, controls) functional ankle instability. 19 individuals with functional ankle instability, 19 ankle sprain copers, and 19 non-injured controls participated in this cohort study. Maximum reach distance in the star excursion balance test, unilateral jump landing stabilization time, center of pressure sway velocity in single-leg-stance, and passive ankle joint position sense were assessed before and immediately after fatiguing treadmill running. A three factorial linear mixed model was specified for each outcome to evaluate the effects of group, exhausting exercise (fatigue) and their interactions (group by fatigue). Effect sizes were calculated as Cohen's d. Maximum reach distance in the star excursion balance test, jump stabilization time and sway velocity, but not joint position sense, were negatively affected by fatigue in all groups. Effect sizes were moderate, ranging from 0.27 to 0.68. No significant group by fatigue interactions were found except for one measure. Copers showed significantly larger prefatigue to postfatigue reductions in anterior reach direction (P≤0.001; d=-0.55) compared to the ankle instability (P=0.007) and control group (P=0.052). Fatiguing exercise negatively affected postural control but not proprioception. Ankle status did not appear to have an effect on fatigue-induced sensorimotor control impairments. © 2013.
Adaptive control reduces trip-induced forward gait instability among young adults.
Wang, Ting-Yun; Bhatt, Tanvi; Yang, Feng; Pai, Yi-Chung
2012-04-30
A vital functional plasticity of humans is their ability to adapt to threats to posture stability. The purpose of this study was to investigate adaptation to repeated trips in walking. Sixteen young adults were recruited and exposed to the sudden (electronic-mechanical) release of an obstacle, 11-cm in height, in the path of over ground walking during the mid-to-late left swing phase. Although none of the subjects fell on the first of eight unannounced, consecutive trips, all of them had to rely on compensatory step with a step length significantly longer than their regular to reduce their instability. In the subsequent trials, they were able to rapidly make adaptive adjustments in the control of their center-of-mass (COM) stability both proactively and reactively (i.e., before and after hitting or crossing the obstacle), such that the need for taking compensatory step was substantially diminished. The proactive adaptations included a reduced forward COM velocity that lessened forward instability in mid-to-late stance and an elevated toe clearance that reduced the likelihood of obstacle contact. The reactive adjustments were characterized by improved trunk control (by reducing its forward rotation) and limb support (by increasing hip height), and reduced forward instability (by both the posterior COM shift and the reduction in its forward velocity). These findings suggest that young adults can adapt appropriately to repeated trip perturbations and to reduce trip-induced excessive instability in both proactive and reactive manners. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of long-term bedrest on lower leg muscle activation patterns during quiet standing.
Miyoshi, T; Sato, T; Sekiguchi, H; Yamanaka, K; Miyazaki, M; Igawa, S; Komeda, T; Nakazawa, K; Yano, H
2001-07-01
It has been well known that balance instabilities after long-term exposure to microgravity (e.g., Anderson et al. 1986) or bedrest (BR) can be related to alterations and/or adaptations to postural control strategies. Little is known, however, how the reduced muscular activity affects the activation pattern of the lower limb muscles during quiet standing (QS). The purpose of this study was to investigate whether or not any changes in the lower limb muscle activation patterns during QS would occur after BR.
Schlenstedt, Christian; Paschen, Steffen; Kruse, Annika; Raethjen, Jan; Weisser, Burkhard; Deuschl, Günther
2015-01-01
Background Reduced muscle strength is an independent risk factor for falls and related to postural instability in individuals with Parkinson’s disease. The ability of resistance training to improve postural control still remains unclear. Objective To compare resistance training with balance training to improve postural control in people with Parkinson’s disease. Methods 40 patients with idiopathic Parkinson’s disease (Hoehn&Yahr: 2.5–3.0) were randomly assigned into resistance or balance training (2x/week for 7 weeks). Assessments were performed at baseline, 8- and 12-weeks follow-up: primary outcome: Fullerton Advanced Balance (FAB) scale; secondary outcomes: center of mass analysis during surface perturbations, Timed-up-and-go-test, Unified Parkinson’s Disease Rating Scale, Clinical Global Impression, gait analysis, maximal isometric leg strength, PDQ-39, Beck Depression Inventory. Clinical tests were videotaped and analysed by a second rater, blind to group allocation and assessment time. Results 32 participants (resistance training: n = 17, balance training: n = 15; 8 drop-outs) were analyzed at 8-weeks follow-up. No significant difference was found in the FAB scale when comparing the effects of the two training types (p = 0.14; effect size (Cohen’s d) = -0.59). Participants from the resistance training group, but not from the balance training group significantly improved on the FAB scale (resistance training: +2.4 points, Cohen’s d = -0.46; balance training: +0.3 points, Cohen’s d = -0.08). Within the resistance training group, improvements of the FAB scale were significantly correlated with improvements of rate of force development and stride time variability. No significant differences were found in the secondary outcome measures when comparing the training effects of both training types. Conclusions The difference between resistance and balance training to improve postural control in people with Parkinson’s disease was small and not significant with this sample size. There was weak evidence that freely coordinated resistance training might be more effective than balance training. Our results indicate a relationship between the enhancement of rate of force development and the improvement of postural control. Trial Registration ClinicalTrials.gov ID: NCT02253563 PMID:26501562
Manfredini, D; Castroflorio, T; Perinetti, G; Guarda-Nardini, L
2012-06-01
The aim of this investigation was to perform a review of the literature dealing with the issue of relationships between dental occlusion, body posture and temporomandibular disorders (TMD). A search of the available literature was performed to determine what the current evidence is regarding: (i) The physiology of the dental occlusion-body posture relationship, (ii) The relationship of these two topics with TMD and (iii) The validity of the available clinical and instrumental devices (surface electromyography, kinesiography and postural platforms) to measure the dental occlusion-body posture-TMD relationship. The available posturographic techniques and devices have not consistently found any association between body posture and dental occlusion. This outcome is most likely due to the many compensation mechanisms occurring within the neuromuscular system regulating body balance. Furthermore, the literature shows that TMD are not often related to specific occlusal conditions, and they also do not have any detectable relationships with head and body posture. The use of clinical and instrumental approaches for assessing body posture is not supported by the wide majority of the literature, mainly because of wide variations in the measurable variables of posture. In conclusion, there is no evidence for the existence of a predictable relationship between occlusal and postural features, and it is clear that the presence of TMD pain is not related with the existence of measurable occluso-postural abnormalities. Therefore, the use instruments and techniques aiming to measure purported occlusal, electromyographic, kinesiographic or posturographic abnormalities cannot be justified in the evidence-based TMD practice. © 2012 Blackwell Publishing Ltd.
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Trulsson, Anna; Roos, Ewa M; Ageberg, Eva; Garwicz, Martin
2010-07-01
Injury to the anterior cruciate ligament (ACL) is associated not only with knee instability and impaired neuromuscular control, but also with altered postural orientation manifested as observable "substitution patterns". However, tests currently used to evaluate knee function in subjects with ACL injury are not designed to assess postural orientation. Therefore, we are in the process of developing an observational test set that measures postural orientation in terms of the ability to stabilize body segments in relation to each other and to the environment. The aim of the present study was to characterise correlations between this novel test set, called the Test for Substitution Patterns (TSP) and commonly used tests of knee function. In a blinded set-up, 53 subjects (mean age 30 years, range 20-39, with 2-5 years since ACL injury) were assessed using the TSP, the Knee Injury and Osteoarthritis Outcome Score subscale sport/recreation (KOOS sport/rec), 3 hop tests and 3 muscle power tests. Correlations between the scores of the TSP and the other tests were determined. Moderate correlations were found between TSP scores and KOOS sport/rec (rs = -0.43; p = 0.001) and between TSP scores and hop test results (rs = -0.40 to -0.46; p < or = 0.003), indicating that altered postural orientation was associated with worse self-reported KOOS sport/rec function and worse hop performance. No significant correlations were found between TSP scores and muscle power results. Subjects had higher TSP scores on their injured side than on their uninjured side (median 4 and 1 points; interquartile range 2-6 and 0-1.5, respectively; p < 0.0001). We conclude that the Test for Substitution Patterns is of relevance to the patient and measures a specific aspect of neuromuscular control not quantified by the other tests investigated. We suggest that the TSP may be a valuable complement in the assessment of neuromuscular control in the rehabilitation of subjects with ACL injury.
Spatial and temporal analysis of postural control in dyslexic children.
Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia
2015-07-01
The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
The lumbosacral segment as a vulnerable region in various postures
NASA Technical Reports Server (NTRS)
Rosemeyer, B.
1978-01-01
The lumbosacral region in man is exposed to special static and dynamic load. In a supine position, the disc size increases because of the absence of axial load. In a standing position, with physiological posture of the spine, strain discomfort occurs which is increased even more in the sitting position due to the curvature of the lumbar region of the spine and the irregular distribution of pressure in the discs as a result of this. This special problem of sitting posture can be confirmed by examinations.
Parkinson, R J; Bezaire, M; Callaghan, J P
2011-07-01
This study examined errors introduced by a posture matching approach (3DMatch) relative to dynamic three-dimensional rigid link and EMG-assisted models. Eighty-eight lifting trials of various combinations of heights (floor, 0.67, 1.2 m), asymmetry (left, right and center) and mass (7.6 and 9.7 kg) were videotaped while spine postures, ground reaction forces, segment orientations and muscle activations were documented and used to estimate joint moments and forces (L5/S1). Posture matching over predicted peak and cumulative extension moment (p < 0.0001 for all variables). There was no difference between peak compression estimates obtained with posture matching or EMG-assisted approaches (p = 0.7987). Posture matching over predicted cumulative (p < 0.0001) compressive loading due to a bias in standing, however, individualized bias correction eliminated the differences. Therefore, posture matching provides a method to analyze industrial lifting exposures that will predict kinetic values similar to those of more sophisticated models, provided necessary corrections are applied. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Ziaei, Mansour; Ziaei, Hojjat; Hosseini, Seyed Younes; Gharagozlou, Faramarz; Keikhamoghaddam, Ali Akbar; Laybidi, Marzieh Izadi; Moradinazar, Mehdi
2017-06-01
Manual handling of bags which imposes frequent forces and stresses on body parts is a common task that many workers have to perform every day. The present study aimed to assess the postural risk and imposed forces due to manual handling and loading of sugar bags. This study was conducted on male warehouse workers of a sugar manufacturing plant. Rapid upper limb assessment (RULA) was used to assess the risks of awkward postures and computer-aided three-dimensional interactive application to estimate the forces and moments. RULA final scores were estimated to be 7 and 3 before and after the virtual redesign, respectively. Postures B and E obtained the highest compression forces and moments. The compression forces were higher than the action limit (AL) in all postures before the redesign and exceeded the maximum permissible limit (MPL) in posture E. After the redesign, these forces were reduced below the AL and MPL. Moreover, the shearing forces were lower than the AL and MPL in all postures. The main risk factors were heavy weight and poor control of sugar bags. Virtual redesign can diminish bending and twisting postures, and, therefore, some resulting forces and moments.
Curcumin: a potential neuroprotective agent in Parkinson's disease.
Mythri, R B; Bharath, M M Srinivas
2012-01-01
Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.
Impact of Sex on the Nonmotor Symptoms and the Health-Related Quality of Life in Parkinson's Disease
Kovács, Márton; Makkos, Attila; Aschermann, Zsuzsanna; Janszky, József; Komoly, Sámuel; Weintraut, Rita; Karádi, Kázmér; Kovács, Norbert
2016-01-01
Background. Female Parkinson's disease (PD) patients seem to experience not only more severe motor complications and postural instability but also more pronounced depression, anxiety, pain, and sleep disturbances. Objective. The aim of the present study was to evaluate the role of sex as a possible independent predictor of HRQoL in PD. Methods. In this cross-sectional study, 621 consecutive patients treated at the University of Pécs were enrolled. Severity of PD symptoms was assessed by MDS-UPDRS, UDysRS, Non-Motor Symptoms Scale, PDSS-2, Hamilton Anxiety Scale, Montgomery-Asberg Depression Rating Scale, Lille Apathy Rating Scale, and Addenbrooke Cognitive Examination. HRQoL was assessed by PDQ-39 and EQ-5D. Multiple regression analysis was performed to estimate the PDQ-39 and EQ-5D index values based on various clinical factors. Results. Although females received significantly lower dosage of levodopa, they had significantly more disabling dyskinesia and worse postural instability. Anxiety, pain, sleep disturbances, and orthostatic symptoms were more frequent among females while sexual dysfunction, apathy, and daytime sleepiness were more severe among males. Women had worse HRQoL than men (EQ-5D index value: 0.620 ± 0.240 versus 0.663 ± 0.229, p = 0.025, and PDQ-39 SI: 27.1 ± 17.0 versus 23.5 ± 15.9, p = 0.010). Based on multiple regression analysis, sex was an independent predictor for HRQoL in PD. Conclusions. Based on our results, female sex is an independent predictor for having worse HRQoL in PD. PMID:27293959
Park, Moon Ho; Min, Joo Young; Kwon, Do-Young; Lee, Seung Hwan; Na, Hae Ri; Cho, Sung Tae; Na, Duk L
2011-06-01
Extrapyramidal signs (EPSs), which are important characteristics of Parkinson's disease (PD), occur frequently in Alzheimer's disease (AD). Although AD and PD share common clinical features such as EPSs, these diseases vary with respect to vascular risk factors. The presence of vascular risk factors increases the risk of AD; however, these factors have been known to be inversely associated with PD. We aimed to assess the effect of vascular risk factors and white matter lesions (WMLs) on EPSs in AD. We recruited 1,187 AD patients and 333 controls with neither cognitive impairment nor EPSs. All participants underwent detailed clinical evaluations which included assessments of vascular risk factors, cognitive function, and EPSs, as well as WMLs on brain MRIs. EPS subtypes were classified into tremor-dominant, postural instability gait difficulty, or indeterminate; WMLs subtypes were classified into periventricular WML (pvWML) or deep WML (dWML). EPSs were present in 17.9% of subjects with AD and were significantly associated with vascular risk factors such as age, male gender, diabetes mellitus, and WMLs. Additionally, a multivariate logistic regression analysis showed that EPSs in AD were associated with pvWML (odds ratio (OR), 1.61-2.52), not with dWML. With respect to EPS subtypes, the majority (78.4%) of EPSs in AD were postural instability gait difficulty, which was also associated with WMLs (OR 1.84-2.41), pvWML (OR 2.09-3.14), and dWML (OR 1.83-3.42). EPSs in AD are associated with selected vascular risk factors as well as WMLs.
Wang, Jia-Wei; Zhang, Yu-Qing; Zhang, Xiao-Hua; Wang, Yun-Peng; Li, Ji-Ping; Li, Yong-Jie
2017-06-01
Postural instability and gait disorder (PIGD) in Parkinson disease (PD) has been a great challenge in clinical practice because PIGD is closely linked to major morbidity and mortality in PD. Pedunculopontine nucleus (PPN) has been considered as a potential promising target for deep brain stimulation (DBS) in the treatment of PIGD. A meta-analysis of individual patient data was performed to assess the effects of PPN DBS on PIGD in patients with PD and explore the factors predicting good outcome. According to the study strategy, we searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials, and other sources. After searching the literature, 2 investigators independently screened the literature, assessed the quality of the included trials, and extracted the data. The outcome measures included PIGD, freezing of gait, and falling in PD. Then, individual patient data were incorporated into SPSS software for statistical analyses across series. Six studies reporting individual patient data were included for final analysis. PPN DBS significantly improved PIGD as well as freezing of gait and falling after PD, which was depending on the duration of follow-up and types of outcome measures. In addition, patient age, disease duration, levodopa-equivalent dosage, and the choice of unilateral or bilateral stimulation were similar in groups of patients with PD with or without improvement in PIGD after PPN DBS. Our study provides evidence that PPN DBS may improve PIGD, which should be interpreted with caution and needs further verification before making generalization of our results. Copyright © 2017 Elsevier Inc. All rights reserved.
Ishigaki, Norio; Kimura, Teiji; Usui, Yuki; Aoki, Kaoru; Narita, Nobuyo; Shimizu, Masayuki; Hara, Kazuo; Ogihara, Nobuhide; Nakamura, Koichi; Kato, Hiroyuki; Ohira, Masayoshi; Yokokawa, Yoshiharu; Miyoshi, Kei; Murakami, Narumichi; Okada, Shinpei; Nakamura, Tomokazu; Saito, Naoto
2011-06-03
The incidence of falls in the elderly is increasing with the aging of society and is becoming a major public health issue. From the viewpoint of prevention of falls, it is important to evaluate the stability of the gait in the elderly people. The pelvic movement, which is a critical factor for walking stability, was analyzed using a posture monitoring system equipped with a triaxial accelerometer and a gyroscope. The subjects were 95 elderly people over 60 years of age. The criteria for instability were open-eye standing on one leg for 15s or less, and 11s or more on 3m timed up and go test. Forty subjects who did not meet both of these criteria comprised the stable group, and the remaining 55 subjects comprised the unstable group. Pelvic movement during walking was compared between the two groups. The angle, angular velocity, and acceleration were analyzed based on the wave shape derived from the device worn around the second sacral. The results indicated that pelvic movement was lower in all three directions in the unstable group compared to the stable group, and the changes in the pelvic movement during walking in unstable elderly people were also reduced. This report is the first to evaluate pelvic movement by both a triaxial accelerometer and a triaxial gyroscope simultaneously. The characteristics of pelvic movement during walking can be applied in screening to identify elderly people with instability, which is the main risk factor associated with falls. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bloem, B R; Beckley, D J; van Dijk, J G
1999-02-01
Abnormal automatic postural responses are thought to contribute to balance impairment in Parkinson's disease. However, because postural responses are modifiable by stance, we have speculated that some postural abnormalities in patients with Parkinson's disease are secondary to their stooped stance. We have studied this assumption by assessing automatic postural responses in 30 healthy subjects who were instructed either to stand upright or to assume a typical parkinsonian posture. During both conditions, subjects received 20 serial 4 degrees 'toe-up' rotational perturbations from a supporting forceplate. We recorded short-latency (SL) and medium-latency (ML) responses from stretched gastrocnemius muscles and long-latency (LL) responses from shortened tibialis anterior muscles. We also assessed changes in the center of foot pressure (CFP) and the center of gravity (COG). The results were qualitatively compared to a previously described group of patients with Parkinson's disease who, under these circumstances, typically have large ML responses, small LL responses and insufficient voluntary postural corrections, accompanied by a slow rate of backward CFP displacement and an increased posterior COG displacement. The stooped posture resulted in unloading of medial gastrocnemius muscles and loading of tibialis anterior muscles. Onset latencies of stretch responses in gastrocnemius muscles were delayed in stooped subjects, but the onset of LL responses was markedly reduced. Amplitudes of both ML and LL responses were reduced in stooped subjects. Prestimulus COG and, to a lesser extent, CFP were shifted forwards in stooped subjects. Posterior COG displacement and the rate of backward CFP displacement were diminished in stooped subjects. Voluntary postural corrections were unchanged while standing stooped. These results indicate that some postural abnormalities of patients with Parkinson's disease (most notably the reduced LL responses) can be reproduced in healthy subjects mimicking a stooped parkinsonian posture. Other postural abnormalities (most notably the increased ML responses and insufficient voluntary responses) did not appear in stooped controls and may contribute to balance impairment in Parkinson's disease.
Postural disorders and spatial neglect in stroke patients: a strong association.
Pérennou, Dominic
2006-01-01
In this paper we analyse the arguments for a strong association between spatial neglect and postural disorders and attempt to better understand the mechanisms which underlie that. We first provide a general overview of the available tools for a rational assessment of postural control in a clinical context. We then analyse the arguments in favour of a close relationship, although not necessarily causal, between spatial neglect and: 1) body orientation with respect to gravity (including verticality perception i.e. the visual vertical, the haptic vertical, and the postural vertical); 2) body stabilisation with respect to the base of support; 3) posturographic features of stroke patients; 4) and finally their postural disability in daily life. This second part of the paper is based both on the literature review and on results of our current research. Neglect patients show a dramatic postural disability, due both to problems in body orientation with respect to gravity and to problems in body stabilisation. It might be that these problems are partly caused by a neglect phenomenon bearing on graviceptive (somaesthetic > vestibular) and visual information serving postural control. This could correspond to a kind of postural neglect involving both the bodily and nonbodily domains of spatial neglect. The existence of distorsion(s) in the body scheme are also probably involved, especially to explain the weight-bearing asymmetry in standing, and probably an impaired multisegmental postural coordination leading to an impaired body stabilisation. The present paper explains why neglect patients show longer/worse recovery of postural-walking autonomy than other stroke patients.
Michimoto, Kenjiro; Suzuki, Yasuyuki; Kiyono, Ken; Kobayashi, Yasushi; Morasso, Pietro; Nomura, Taishin
2016-08-01
Intermittent feedback control for stabilizing human upright stance is a promising strategy, alternative to the standard time-continuous stiffness control. Here we show that such an intermittent controller can be established naturally through reinforcement learning. To this end, we used a single inverted pendulum model of the upright posture and a very simple reward function that gives a certain amount of punishments when the inverted pendulum falls or changes its position in the state space. We found that the acquired feedback controller exhibits hallmarks of the intermittent feedback control strategy, namely the action of the feedback controller is switched-off intermittently when the state of the pendulum is located near the stable manifold of the unstable saddle-type upright equilibrium of the inverted pendulum with no active control: this action provides an opportunity to exploit transiently converging dynamics toward the unstable upright position with no help of the active feedback control. We then speculate about a possible physiological mechanism of such reinforcement learning, and suggest that it may be related to the neural activity in the pedunculopontine tegmental nucleus (PPN) of the brainstem. This hypothesis is supported by recent evidence indicating that PPN might play critical roles for generation and regulation of postural tonus, reward prediction, as well as postural instability in patients with Parkinson's disease.
Hip strength and star excursion balance test deficits of patients with chronic ankle instability.
McCann, Ryan S; Crossett, Ian D; Terada, Masafumi; Kosik, Kyle B; Bolding, Brenn A; Gribble, Phillip A
2017-11-01
To examine isometric hip strength in those with and without CAI, and determine the degree of Star Excursion Balance Test (SEBT) variance explained by isometric hip strength. Single-blinded, cross-sectional, case-control study. Thirty individuals with CAI, 29 lateral ankle sprain (LAS) copers, and 26 healthy controls participated. We assessed dynamic postural control with the SEBT anterior (SEBT-ANT), posteromedial (SEBT-PM), and posterolateral (SEBT-PL) reaches, and isometric hip extension (EXT), abduction (ABD) and external rotation (ER) strength with hand-held dynamometry. The CAI and LAS coper groups' involved limbs and randomly selected limbs in controls were tested. Separate Kruskal-Wallis tests compared SEBT scores and isometric hip strength between groups. Backwards linear regression models determined the degree of SEBT variance explained by isometric hip strength. Statistical significance was set a priori at P<0.05. The CAI group had lower SEBT-ANT scores compared to LAS copers (P=0.03) and controls (P=0.03). The CAI group had lower ABD compared to LAS copers (P=0.03) and controls (P=0.02). The CAI group had lower ER compared to LAS copers (P=0.01) and controls (P=0.01). ER (R 2 =0.25, P=0.01) and ABD (R 2 =0.25, P=0.01) explained 25% of the CAI group's SEBT-PM and SEBT-PL variances, respectively. The CAI group had deficient dynamic postural control and isometric hip strength compared to LAS copers and controls. Additionally, the CAI group's isometric hip strength significantly influenced dynamic postural control performance. Future CAI rehabilitation strategies should consider hip muscular strengthening to facilitate improvements in dynamic postural control. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
The effects of muscle vibration on anticipatory postural adjustments.
Slijper, Harm; Latash, Mark L
2004-07-23
The current study investigated the influence of changes in sensory information related to postural stability on anticipatory postural adjustments (APAs) in standing subjects. Subjects performed fast arm movements and a load release task while standing on a stable force platform or on an unstable board. We manipulated sensory information through vibration of the Achilles tendons and additional finger touch (contact forces under 1 N). Changes in the background activity of leg, trunk, and arm muscles and displacements of the center of pressure (COP) were quantified within time intervals typical for APAs. In the arm movement task, leg and trunk muscles showed a significant drop in the APAs with finger touch, while the vibration and standing on the unstable board each led to an increase in the APA magnitude. In the load release task, ventral muscles decreased their APA activity with touch, while dorsal muscles showed increased inhibition during APAs. During vibration, dorsal and ventral muscles showed increased excitation and inhibition during APAs, respectively. An additional analysis of APAs at a joint level, has shown that in both tasks, an index related to the co-activation of agonist-antagonist muscle pairs (C-index) was modulated with touch, vibration, and stability particularly in leg muscles. Small changes in the other index related to reciprocal activation (R-index) were found only in trunk muscles. Light touch and vibration induced opposing changes in the C-index, suggesting their opposite effects on the stabilization of a reference point or vertical. We conclude that the central nervous system deploys patterns of adjustments in which increased co-contraction of distal muscles and reciprocal adjustments in trunk muscles are modified to ensure equilibrium under postural instability.
Bloem, Bastiaan R; Marinus, Johan; Almeida, Quincy; Dibble, Lee; Nieuwboer, Alice; Post, Bart; Ruzicka, Evzen; Goetz, Christopher; Stebbins, Glenn; Martinez-Martin, Pablo; Schrag, Anette
2016-09-01
Disorders of posture, gait, and balance in Parkinson's disease (PD) are common and debilitating. This MDS-commissioned task force assessed clinimetric properties of existing rating scales, questionnaires, and timed tests that assess these features in PD. A literature review was conducted. Identified instruments were evaluated systematically and classified as "recommended," "suggested," or "listed." Inclusion of rating scales was restricted to those that could be used readily in clinical research and practice. One rating scale was classified as "recommended" (UPDRS-derived Postural Instability and Gait Difficulty score) and 2 as "suggested" (Tinetti Balance Scale, Rating Scale for Gait Evaluation). Three scales requiring equipment (Berg Balance Scale, Mini-BESTest, Dynamic Gait Index) also fulfilled criteria for "recommended" and 2 for "suggested" (FOG score, Gait and Balance Scale). Four questionnaires were "recommended" (Freezing of Gait Questionnaire, Activities-specific Balance Confidence Scale, Falls Efficacy Scale, Survey of Activities, and Fear of Falling in the Elderly-Modified). Four tests were classified as "recommended" (6-minute and 10-m walk tests, Timed Up-and-Go, Functional Reach). We identified several questionnaires that adequately assess freezing of gait and balance confidence in PD and a number of useful clinical tests. However, most clinical rating scales for gait, balance, and posture perform suboptimally or have been evaluated insufficiently. No instrument comprehensively and separately evaluates all relevant PD-specific gait characteristics with good clinimetric properties, and none provides separate balance and gait scores with adequate content validity for PD. We therefore recommend the development of such a PD-specific, easily administered, comprehensive gait and balance scale that separately assesses all relevant constructs. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Petersen, Andrew; Barrett, Rod
2009-05-01
The purpose of this study was to investigate the effect of a 2-day driver-training course that emphasised postural stability maintenance during critical driving situations on postural stability and vehicle kinematics during an evasive lane change manoeuvre. Following training, the trainee group experienced enhanced postural stability during specific phases of the task. In terms of vehicle kinematics, the main adaptation to training was that trained drivers reduced the extent to which they experienced vehicle decelerations during rapid turning compared to controls. Such a strategy may confer a safety benefit due to the increased risks associated with simultaneous braking while turning during an evasive manoeuvre. The newly learned strategy was consistent with the strategy used by a group of highly skilled drivers (driving instructors). Taken together, the results of the study suggest postural stability may be a useful variable to consider in relation to the skill-based component of hierarchical driver training programmes. The findings of this study provide some preliminary evidence to suggest that postural stability may be an important consideration when instructing individuals on how to safely negotiate obstacles during driving.
Changes in maximum bite force related to extension of the head.
Hellsing, E; Hagberg, C
1990-05-01
The maximum bite force and position of the hyoid bone during natural and extended head posture were studied in 15 adults. All participants had normal occlusions and full dentitions. In addition, there were no signs or symptoms of craniomandibular disorders. The bite force was measured with a bite force sensor placed between the first molars. Six registrations of gradually increasing bite force up to a maximum were made with randomized natural and extended head postures. With one exception, the mean maximum bite force value was found to be higher for every subject with extended head posture compared to natural head posture. The sample mean was 271.6 Newton in natural head posture and 321.5 Newton with 20 degrees extension. With changed head posture, the cephalometric measurements pointed towards a changed position of the hyoid bone in relation to the mandible and pharyngeal airway. The cephalometric changes in the position of the hyoid bone could be due to a changed interplay between the elevator and depressor muscle groups. This was one factor which could have influenced the registered maximum bite force.
Using Tri-Axial Accelerometers to Assess the Dynamic Control of Head Posture During Gait
NASA Technical Reports Server (NTRS)
Lawrence, John H., III
2003-01-01
Long duration spaceflight is known to cause a variety of biomedical stressors to the astronaut. One of the more functionally destabilizing effects of spaceflight involves microgravity-induced changes in vestibular or balance control. Balance control requires the integration of the vestibular, visual, and proprioceptive systems. In the microgravity environment, the normal gravity vector present on Earth no longer serves as a reference for the balance control system. Therefore, adaptive changes occur to the vestibular system to affect control of body orientation with altered, or non-present, gravity and/or proprioceptive inputs. Upon return to a gravity environment, the vestibular system must re-incorporate the gravity vector and gravity-induced proprioceptive inputs into the balance control regime. The result is often a period of postural instability, which may also be associated with space motion sickness (oscillopsia, nausea, and vertigo). Previous studies by the JSC Neuroscience group have found that returning astronauts often employ alterations in gait mechanics to maintain postural control during gait. It is believed that these gait alterations are meant to decrease the transfer of heel strike shock energy to the head, thus limiting the contradictory head and eye movements that lead to gait instability and motion sickness symptoms. We analyzed pre- and post-spaceflight tri-axial accelerometer data from the NASA/MIR long duration spaceflight missions to assess the heel to head transfer of heel strike shock energy during locomotion. Up to seven gait sessions (three preflight, four postflight) of head and shank (lower leg) accelerometer data was previously collected from six astronauts who engaged in space flights of four to six months duration. In our analysis, the heel to head transmission of shock energy was compared using peak vertical acceleration (a), peak jerk (j) ratio, and relative kinetic energy (a). A host of generalized movement variables was produced in an effort to isolate those that best highlighted vestibular adaptation due to spaceflight. Data suggest that astronauts used either head or body centered control to reduce the effects of heel strike shock on head position during normal walking at self-selected speeds. Moreover, the form of that control appears to fall under one of two categories: homeostatic or adaptive. Homeostatic control refers to tight constraint (small error) over the value of a given variable before and after spaceflight with little or no adaptive changes. Adaptive control refers to lesser constraint over a given movement variable with clear adaptation to earth gravity upon return from spaceflight. Heel strike shock absorption (ratio of heel to head peak acceleration) best-discriminated head and body centered control strategies. Further, peak jerk data was useful for illustrating pre- and postflight differences in segmental (shank versus head) movement energy. Results from kinetic energy analysis show high consistency between subjects and across test dates. Whether this result highlights a control strategy or is an artifact of approximating body segments using anthropometric tables is, at this point, unclear.
Use of Game Console for Rehabilitation of Parkinson's Disease.
Özgönenel, Levent; Çağırıcı, Sultan; Çabalar, Murat; Durmuşoğlu, Gülis
2016-07-01
Parkinson's disease (PD) predisposes to falls due to postural instability and decreased coordination. Postural and coordination exercises could ameliorate the incoordination and decrease falls. In this study, we explored the efficiency of a game console as an adjunct to an exercise program in treating incoordination in patients with PD. Case-control study. In this single-blind, prospective clinical trial, rehabilitation with the Xbox (Microsoft; Washington, USA) game console was used as an adjunct to a standard rehabilitation program. Thirty-three patients with PD at stages 1-3 were enrolled in the study. All patients received the three-times weekly exercise program and electrotherapy to back and hip extensors for 5 weeks. Study patients played catch the ball and obstacle games on the Xbox in addition to the standard exercise program. Patients were evaluated based on the scores from the Timed Up-and-Go Test, the Berg Balance Scale (BBS), and the Unified Parkinson's Disease Rating Scale-II (UPDRS-II). Post-treatment scores were compared between groups. Thirty-three patients were enrolled in the study (15 in the game-console group, and 18 controls). Patients in both groups had improvements in all scores. The end-of-treatment scores were significantly better in the study group compared to the control group in all parameters: UPDRS (10±5 versus 16±6, p=0.002), BBS (53±4 versus 47±8, p=0.004), and TUG (11±4 seconds versus 20±8 seconds, p<0.001). Game-exercise with a game-console was noted to be a significant adjunct to the rehabilitation program in patients with PD in this study.
Hoch, Matthew C; Gaven, Stacey L; Weinhandl, Joshua T
2016-06-01
The Star Excursion Balance Test has identified dynamic postural control deficits in individuals with chronic ankle instability. While kinematic predictors of Star Excursion Balance Test performance have been evaluated in healthy individuals, this has not been thoroughly examined in individuals with chronic ankle instability. Fifteen individuals with chronic ankle instability completed the anterior reach direction of the Star Excursion Balance Test and weight-bearing dorsiflexion assessments. Maximum reach distances on the Star Excursion Balance Test were measured in cm and normalized to leg length. Three-dimensional trunk, hip, knee, and ankle motion of the stance limb were recorded during each anterior reach trial using a motion capture system. Sagittal, frontal, and transverse plane displacement observed from trial initiation to the point of maximum reach was calculated for each joint or segment and averaged for analysis. Pearson product-moment correlations were performed to examine the relationships between kinematic variables, maximal reach, and weight-bearing dorsiflexion. A backward multiple linear regression model was developed with maximal reach as the criterion variable and kinematic variables as predictors. Frontal plane displacement of the trunk, hip, and ankle and sagittal plane knee displacement were entered into the analysis. The final model (p=0.004) included all three frontal plane variables and explained 81% of the variance in maximal reach. Maximal reach distance and several kinematic variables were significantly related to weight-bearing dorsiflexion. Individuals with chronic ankle instability who demonstrated greater lateral trunk displacement toward the stance limb, hip adduction, and ankle eversion achieved greater maximal reach. Copyright © 2016. Published by Elsevier Ltd.
Fetal malnutrition--the price of upright posture?
Briend, A
1979-01-01
The pattern of preterm fetal growth faltering, normally seen in man, differs from that observed in animals. This type of fetal growth cannot be considered as an adaptation to facilitate birth but is more likely to be due to rapid evolution and imperfect adaptation to the upright posture. The pattern of posture and physical activity during pregnancy may therefore be an important determinant of fetal growth. Differences in intrauterine nutrition existing between social groups, usually ascribed to variations of maternal diet and nutrition, may well result from different patterns of maternal activity in the weeks preceding birth. PMID:476446
Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou
2016-01-01
Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information transfer, (2) an anterior shift of processing resources toward frontal executive function, and (3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy. PMID:27594830
Comparison of posture among adolescent male volleyball players and non-athletes
2014-01-01
Due to high training loads and frequently repeated unilateral exercises, several types of sports training can have an impact on the process of posture development in young athletes. The objective of the study was to assess and compare the postures of adolescent male volleyball players and their non-training peers. The study group comprised 104 volleyball players while the control group consisted of 114 non-training individuals aged 14-16 years. Body posture was assessed by the Moiré method. The volleyball players were significantly taller, and had greater body weight and fat-free mass. The analysis of posture relative to symmetry in the frontal and transverse planes did not show any significant differences between the volleyball players and non-athletes. Postural asymmetries were observed in both the volleyball players and the control participants. Lumbar lordosis was significantly less defined in the volleyball players compared to non-training individuals while no difference was observed in thoracic kyphosis. All athletes demonstrated a loss of lumbar lordosis and an increase in thoracic kyphosis. Significant differences in anteroposterior curvature of the spine between the volleyball players and the non-athletes might be associated with both training and body height. Considering the asymmetric spine overloads which frequently occur in sports training, meticulous posture assessment in young athletes seems well justified. PMID:25729154
A radiographic assessment of lumbar spine posture in four different upright standing positions.
Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P
2016-08-01
Approximately 50% of a sample population will develop prolonged standing induced low back pain. The cause of this pain may be due to their lumbar spine posture. The purpose of this study was to investigate differences in lumbar posture between 17 participants categorized as a pain or non-pain developers during level ground standing. A secondary purpose was to evaluate the influence of two standing aids (an elevated surface to act as a foot rest and declined sloped surface) on lumbopelvic posture. Four sagittal plane radiographs were taken: a normal standing position on level ground, when using an elevated foot rest, using a declined sloped surface, and maximum lumbar spine extension as a reference posture. Lumbosacral lordosis, total lumbar lordosis, and L1/L2 and L5/S1 intervertebral joint angles were measured on each radiograph. There was a significant difference between the lumbosacral lordosis angle and L5/S1 angles in upright versus maximum extension; however, this was independent of pain group. The elevated surface was most effective at causing lumbosacral spine flexion. Potentially successful postures for eliminating low back pain during prolonged standing mainly influence the lower lumbar lordosis. Future work should assess the influence of hip posture on low back pain development during standing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identifying balance impairments in people with Parkinson's disease using video and wearable sensors.
Stack, Emma; Agarwal, Veena; King, Rachel; Burnett, Malcolm; Tahavori, Fatemeh; Janko, Balazs; Harwin, William; Ashburn, Ann; Kunkel, Dorit
2018-05-01
Falls and near falls are common among people with Parkinson's (PwP). To date, most wearable sensor research focussed on fall detection, few studies explored if wearable sensors can detect instability. Can instability (caution or near-falls) be detected using wearable sensors in comparison to video analysis? Twenty-four people (aged 60-86) with and without Parkinson's were recruited from community groups. Movements (e.g. walking, turning, transfers and reaching) were observed in the gait laboratory and/or at home; recorded using clinical measures, video and five wearable sensors (attached on the waist, ankles and wrists). After defining 'caution' and 'instability', two researchers evaluated video data and a third the raw wearable sensor data; blinded to each other's evaluations. Agreement between video and sensor data was calculated on stability, timing, step count and strategy. Data was available for 117 performances: 82 (70%) appeared stable on video. Ratings agreed in 86/117 cases (74%). Highest agreement was noted for chair transfer, timed up and go test and 3 m walks. Video analysts noted caution (slow, contained movements, safety-enhancing postures and concentration) and/or instability (saving reactions, stopping after stumbling or veering) in 40/134 performances (30%): raw wearable sensor data identified 16/35 performances rated cautious or unstable (sensitivity 46%) and 70/82 rated stable (specificity 85%). There was a 54% chance that a performance identified from wearable sensors as cautious/unstable was so; rising to 80% for stable movements. Agreement between wearable sensor and video data suggested that wearable sensors can detect subtle instability and near-falls. Caution and instability were observed in nearly a third of performances, suggesting that simple, mildly challenging actions, with clearly defined start- and end-points, may be most amenable to monitoring during free-living at home. Using the genuine near-falls recorded, work continues to automatically detect subtle instability using algorithms. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
The spinal posture of computing adolescents in a real-life setting
2014-01-01
Background It is assumed that good postural alignment is associated with the less likelihood of musculoskeletal pain symptoms. Encouraging good sitting postures have not reported consequent musculoskeletal pain reduction in school-based populations, possibly due to a lack of clear understanding of good posture. Therefore this paper describes the variability of postural angles in a cohort of asymptomatic high-school students whilst working on desk-top computers in a school computer classroom and to report on the relationship between the postural angles and age, gender, height, weight and computer use. Methods The baseline data from a 12 month longitudinal study is reported. The study was conducted in South African school computer classrooms. 194 Grade 10 high-school students, from randomly selected high-schools, aged 15–17 years, enrolled in Computer Application Technology for the first time, asymptomatic during the preceding month, and from whom written informed consent were obtained, participated in the study. The 3D Posture Analysis Tool captured five postural angles (head flexion, neck flexion, cranio-cervical angle, trunk flexion and head lateral bend) while the students were working on desk-top computers. Height, weight and computer use were also measured. Individual and combinations of postural angles were analysed. Results 944 Students were screened for eligibility of which the data of 194 students are reported. Trunk flexion was the most variable angle. Increased neck flexion and the combination of increased head flexion, neck flexion and trunk flexion were significantly associated with increased weight and BMI (p = 0.0001). Conclusions High-school students sit with greater ranges of trunk flexion (leaning forward or reclining) when using the classroom computer. Increased weight is significantly associated with increased sagittal plane postural angles. PMID:24950887
Jacobi-Polishook, Talia; Shorer, Zamir; Melzer, Itshak
2009-05-15
To investigate the effects of Methylphenidate (MPH) on postural stability in attention deficit hyperactivity disorder (ADHD) children in single and dual task conditions. A randomized controlled double-blind study analyzing postural stability in 24 ADHD children before and after MPH vs. placebo treatments, in three task conditions: (1) Single task, standing still; (2) dual task, standing still performing a memory-attention demanding task; (3) standing still listening to music. MPH resulted in a significant improvement in postural stability during the dual task condition and while listening to music, with no equivalent improvement in placebo controls. MPH improves postural stability in ADHD, especially when an additional task is performed. This is probably due to enhanced attention abilities, thus contributing to improved balance control during performance of tasks that require attention. MPH remains to be studied as a potential drug treatment to improve balance control and physical functioning in other clinical populations.
Tjernström, Fredrik; Fransson, Per-Anders; Kahlon, Babar; Karlberg, Mikael; Lindberg, Sven; Siesjö, Peter; Magnusson, Måns
2018-01-01
To evaluate post-surgical postural stability when treating patients with remaining vestibular function with intratympanic gentamicin (PREHAB) prior to schwannoma surgery. 44 consecutive patients with some form remaining vestibular function scheduled for vestibular schwannoma surgery. 20 were medically deafferented with intratympanic gentamicin before surgery and 24 were not. Both groups were of the same age, had the same tumor size, same type of surgery, and same perioperative sensory rehabilitation (training exercises), and no surgical complications. Postural stability measured as energy expenditure while standing on a force platform during vibratory stimulation of the calf muscles, performed prior to surgery (or gentamicin treatment) and 6 months after surgery. Patients pretreated with gentamicin had significantly better postural stability at the time for follow-up (p < 0.05) and displayed a better adaptive capacity when faced with a postural challenge (p < 0.01). They were also able to use vision more efficiently to control their stability (p < 0.05). By separating the sensory loss (through intratympanic gentamicin, that ablates the remaining vestibular function) from the intracranial surgical trauma, the postural control system benefited from a better short-term (adaptation) and long-term (habituation) recovery, when experiencing a postural challenge or resolving a sensory conflict. The benefits could be attributed to; active and continuous motor learning as the vestibular function slowly attenuates; no concomitant central nervous dysfunction due to effects from neurosurgery, thus allowing time for a separate unimpeded recovery process with more limited challenges and objectives; and the initiation and certain progression of sensory reweighting processes allowed prior to surgery. In contrast, worse compensation could be due to; immobilization from nausea after surgery, harmful amount of stress and cognitive dysfunction from the combination of surgical and sensory trauma and an abrupt vestibular deafferentation and its consequences on sensory reweighting.
Investigation of postural hypotension due to static prolonged standing in female workers.
Kabe, Isamu; Tsuruoka, Hiroko; Tokujitani, Yoko; Endo, Yuichi; Furusawa, Mami; Takebayashi, Toru
2007-07-01
The "Just-in-Time system" improves productivity and efficiency through cost reduction while it makes workers work in a standing posture. The aim of this study was to investigate the prevalence of postural hypotension in females during prolonged standing work, and to discuss preventive methods. Twelve female static standing workers (mean age+/-standard deviation; 32+/-14 yr old), 6 male static standing workers (30+/-4 yr old), 10 female walking workers (27+/-7 yr old) and 9 female desk workers (31+/-5 yr old) in a certain telecommunications equipment manufacturing factory agreed to participate in this study. All participants received an interview with an occupational physician, and performed the standing up test before working and ambulatory blood pressure monitoring (ABPM) while working. Although the blood pressure of the standing up test did not differ among the groups, mean pulse rates on standing up significantly increased in every group. Hypotension rates in the female standing workers' group by ABPM were 9 persons of 12 participants (75%) for systolic blood pressure (SBP), and were 11 persons of 12 participants (92%) for diastolic blood pressure (DBP). There were significantly higher than those in the female desk workers' group, none of 9 participants (0%) for SBP and 2 of 9 participants (22%) for DBP. The hypotension rates both male standing and female walking worker groups did not differ. Because all 8 workers who were found to have postural hypotension by the standing up test had decreased SBP and/or DBP by ABPM, it is suggested that persons at high risk of postural hypotension during standing work could be screened by the standing up test. The mechanism of postural hypotension may be a decrease of venous return due to leg swelling, and neurocardiogenic or vasovagal response. Preventing the congestion of the lower limbs by walking, managing standing time and wearing elastic hose to keep the amount of the venous return could prevent postural hypotension during prolonged standing work.
Silva, Keyte Guedes; De Freitas, Tatiana Beline; Doná, Flávia; Ganança, Fernando Freitas; Ferraz, Henrique Ballalai; Torriani-Pasin, Camila; Pompeu, José Eduardo
2017-01-01
There is an association among postural instability, gait dysfunction, and cognitive impairment in subjects with Parkinson's disease (PD). Difficulty in dividing attention, response inhibition, and visuospatial attention deficiencies may contribute to the impairment of motor performance during daily activities. There are strong evidences that physical therapy can prevent physical and cognitive decline in individuals with PD. Recently, the European Physiotherapy Guideline (EPG) was developed based on randomized clinical trials about the effectiveness of the physical therapy to improve the functional deficiencies of individuals with PD. The EPG did not include the use of promising new intervention as virtual reality in PD due the lack of studies about its safety, feasibility and effectiveness. Therefore, this study protocol had as objective to evaluate the feasibility, safety and effectiveness of a physical therapy program-based on the European Physiotherapy Guideline (EPG) compared to Kinect-based training on postural control, gait, cognition, and quality of life (QoL) of Individuals with PD. A single-blind, parallel, randomized, controlled feasibility trial will be conducted with a sample of 32 individuals diagnosed with idiopathic PD. Participants will be allocated into control group (CG) and experimental group (EG). The intervention of the CG will be conventional physical therapy, and the intervention of the EG will be a supervised practice of five Kinect games. Both groups will perform 14 sessions of 1 h each one, twice a week over 7 weeks. Process outcomes will be safety, feasibility, adherence, and acceptability. Safety will be assessed by the proportion of participants who experienced intervention-related adverse events or any serious adverse event during the study period. Feasibility will be assessed through the scores of the games recorded in all training sessions. Adherence will be assessed through the participant's attendance. Acceptability will be the motivation of the participants regarding the interventions. Clinical outcomes will be (1) postural control, (2) cognitive function, (3) balance, (4) gait, and (5) QoL. Individuals will be assessed pre- and post-interventions and after 30 days by a blinded evaluator. This protocol will clarify if an intervention based on Kinect games will be feasible, safe, and acceptable for individuals with PD compared to conventional physical therapy. We will verify whether the proposed interventions can improve clinical outcomes as postural control, gait, cognition, and QoL of individuals with PD. Our hypothesis is that both Kinect games and conventional physical therapy will be feasible, safe, and acceptable for individuals with PD and will promote positive clinical effects. The results of this feasibility study will be used to design a future definitive clinical trial. Unique identification number in WHO Trial Registration: U1111-1171-0371. Brazilian Clinical Trial Registration Number RBR-27kqv5, registration date: February, 2016.
Inefficient postural responses to unexpected slips during walking in older adults.
Tang, P F; Woollacott, M H
1998-11-01
Slips account for a high percentage of falls and subsequent injuries in community-dwelling older adults but not in young adults. This phenomenon suggests that although active and healthy older adults preserve a mobility level comparable to that of young adults, these older adults may have difficulty generating efficient reactive postural responses when they slip. This study tested the hypothesis that active and healthy older adults use a less effective reactive balance strategy than young adults when experiencing an unexpected forward slip occurring at heel strike during walking. This less effective balance strategy would be manifested by slower and smaller postural responses, altered temporal and spatial organization of the postural responses, and greater upper trunk instability after the slip. Thirty-three young adults (age range=19-34 yrs, mean=25+/-4 yrs) and 32 community-dwelling older adults (age range=70-87 yrs, mean=74+/-14 yrs) participated. Subjects walked across a movable forceplate which simulated a forward slip at heel strike. Surface electromyography was recorded from bilateral leg, thigh, hip, and trunk muscles. Kinematic data were collected from the right (perturbed) side of the body. Although the predominant postural muscles and the activation sequence of these muscles were similar between the two age groups, the postural responses of older adults were of longer onset latencies, smaller magnitudes, and longer burst durations compared to young adults. Older adults also showed a longer coactivation duration for the ankle, knee, and trunk agonist/antagonist pairs on the perturbed side and for the knee agonist/antagonist pair on the nonperturbed side. Behaviorally, older adults became less stable after the slips. This was manifested by a higher incidence of being tripped (21 trials in older vs 5 trials in young adults) and a greater trunk hyperextension with respect to young adults. Large arm elevation was frequently used by older adults to assist in maintaining trunk stability. In an attempt to quickly reestablish the base of support after the slips, older adults had an earlier contralateral foot strike and shortened stride length. The combination of slower onset and smaller magnitude of postural responses to slips in older adults resulted in an inefficient balance strategy. Older adults needed secondary compensatory adjustments, including a lengthened response duration and the use of the arms, to fully regain balance and prevent a fall. The shorter stride length and earlier contralateral foot strike following the slip indicate use of a more conservative balance strategy in older adults.
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. THE AIMS OF THIS SYSTEMATIC REVIEW ARE: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed.
Real-time posture reconstruction for Microsoft Kinect.
Shum, Hubert P H; Ho, Edmond S L; Jiang, Yang; Takagi, Shu
2013-10-01
The recent advancement of motion recognition using Microsoft Kinect stimulates many new ideas in motion capture and virtual reality applications. Utilizing a pattern recognition algorithm, Kinect can determine the positions of different body parts from the user. However, due to the use of a single-depth camera, recognition accuracy drops significantly when the parts are occluded. This hugely limits the usability of applications that involve interaction with external objects, such as sport training or exercising systems. The problem becomes more critical when Kinect incorrectly perceives body parts. This is because applications have limited information about the recognition correctness, and using those parts to synthesize body postures would result in serious visual artifacts. In this paper, we propose a new method to reconstruct valid movement from incomplete and noisy postures captured by Kinect. We first design a set of measurements that objectively evaluates the degree of reliability on each tracked body part. By incorporating the reliability estimation into a motion database query during run time, we obtain a set of similar postures that are kinematically valid. These postures are used to construct a latent space, which is known as the natural posture space in our system, with local principle component analysis. We finally apply frame-based optimization in the space to synthesize a new posture that closely resembles the true user posture while satisfying kinematic constraints. Experimental results show that our method can significantly improve the quality of the recognized posture under severely occluded environments, such as a person exercising with a basketball or moving in a small room.
Hwang, Hae-Yun; Choi, Jun-Seon; Kim, Hee-Eun
2018-05-28
To evaluate whether masticatory efficiency is associated with dynamic postural balance. Masticatory dysfunction can cause deterioration of general health due to nutritional imbalances, thereby negatively affecting postural balance. However, few studies have investigated the association between masticatory efficiency and postural balance. The masticatory efficiency of 74 participants was evaluated by calculating mixing ability index (MAI) using a wax cube. The timed up and go test (TUGT) was used to measure dynamic balance. Participants with an MAI above or below the median value of 1.05 were defined as having high or low masticatory efficiency, respectively. An independent samples t-test was used to identify significant differences in TUGT, according to masticatory efficiency. Analysis of covariance was performed to adjust for confounding factors. Logistic regression analysis was used to assess the correlation between masticatory efficiency and postural balance. The high masticatory efficiency group could complete the TUGT exercise approximately 1.67 seconds faster while maintaining the postural balance, compared to the low masticatory efficiency group (P = .005). Furthermore, the postural imbalance odds of the group with high mastication efficiency decreased by 0.14-fold, relative to the group with low mastication efficiency (95% confidence interval: 0.04-0.46). With some reservations about statistical power, the association found between masticatory efficiency and postural balance justifies further investigations to confirm the strength of the associations, and possibly to identify causal relationships between mastication and posture in old age. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Schild, A M; Fricke, J; Rüssmann, W; Neugebauer, A
2009-10-01
Kestenbaum surgery is performed for nystagmus-related abnormal head posture, and symmetrically changes the position of both eyes to shift the null point to the primary position. Most patients with infantile nystagmus have their null point zone in a lateral gaze position. Less frequently, surgery can be performed to reduce chin-up or chin-down head posture. We report indications for, and the results of eight consecutive interventions performed according to the Kestenbaum principle for the reduction of a chin-up or chin-down head posture. In a retrospective study, the clinical findings for eight patients who consecutively underwent treatment in the University Eye Hospital of Cologne between 2001 and 2007 were investigated. The patients were aged 6 to 16 years; median age was 6.5 years. For all patients, surgery was to correct a chin-up or chin-down head posture due to infantile nystagmus. Preoperatively, five patients showed a chin-down, three a chin-up head posture. All vertical rectus muscles were recessed or tucked between 6 and 7 mm; the resulting cyclodeviation was reduced by an intervention on the superior oblique muscles (6 to 8 mm tucking, in the case of chin-down, or recession in the case of chin-up head posture). Surgery was successful in seven of the eight patients, with a reduction of the vertical head posture to less than 10 degrees. In the cases of chin-down posture, head posture was reduced to between 0 degrees and a maximum of 20 degrees in one case postoperatively (before the operation 20 degrees to 35 degrees ); in the cases of chin-up posture, to less than 8 degrees (before the operation 25 degrees to 35 degrees). One case showed no postoperative improvement in chin-down posture but a head turn to the left of up to 20 degrees; another case had a remaining chin-up posture of 8 degrees with a right turn of 15 degrees . Binocular vision was better or the same in all cases after surgery. For nystagmus patients with chin-up or chin-down head posture, surgery for bilateral parallel shifting of the eyes can considerably improve the head posture. It is possible to compensate the induced cyclodeviation at the same time by bilateral surgery on the superior oblique muscles.
Motion sickness, console video games, and head-mounted displays.
Merhi, Omar; Faugloire, Elise; Flanagan, Moira; Stoffregen, Thomas A
2007-10-01
We evaluated the nauseogenic properties of commercial console video games (i.e., games that are sold to the public) when presented through a head-mounted display. Anecdotal reports suggest that motion sickness may occur among players of contemporary commercial console video games. Participants played standard console video games using an Xbox game system. We varied the participants' posture (standing vs. sitting) and the game (two Xbox games). Participants played for up to 50 min and were asked to discontinue if they experienced any symptoms of motion sickness. Sickness occurred in all conditions, but it was more common during standing. During seated play there were significant differences in head motion between sick and well participants before the onset of motion sickness. The results indicate that commercial console video game systems can induce motion sickness when presented via a head-mounted display and support the hypothesis that motion sickness is preceded by instability in the control of seated posture. Potential applications of this research include changes in the design of console video games and recommendations for how such systems should be used.
Effects of decades of physical driving on body movement and motion sickness during virtual driving
Chang, Chih-Hui; Chen, Fu-Chen; Zeng, Wei-Jhong
2017-01-01
We investigated relations between experience driving physical automobiles and motion sickness during the driving of virtual automobiles. Middle-aged individuals drove a virtual automobile in a driving video game. Drivers were individuals who had possessed a driver’s license for approximately 30 years, and who drove regularly, while non-drivers were individuals who had never held a driver’s license, or who had not driven for more than 15 years. During virtual driving, we monitored movement of the head and torso. During virtual driving, drivers became motion sick more rapidly than non-drivers, but the incidence and severity of motion sickness did not differ as a function of driving experience. Patterns of movement during virtual driving differed as a function of driving experience. Separately, movement differed between participants who later became motion sick and those who did not. Most importantly, physical driving experience influenced patterns of postural activity that preceded motion sickness during virtual driving. The results are consistent with the postural instability theory of motion sickness, and help to illuminate relations between the control of physical and virtual vehicles. PMID:29121059
Cognitive tasks promote automatization of postural control in young and older adults.
Potvin-Desrochers, Alexandra; Richer, Natalie; Lajoie, Yves
2017-09-01
Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
Destabilization of Human Balance Control by Static and Dynamic Head Tilts
NASA Technical Reports Server (NTRS)
Paloski, William H.; Wood, Scott J.; Feiveson, Alan H.; Black, F. Owen; Hwang, Emma Y.; Reschke, Millard F.
2004-01-01
To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.
Gal-Nadasan, Norbert; Gal-Nadasan, Emanuela Georgiana; Stoicu-Tivadar, Vasile; Poenaru, Dan V; Popa-Andrei, Diana
2017-01-01
This paper suggests the usage of the Microsoft Kinect to detect the onset of the scoliosis at high school students due to incorrect sitting positions. The measurement is done by measuring the overall posture in orthostatic position using the Microsoft Kinect. During the measuring process several key points of the human body are tracked like the hips and shoulders to form the postural data. The test was done on 30 high school students who spend 6 to 7 hours per day in the school benches. The postural data is statistically processed by IBM Watson's Analytics. From the statistical analysis we have obtained that a prolonged sitting position at such young ages affects in a negative way the spinal cord and facilitates the appearance of malicious postures like scoliosis and lordosis.
The vascular basis of the positional influence of the intraocular pressure.
Krieglstein, G K; Waller, W K; Leydhecker, W
1978-05-02
By measuring intraocular pressure in different body positions from 60 degrees semiupright to 30 degrees head down, a nonlinear relationship between IOP increase and body position was confirmed. IOP postural response in individual subjects was roughly correlated to ophthalmic arterial pressure and to the episcleral venous pressure postural response. In one series of subjects, the episcleral venous pressure increments due to posture wa; parallel to the applanation-indentation disparity in the same individual eyes. Differential tonometry with applanation or indentation procedures under blind conditions gave significantly low indentation readings. It is concluded that IOP postural response depends on arterial and venous vascular changes when subjects move from an erect to a horizontal body position. Blood expulsion from the choroid by indentation tonometry might be the reason that this tonometric procedure does not measure IOP changes based on vascular changes.
The time-delayed inverted pendulum: Implications for human balance control
NASA Astrophysics Data System (ADS)
Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann
2009-06-01
The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.
Occupation and risk of parkinsonism: a multicenter case-control study.
Tanner, Caroline M; Ross, G Webster; Jewell, Sarah A; Hauser, Robert A; Jankovic, Joseph; Factor, Stewart A; Bressman, Susan; Deligtisch, Amanda; Marras, Connie; Lyons, Kelly E; Bhudhikanok, Grace S; Roucoux, Diana F; Meng, Cheryl; Abbott, Robert D; Langston, J William
2009-09-01
We examined risk of parkinsonism in occupations (agriculture, education, health care, welding, and mining) and toxicant exposures (solvents and pesticides) putatively associated with parkinsonism. To investigate occupations, specific job tasks, or exposures and risk of parkinsonism and clinical subtypes. Case-control. Eight movement disorders centers in North America. Inclusion criteria were parkinsonism (>or=2 cardinal signs), diagnosis within 8 years of recruitment (to minimize survival bias), and ability to participate in detailed telephone interviews. Control subjects were primarily nonblood relatives or acquaintances of patients. This multicenter case-control study compared lifelong occupational and job task histories to determine associations with parkinsonism and certain clinical subtypes (postural instability and gait difficulty and age at diagnosis
Chen, Hui-Min; Wang, Zhi-Jiang; Fang, Jin-Ping; Gao, Li-Yan; Ma, Ling-Yan; Wu, Tao; Hou, Ya-Nan; Zhang, Jia-Rong; Feng, Tao
2015-10-01
Postural instability/gait difficulty (PIGD) and tremor-dominant (TD) subtypes of Parkinson's disease (PD) show different clinical manifestations; however, their underlying neural substrates remain incompletely understood. This study aimed at investigating the subtype-specific patterns of spontaneous brain activity in PD. Thirty-one patients with PD (12 TD/19 PIGD) and 22 healthy gender- and age-matched controls were recruited. Resting-state functional magnetic resonance imaging data were collected, and amplitude of low-frequency fluctuations (ALFF) was measured. Voxelwise one-way analysis of covariance and post hoc analyses of ALFF were performed among the three groups, with age and gender as covariates (levodopa daily dosage and gray matter volume as additional covariates for validation analysis). Correlations of clinical variables (e.g., disease duration and PIGD/tremor subscale score) with ALFF values were examined. Compared with controls, patients with TD exhibited higher ALFF in the right cerebellar posterior lobe and patients with PIGD exhibited lower ALFF in the bilateral putamen and cerebellar posterior lobe, and higher values primarily in several cortical areas including the inferior and superior temporal gyrus, superior frontal, and parietal gyrus. Compared with patients with PIGD, patients with TD had higher ALFF in the bilateral putamen and the cerebellar posterior lobe, as well as lower ALFF in the bilateral temporal gyrus and the left superior parietal lobule. In all patients, ALFF in the bilateral cerebellar posterior lobe positively correlated with tremor score and ALFF in the bilateral putamen negatively correlated with PIGD score. Different patterns of spontaneous neural activity in the cerebellum and putamen may underlie the neural substrate of PD motor subtypes. © 2015 John Wiley & Sons Ltd.
Predictors of weight loss in early treated Parkinson's disease from the NET-PD LS-1 cohort.
Wills, Anne-Marie; Li, Ruosha; Pérez, Adriana; Ren, Xuehan; Boyd, James
2017-08-01
Weight loss is a common symptom of Parkinson's disease and is associated with impaired quality of life. Predictors of weight loss have not been studied in large clinical cohorts. We previously observed an association between change in body mass index and change in Unified Parkinson's Disease Rating Scale (UPDRS) motor and total scores. In this study, we performed a secondary analysis of longitudinal data (1-6 years) from 1619 participants in the NINDS Exploratory Trials in PD Long-term Study-1 (NET-PD LS1) to explore predictors of weight loss in a large prospective clinical trial cohort of early treated Parkinson's disease. The NET-PD LS1 study was a double-blind randomized placebo controlled clinical trial of creatine monohydrate 10 gm/day in early treated PD (within 5 years of diagnosis and within 2 years of starting dopaminergic medications). Linear mixed models were used to estimate the effect of baseline clinical covariates on weight change over time. On average, participants lost only 0.6 kg per year. Higher age, baseline weight, female gender, higher baseline UPDRS scores, greater postural instability, difficulty eating and drinking, lower cognitive scores and baseline levodopa use (compared to dopamine agonists) were all associated with weight loss. Surprisingly baseline difficulty swallowing, dyskinesia, depression, intestinal hypomotility (constipation) and self-reported nausea/vomiting/anorexia were not significantly associated with weight loss in this cohort of early treated Parkinson's disease patients. On average, participants with Parkinson's disease experience little weight loss during the first 1-6 years after starting dopaminergic replacement therapy, however levodopa use and postural instability were both predictors of early weight loss. Trial Registration clinicaltrials.gov identifier# NCT00449865.
Spinal sagittal contour affecting falls: cut-off value of the lumbar spine for falls.
Ishikawa, Yoshinori; Miyakoshi, Naohisa; Kasukawa, Yuji; Hongo, Michio; Shimada, Yoichi
2013-06-01
Spinal deformities reportedly affect postural instability or falls. To prevent falls in clinical settings, the determination of a cut-off angle of spinal sagittal contour associated with increase risk for falls would be useful for screening for high-risk fallers. The purpose of this study was to calculate the spinal sagittal contour angle associated with increased risk for falls during medical checkups in community dwelling elders. The subjects comprised 213 patients (57 men, 156 women) with a mean age of 70.1 years (range, 55-85 years). The upright and flexion/extension thoracic kyphosis and lumbar lordosis angles, and the spinal inclination were evaluated with SpinalMouse(®). Postural instability was evaluated by stabilometry, using the total track length (LNG), enveloped areas (ENV), and track lengths in the lateral and anteroposterior directions (X LNG and Y LNG, respectively). The back extensor strength (BES) was measured using a strain-gauge dynamometer. The relationships among the parameters were analyzed statistically. Age, lumbar lordosis, spinal inclination, LNG, X LNG, Y LNG, and BES were significantly associated with falls (P<0.05). Multivariate logistic regression analyses revealed that lumbar lordosis was the most significant factor (P<0.01). Univariate logistic regression analyses for falls about lumbar lordosis angles revealed that angles of 3° and less were significant for falls. The present findings suggest that increased age, spinal inclination, LNG, X LNG, Y LNG, and decreased BES and lumbar lordosis, are associated with falls. An angle of lumbar lordosis of 3° or less was associated with falls in these community-dwelling elders. Copyright © 2012 Elsevier B.V. All rights reserved.
Kane, Jacqueline R.; Ciucci, Michelle R.; Jacobs, Amber N.; Tews, Nathan; Russell, John A.; Ahrens, Allison M.; Ma, Sean T.; Britt, Joshua M.; Cormack, Lawrence K.; Schallert, Timothy
2012-01-01
Parkinson’s disease (PD) is a neurodegenerative disorder primarily characterized by sensorimotor dysfunction. The neuropathology of PD includes a loss of dopamine (DA) neurons of the nigrostriatal pathway. Classic signs of the disease include rigidity, bradykinesia, and postural instability. However, as many as 90% of patients also experience significant deficits in speech, swallowing (including mastication), and respiratory control. Oromotor deficits such as these are underappreciated, frequently emerging during the early, often hemi-Parkinson, stage of the disease. In this paper, we review tests commonly used in our labs to model early and hemi-Parkinson deficits in rodents. We have recently expanded our tests to include sensitive models of oromotor deficits. This paper discusses the most commonly used tests in our lab to model both limb and oromotor deficits, including tests of forelimb-use asymmetry, postural instability, vibrissae-evoked forelimb placing, single limb akinesia, dry pasta handling, sunflower seed shelling, and acoustic analyses of ultrasonic vocalizations and pasta biting strength. In particular, we lay new groundwork for developing methods for measuring abnormalities in the acoustic patterns during eating that indicate decreased biting strength and irregular intervals between bites in the hemi-Parkinson rat. Similar to limb motor deficits, oromotor deficits, at least to some degree, appear to be modulated by nigrostriatal DA. Finally, we briefly review the literature on targeted motor rehabilitation effects in PD models. Learning outcomes Readers will: (a) understand how a unilateral lesion to the nigrostriatal pathway affects limb use, (b) understand how a unilateral lesion to the nigrostriatal pathway affects oromotor function, and (c) gain an understanding of how limb motor deficits and oromotor deficits appear to involve dopamine and are modulated by training. PMID:21820129
Normal pressure hydrocephalus: how often does the diagnosis hold water?
Klassen, Bryan T; Ahlskog, J Eric
2011-09-20
To determine our community's incidence of clinically suspected normal pressure hydrocephalus (NPH), the rate of shunting for NPH, and short- and long-term outcomes of shunting. A retrospective query of the Mayo Clinic medical records linkage system was conducted to identify residents of Olmsted County, Minnesota, undergoing an invasive diagnostic procedure for evaluation of suspected NPH from 1995 through 2003. Among patients with shunts, early- and long-term outcomes were determined via a review of available medical records. Forty-one patients underwent an invasive diagnostic procedure for evaluation of suspected NPH; 13 ultimately received shunts, representing an incidence of 1.19/100,000/year. The incidence of sustained definite improvements at 3 years after shunting was only 0.36/100,000/year. Definite gait improvement was documented in 75% at 3-6 months after shunt placement, although it dropped to 50% at 1 year and to 33% at 3 years. Only 1 of 8 patients with cognitive impairment and 1 of 6 patients with urinary incontinence had definite improvement in these symptoms at 3 years. No patient with moderate to severe postural instability experienced sustained definite improvement in any symptom. Complications occurred in 33% of patients including one perioperative death. Additional or alternative neurologic diagnoses later surfaced in 5 of 12 patients. In this community, NPH is relatively rare with an incidence approximating that of progressive supranuclear palsy in this population. Whereas early gait improvement was common, only one-third of patients enjoyed continued improvement by 3 years; cognition or urinary incontinence was even less responsive long term. Baseline postural instability predicted poor outcome. Clinicians should balance potential benefits of shunting against the known risks.
Ahlskog, J. Eric
2011-01-01
Objective: To determine our community's incidence of clinically suspected normal pressure hydrocephalus (NPH), the rate of shunting for NPH, and short- and long-term outcomes of shunting. Methods: A retrospective query of the Mayo Clinic medical records linkage system was conducted to identify residents of Olmsted County, Minnesota, undergoing an invasive diagnostic procedure for evaluation of suspected NPH from 1995 through 2003. Among patients with shunts, early- and long-term outcomes were determined via a review of available medical records. Results: Forty-one patients underwent an invasive diagnostic procedure for evaluation of suspected NPH; 13 ultimately received shunts, representing an incidence of 1.19/100,000/year. The incidence of sustained definite improvements at 3 years after shunting was only 0.36/100,000/year. Definite gait improvement was documented in 75% at 3–6 months after shunt placement, although it dropped to 50% at 1 year and to 33% at 3 years. Only 1 of 8 patients with cognitive impairment and 1 of 6 patients with urinary incontinence had definite improvement in these symptoms at 3 years. No patient with moderate to severe postural instability experienced sustained definite improvement in any symptom. Complications occurred in 33% of patients including one perioperative death. Additional or alternative neurologic diagnoses later surfaced in 5 of 12 patients. Conclusions: In this community, NPH is relatively rare with an incidence approximating that of progressive supranuclear palsy in this population. Whereas early gait improvement was common, only one-third of patients enjoyed continued improvement by 3 years; cognition or urinary incontinence was even less responsive long term. Baseline postural instability predicted poor outcome. Clinicians should balance potential benefits of shunting against the known risks. PMID:21849644
Postural instability and gait are associated with severity and prognosis of Parkinson disease.
van der Heeden, Jorine F; Marinus, Johan; Martinez-Martin, Pablo; Rodriguez-Blazquez, Carmen; Geraedts, Victor J; van Hilten, Jacobus J
2016-06-14
Differences in disease progression in Parkinson disease (PD) have variously been attributed to 2 motor subtypes: tremor-dominant (TD) and postural instability and gait difficulty (PIGD)-dominant (PG). We evaluated the role of these phenotypic variants in severity and progression of nondopaminergic manifestations of PD and motor complications. Linear mixed models were applied to data from the Profiling Parkinson's disease (PROPARK) cohort (n = 396) to evaluate the effect of motor subtype on severity and progression of cognitive impairment (Scales for Outcomes in Parkinson's disease [SCOPA]-Cognition [SCOPA-COG]), depression (Hospital Anxiety and Depression Scale [HADS]), autonomic dysfunction (SCOPA-Autonomic [SCOPA-AUT]), excessive daytime sleepiness, psychotic symptoms (SCOPA-Psychiatric Complications [SCOPA-PC]), and motor complications. In first analyses, subtype as determined by the commonly used ratio of tremor over PIGD score was entered as a factor, whereas in second analyses separate tremor and PIGD scores were used. Results were verified in an independent cohort (Estudio Longitudinal de Pacientes con Enfermedad de Parkinson [ELEP]; n = 365). The first analyses showed that PG subtype patients had worse SCOPA-COG, HADS, SCOPA-AUT, SCOPA-PC, and motor complications scores, and exhibited faster progression on the SCOPA-COG. The second analyses showed that only higher PIGD scores were associated with worse scores for these variables; tremor score was not associated with severity or progression of any symptom. Analyses in the independent cohort yielded similar results. In contrast to PIGD, which consistently was associated with greater severity of nondopaminergic symptoms, there was no evidence of a benign effect of tremor. Our findings do not support the use of the TD subtype as a prognostic trait in PD. The results showed that severity of PIGD is a useful indicator of severity and prognosis in PD by itself. © 2016 American Academy of Neurology.
NASA Technical Reports Server (NTRS)
Leigh, R. John; Brandt, Thomas
1992-01-01
Conventional views of the Vestibulo-Ocular Reflex (VOR) have emphasized testing with caloric stimuli and by passively rotating patients at low frequencies in a chair. The properties of the VOR tested under these conditions differ from the performance of this reflex during the natural function for which it evolved-locomotion. Only the VOR (and not visually mediated eye movements) can cope with the high-frequency angular and linear perturbations of the head that occur during locomotion; this is achieved by generating eye movements at short latency (less than 16 msec). Interpretation of vestibular testing is enhanced by the realization that, although the di- and trisynaptic components of the VOR are essential for this short-latency response, the overall accuracy and plasticity of the VOR depend upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously encode inputs from the labyrinthine semicircular canals and otoliths, as well as from the visual and somatosensory systems. The central vestibular pathways branch to contact vestibular cortex (for perception) and the spinal cord (for control of posture). Thus, the vestibular nuclei basically coordinate the stabilization of gaze and posture, and contribute to the perception of verticality and self-motion. Consequently, brainstem disorders that disrupt the VOR cause not just only nystagmus, but also instability of posture (eg, increased fore-aft sway in patients with downbeat nystagmus) and disturbance of spatial orientation (eg, tilt of the subjective visual vertical in Wallenberg's syndrome).
Motor assessment in Parkinson`s disease.
Opara, Józef; Małecki, Andrzej; Małecka, Elżbieta; Socha, Teresa
2017-09-21
Parkinson's disease (PD) is one of most disabling disorders of the central nervous system. The motor symptoms of Parkinson's disease: shaking, rigidity, slowness of movement, postural instability and difficulty with walking and gait, are difficult to measure. When disease symptoms become more pronounced, the patient experiences difficulties with hand function and walking, and is prone to falls. Baseline motor impairment and cognitive impairment are probable predictors of more rapid motor decline and disability. An additional difficulty is the variability of the symptoms caused by adverse effects of drugs, especially levodopa. Motor assessment of Parkinson`s Disease can be divided into clinimetrics, assessment of balance and posture, arm and hand function, and gait/walking. These are many clinimetric scales used in Parkinson`s Disease, the most popular being the Hoehn and Yahr stages of progression of the disease and Unified Parkinson's Disease Rating Scale. Balance and posture can be assessed by clinimetric scales like the Berg BS, Tinetti, Brunel BA, and Timed Up and Go Test, or measured by posturometric platforms. Among skill tests, the best known are: the Purdue Pegboard Test, Nine-Hole Peg Test, Jebsen and Taylor test, Pig- Tail Test, Frenchay Arm Test, Action Research Arm Test, Wolf FMT and Finger-Tapping Test. Among motricity scales, the most popular are: the Fugl-Meyer Motor Assessment Scale and Södring Motor Evaluation. Gait and walking can also be assessed quantitatively and qualitatively. Recently, the most popular is three-dimensional analysis of movement. This review article presents the current possibilities of motor assessment in Parkinson`s disease.
Effects of 30-, 60-, and 90-Day Bed Rest on Postural Control in Men and Women
NASA Technical Reports Server (NTRS)
Esteves, Julie; Taylor, Laura C.; Vanya, Robert D.; Dean, S. Lance; Wood, Scott J.
2011-01-01
INTRODUCTION Head-down-tilt bed rest (HDT) has been used as a safe gr ound-based analog to mimic and develop countermeasures for the physiological effects of spaceflight, including decrements in postural stability. The purpose of this investigation was to characterize the effects of 30-, 60-, and 90-day bed rest on postural control in men and women. METHODS Twenty-nine subjects (18M,11F) underwent 13 days of ambula tory acclimatization and were placed in 6? HDT for 30 (n=12), 60 (n=8), or 90 (n=9) days, followed by 14 days of ambulatory recovery. Computerized dynamic posturography (CDP) was used to assess changes in sensory and motor components of postural control, and recovery after HDT. Sensory Organization Tests (SOTs) objectively evaluate one?s ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Stability during the SOTs was assessed using peak-to-peak sway and convergence toward stability limits to derive an equilibrium score. Motor Control Tests (MCTs) evaluate one?s ability to recover from unexpected support surface perturbations, with performance determined by center-of-pressure path length. Whole-body kinematic data were collected to determine body-sway strategy used to maintain stability during each condition. Baselines were determined pre-HDT. Recovery was tracked post-HDT on days 0, 1, 2, and 4. RESULTS Immediately after HDT, subjects showed decreased performance on most SOTs, primarily on sway-referenced support conditions, typically returning to baseline levels within 4 days. MCT performance was not significantly affected. There were no significant gender or duration differences in performance. Kinematic data revealed a tendency to use ankle strategy to maintain an upright stance during most SOT conditions. Interestingly, six subjects (2M,4F) experienced orthostatic intolerance and were unable to complete day 0 testing. CONCLUSION HDT mimics some un loading mechanisms of spaceflight and elicits orthostatic issues present post-spaceflight (contributing to instability); however, it does not sufficiently address the vestibular dysfunction which occurs post-spaceflight.
Weaver, Tyler B; Glinka, Michal N; Laing, Andrew C
2014-11-07
Currently, it is unknown whether the inverted pendulum model is applicable to stooping or crouching postures. Therefore, the aim of this study was to determine the degree of applicability of the inverted pendulum model to these postures, via examination of the relationship between the centre of mass (COM) acceleration and centre of pressure (COP)-COM difference. Ten young adults held static standing, stooping and crouching postures, each for 20s. For both the anterior-posterior (AP) and medio-lateral (ML) directions, the time-varying COM acceleration and the COP-COM were computed, and the relationship between these two variables was determined using Pearson's correlation coefficients. Additionally, in both directions, the average absolute COM acceleration, average absolute COP-COM signal, and the inertial component (i.e., -I/Wh) were compared across postures. Pearson correlation coefficients revealed a significant negative relationship between the COM acceleration and COP-COM signal for all comparisons, regardless of the direction (p<0.001). While no effect of posture was observed in the AP direction (p=0.463), in the ML direction, the correlation coefficients for stooping were different (i.e., stronger) than standing (p=0.008). Regardless of direction, the average absolute COM acceleration for both the stooping and crouching postures was greater than standing (p<0.002). The high correlations indicate that the inverted pendulum model is applicable to stooping and crouching postures. Due to their importance in completing activities of daily living, there is merit in determining what type of motor strategies are used to control such postures and whether these strategies change with age. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Background Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. Purpose The aims of this systematic review are: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Data sources Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Study selection Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. Data extraction All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Data synthesis Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. Limitations The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Conclusion Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed. PMID:24741296
Visser, R; van der Palen, J; de Jongh, F H C; Thio, B J
2015-04-01
Pulmonary medication is mostly delivered in the form of medical aerosols to minimize systemic side effects. A major drawback of inhaled medication is that the majority of inhaled particles impacts in the oropharynx at the sharp bend of the airway. Stretching the airway by a forward leaning body posture with the neck extended ("sniffing position") may improve pulmonary deposition and clinical effects. 41 asthmatic children who were planned for standard reversibility testing at the pulmonary function lab, alternately inhaled 200 μgr salbutamol with an Autohaler(®) in the standard or in the forward leaning body posture. Forced Expiratory Volume in 1 s (FEV1), Forced Vital Capacity (FVC), Peak Expiratory Flow (PEF), Mean Expiratory Flow at 25% of vital capacity (MEF25) and Mean Expiratory Flow at 75% of vital capacity (MEF75) were analysed. The children in the forward leaning body posture group showed a significantly higher mean FEV1 reversibility than the control group after inhalation of 200 μgr salbutamol (10.2% versus 4.1%, p = 0.019). Additionally, mean MEF75 was significantly more reversible in the forward leaning body posture group versus the standard body posture group (32.2% resp. 8.9%, p = 0.013). This pilot study showed a higher reversibility of FEV1 and MEF75 after inhaling salbutamol in a forward leaning body posture compared to the standard body posture in asthmatic children. This suggests that pulmonary effects of salbutamol can be improved by inhaling in a forward leaning body posture with the neck extended. This effect is possibly due to a higher pulmonary deposition of salbutamol and should be confirmed in a randomized controlled trial. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hwang, Ing-Shiou; Huang, Cheng-Ya
2016-01-01
With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634
Context and hand posture modulate the neural dynamics of tool-object perception.
Natraj, Nikhilesh; Poole, Victoria; Mizelle, J C; Flumini, Andrea; Borghi, Anna M; Wheaton, Lewis A
2013-02-01
Prior research has linked visual perception of tools with plausible motor strategies. Thus, observing a tool activates the putative action-stream, including the left posterior parietal cortex. Observing a hand functionally grasping a tool involves the inferior frontal cortex. However, tool-use movements are performed in a contextual and grasp specific manner, rather than relative isolation. Our prior behavioral data has demonstrated that the context of tool-use (by pairing the tool with different objects) and varying hand grasp postures of the tool can interact to modulate subjects' reaction times while evaluating tool-object content. Specifically, perceptual judgment was delayed in the evaluation of functional tool-object pairings (Correct context) when the tool was non-functionally (Manipulative) grasped. Here, we hypothesized that this behavioral interference seen with the Manipulative posture would be due to increased and extended left parietofrontal activity possibly underlying motor simulations when resolving action conflict due to this particular grasp at time scales relevant to the behavioral data. Further, we hypothesized that this neural effect will be restricted to the Correct tool-object context wherein action affordances are at a maximum. 64-channel electroencephalography (EEG) was recorded from 16 right-handed subjects while viewing images depicting three classes of tool-object contexts: functionally Correct (e.g. coffee pot-coffee mug), functionally Incorrect (e.g. coffee pot-marker) and Spatial (coffee pot-milk). The Spatial context pairs a tool and object that would not functionally match, but may commonly appear in the same scene. These three contexts were modified by hand interaction: No Hand, Static Hand near the tool, Functional Hand posture and Manipulative Hand posture. The Manipulative posture is convenient for relocating a tool but does not afford a functional engagement of the tool on the target object. Subjects were instructed to visually assess whether the pictures displayed correct tool-object associations. EEG data was analyzed in time-voltage and time-frequency domains. Overall, Static Hand, Functional and Manipulative postures cause early activation (100-400ms post image onset) of parietofrontal areas, to varying intensity in each context, when compared to the No Hand control condition. However, when context is Correct, only the Manipulative Posture significantly induces extended neural responses, predominantly over right parietal and right frontal areas [400-600ms post image onset]. Significant power increase was observed in the theta band [4-8Hz] over the right frontal area, [0-500ms]. In addition, when context is Spatial, Manipulative posture alone significantly induces extended neural responses, over bilateral parietofrontal and left motor areas [400-600ms]. Significant power decrease occurred primarily in beta bands [12-16, 20-25Hz] over the aforementioned brain areas [400-600ms]. Here, we demonstrate that the neural processing of tool-object perception is sensitive to several factors. While both Functional and Manipulative postures in Correct context engage predominantly an early left parietofrontal circuit, the Manipulative posture alone extends the neural response and transitions to a late right parietofrontal network. This suggests engagement of a right neural system to evaluate action affordances when hand posture does not support action (Manipulative). Additionally, when tool-use context is ambiguous (Spatial context), there is increased bilateral parietofrontal activation and, extended neural response for the Manipulative posture. These results point to the existence of other networks evaluating tool-object associations when motoric affordances are not readily apparent and underlie corresponding delayed perceptual judgment in our prior behavioral data wherein Manipulative postures had exclusively interfered in judging tool-object content. Copyright © 2012 Elsevier Ltd. All rights reserved.
Real time lobster posture estimation for behavior research
NASA Astrophysics Data System (ADS)
Yan, Sheng; Alfredsen, Jo Arve
2017-02-01
In animal behavior research, the main task of observing the behavior of an animal is usually done manually. The measurement of the trajectory of an animal and its real-time posture description is often omitted due to the lack of automatic computer vision tools. Even though there are many publications for pose estimation, few are efficient enough to apply in real-time or can be used without the machine learning algorithm to train a classifier from mass samples. In this paper, we propose a novel strategy for the real-time lobster posture estimation to overcome those difficulties. In our proposed algorithm, we use the Gaussian mixture model (GMM) for lobster segmentation. Then the posture estimation is based on the distance transform and skeleton calculated from the segmentation. We tested the algorithm on a serials lobster videos in different size and lighting conditions. The results show that our proposed algorithm is efficient and robust under various conditions.
Dysphagia associated with cervical spine and postural disorders.
Papadopoulou, Soultana; Exarchakos, Georgios; Beris, Alexander; Ploumis, Avraam
2013-12-01
Difficulties with swallowing may be both persistent and life threatening for the majority of those who experience it irrespective of age, gender, and race. The purpose of this review is to define oropharyngeal dysphagia and describe its relationship to cervical spine disorders and postural disturbances due to either congenital or acquired disorders. The etiology and diagnosis of dysphagia are analyzed, focusing on cervical spine pathology associated with dysphagia as severe cervical spine disorders and postural disturbances largely have been held accountable for deglutition disorders. Scoliosis, kyphosis–lordosis, and osteophytes are the primary focus of this review in an attempt to elucidate the link between cervical spine disorders and dysphagia. It is important for physicians to be knowledgeable about what triggers oropharyngeal dysphagia in cases of cervical spine and postural disorders. Moreover, the optimum treatment for dysphagia, including the use of therapeutic maneuvers during deglutition, neck exercises, and surgical treatment, is discussed.
Role of different sensory inputs for maintenance of body posture in sitting rat and rabbit.
Deliagina, T; Beloozerova, I N; Popova, L B; Sirota, M G; Swadlow, H A; Grant, G; Orlovsky, G N
2000-10-01
In this paper, we describe the postural activity in sitting rats and rabbits. An animal was positioned on the platform that could be tilted in the frontal plane for up to +/-20-30 degrees, and postural corrections were video recorded. We found that in both rat and rabbit, the postural reactions led to stabilization of the dorsal-side-up trunk orientation. The result of this was that the trunk tilt constituted only approximately 50% (rat) and 25% (rabbit) of the platform tilt. In addition, in the rabbit the head orientation was also stabilized. Trunk stabilization persisted in the animals subjected to the bilateral labyrinthectomy and blindfolding, suggesting that the somatosensory input is primarily responsible for trunk stabilization. Trunk stabilization was due to extension of the limbs on the side moving down, and flexion of the opposite limbs. EMG recordings showed that the limb extension was caused by the active contraction of extensor muscles. We argue that signals from the Golgi tendon organs of the extensor muscles may considerably contribute to elicitation of postural corrective responses to the lateral tilt.
Neck muscle activation and head postures in common high performance aerial combat maneuvers.
Netto, Kevin J; Burnett, Angus F
2006-10-01
Neck injuries are common in high performance combat pilots and have been attributed to high gravitational forces and the non-neutral head postures adopted during aerial combat maneuvers. There is still little known about the pathomechanics of these injuries. Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels (1, 3, and 5) and four head postures (Neutral, Turn, Extension, and Check-6). Surface electromyography from neck and shoulder muscles was recorded in flight. Three-dimensional measures of head postures adopted in flight were estimated postflight with respect to end-range of the cervical spine using an electromagnetic tracking device. Mean muscle activation increased significantly with both increasing +Gz and non-neutral head postures. Check-6 at +5 Gz (mean activation of all muscles = 51% MVIC) elicited significantly greater muscle activation in most muscles when compared with Neutral, Extension, and Turn head postures. High levels of muscle co-contraction were evident in high acceleration and non-neutral head postures. Head kinematics showed Check-6 was closest to end-range in any movement plane (86% ROM in rotation) and produced the greatest magnitude of rotation in other planes. Turn and Extension showed a large magnitude of rotation with reference to end-range in the primary plane of motion but displayed smaller rotations in other planes. High levels of neck muscle activation and co-contraction due to high +Gz and head postures close to end range were evident in this study, suggesting the major influence of these factors on the pathomechanics of neck injuries in high performance combat pilots.
Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie
2014-09-01
The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals. Copyright © 2014 Elsevier B.V. All rights reserved.
Postural Orthostatic Tachycardia Syndrome during pregnancy: A systematic review of the literature.
Morgan, Kate; Chojenta, Catherine; Tavener, Meredith; Smith, Angela; Loxton, Deb
2018-05-09
Postural Orthostatic Tachycardia Syndrome is most commonly seen in women of child bearing age, however little is known about its effects in pregnancy. A systematic review was conducted in March 2015 and updated in February 2018. Medline, Embase, PsychInfo, CINHAL, and the Cochrane Library were searched from database inception. The ClinicalTrials.gov site and bibliographies were searched. MeSH and Emtree headings and keywords included; Postural Orthostatic Tachycardia Syndrome, Postural Tachycardia Syndrome, and were combined with pregnancy and pregnancy related subject headings and keywords. Searches were limited to English. Eligible articles contained key words within the title and or abstract. Articles were excluded if Postural Orthostatic Tachycardia Syndrome was not pre-existing. Eleven articles were identified as eligible for inclusion. Studies were appraised using the PRISMA 2009 guidelines. The overall quality of evidence was poor using the NHMRC Evidence Grading Matrix, which was attributed to small sample sizes and mostly observational studies, emphasizing the need for future high quality research. Findings in this review must be used with caution due to the poor quality of the literature available. Postural Orthostatic Tachycardia Syndrome should not be a contraindication to pregnancy. Symptom course is variable during pregnancy and the post-partum period. Continuing pre-conception medication may help symptoms, with no significant risks reported. Obstetric complications, not Postural Orthostatic Tachycardia Syndrome, should dictate mode of delivery. Postural Orthostatic Tachycardia Syndrome did not appear to affect the rate of adverse events. These results are important in determining appropriate management and care in this population. Copyright © 2018 Elsevier B.V. All rights reserved.
Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?
Gehlen, Manuel; Eklund, Anders; Kurtcuoglu, Vartan; Malm, Jan; Schmid Daners, Marianne
2017-08-01
Three different types of anti-siphon devices (ASDs) have been developed to counteract siphoning-induced overdrainage in upright posture. However, it is not known how the different ASDs affect CSF dynamics under the complex pressure environment seen in clinic due to postural changes. We investigated which ASDs can avoid overdrainage in upright posture best without leading to CSF accumulation. Three shunts each of the types Codman Hakim with SiphonGuard (flow-regulated), Miethke miniNAV with proSA (gravitational), and Medtronic Delta (membrane controlled) were tested. The shunts were compared on a novel in vitro setup that actively emulates the physiology of a shunted patient. This testing method allows determining the CSF drainage rates, resulting CSF volume, and intracranial pressure in the supine, sitting, and standing posture. The flow-regulated ASDs avoided increased drainage by closing their primary flow path when drainage exceeded 1.39 ± 0.42 mL/min. However, with intraperitoneal pressure increased in standing posture, we observed reopening of the ASD in 3 out of 18 experiment repetitions. The adjustable gravitational ASDs allow independent opening pressures in horizontal and vertical orientation, but they did not provide constant drainage in upright posture (0.37 ± 0.03 mL/min and 0.26 ± 0.03 mL/min in sitting and standing posture, respectively). Consequently, adaptation to the individual patient is critical. The membrane-controlled ASDs stopped drainage in upright posture. This eliminates the risk of overdrainage, but leads to CSF accumulation up to the volume observed without shunting when the patient is upright. While all tested ASDs reduced overdrainage, their actual performance will depend on a patient's specific needs because of the large variation in the way the ASDs influence CSF dynamics: while the flow-regulated shunts provide continuous drainage in upright posture, the gravitational ASDs allow and require additional adaptation, and the membrane-controlled ASDs show robust siphon prevention by a total stop of drainage.
Influence of neck postural changes on cervical spine motion and angle during swallowing
Kim, Jun Young; Hong, Jae Taek; Oh, Joo Seon; Jain, Ashish; Kim, Il Sup; Lim, Seong Hoon; Kim, Jun Sung
2017-01-01
Abstract Occipitocervical (OC) fixation in a neck retraction position could be dangerous due to the risk of postoperative dysphagia. No previous study has demonstrated an association between the cervical posture change and cervical spine motion/angle during swallowing. So, we aimed to analyze the influence of neck posture on the cervical spine motion and angle change during swallowing. Thirty-seven asymptomatic volunteers were recruited for participation this study. A videoflurographic swallowing study was performed in the neutral and retracted neck posture. We analyzed the images of the oral and pharyngeal phases of swallowing and compared the angle and the position changes of each cervical segment. In the neutral posture, C1 and C2 were flexed, while C5, C6, and C7 were extended. C3, C4, C5, C6, and C7 moved posteriorly. All cervical levels, except for C5, moved superiorly. In the retraction posture, C0 and C1 were flexed, while C6 was extended during swallowing. All cervical levels moved posteriorly. C1, C2, C3, and C4 moved superiorly. The comparison between 2 postures shows that angle change is significantly different between C0, C2, and C5. Posterior translation change is significantly different in the upper cervical spine (C0, C1, and C2) and C7. Superior movement is significantly different in C0. C0 segment is most significantly different between neutral and retraction posture in terms of angle and position change. These data suggest that C0 segment could be a critical level of compensation that allows swallowing even in the retraction neck posture regarding motion and angle change. So, it is important not to do OC fixation in retraction posture. Also, sparing C0 segment could provide some degree of freedom for the compensatory movement and angle change to avoid dysphagia after OC fixation. PMID:29137075
Yue, James J; Timm, Jens P; Panjabi, Manohar M; Jaramillo-de la Torre, Jorge
2007-01-15
The neutral zone (NZ) is a region of intervertebral motion around the neutral posture where little resistance is offered by the passive spinal column. The NZ appears to be a clinically important measure of spinal stability function. Its size may increase with injury to the spinal column, which in turn may result in spinal instability or low-back pain. Dynamic stabilization systems are designed to support and stabilize the spine while maintaining range of motion (ROM). The Stabilimax NZ device has been designed to reduce the NZ after spinal injury to treat pain while preserving ROM.
Caribbean parkinsonism and other atypical parkinsonian disorders.
Tolosa, Eduardo; Calandrella, Daniela; Gallardo, Marisol
2004-05-01
Atypical parkinsonism (AP) is a term applied to disorders characterized by parkinsonism that evolves rapidly, with poor or transient response to levodopa, or has other associated features such as early falls and postural instability, early autonomic failure, supranuclear gaze palsy, pyramidal or cerebellar signs, alien hand syndrome or severe ideomotor apraxia. The most common AP are multiple system atrophy, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Other APs include Caribbean parkinsonism (CP) and parkinsonism-dementia complex of Guam (PDC). In this review we provide an update in etiology, neuropathology, diagnosis and treatment of atypical parkinsonian disorders associated with protein tau deposit, also known as tauopathies.
Zolpidem in progressive supranuclear palsy.
Dash, Sandip K
2013-01-01
Progressive supranuclear palsy (PSP) is a progressive neurodegenerative disorder, characterized by motor symptoms, postural instability, personality changes, and cognitive impairment. There is no effective treatment for this disorder. Reduced neurotransmission of GABA in the striatum and globus pallidus may contribute to the symptoms of motor and cognitive symptoms seen in PSP. Zolpidem is a GABA agonist of the benzodiazepine subreceptor BZ1. Here a nondiabetic, normotensive case of PSP is (Progressive Supranuclear Palsy) described, which showed improvement in swallowing, speech, and gaze paresis after zolpidem therapy and possible mechanism of actions are discussed. However, more trials are needed with large number of patients to confirm the effectiveness of zolpidem in progressive supranuclear palsy.
NASA Astrophysics Data System (ADS)
Okunribido, O. O.; Magnusson, M.; Pope, M. H.
2006-12-01
A cross-sectional study was conducted to investigate the relative role of whole-body vibration (WBV), posture and manual materials handling (MMH) as risk factors for low back pain (LBP). Using a validated questionnaire, information about health history, posture and MMH performed was obtained from 394 workers who drove vehicles as part of their job (according to seven predefined occupational groups) and 59 who did not. The intention was to reflect a wide range of exposures with the lower end of the exposure spectrum defined as that of non-manual workers who do not drive as part of their job. Based on the questionnaire responses and direct measurements of vibration exposure, personal aggregate measures of exposure were computed for each of the respondents, i.e., total vibration dose (TVD), posture score (PS) and manual handling score (MHS). Odds ratios (and 95% confidence intervals) for back pain were obtained from logistics regression models and log-linear backward elimination analysis was performed. The findings showed that 'combined exposure' due to posture and one or both of vibration and MMH, rather than the individual exposure to one of the three factors (WBV, posture, MMH) is the main contributor of the increased prevalence of LBP.
Dynamic postural stability for double-leg drop landing.
Niu, Wenxin; Zhang, Ming; Fan, Yubo; Zhao, Qinping
2013-01-01
Dynamic postural stability has been widely studied for single-leg landing, but seldom considered for double-leg landing. This study aimed to evaluate the dynamic postural stability and the influence mechanism of muscle activities during double-leg drop landing. Eight recreationally active males and eight recreationally active females participated in this study and dropped individually from three heights (0.32 m, 0.52 m, and 0.72 m). Ground reaction force was recorded to calculate the time to stabilisation. Electromyographic activities were recorded for selected lower-extremity muscles. A multivariate analysis of variance was carried out and no significant influence was found in time to stabilisation between genders or limb laterals (P > 0.05). With increasing drop height, time to stabilisation decreased significantly in two horizontal directions and the lower-extremity muscle activities were enhanced. Vertical time to stabilisation was not significantly influenced by drop height. Dynamic postural stability improved by neuromuscular change more than that required due to the increase of drop height. Double-leg landing on level ground is a stable movement, and the body would often be injured before dynamic postural stability is impaired. It is understandable to protect tissues from mechanical injuries by the sacrifice of certain dynamic postural stability in the design of protective devices or athlete training.
Task and postural factors are related to back pain in helicopter pilots.
Bridger, R S; Groom, M R; Jones, H; Pethybridge, R J; Pullinger, N
2002-08-01
A previous survey by Shear et al. revealed a high prevalence of back pain in Royal Navy helicopter aircrew, compared with controls. It was recommended that a second survey be undertaken, taking account of flying tasks and cockpit ergonomics. This was the purpose of the present investigation. A questionnaire containing items on back pain and posture was circulated to all 246 acting pilots, with returns of 75%. The questionnaire sought information on pain in both the flying pilot and co-pilot/instructor roles. The 12-mo prevalence of back pain was 80%. Task-related back pain was greatest in instrument flying (72%) and least in the co-pilot and instructor roles (24%). Self-ratings of posture indicated that forward flexed trunk postures predominated in the flying roles and were most extreme in instrument flying. In non-flying roles, symmetrical, reclining postures were more often reported. No demographic or psychosocial variables were significantly related to back pain prevalence or disability. Much of the back pain experienced by helicopter pilots appears to be due to the posture needed to operate the cyclic and collective controls. In instrument flying, it is suggested that the visual demands of scanning the displays may exacerbate the pain by causing the pilot to lean further forward.
Pérez-de la Cruz, S
One of the consequences of poor postural control in children with cerebral palsy is hip dislocation. This is due to the lack of weight-bearing in the sitting and standing positions. Orthotic aids can be used to prevent onset and/or progression. The aim of this study is to analyse the effectiveness of positioning systems in achieving postural control in patients with cerebral palsy, and discuss these findings with an emphasis on what may be of interest in the field of neurology. We selected a total of 18 articles on interventions in cerebral palsy addressing posture and maintenance of ideal postures to prevent deformities and related problems. The main therapeutic approaches employed combinations of botulinum toxin and orthoses, which reduced the incidence of hip dislocation although these results were not significant. On the other hand, using positioning systems in 3 different positions decreases use of botulinum toxin and surgery in children under 5 years old. The drawback is that these systems are very uncomfortable. Postural control systems helps control hip deformities in children with cerebral palsy. However, these systems must be used for prolonged periods of time before their effects can be observed. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Song, Kyeongtak; Rhodes, Evan; Wikstrom, Erik A
2018-04-01
Visual, vestibular, and somatosensory systems contribute to postural control. Chronic ankle instability (CAI) patients have been observed to have a reduced ability to dynamically shift their reliance among sources of sensory information and rely more heavily on visual information during a single-limb stance relative to uninjured controls. Balance training is proven to improve postural control but there is a lack of evidence regarding the ability of balance training programs to alter the reliance on visual information in CAI patients. Our objective was to determine if balance training alters the reliance on visual information during static stance in CAI patients. The PubMed, CINAHL, and SPORTDiscus databases were searched from their earliest available date to October 2017 using a combination of keywords. Study inclusion criteria consisted of (1) using participants with CAI; (2) use of a balance training intervention; and (3) calculation of an objective measure of static postural control during single-limb stance with eyes open and eyes closed. Sample sizes, means, and standard deviations of single-leg balance measures for eyes-open and eyes-closed testing conditions before and after balance training were extracted from the included studies. Eyes-open to eyes-closed effect sizes [Hedges' g and 95% confidence intervals (CI)] before and after balance training were calculated, and between-study variability for heterogeneity and potential risks of publication bias were examined. Six studies were identified. The overall eyes-open to eyes-closed effect size difference between pre- and post-intervention assessments was not significant (Hedges' g effect size = 0.151, 95% CI = - 0.151 to 0.453, p = 0.26). This result indicates that the utilization of visual information in individuals with CAI during the single-leg balance is not altered after balance training. Low heterogeneity (Q(5) = 2.96, p = 0.71, I 2 = 0%) of the included studies and no publication bias were found. On the basis of our systematic review with meta-analysis, it appears that traditional balance training protocols do not alter the reliance on visual information used by CAI patients during a single-leg stance.
Allain, Hervé; Bentué-Ferrer, Danièle; Polard, Elisabeth; Akwa, Yvette; Patat, Alain
2005-01-01
The aim of this review is to establish the relationship between treatment with hypnotics and the risk of postural instability and as a consequence, falls and hip fractures, in the elderly. A review of the literature was performed through a search of the MEDLINE, Ingenta and PASCAL databases from 1975 to 2005. We considered as hypnotics only those drugs approved for treating insomnia, i.e. some benzodiazepines and the more recently launched 'Z'-compounds, i.e. zopiclone, zolpidem and zaleplon. Large-scale surveys consistently report increases in the frequency of falls and hip fractures when hypnotics are used in the elderly (2-fold risk). Benzodiazepines are the major class of hypnotics involved in this context; falls and fractures in patients taking Z-compounds are less frequently reported, and in this respect, zolpidem is considered as at risk in only one study. It is important to note, however, that drug adverse effect relationships are difficult to establish with this type of epidemiological data-mining. On the other hand, data obtained in laboratory settings, where confounding factors can be eliminated, prove that benzodiazepines are the most deleterious hypnotics at least in terms of their effects on body sway. Z-compounds are considered safer, probably because of their pharmacokinetic properties as well as their selective pharmacological activities at benzodiazepine-1 (BZ(1)) receptors. The effects of hypnotics on balance, gait and equilibrium are the consequence of differential negative impacts on vigilance and cognitive functions, and are highly dose- and time-dependent. Z-compounds have short half-lives and have less cognitive and residual effects than older medications. Some practical rules need to be followed when prescribing hypnotics in order to prevent falls and hip fractures as much as possible in elderly insomniacs, whether institutionalised or not. These are: (i) establish a clear diagnosis of the sleep disorder; (ii) take into account chronic conditions leading to balance and gait difficulties (motor and cognitive status); (iii) search for concomitant prescription of psychotropics and sedatives; (iv) use half the recommended adult dosage; and (v) declare any adverse effect to pharmacovigilance centres. Comparative pharmacovigilance studies focused on the impact of hypnotics on postural stability are very much needed.
A Novel Posture for Better Differentiation Between Parkinson's Tremor and Essential Tremor
Zhang, Bin; Huang, Feifei; Liu, Jun; Zhang, Dingguo
2018-01-01
Due to a lack of reliable non-invasive bio-markers, misdiagnosis between Parkinson's disease and essential tremor is common. Although some assistive engineering approaches have been proposed, little acceptance has been obtained for these methods lack well-studied mechanisms and involve operator-dependent procedures. Aiming at a better differentiation between the two tremor causes, we present a novel posture, termed arm-rested posture, to ameliorate the quality of recorded tremor sequences. To investigate its efficacy, the posture was compared with another common posture, called arm-stretching posture, in fundamental aspects of tremor intensity and dominant frequency. A tremor-affected cohort comprising 50 subjects (PD = 26, ET = 24) with inhomogeneous tremor manifestation were recruited. From each subject, acceleration data of 5 min in terms of each posture were recorded. In the overall process, no operator-dependent procedures, such as data screening, was employed. The differentiation performance of the two postures were assessed by the index of discrimination coefficient and a receiver operating characteristic analysis based on binary logistic regression. The results of the differentiation assessment consistently demonstrate a better performance with the arm-rested posture than with the arm-stretching posture. As a by-product, factors of disease stage (incipient, progressed stage), spectrum estimate (PSD, bispectrum) and recording length (5–300s) were investigated. The significant effect of disease stage was only found in PD in terms of tremor intensity [F(1, 516) = 7.781, P < 0.05]. The bispectrum estimate was found to have better performance than the PSD estimate in extracting dominant frequency in terms of the discrimination coefficient. By extending the recording length, we noticed an increase in the performance of dominant frequency. The best result of the arm-rested posture was obtained with the maximum recording length of 300 s (area under the curve: 0.944, sensitivity: 92%, 1-specificity: 0%, accuracy: 96%), which is better than that of the arm-stretching posture in the same condition (area under the curve: 0.734, sensitivity: 54%, 1-specificity: 12%, accuracy: 72%). Thus, we conclude that the arm-rested posture can assist in improving tremor differentiation between Parkinson's disease and essential tremor and may act as a universal tool to analyze tremor for both clinical and research purpose. PMID:29867328
Jehu, Deborah A; Paquet, Nicole; Lajoie, Yves
2016-12-01
Improved performance may be inherent due to repeated exposure to a testing protocol. However, limited research has examined this phenomenon in postural control. The aim was to determine the influence of repeated administration of a dual-task testing protocol once per week for 5 weeks on postural sway and reaction time. Ten healthy older adults (67.0 ± 6.9 years) stood on a force plate for 30 s in feet apart and semi-tandem positions while completing simple reaction time (SRT) and choice reaction time (CRT) tasks. They were instructed to stand as still as possible while verbally responding as fast as possible to the stimuli. No significant differences in postural sway were shown over time (p > 0.05). A plateau in average CRT emerged as the time effect revealed longer CRT during session 1 compared to sessions 3-5 (p < 0.05). Furthermore, the time effect for within-subject variability of CRT uncovered no plateaus as it was less variable in session 5 than sessions 1-4 (p < 0.05). The lack of a plateau in variability of CRT may have emerged as older adults may require longer to reach optimal performance potential in a dual-task context. Postural sway and SRT were stable over the 5 testing sessions, but variability of CRT continued to improve over time. These findings form a basis for future studies to examine performance-related improvements due to repeated exposure to a testing protocol in a dual-task setting.
The effect of finite Larmor radius corrections on Jeans instability of quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Prerana; Chhajlani, R. K.
2013-09-15
The influence of finite Larmor radius (FLR) effects on the Jeans instability of infinitely conducting homogeneous quantum plasma is investigated. The quantum magnetohydrodynamic (QMHD) model is used to formulate the problem. The contribution of FLR is incorporated to the QMHD set of equations in the present analysis. The general dispersion relation is obtained analytically using the normal mode analysis technique which is modified due to the contribution of FLR corrections. From general dispersion relation, the condition of instability is obtained and it is found that Jeans condition is modified due to quantum effect. The general dispersion relation is reduced formore » both transverse and longitudinal mode of propagations. The condition of gravitational instability is modified due to the presence of both FLR and quantum corrections in the transverse mode of propagation. In longitudinal case, it is found to be unaffected by the FLR effects but modified due to the quantum corrections. The growth rate of Jeans instability is discussed numerically for various values of quantum and FLR corrections of the medium. It is found that the quantum parameter and FLR effects have stabilizing influence on the growth rate of instability of the system.« less
Protective effect of prone posture against hypergravity-induced arterial hypoxaemia in humans
Rohdin, M; Petersson, J; Mure, M; Glenny, R W; Lindahl, S G E; Linnarsson, D
2003-01-01
Patients with acute respiratory distress syndrome have increased lung tissue weight and therefore an increased hydrostatic pressure gradient down the lung. Also, they have a better arterial oxygenation in prone (face down) than in supine (face up) posture. We hypothesized that this effect of the direction of gravity also existed in healthy humans, when increased hydrostatic gradients were induced by hypergravity. Ten healthy subjects were studied in a human centrifuge while exposed to 1 or 5 G in anterio-posterior (supine) or posterio-anterior (prone) direction. We measured blood gases using remote-controlled sampling and gas exchange by mass spectrometry. Hypergravity led to marked impairments of arterial oxygenation in both postures and more so in supine posture. At 5 G, the arterial oxygen saturation was 84.6 ± 1.2 % (mean ±s.e.m.) in supine and 89.7 ± 1.4 % in prone posture (P < 0.001 for supine vs. prone). Ventilation and alveolar PO2 were increased at 5 G and did not differ between postures. The alveolar-to-arterial PO2 difference increased at 5 G to 8.0 ± 0.2 kPa and 6.6 ± 0.3 kPa in supine and prone postures (P = 0.003). Arterial oxygenation was less impaired in prone during hypergravity due to a better-preserved alveolo-arterial oxygen transport. We speculate that mammals have developed a cardiopulmonary structure that favours function with the gravitational vector in the posterio-anterior direction. PMID:12598589
U.S. Force Posture Strategy in the Asia Pacific Region: An Independent Assessment
2012-06-27
the United States, rebalancing efforts after Operations Enduring Freedom and Iraqi Freedom/New Dawn have several benefits, allowing the Army to...of the March 2011 disaster at Fukushima , though a territorial dispute over islands north of Hokkaido continues to hinder bilateral cooperation...with a report due 180 days after enactment, or by the end of June, 2012. At one level, PACOM force posture is tied to current deployments and
Suzuki, Yasuyuki; Nomura, Taishin; Casadio, Maura; Morasso, Pietro
2012-10-07
Human upright posture, as a mechanical system, is characterized by an instability of saddle type, involving both stable and unstable dynamic modes. The brain stabilizes such system by generating active joint torques, according to a time-delayed neural feedback control. What is still unsolved is a clear understanding of the control strategies and the control mechanisms that are used by the central nervous system in order to stabilize the unstable posture in a robust way while maintaining flexibility. Most studies in this direction have been limited to the single inverted pendulum model, which is useful for formalizing fundamental mechanical aspects but insufficient for addressing more general issues concerning neural control strategies. Here we consider a double inverted pendulum model in the sagittal plane with small passive viscoelasticity at the ankle and hip joints. Despite difficulties in stabilizing the double pendulum model in the presence of the large feedback delay, we show that robust and flexible stabilization of the upright posture can be established by an intermittent control mechanism that achieves the goal of stabilizing the body posture according to a "divide and conquer strategy", which switches among different controllers in different parts of the state space of the double inverted pendulum. Remarkably, it is shown that a global, robust stability is achieved even if the individual controllers are unstable and the information exploited for switching from one controller to another is severely delayed, as it happens in biological reality. Moreover, the intermittent controller can automatically resolve coordination among multiple active torques associated with the muscle synergy, leading to the emergence of distinct temporally coordinated active torque patterns, referred to as the intermittent ankle, hip, and mixed strategies during quiet standing, depending on the passive elasticity at the hip joint. Copyright © 2012 Elsevier Ltd. All rights reserved.
Postural adaptations to long-term training in Prader-Willi patients.
Capodaglio, Paolo; Cimolin, Veronica; Vismara, Luca; Grugni, Graziano; Parisio, Cinzia; Sibilia, Olivia; Galli, Manuela
2011-05-15
Improving balance and reducing risk of falls is a relevant issue in Prader-Willi Syndrome (PWS). The present study aims to quantify the effect of a mixed training program on balance in patients with PWS. Eleven adult PWS patients (mean age: 33.8 ± 4.3 years; mean BMI: 43.3 ± 5.9 Kg/m2) attended a 2-week training program including balance exercises during their hospital stay. At discharge, Group 1 (6 patients) continued the same exercises at home for 6 months, while Group 2 (5 patients) quitted the program. In both groups, a low-calorie, well-balanced diet of 1.200 kcal/day was advised. They were assessed at admission (PRE), after 2 weeks (POST1) and at 6-month (POST2). The assessment consisted of a clinical examination, video recording and 60-second postural evaluation on a force platform. Range of center of pressure (CoP) displacement in the antero-posterior direction (RANGEAP index) and the medio-lateral direction (RANGEML index) and its total trajectory length were computed. At POST1, no significant changes in all of the postural parameters were observed. At completion of the home program (POST2), the postural assessment did not reveal significant modifications. No changes in BMI were observed in PWS at POST2. Our results showed that a long-term mixed, but predominantly home-based training on PWS individuals was not effective in improving balance capacity. Possible causes of the lack of effectiveness of our intervention include lack of training specificity, an inadequate dose of exercise, an underestimation of the neural and sensory component in planning rehabilitation exercise and failed body weight reduction during the training. Also, the physiology of balance instability in these patients may possibly compose a complex puzzle not affected by our exercise training, mainly targeting muscle weakness.
Postural adaptations to long-term training in Prader-Willi patients
2011-01-01
Background Improving balance and reducing risk of falls is a relevant issue in Prader-Willi Syndrome (PWS). The present study aims to quantify the effect of a mixed training program on balance in patients with PWS. Methods Eleven adult PWS patients (mean age: 33.8 ± 4.3 years; mean BMI: 43.3 ± 5.9 Kg/m2) attended a 2-week training program including balance exercises during their hospital stay. At discharge, Group 1 (6 patients) continued the same exercises at home for 6 months, while Group 2 (5 patients) quitted the program. In both groups, a low-calorie, well-balanced diet of 1.200 kcal/day was advised. They were assessed at admission (PRE), after 2 weeks (POST1) and at 6-month (POST2). The assessment consisted of a clinical examination, video recording and 60-second postural evaluation on a force platform. Range of center of pressure (CoP) displacement in the antero-posterior direction (RANGEAP index) and the medio-lateral direction (RANGEML index) and its total trajectory length were computed. Results At POST1, no significant changes in all of the postural parameters were observed. At completion of the home program (POST2), the postural assessment did not reveal significant modifications. No changes in BMI were observed in PWS at POST2. Conclusions Our results showed that a long-term mixed, but predominantly home-based training on PWS individuals was not effective in improving balance capacity. Possible causes of the lack of effectiveness of our intervention include lack of training specificity, an inadequate dose of exercise, an underestimation of the neural and sensory component in planning rehabilitation exercise and failed body weight reduction during the training. Also, the physiology of balance instability in these patients may possibly compose a complex puzzle not affected by our exercise training, mainly targeting muscle weakness. PMID:21575153
Furian, Thimm Christoph; Rapp, Walter; Eckert, Stefanie; Wild, Michael; Betsch, Marcel
2013-02-22
Children's posture has been of growing concern due to observations that it seems to be impaired compared to previous generations. So far there is no reference data for spinal posture and pelvic position in healthy children available. Purpose of this pilot study was to determine rasterstereographic posture values in children during their second growth phase. Three hundred and forty-five pupils were measured with a rasterstereographic device in a neutral standing position with hanging arms. To further analyse for changes in spinal posture during growth, the children were divided into 12-month age clusters. A mean kyphotic angle of 47.1°±7.5 and a mean lordotic angle of 42.1°±9.9 were measured. Trunk imbalance in girls (5.85 mm±0.74) and boys (7.48 mm± 0.83) varied only little between the age groups, with boys showing slightly higher values than girls. The trunk inclination did not show any significant differences between the age groups in boys or girls. Girls' inclination was 2.53°±1.96 with a tendency to decreasing angles by age, therefore slightly smaller compared to boys (2.98°±2.18). Lateral deviation (4.8 mm) and pelvic position (tilt: 2.75 mm; torsion: 1.53°; inclination: 19.8°±19.8) were comparable for all age groups and genders. This study provides the first systematic rasterstereographic analysis of spinal posture in children between 6 and 11 years. With the method of rasterstereography a reliable three-dimensional analysis of spinal posture and pelvic position is possible. Spinal posture and pelvic position does not change significantly with increasing age in this collective of children during the second growth phase.
Wood, Daniel K; Chouinard, Philippe A; Major, Alex J; Goodale, Melvyn A
2017-12-01
Most object-directed limb movements can be carried out with a comfortable grasp posture. However, the orientation of an object relative to our bodies can sometimes lead us to select an uncomfortable or awkward grasp posture due to limitations imposed by the biomechanics of the arm. In a series of experiments, we identified a network of cortical areas that are engaged during the selection of movement strategies. Neurologically intact participants and two brain-damaged patients with overlapping lesions in the right posterior superior parietal lobule (pSPL) performed a grasp posture selection task in which biomechanical constraints were the primary consideration for selecting an action. The task induced states of bistable actions whereby the same stimulus gave rise to categorically different grasp postures. In a behavioral experiment, the two patients displayed a large range of manual bistability with the contralesional hand, resulting in a higher incidence of awkward grasping postures. In neurologically intact participants, a separate functional magnetic resonance imaging (fMRI) experiment revealed activation of a parieto-frontal network, which included the posterior intraparietal sulcus (pIPS) along the banks of the pSPL that was parametrically modulated by the degree of bistability in grasp posture selection. Superimposing this activation over the patients' structural MRIs revealed that the pIPS/pSPL activation in the neurologically intact participants overlapped with lesioned cortical tissue in both patients; all other areas of activation overlapped with intact cortical tissue in the patients. These results provide converging evidence that the posterior parietal cortex plays a critical role in selecting biomechanically appropriate postures during reach-to-grasp behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Age-related effects on postural control under multi-task conditions.
Granacher, Urs; Bridenbaugh, Stephanie A; Muehlbauer, Thomas; Wehrle, Anja; Kressig, Reto W
2011-01-01
Changes in postural sway and gait patterns due to simultaneously performed cognitive (CI) and/or motor interference (MI) tasks have previously been reported and are associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of a CI and/or MI task on static and dynamic postural control in young and elderly subjects, and to find out whether there is an association between measures of static and dynamic postural control while concurrently performing the CI and/or MI task. A total of 36 healthy young (n = 18; age: 22.3 ± 3.0 years; BMI: 21.0 ± 1.6 kg/m(2)) and elderly adults (n = 18; age: 73.5 ± 5.5 years; BMI: 24.2 ± 2.9 kg/m(2)) participated in this study. Static postural control was measured during bipedal stance, and dynamic postural control was obtained while walking on an instrumented walkway. Irrespective of the task condition, i.e. single-task or multiple tasks, elderly participants showed larger center-of-pressure displacements and greater stride-to-stride variability than younger participants. Associations between measures of static and dynamic postural control were found only under the single-task condition in the elderly. Age-related deficits in the postural control system seem to be primarily responsible for the observed results. The weak correlations detected between static and dynamic measures could indicate that fall-risk assessment should incorporate dynamic measures under multi-task conditions, and that skills like erect standing and walking are independent of each other and may have to be trained complementarily. Copyright © 2010 S. Karger AG, Basel.
Sakata, K; Yoshimura, N; Tanabe, K; Kito, K; Nagase, K; Iida, H
2017-02-01
Maternal hypotension is a common complication during cesarean section performed under spinal anesthesia. Changes in maternal heart rate with postural changes or values of heart rate variability have been reported to predict hypotension. Therefore, we hypothesized that changes in heart rate variability due to postural changes can predict hypotension. A total of 45 women scheduled to undergo cesarean section under spinal anesthesia were enrolled. A postural change test was performed the day before cesarean section. The ratio of the power of low and high frequency components contributing to heart rate variability was assessed in the order of supine, left lateral, and supine. Patients who exhibited a ⩾two-fold increase in the low-to-high frequency ratio when moving to supine from the lateral position were assigned to the postural change test-positive group. According to the findings of the postural change test, patients were assigned to the positive (n=22) and negative (n=23) groups, respectively. Hypotension occurred in 35/45 patients, of whom 21 (60%) were in the positive group and 14 (40%) were in the negative group. The incidence of hypotension was greater in the positive group (P<0.01). The total dose of ephedrine was greater in the positive group (15±11 vs. 7±7mg, P=0.005). The area under the receiver operating characteristic curve was 0.76 for the postural change test as a predictor of hypotension. The postural change test with heart rate variability analysis may be used to predict the risk of hypotension during spinal anesthesia for cesarean section. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neurotology symptoms at referral to vestibular evaluation
2013-01-01
Background Dizziness-vertigo is common in adults, but clinical providers may rarely diagnose vestibular impairment and referral could be delayed. To assess neurotology symptoms (including triggers) reported by patients with peripheral vestibular disease, during the year just before their referral to vestibular evaluation. Methods 282 patients with peripheral vestibular disease and 282 control subjects accepted to participate. They had no middle ear, retinal, neurological, psychiatric, autoimmune or autonomic disorders. They reported their symptoms by a standardized questionnaire along with their anxiety/depression symptoms. Results Patients were referred after months or years from the onset of their symptoms, 24% of them reported frequent falls with a long clinical evolution; 10% of them reported no vertigo but instability related to specific triggers; 86% patients and 12% control subjects reported instability when moving the head rapidly and 79% patients and 6% control subjects reported instability when changing posture. Seven out of the 9 symptoms explored by the questionnaire allowed the correct classification of circa 95% of the participants (Discriminant function analysis, p < 0.001). High blood pressure, dyslipidemia and anxiety/depression symptoms showed a mild correlation with the total score of symptoms (multiple R2 =0.18, p < 0.001). Conclusions Late referral to vestibular evaluation may underlie a history of frequent falls; some patients may not report vertigo, but instability related to specific triggers, which could be useful to prompt vestibular evaluation. High blood pressure, dyslipidemia and anxiety/depression symptoms may have a mild influence on the report of symptoms of vestibular disease in both, patients and control subjects. PMID:24279682
Lateral stepping for postural correction in Parkinson's disease.
King, Laurie A; Horak, Fay B
2008-03-01
To characterize the lateral stepping strategies for postural correction in patients with Parkinson's disease (PD) and the effect of their anti-parkinson medication. Observational study. Outpatient neuroscience laboratory. Thirteen participants with idiopathic PD in their on (PD on) and off (PD off) levodopa state and 14 healthy elderly controls. Movable platform with lateral translations of 12 cm at 14.6 cm/s ramp velocity. The incidence and characteristics of 3 postural strategies were observed: lateral side-step, crossover step, or no step. Corrective stepping was characterized by latency to step after perturbation onset, step velocity, and step length and presence of an anticipatory postural adjustment (APA). Additionally, percentages of trials resulting in falls were identified for each group. Whereas elderly control participants never fell, PD participants fell in 24% and 35% of trials in the on and off medication states, respectively. Both PD and control participants most often used a lateral side-step strategy; 70% (control), 67% (PD off), and 73% (PD on) of all trials, respectively. PD participants fell most often when using a crossover strategy (75% of all crossover trials) or no-step strategy (100% of all no-step trials). In the off medication state, PD participants' lateral stepping strategies were initiated later than controls (370+/-37 ms vs 280+/-10 ms, P<.01), and steps were smaller (254+/-20 mm vs 357+/-17 mm, P<.01) and slower (0.99+/-0.08 m/s vs 1.20+/-0.07 m/s, P<.05). No differences were found between the PD off versus PD on state in the corrective stepping characteristics. Unlike control participants, PD participants often (56% of side-step strategy trials) failed to activate an APA before stepping, although their APAs, when present, were of similar latency and magnitude as for control participants. Levodopa on or off state did not significantly affect falls, APAs, or lateral step latency, velocity, or amplitude (P>.05). PD participants showed significantly more postural instability and falls than age-matched controls when stepping was required for postural correction in response to lateral disequilibrium. Although PD participants usually used a similar lateral stepping strategy as controls in response to lateral translations, lack of an anticipatory lateral weight shift, and bradykinetic characteristics of the stepping responses help explain the greater rate of falls in participants with PD. Differences were not found between the levodopa on and off states. The results suggest that rehabilitation aimed at improving lateral stability in PD should include facilitating APAs before a lateral side-stepping strategy with faster and larger steps to recover equilibrium.
Importance of perceptual representation in the visual control of action
NASA Astrophysics Data System (ADS)
Loomis, Jack M.; Beall, Andrew C.; Kelly, Jonathan W.; Macuga, Kristen L.
2005-03-01
In recent years, many experiments have demonstrated that optic flow is sufficient for visually controlled action, with the suggestion that perceptual representations of 3-D space are superfluous. In contrast, recent research in our lab indicates that some visually controlled actions, including some thought to be based on optic flow, are indeed mediated by perceptual representations. For example, we have demonstrated that people are able to perform complex spatial behaviors, like walking, driving, and object interception, in virtual environments which are rendered visible solely by cyclopean stimulation (random-dot cinematograms). In such situations, the absence of any retinal optic flow that is correlated with the objects and surfaces within the virtual environment means that people are using stereo-based perceptual representations to perform the behavior. The fact that people can perform such behaviors without training suggests that the perceptual representations are likely the same as those used when retinal optic flow is present. Other research indicates that optic flow, whether retinal or a more abstract property of the perceptual representation, is not the basis for postural control, because postural instability is related to perceived relative motion between self and the visual surroundings rather than to optic flow, even in the abstract sense.
Haran, F Jay; Slaboda, Jill C; King, Laurie A; Wright, W Geoff; Houlihan, Daniel; Norris, Jacob N
2016-04-01
This study evaluated the utility of the Balance Error Scoring System (BESS) and the Sensory Organization Test (SOT) as tools for the screening and monitoring of Service members (SMs) with mild traumatic brain injury (mTBI) in a deployed setting during the acute and subacute phases of recovery. Patient records (N = 699) were reviewed for a cohort of SMs who sustained a blast-related mTBI while deployed to Afghanistan and were treated at the Concussion Restoration Care Center (CRCC) at Camp Leatherneck. On initial intake into the CRCC, participants completed two assessments of postural control, the BESS, and SOT. SMs with mTBI performed significantly worse on the BESS and SOT when compared with comparative samples. When the SOT data were further examined using sensory ratios, the results indicated that postural instability was primarily a result of vestibular and visual integration dysfunction (r > 0.62). The main finding of this study was that the sensitivity of the SOT composite score (50-58%) during the acute phase was higher than previous sensitivities found in the sports medicine literature for impact-related trauma.
NASA Technical Reports Server (NTRS)
Leigh, R. J.; Brandt, T.
1993-01-01
Conventional views of the vestibulo-ocular reflex (VOR) have emphasized testing with caloric stimuli and by passively rotating patients at low frequencies in a chair. The properties of the VOR tested under these conditions differ from the performance of this reflex during the natural function for which it evolved--locomotion. Only the VOR (and not visually mediated eye movements) can cope with the high-frequency angular and linear perturbations of the head that occur during locomotion; this is achieved by generating eye movements at short latency (< 16 msec). Interpretation of vestibular testing is enhanced by the realization that, although the di- and trisynaptic components of the VOR are essential for this short-latency response, the overall accuracy and plasticity of the VOR depend upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously encode inputs from the labyrinthine semicircular canals and otoliths, as well as from the visual and somatosensory systems. The central vestibular pathways branch to contact vestibular cortex (for perception) and the spinal cord (for control of posture). Thus, the vestibular nuclei basically coordinate the stabilization of gaze and posture, and contribute to the perception of verticality and self-motion. Consequently, brainstem disorders that disrupt the VOR cause not just only nystagmus, but also instability of posture (eg, increased fore-aft sway in patients with downbeat nystagmus) and disturbance of spatial orientation (eg, tilt of the subjective visual vertical in Wallenberg's syndrome).
Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space
NASA Technical Reports Server (NTRS)
Baisch, J. F.; Wolfram, G.; Beck, L.; Drummer, C.; Stormer, I.; Buckey, J.; Blomqvist, G.
2000-01-01
In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.
Khan, Sadaquate; Mooney, Lucy; Plaha, Puneet; Javed, Shazia; White, Paul; Whone, Alan L; Gill, Steven S
2011-04-01
Axial symptoms including postural instability, falls and failure of gait initiation are some of the most disabling motor symptoms of Parkinson's disease (PD). We performed bilateral deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) in combination with the caudal zona incerta (cZi) in order to determine their efficacy in alleviating these symptoms. Seven patients with predominant axial symptoms in both the 'on' and 'off' medication states underwent bilateral cZi and PPN DBS. Motor outcomes were assessed using the motor component of the Unified Parkinson's Disease Rating Scale (UPDRS 3) and a composite axial subscore was derived from items 27, 28, 29 and 30 (arising from chair, posture, gait and postural stability). Quality of life was measured using the PDQ39. Comparisons were made between scores obtained at baseline and those at a mean follow-up of 12 months. In both the off and on medication states, a statistically significant improvement in the UPDRS part 3 score was achieved by stimulation of the PPN, cZi and both in combination. In the off medication state, our composite axial subscore of the UPDRS part 3 improved with stimulation of the PPN, cZi and both in combination. The composite axial subscore, in the 'on' medication state, however, only showed a statistically significant improvement when a combination of cZi and PPN stimulation was used. This study provides evidence that a combination of PPN and cZi stimulation can achieve a significant improvement in the hitherto untreatable 'on' medication axial symptoms of PD.
Aboutorabi, Atefeh; Arazpour, Mokhtar; Ahmadi Bani, Monireh; Keshtkar, Abbas Ali
2018-01-31
Thoracic hyperkyphosis is one of the most common spinal disorders in older people, creating impairment, postural instability, gait disorders and a reduced quality of life. The use of spinal orthoses and/or postural taping may be feasible conservative interventions, but their efficacy is uncertain. The aim of this review is therefore to investigate the effectiveness of spinal orthoses and taping on the balance and gait of older people with hyperkyphosis. We will include randomised controlled trials and clinical trial studies which assess the efficacy of spinal orthoses and taping using the WHO International Classification of Functioning, Disability and Health (ICF) outcome measures in older people with hyperkyphosis of the thoracic spine. A search will be performed in PubMed, SCOPUS, ISI Web of Knowledge, CENTRAL, EMBASE, CINAHL, AMED, PEDro, REHAB DATA and RECAL databases with no restriction of language. Two independent reviewers will perform the study selection and data extraction. Quality assessment will be implemented using modified Down and Black checklists. Publication bias and data synthesis will be assessed by funnel plots, Begg's and Egger's tests, and plots using STATA software V.12.1 version. No ethical issues are predicted. These findings will be published in a peer reviewed journal and presented at national and international conferences. CRD42016045880. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Viscoelastic Response of the Human Lower Back to Passive Flexion: The Effects of Age.
Shojaei, Iman; Allen-Bryant, Kacy; Bazrgari, Babak
2016-09-01
Low back pain is a leading cause of disability in the elderly. The potential role of spinal instability in increasing risk of low back pain with aging was indirectly investigated via assessment of age-related differences in viscoelastic response of lower back to passive deformation. The passive deformation tests were conducted in upright standing posture to account for the effects of gravity load and corresponding internal tissues responses on the lower back viscoelastic response. Average bending stiffness, viscoelastic relaxation, and dissipated energy were quantified to characterize viscoelastic response of the lower back. Larger average bending stiffness, viscoelastic relaxation and dissipated energy were observed among older vs. younger participants. Furthermore, average bending stiffness of the lower back was found to be the highest around the neutral standing posture and to decrease with increasing the lower back flexion angle. Larger bending stiffness of the lower back at flexion angles where passive contribution of lower back tissues to its bending stiffness was minimal (i.e., around neutral standing posture) highlighted the important role of active vs. passive contribution of tissues to lower back bending stiffness and spinal stability. As a whole our results suggested that a diminishing contribution of passive and volitional active subsystems to spinal stability may not be a reason for higher severity of low back pain in older population. The role of other contributing elements to spinal stability (e.g., active reflexive) as well as equilibrium-based parameters (e.g., compression and shear forces under various activities) in increasing severity of low back pain with aging should be investigated in future.
Assessing the physical loading of wearable computers.
Knight, James F; Baber, Chris
2007-03-01
Wearable computers enable workers to interact with computer equipment in situations where previously they were unable. Attaching a computer to the body though has an unknown physical effect. This paper reports a methodology for addressing this, by assessing postural effects and the effect of added weight. Using the example of arm-mounted computers (AMCs), the paper shows that adopting a posture to interact with an AMC generates fatiguing levels of stress and a load of 0.54 kg results in increased level of stress and increased rate of fatigue. The paper shows that, due to poor postures adopted when wearing and interacting with computers and the weight of the device attached to the body, one possible outcome for prolonged exposure is the development of musculoskeletal disorders.
NASA Technical Reports Server (NTRS)
Young, L. R.; Oman, C. M.; Lichtenberg, B. K.; Watt, D. G. D.; Money, K. E.
1986-01-01
Human sensory/motor adaptation to weightlessness and readaptation to earth's gravity are assessed. Preflight and postflight vestibular and visual responses for the crew on the Spacelab-1 mission are studied; the effect of the abnormal pattern of otolith afferent signals caused by weightlessness on the pitch and roll perception and postural adjustments of the subjects are examined. It is observed that body position and postural reactions change due to weightlessness in order to utilize the varied sensory inputs in a manner suited to microgravity conditions. The aspects of reinterpretation include: (1) tilt acceleration reinterpretation, (2) reduced postural response to z-axis linear acceleration, and (3) increased attention to visual cues.
O'Sullivan, Peter B; Smith, Anne J; Beales, Darren J; Straker, Leon M
2011-04-01
Conflicting evidence exists regarding relationships among sitting posture, factors that influence sitting posture, and back pain. This conflicting evidence may partially be due to the presence of multiple and overlapping factors associated with both sitting posture and back pain. The purpose of this study was to determine whether the degree of slump in sitting was associated with sex and other physical, lifestyle, or psychosocial factors. Additionally, the relationship between the report of back pain made worse by sitting and the degree of slump in sitting and other physical, lifestyle, or psychosocial factors was investigated. This was a cross-sectional study. Adolescents (n=1,596) completed questionnaires to determine lifestyle and psychosocial profiles and the experience of back pain. Sagittal sitting posture, body mass index (BMI), and back muscle endurance (BME) were recorded. Standing posture subgroup categorization was determined. Multivariate analysis revealed that the most significant factor associated with the degree of slump in sitting was male sex, followed by non-neutral standing postures, lower perceived self-efficacy, lower BME, greater television use, and higher BMI. Multivariable analysis indicated poorer Child Behaviour Checklist scores were the strongest correlate of report of back pain made worse by sitting, whereas degree of slump in sitting, female sex, and BME were more weakly related. Causality cannot be determined from this cross-sectional study, and 60% of sitting posture variation was not explained by the measured variables. Slump in sitting was associated with physical correlates, as well as sex, lifestyle, and psychosocial factors, highlighting the complex, multidimensional nature of usual sitting posture in adolescents. Additionally, this study demonstrated that a greater degree of slump in sitting was only weakly associated with adolescent back pain made worse by sitting after adjustment for other physical and psychosocial factors.
Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies.
Borel, L; Alescio-Lautier, B
2014-01-01
In this paper we review the effects of aging on sensory systems and their impact on posture, balance and gait. We also address cognitive aging and attempt to specify which altered cognitive functions negatively impact balance and walking. The role of cognition in postural control is tested with dual-task experiments. This situation results in deleterious effects due to an attentional overload. Given the human cognitive system has limited capacities, we propose that simultaneously performing two tasks depends on the capacity of each individual to perform these tasks on a continuum between automatic execution to highly controlled performance. A level of maximum control exceeds the subject's attentional capacity, which makes it impossible to perform both tasks simultaneously. The subject therefore prioritizes one of the tasks. We use representative dual-task studies from the literature to illustrate the relationship between the different cognitive components and their impact on the control of posture and gait in elderly subjects with altered cognitive capacities and with elderly subjects who are fallers or who have altered sensory-motor capacities. Recently this postural-cognitive relationship was addressed with a new approach. We report how cognitive training can improve dual-task management and we attempt to define the cognitive mechanisms that may be responsible for better postural balance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Meyers, R A; Mathias, E
1997-09-01
Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls.
Nocera, Joe R.; Price, Catherine; Fernandez, Hubert H.; Amano, Shinichi; Vallabhajosula, Srikant; Okun, Michael S.; Hwynn, Nelson; Hass, Chris J.
2010-01-01
A substantial number of individuals with Parkinson’s disease who display impaired postural stability experience accelerated cognitive decline and an increased prevalence of dementia. To date, studies suggest that this relationship, believed to be due to involvement of nondopaminergic circuitry, occurs later in the disease process. Research has yet to adequately investigate this cognitive-posturomotor relationship especially when examining earlier disease states. To gain greater understanding of the relationship between postural stability and cognitive function/dysfunction we evaluated a more stringent, objective measure of postural stability (center of pressure displacement), and also more specific measures of cognition in twenty-two patients with early to moderate stage Parkinson’s disease. The magnitude of the center of pressure displacement in this cohort was negatively correlated with performance on tests known to activate dorsolateral frontal regions. Additionally, the postural stability item of the UPDRS exhibited poor correlation with the more objective measure of center of pressure displacement and all specific measures of cognition. These results may serve as rationale for a more thorough evaluation of postural stability and cognition especially in individuals with mild Parkinson’s disease. Greater understanding of the relationship between motor and cognitive processes in Parkinson’s disease will be critical for understanding the disease process and its potential therapeutic possibilities. PMID:20829093
Phobic postural vertigo treated with autogenic training: a case report.
Goto, Fumiyuki; Nakai, Kimiko; Kunihiro, Takanobu; Ogawa, Kaoru
2008-09-30
Patients suffering from dizziness due to vertigo are commonly encountered in the department of otolaryngology. If various clinical examinations do not reveal any objective findings, then the patients are referred to the department of internal medicine or psychiatry. In many cases, the diagnosis is psychological dizziness. Phobic postural vertigo, which was first reported by Brandt T et al in 1994, is supposed to be a type of psychological dizziness. The diagnosis is based on 6 characteristics proposed by Brandt et al. Patients are usually treated with conventional medical therapy, but some cases may be refractory to such a therapy. Psychotherapy is recommended in some cases; however, psychotherapy including autogenic training, which can be used for general relaxation, is not widely accepted. This paper describes the successful administration of autogenic training in a patient suffering from phobic postural vertigo. We present a case of a patient who suffered from phobic postural vertigo. A 37-year-old female complained of dizziness. She had started experiencing dizziness almost 3 years She was intractable to many sort of conventional therapy. In the end, her symptom disappeared after introduction of autogenic training. Autogenic training can be a viable and acceptable treatment option for phobic postural vertigo patients who fail to respond to other therapies. This case emphasizes the importance of autogenic training as a method to control symptom of phobic postural vertigo.
Phobic postural vertigo treated with autogenic training: a case report
Goto, Fumiyuki; Nakai, Kimiko; Kunihiro, Takanobu; Ogawa, Kaoru
2008-01-01
Background Patients suffering from dizziness due to vertigo are commonly encountered in the department of otolaryngology. If various clinical examinations do not reveal any objective findings, then the patients are referred to the department of internal medicine or psychiatry. In many cases, the diagnosis is psychological dizziness. Phobic postural vertigo, which was first reported by Brandt T et al in 1994, is supposed to be a type of psychological dizziness. The diagnosis is based on 6 characteristics proposed by Brandt et al. Patients are usually treated with conventional medical therapy, but some cases may be refractory to such a therapy. Psychotherapy is recommended in some cases; however, psychotherapy including autogenic training, which can be used for general relaxation, is not widely accepted. This paper describes the successful administration of autogenic training in a patient suffering from phobic postural vertigo. Case presentation We present a case of a patient who suffered from phobic postural vertigo. A 37-year-old female complained of dizziness. She had started experiencing dizziness almost 3 years She was intractable to many sort of conventional therapy. In the end, her symptom disappeared after introduction of autogenic training. Conclusion Autogenic training can be a viable and acceptable treatment option for phobic postural vertigo patients who fail to respond to other therapies. This case emphasizes the importance of autogenic training as a method to control symptom of phobic postural vertigo. PMID:18826607
Posture, Flexibility and Grip Strength in Horse Riders
Hobbs, Sarah Jane; Baxter, Joanna; Broom, Louise; Rossell, Laura-Ann; Sinclair, Jonathan; Clayton, Hilary M
2014-01-01
Since the ability to train the horse to be ambidextrous is considered highly desirable, rider asymmetry is recognized as a negative trait. Acquired postural and functional asymmetry can originate from numerous anatomical regions, so it is difficult to suggest if any is developed due to riding. The aim of this study was therefore to assess symmetry of posture, strength and flexibility in a large population of riders and to determine whether typical traits exist due to riding. 127 right handed riders from the UK and USA were categorized according to years riding (in 20 year increments) and their competition level (using affiliated test levels). Leg length, grip strength and spinal posture were measured and recorded by a physiotherapist. Standing and sitting posture and trunk flexibility were measured with 3-D motion capture technology. Right-left differences were explored in relation to years riding and rider competitive experience. Significant anatomical asymmetry was found for the difference in standing acromion process height for a competition level (−0.07±1.50 cm Intro/Prelim; 0.02±1.31 cm Novice; 0.43±1.27 cm Elementary+; p=0.048) and for sitting iliac crest height for years riding (−0.23±1.36 cm Intro/Prelim; 0.01±1.50 cm Novice; 0.86±0.41 cm Elementary+; p=0.021). For functional asymmetry, a significant interaction was found for lateral bending ROM for years riding x competition level (p=0.047). The demands on dressage riders competing at higher levels may predispose these riders to a higher risk of developing asymmetry and potentially chronic back pain rather than improving their symmetry. PMID:25414745
Ergonomics Contribution in Maintainability
NASA Astrophysics Data System (ADS)
Teymourian, Kiumars; Seneviratne, Dammika; Galar, Diego
2017-09-01
The objective of this paper is to describe an ergonomics contribution in maintainability. The economical designs, inputs and training helps to increase the maintainability indicators for industrial devices. This analysis can be helpful, among other cases, to compare systems, to achieve a better design regarding maintainability requirements, to improve this maintainability under specific industrial environment and to foresee maintainability problems due to eventual changes in a device operation conditions. With this purpose, this work first introduces the notion of ergonomics and human factors, maintainability and the implementation of assessment of human postures, including some important postures to perform maintenance activities. A simulation approach is used to identify the critical posture of the maintenance personnel and implements the defined postures with minimal loads on the personnel who use the equipment in a practical scenario. The simulation inputs are given to the designers to improve the workplace/equipment in order to high level of maintainability. Finally, the work concludes summarizing the more significant aspects and suggesting future research.
Bucci, Maria Pia; Seassau, Magali; Larger, Sandrine; Bui-Quoc, Emmanuel; Gerard, Christophe-Loic
2014-06-01
We compared the effect of oculomotor tasks on postural sway in two groups of ADHD children with and without methylphenidate (MPH) treatment against a group of control age-matched children. Fourteen MPH-untreated ADHD children, fourteen MPH-treated ADHD children and a group of control children participated to the study. Eye movements were recorded using a video-oculography system and postural sway measured with a force platform simultaneously. Children performed fixation, pursuits, pro- and anti-saccades. We analyzed the number of saccades during fixation, the number of catch-up saccades during pursuits, the latency of pro- and anti-saccades; the occurrence of errors in the anti-saccade task and the surface and mean velocity of the center of pressure (CoP). During the postural task, the quality of fixation was significantly worse in both groups of ADHD children with respect to control children; in contrast, the number of catch-up saccades during pursuits, the latency of pro-/anti-saccades and the rate of errors in the anti-saccade task did not differ in the three groups of children. The surface of the CoP in MPH-treated children was similar to that of control children, while MPH-untreated children showed larger postural sway. When performing any saccades, the surface of the CoP improved with respect to fixation or pursuits tasks. This study provides evidence of poor postural control in ADHD children, probably due to cerebellar deficiencies. Our study is also the first to show an improvement on postural sway in ADHD children performing saccadic eye movements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantifying and Reducing Posture-Dependent Distortion in Ballistocardiogram Measurements
Javaid, Abdul Q.; Wiens, Andrew D.; Fesmire, N. Forrest; Weitnauer, Mary A.; Inan, Omer T.
2015-01-01
Ballistocardiography is a non-invasive measurement of the mechanical movement of the body caused by cardiac ejection of blood. Recent studies have demonstrated that ballistocardiogram (BCG) signals can be measured using a modified home weighing scale, and used to track changes in myocardial contractility and cardiac output. With this approach, the BCG can potentially be used both for preventive screening and for chronic disease management applications. However, for achieving high signal quality, subjects are required to stand still on the scale in an upright position for the measurement; the effects of intentional (for user comfort) or unintentional (due to user error) modifications in the position or posture of the subject during the measurement have not been investigated in the existing literature. In this study, we quantified the effects of different standing and seated postures on the measured BCG signals, and on the most salient BCG-derived features compared to reference standard measurements (e.g., impedance cardiography). We determined that the standing upright posture led to the least distorted signals as hypothesized, and that the correlation between BCG-derived timing interval features (R-J interval) and the pre-ejection period, PEP (measured using ICG), decreased significantly with impaired posture or sitting position. We further implemented two novel approaches to improve the PEP estimates from other standing and sitting postures, using system identification and improved J-wave detection methods. These approaches can improve the usability of standing BCG measurements in unsupervised settings (i.e. the home), by improving the robustness to non-ideal posture, as well as enabling high quality seated BCG measurements. PMID:26058064
Munhoz, Wagner Cesar; Hsing, Wu Tu
2014-07-01
Studies on the relationships between postural deviations and the temporomandibular system (TS) functional health are controversial and inconclusive. This study stems from the hypothesis that such inconclusiveness is due to authors considering functional pathologies of the TS (FPTS) as a whole, without taking into account subjects' specific FPTS signs and symptoms. Based on the author and collaborators' previous studies, the present study analyzed data on body posture from a sample of 50 subjects with (30) and without (20) FPTS. Correlation analyses were applied, taking as independent variables age, sex, Helkimo anamnestic, occlusal, and dysfunction indices, as well as FPTS specific signs and symptoms. Postural assessments of the head, cervical spine, shoulders, lumbar spine, and hips were the dependent variables. Linear regression equations were built that proved to partially predict the presence and magnitude of body posture deviations by drawing on subjects' characteristics and specific FPTS symptoms. Determination coefficients for these equations ranged from 0.082 to 0.199 in the univariate, and from 0.121 to 0.502 in the multivariate regression analyses. Results show that factors intrinsic to the subjects or the TS may potentially interfere in results of studies that analyze relationships between FPTS and body posture. Furthermore, a trend to specificity was found, e.g. the degree of cervical lordosis was found to correlate to age and FPTS degree of severity, suggesting that some TS pathological features, or malocclusion, age or sex, may be more strongly correlated than others with specific posture patterns.
Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H
2017-10-23
Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (p< 0.05), suggesting a good relationship between the two core stability measures. Test-retest reliability was (ICC3,3) = 0.953 (p< 0.05), indicating excellent consistency between the repeated DNS-HS measurements. Criterion validity data demonstrated a good relationship between the gold standard BSLLT and DNS-HS core stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.
You, Sung H; Granata, Kevin P; Bunker, Linda K
2004-08-01
Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was not increased by an application of CAP. Active ankle stiffness was significantly different between the high and low proprioceptive acuity groups and was not affected by an application of CAP. Significant group (normal versus CAI) x CAP interactions were observed for mediolateral center-of-pressure displacement with a main effect of group on neutral joint position sense. Application of CAP increased proprioceptive acuity and demonstrated trends toward increased active stiffness in the ankle, hence improved postural stability. The effects tend to be limited to individuals with low proprioceptive acuity.
Najafi, Bijan; Horn, Deena; Marclay, Samuel; Crews, Ryan T.; Wu, Stephanie; Wrobel, James S.
2010-01-01
Introduction Currently, diagnosis of patients with postural instability relies on a rudimentary clinical examination. This article suggests an innovative, portable, and cost-effective prototype to evaluate balance control objectively. Methods The proposed system uses low-cost, microelectromechanical sensor, body-worn sensors (BalanSens™) to measure the motion of ankle and hip joints in three dimensions. We also integrated resulting data into a two-link biomechanical model of the human body for estimating the two-dimensional sway of the center of mass (COM) in anterior–posterior (AP) and medial–lateral (ML) directions. A new reciprocal compensatory index (RCI) was defined to quantify postural compensatory strategy (PCS) performance. To validate the accuracy of our algorithms in assessing balance, we investigated the two-dimensional sway of COM and RCI in 21 healthy subjects and 17 patients with diabetic peripheral neuropathic (DPN) complications using the system just explained. Two different conditions were examined: eyes open (EO) and eyes closed (EC) for duration of at least 30 seconds. Results were compared with center of pressure sway (COP) as measured by a pressure platform (Emed-x system, Novel Inc., Germany). To further investigate the contribution of the somatosensory (SOM) feedback to balance control, healthy subjects performed EO and EC trials while standing on both a rigid and a foam surface. Results A relatively high correlation was observed between COM measured using BalanSens and COP measured using the pressure platform (r = 0.92). Results demonstrated that DPN patients exhibit significantly greater COM sway than healthy subjects for both EO and EC conditions (p < 0.005). The difference becomes highly pronounced while eyes are closed (197 ± 44 cm2 vs 68 ± 56 cm2). Furthermore, results showed that PCS assessed using RCI is significantly better in healthy subjects compared to DPN subjects for both EO and EC conditions, as well as in both ML and AP directions (p < 0.05). Alteration in SOM feedback in healthy subjects resulted in diminished RCI values that were similar to those seen in DPN subjects (p > 0.05). Discussion/Conclusion This study suggested an innovative system that enables the investigation of COM as well as postural control compensatory strategy in humans. Results suggest that neuropathy significantly impacts PCS. PMID:20663438
Nakajima, Masashi
2011-03-01
Quiet standing and walking are generally considered to be an automatic process regulated by sensory feedback. In our report "Astasia without abasia due to peripheral neuropathy," which was published in 1994, we proposed that forced stepping in patients lacking the ankle torque is a compensatory motor control in order to maintain an upright posture. A statistical-biomechanics approach to the human postural control system has revealed open-loop (descending) control as well as closed-loop (feedback) control in quiet standing, and fractal dynamics in stride-to-stride fluctuations of walking. The descending control system of bipedal upright posture and gait may have a functional link to cognitive domains. Increasing dependence on the descending control system with aging may play a role in falls in elderly people.
The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.
Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J
2014-01-01
This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.
Sohail, Wafa; Hatipoglu, Betul; Wilson, Robert
2018-01-01
Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous disorder of the autonomic nervous system that is defined by symptoms of orthostatic intolerance. According to the current criteria for adults, currently, POTS is defined as a heart rate increment of 30 beats/minute or more after 10 minutes of standing in the absence of orthostatic hypotension. There is a vast majority that remains misdiagnosed due to the heterogeneity of the disorder. Due to a lack of Food and Drug Administration (FDA) approved therapy, alternative therapies and over the counter medications are used to alleviate the symptoms. This is an uncommon presentation observed primarily in women, as it is more prevalent in females. PMID:29876157
Effect of microgravity on spatial orientation and posture regulation during Coriolis stimulation.
Takahashi, Masahiro; Sekine, Motoki; Ikeda, Takuo; Watanuki, Koichi; Hakuta, Shuzo; Takeoka, Hajime
2004-05-01
To elucidate spatial orientation and posture regulation under conditions of microgravity. Coriolis stimulation was done with five normal subjects on the ground (1 g) and onboard an aircraft (under conditions of microgravity during parabolic flight). Subjects were asked to tilt their heads forward during rotation at speeds of 0, 50, 100 and 150 degrees/s on the ground and 100 degrees/s during flight. Body sway was recorded using a 3D linear accelerometer and eye movements using an infrared charge-coupled device video camera. Flight experiments were performed on 5 consecutive days, and 11-16 parabolic maneuvers were done during each flight. Two subjects boarded each flight and were examined alternately at least five times. Coriolis stimulation at 1 g caused body sway, nystagmus and a movement sensation in accordance with inertial inputs at 1 g. Neither body sway, excepting a minute sway due to the Coriolis force, nor a movement sensation occurred in microgravity, but nystagmus was recorded. Posture, eye movement and sensation at 1 g are controlled with reference to spatial coordinates that represent the external world in the brain. Normal spatial coordinates are not relevant in microgravity because there is no Z-axis, and the posture regulation and sensation that depend on them collapse. The discrepancy in responses between posture and eye movement under conditions of microgravity may be caused by a different constitution of the effectors which adjust posture and gaze.
Pelvic posture and kinematics in femoroacetabular impingement: a systematic review.
Pierannunzii, Luca
2017-09-01
Pelvic posture and kinematics influence acetabular orientation and are therefore expected to be involved in the pathomechanics of femoroacetabular impingement (FAI). This systematic review aims to determine whether FAI patients show pelvic postures or patterns of motion contributing to impingement or, conversely, develop compensatory postures and patterns of motion preventing it. PubMed/MEDLINE, Embase, Google Scholar and the Cochrane Library were systematically searched to find all the studies that measured pelvic positional and/or kinematic data in humans (patients or cadaveric specimens) affected by FAI. Twelve items were selected and grouped according to the main field of investigation. No quantitative data synthesis was allowed due to methodological heterogeneity. Pelvic posture and kinematics seem to play a relevant role in FAI. The patients, especially if symptomatic, show a paradoxical lack of pelvic back tilt in standing hip flexions, i.e., in squatting, that enhances femoroacetabular engagement. Such an aberrant pattern might depend on a lower pelvic incidence. On the contrary, active hip flexion in decubitus elicits a compensatory, more pronounced back tilt to facilitate hip flexion without impingement. Stair climbing shows a compensatory pattern of augmented pelvic axial rotation and augmented peak forward tilt to reduce painful hip motions, namely internal rotation and extension. In FAI patients, pelvic posture and kinematics are sometimes an expression of compensatory mechanisms developed to reduce pain and discomfort, and sometimes an expression of paradoxical responses that further enhance the impingement pathomechanism. IV.
Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C
2015-08-01
Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments.
Effects of Ramadan Gasting on Postural Balance and Attentional Capacities in Elderly People.
Laatar, R; Borji, R; Baccouch, R; Zahaf, F; Rebai, H; Sahli, S
2016-01-01
To evaluate the effects of Ramadan fasting on postural balance and attentional capacities in older adults. the Neurophysiology department of a University Hospital. Fifteen males aged between 65 and 80 years were asked to perform a postural balance protocol and a simple reaction time (SRT) test in four testing phases: one week before Ramadan (BR), during the second (SWR) and the fourth week of Ramadan (FWR) and 3 weeks after Ramadan (AR). Postural balance measurements were recorded in the bipedal stance in four different conditions: firm surface/eyes open (EO), firm surface/eyes closed (EC), foam surface/EO and foam surface/EC using a force platform. Results of the present study demonstrated that center of pressure (CoP) mean velocity (CoPVm), medio-lateral length (CoPLX) and antero-posterior length (CoPLY) were significantly higher during the SWR than BR. Likewise, values of CoPVm and CoPLX increased significantly during the FWR compared to BR. The CoPLX decreased significantly in the FWR compared to the SWR. Values of CoPVm and CoPLX were significantly higher AR in comparison with BR. In addition, SRT values increased significantly during the SWR and the FWR than BR. Ramadan fasting affects postural balance and attentional capacities in the elderly mainly in the SWR and it may, therefore, increase the risk of fall and fall-related injuries. More than three weeks are needed for older adults to recover postural balance impairment due to Ramadan fasting.
Gauchard, Gérome C; Gangloff, Pierre; Jeandel, Claude; Perrin, Philippe P
2003-09-01
Balance disorders increase considerably with age due to a decrease in posture regulation quality, and are accompanied by a higher risk of falling. Conversely, physical activities have been shown to improve the quality of postural control in elderly individuals and decrease the number of falls. The aim of this study was to evaluate the impact of two types of exercise on the visual afferent and on the different parameters of static balance regulation. Static postural control was evaluated in 44 healthy women aged over 60 years. Among them, 15 regularly practiced proprioceptive physical activities (Group I), 12 regularly practiced bioenergetic physical activities (Group II), and 18 controls walked on a regular basis (Group III). Group I participants displayed lower sway path and area values, whereas Group III participants displayed the highest, both in eyes-open and eyes-closed conditions. Group II participants displayed intermediate values, close to those of Group I in the eyes-open condition and those of Group III in the eyes-closed condition. Visual afferent contribution was more pronounced for Group II and III participants than for Group I participants. Proprioceptive exercise appears to have the best impact on balance regulation and precision. Besides, even if bioenergetic activity improves postural control in simple postural tasks, more difficult postural tasks show that this type of activity does not develop a neurosensorial proprioceptive input threshold as well, probably on account of the higher contribution of visual afferent.
Effect of altered sensory conditions on multivariate descriptors of human postural sway
NASA Technical Reports Server (NTRS)
Kuo, A. D.; Speers, R. A.; Peterka, R. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1998-01-01
Multivariate descriptors of sway were used to test whether altered sensory conditions result not only in changes in amount of sway but also in postural coordination. Eigenvalues and directions of eigenvectors of the covariance of shnk and hip angles were used as a set of multivariate descriptors. These quantities were measured in 14 healthy adult subjects performing the Sensory Organization test, which disrupts visual and somatosensory information used for spatial orientation. Multivariate analysis of variance and discriminant analysis showed that resulting sway changes were at least bivariate in character, with visual and somatosensory conditions producing distinct changes in postural coordination. The most significant changes were found when somatosensory information was disrupted by sway-referencing of the support surface (P = 3.2 x 10(-10)). The resulting covariance measurements showed that subjects not only swayed more but also used increased hip motion analogous to the hip strategy. Disruption of vision, by either closing the eyes or sway-referencing the visual surround, also resulted in altered sway (P = 1.7 x 10(-10)), with proportionately more motion of the center of mass than with platform sway-referencing. As shown by discriminant analysis, an optimal univariate measure could explain at most 90% of the behavior due to altered sensory conditions. The remaining 10%, while smaller, are highly significant changes in posture control that depend on sensory conditions. The results imply that normal postural coordination of the trunk and legs requires both somatosensory and visual information and that each sensory modality makes a unique contribution to posture control. Descending postural commands are multivariate in nature, and the motion at each joint is affected uniquely by input from multiple sensors.
Mezzarobba, Susanna; Grassi, Michele; Valentini, Roberto; Bernardis, Paolo
2018-03-01
The intricate linkage between Freezing of Gait (FoG) and postural control in Parkinson's disease (PD) is unclear. We analyzed the impact of FoG on dynamic postural control. 24 PD patients, 12 with (PD + FoG), 12 without FoG (PD-FoG), and 12 healthy controls, were assessed in ON state. Mobility and postural control were measured with clinical scales (UPDRS III, BBS, MPAS) and with kinematic and kinetic analysis during three tasks, characterized by levels of increasing difficulty to plan sequential movement of postural control: walk (W), gait initiation (GI) and sit-to-walk (STW). The groups were balanced by age, disease duration, disease severity, mobility and balance. During STW, the spatial distribution of COP trajectories in PD + FoG patients are spread over medial-lateral space more than in the PD-FoG (p < .001). Moreover, the distribution of COP positions. in the transition between sit-to-stand and gait initiation, is not properly shifted toward the leading leg, as in PD-FoG and healthy controls, but it is more centrally dispersed (p < .01) with a delayed weight forward progression (p < .05). In GI task and walk task, COM and COP differences are less evident and even absent between PD patients. PD + FoG show postural control differences in STW, compared with PD-FoG and healthy. Different spatial distribution of COP trajectories, between two PD groups are probably due to a deficit to plan postural control during a more demanding motor pattern, such as STW. Copyright © 2018 Elsevier B.V. All rights reserved.
IJmker, Stefan; Mikkers, Janneke; Blatter, Birgitte M; van der Beek, Allard J; van Mechelen, Willem; Bongers, Paulien M
2008-11-01
"Ergonomic" questionnaires are widely used in epidemiological field studies to study the association between workstation characteristics, work posture and musculoskeletal disorders among office workers. Findings have been inconsistent regarding the putative adverse effect of work postures. Underestimation of the true association might be present in studies due to misclassification of subjects to risk (i.e. exposed to non-neutral working postures) and no-risk categories (i.e. not exposed to non-neutral working postures) based on questionnaire responses. The objective of this study was to estimate the amount of misclassification resulting from the use of questionnaires. Test-retest reliability and concurrent validity of a newly developed questionnaire was assessed. This questionnaire collects data on workstation characteristics and on individual characteristics during computer work (i.e. work postures, movements and habits). Pictures were added where possible to provide visual guidance. The study population consisted of 84 office workers of a research department. They filled out the questionnaire on the Internet twice, with an in-between period of 2 weeks. For a subgroup of workers (n=38), additional on-site observations and multiple manual goniometer measurements were performed. Percentage agreement ranged between 71% and 100% for the test-retest analysis, between 31% and 100% for the comparison between questionnaire and on-site observation, and between 26% and 71% for the comparison between questionnaire and manual goniometer measurements. For 9 out of 12 tested items, the percentage agreement between questionnaire and manual goniometer measurements was below 50%. The questionnaire collects reliable data on workstation characteristics and some individual characteristics during computer work (i.e. work movements and habits), but does not seem to be useful to collect data on work postures during computer work in epidemiological field studies among office workers.
Dettmer, Marius; Pourmoghaddam, Amir; Lee, Beom-Chan; Layne, Charles S
2015-01-01
Postural control in certain situations depends on functioning of tactile or proprioceptive receptors and their respective dynamic integration. Loss of sensory functioning can lead to increased risk of falls in challenging postural tasks, especially in older adults. Stochastic resonance, a concept describing better function of systems with addition of optimal levels of noise, has shown to be beneficial for balance performance in certain populations and simple postural tasks. In this study, we tested the effects of aging and a tactile stochastic resonance stimulus (TSRS) on balance of adults in a sensory conflict task. Nineteen older (71-84 years of age) and younger participants (22-29 years of age) stood on a force plate for repeated trials of 20 s duration, while foot sole stimulation was either turned on or off, and the visual surrounding was sway-referenced. Balance performance was evaluated by computing an Equilibrium Score (ES) and anterior-posterior sway path length (APPlength). For postural control evaluation, strategy scores and approximate entropy (ApEn) were computed. Repeated-measures ANOVA, Wilcoxon signed-rank tests, and Mann-Whitney U-tests were conducted for statistical analysis. Our results showed that balance performance differed between older and younger adults as indicated by ES (p = 0.01) and APPlength (0.01), and addition of vibration only improved performance in the older group significantly (p = 0.012). Strategy scores differed between both age groups, whereas vibration only affected the older group (p = 0.025). Our results indicate that aging affects specific postural outcomes and that TSRS is beneficial for older adults in a visual sensory conflict task, but more research is needed to investigate the effectiveness in individuals with more severe balance problems, for example, due to neuropathy.
Bruno Garza, J L; Eijckelhof, B H W; Johnson, P W; Raina, S M; Rynell, P W; Huysmans, M A; van Dieën, J H; van der Beek, A J; Blatter, B M; Dennerlein, J T
2012-01-01
This study, a part of the PRedicting Occupational biomechanics in OFfice workers (PROOF) study, investigated whether there are differences in field-measured forces, muscle efforts, postures, velocities and accelerations across computer activities. These parameters were measured continuously for 120 office workers performing their own work for two hours each. There were differences in nearly all forces, muscle efforts, postures, velocities and accelerations across keyboard, mouse and idle activities. Keyboard activities showed a 50% increase in the median right trapezius muscle effort when compared to mouse activities. Median shoulder rotation changed from 25 degrees internal rotation during keyboard use to 15 degrees external rotation during mouse use. Only keyboard use was associated with median ulnar deviations greater than 5 degrees. Idle activities led to the greatest variability observed in all muscle efforts and postures measured. In future studies, measurements of computer activities could be used to provide information on the physical exposures experienced during computer use. Practitioner Summary: Computer users may develop musculoskeletal disorders due to their force, muscle effort, posture and wrist velocity and acceleration exposures during computer use. We report that many physical exposures are different across computer activities. This information may be used to estimate physical exposures based on patterns of computer activities over time.
Luger, Tessy; Bosch, Tim; Hoozemans, Marco; de Looze, Michiel; Veeger, Dirkjan
2015-01-01
Work-related musculoskeletal disorders are increasing due to industrialisation of work processes. Task variation has been suggested as potential intervention. The objectives of this study were to investigate, first, the influence of task variation on electromyographic (EMG) manifestations of shoulder muscle fatigue and discomfort; second, noticeable postural shoulder changes over time; third, if the association between task variation and EMG might be biased by postural changes. Outcome parameters were recorded using multichannel EMG, Optotrak and the Borg scale. Fourteen participants performed a one-hour repetitive Pegboard task in one continuous and two interrupted conditions with rest and a pick-and-place task, respectively. Manifestations of shoulder muscle fatigue and discomfort feelings were observed throughout the conditions but these were not significantly influenced by task variation. After correction for joint angles, the relation between task variation and EMG was significantly biased but significant effects of task variation remained absent. Comparing a one-hour continuous, repetitive Pegboard task with two interrupted conditions revealed no significant influences of task variation. We did observe that the relation between task variation and EMG was biased by posture and therefore advise taking account for posture when investigating manifestations of muscle fatigue in assembly tasks.
Kang, Sung-Won; Choi, Hyeob; Park, Hyung-Il; Choi, Byoung-Gun; Im, Hyobin; Shin, Dongjun; Jung, Young-Giu; Lee, Jun-Young; Park, Hong-Won; Park, Sukyung; Roh, Jung-Sim
2017-11-07
Spinal disease is a common yet important condition that occurs because of inappropriate posture. Prevention could be achieved by continuous posture monitoring, but most measurement systems cannot be used in daily life due to factors such as burdensome wires and large sensing modules. To improve upon these weaknesses, we developed comfortable "smart wear" for posture measurement using conductive yarn for circuit patterning and a flexible printed circuit board (FPCB) for interconnections. The conductive yarn was made by twisting polyester yarn and metal filaments, and the resistance per unit length was about 0.05 Ω/cm. An embroidered circuit was made using the conductive yarn, which showed increased yield strength and uniform electrical resistance per unit length. Circuit networks of sensors and FPCBs for interconnection were integrated into clothes using a computer numerical control (CNC) embroidery process. The system was calibrated and verified by comparing the values measured by the smart wear with those measured by a motion capture camera system. Six subjects performed fixed movements and free computer work, and, with this system, we were able to measure the anterior/posterior direction tilt angle with an error of less than 4°. The smart wear does not have excessive wires, and its structure will be optimized for better posture estimation in a later study.
van der Wees, Philip J; Lenssen, Anton F; Hendriks, Erik J M; Stomp, Derrick J; Dekker, Joost; de Bie, Rob A
2006-01-01
This study critically reviews the effectiveness of exercise therapy and manual mobilisation in acute ankle sprains and functional instability by conducting a systematic review of randomised controlled trials. Trials were searched electronically and manually from 1966 to March 2005. Randomised controlled trials that evaluated exercise therapy or manual mobilisation of the ankle joint with at least one clinically relevant outcome measure were included. Internal validity of the studies was independently assessed by two reviewers. When applicable, relative risk (RR) or standardised mean differences (SMD) were calculated for individual and pooled data. In total 17 studies were included. In thirteen studies the intervention included exercise therapy and in four studies the effects of manual mobilisation of the ankle joint was evaluated. Average internal validity score of the studies was 3.1 (range 1 to 7) on a 10-point scale. Exercise therapy was effective in reducing the risk of recurrent sprains after acute ankle sprain: RR 0.37 (95% CI 0.18 to 0.74), and with functional instability: RR 0.38 (95% CI 0.23 to 0.62). No effects of exercise therapy were found on postural sway in patients with functional instability: SMD: 0.38 (95% CI -0.15 to 0.91). Four studies demonstrated an initial positive effect of different modes of manual mobilisation on dorsiflexion range of motion. It is likely that exercise therapy, including the use of a wobble board, is effective in the prevention of recurrent ankle sprains. Manual mobilisation has an (initial) effect on dorsiflexion range of motion, but the clinical relevance of these findings for physiotherapy practice may be limited.
Panichi, R; Cipriani, L; Sarchielli, P; Di Mauro, M; Pettorossi, V E; Ricci, G; Faralli, M
2015-09-01
The aim of the study was to assess the effects of optokinetic stimulation (OKS) on vestibular postural control in migraine patients with recurrent vertigo. 15 patients with vestibular migraine (VM) were enrolled in a posturographic study in eyes open (OE) and eyes closed (CE) condition. The tests were performed between attacks of headache and vertigo at three different time: before, during, and 60 min after OKS. Data of patients with VM were compared with those obtained from two control groups matched for sex and age (15 for each group): (a) normal subjects not suffering from migraine without history of recurrent vertigo (N group); (b) subjects suffering from migraine with no history of recurrent vertigo (M group). Mean sway path velocity and sway area were analyzed. OKS increased the instability in all groups during the stimulus, and both the velocity and area values were higher in M and VM group. However, there was not significant difference between these two groups when stability was examined in OE condition before, during and after OKS stimulation. Conversely, in CE condition a significant greater instability was induced after OKS stimulation only in VM. In particular, post-stimulus values were significantly higher than the pre-stimulus one only in this group, while no significant difference was observed in other groups. A spatial analysis of the sway area evidenced that the instability induced by the OKS in VM group occurred along the direction of OKS. We suggest that this enhanced instability observed after OKS during the intercritical period may be considered an useful marker to support the diagnostic definition of VM in the absence of other vestibular signs.
Core Muscle Activation During Unstable Bicep Curl Using a Water-Filled Instability Training Tube.
Glass, Stephen C; Blanchette, Taylor W; Karwan, Lauren A; Pearson, Spencer S; OʼNeil, Allison P; Karlik, Dustin A
2016-11-01
Glass, SC, Blanchette, TW, Karwan, LA, Pearson, SS, O'Neil, AP, and Karlik, DA. Core muscle activation during unstable bicep curl using a water-filled instability training tube. J Strength Cond Res 30(11): 3212-3219, 2016-The purpose of this study was to assess compensatory muscle activation created during a bicep curl using a water-filled, unstable lifting tube. Ten men (age = 21 ± 1.6 years, height = 180.0 ± 3.3 cm, mass = 87.4 ± 15.0 kg) and 10 women (age = 19.6 ± 1.3 years, height = 161.4 ± 12.0 cm, mass = 61.2 ± 7.4 kg) completed bicep curls using an 11.4-kg tube partially filled with water during a 50% open-valve, 100% open, and control setting. Subjects completed 8 repetitions within each condition with integrated electromyographic signal (converted to percent maximal voluntary contraction) of the bicep, deltoid, rectus abdominus, and paraspinal muscles measured. Compensatory activation was determined using the natural log of coefficient of variation across concentric (CON) and eccentric (ECC) contractions. There were no differences between gender for any condition. Significant variability was seen across treatments for paraspinal muscles for CON and ECC at 50% (CON LnCV = 3.13 ± 0.56%, ECC LnCV = 3.34 ± 0.58%) and 100% (CON = 3.24 ± 0.34%, ECC = 3.46 ± 0.35%) compared with control (CON = 2.59 ± 0.47%, ECC = 2.80 ± 0.61%). Deltoid variability was greater at the 100% open setting (CON = 3.51 ± 0.53%, ECC = 3.56 ± 0.36%) compared with control (CON = 2.98 ± 0.35%, ECC = 2.97 ± 0.45%). The abdominal CON 100% showed variability (3.02 ± 0.47%) compared with control (2.65 ± 0.43%). Bicep activation remained unvaried. Compensatory activation of postural muscles contribute to postural stability. This device may be a useful tool for neuromuscular training leading to improved stability and control.
NASA Astrophysics Data System (ADS)
Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.
2014-02-01
The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.
Kenis-Coskun, Ozge; Karadag-Saygi, Evrim; Bahar-Ozdemir, Yeliz; Gokdemir, Yasemin; Karadag, Bulent; Kayhan, Onder
2017-11-21
Cystic fibrosis (CF) affects the musculoskeletal system via a multifactorial pathway that includes vitamin D deficiency and involvement of respiratory muscles such as intercostals due to recurrent upper and lower respiratory tract infections. Eventual result is the deterioration of musculoskeletal health and posture in CF patients. Postural stability is directly affected by posture and can be compromised in every musculoskeletal problem. The aim of this study is to evaluate musculoskeletal system and postural stability in patients with CF. Patients with CF over six years of age and age and sex-matched control groups were included in the study. Cobb angle and thoracic kyphosis angles were measured on the spine radiographs. Both patients and control group were examined with pediatric gait, arms, legs and spine scale (pGALS). They also were evaluated with a NeuroCom Balance Master for their postural stability. Fifty-one patients with CF and 94 healthy controls participated in the study. In results of the pGALS examination, CF group had significantly more pathological findings than the control group in lower extremity appearance and movement (p = 0.006 and p = 0.01) and spine appearance and movement (p = 0.001 and p = 0.022) domains. The tandem walking speed was significantly higher in controls with a mean of 24.45 ± 7.79 while it was 20.47 ± 6.95 in the CF group (p = 0.03). Various limits of stability parameters also showed significant differences. Medium correlations were found between musculoskeletal examination and postural stability parameters. In patients with CF, a systematic but simple musculoskeletal examination can detect pathologies, which are more frequent than the normal population. These pathologies show a medium correlation with the involvement of postural stability.
Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids
NASA Astrophysics Data System (ADS)
Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie
2015-01-01
We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.
Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids.
Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie
2015-01-16
We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.
ASSOCIATIONS BETWEEN THREE CLINICAL ASSESSMENT TOOLS FOR POSTURAL STABILITY
Saxion, Casie E.; Cameron, Kenneth L.; Gerber, J. Parry
2010-01-01
Study Design: Clinical Measurement, Correlation, Reliability Objectives: To assess the relationship between the Single Leg Balance (SLB), modified Balance Error Scoring System (mBESS), and modified Star Excursion Balance (mSEBT) tests and secondarily to assess inter-rater and test-retest reliability of these tests. Background: Ankle sprains often result in chronic instability and dysfunction. Several clinical tests assess postural deficits as a potential cause of this dysfunction; however, limited information exists pertaining to the relationship that these tests have with one another. Methods: Two independent examiners measured the performance of 34 healthy participants completing the SLB Test, mBESS test, and mSEBT at two different time periods. The relationship between tests was assessed using the Pearson Correlation and Fisher's Exact Tests. Inter-rater and test-retest reliability were assessed using the intraclass correlation coefficient (ICC) and Kappa statistics. Results: A significant correlation (r = -0.35) was observed between the mSEBT and the mBESS. Fisher's Exact Test showed a significant association between the SLB Test and mBESS (P = .048), but no association between the SLB and mSEBT (P = 1.000). Inter-rater reliability was excellent for the mSEBT and fair for the mBESS (ICCs of .91 and .61 respectively). Excellent agreement was observed between raters for the SLB test (k = 1.00). Test-retest reliability was excellent for the mSEBT (ICC = 0.98) and fair for the mBESS (ICC = 0.74). There was poor test-retest agreement for the SLB test (k = .211). Conclusion: There was a significant relationship observed between the SLB Test, mBESS test, and mSEBT: however; strength of association measures showed limited overlap between these tests. This suggests that these tests are interrelated but may not assess equal components of postural stability. PMID:21589668
Ayhan, Cigdem; Bilgin, Sevil; Aksoy, Songul; Yakut, Yavuz
2016-08-10
Automatic and voluntary body position control is essential for postural stability; however, little is known about individual factors that impair the sensorimotor system associated with low back pain (LBP). To evaluate automatic and voluntary motor control impairments causing postural instability in patients with LBP. Motor control impairments associated with poor movement and balance control were analyzed prospectively in 32 patients with LBP. Numeric Rating Scale (NRS) for pain assessment, Oswestry Disability Index (ODI) for disability measurement, and computerized dynamic posturography (CDP) for analysis of postural responses were used to measure outcomes of all patients. Computerized dynamic posturography tests including Sensory organization test (SOT), limits of stability test (movement velocity, directional control, endpoint, and maximum excursion), rhythmic weight shift (rhythmic movement speed and directional control), and adaptation test (toes-up and toes-down tests) were performed and the results compared with NeuroCom normative data. The mean age of the patients was 40.50 ± 12.28 years. Lower equilibrium scores were observed in SOT (p < 0.05). There was a significant increase in reaction time and decrease in movement velocity, directional control, and endpoint excursion (p < 0.05). Speed of rhythmic movement along the anteroposterior direction decreased, while speed increased along the lateral direction (p < 0.05). Poor directional control was recorded in the anteroposterior direction (p < 0.05). Toes-down test showed an increased COG sway in patients compared with that in the controls (p < 0.05). LBP causes poor voluntary control of body positioning, a reduction in movement control, delays in movement initiation, and a difficulty to adapt to sudden surface changes.
Radiographic cup anteversion measurement corrected from pelvic tilt.
Wang, Liao; Thoreson, Andrew R; Trousdale, Robert T; Morrey, Bernard F; Dai, Kerong; An, Kai-Nan
2017-11-01
The purpose of this study was to develop a novel technique to improve the accuracy of radiographic cup anteversion measurement by correcting the influence of pelvic tilt. Ninety virtual total hip arthroplasties were simulated from computed tomography data of 6 patients with 15 predetermined cup orientations. For each simulated implantation, anteroposterior (AP) virtual pelvic radiographs were generated for 11 predetermined pelvic tilts. A linear regression model was created to capture the relationship between radiographic cup anteversion angle error measured on AP pelvic radiographs and pelvic tilt. Overall, nine hundred and ninety virtual AP pelvic radiographs were measured, and 90 linear regression models were created. Pearson's correlation analyses confirmed a strong correlation between the errors of conventional radiographic cup anteversion angle measured on AP pelvic radiographs and the magnitude of pelvic tilt (P < 0.001). The mean of 90 slopes and y-intercepts of the regression lines were -0.8 and -2.5°, which were applied as the general correction parameters for the proposed tool to correct conventional cup anteversion angle from the influence of pelvic tilt. The current method proposes to measure the pelvic tilt on a lateral radiograph, and to use it as a correction for the radiographic cup anteversion measurement on an AP pelvic radiograph. Thus, both AP and lateral pelvic radiographs are required for the measurement of pelvic posture-integrated cup anteversion. Compared with conventional radiographic cup anteversion, the errors of pelvic posture-integrated radiographic cup anteversion were reduced from 10.03 (SD = 5.13) degrees to 2.53 (SD = 1.33) degrees. Pelvic posture-integrated cup anteversion measurement improves the accuracy of radiographic cup anteversion measurement, which shows the potential of further clarifying the etiology of postoperative instability based on planar radiographs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Ozaki, Kenichi; Kondo, Izumi; Hirano, Satoshi; Kagaya, Hitoshi; Saitoh, Eiichi; Osawa, Aiko; Fujinori, Yoichi
2017-11-01
To examine the efficacy of postural strategy training using a balance exercise assist robot (BEAR) as compared with conventional balance training for frail older adults. The present study was designed as a cross-over trial without a washout term. A total of 27 community-dwelling frail or prefrail elderly residents (7 men, 20 women; age range 65-85 years) were selected from a volunteer sample. Two exercises were prepared for interventions: robotic exercise moving the center of gravity by the balance exercise assist robot system; and conventional balance training combining muscle-strengthening exercise, postural strategy training and applied motion exercise. Each exercise was carried out twice a week for 6 weeks. Participants were allocated randomly to either the robotic exercise first group or the conventional balance exercise first group. preferred and maximal gait speeds, tandem gait speeds, timed up-and-go test, functional reach test, functional base of support, center of pressure, and muscle strength of the lower extremities were assessed before and after completion of each exercise program. Robotic exercise achieved significant improvements for tandem gait speed (P = 0.012), functional reach test (P = 0.002), timed up-and-go test (P = 0.023) and muscle strength of the lower extremities (P = 0.001-0.030) compared with conventional exercise. In frail or prefrail older adults, robotic exercise was more effective for improving dynamic balance and lower extremity muscle strength than conventional exercise. These findings suggest that postural strategy training with the balance exercise assist robot is effective to improve the gait instability and muscle weakness often seen in frail older adults. Geriatr Gerontol Int 2017; 17: 1982-1990. © 2017 The Authors. Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.
Suárez, H; Musé, P; Suárez, A; Arocena, M
2001-01-01
In order to assess the influence of visual stimulation in the triggering of imbalance and falls in the elderly population, the postural responses of 18 elderly patients with central vestibular disorders and clinical evidence of instability and falls were studied while receiving different types of visual stimuli. The stimulation conditions were: (i) no specific stimuli; (ii) smooth pursuit with pure sinusoids of 0.2 Hz as foveal stimulation; and (iii) optokinetic stimulation (OK) as retinal stimuli. Using a platform AMTI Accusway platform, the 95% confidence ellipse (CE) and sway velocity (SV) were evaluated with a scalogram using wavelets in order to assess the relationship between time and frequency in postural control. Velocity histograms were also constructed in order to observe the distribution of velocity values during the recording. A non-homogeneous postural behavior after visual stimulation was found among this population. In five of the patients the OK stimulation generated: (i) significantly higher average values of CE ( > 3.4+/-0.69 cm2); (ii) a significant increase in the average values of the SV ( > 3.89+/-1.15 cm/s) and a velocity histogram with a homogeneous distribution between 0 and 18 cm/s; and (iii) a scalogram with sway frequencies of up to 4 Hz distributed in both the X and Y directions (backwards and forwards and lateral) during visual stimulation with arbitrary units of energy density > 5. These three qualitative and quantitative aspects could be "markers" of visual dependence in the triggering of the mechanism of lack of equilibrium and hence falls in some elderly patients and should be considered in order to prevent falls and also to assist in the rehabilitation program of these patients.
Della Santina, Charles C.; Migliaccio, Americo A.; Patel, Amit H.
2009-01-01
Bilateral loss of vestibular sensation can be disabling. Those afflicted suffer illusory visual field movement during head movements, chronic disequilibrium and postural instability due to failure of vestibulo-ocular and vestibulo-spinal reflexes. A neural prosthesis that emulates the normal transduction of head rotation by semicircular canals could significantly improve quality of life for these patients. Like the 3 semicircular canals in a normal ear, such a device should at least transduce 3 orthogonal (or linearly separable) components of head rotation into activity on corresponding ampullary branches of the vestibular nerve. We describe the design, circuit performance and in vivo application of a head-mounted, semi-implantable multi-channel vestibular prosthesis that encodes head movement in 3 dimensions as pulse-frequency-modulated electrical stimulation of 3 or more ampullary nerves. In chinchillas treated with intratympanic gentamicin to ablate vestibular sensation bilaterally, prosthetic stimuli elicited a partly compensatory angular vestibulo-ocular reflex in multiple planes. Minimizing misalignment between the axis of eye and head rotation, apparently caused by current spread beyond each electrode’s targeted nerve branch, emerged as a key challenge. Increasing stimulation selectivity via improvements in electrode design, surgical technique and stimulus protocol will likely be required to restore AVOR function over the full range of normal behavior. PMID:17554821
Problem based review: a patient with Parkinson's disease.
Arora, A; Fletcher, P
2013-01-01
Parkinson's disease (PD) is a chronic, progressive neurodegenerative disease characterized by bradykinesia, tremor and/ or rigidity, often with gait disturbance and postural instability. In addition to these typical features, patients with PD may experience further problems related to the disease itself or to the medications used to treat it. These comorbid problems include neuropsychiatric conditions (including psychosis, hallucinations, excessive daytime sleepiness, anxiety, depression, fatigue and dementia) as well as problems associated with autonomic nervous system function such as bowel and bladder function. PD can also present in emergency situations with a 'neuroleptic malignant like picture' and acute psychosis. It is not uncommon to see motor fluctuations due to drug interactions and 'withdrawal' symptoms following dose reduction of dopamine agonists. In patients with PD, disturbances of mental state constitute some of the most difficult treatment challenges of advanced disease, often limiting effective treatment of motor symptoms and leading to increased disability and poor quality of life. While some of these symptoms may be alleviated by antiparkinsonian medication, especially if they are 'off-period' related, treatment-related phenomena are usually exacerbated by increasing the number or dosage of antiparkinsonian drugs. Elimination of exacerbating factors and simplification of drug regimens are the first and most important steps in improvement of such symptoms.
Low Magnitude Mechanical Signals Reduce Risk-Factors for Fracture during 90-Day Bed Rest
NASA Technical Reports Server (NTRS)
Muir, J. W.; Xia, Y.; Holquin, N.; Judex, S.; Qin, Y.; Evans, H.; Lang, T.; Rubin, C.
2007-01-01
Long duration spaceflight leads to multiple deleterious changes to the musculoskeletal system, where loss of bone density, an order of magnitude more severe than that which follows the menopause, combined with increased instability, conspire to elevate the risk of bone fracture due to falls on return to gravitational fields. Here, a ground-based analog for spaceflight is used to evaluate the efficacy of a low-magnitude mechanical intervention, VIBE (Vibrational Inhibition of Bone Erosion), as a potential countermeasure to preserve musculoskeletal integrity in the face of disuse. Twenty-six subjects consented to ninety days of six-degree head-down tilt bed-rest. 18 completed the 90d protocol, 8 of which received daily 10-minute exposure to 30 Hz, 0.3g VIBE, applied in the supine position using a vest elastically coupled to the vibrating platform. The shoulder harness induced a load of 60% of the subjects body weight. At baseline and 90d, Qualitative Ultrasound Scans (QUS) of the calcaneus and CT-scans of the hip and spine were performed to measure changes in bone density. Postural control (PC) was assessed through center of pressure (COP) recordings while subjects stood on a force platform for 4 minutes of quiet stance with eyes closed, and again with eyes opened. As compared to control bedrest subjects,
NACCI, A.; FERRAZZI, M.; BERRETTINI, S.; PANICUCCI, E.; MATTEUCCI, J.; BRUSCHINI, L.; URSINO, F.; FATTORI, B.
2011-01-01
SUMMARY Vertigo and postural instability following whiplash and/or minor head injuries is very frequent. According to some authors, post-whiplash vertigo cannot be caused by real injury to vestibular structures; other authors maintain that vestibular damage is possible even in the case of isolated whiplash, with vascular or post-traumatic involvement. Furthermore, many of the balance disorders reported after trauma can be justified by post-traumatic modification to the cervical proprioceptive input, with consequent damage to the vestibular spinal reflex. The aim of this study was to evaluate the vestibular condition and postural status in a group of patients (Group A, n = 90) affected with balance disorders following whiplash, and in a second group (Group B, n = 20) with balance disorders after minor head injury associated with whiplash. Both groups were submitted to videonystagmography (VNG) and stabilometric investigation (open eyes – O E, closed eyes – CE, closed eyes with head retroflexed – CER) within 15 days of their injuries and repeated within 10 days after conclusion of cervical physiotherapy treatment. The VNG tests revealed vestibulopathy in 19% of cases in Group A (11% peripheral, 5% central, 3% in an undefined site) and in 60% of subjects in Group B (50% peripheral, 10% central). At the follow-up examination, all cases of non-compensated labyrinth deficit showed signs of compensation, while there were two cases (2%) in Group A and one case (5%) in Group B of PPV. As far as the altered posturographic recordings are concerned, while there was no specific pattern in the two groups, they were clearly pathologic, especially during CER. Both in OE and in CE there was an increase in the surface values and in those pertaining to shifting of the gravity centre on the sagittal plane, which was even more evident during CER. In Group A, the pre-post-physiotherapy comparison of CER results showed that there was a statistically significant improvement in the majority of the parameters after treatment. Moreover, in Group B there was frequent lateral shifting of the centre of gravity that was probably linked with the high percentage of labyrinth deficits. The comparison between the first and second stabilometric examinations was statistically significant only in those parameters referring to gravity centre shifting on the frontal plane, which was probably due to the progressive improvement in the associated vestibulopathy rather than to the physiotherapy treatment performed for the cervical damage. Hence, our study confirms that only in a minority of cases can whiplash cause central or peripheral vestibulopathy, and that this is more probable after minor head injury associated with whiplash. In addition, our data confirm that static stabilometry is fundamental for assessing postural deficits following a cervical proprioceptive disorder. In these cases, in fact, analysis of the different parameters and the indices referring to cervical interference not only permits evaluation of altered postural performance, but also detects and quantifies destabilisation activity within the cervical proprioceptive component. PMID:22323849
Shea, Sarah; Moriello, Gabriele
2014-07-01
Pilates is a method that can potentially be used for stroke rehabilitation to address impairments in gait, balance, strength, and posture. The purpose of this case report was to document the feasibility of using Pilates and to describe outcomes of a 9-month program on lower extremity strength, balance, posture, gait, and quality of life in an individual with stroke. The participant was taught Pilates exercises up to two times per week for nine months in addition to traditional rehabilitation in the United States. Outcomes were assessed using the Berg Balance Scale (BBS), Stroke Impact Scale (SIS), GAITRite System(®), 5 repetition sit-to-stand test (STST), and flexicurve. Improvements were found in balance, lower extremity strength, and quality of life. Posture and gait speed remained the same. While these changes cannot be specifically attributed to the intervention, Pilates may have added to his overall rehabilitation program and with some modifications was feasible to use in someone with a stroke. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bloem, B R; Beckley, D J; van Dijk, J G; Zwinderman, A H; Remler, M P; Roos, R A
1996-09-01
It is still unclear why balance impairment in Parkinson's disease (PD) often responds insufficiently to dopaminergic medication. We have studied this issue in 23 patients with idiopathic PD and 24 healthy controls. Our specific purposes were (a) to investigate the contribution of abnormal automatic postural responses to balance impairment in PD and (b) to assess the influence of dopaminergic medication on abnormal automatic postural responses and balance impairment. Standing subjects received 4 degrees "toe-up" rotational perturbations of a supporting forceplate. We bilaterally recorded posturally destabilizing medium latency (ML) responses from the stretched gastrocnemius muscles and functionally corrective long latency (LL) responses from the shortened tibialis anterior (TA) muscles. We also assessed changes in the center of foot pressure (CFP) and the center of gravity (COG). All patients were tested in the "off" and "on" phases. All controls were tested and retested after 1 h. During the off phase, we found enlarged ML amplitudes and diminished LL amplitudes in patients, together with a markedly increased posterior displacement of the COG. The abnormal ML and LL responses were partially responsible for the increased body sway in patients because the initial forward (destabilizing) displacement of the CFP was increased, while the subsequent backward displacement of the CFP (a measure of the corrective braking action of LL responses) was delayed. Abnormal late automatic or possibly more voluntary postural corrections also contributed substantially to the increased body sway. During the on phase, ML amplitudes were reduced in patients but remained increased compared with controls. LL amplitudes no longer differed between both groups due to a modest, possibly dopamine-related increase in patients and a simultaneous decrease in controls. The abnormal CFP displacement was only partially improved by dopaminergic medication. The later postural corrections were not improved at all. Consequently, the increased posterior COG displacement was not ameliorated during the on phase. We conclude that (a) a combination of abnormal automatic and perhaps more voluntary postural corrections contributes to increased body sway in PD and (b) dopaminergic medication fails to improve balance impairment in PD because early automatic postural responses are only partially corrected, while later occurring postural corrections are not improved at all. These electrophysiological results support clinical observations and suggest that nondopaminergic lesions play a significant role in the pathophysiology of postural abnormalities in PD.
Hatzitaki, Vassilia; Pavlou, Marousa; Bronstein, Adolfo M
2004-02-01
Previous studies have looked at co-processing of multiple proprioceptive inputs but few have investigated the effect of separate dynamic and tonic predominantly proprioceptive disruptions applied concurrently at the same segment. The purpose of the present study was to investigate how simultaneous ankle tendon vibration, a tonic stimulus, with a dynamic toes-up (TU) or toes-down (TD) platform perturbation (1) affects postural stability and (2) influences the adaptation process. Sixteen normal subjects (ten male, six female, mean age 26 +/- 4.8 years) stood blindfolded on a moving platform with vibrators attached bilaterally over the Achilles tendons. Participants were tested in quiet stance (QS), and with five successive TU and TD tilts. All tests were conducted both with (QS+V, TU+V, TD+V) and without vibration. Centre of pressure (CoP) displacements and pitch angular trunk velocity were recorded. Results for QS+V showed a significant 1.02-cm backward CoP displacement (P<0.01) and a significant increase in trunk velocity (peak-to-peak amplitude, P<0.05; SD of trunk velocity, P<0.05). TU+V resulted in a non-significant increase of maximum backwards CoP displacement when compared to TU alone. In addition, no notable effect of vibration on other measures of CoP (pre-tilt position, SD and area of sway) and trunk velocity (peak-to-peak, SD and area of sway) indicates that TU+V does not introduce significantly greater instability compared to tilt alone. In the TD condition, vibration was found to be a stabilising influence, causing a significant shift of the mean pre-tilt position 0.85 cm backwards (P<0.01) and a substantial decrease in the area of forward CoP displacement (P<0.01). However, maximum forwards CoP displacement and trunk velocity measures were not significantly altered during TD+V. Furthermore, in neither TU nor TD was the time-course or pattern of adaptation disrupted by the additional application of vibration. In conclusion, although vibration significantly affects postural measures when applied in isolation, this finding does not hold when it is applied in combination with a more dynamic stimulus. Instead it seems that once postural stability has been disrupted the central nervous system can rapidly assess information from a weaker tonic input and utilise or suppress it appropriately, depending on its effect towards overall postural control. It can be concluded that postural responses to the concurrent application of different predominantly proprioceptive stimuli are dependent upon the type of stimulus and the ability of the central nervous system to rapidly assess and re-weigh available sensory inputs.
Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles
Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián
2016-01-01
In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barminova, H. Y., E-mail: barminova@mephi.ru; Chikhachev, A. S.
2016-02-15
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, M. S. dos, E-mail: michel.santos@iffarroupilha.edu.br; Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, 98590-000, Santo Augusto, RS; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br
2016-01-15
We study the dispersion relation for low frequency waves in the whistler mode propagating along the ambient magnetic field, considering ions and electrons with product-bi-kappa (PBK) velocity distributions and taking into account the presence of a population of dust particles. The results obtained by numerical analysis of the dispersion relation show that the decrease in the κ indexes in the ion PBK distribution contributes to the increase in magnitude of the growth rates of the ion firehose instability and the size of the region in wave number space where the instability occurs. It is also shown that the decrease inmore » the κ indexes in the electron PBK distribution contribute to decrease in the growth rates of instability, despite the fact that the instability occurs due to the anisotropy in the ion distribution function. For most of the interval of κ values which has been investigated, the ability of the non-thermal ions to increase the instability overcomes the tendency of decrease due to the non-thermal electron distribution, but for very small values of the kappa indexes the deleterious effect of the non-thermal electrons tends to overcome the effect due to the non-thermal ion distribution.« less
Control of movement initiation underlies the development of balance
Ehrlich, David E.; Schoppik, David
2017-01-01
Summary Balance arises from the interplay of external forces acting on the body and internally generated movements. Many animal bodies are inherently unstable, necessitating corrective locomotion to maintain stability. Understanding how developing animals come to balance remains a challenge. Here we study the interplay between environment, sensation, and action as balance develops in larval zebrafish. We first model the physical forces that challenge underwater balance and experimentally confirm that larvae are subject to constant destabilization. Larvae propel in swim bouts that, we find, tend to stabilize the body. We confirm the relationship between locomotion and balance by changing larval body composition, exacerbating instability and eliciting more frequent swimming. Intriguingly, developing zebrafish come to control the initiation of locomotion, swimming preferentially when unstable, thus restoring preferred postures. To test the sufficiency of locomotor-driven stabilization and the developing control of movement timing, we incorporate both into a generative model of swimming. Simulated larvae recapitulate observed postures and movement timing across early development, but only when locomotor-driven stabilization and control of movement initiation are both utilized. We conclude the ability to move when unstable is the key developmental improvement to balance in larval zebrafish. Our work informs how emerging sensorimotor ability comes to impact how and why animals move when they do. PMID:28111151
Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline.
Kucinski, Aaron; Sarter, Martin
2015-04-01
In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson's disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Pearling Instabilities of a Viscoelastic Thread
NASA Astrophysics Data System (ADS)
Deblais, A.; Velikov, K. P.; Bonn, D.
2018-05-01
Pearling instabilities of slender viscoelastic threads have received much attention, but remain incompletely understood. We study the instabilities in polymer solutions subject to uniaxial elongational flow. Two distinctly different instabilites are observed: beads on a string and blistering. The beads-on-a-string structure arises from a capillary instability whereas the blistering instability has a different origin: it is due to a coupling between stress and polymer concentration. By varying the temperature to change the solution properties we elucidate the interplay between flow and phase separation.
NASA Technical Reports Server (NTRS)
Paloski, William H.
2008-01-01
Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.
Puntumetakul, Rungthip; Yodchaisarn, Wantanee; Emasithi, Alongkot; Keawduangdee, Petcharat; Chatchawan, Uraiwan; Yamauchi, Junichiro
2015-01-01
Introduction Clinical lumbar instability (CLI) is one of the subgroups of chronic non-specific low back pain. Thai rice farmers often have poor sustained postures during a rice planting process and start their farming at an early age. However, individual associated factors of CLI are not known and have rarely been diagnosed in low back pain. This study aimed to determine the prevalence and individual associated factors of CLI in Thai rice farmers. Methods A cross-sectional survey was conducted among 323 Thai rice farmers in a rural area of Khon Kaen province, Thailand. Face-to-face interviews were conducted using the 13-item Delphi criteria questionnaire, after which an objective examination was performed using aberrant movement sign, painful catch sign, and prone instability test to obtain information. Individual factors such as sex, body mass index, waist-hip ratio, smoking, and number of years of farming experience, were recorded during the face-to-face interview. Results The prevalence of CLI in Thai rice farmers calculated by the method described in this study was 13% (age 44±10 years). Number of years of farming experience was found to be significantly correlated with the prevalence of CLI (adjusted odds ratio =2.02, 95% confidence interval =1.03–3.98, P<0.05). Conclusion This study provides prevalence of CLI in Thai rice farmers. Those with long-term farming experience of at least 30 years have a greater risk of CLI. PMID:25565778
Howard, Matt C
2018-01-01
The current article performs the first focused investigation into the construct of perceived self-esteem instability (P-SEI). Four studies investigate the construct's measurement, nomological net, and theoretical dynamics. Study 1 confirms the factor structure of a P-SEI Measure, supporting that P-SEI can be adequately measured. Study 2 identifies an initial nomological net surrounding P-SEI, showing that the construct is strongly related to stable aspects of the self (i.e., neuroticism and core self-evaluations). In Studies 3 and 4, the Conservation of Resources Theory is applied to develop and test five hypotheses. These studies show that P-SEI is predicted by self-esteem level and stressors, and the relationship of certain stressors is moderated by self-esteem contingencies. P-SEI also predicts stress, depression, anxiety, and certain defensive postures. From these studies and the integration of Conservation of Resources Theory, we suggest that P-SEI emerges through an interaction between environmental influences and personal resources, and we provide a theoretical model to better understand the construct of P-SEI. We suggest that this theory-driven model can prompt the initial field of study on P-SEI.
2015-03-01
inversion technique yielded mixed results, heavily influenced by diurnal effects and subjected to instability due to topographical interactions... effects and subjected to instability due to topographical interactions. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I...3 A. DEFINITION AND CLIMATOLOGY OF A CTWR
Influence of hip and knee osteoarthritis on dynamic postural control parameters among older fallers.
Mat, Sumaiyah; Ng, Chin Teck; Tan, Maw Pin
2017-03-06
To compare the relationship between postural control and knee and hip osteoarthritis in older adults with and without a history of falls. Fallers were those with ≥ 2 falls or 1 injurious fall over 12 months. Non-fallers were volunteers with no falls in the past year. Radiological evidence of osteoarthritis with no reported symptoms was considered "asymptomatic osteoarthritis", while "symptomatic osteoarthritis" was defined as radiographic osteoarthritis with pain or stiffness. Dynamic postural control was quantified with the limits of stability test measured on a balance platform (Neurocom® Balancemaster, California, USA). Parameters assessed were end-point excursion, maximal excursion, and directional control. A total of 102 older individuals, mean age 73 years (standard deviation 5.7) years were included. The association between falls and poor performance in maximal excursion and directional control was confounded by age and comorbidities. In the same linear equation model with falls, symptomatic osteoarthritis remained independently associated with poor end-point excursion (β-coefficient (95% confidence interval) -6.80 (-12.14 to -1.42)). Poor performance in dynamic postural control (maximal excursion and directional control) among fallers was not accounted for by hip/knee osteoarthritis, but was confounded by old age and comorbidities. Loss of postural control due to hip/knee osteoarthritis is not a risk factor for falls among community-dwelling older adults.
Kang, Sung-Won; Park, Hyung-Il; Choi, Byoung-Gun; Shin, Dongjun; Jung, Young-Giu; Lee, Jun-Young; Park, Hong-Won; Park, Sukyung
2017-01-01
Spinal disease is a common yet important condition that occurs because of inappropriate posture. Prevention could be achieved by continuous posture monitoring, but most measurement systems cannot be used in daily life due to factors such as burdensome wires and large sensing modules. To improve upon these weaknesses, we developed comfortable “smart wear” for posture measurement using conductive yarn for circuit patterning and a flexible printed circuit board (FPCB) for interconnections. The conductive yarn was made by twisting polyester yarn and metal filaments, and the resistance per unit length was about 0.05 Ω/cm. An embroidered circuit was made using the conductive yarn, which showed increased yield strength and uniform electrical resistance per unit length. Circuit networks of sensors and FPCBs for interconnection were integrated into clothes using a computer numerical control (CNC) embroidery process. The system was calibrated and verified by comparing the values measured by the smart wear with those measured by a motion capture camera system. Six subjects performed fixed movements and free computer work, and, with this system, we were able to measure the anterior/posterior direction tilt angle with an error of less than 4°. The smart wear does not have excessive wires, and its structure will be optimized for better posture estimation in a later study. PMID:29112125
Freitas, Diana A; Chaves, Gabriela Ss; Santino, Thayla A; Ribeiro, Cibele Td; Dias, Fernando Al; Guerra, Ricardo O; Mendonça, Karla Mpp
2018-03-09
Postural drainage is used primarily in infants with cystic fibrosis from diagnosis up to the moment when they are mature enough to actively participate in self-administered treatments. However, there is a risk of gastroesophageal reflux associated with this technique.This is an update of a review published in 2015. To compare the effects of standard postural drainage (15º to 45º head-down tilt) with modified postural drainage (15º to 30º head-up tilt) with regard to gastroesophageal reflux in infants and young children up to six years old with cystic fibrosis in terms of safety and efficacy. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Cystic Fibrosis Trials Register. We also searched the reference lists of relevant articles and reviews. Additional searches were conducted on ClinicalTrials.gov and on the WHO International Clinical Trials Registry Platform for any planned, ongoing and unpublished studies.The date of the most recent literature searches: 19 June 2017. We included randomised controlled studies that compared two postural drainage regimens (standard and modified postural drainage) with regard to gastroesophageal reflux in infants and young children (up to and including six years old) with cystic fibrosis. We used standard methodological procedures expected by Cochrane. Two review authors independently identified studies for inclusion, extracted outcome data and assessed risk of bias. We resolved disagreements by consensus or by involving a third review author. We contacted study authors to obtain missing or additional information. The quality of the evidence was assessed using GRADE. Two studies, involving a total of 40 participants, were eligible for inclusion in the review. We included no new studies in the 2018 update. The included studies were different in terms of the age of participants, the angle of tilt, the reported outcomes, the number of sessions and the study duration. The following outcomes were measured: appearance or exacerbation of gastroesophageal reflux episodes; percentage of peripheral oxygen saturation; number of exacerbations of upper respiratory tract symptoms; number of days on antibiotics for acute exacerbations; chest X-ray scores; and pulmonary function tests. One study reported that postural drainage with a 20° head-down position did not appear to exacerbate gastroesophageal reflux. However, the majority of the reflux episodes in this study reached the upper oesophagus (moderate-quality evidence). The second included study reported that modified postural drainage (30° head-up tilt) was associated with fewer number of gastroesophageal reflux episodes and fewer respiratory complications than standard postural drainage (30° head-down tilt) (moderate-quality evidence). The included studies had an overall low risk of bias. One included study was funded by the Sydney Children's Hospital Foundation and the other by the Royal Children's Hospital Research Foundation and Physiotherapy Research Foundation of Australia. Data were not able to be pooled by meta-analysis due to differences in the statistical presentation of the data. The limited evidence regarding the comparison between the two regimens of postural drainage is still weak due to the small number of included studies, the small number of participants assessed, the inability to perform any meta-analyses and some methodological issues with the studies. However, it may be inferred that the use of a postural regimen with a 30° head-up tilt is associated with a lower number of gastroesophageal reflux episodes and fewer respiratory complications in the long term. The 20° head-down postural drainage position was not found to be significantly different from the 20° head-up tilt modified position. Nevertheless, the fact that the majority of reflux episodes reached the upper oesophagus should make physiotherapists carefully consider their treatment strategy. We do not envisage that there will be any new trials undertaken that will affect the conclusions of this review; therefore, we do not plan to update this review.
Marginal instability threshold condition of the aperiodic ordinary mode in equal-mass plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vafin, S.; Schlickeiser, R.; Yoon, P. H.
The purely growing ordinary (O) mode instability for counter-streaming bi-Maxwellian plasma particle distribution functions has recently received renewed attention due to its importance for the solar wind plasma. Here, the analytical marginal instability condition is derived for magnetized plasmas consisting of equal-mass charged particles, distributed in counter-streams with equal temperatures. The equal-mass composition assumption enormously facilitates the theoretical analysis due to the equality of the values of the electron and positron (positive and negative ion) plasma and gyrofrequencies. The existence of a new instability domain of the O-mode at small plasma beta values is confirmed, when the parallel counter-stream freemore » energy exceeds the perpendicular bi-Maxwellian free energy.« less
SU-F-207-03: Dosimetric Effect of the Position of Arms in Torso CT Scan with Tube Current Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Rensselaer Polytechnic Institute, Troy, NY; Gao, Y
Purpose: To evaluate the patient organ dose differences between the arms-raised and arms-lowered postures in Torso multidetector computed tomography (MDCT) scan protocols with tube current modulation (TCM). Methods: Patient CT organ doses were simulated using the Monte Carlo method with human phantoms and a validated CT scanner model. A set of adult human phantoms with arms raised and arms lowered postures were developed using advanced BREP-based mesh surface geometries. Organ doses from routine Torso scan protocols such as chest, abdomen-pelvis, and CAP scans were simulated. The organ doses differences caused by two different posutres were investigated when tube current modulationmore » (TCM) were applied during the CT scan. Results: With TCM applied, organ doses of all the listed organs of arms-lowered posture phantom are larger than those of arms raised phantom. The dose difference for most of the organs or tissues are larger than 50%, and the skin doses difference for abdomen-pelvis scan even reaches 112.03%. This is due to the fact that the tube current for patient with arms-lowered is much higher than for the arms raised posture. Conclusion: Considering CT scan with TCM, which is commonly applied clinically, patients who could not raise their arms will receive higher radiation dose than the arms raised patient, with dose differences for some tissues such as the skin being larger than 100%. This is due to the additional tube current necessary to penetrate the arms while maintaining consistent image quality. National Nature Science Foundation of China(No.11475047)« less
Postural stability is compromised by fatiguing overhead work.
Nussbaum, Maury A
2003-01-01
In a laboratory setting, 16 participants performed a repetitive overhead tapping task for 3 hours or until self-terminated due to substantial shoulder discomfort. Several measures of postural sway and stability were obtained using a force plate, both during quiet standing and during performance of the tapping task. Sway area and peak sway velocity showed consistent increases with time, whereas changes in average velocity and peak whole-body center-of-mass acceleration were either small or nonsignificant. Although relatively insensitive to several task variables, changes in sway areas and peak velocities were substantially larger in trials terminated by the participants. It is argued that fatigue plays a more important role than simple task duration in causing the observed increases in sway, and hence decreases in postural stability. Potential whole-body consequences of localized musculoskeletal stresses appear supported by the results, and implications for safety, risks of falls, and work scheduling are discussed.
Electrothermal instability growth in magnetically driven pulsed power liners
NASA Astrophysics Data System (ADS)
Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles
2012-09-01
This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.
Finite elements and fluid dynamics. [instability effects on solution of nonlinear equations
NASA Technical Reports Server (NTRS)
Fix, G.
1975-01-01
Difficulties concerning a use of the finite element method in the solution of the nonlinear equations of fluid dynamics are partly related to various 'hidden' instabilities which often arise in fluid calculations. The instabilities are typically due to boundary effects or nonlinearities. It is shown that in certain cases these instabilities can be avoided if certain conservation laws are satisfied, and that the latter are often intimately related to finite elements.
DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, L.; Choudhari, M.; Li, F.
2014-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.
Extensor Tendon Instability Due to Sagittal Band Injury in a Martial Arts Athlete: A Case Report.
Kochevar, Andrew; Rayan, Ghazi
2017-03-01
A Taekwondo participant sustained a hand injury from punching an opponent that resulted in painful instability of the ring finger extensor digitorum communis tendon due to sagittal band damage. His symptoms resolved after reconstructive surgery on the sagittal band (SB) with stabilization of the extensor tendon over the metacarpophalangeal joint.
Aldien, Yasser; Marcotte, Pierre; Rakheja, Subhash; Boileau, Paul-Emile
2005-07-01
The biodynamic responses of the hand-arm system under x(h)-axis vibration are investigated in terms of the driving point mechanical impedance (DPMI) and absorbed power in a laboratory study. For this purpose, seven healthy male subjects are exposed to two levels of random vibration in the 8-1,000 Hz frequency range, using three instrumented cylindrical handles of different diameters (30, 40 and 50 mm), and different combinations of grip (10, 30 and 50 N) and push (0, 25 and 50 N) forces. The experiments involve grasping the handle while adopting two different postures, involving elbow flexion of 90 degrees and 180 degrees, with wrist in the neutral position for both postures. The analyses of the results revealed peak DPMI magnitude and absorbed power responses near 25 Hz and 150 Hz, for majority of the test conditions considered. The frequency corresponding to the peak response increased with increasing hand forces. Unlike the absorbed power, the DPMI response was mostly observed to be insensitive to variations in the excitation magnitude. The handle diameter revealed obvious effects on the DPMI magnitude, specifically at frequencies above 250 Hz, which was not evident in the absorbed power due to relatively low velocity at higher frequencies. The influence of hand forces was also evident on the DPMI magnitude response particularly at frequencies. above 100 Hz, while the effect of hand-arm posture on the DPMI magnitude was nearly negligible. The magnitude of power absorbed within the hand and arm was observed to be strongly dependent upon the excitation level over the entire frequency range, while the influence of hand-arm posture on the total absorbed power was observed to be important. The effect of variations in the hand forces on the absorbed power was relatively small for the bent elbow posture, while an increase in either the grip or the push force coupled with the extended arm posture resulted in considerably higher energy absorption. The results suggested that the handle size, hand-arm posture and hand forces, produce coupled effect on the biodynamic response of the hand-arm system.
Charge instabilities due to local charge conjugation symmetry in /2+1 dimensions
NASA Astrophysics Data System (ADS)
Bais, F. A.; Striet, J.
2003-08-01
Alice electrodynamics (AED) is a theory of electrodynamics in which charge conjugation is a local gauge symmetry. In this paper we investigate a charge instability in alice electrodynamics in 2+1 dimensions due to this local charge conjugation. The instability manifests itself through the creation of a pair of alice fluxes. The final state is one in which the charge is completely delocalized, i.e., it is carried as cheshire charge by the flux pair that gets infinitely separated. We determine the decay rate in terms of the parameters of the model. The relation of this phenomenon with other salient features of 2-dimensional compact QED, such as linear confinement due to instantons/monopoles, is discussed.
Effect of polarization force on the Jeans instability in collisional dusty plasmas
NASA Astrophysics Data System (ADS)
A, ABBASI; M, R. RASHIDIAN VAZIRI
2018-03-01
The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles. In this study, the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces. The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived, assuming the plane wave approximation. The derived instability growth rate shows that, in collisional dusty plasmas, the Jeans instability strongly depends on the magnitude of the polarization force.
Thermal instability in the inner coma of a comet
NASA Technical Reports Server (NTRS)
Milikh, G. M.; Sharma, A. S.
1995-01-01
The spacecraft and ground based observations of comet Halley inner coma showed a localized ion density depletion region whose origin is not well understood. Although it has been linked to a thermal instability associated with negative ions, the photodetachment lifetime of negative ions (approximately 1 sec) is too short compared to the electron attachment time scale (approximately 100 sec) for this process to have a significant effect. A mechanism for the ion density depletion based on the thermal instability of the cometary plasma due to the excitation of rotational and vibrational levels of water molecules is proposed. The electron energy losses due to these processes peak near 4000 K (0.36 eV) and at temperatures higher than this value a localized cooling leads to further cooling (thermal instability) due to the increased radiation loss. The resulting increase in recombination leads to an ion density depletion and the estimates for this depletion at comet Halley agree with the observations.
Posture alteration as a measure to accommodate uneven ground in able-bodied gait
Blickhan, Reinhard; Muller, Roy; Rode, Christian
2017-01-01
Though the effects of imposed trunk posture on human walking have been studied, less is known about such locomotion while accommodating changes in ground level. For twelve able participants, we analyzed kinematic parameters mainly at touchdown and toe-off in walking across a 10-cm visible drop in ground level (level step, pre-perturbation step, step-down, step-up) with three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). Two-way repeated measures ANOVAs revealed step-specific effects of posture on the kinematic behavior of gait mostly at toe-off of the pre-perturbation step and the step-down as well as at touchdown of the step-up. In preparation to step-down, with increasing trunk flexion the discrepancy in hip−center of pressure distance, i.e. effective leg length, (shorter at toe-off versus touchdown), compared with level steps increased largely due to a greater knee flexion at toe-off. Participants rotated their trunk backwards during step-down (2- to 3-fold backwards rotation compared with level steps regardless of trunk posture) likely to control the angular momentum of their whole body. The more pronounced trunk backwards rotation in trunk-flexed walking contributed to the observed elevated center of mass (CoM) trajectories during the step-down which may have facilitated drop negotiation. Able-bodied individuals were found to recover almost all assessed kinematic parameters comprising the vertical position of the CoM, effective leg length and angle as well as hip, knee and ankle joint angles at the end of the step-up, suggesting an adaptive capacity and hence a robustness of human walking with respect to imposed trunk orientations. Our findings may provide clinicians with insight into a kinematic interaction between posture and locomotion in uneven ground. Moreover, a backward rotation of the trunk for negotiating step-down may be incorporated into exercise-based interventions to enhance gait stability in individuals who exhibit trunk-flexed postures during walking. PMID:29281712
Assessment of postural control in patients with Parkinson's disease: sway ratio analysis.
Błaszczyk, Janusz W; Orawiec, Renata
2011-04-01
Analysis of the postural stability impairments in neurodegenerative diseases is a very demanding task. Age-related declines in posturographic indices are usually superimposed on effects associated with the pathology and its treatment. We present the results of a novel postural sway ratio (SR) analysis in patients with Parkinson's disease (PD) and age-matched healthy subjects. The sway ratios have been assessed based upon center of foot-pressure (CP) signals recorded in 55 parkinsonians (Hoehn and Yahr: 1-3) and 55 age-matched healthy volunteers while standing quiet with eyes open (EO) and then with eyes closed (EC). Complementing classical sway measure abnormalities, the SR exhibited a high discriminative power for all controlled factors: pathology, vision, and direction of sway. Both the anteroposterior (AP) and mediolateral (ML) sway ratios were significantly increased in PD patients when compared to the control group. An additional SR increase was observed in the response to eyes closure. The sway ratio changes documented here can be attributed to a progressive decline of a postural stability control due to pathology. In fact, a significant correlation between the mediolateral SR under EO conditions and Motor Exam (section III) score of the UPDRS was found. The mediolateral sway ratios computed for EO and EC conditions significantly correlated with the CP path length (r = .87) and the mean anteroposterior CP position within the base of support (r = .38). Both indices reflect postural stability decline and fall tendency # in parkinsonians. The tremor-type PD patients (N=34) showed more pronounced relationships between the mediolateral SR and selected items from the UPDRS scale, including: falls (Kendall Tau=.47, p < .05), rigidity (.45, p < .05), postural stability (retropulsion) (.52), and the Motor Exam score (.73). The anteroposterior SR correlated only with tremor (Kendal Tau = .77, p < .05). It seems that in force plate posturography the SR can be recommended as a single reliable measure that allows for a better quantitative assessment of postural stability impairments. Copyright © 2010 Elsevier B.V. All rights reserved.
Buldt, Andrew K; Allan, Jamie J; Landorf, Karl B; Menz, Hylton B
2018-02-23
Foot posture is a risk factor for some lower limb injuries, however the underlying mechanism is not well understood. Plantar pressure analysis is one technique to investigate the interaction between foot posture and biomechanical function of the lower limb. The aim of this review was to investigate the relationship between foot posture and plantar pressure during walking. A systematic database search was conducted using MEDLINE, CINAHL, SPORTDiscus and Embase to identify studies that have assessed the relationship between foot posture and plantar pressure during walking. Included studies were assessed for methodological quality. Meta-analysis was not conducted due to heterogeneity between studies. Inconsistencies included foot posture classification techniques, gait analysis protocols, selection of plantar pressure parameters and statistical analysis approaches. Of the 4213 citations identified for title and abstract review, sixteen studies were included and underwent quality assessment; all were of moderate methodological quality. There was some evidence that planus feet display higher peak pressure, pressure-time integral, maximum force, force-time integral and contact area predominantly in the medial arch, central forefoot and hallux, while these variables are lower in the lateral and medial forefoot. In contrast, cavus feet display higher peak pressure and pressure-time integral in the heel and lateral forefoot, while pressure-time integral, maximum force, force-time integral and contact area are lower for the midfoot and hallux. Centre of pressure was more laterally deviated in cavus feet and more medially deviated in planus feet. Overall, effect sizes were moderate, but regression models could only explain a small amount of variance in plantar pressure variables. Despite these significant findings, future research would benefit from greater methodological rigour, particularly in relation to the use of valid foot posture measurement techniques, gait analysis protocols, and standardised approaches for analysis and reporting of plantar pressure variables. Copyright © 2018 Elsevier B.V. All rights reserved.
Postural Control in Children with Dyslexia: Effects of Emotional Stimuli in a Dual-Task Environment.
Goulème, Nathalie; Gerard, Christophe-Loïc; Bucci, Maria Pia
2017-08-01
The aim of this study was to compare the visual exploration strategies used during a postural control task across participants with and without dyslexia. We simultaneously recorded eye movements and postural control while children were viewing different types of emotional faces. Twenty-two children with dyslexia and twenty-two aged-matched children without dyslexia participated in the study. We analysed the surface area, the length and the mean velocity of the centre of pressure for balance in parallel with visual saccadic latency, the number of saccades and the time spent in regions of interest. Our results showed that postural stability in children with dyslexia was weaker and the surface area of their centre of pressure increased significantly when they viewed an unpleasant face. Moreover, children with dyslexia had different strategies to those used by children without dyslexia during visual exploration, and in particular when they viewed unpleasant emotional faces. We suggest that lower performance in emotional face processing in children with dyslexia could be due to a difference in their visual strategies, linked to their identification of unpleasant emotional faces. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Magalhães, Fernando Henrique; Kohn, André Fabio
2011-08-01
Diminished balance ability poses a serious health risk due to the increased likelihood of falling, and impaired postural stability is significantly associated with blindness and poor vision. Noise stimulation (by improving the detection of sub-threshold somatosensory information) and tactile supplementation (i.e., additional haptic information provided by an external contact surface) have been shown to improve the performance of the postural control system. Moreover, vibratory noise added to the source of tactile supplementation (e.g., applied to a surface that the fingertip touches) has been shown to enhance balance stability more effectively than tactile supplementation alone. In view of the above findings, in addition to the well established consensus that blind subjects show superior abilities in the use of tactile information, we hypothesized that blind subjects may take extra benefits from the vibratory noise added to the tactile supplementation and hence show greater improvements in postural stability than those observed for sighted subjects. If confirmed, this hypothesis may lay the foundation for the development of noise-based assistive devices (e.g., canes, walking sticks) for improving somatosensation and hence prevent falls in blind individuals. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pre-impact fall detection system using dynamic threshold and 3D bounding box
NASA Astrophysics Data System (ADS)
Otanasap, Nuth; Boonbrahm, Poonpong
2017-02-01
Fall prevention and detection system have to subjugate many challenges in order to develop an efficient those system. Some of the difficult problems are obtrusion, occlusion and overlay in vision based system. Other associated issues are privacy, cost, noise, computation complexity and definition of threshold values. Estimating human motion using vision based usually involves with partial overlay, caused either by direction of view point between objects or body parts and camera, and these issues have to be taken into consideration. This paper proposes the use of dynamic threshold based and bounding box posture analysis method with multiple Kinect cameras setting for human posture analysis and fall detection. The proposed work only uses two Kinect cameras for acquiring distributed values and differentiating activities between normal and falls. If the peak value of head velocity is greater than the dynamic threshold value, bounding box posture analysis will be used to confirm fall occurrence. Furthermore, information captured by multiple Kinect placed in right angle will address the skeleton overlay problem due to single Kinect. This work contributes on the fusion of multiple Kinect based skeletons, based on dynamic threshold and bounding box posture analysis which is the only research work reported so far.
Orientation and position of head posture, scapula and thoracic spine in mouth-breathing children.
Neiva, Patrícia Dayrell; Kirkwood, Renata Noce; Godinho, Ricardo
2009-02-01
Mouth-breathing is a common clinical condition among school-age children and some studies have correlated this condition with quality of life and postural alterations. Therefore, the objective of this study was to investigate the orientation and position of the scapula, thoracic spine and head posture among mouth-breathing (MB) children and nasal-breathing (NB) children. Twenty-one male MB children and 21 male NB children between 8 and 12 years of age participated in the study. Data were obtained through a stereophotogrammetry system that uses passive markers over anatomical landmarks to capture the position of the segments. Internal rotation, upward rotation, anterior tilt, scapular elevation and abduction were measured bilaterally as well as thoracic kyphosis, forward head position and shoulder protrusion. The MB children showed increased scapular superior position in relation to the NB group. No statistically significant differences were found between groups regarding the angular and linear measurements of the scapula. To verify reliability, three measurements were taken for each variable in the study. The intraclass correlation coefficient (ICC) showed results above 0.8 for all the variables except for the internal rotation angle (I-Rot), below 0.5, probably due to uncertainty in the palpation of the inferior angle of the scapula. Ninety-five percent of the NB children and 58% among the MB children had been breastfed, this difference was statistically significant. There were statistically significant differences between groups regarding the domains of the Autoquestionnaire Qualité de Vie Enfant Imagé (AUQEI) scale and body mass index, which was higher among the NB children. MB children increased scapular superior position in comparison to NB children due probably to the position of forward head, leading to an alteration in the positioning of the mandible. The absence of significantly difference in posture pattern between groups in the present study could attributed to height-weight development in this age, as the posture of children changes in order to adapt to new body proportions, regardless of health status. The results observed in this study demonstrate the importance of using reliable measurements in the postural assessment of MB and NB children helping physical therapists to focus their strategies during rehabilitation in more specific conditions.
Simulations of Instabilities in Complex Valve and Feed Systems
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.
2006-01-01
CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.
Inhibition of electron thermal conduction by electromagnetic instabilities. [in stellar coronas
NASA Technical Reports Server (NTRS)
Levinson, Amir; Eichler, David
1992-01-01
Heat flux inhibition by electromagnetic instabilities in a hot magnetized plasma is investigated. Low-frequency electromagnetic waves become unstable due to anisotropy of the electron distribution function. The chaotic magnetic field thus generated scatters the electrons with a specific effective mean free path. Saturation of the instability due to wave-wave interaction, nonlinear scattering, wave propagation, and collisional damping is considered. The effective mean free path is found self-consistently, using a simple model to estimate saturation level and scattering, and is shown to decrease with the temperature gradient length. The results, limited to the assumptions of the model, are applied to astrophysical systems. For some interstellar clouds the instability is found to be important. Collisional damping stabilizes the plasma, and the heat conduction can be dominated by superthermal electrons.
Mahdavie, Elnaz; Rezasoltani, Asghar; Simorgh, Leila
2017-08-01
The prevalence of sway back posture (SBP) is very high among elite gymnasts. This posture may be partly due to the improper function of lumbar multifidus muscles (LMM) as lumbar stabilizers muscles. The aim of this study was to compare the thicknesses of LMM measured at rest and during the contraction elicited during an arm lift between elite gymnasts with SBP and normal posture. Observational, descriptive, comparative. The participants consist of twenty gymnasts between the ages of 17 and 30 who had trained in gymnastics for more than ten years. They were assigned to two groups: SBP (n=10) and control (n=10). Posture analysis with grid paper and plumb line was performed for all subjects. The thickness of LMM on dominant side of spinal column was measured by a real-time ultrasound at five lumbar levels. The thickness of the LMM was measured both at rest and during the contraction elicited during an arm lift. The variation between the LMM thickness between the muscle at rest and muscle at the peak of contraction was regarded as LMM muscle function. The thickness of LMM was less in SBP group than the control group at all lumbar segments. The variation in LMM thickness between the state of rest and muscle contraction was significantly less in athletes with SBP than controls when compared at all levels of the lumbar spine (p < 0.05). The function of LMM may be disturbed in athletes with SBP as demonstrated by decreased thicknesses of LMM found in gymnasts with SBP. Additionally, the thickness of the LMM as a strong antigravity and stabilizing muscle group was decreased during arm raising in gymnasts with SBP. 3a.
Postural Stability of Special Warfare Combatant-Craft Crewmen With Tactical Gear.
Morgan, Paul M; Williams, Valerie J; Sell, Timothy C
The US Naval Special Warfare's Special Warfare Combatant-Craft Crewmen (SWCC) operate on small, high-speed boats while wearing tactical gear (TG). The TG increases mission safety and success but may affect postural stability, potentially increasing risk for musculoskeletal injury. Therefore, the purpose of this study was to examine the effects of TG on postural stability during the Sensory Organization Test (SOT). Eight SWCC performed the SOT on NeuroCom's Balance Manager with TG and with no tactical gear (NTG). The status of gear was performed in randomized order. The SOT consisted of six different conditions that challenge sensory systems responsible for postural stability. Each condition was performed for three trials, resulting in a total of 18 trials. Overall performance, each individual condition, and sensory system analysis (somatosensory, visual, vestibular, preference) were scored. Data were not normally distributed therefore Wilcoxon signed-rank tests were used to compare each variable (ρ = .05). No significant differences were found between NTG and TG tests. No statistically significant differences were detected under the two TG conditions. This may be due to low statistical power, or potentially insensitivity of the assessment. Also, the amount and distribution of weight worn during the TG conditions, and the SWCC's unstable occupational platform, may have contributed to the findings. The data from this sample will be used in future research to better understand how TG affects SWCC. The data show that the addition of TG used in our study did not affect postural stability of SWCC during the SOT. Although no statistically significant differences were observed, there are clinical reasons for continued study of the effect of increased load on postural stability, using more challenging conditions, greater surface perturbations, dynamic tasks, and heavier loads. 2016.
Alencar, Tatiane Romanini Rodrigues; Marques, Ilza Lazarini; Bertucci, Alvaro; Prado-Oliveira, Rosana
2017-05-01
The study assessed the neurodevelopment of children with isolated Robin sequence (IRS) and evaluated if children treated exclusively with nasopharyngeal intubation (NPI) present delay in neurological development. The prospective and cross-sectional study was conducted at the Hospital for Rehabilitation of Craniofacial Anomalies, Brazil. Children with IRS were divided into two groups according to the type of treatment in early infancy: 38 were treated with NPI (more severe cases) and 24 with postural treatment (less severe cases). Regarding interventions, children were assessed at 2 to 6 years of age using the Denver II Developmental Screening Test (Denver II) and Neurological Evolutionary Examination (NEE). According to Denver II, 73.7% in the NPI group and 79.2% in the postural group presented normal development. This result was similar to the results of different studies in the literature with typical population. Considering all areas of development, there were no significant differences in Denver II between the NPI and postural groups (P = .854). In the NPI group, 89.5% of children and 87.5% in the postural group presented normal development in NEE. Language was the most affected area, as 18.4% and 20.8% of children in NPI and postural group, respectively, presented risk for delay in the Denver II. The increased risk for delay in language area was probably due to anatomical conditions of the muscles involved in speech, and to hearing oscillations, as 47.4% in NPI group and 58.3% in postural group underwent myringotomy. IRS treated with NPI had neurological development similar to those in less severe cases. Children treated exclusively with NPI did not present delay in neurological development.
Ioffe, M E; Ustinova, K I; Chernikova, L A; Luk'yanova, Yu A; Ivanova-Smolenskaya, I A; Kulikov, M A
2004-07-01
The aim of the study reported here was to investigate impairments on the learning of voluntary control of the center of pressures using visual feedback in patients with lesions of the corticospinal and nigrostriatal systems. Participants were 33 patients with Parkinson's disease and 20 patients with hemipareses due to circulatory lesions in the basin of the middle cerebral artery. Subjects stood on a stabilometric platform and used two computer games over 10 days to learn to shift the body relative to the foot to move the centre of pressures, indicated by the position of a cursor on the screen, with the target and to move the target to a specified part of the screen. The games differed in terms of the postural tasks. In one, the direction of movement of the center of pressures was not known to the subjects, and subjects learned a general strategy for posture control; the other formed a strictly defined postural coordination. Both groups of patients were found to have impairments of voluntary control of the position of the center of pressures. There were no differences between groups of patients, in terms of the severity of the initial performance deficit in the task involving shifts of the center of pressures in different directions (the general strategy for controlling the center of pressures), while learning of this task was more difficult for patients with Parkinson's disease. The initial deficit in the fine postural coordination task was more marked in patients with Parkinsonism, though learning in these patients was significantly better than in patients with hemipareses. It is suggested that the mechanisms of involvement of the nigrostriatal and corticospinal systems in learning the voluntary control of posture have elements in common as well as unique elements.
Ringheim, Inge; Austein, Helene; Indahl, Aage; Roeleveld, Karin
2015-10-01
Prolonged standing has been associated with development and aggravation of low back pain (LBP). However, the underlying mechanisms are not well known. The aim of the present study was to investigate postural control and muscle activation during and as a result of prolonged standing in chronic LBP (cLBP) patients compared to healthy controls (HCs). Body weight shifts and trunk and hip muscle activity was measured during 15 min standing. Prior and after the standing trial, strength, postural sway, reposition error (RE), flexion relaxation ratio (FRR), and pain were assessed and after the prolonged standing, ratings of perceived exertion. During prolonged standing, the cLBP patients performed significantly more body weight shifts (p<.01) with more activated back and abdominal muscles (p=.01) and similar temporal variability in muscle activation compared to HCs, while the cLBP patients reported more pain and perceived exertion at the end of prolonged standing. Moreover, both groups had a similar change in strength, postural sway, RE and FRR from before to after prolonged standing, where changes in HC were towards pre-standing values of cLBP patients. Thus, despite a more variable postural strategy, the cLBP patients did not have higher muscle activation variability, but a general increased muscle activation level. This may indicate a reduced ability to individually deactivate trunk muscles. Plausibly, due to the increased variable postural strategy, the cLBP patients could compensate for the relatively high muscle activation level, resulting in normal variation in muscle activation and normal reduction in strength, RE and FRR after prolonged standing. Copyright © 2015 Elsevier B.V. All rights reserved.
Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position
NASA Astrophysics Data System (ADS)
Rahmatalla, Salam; DeShaw, Jonathan
2011-12-01
Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.
Lung volumes during sustained microgravity on Spacelab SLS-1
NASA Technical Reports Server (NTRS)
Elliott, Ann R.; Prisk, G. Kim; Guy, Harold J. B.; West, John B.
1994-01-01
Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (microgravity) on lung volumes has not been reported. Pulmonary function tests were performed by four subjects before, during, and after 9 days of microgravity exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box-and-flowmeter system and a respiratory mass spectrometer. Measurements included functional residual capacity (FRC), expiratory reserve volume (ERV), residual volume (RV), inspiratory and expiratory vital capacities (IVC and EVC), and tidal volume (V9sub T)). Total lung capacity (TLC) was derived from the measured EVC and RV values. With preflight standing values as a comparison, FRC was significantly reduced by 15% (approximately 500 ml) in microgravity and 32% in the supine posture. ERV was reduced by 10 - 20% in microgravity and decreased by 64% in the supine posture. RV was significantly reduced by 18% (310 ml) in microgravity but did not significantly change in the supine posture compared with standing. IVC and EVC were slightly reduced during the first 24 h of microgravity but returned to 1-G standing values within 72 h of microgravity exposure. IVC and EVC in the supine posture were significantly reduced by 12% compared with standing. During microgravity, V(sub T) decreased by 15% (approximately 90 ml), but supine V(sub T) was unchanged compared with preflight standing values. TLC decreased by approximately 8% during microgravity and in the supine posture compared with preflight standing. The reductions in FRC, ERV, and RV during microgravity are probably due to the cranial shift of the diaphragm, an increase in intrathoracic blood volume, and more uniform alveolar expansion.
Evaluating the head posture of dentists with no neck pain.
Mostamand, J; Lotfi, H; Safi, N
2013-10-01
Dentistry is one of the professions that requires a high degree of concentration during the treatment of patients. There are many predisposing factors, affecting dentists when working on the patient's teeth, including neck flexion, arm abduction and inflexible postural positions, which may put them at the risk of developing musculoskeletal disorders related to the neck. Although dentists with long records of service show different levels of pain and discomfort in their necks, there is no evidence regarding whether younger dentists report neck pain before the onset of an abnormal condition in this region, including forward head posture (FHP). Discovering any alteration in the head posture of dentists might confirm one of the reasons for neck pain in this population. Forty one dentists with no neck pain and forty controls having jobs other than dentistry who had no risk factors related to head posture voluntarily participated in the present study. A standard method was used to measure the cervical curve in these two groups. There was no significant difference between the mean values of cervical curve in dentists and the control group (p > 0.05). There was also no significant difference between cervical curve values in dentists working for either 5-8 years or 8-12 years (p > 0.05). The only significant difference was observed in mean cervical curve values of men and women in the dentist group (p < 0.05). No alteration of cervical curve in the dentist group compared to controls might be due to absence of pain sensation in the dentists in the current study. In other words, this group might have not yet experienced sufficient change in head posture to experience significant pain in their neck region. Copyright © 2012 Elsevier Ltd. All rights reserved.
Compensatory postural adjustments in Parkinson's disease assessed via a virtual reality environment.
Yelshyna, Darya; Gago, Miguel F; Bicho, Estela; Fernandes, Vítor; Gago, Nuno F; Costa, Luís; Silva, Hélder; Rodrigues, Maria Lurdes; Rocha, Luís; Sousa, Nuno
2016-01-01
Postural control is a complex dynamic mechanism, which integrates information from visual, vestibular and somatosensory systems. Idiopathic Parkinson's disease (IPD) patients are unable to produce appropriate reflexive responses to changing environmental conditions. Still, it is controversial what is due to voluntary or involuntary postural control, even less what is the effect of levodopa. We aimed to evaluate compensatory postural adjustments (CPA), with kinematic and time-frequency analyzes, and further understand the role of dopaminergic medication on these processes. 19 healthy subjects (Controls) and 15 idiopathic Parkinson's disease (IPD) patients in the OFF and ON medication states, wearing IMUs, were submitted to a virtual reality scenario with visual downward displacements on a staircase. We also hypothesized if CPA would involve mechanisms occurring in distinct time scales. We subsequently analyzed postural adjustments on two frequency bands: low components between 0.3 and 1.5 Hz (LB), and high components between 1.5 and 3.5 Hz (HB). Vertical acceleration demonstrated a greater power for discriminating IPD patients from healthy subjects. Visual perturbation significantly increased the power of the HB in all groups, being particularly more evident in the OFF state. Levodopa significantly increased their basal power taking place on the LB. However, controls and IPD patients in the ON state revealed a similar trend of the control mechanism. Results indicate an improvement in muscular stiffness provided by levodopa. They also suggest the role of different compensatory postural adjustment patterns, with LB being related to inertial properties of the oscillating mass and HB representing reactions to the ongoing visual input-changing scenario. Copyright © 2015 Elsevier B.V. All rights reserved.
Gait post-stroke: Pathophysiology and rehabilitation strategies.
Beyaert, C; Vasa, R; Frykberg, G E
2015-11-01
We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Johansson, Jonas; Nordström, Anna; Gustafson, Yngve; Westling, Göran; Nordström, Peter
2017-11-01
fall-related injuries constitute major health risks in older individuals, and these risks are projected to increase in parallel with increasing human longevity. Impaired postural stability is a potential risk factor related to falls, although the evidence is inconclusive, partly due to the lack of prospective studies. This study aimed to investigate how objective measures of postural sway predict incident falls. this prospectively observational study included 1,877 community-dwelling individuals aged 70 years who participated in the Healthy Ageing Initiative between June 2012 and December 2015. postural sway was measured during eyes-open (EO) and eyes-closed (EC) trials using the Wii Balance Board. Functional mobility, muscle strength, objective physical activity and cognitive performance were also measured. Participants reported incident falls 6 and 12 months after the examination. during follow-up, 255 (14%) prospective fallers were identified. Division of centre of pressure (COP) sway lengths into quintiles revealed a nonlinear distribution of falls for EO trial data, but not EC trial data. After adjustment for multiple confounders, fall risk was increased by 75% for participants with COP sway lengths ≥400 mm during the EO trial (odds ratio [OR] 1.75, 95% confidence interval [CI] 1.09-2.79), and approximately doubled for sway lengths ≥920 mm during the EC trial (OR 1.90, 95% CI 1.12-3.22). objective measures of postural sway independently predict incident falls in older community-dwelling men and women. Further studies are needed to evaluate whether postural sway length is of interest for the prediction of incident falls in clinical settings. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com
Lung volumes during sustained microgravity on Spacelab SLS-1.
Elliott, A R; Prisk, G K; Guy, H J; West, J B
1994-10-01
Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (mu G) on lung volumes has not been reported. Pulmonary function tests were performed by four subjects before, during, and after 9 days of mu G exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box-and-flowmeter system and a respiratory mass spectrometer. Measurements included functional residual capacity (FRC), expiratory reserve volume (ERV), residual volume (RV), inspiratory and expiratory vital capacities (IVC and EVC), and tidal volume (VT). Total lung capacity (TLC) was derived from the measured EVC and RV values. With preflight standing values as a comparison, FRC was significantly reduced by 15% (approximately 500 ml) in mu G and 32% in the supine posture. ERV was reduced by 10-20% in mu G and decreased by 64% in the supine posture. RV was significantly reduced by 18% (310 ml) in mu G but did not significantly change in the supine posture compared with standing. IVC and EVC were slightly reduced during the first 24 h of mu G but returned to 1-G standing values within 72 h of mu G exposure. IVC and EVC in the supine posture were significantly reduced by 12% compared with standing. During mu G, VT decreased by 15% (approximately 90 ml), but supine VT was unchanged compared with preflight standing values. TLC decreased by approximately 8% during mu G and in the supine posture compared with preflight standing. The reductions in FRC, ERV, and RV during mu G are probably due to the cranial shift of the diaphragm, an increase in intrathoracic blood volume, and more uniform alveolar expansion.
Transverse Instabilities in the Fermilab Recycler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prost, L.R.; Burov, A.; Shemyakin, A.
2011-07-01
Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly loweredmore » for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.« less
Dyakonov-Shur instability across the ballistic-to-hydrodynamic crossover
NASA Astrophysics Data System (ADS)
Mendl, Christian B.; Lucas, Andrew
2018-03-01
We numerically solve semiclassical kinetic equations and compute the growth rate of the Dyakonov-Shur instability of a two-dimensional Fermi liquid in a finite length cavity. When electron-electron scattering is fast, we observe the well-understood hydrodynamic instability and its disappearance due to viscous dissipation. When electron-electron scattering is negligible, we find that the instability re-emerges for certain boundary conditions but not for others. We discuss the implications of these findings for experiments.
Dyakonov-Shur instability across the ballistic-to-hydrodynamic crossover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendl, Christian B.; Lucas, Andrew
Here, we numerically solve semiclassical kinetic equations and compute the growth rate of the Dyakonov-Shur instability of a two-dimensional Fermi liquid in a finite length cavity. When electron-electron scattering is fast, we observe the well-understood hydrodynamic instability and its disappearance due to viscous dissipation. When electron-electron scattering is negligible, we find that the instability re-emerges for certain boundary conditions but not for others. We discuss the implications of these findings for experiments.
Dyakonov-Shur instability across the ballistic-to-hydrodynamic crossover
Mendl, Christian B.; Lucas, Andrew
2018-03-19
Here, we numerically solve semiclassical kinetic equations and compute the growth rate of the Dyakonov-Shur instability of a two-dimensional Fermi liquid in a finite length cavity. When electron-electron scattering is fast, we observe the well-understood hydrodynamic instability and its disappearance due to viscous dissipation. When electron-electron scattering is negligible, we find that the instability re-emerges for certain boundary conditions but not for others. We discuss the implications of these findings for experiments.
Rotordynamic Instability Problems in High-Performance Turbomachinery
NASA Technical Reports Server (NTRS)
1980-01-01
Diagnostic and remedial methods concerning rotordynamic instability problems in high performance turbomachinery are discussed. Instabilities due to seal forces and work-fluid forces are identified along with those induced by rotor bearing systems. Several methods of rotordynamic control are described including active feedback methods, the use of elastometric elements, and the use of hydrodynamic journal bearings and supports.
Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian
2016-01-01
Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.
Forearm posture and mobility in quadrupedal dinosaurs.
VanBuren, Collin S; Bonnan, Matthew
2013-01-01
Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.
Forearm Posture and Mobility in Quadrupedal Dinosaurs
VanBuren, Collin S.; Bonnan, Matthew
2013-01-01
Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy. PMID:24058633
Gotzaridis, Stratos; Liazos, Efstathios; Petrou, Petros; Georgalas, Ilias
2017-01-01
A retrospective consecutive case series to evaluate the safety and efficacy of 25 gauge pars plana vitrectomy, ILM peeling, 20% SF 6 gas tamponade and strict posturing for the treatment of idiopathic full-thickness macular holes. We report the results of 106 consecutive eyes that underwent standard 25-gauge pars plana vitrectomy, brilliant peel-assisted internal limiting membrane peel, fluid:gas exchange with 20% SF 6 and strict posturing for one week. All patients were followed up at one week, one month, three months, and nine months postoperatively. Biomicroscopy at day 1 and biomicroscopy and OCT at week 1, months 1, 3, and 9 were used to assess macular hole status postoperatively. Pre- and postoperative logMAR visual acuity was compared. The macular hole was closed in 102/106 eyes postoperatively (96.2%). Four eyes showed unclosed macular holes and underwent additional SF 6 intravitreal injection and strict posturing for 10 days. All macular holes were eventually closed without the need of a second surgical procedure. Mean visual acuity improved from 0.63 logMAR preoperatively to 0.39 logMAR postoperatively. One case of retinal toxicity was reported due to accidental intravitreal injection of antibiotic. 25-gauge vitrectomy, ILM peel, and short-acting gas tamponade are highly effective for the treatment of macular holes. Additional intravitreal gas injection followed by strict posturing seems to be a simple and effective treatment for unclosed holes.
Cultrera, Pina; Pratelli, Elisa; Petrai, Veronica; Postiglione, Marco; Zambelan, Giulia; Pasquetti, Pietro
2010-05-01
Osteoporosis is a systemic disease with reduced bone mass and qualitative alterations of the bone, associated to increased risk of fracture. Pathogenesis of osteoporosis fractures is multifactorial. Main risk factor is falls (except for vertebral fragility fractures which occurs often in absence of trauma). Aging by itself produces physiological changes: muscular hypotrophy with asthenia, deficit of visus and hearing together with associated pathologies and multi-drug therapies. In osteoporosis patients with vertebral fractures posture change occurs which reduces balance. After clinical postural evaluation it is possible to carry out instrumental evaluation of posture with computerized methods such as stabilometry, baropodometry, dynanometry and gait analysis. Examination carried out with use of stabilometric computerized platform allows stabilometric (body sway assessment) as well as posturometric examination (center of pressure assessment during quiet standing). Fundamental parameters obtained are: position of the body center of gravity, area and shape of sway density curve and velocity variables. Protocol of evaluation includes assessment of examination in standard condition and in condition of temporary sensorial deprivation (to investigate the influence of various afferent systems on the maintenance of posture and balance). Accurate evaluation of postural control in osteoporosis patients constitutes a fundamental tool in fracture risk evaluation due to fall and in identification and correction of modifiable factors responsible for balance defect. This approach, together with adequate drug therapy, may lead to significant reduction of fractures in osteoporosis patients with subsequent reduction of hospitalization and residual consequent disabilities.
Postural analysis in time and frequency domains in patients with Ehlers-Danlos syndrome.
Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo
2011-01-01
The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30s in two conditions: open eyes (OE) and closed eyes (CE). In order to compare pathological group we acquired in the same conditions a control group composed by 20 healthy participants. The obtained center of pressure (COP) signal was analyzed in time and frequency domain using an AR model. Results revealed differences between pathological and control group: EDS participants pointed out difficulties in controlling COP displacements trying to keep it inside the BOS in AP direction and for this reason increased the use of ML mechanism in order to avoid the risk of fall. Also in CE conditions they demonstrated more difficulties in maintaining posture revealing the proprioceptive system is impaired, due to ligament laxity that characterized EDS participants. Frequency domain analysis showed no differences between the two groups, affirming that the changes in time domain reflected really the impairment to the postural control mechanism and not a different strategy assumed by EDS participants. These data could help in decision-making process to establish a correct rehabilitation approach, based on the reinforcing of muscle tone to supply the ligament laxity in order to prevent risks of falls and its consequences. Copyright © 2010 Elsevier Ltd. All rights reserved.
Stripes instability of an oscillating non-Brownian iso-dense suspension of spheres
NASA Astrophysics Data System (ADS)
Roht, Y. L.; Ippolito, I.; Hulin, J. P.; Salin, D.; Gauthier, G.
2018-03-01
We analyze experimentally the behavior of a non-Brownian, iso-dense suspension of spheres submitted to periodic square wave oscillations of the flow in a Hele-Shaw cell of gap H. We do observe an instability of the initially homogeneous concentration in the form of concentration variation stripes transverse to the flow. The wavelength of these regular spatial structures scales roughly as the gap of the cell and is independent of the particle concentration and of the period of oscillation. This instability requires large enough particle volume fractions φ≥ 0.25 and a gap large enough compared to the sphere diameter (H/d ≥ 8) . Mapping the domain of the existence of this instability in the space of the control parameters shows that it occurs only in a limited range of amplitudes of the fluid displacement. The analysis of the concentration distribution across the gap supports a scenario of particle migration towards the wall followed by an instability due to a particle concentration gradient with a larger concentration at the walls. In order to account for the main features of this stripes instability, we use the theory of longitudinal instability due to normal stresses difference and recent observations of a dependence of the first normal stresses difference on the particle concentration.
On the instability of a liquid sheet moving in vacuum
NASA Astrophysics Data System (ADS)
Sisoev, G. M.; Osiptsov, A. N.; Koroteev, A. A.
2018-03-01
A linear stability analysis of a non-isothermal liquid sheet moving in vacuum is studied taking into account the temperature dependencies of the liquid viscosity, thermal conductivity, and surface tension coefficients. It is found that there are two mechanisms of instability. The short-wave instability is caused by viscosity stratification across the sheet due to nonuniform temperature profiles developed downstream in the cooling sheet. The long-wave thermocapillary instability is caused by the temperature gradient along the sheet surfaces. Computed examples of steady flows and their instabilities demonstrated that the unstable short waves have much larger amplification factors.
Burr, Hermann; Pohrt, Anne; Rugulies, Reiner; Holtermann, Andreas; Hasselhorn, Hans Martin
2017-05-01
Objective Due to the growing proportion of older employees in the work force in several countries, the importance of age in the association between work and health is becoming increasingly relevant. Few studies have investigated whether age modifies the association of physical work demands with health. We hypothesized that the association of demanding body postures with deteriorated self-rated health (SRH) is stronger among older employees than among younger employees. Method We analyzed three 5-year cohorts in the Danish Work Environment Cohort Study comprising 8318 observations from 5204 employees (follow-up participation rate 83%) with good baseline SRH. Physical work demands were assessed as demanding body postures. Age was divided into tertiles; young (18-32 years), middle-aged (33-43 years) and old (44-59 among men and 44-54 years among women). Poor SRH ("fairly good", "poor", and "very poor") was measured with a single item. Log binomial regressions were stratified by gender. Effect modification (ie, interaction) was defined as deviation from additivity and examined by calculating the relative excess risk due to interaction (RERI). The reference group was employees aged 18-32 years with low physical exposure. Results When predicting deterioration of SRH, an interaction between demanding body postures and age was found among men [RERI: 0.75, 95% confidence interval (95% CI) 0.16-1.34, regarding the age group 44-59 years] and among women (RERI: 0.84, 95% CI 0.19-1.34, for the age group 33-43 years; and 1.17, 95% CI 0.42-1.93, for the age group 44-54 years). Conclusion The study findings suggest that demanding body postures have a stronger impact on health among older compared to younger employees.
FOKKER-PLANCK ANALYSIS OF TRANSVERSE COLLECTIVE INSTABILITIES IN ELECTRON STORAGE RINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, R. R.
We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We expand on the work of Suzuki [1], writing out the linear matrix equation including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. The eigenvalues and eigenvectors determine the collective stability of the beam, and we show that the predicted threshold current for transverse instability and the profile of the unstable agree well with tracking simulations. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticitymore » requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.« less
Quantification of In-flight Physical Changes: Anthropometry and Neutral Body Posture
NASA Technical Reports Server (NTRS)
Young, K. S.; Reid, C. R.; Rajulu, S.
2014-01-01
Currently, NASA does not have sufficient in-flight anthropometric data gathered to assess the impact of physical body shape and size changes on suit sizing. For developing future planetary and reduced gravity suits, NASA needs to quantify the impacts of microgravity on anthropometry, body posture, and neutral body postures (NBP) to ensure optimal crew performance, fit, and comfort. To obtain these impacts, anthropometric data, circumference, length, height, breadth, and depth for body segments (i.e. chest, waist, bicep, thigh, calf) from astronauts for pre, in-, and postflight conditions needs to be collected. Once this data has been collected, a comparison between pre, in-, and postflight anthropometric values will be analyzed, yielding microgravity factors. The NBP will be used to determined body posture (joint angle) changes between subjects throughout the duration of a mission. Data collection, starting with Increments 37/38, is still in progress with the completion of 3 out of 12 subjects. NASA suit engineers and NASA's Extravehicular Activity (EVA) Project Office have identified that suit fit in microgravity could become an issue. It has been noted that crewmembers often need to adjust their suit sizing once they are in orbit. This adjustment could be due to microgravity effects on anthropometry and postural changes, and is necessary to ensure optimal crew performance, fit, and comfort in space. To date, the only data collected to determine the effects of microgravity on physical human changes have been during Skylab, STS-57, and a recent HRP study on seated height changes due to spinal elongation (Spinal Elongation, Master Task List [MTL] #221). The Skylab and the STS-57 studies found that there is a distinct neutral body posture (NBP) based on photographs. The still photographs showed that there is a distinguishable posture with the arms raised and the shoulder abducted; and, in addition, the knees were flexed with noticeable hip flexion and the foot plantar flexed [1,2]. This is the one standard set of body joint angles for a NBP in microgravity. A recent simulated microgravity NBP study [3] has shown an individual variability and inconsistencies in defining NBP. This variation may be influenced by spinal growth, the type of suit fit, and other potential anthropometry factors such as spinal curvature, age, and gender. The variation aspect of this essential data is required for all kinds of space device designs (e.g. suits, habitat, mobility aids, etc.). The method proposed considers the dynamic nature of body movement and will use a measurement technique to continually monitor posture and develop a probability likelihood of the natural posture and how the NBP postures are affected by anthropometry. Additionally, Skylab studies found that crewmembers experienced a stature growth of up to 3%. The data included 3 crewmembers that showed that there is a bi-phasic stature growth once the crew enters into weightlessness. However, the Spinal Elongation study identified that the crewmembers could experience about a 6% growth in seated height and a 3% stature growth, when exposed to microgravity. The results prove that not all anthropometric measurements have the same microgravity percent growth factor. For EVA and suit engineers to properly update the sizing protocol for microgravity, they need additional anthropometric data from space missions. Hence, this study is aimed to gather additional in-flight anthropometric measurements, such as length, depth, breadth, and circumference, to determine the changes to body shape and size due to microgravity effects. It is anticipated that by recording the potential changes to body shape and size, a better suit sizing protocol will be developed for ISS and other space missions. In essence, this study will help NASA quantify the impacts of microgravity on anthropometry to ensure optimal crew performance, fit, and comfort. This study will use simplistic data collection techniques, 3D laser scanning, digital still, and video data, and perform photogrammetric analyses to determine the changes that occur to the body shape, size, and NBP when exposed to a microgravity environment.
2018-04-11
Scoliosis; Idiopathic, Infantile; Scoliosis; Juvenile; Scoliosis Neuromuscular; Scoliosis in Neurofibromatosis; Scoliosis; Congenital, Postural; Scoliosis in Skeletal Dysplasia; Scoliosis Associated With Other Conditions; Scoliosis; Congenital, Due to Bony Malformation; Scoliosis
Posturedontics: How does dentistry fit you?
Jodalli, Praveen S; Kurana, Suchi; Shameema; Ragher, Mallikarjuna; Khed, Jaishree; Prabhu, Vishnu
2015-08-01
Dentists are at high risk for musculoskeletal disorders (MSD's) due to their work. MSD's is an umbrella term for number of injuries affecting different parts of the body, including joints, muscles, tendons, nerves that can arise from sudden exertion or making the same motions repeatedly. These injuries can develop over time and can lead to long-term disability. Dental professional often develop musculoskeletal problems due to bad working habits, uncomfortable physical posture causing unnecessary musculoskeletal loading, discomfort and fatigue. Ergonomic principles when it is applied, it will help to reduce stress and eliminate many potential injuries and disorders associated with the overuse of muscles, bad posture, and repeated tasks. This can be accomplished by using a proper dental chair, lighting and the selection of ergonomically-friendly equipment to fit the dental professionals physical capabilities and limitations. This review addresses about the basics of ergonomics, positioning, viewing, handling, and prevention of MSD's.
Posturedontics: How does dentistry fit you?
Jodalli, Praveen S.; Kurana, Suchi; Shameema; Ragher, Mallikarjuna; Khed, Jaishree; Prabhu, Vishnu
2015-01-01
Dentists are at high risk for musculoskeletal disorders (MSD's) due to their work. MSD's is an umbrella term for number of injuries affecting different parts of the body, including joints, muscles, tendons, nerves that can arise from sudden exertion or making the same motions repeatedly. These injuries can develop over time and can lead to long-term disability. Dental professional often develop musculoskeletal problems due to bad working habits, uncomfortable physical posture causing unnecessary musculoskeletal loading, discomfort and fatigue. Ergonomic principles when it is applied, it will help to reduce stress and eliminate many potential injuries and disorders associated with the overuse of muscles, bad posture, and repeated tasks. This can be accomplished by using a proper dental chair, lighting and the selection of ergonomically-friendly equipment to fit the dental professionals physical capabilities and limitations. This review addresses about the basics of ergonomics, positioning, viewing, handling, and prevention of MSD's. PMID:26538885
Magnetic Shear Damped Polar Convective Fluid Instabilities
NASA Astrophysics Data System (ADS)
Atul, Jyoti K.; Singh, Rameswar; Sarkar, Sanjib; Kravchenko, Oleg V.; Singh, Sushil K.; Chattopadhyaya, Prabal K.; Kaw, Predhiman K.
2018-01-01
The influence of the magnetic field shear is studied on the E × B (and/or gravitational) and the Current Convective Instabilities (CCI) occurring in the high-latitude F layer ionosphere. It is shown that magnetic shear reduces the growth rate of these instabilities. The magnetic shear-induced stabilization is more effective at the larger-scale sizes (≥ tens of kilometers) while at the scintillation causing intermediate scale sizes (˜ a few kilometers), the growth rate remains largely unaffected. The eigenmode structure gets localized about a rational surface due to finite magnetic shear and has broken reflectional symmetry due to centroid shift of the mode by equilibrium parallel flow or current.
Nonlinear evolution of the Kelvin-Helmholtz instability in the double current sheet configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Aohua; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp; Kishimoto, Yasuaki
2016-03-15
The nonlinear evolution of the Kelvin-Helmholtz (KH) instability driven by a radially antisymmetric shear flow in the double current sheet configuration is numerically investigated based on a reduced magnetohydrodynamic model. Simulations reveal different nonlinear fate of the KH instability depending on the amplitude of the shear flow, which restricts the strength of the KH instability. For strong shear flows far above the KH instability threshold, the linear electrostatic-type KH instability saturates and achieves a vortex flow dominated quasi-steady state of the electromagnetic (EM) KH turbulence with large-amplitude zonal flows as well as zonal fields. The magnetic surfaces are twisted significantlymore » due to strong vortices but without the formation of magnetic islands. However, for the shear flow just over the KH instability threshold, a weak EM-type KH instability is saturated and remarkably damped by zonal flows through modifying the equilibrium shear flow. Interestingly, a secondary double tearing mode (DTM) is excited subsequently in highly damped KH turbulence, behaving as a pure DTM in a flowing plasma as described in Mao et al. [Phys. Plasmas 21, 052304 (2014)]. However, the explosive growth phenomenon is replaced by a gradually growing oscillation due to the extremely twisted islands. As a result, the release of the magnetic energy becomes slow and the global magnetic reconnection tends to be gentle. A complex nonlinear interaction between the EM KH turbulence and the DTMs occurs for the medium shear flows above the KH instability threshold, turbulent EM fluctuations experience oscillatory nonlinear growth of the DTMs, finally achieves a quasi-steady state with the interplay of the fluctuations between the DTMs and the EM KH instability.« less
Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi
2016-01-01
As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.
Modeling complex flow structures and drag around a submerged plant of varied posture
NASA Astrophysics Data System (ADS)
Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.
2017-04-01
Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.
Perrin, P P; Jeandel, C; Perrin, C A; Béné, M C
1997-01-01
Aging is associated with decreased balance abilities, resulting in an increased risk of fall. In order to appreciate the visual, somatosensory, and central signals involved in balance control, sophisticated methods of posturography assessment have been developed, using static and dynamic tests, eventually associated with electromyographic measurements. We applied such methods to a population of healthy older adults in order to appreciate the respective importance of each of these sensorial inputs in aging individuals. Posture control parameters were recorded on a force-measuring platform in 41 healthy young (age 28.5 +/- 5.9 years) and 50 older (age 69.8 +/- 5.9 years) adults, using a static test and two dynamic tests performed by all individuals first with eyes open, then with eyes closed. The distance covered by the center of foot pressure, sway area, and anteroposterior oscillations were significantly higher, with eyes open or closed, in older people than in young subjects. Significant differences were noted in dynamic tests with longer latency responses in the group of old people. Dynamic recordings in a sinusoidal test had a more regular pattern when performed eyes open in both groups and evidenced significantly greater instability in old people. These data suggest that vision remains important in maintaining postural control while conduction and central integration become less efficient with age.
Walking on ballast impacts balance.
Wade, Chip; Garner, John C; Redfern, Mark S; Andres, Robert O
2014-01-01
Railroad workers often perform daily work activities on irregular surfaces, specifically on ballast rock. Previous research and injury epidemiology have suggested a relationship between working on irregular surfaces and postural instability. The purpose of this study was to examine the impact of walking on ballast for an extended duration on standing balance. A total of 16 healthy adult males walked on a 7.62 m × 4.57 m (25 ft × 15 ft) walking surface of no ballast (NB) or covered with ballast (B) of an average rock size of about 1 inch for 4 h. Balance was evaluated using dynamic posturography with the NeuroCom(®) Equitest System(™) prior to experiencing the NB or B surface and again every 30 min during the 4 h of ballast exposure. Dependent variables were the sway velocity and root-mean-square (RMS) sway components in the medial-lateral and anterior-posterior directions. Repeated measures ANOVA revealed statistically significant differences in RMS and sway velocity between ballast surface conditions and across exposure times. Overall, the ballast surface condition induced greater sway in all of the dynamic posturography conditions. Walking on irregular surfaces for extended durations has a deleterious effect on balance compared to walking on a surface without ballast. These findings of changes in balance during ballast exposure suggest that working on an irregular surface may impact postural control.
Emerging preclinical pharmacological targets for Parkinson's disease
More, Sandeep Vasant; Choi, Dong-Kug
2016-01-01
Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms. PMID:26988916
An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2008-01-01
An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.
Noise-Enhanced Human Balance Control
NASA Astrophysics Data System (ADS)
Priplata, Attila; Niemi, James; Salen, Martin; Harry, Jason; Lipsitz, Lewis A.; Collins, J. J.
2002-11-01
Noise can enhance the detection and transmission of weak signals in certain nonlinear systems, via a mechanism known as stochastic resonance. Here we show that input noise can be used to improve motor control in humans. Specifically, we show that the postural sway of both young and elderly individuals during quiet standing can be significantly reduced by applying subsensory mechanical noise to the feet. We further demonstrate with input noise a trend towards the reduction of postural sway in elderly subjects to the level of young subjects. These results suggest that noise-based devices, such as randomly vibrating shoe inserts, may enable people to overcome functional difficulties due to age-related sensory loss.
Hand VR Exergame for Occupational Health Care.
Ortiz, Saskia; Uribe-Quevedo, Alvaro; Kapralos, Bill
2016-01-01
The widespread use and ubiquity of mobile computing technologies such as smartphones, tablets, laptops and portable gaming consoles has led to an increase in musculoskeletal disorders due to overuse, bad posture, repetitive movements, fixed postures and physical de-conditioning caused by low muscular demands while using (and over-using) these devices. In this paper we present the development of a hand motion-based virtual reality-based exergame for occupational health purposes that allows the user to perform simple exercises using a cost-effective non-invasive motion capture device to help overcome and prevent some of the muskoloskeletal problems associated with the over-use of keyboards and mobile devices.
Grande-Alonso, M; Moral Saiz, B; Mínguez Zuazo, A; Lerma Lara, S; La Touche, R
2018-03-01
Cervicogenic dizziness is a musculoskeletal disorder mainly characterised by dizziness and disequilibrium associated with neck pain. The pathophysiology is unclear and the neurophysiological basis remains to be ascertained. The aim of this study is to compare the vestibulo-ocular reflex and postural control between patients with cervicogenic dizziness and asymptomatic subjects, and to assess the association between debilitating dizziness and other psychosocial variables. A total of 20 patients and 22 asymptomatic subjects were selected. Vestibulo-ocular reflex was assessed by performing the head impulse test. Computerised dynamic posturography was used to evaluate the postural control by means of the sensory organisation test. In addition, subjects self-reported their degree of disability due to dizziness, cervical disability, kinesiophobia, and state of anxiety and depression. There were no differences in the vestibulo-ocular reflex (P>.05). However, we found differences with a medium-to-large effect size (d>0.60) in variables related to proprioception and visual information integration; the former variable set was related to disability due to dizziness. Disability due to dizziness presents strong-to-moderate associations with cervical disability, kinesiophobia, and anxiety. Our data rule out changes in the vestibular system in cervicogenic dizziness, but they do point to proprioceptive impairment. According to our results, the association between dizziness-related disability and other psychosocial factors in cervicogenic dizziness is very relevant for clinical medicine and for future research projects. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Screening initial entry training trainees for postural faults and low back or hip pain.
Lane, John R
2014-01-01
The frequency of postural faults and postural awareness in military trainees has not been assessed. Five hundred Soldiers entering Advanced Individual Training were screened for standing posture and completed an anonymous questionnaire during inprocessing. Postural faults were identified in 202 subjects. Chi square analysis demonstrated a relationship between posture observed and posture reported: 87% of subjects with postural faults were unaware of postural faults; 12% with proper posture reported having poor posture. Subjects reported comparable frequencies of back pain and hip pain with postural faults (33.2%, 21.2%) and without faults (28.5%, 14.7%). Anonymous reporting was higher than formal reporting and requests for care during the same period (37% vs 3.4%).
Postural adjustments associated with voluntary contraction of leg muscles in standing man.
Nardone, A; Schieppati, M
1988-01-01
The postural adjustments associated with a voluntary contraction of the postural muscles themselves have been studied in the legs of normal standing men. We focussed on the following questions. Do postural adjustments precede the focal movement as in the case of movements of the upper limb? Which muscle(s) are involved in the task of stabilizing posture? Can the same postural muscle be activated in postural stabilization and in voluntary movement at the same time, in spite of the opposite changes in activity possibly required by these conditions? Six subjects standing on a dynamometric platform were asked to rise onto the tips their toes by contracting their soleus muscles, or to rock on their heels by contracting their tibialis anterior muscles. The tasks were made in a reaction time (RT) situation or in a self-paced mode, standing either freely or holding onto a stable structure. Surface EMGs of leg and thigh muscles, and the foot-floor reaction forces were recorded. The following results were obtained in the RT mode, standing freely. 1. Rising onto toe tips: a striking silent period in soleus preceded its voluntary activation; during this silent period, a tibialis anterior burst could be observed in three subjects; these anticipatory activities induced a forward sway, as monitored by a change in the force exerted along the x axis of the platform. 2. Rocking on heels: an enhancement in tonic EMG of soleus was observed before tibialis anterior voluntary burst, at a mean latency from the go-signal similar to that of the silent period; this anticipatory activity induced a backward body sway. 3. Choice RT conditions showed that the above anticipatory patterns in muscle activity were pre-programmed, specific for the intended tasks, and closely associated with the focal movement. When both tasks were performed in a self-paced mode, all the above EMG and mechanical features were more pronounced and unfolded in time. If the subjects held onto the frame, the early features in the soleus or tibialis anterior EMG were absent, and the corresponding changes in the foot-floor reaction forces were lacking. The anticipatory phenomena observed are considered postural adjustments because they appear only in the free-standing situation, and induce a body sway in the appropriate direction to counteract the destabilizing thrust due to the voluntary contraction of soleus or tibialis anterior. The central organization and descending control of posture and movements are briefly discussed in the light of the short latency of the anticipatory phenomena and of their close association with the focal movement.
Modern postural yoga as a mental health promoting tool: A systematic review.
Domingues, Rita B
2018-05-01
Yoga has been gaining popularity as a complementary therapy for mental health conditions, but research on the efficacy of yoga is still in its beginnings. The aim of this systematic review is to investigate the effects of modern postural yoga (strong focus on physical postures) on positive mental health (PMH) indicators in clinical and nonclinical populations. The most common PMH indicators were mindfulness, affect, resilience and well-being, followed by satisfaction with life, self-compassion, empathy and others. Diverse results were found across the 14 studies analysed, including significant positive effects of yoga practice on outcome variables, to no significant effects, both in relation to baseline levels and in relation to control groups. Nonetheless, most studies observed ameliorations in PMH indicators due to yoga practice. Given that yoga interventions pose serious methodological concerns, more research and better experimental designs are needed to properly assess the effects of yoga on PMH indicators. Copyright © 2018 Elsevier Ltd. All rights reserved.
Active video gaming to improve balance in the elderly.
Lamoth, Claudine J C; Caljouw, Simone R; Postema, Klaas
2011-01-01
The combination of active video gaming and exercise (exergaming) is suggested to improve elderly people's balance, thereby decreasing fall risk. Exergaming has been shown to increase motivation during exercise therapy, due to the enjoyable and challenging nature, which could support long-term adherence for exercising balance. However, scarce evidence is available of the direct effects of exergaming on postural control. Therefore, the aim of the study was to assess the effect of a six-week videogame-based exercise program aimed at improving balance in elderly people. Task performance and postural control were examined using an interrupted time series design. Results of multilevel analyses showed that performance on the dot task improved within the first two weeks of training. Postural control improved during the intervention. After the intervention period task performance and balance were better than before the intervention. Results of this study show that healthy elderly can benefit from a videogame-based exercise program to improve balance and that all subjects were highly motivated to exercise balance because they found gaming challenging and enjoyable.
Ambusam, Subramaniam; Omar, Baharudin; Joseph, Leonard; Deepashini, Harithasan
2015-01-01
Computer users are exposed to work related neck disorders due to repetitive movement and static posture for prolonged period. Viewing document and typing simultaneously are one of the contributing factors for neck disorders. This preliminary study was conducted to evaluate the effects of the document holder on the postural neck muscles activity among computer users. Nine healthy participants with pre-defined inclusion and exclusion criteria were recruited for the study. Neck muscles activity were analyzed using the surface electromyography (EMG) in five different document location such as flat right, flat left, flat center, stand right and stand left during a 5 min typing task. The mean and standard deviation results showed a least amount of muscles activity using a document holder compared to without document holder. Nevertheless, the statistical analysis showed no significant differences between the using of a document holder. The effects of document holder on head excursion and neck muscle activity is recommended in clinical neck pain population.
Olson, R; Hahn, D I; Buckert, A
2009-06-01
Short-haul truck (lorry) drivers are particularly vulnerable to back pain and injury due to exposure to whole body vibration, prolonged sitting and demanding material handling tasks. The current project reports the results of video-based assessments (711 stops) and driver behavioural self-monitoring (BSM) (385 stops) of injury hazards during non-driving work. Participants (n = 3) worked in a trailer fitted with a camera system during baseline and BSM phases. Descriptive analyses showed that challenging customer environments and non-standard ingress/egress were prevalent. Statistical modelling of video-assessment results showed that each instance of manual material handling increased the predicted mean for severe trunk postures by 7%, while customer use of a forklift, moving standard pallets and moving non-standard pallets decreased predicted means by 12%, 20% and 22% respectively. Video and BSM comparisons showed that drivers were accurate at self-monitoring frequent environmental conditions, but less accurate at monitoring trunk postures and rare work events. The current study identified four predictors of severe trunk postures that can be modified to reduce risk of injury among truck drivers and showed that workers can produce reliable self-assessment data with BSM methods for frequent and easily discriminated events environmental.
Alessandri, N; Tufano, F; Petrassi, M; Alessandri, C; Lanzi, L; Fusco, L; Moscariello, F; De Angelis, C; Tomao, E
2010-05-01
The hysto-morfological composition of the ascending aorta wall gives to the vessel its characteristic elasticity/distensibility, which is deteriorated due to both physiological (age) and pathological events (hypertension, diabetes, dyslipidemia). This contributes to reduce the wall elasticity and to occurrence of cardiovascular events. Thirty young healthy subjects (20 males, 10 females, age <30 yr), were subjected to different postural conditions with and without Lower Body Negative Pressure (LBNP) with conventional procedures, to simulate the microgravity conditions in space flight. During this procedure the cardiovascular parameters and the aorta elasticity were assessed with ecocardiography. The observation of results and statistical comparison showed that despite different hemodynamic conditions and with significant variation of blood pressure related to posture, elasticity/distensibility did not change significantly. The elasticity/distensibility of arterial vessels is the result of two interdependent variables such as blood pressure and systolic and diastolic diameters. While blood pressure and heart rate vary physiologically in relation to posture, the compensation of the vessel diameters modifications maintains the aortic compliance invariate. Therefore, in young healthy people, despite the significant postural and the sudden pressure changes (equivalent to parietal stress) aortic compliance does not alter. This behavior might be related to the low rate of cardiovascular events that are present in healthy people aged under 30 yrs.
Genetic instability in urinary bladder cancer: An evolving hallmark.
Wadhwa, N; Mathew, B B; Jatawa, S K; Tiwari, A
2013-01-01
Bladder cancer is a major health-care concern. A successful treatment of bladder cancer depends on its early diagnosis at the initial stage. Genetic instability is an essential early step toward the development of bladder cancer. This instability is found more often at the chromosomal level than at the nucleotide level. Microsatellite and chromosomal instability markers can be used as a prognostic marker for screening bladder cancer. Bladder cancer can be distinguished in two different categories according to genetic instability: Cancers with chromosomal level instability and cancers with nucleotide level instability. Deoxyribonucleic acid (DNA) mismatch repair (MMR) system and its correlation with other biologic pathway, both are essential to understand the basic mechanisms of cancer development. Microsatellite instability occurs due to defects in DNA MMR genes, including human mutL homolog 1 and human mutL homolog 2. Chromosomal alterations including deletions on chromosome 3, 8, 9, 11, 13, 17 have been detected in bladder cancer. In the current review, the most recent literature of genetic instability in urinary bladder cancer has been summarized.