ISS Expeditions 16 through 20: Chemical Analysis Results for Potable Water
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.
2010-01-01
During the 2-year span from Expedition 16 through Expedition 20, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of archival water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principal sources of potable water for Expeditions 16 through 18. During Expedition 18 the U.S. water processor assembly was delivered, installed, and tested during a 90-day checkout period. Beginning with Expedition 19, U.S. potable water recovered from a combined waste stream of humidity condensate and pretreated urine was also available for ISS crew use. A total of 74 potable water samples were collected using U.S. sampling hardware during Expeditions 16 through 20 and returned on both Shuttle and Soyuz vehicles. The results of JSC chemical analyses of these ISS potable water samples are presented in this paper. Eight potable water samples collected in flight with Russian hardware were also received for analysis, as well as 5 preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 34. Analytical results for these additional potable water samples are also reported and discussed.
ISS Expeditions 16 & 17: Chemical Analysis Results for Potable Water
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.
2009-01-01
During the twelve month span of Expeditions 16 and 17 beginning October of 2007, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principle sources of potable water and for the first time, European groundsupplied water was also available. Although water was transferred from Shuttle to ISS during Expeditions 16 and 17, no Shuttle potable water was consumed during this timeframe. A total of 12 potable water samples were collected using U.S. hardware during Expeditions 16 and 17 and returned on Shuttle flights 1E (STS122), 1JA (STS123), and 1J (STS124). The average sample volume was sufficient for complete chemical characterization to be performed. The results of JSC chemical analyses of these potable water samples are presented in this paper. The WAFAL also received potable water samples for analysis from the Russian side collected inflight with Russian hardware, as well as preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 30. Analytical results for these additional potable water samples are also reported and discussed herein. Although the potable water supplies available during Expeditions 16 and 17 were judged safe for crew consumption, a recent trending of elevated silver levels in the SVOZV water is a concern for longterm consumption and efforts are being made to lower these levels.
Chemical Analysis Results for Potable Water from ISS Expeditions 21 Through 25
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2011-01-01
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 through 25. Over a 14-month period the Space Shuttle visited the ISS on four occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), and STS-132 (ULF4), as well as on Soyuz flights 19-23. This paper reports the analytical results for these returned potable water archival samples and their compliance with ISS water quality standards.
Chemical Analysis Results for Potable Water from ISS Expeditions 21 to 25
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2010-01-01
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 to 25. Over a 14-month period, the Space Shuttle visited the ISS on five occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), STS-132 (ULF4) and STS-133 (ULF5), as well as on Soyuz flights 19-22. This paper reports the analytical results for the returned archival water samples and evaluates their compliance with ISS water quality standards. The WAFAL also received and analyzed aliquots of some Russian potable water samples collected in-flight and pre-flight samples of Rodnik potable water delivered to the Station on the Russian Progress vehicle during Expeditions 21 to 25. These additional analytical results are also reported and discussed in this paper.
Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13
NASA Technical Reports Server (NTRS)
Straub, John E. II; Plumlee, Deborah K.; Schultz, John R.
2007-01-01
The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12- months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11. The number and sensitivity of the chemical analyses performed on this sample were limited due to low sample volume. Shuttle flights STS-121 (ULF1.1) and STS-115 (12A) docked with the ISS in July and September of 2006, respectively. These flights returned to Earth with eight chemical archive potable water samples that were collected with U.S. hardware during Expedition 13. The average collected volume increased for these samples, allowing full chemical characterization to be performed. This paper presents a discussion of the results from chemical analyses performed on Expeditions 12 and 13 archive potable water samples. In addition to the results from the U.S. samples analyzed, results from pre-flight samples of Russian potable water delivered to the ISS on Progress vehicles and in-flight samples collected with Russian hardware during Expeditions 12 and 13 and analyzed at JSC are also discussed.
International Space Station Potable Water Characterization for 2013
NASA Technical Reports Server (NTRS)
Straub, John E. II; Plumlee, Debrah K.; Schultz, John R..; Mudgett, Paul D.
2014-01-01
In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include US Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The Water and Food Analytical Laboratory at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced an anticipated temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight Total Organic Carbon Analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation action.
Fernandez-Rendon, E; Cerna-Cortes, J F; Ramirez-Medina, M A; Helguera-Repetto, A C; Rivera-Gutierrez, S; Estrada-Garcia, T; Gonzalez-Y-Merchand, J A
2012-01-01
This study examined the frequency of occurrence of non-tuberculous mycobacteria (NTM) in potable water samples from a main trauma hospital in Mexico City. Sixty-nine potable water samples were collected, 23 from each source: cistern, kitchen tap and bathroom showers. Of the 69 samples, 36 harboured NTM species. Twenty-nine of the 36 isolates were Mycobacterium mucogenicum, two Mycobacterium rhodesiae, one Mycobacterium peregrinum, one Mycobacterium fortuitum and three were Mycobacterium spp. Hospital potable water harbouring NTM represents a potential source for nosocomial infections, therefore we suggest that hospital potable water microbiological guidelines should include testing for NTM species. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
International Space Station Potable Water Characterization for 2013
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; Mudgett, Paul D.
2014-01-01
In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include U.S. Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The former Water and Food Analytical Laboratory (now Toxicology and Evironmental Chemistry Laboratory) at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced a third temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for the previous comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight total organic carbon analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation.
Perez-Martinez, Iza; Aguilar-Ayala, Diana A; Fernandez-Rendon, Elizabeth; Carrillo-Sanchez, Alma K; Helguera-Repetto, Addy C; Rivera-Gutierrez, Sandra; Estrada-Garcia, Teresa; Cerna-Cortes, Jorge F; Gonzalez-Y-Merchand, Jorge A
2013-12-11
Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the "main house faucet" and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as "good quality" potable water. Household potable water may be a potential source of NTM infection in Mexico City.
ISS Potable Water Quality for Expeditions 26 through 30
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2012-01-01
International Space Station (ISS) Expeditions 26-30 spanned a 16-month period beginning in November of 2010 wherein the final 3 flights of the Space Shuttle program finished ISS construction and delivered supplies to support the post-shuttle era of station operations. Expedition crews relied on several sources of potable water during this period, including water recovered from urine distillate and humidity condensate by the U.S. water processor, water regenerated from humidity condensate by the Russian water recovery system, and Russian ground-supplied potable water. Potable water samples collected during Expeditions 26-30 were returned on Shuttle flights STS-133 (ULF5), STS-134 (ULF6), and STS-135 (ULF7), as well as Soyuz flights 24-27. The chemical quality of the ISS potable water supplies continued to be verified by the Johnson Space Center s Water and Food Analytical Laboratory (WAFAL) via analyses of returned water samples. This paper presents the chemical analysis results for water samples returned from Expeditions 26-30 and discusses their compliance with ISS potable water standards. The presence or absence of dimethylsilanediol (DMSD) is specifically addressed, since DMSD was identified as the primary cause of the temporary rise and fall in total organic carbon of the U.S. product water that occurred in the summer of 2010.
2013-01-01
Background Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the “main house faucet” and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. Results AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as “good quality” potable water. Conclusion Household potable water may be a potential source of NTM infection in Mexico City. PMID:24330835
ISS Potable Water Sampling and Chemical Analysis Results for 2016
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Wallace William T.; Alverson, James T.; Benoit, Mickie J.; Gillispie, Robert L.; Hunter, David; Kuo, Mike; Rutz, Jeffrey A.; Hudson, Edgar K.;
2017-01-01
This paper continues the annual tradition of summarizing at this conference the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life on board the ISS, including the successful conclusion for two crew members of a record one-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crew members of ISS Expeditions 46-50. The year 2016 was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples taken during Expedition 46 in February 2016 and returned on Soyuz 44, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archive sample results.
ISS Potable Water Sampling and Chemical Analysis Results for 2016
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Wallace, William T.; Alverson, James T.; Benoit, Mickie J.; Gillispie, Robert L.; Hunter, David; Kuo, Mike; Rutz, Jeffrey A.; Hudson, Edgar K.;
2017-01-01
This paper continues the annual tradition, at this conference, of summarizing the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life aboard the ISS, including the successful conclusion for 2 crewmembers of a record 1-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crewmembers of ISS Expeditions 46-50. The year was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples, taken during Expedition 46 and returned on Soyuz 44 in March 2016, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archival sample results.
2014 ISS Potable Water Characterization and Continuation of the DMSD Chronicle
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Mudgett, Paul D.
2015-01-01
During 2014 the crews from Expeditions 38-41 were resident on the International Space Station (ISS). In addition to the U.S. potable water reclaimed from humidity condensate and urine, the other water supplies available for their use were Russian potable water reclaimed from condensate and Russian ground-supplied potable water. Beginning in June of 2014, and for the fourth time since 2010, the product water from the U.S. Water Processor Assembly (WPA) experienced a rise in the total organic carbon (TOC) level due to organic contaminants breaking through the water treatment process. Results from ground analyses of ISS archival water samples returned on Soyuz 38 confirmed that dimethylsilanediol (DMSD) was once again the contaminant responsible for the rise. With this confirmation in hand and based upon the low toxicity of DMSD, a waiver was approved to allow the crew to continue to consume the water after the TOC level exceeded the U.S. Segment limit of 3 mg/L. Several weeks after the WPA multifiltration beds were replaced, as anticipated based upon experience from previous rises, the TOC levels returned to below the method detection limit of the onboard TOC analyzer (TOCA). This paper presents and discusses the chemical analysis results for the ISS archival potable water samples returned in 2014 and analyzed by the Johnson Space Center's Toxicology and Environmental Chemistry laboratory. These results showed compliance with ISS potable water quality standards and indicated that the potable water supplies were acceptable for crew consumption. Although DMSD levels were at times elevated they remained well below the 35 mg/L health limit, so continued consumption of the U.S potable water was considered a low risk to crew health and safety. Excellent agreement between inflight and archival sample TOC data confirmed that the TOCA performed optimally and it continued to serve as a vital tool for monitoring organic breakthrough and planning remediation action.
2014 ISS Potable Water Characterization and Continuation of the Dimethylsilanediol Chronicle
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Mudgett, Paul D.
2015-01-01
During 2014 the crews from Expeditions 38-41 were in residence on the International Space Station (ISS). In addition to the U.S. potable water reclaimed from humidity condensate and urine, the other water supplies available for their use were Russian potable water reclaimed from condensate and Russian ground-supplied potable water. Beginning in June of 2014 and for the fourth time since 2010, the product water from the U.S. water processor assembly (WPA) experienced a rise in the total organic carbon (TOC) level due to organic contaminants breaking through the water treatment process. Results from ground analyses of ISS archival water samples returned on Soyuz 38 confirmed that dimethylsilanediol was once again the contaminant responsible for the rise. With this confirmation in hand and based upon the low toxicity of dimethylsilanediol, a waiver was approved to allow the crew to continue to consume the water after the TOC level exceeded the U.S. Segment limit of 3 mg/L. Several weeks after the WPA multifiltration beds were replaced, the TOC levels returned to below the method detection limit of the onboard TOC analyzer (TOCA) as anticipated based upon experience from previous rises. This paper presents and discusses the chemical analysis results for the ISS archival potable-water samples returned in 2014 and analyzed by the Johnson Space Center's Toxicology and Environmental Chemistry laboratory. These results showed compliance with ISS potable water quality standards and indicated that the potable-water supplies were acceptable for crew consumption. Although dimethylsilanediol levels were at times elevated, they remained well below the 35 mg/L health limit so the continued consumption of the U.S. potable water was considered a low risk to crew health and safety. Excellent agreement between in-flight and archival sample TOC data confirmed that the TOCA performed optimally and continued to serve as a vital tool for monitoring organic breakthrough and planning remediation action.
Effect of ambient temperature storage on potable water coliform population estimations.
Standridge, J H; Delfino, J J
1983-01-01
The effect of the length of time between sampling potable water and performing coliform analyses has been a long-standing controversial issue in environmental microbiology. The issue is of practical importance since reducing the sample-to-analysis time may substantially increase costs for water analysis programs. Randomly selected samples (from those routinely collected throughout the State of Wisconsin) were analyzed for total coliforms after being held at room temperature (20 +/- 2 degrees C) for 24 and 48 h. Differences in results for the two holding times were compared with differences predicted by probability calculations. The study showed that storage of the potable water for up to 48 h had little effect on the public health significance of most samples containing more than two coliforms per 100 ml. PMID:6651296
Specificity of coliphages in evaluating marker efficacy: a new insight for water quality indicators.
Mookerjee, Subham; Batabyal, Prasenjit; Halder, Madhumanti; Palit, Anup
2014-11-01
Conventional procedures for qualitative assessment of coliphage are time consuming multiple step approach for achieving results. A modified and rapid technique has been introduced for determination of coliphage contamination among potable water sources during water borne outbreaks. During December 2013, 40 water samples from different potable water sources, were received for water quality analyses, from a jaundice affected Municipality of West Bengal, India. Altogether, 30% water samples were contaminated with coliform (1-20 cfu/ml) and 5% with E. coli (2-5 cfu/ml). Among post-outbreak samples, preponderance of coliform has decreased (1-4 cfu/ml) with total absence of E. coli. While standard technique has detected 55% outbreak samples with coliphage contamination, modified technique revealed that 80%, double than that of bacteriological identification rate, were contaminated with coliphages (4-20 pfu/10 ml). However, post-outbreak samples were detected with 1-5 pfu/10 ml coliphages among 20% samples. Coliphage detection rate through modified technique was nearly double (50%) than that of standard technique (27.5%). In few samples (with coliform load of 10-100 cfu/ml), while modified technique could detect coliphages among six samples (10-20 pfu/10 ml), standard protocol failed to detect coliphage in any of them. An easy, rapid and accurate modified technique has thereby been implemented for coliphage assessment from water samples. Coliform free water does not always signify pathogen free potable water and it is demonstrated that coliphage is a more reliable 'biomarker' to ascertain contamination level in potable water. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of MIR Condensate and Potable Water
NASA Technical Reports Server (NTRS)
Pierre, L. M.; Bobe, L.; Protasov, N. N.; Sauer, R. L.; Schultz, J. R.; Sinyak, Y. E.; Skuratov, V. M.
1999-01-01
Approximately fifty percent of the potable water supplied to the Russian cosmonauts, American astronauts, and other occupants of the current Russian Mir Space Station is produced by the direct recycle of water from humidity condensate. The remainder comes from ground supplied potable water that is delivered on a Progress resupply spacecraft, or processed fuel cell water transferred from the Shuttle. Reclamation of water for potable and hygiene purposes is considered essential for extended duration missions in order to avoid massive costs associated with resupplying water from the ground. The Joint U.S/Russian Phase 1 program provided the U.S. the first opportunity to evaluate the performance of water reclamation hardware in microgravity. During the Phase I program, the U.S. collected recycled water, stored water, and humidity condensate samples for chemical and microbial evaluation. This experiment was conducted to determine the potability of the water supplied on Mir, to assess the reliability of the water reclamation and distribution systems, and to aid in developing water quality monitoring standards for International Space Station.
Diversity of free-living amoebae in a dual distribution (potable and recycled) water system
Free-living amoebae are known to facilitate the growth of water associated pathogens. This study, for the first time, explored the diversity of free-living amoebae in a dual distribution (potable and recycled) water system in Rouse Hill NSW, Australia. Water and biofilm samples w...
Garner, Emily; Chen, Chaoqi; Xia, Kang; Bowers, Jolene; Engelthaler, David M; McLain, Jean; Edwards, Marc A; Pruden, Amy
2018-06-05
Water reclamation provides a valuable resource for meeting nonpotable water demands. However, little is known about the potential for wastewater reuse to disseminate antibiotic resistance genes (ARGs). Here, samples were collected seasonally in 2014-2015 from four U.S. utilities' reclaimed and potable water distribution systems before treatment, after treatment, and at five points of use (POU). Shotgun metagenomic sequencing was used to profile the resistome (i.e., full contingent of ARGs) of a subset ( n = 38) of samples. Four ARGs ( qnrA, bla TEM , vanA, sul1) were quantified by quantitative polymerase chain reaction. Bacterial community composition (via 16S rRNA gene amplicon sequencing), horizontal gene transfer (via quantification of intI1 integrase and plasmid genes), and selection pressure (via detection of metals and antibiotics) were investigated as potential factors governing the presence of ARGs. Certain ARGs were elevated in all ( sul1; p ≤ 0.0011) or some ( bla TEM , qnrA; p ≤ 0.0145) reclaimed POU samples compared to corresponding potable samples. Bacterial community composition was weakly correlated with ARGs (Adonis, R 2 = 0.1424-0.1734) and associations were noted between 193 ARGs and plasmid-associated genes. This study establishes that reclaimed water could convey greater abundances of certain ARGs than potable waters and provides observations regarding factors that likely control ARG occurrence in reclaimed water systems.
ISS Expeditions 16 Thru 20: Chemical Analysis Results for Potable Water
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.
2010-01-01
This slide presentation reviews the results of the chemical analysis of the potable water supply from the International Space Station (ISS) expeditions 16 thru 20. Both Russian ground water and shuttle-transferred water are available for the use of the ISS crew's requirements. This is supplemented with condensate water and water form the Water Recovery System (WRS). An overview of the condensate H2O recovery system is given and the WRS is described and diagrammed. The water quality requirements, the handling, and analytical methods for the inorganic and organic tests are reviewed. The chemical analysis results for expeditions 16-20 archival water samples collected from the various water sources indicate that all of the ISS potable water supplies were acceptable for crew consumption.
Nkwe, Keitumetse Idah; Ateba, Collins Njie; Sithebe, Nomathamsanqa Patricia; Bezuidenhout, Cornelius Carlos
2015-07-01
Bacteriophages are regarded as enteric viral indicators in faecally contaminated water systems and may indicate the presence of human viral pollution. They are relatively resistant to inactivation by natural and treatment processes. In this study, the presence of somatic coliphages and F-RNA coliphages was investigated in potable water from rural areas in the North West province. Water samples were aseptically collected from boreholes and tap water from some rural communities in the North West Province. Physical parameters of the water, such as the temperature, pH and turbidity, were measured before sample collection. Double-agar layer assay was performed using ISO, (1995, 2000) standard methods. Bottled water was used as a negative control and the strains фX174 and MS2 as positive controls. Of the 16 water samples collected, 15 were positive for somatic bacteriophages while F-RNA coliphages were detected in only two samples. Amongst the positive samples 189 and three plaque forming units were obtained for both somatic and F-RNA coliphages, respectively. No coliphage was detected in water from Masamane tap 1. The rest of the samples obtained from various rural areas were positive and did not comply with national and international standards for potable water. This was a cause for concern and should be further investigated.
Nkwe, Keitumetse Idah; Ateba, Collins Njie; Sithebe, Nomathamsanqa Patricia; Bezuidenhout, Cornelius Carlos
2015-01-01
Bacteriophages are regarded as enteric viral indicators in faecally contaminated water systems and may indicate the presence of human viral pollution. They are relatively resistant to inactivation by natural and treatment processes. In this study, the presence of somatic coliphages and F-RNA coliphages was investigated in potable water from rural areas in the North West province. Water samples were aseptically collected from boreholes and tap water from some rural communities in the North West Province. Physical parameters of the water, such as the temperature, pH and turbidity, were measured before sample collection. Double-agar layer assay was performed using ISO, (1995, 2000) standard methods. Bottled water was used as a negative control and the strains фX174 and MS2 as positive controls. Of the 16 water samples collected, 15 were positive for somatic bacteriophages while F-RNA coliphages were detected in only two samples. Amongst the positive samples 189 and three plaque forming units were obtained for both somatic and F-RNA coliphages, respectively. No coliphage was detected in water from Masamane tap 1. The rest of the samples obtained from various rural areas were positive and did not comply with national and international standards for potable water. This was a cause for concern and should be further investigated. PMID:26140675
Rahman, Aminur; Hashem, Abul; Nur-A-Tomal, Shahruk
2016-12-01
Safe potable water is essential for good health. Worldwide, school-aged children especially in the developing countries are suffering from various water-borne diseases. In the study, drinking water supplies for primary school children were monitored at Magura district, Bangladesh, to ensure safe potable water. APHA standard analytical methods were applied for determining the physicochemical parameters of the water samples. For determination of the essential physicochemical parameters, the samples were collected from 20 randomly selected tube wells of primary schools at Magura. The metal contents, especially arsenic (As), iron (Fe), and manganese (Mn), in the water samples were analyzed by atomic absorption spectroscopy. The range of physicochemical parameters found in water samples were as follows: pH 7.05-9.03, electrical conductivity 400-2340 μS/cm, chloride 10-640 mg/L, hardness 200-535 mg/L as CaCO 3 , and total dissolved solids 208-1216 mg/L. The level of metals in the tube well water samples were as follows: As 1 to 55 μg/L, Fe 40 to 9890 μg/L, and Mn 10 to 370 μg/L. Drinking water parameters of Magura district did not meet the requirement of the World Health Organization drinking water quality guideline, or the Drinking Water Quality Standards of Bangladesh.
Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard
2014-01-01
Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use. PMID:25046636
Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard
2014-07-18
Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use.
49 CFR 228.323 - Potable water.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Potable water. 228.323 Section 228.323... Potable water. (a) General requirements. (1) Potable water shall be adequately and conveniently provided... processing. (2) Open containers such as barrels, pails, or tanks for drinking water from which the water must...
49 CFR 228.323 - Potable water.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Potable water. 228.323 Section 228.323... Potable water. (a) General requirements. (1) Potable water shall be adequately and conveniently provided... processing. (2) Open containers such as barrels, pails, or tanks for drinking water from which the water must...
49 CFR 228.323 - Potable water.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Potable water. 228.323 Section 228.323... Potable water. (a) General requirements. (1) Potable water shall be adequately and conveniently provided... processing. (2) Open containers such as barrels, pails, or tanks for drinking water from which the water must...
NASA Technical Reports Server (NTRS)
Orta, D.; Mudgett, P. D.; Ding, L.; Drybread, M.; Schultz, J. R.; Sauer, R. L.
1998-01-01
Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
30 CFR 57.20002 - Potable water.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
30 CFR 56.20002 - Potable water.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...
Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings.
Hammes, Gabriela; Thives, Liseane Padilha; Ghisi, Enedir
2018-09-15
This study assessed the potential for potable water savings in a building by using stormwater filtered by a porous asphalt pavement located in a parking lot. Stormwater is meant to be used for non-potable purposes (flushing toilets and urinals). Two models of porous pavement systems were constructed, both with porous asphalt mixture over a different combination of porous granular layers. The models were assessed for their filtering capacity; samples of stormwater runoff were collected in a parking lot located near the building where filtered stormwater is meant to be used. The models showed to be capable of filtering some pollutants. However, additional water treatment would be necessary to obtain the quality required for non-potable uses. Then one model was selected for a theoretical analysis on using it in a parking lot. The potential for potable water savings was analysed considering four scenarios as a function of daily local rainfall data. The thickness of the temporary stormwater reservoir layer was calculated in order to meet the design rainfall adopted, and the stormwater tank capacity was estimated using the Netuno computer programme. As a result, using a 45,000-litre stormwater tank, potable water savings of at least 53% would be obtained if filtered stormwater were used to flush toilets and urinals. This indicates that porous pavements show a great potential for filtering stormwater runoff to be used in buildings. Copyright © 2018 Elsevier Ltd. All rights reserved.
Risk-based enteric pathogen reduction targets for non-potable ...
This paper presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., locally-collected greywater, roof runoff, and stormwater). A probabilistic Quantitative Microbial Risk Assessment (QMRA) was used to derive the pathogen log10 reduction targets (LRTs) that corresponded with an infection risk of either 10−4 per person per year (ppy) or 10−2 ppy. The QMRA accounted for variation in pathogen concentration and sporadic pathogen occurrence (when data were available) in source waters for reference pathogens in the genera Rotavirus, Mastadenovirus (human adenoviruses), Norovirus, Campylobacter, Salmonella, Giardia and Cryptosporidium. Non-potable uses included indoor use (for toilet flushing and clothes washing) with occasional accidental ingestion of treated non-potable water (or cross-connection with potable water), and unrestricted irrigation for outdoor use. Various exposure scenarios captured the uncertainty from key inputs, i.e., the pathogen concentration in source water; the volume of water ingested; and for the indoor use, the frequency of and the fraction of the population exposed to accidental ingestion. Both potable and non-potable uses required pathogen treatment for the selected waters and the LRT was generally greater for potable use than non-potable indoor use and unrestricted irrigation. The difference in treatment requirements among source waters was driven by the
NASA Astrophysics Data System (ADS)
Karkra, Rashmi; Kumar, Prashant; Bansod, Baban K. S.; Bagchi, Sudeshna; Sharma, Pooja; Krishna, C. Rama
2017-11-01
Access to potable water for the common people is one of the most challenging tasks in the present era. Contamination of drinking water has become a serious problem due to various anthropogenic and geogenic events. The paper demonstrates the application of evolutionary algorithms, viz., particle swan optimization and genetic algorithm to 24 water samples containing eight different heavy metal ions (Cd, Cu, Co, Pb, Zn, Ar, Cr and Ni) for the optimal estimation of electrode and frequency to classify the heavy metal ions. The work has been carried out on multi-variate data, viz., single electrode multi-frequency, single frequency multi-electrode and multi-frequency multi-electrode water samples. The electrodes used are platinum, gold, silver nanoparticles and glassy carbon electrodes. Various hazardous metal ions present in the water samples have been optimally classified and validated by the application of Davis Bouldin index. Such studies are useful in the segregation of hazardous heavy metal ions found in water resources, thereby quantifying the degree of water quality.
Beyond User Acceptance: A Legitimacy Framework for Potable Water Reuse in California.
Harris-Lovett, Sasha R; Binz, Christian; Sedlak, David L; Kiparsky, Michael; Truffer, Bernhard
2015-07-07
Water resource managers often tout the potential of potable water reuse to provide a reliable, local source of drinking water in water-scarce regions. Despite data documenting the ability of advanced treatment technologies to treat municipal wastewater effluent to meet existing drinking water quality standards, many utilities face skepticism from the public about potable water reuse. Prior research on this topic has mainly focused on marketing strategies for garnering public acceptance of the process. This study takes a broader perspective on the adoption of potable water reuse based on concepts of societal legitimacy, which is the generalized perception or assumption that a technology is desirable or appropriate within its social context. To assess why some potable reuse projects were successfully implemented while others faced fierce public opposition, we performed a series of 20 expert interviews and reviewed in-depth case studies from potable reuse projects in California. Results show that proponents of a legitimated potable water reuse project in Orange County, California engaged in a portfolio of strategies that addressed three main dimensions of legitimacy. In contrast, other proposed projects that faced extensive public opposition relied on a smaller set of legitimation strategies that focused near-exclusively on the development of robust water treatment technology. Widespread legitimation of potable water reuse projects, including direct potable water reuse, may require the establishment of a portfolio of standards, procedures, and possibly new institutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.
2014-04-01
The analysis presented in this technical report should allow for the creation of high, medium, and low cost potable water prices for GCAM. Seawater reverse osmosis (SWRO) based desalinization should act as a backstop for the cost of producing potable water (i.e., the literature seems clear that SWRO should establish an upper bound for the plant gate cost of producing potable water). Transporting water over significant distances and having to lift water to higher elevations to reach end-users can also have a significant impact on the cost of producing water. The three potable fresh water scenarios describe in this technicalmore » report are: low cost water scenario ($0.10/m3); medium water cost scenario ($1.00/m3); and high water cost scenario ($2.50/m3).« less
Risk-Based Treatment Targets for Onsite Non-Potable Water ...
This presentation presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., municipal wastewater, locally-collected greywater, rainwater, and stormwater). A probabilistic, forward Quantitative Microbial Risk Assessment (QMRA) was used to derive the pathogen log10 reduction targets (LRTs) that corresponded with an infection risk of either 10-4 per person per year (ppy) or 10-2 ppy. The QMRA accounted for variation in pathogen concentration and sporadic pathogen occurrence (when data were available) in source waters for reference pathogens Rotavirus, Adenovirus, Norovirus, Campylobacter spp., Salmonella spp., Giardia spp., and Cryptosporidium spp.. Non-potable uses included indoor use (for toilet flushing and clothes washing) with accidental ingestion of treated non-potable water (or cross connection with potable water), and unrestricted irrigation for outdoor use. Various exposure scenarios captured the uncertainty from key inputs, i.e., the pathogen concentration in source water; the volume of water ingested; and for the indoor use, the frequency of and the fraction of the population exposed to accidental ingestion. Both potable and non-potable uses required pathogen treatment for the selected waters and the LRT was generally greater for potable use than nonpotable indoor use and unrestricted irrigation. The difference in treatment requirements among source waters was driven by th
Development of reclaimed potable water quality criteria
NASA Technical Reports Server (NTRS)
Flory, D. A.; Weir, F. W.
1979-01-01
In order to minimize launch requirements necessary to meet the demands of long-term spaceflight, NASA will reuse water reclaimed from various on-board sources including urine, feces, wash water and humidity condensate. Development of reclamation systems requires the promulgation of water quality standards for potable reuse of the reclaimed water. Existing standards for domestic U.S. potable water consumption were developed, but do not consider the peculiar problems associated with the potable reuse of recycled water. An effort was made to: (1) define a protocol by which comprehensive reclaimed water potability/palatability criteria can be established and updated; and (2) continue the effort to characterize the organic content of reclaimed water in the Regenerative Life Support Evaluation.
Determination of viable Salmonellae from potable and source water through PMA assisted qPCR.
Singh, Gulshan; Vajpayee, Poornima; Bhatti, Saurabh; Ronnie, Nirmala; Shah, Nimish; McClure, Peter; Shanker, Rishi
2013-07-01
Resource constrained countries identified as endemic zones for pathogenicity of Salmonella bear an economic burden due to recurring expenditure on medical treatment. qPCR used for Salmonella detection could not discriminate between viable and nonviable cells. Propidium monoazide (PMA) that selectively penetrates nonviable cells to cross-link their DNA, was coupled with ttr gene specific qPCR for quantifying viable salmonellae in source/potable waters collected from a north Indian city. Source water (raw water for urban potable water supply) and urban potable water exhibited viable salmonellae in the range of 2.1×10(4)-2.6×10(6) and 2-7160CFU/100mL, respectively. Potable water at water works exhibited DNA from dead cells but no viable cells were detected. PMA assisted qPCR could specifically detect low numbers of live salmonellae in Source and potable waters. This strategy can be used in surveillance of urban potable water distribution networks to map contamination points for better microbial risk management. Copyright © 2013 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... where their presence is detected. (b) Water supply—(1) Potable water. (i) Potable water shall be... to, first-aid, medical services, dressing, showering, toilet use, washing, and eating. Potable water means water which meets the quality standards prescribed in the U.S. Public Health Service Drinking...
Alternate electrification and non-potable water: A health concern for Jamaicans
Crawford, Tazhmoye V.
2009-01-01
Background: Research has shown that the absence of electricity and potable water usually result in negative effects on one's health and is more likely to affect women than men. Aim: To determine the extent to which alternate electrification and limited potable water, impacts on health. Materials and Method: This study is informed by primary and secondary data, representing a sample size of 150 respondents (75 male and 75 female), who were interviewed via a 24-item structured interview schedule during the period 2006-2007, throughout the 14 parishes of Jamaica. In an effort to determine the number of persons to be interviewed, each parish population was divided by the island's population (2,599,334) and then multiplied by 150. Data was analyzed using the statistical package for social scientists 15. Results: The respondents of this study who use kerosene lamp as an alternate means to electricity use firewood for cooking (12% male and 15% female). This sometimes result in obstructive pulmonary disease (female 43%; male 21%). The absence of electricity also results in the consumption of improperly stored meat, thus medical implications: paroxysmal abdominal pain (colic), and diarrhea (male 91%; female, 95%). The transporting of firewood, pans of water and laundry via head-loading, sometimes result in back/spinal injury (male, 75%; female, 48%). Conclusion: Alternate access to electricity and potable water result in the use of kerosene lamp, firewood and the consumption of non-potable water (often transported on one's head) - causing medical implications such as back/spinal injury, obstructive pulmonary disease, paroxysmal abdominal pain and gastroenteritis. PMID:22666721
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Calley, D. J.
1975-01-01
The history and evolution of the Apollo potable water system is reviewed. Its operation in the space environment and in the spacecraft is described. Its performance is evaluated. The Apollo potable water system satisfied the dual purpose of providing metabolic water for the crewmen and water for spacecraft cooling.
Whiley, Harriet
2016-12-24
Legionella is an opportunistic pathogen of public health significance. One of the main sources of Legionella is potable water systems. As a consequence of aging populations there is an increasing demographic considered at high risk for Legionellosis and, as such, a review of the guidelines is required. Worldwide, Legionella has been detected from many potable water sources, suggesting it is ubiquitous in this environment. Previous studies have identified the limitations of the current standard method for Legionella detection and the high possibility of it returning both false negative and false positive results. There is also huge variability in Legionella test results for the same water sample when conducted at different laboratories. However, many guidelines still recommend the testing of water systems. This commentary argues for the removal of routine Legionella monitoring from all water distribution guidelines. This procedure is financially consuming and false negatives may result in managers being over-confident with a system or a control mechanism. Instead, the presence of the pathogen should be assumed and focus spent on managing appropriate control measures and protecting high-risk population groups.
Whiley, Harriet
2016-01-01
Legionella is an opportunistic pathogen of public health significance. One of the main sources of Legionella is potable water systems. As a consequence of aging populations there is an increasing demographic considered at high risk for Legionellosis and, as such, a review of the guidelines is required. Worldwide, Legionella has been detected from many potable water sources, suggesting it is ubiquitous in this environment. Previous studies have identified the limitations of the current standard method for Legionella detection and the high possibility of it returning both false negative and false positive results. There is also huge variability in Legionella test results for the same water sample when conducted at different laboratories. However, many guidelines still recommend the testing of water systems. This commentary argues for the removal of routine Legionella monitoring from all water distribution guidelines. This procedure is financially consuming and false negatives may result in managers being over-confident with a system or a control mechanism. Instead, the presence of the pathogen should be assumed and focus spent on managing appropriate control measures and protecting high-risk population groups. PMID:28029126
Microbial Surveillance of Potable Water Sources of the International Space Station
NASA Technical Reports Server (NTRS)
Bruce, Rebekah J.; Ott, C. Mark; Skuratov, Vladimir M.; Pierson, Duane L.
2005-01-01
To mitigate risk to the crew, the microbial surveillance of the quality of potable water sources of the International Space Station (ISS) has been ongoing since before the arrival of the first permanent crew. These water sources have included stored ground-supplied water, water produced by the shuttle fuel cells during flight, and ISS humidity condensate that is reclaimed and processed. Monitoring was accomplished using a self-contained filter designed to allow bacterial growth and enumeration during flight. Upon return to earth, microbial isolates were identified using 16S ribosomal gene sequencing. While the predominant isolates were common Gramnegative bacteria including Ralstonia eutropha, Methylobacterium fujisawaense, and Spingomonas paucimobilis, opportunistic pathogens such as Stenotrophomonas maltophilia and Pseudomonas aeruginosa were also isolated. Results of in-flight enumeration have indicated a fluctuation of bacterial counts above system design specifications. Additional in-flight monitoring capability for the specific detection of coliforms was added in 2004; no coliforms have been detected from any potable water source. Neither the bacterial concentrations nor the identification of the isolates recovered from these samples has suggested a threat to crew health.
Advanced water iodinating system. [for potable water aboard manned spacecraft
NASA Technical Reports Server (NTRS)
Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.
1975-01-01
Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.
Potable Water Reuse: What Are the Microbiological Risks?
Nappier, Sharon P; Soller, Jeffrey A; Eftim, Sorina E
2018-06-01
With the increasing interest in recycling water for potable reuse purposes, it is important to understand the microbial risks associated with potable reuse. This review focuses on potable reuse systems that use high-level treatment and de facto reuse scenarios that include a quantifiable wastewater effluent component. In this article, we summarize the published human health studies related to potable reuse, including both epidemiology studies and quantitative microbial risk assessments (QMRA). Overall, there have been relatively few health-based studies evaluating the microbial risks associated with potable reuse. Several microbial risk assessments focused on risks associated with unplanned (or de facto) reuse, while others evaluated planned potable reuse, such as indirect potable reuse (IPR) or direct potable reuse (DPR). The reported QMRA-based risks for planned potable reuse varied substantially, indicating there is a need for risk assessors to use consistent input parameters and transparent assumptions, so that risk results are easily translated across studies. However, the current results overall indicate that predicted risks associated with planned potable reuse scenarios may be lower than those for de facto reuse scenarios. Overall, there is a clear need to carefully consider water treatment train choices when wastewater is a component of the drinking water supply (whether de facto, IPR, or DPR). More data from full-scale water treatment facilities would be helpful to quantify levels of viruses in raw sewage and reductions across unit treatment processes for both culturable and molecular detection methods.
NASA Technical Reports Server (NTRS)
Newcombe, David; Stuecker, Tara; La Duc, Myron; Venkateswaran, Kasthuri
2005-01-01
Previous studies indicated evidence of opportunistic pathogens samples obtained during missions to the International Space Station (ISS). This study utilized TaqMan quantitative PCR to determine specific gene abundance in potable and non-potable ISS waters. Probe and primer sets specific to the small subunit rRNA genes were used to elucidate overall bacterial rRNA gene numbers. while those specific for Burkholderia cepacia and Stenotrophomonas maltophilia were optimized and used to probe for the presence of these two opportunistic pathogens. This research builds upon previous microbial diversity studies of ISS water and demonstrates the utility of Q-PCR tool to examine water quality.
21 CFR 1250.82 - Potable water systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...
21 CFR 1250.82 - Potable water systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...
21 CFR 1250.82 - Potable water systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...
21 CFR 1250.82 - Potable water systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...
Rodriguez-Alvarez, María Soledad; Weir, Mark H; Pope, Joanna M; Seghezzo, Lucas; Rajal, Verónica B; Salusso, María Mónica; Moraña, Liliana B
2015-10-01
Argentina is a developing Latin American nation that has an aim of achieving the United Nations Millennium Development Goals for potable water supplies. Their current regulations however, limit the continued development of improved potable water quality and infrastructure from a microbiological viewpoint. This is since the current regulations are focused solely to pathogenic Eschericia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and fecal indicators. Regions of lower socioeconomic status such as peri-urban areas are particularly at risk due to lessened financial and political ability to influence their environmental quality and infrastructure needs. Therefore, a combined microbiological sampling, analysis and quantitative microbial risk assessment (QMRA) modeling effort were engaged for a peri-urban area of Salta Argentina. Drinking water samples from home taps were analyzed and a QMRA model was developed, results of which were compared against a general 1:10,000 risk level for lack of a current Argentinian standard. This QMRA model was able to demonstrate that the current regulations were being achieved for E. coli but were less than acceptable for P. aeruginosa in some instances. Appropriate health protections are far from acceptable for Giardia for almost all water sources. Untreated water sources were sampled and analyzed then QMRA modeled as well, since a significant number of the community (∼9%) still use them for potable water supplies. For untreated water E. coli risks were near 1:10,000, however, P. aeruginosa and Giardia risks failed to be acceptable in almost all instances. The QMRA model and microbiological analyses demonstrate the need for improved regulatory efforts for the peri-urban area along with improved investment in their water infrastructure. Copyright © 2015 Elsevier GmbH. All rights reserved.
Prototype solar heating and cooling systems including potable hot water
NASA Technical Reports Server (NTRS)
1978-01-01
Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.
Apollo experience report: Potable water system
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Calley, D. J.
1973-01-01
A description of the design and function of the Apollo potable water system is presented. The command module potable water is supplied as a byproduct of the fuel cells. The cells, located in the service module, function primarily to supply electrical energy to the spacecraft. The source of the lunar module potable water is three tanks, which are filled before lift-off. The technique of supplying the water in each of these cases and the problems associated with materials compatibility are described. The chemical and microbiological quality of the water is reviewed, as are efforts to maintain the water in a microbially safe condition for drinking and food mixing.
Technical-economic modelling of integrated water management: wastewater reuse in a French island.
Xu, P; Valette, F; Brissaud, F; Fazio, A; Lazarova, V
2001-01-01
An integrated technical-economic model is used to address water management issues in the French island of Noirmoutier. The model simulates potable water production and supply, potable and non potable water demand and consumption, wastewater collection, treatment and disposal, water storage, transportation and reuse. A variety of water management scenarios is assessed through technical, economic and environmental evaluation. The scenarios include wastewater reclamation and reuse for agricultural and landscape irrigation as well as domestic non potable application, desalination of seawater and brackish groundwater for potable water supply. The study shows that, in Noirmoutier, wastewater reclamation and reuse for crop irrigation is the most cost-effective solution to the lack of water resources and the protection of sensitive environment. Some water management projects which are regarded as having less economic benefit in the short-term may become competitive in the future, as a result of tightened environmental policy, changed public attitudes and advanced water treatment technologies. The model provides an appropriate tool for water resources planning and management.
77 FR 1591 - Energy Conservation Program: Test Procedure for Automatic Commercial Ice Makers
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
.... Establishment of a Metric for Potable Water Used to Produce Ice 6. Standardization of Water Hardness for Measurement of Potable Water Used in Making Ice 7. Testing of Batch Type Ice Makers at the Highest Purge..., AHRI Standard 810 with Addendum 1. This addendum revised the definition of ``potable water use rate...
NASA Technical Reports Server (NTRS)
Cunningham, H. R. (Inventor)
1973-01-01
A dispenser particularly suited for use in dispensing potable water into food and beverage reconstitution bags is described. The dispenser is characterized by an expansible chamber, selectively adjustable stop means for varying the maximum dimensions, a rotary valve, and a linear valve coupled in a cooperating relation for delivering potable water to and from the chamber.
Ghisi, Enedir; Cardoso, Karla Albino; Rupp, Ricardo Forgiarini
2012-06-15
The main objective of this article is to assess the possibility of using short-term instead of long-term rainfall time series to evaluate the potential for potable water savings by using rainwater in houses. The analysis was performed considering rainfall data from 1960 to 1995 for the city of Santa Bárbara do Oeste, located in the state of São Paulo, southeastern Brazil. The influence of the rainfall time series, roof area, potable water demand and percentage rainwater demand on the potential for potable water savings was evaluated. The potential for potable water savings was estimated using computer simulations considering a set of long-term rainfall time series and different sets of short-term rainfall time series. The ideal rainwater tank capacity was also assessed for some cases. It was observed that the higher the percentage rainwater demand and the shorter the rainfall time series, the larger the difference between the potential for potable water savings and the greater the variation in the ideal rainwater tank size. The sets of short-term rainfall time series considered adequate for different scenarios ranged from 1 to 13 years depending on the roof area, percentage rainwater demand and potable water demand. The main finding of the research is that sets of short-term rainfall time series can be used to assess the potential for potable water savings by using rainwater, as the results obtained are similar to those obtained from the long-term rainfall time series. Copyright © 2012 Elsevier Ltd. All rights reserved.
42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only at... 42 Public Health 1 2011-10-01 2011-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport...
42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only at... 42 Public Health 1 2010-10-01 2010-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport...
Aquatic biomonitoring of reclaimed water for potable use: the San Diego Health Effects Study.
de Peyster, A; Donohoe, R; Slymen, D J; Froines, J R; Olivieri, A W; Eisenberg, D M
1993-05-01
Highly treated reclaimed wastewater was evaluated as a possible supplement to raw water sources required to meet San Diego's growing need for potable water. Biomonitoring experiments employing fathead minnows (Pimephales promelas) were used to compare reclaimed water with the city's current raw water supply. Juvenile fish were exposed in flow-through aquaria in field laboratories located at the reclamation plant (AQUA II) and at a municipal potable water treatment facility (Miramar). Biomonitoring measurements were survival and growth, swimming performance, and trace amounts of 68 base/neutral/acid extractable organics, 27 pesticides, and 27 inorganic chemicals found in fish tissues after exposure. Biomonitoring revealed differences in survival, growth, and swimming performance only after 90- and 180-d exposure. Reclaimed water and raw water were not readily distinguishable in 28-d chemical bioaccumulation tests in terms of organic chemical contaminants in fish tissue except for pesticide levels, which tended to be higher in raw water. Similar inorganic species were found in samples from both waters, although there was greater evidence of bioaccumulation of certain contaminants from raw water. Based on biomonitoring parameters included in these experiments, the use of reclaimed water to supplement raw water supplies would appear to pose no major public health threats. The results of these studies will be combined with additional health effects information before final conclusions are reached about the suitability of reclaimed water for human consumption.
Little, Christine; Sagoo, Satnam
2009-12-01
This study was undertaken to assess the cleanliness of food preparation areas, cleaning methods used, and the microbiological quality of water used by 1258 mobile food vendors in the UK. Samples collected included potable water (1102), cleaning cloths (801) and environmental swabs from food preparation surfaces (2704). Cleaning cloths were more heavily contaminated with Aerobic Colony Counts, Enterobacteriaceae, Escherichia coli, and Staphylococcus aureus compared to surfaces sampled. Surfaces that were visually dirty, wet, and chopping boards that were plastic or damaged also had high levels of these bacteria. Fifty-four percent of potable water samples were of poor microbiological quality; i.e. contained coliforms, E. coli and/or enterococci. A documented food safety management system was only evident in 40.1% of vendors and cleaning schedules were only used by 43.6%. Deficiencies in the correct use of cleaning materials, such as dilution factors and the minimum contact time for disinfectants, were identified.
Moura, A N; Dantas, E W; Oliveira, H S B; Bittencourt-Oliveira, M C
2011-05-01
This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy), are dominant in the photic and aphotic strata.
A review of polymeric membranes and processes for potable water reuse
Warsinger, David M.; Chakraborty, Sudip; Tow, Emily W.; Plumlee, Megan H.; Bellona, Christopher; Loutatidou, Savvina; Karimi, Leila; Mikelonis, Anne M.; Achilli, Andrea; Ghassemi, Abbas; Padhye, Lokesh P.; Snyder, Shane A.; Curcio, Stefano; Vecitis, Chad; Arafat, Hassan A.; Lienhard, John H.
2018-01-01
Conventional water resources in many regions are insufficient to meet the water needs of growing populations, thus reuse is gaining acceptance as a method of water supply augmentation. Recent advancements in membrane technology have allowed for the reclamation of municipal wastewater for the production of drinking water, i.e., potable reuse. Although public perception can be a challenge, potable reuse is often the least energy-intensive method of providing additional drinking water to water stressed regions. A variety of membranes have been developed that can remove water contaminants ranging from particles and pathogens to dissolved organic compounds and salts. Typically, potable reuse treatment plants use polymeric membranes for microfiltration or ultrafiltration in conjunction with reverse osmosis and, in some cases, nanofiltration. Membrane properties, including pore size, wettability, surface charge, roughness, thermal resistance, chemical stability, permeability, thickness and mechanical strength, vary between membranes and applications. Advancements in membrane technology including new membrane materials, coatings, and manufacturing methods, as well as emerging membrane processes such as membrane bioreactors, electrodialysis, and forward osmosis have been developed to improve selectivity, energy consumption, fouling resistance, and/or capital cost. The purpose of this review is to provide a comprehensive summary of the role of polymeric membranes in the treatment of wastewater to potable water quality and highlight recent advancements in separation processes. Beyond membranes themselves, this review covers the background and history of potable reuse, and commonly used potable reuse process chains, pretreatment steps, and advanced oxidation processes. Key trends in membrane technology include novel configurations, materials and fouling prevention techniques. Challenges still facing membrane-based potable reuse applications, including chemical and biological contaminant removal, membrane fouling, and public perception, are highlighted as areas in need of further research and development. PMID:29937599
Risk-Based Treatment Targets for Onsite Non-Potable Water Reuse
This presentation presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., municipal wastewater, locally-collected greywater, rainwater, and stormwater). A probabilistic, forward Quantitative Micr...
Fluorescence spectroscopy as a tool for determining microbial quality in potable water applications.
Cumberland, Susan; Bridgeman, John; Baker, Andy; Sterling, Mark; Ward, David
2012-01-01
Building on previous work where fluorescence spectroscopy has been used to detect sewage in rivers, a portable LED spectrophotometer was used for the first time to establish bacterial numbers in a range of water samples. A mixed-method approach was used with standard bacteria enumeration techniques on diluted river water and sewage works final effluent using a number of diluents (Ringer's solution, tap water and potable spring water). Fluorescence from uncultured dilutions was detected at a 280 nm excitation/360 nm emission wavelength (corresponding to the region of tryptophan and indole fluorescence) and compared with bacteria numbers on the same cultured sample. Good correlations were obtained for total coliforms, E. coli and heterotrophic bacteria with the portable LED spectrophotometer (R2 = 0.78, 0.72 and 0.81 respectively). The results indicate that the portable spectrophotometer could be applied to establish the quality of drinking water in areas of poor sanitation that are subject to faecal contamination, where infrastructure failure has occurred in the supply of clean drinking water. This would be particularly useful where laboratory facilities are not at hand.
Water quality monitor. [spacecraft potable water
NASA Technical Reports Server (NTRS)
West, S.; Crisos, J.; Baxter, W.
1979-01-01
The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.
International Space Station USOS Potable Water Dispenser Development
NASA Technical Reports Server (NTRS)
Shaw, Laura A.; Barreda, Jose L.
2008-01-01
The International Space Station (ISS) Russian Segment currently provides potable water dispensing capability for crewmember food and beverage rehydration. All ISS crewmembers rehydrate Russian and U.S. style food packages from this location. A new United States On-orbit Segment (USOS) Potable Water Dispenser (PWD) is under development. This unit will provide additional potable water dispensing capability to support an onorbit crew of six. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to U.S. style food packages. It will receive iodinated water from the Fuel Cell Water Bus in the U.S. Laboratory element. The unit will provide potable-quality water, including active removal of biocidal iodine prior to dispensing. A heater assembly contained within the unit will be able to supply up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity will allow three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. It will be the size of two stacked Shuttle Middeck lockers (approximately the size of two small suitcases) and integrated into a science payload rack in the U.S. Laboratory element. Providing potable-quality water at the proper temperature for food and beverage reconstitution is critical to maintaining crew health and well-being. The numerous engineering challenges as well as human factors and safety considerations during the concept, design, and prototyping are outlined in this paper.
NASA Technical Reports Server (NTRS)
La Duc, Myron T.; Sumner, Randall; Pierson, Duane; Venkat, Parth; Venkateswaran, Kasthuri
2004-01-01
Molecular analyses were carried out on four preflight and six postflight International Space Station (ISS)-associated potable water samples at various stages of purification, storage, and transport, to ascertain their associated microbial diversities and overall microbial burdens. Following DNA extraction, PCR amplification, and molecular cloning procedures, rDNA sequences closely related to pathogenic species of Acidovorax, Afipia, Brevundimonas, Propionibacterium, Serratia, and others were recovered in varying abundance. Retrieval of sequences arising from the iodine (biocide)-reducing Delftia acidovorans in postflight waters is also of concern. Total microbial burdens of ISS potable waters were derived from data generated by an ATP-based enumeration procedure, with results ranging from 0 to 4.9 x 10(4) cells/ml. Regardless of innate biases in sample collection and analysis, such circumstantial evidence for the presence of viable, intact pathogenic cells should not be taken lightly. Implementation of new cultivation approaches and/or viability-based assays are requisite to confirm such an occurrence.
Patel, Chandra B.; Shanker, Rishi; Gupta, Vijai K.; Upadhyay, Ram S.
2016-01-01
The availability of safe and pristine water is a global challenge when large numbers of natural and anthropogenic water resources are being depleted with faster rate. The remaining water resources are severely contaminated with various kinds of contaminants including microorganisms. Enterobacter is one of the fecal coliform bacteria of family Enterobacteriaceae. Enterobacter was earlier used as an indicator bacterium along with other fecal Coliforms namely Escherichia coli, Citrobacter, and Klebsiella, but it is now known to cause various diseases in human beings. In this study, we have collected 55 samples from potable water and riverine system and proved their presence using their conserved sequences of 16S rRNA and 23S rRNA genes with the help of SYBR green real-time PCR, which showed very high specificity for the detection of Enterobacter. The Enterobacter counts in potable water were found to 1290 ± 32.89 to 1460 ± 39.42 cfu/100 ml. The Enterobacter levels in surface water were 1.76 × 104 ± 492, 1.33 × 104 ± 334, 1.15 × 104 ± 308, 2.56 × 104 ± 802, 2.89 × 104 ± 962, 8.16 × 104 ± 3443 cfu/100 ml; the levels of Enterobacter contamination associated with hydrophytes were 4.80 × 104 ± 1804, 3.48 × 104 ± 856, 8.50 × 104 ± 2074, 8.09 × 104 ± 1724, 6.30 × 104 ± 1738, 3.68 × 104 ± 949 cfu/10 g and the Enterobacter counts in sediments of the river, were 2.36 × 104 ± 703, 1.98 × 104 ± 530, 9.92 × 104 ± 3839, 6.80 × 104 ± 2230, 8.76 × 104 ± 3066 and 2.34 × 104 ± 732 cfu/10 g at the sampling Site #1, Site #2, Site #3, Site #4, Site #5, and Site #6, respectively. The assay could be used for the regular monitoring of potable water and other water reservoirs to check waterborne outbreaks. PMID:26925044
Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample
2002-12-18
ISS006-E-08628 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.
Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample
2002-12-18
ISS006-E-08616 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.
Dioxins, Furans and PCBs in Recycled Water for Indirect Potable Reuse
Rodriguez, Clemencia; Cook, Angus; Devine, Brian; Van Buynder, Paul; Lugg, Richard; Linge, Kathryn; Weinstein, Philip
2008-01-01
An assessment of potential health impacts of dioxin and dioxin-like compounds in recycled water for indirect potable reuse was conducted. Toxic equivalency factors (TEFs) for 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (PCBs) congeners have been developed by the World Health Organization to simplify the risk assessment of complex mixtures. Samples of secondary treated wastewater in Perth, Australia were examined pre-and post-tertiary treatment in one full-scale and one pilot water reclamation plant. Risk quotients (RQs) were estimated by expressing the middle-bound toxic equivalent (TEQ) and the upper-bound TEQ concentration in each sampling point as a function of the estimated health target value. The results indicate that reverse osmosis (RO) is able to reduce the concentration of PCDD, PCDF and dioxin-like PCBs and produce water of high quality (RQ after RO=0.15). No increased human health risk from dioxin and dioxin-like compounds is anticipated if highly treated recycled water is used to augment drinking water supplies in Perth. Recommendations for a verification monitoring program are offered. PMID:19151430
Prototype solar heating and cooling systems including potable hot water
NASA Technical Reports Server (NTRS)
1978-01-01
These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.
42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Food, potable water, and waste: U.S. seaports and airports. 71.45 Section 71.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.45 Food, potable water,...
42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Food, potable water, and waste: U.S. seaports and airports. 71.45 Section 71.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.45 Food, potable water,...
42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Food, potable water, and waste: U.S. seaports and airports. 71.45 Section 71.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.45 Food, potable water,...
Sporadic Legionnaires' disease: the role of domestic electric hot-water tanks.
Dufresne, S F; Locas, M C; Duchesne, A; Restieri, C; Ismaïl, J; Lefebvre, B; Labbé, A C; Dion, R; Plante, M; Laverdière, M
2012-01-01
Sporadic community-acquired legionellosis (SCAL) can be acquired through contaminated aerosols from residential potable water. Electricity-dependent hot-water tanks are widely used in the province of Quebec (Canada) and have been shown to be frequently contaminated with Legionella spp. We prospectively investigated the homes of culture-proven SCAL patients from Quebec in order to establish the proportion of patients whose domestic potable hot-water system was contaminated with the same Legionella isolate that caused their pneumonia. Water samples were collected in each patient's home. Environmental and clinical isolates were compared using pulsed-field gel electrophoresis. Thirty-six patients were enrolled into the study. Legionella was recovered in 12/36 (33%) homes. The residential and clinical isolates were found to be microbiologically related in 5/36 (14%) patients. Contaminated electricity-heated domestic hot-water systems contribute to the acquisition of SCAL. The proportion is similar to previous reports, but may be underestimated.
Advanced microbial check valve development
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Greenley, D. R.
1980-01-01
A flight certified assembly identified as a Microbial Check Valve (MCV) was developed and tested. The MCV is a canister packed with an iodinated anionic exchange resin. The device is used to destroy organisms in a water stream as the water passes through the device. The device is equally effective for fluid flow in either direction and its primary method of organism removal is killing rather than filtering. The MCV was successfully developed for the space shuttle to: disinfect fuel cell water; and prevent back contamination of the stored potable water supply. One version of the device consists of a high residual iodinated resin bed that imparts approximately 2 ppm of iodine to the fuel cell water as it flows to the potable water tanks. A second version of the device consists of a low residual iodinated resin bed. One of these low residual beds is located at each use port in the potable water system for the dual purpose of removing some iodine from the potable water as it is dispensed and also to prevent back contamination of the potable supply.
Review of pathogen treatment reductions for onsite non-potable reuse of alternative source waters
Communities face a challenge when implementing onsite reuse of collected waters for non-potable purposes given the lack of national microbial standards. Quantitative Microbial Risk Assessment (QMRA) can be used to predict the pathogen risks associated with the non-potable reuse o...
Blanky, Marina; Rodríguez-Martínez, Sara; Halpern, Malka; Friedler, Eran
2015-11-15
Greywater is an alternative water source that can help alleviate stress on depleted water resources. The main options for greywater reuse are toilet flushing and garden irrigation, both producing aerosols. For that reason transmission of inhalable pathogens like Legionella present a potential risk. To improve the understanding about Legionella in greywater, we traced the pathogen seasonally from the potable water system to the final steps of the greywater treatment in four houses in northern Israel. Physicochemical and microbiological parameters were analyzed in order to assess background greywater quality and to establish possible associations with Legionella. The mean concentrations of Legionella pneumophila isolated from the potable water system were 6.4×10(2) and 5.9×10(3) cfu/l in cold and hot water respectively. By amending the ISO protocol for Legionella isolation from drinking water, we succeeded in quantifying Legionella in greywater. The mean Legionella concentrations that were found in raw, treated and treated chlorinated greywater were 1.2×10(5), 2.4×10(4) and 5.7×10(3) cfu/l respectively. While Legionella counts in potable water presented a seasonal pattern with high concentrations in summer, its counts in greywater presented an almost inversed pattern. Greywater treatment resulted in 95% decrease in Legionella counts. No significant difference was found between Legionella concentrations in potable water and the treated chlorinated greywater. These findings indicate that regarding Legionella, reusing treated chlorinated greywater would exhibit a risk that is very similar to the risk associated with using potable water for the same non-potable uses. Copyright © 2015 Elsevier B.V. All rights reserved.
Williams conducts SWAB Sampling during Expedition 22
2010-03-15
ISS022-E-094369 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.
Williams conducts SWAB Sampling during Expedition 22
2010-03-15
ISS022-E-094374 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.
Hsu, Joy; Del Rosario, Maria C; Thomasson, Erica; Bixler, Danae; Haddy, Loretta; Duncan, Mary Anne
2017-10-01
In January 2014, a chemical spill of 4-methylcyclohexanemethanol and propylene glycol phenyl ethers contaminated the potable water supply of approximately 300,000 West Virginia residents. To understand the spill's impact on hospital operations, we surveyed representatives from 10 hospitals in the affected area during January 2014. We found that the spill-related loss of potable water affected many aspects of hospital patient care (eg, surgery, endoscopy, hemodialysis, and infection control of Clostridium difficile). Hospital emergency preparedness planning could be enhanced by specifying alternative sources of potable water sufficient for hemodialysis, C. difficile infection control, and hospital processing and cleaning needs (in addition to drinking water). (Disaster Med Public Health Preparedness. 2017;11:621-624).
The presence-absence coliform test for monitoring drinking water quality.
Rice, E W; Geldreich, E E; Read, E J
1989-01-01
The concern for improved monitoring of the sanitary quality of drinking water has prompted interest in alternative methods for the detection of total coliform bacteria. A simplified qualitative presence-absence test has been proposed as an alternate procedure for detecting coliform bacteria in potable water. In this paper data from four comparative studies were analyzed to compare the recovery of total coliform bacteria from drinking water using the presence-absence test, the multiple fermentation tube procedure, and the membrane filter technique. The four studies were of water samples taken from four different geographic areas of the United States: Hawaii, New England (Vermont and New Hampshire), Oregon, and Pennsylvania. Analysis of the results of these studies were compared, based upon the number of positive samples detected by each method. Combined recoveries showed the presence-absence test detected significantly higher numbers of samples with coliforms than either the fermentation tube or membrane filter methods, P less than 0.01. The fermentation tube procedure detected significantly more positive samples than the membrane filter technique, P less than 0.01. Based upon the analysis of the combined data base, it is clear that the presence-absence test is as sensitive as the current coliform methods for the examination of potable water. The presence-absence test offers a viable alternative to water utility companies that elect to use the frequency-of-occurrence approach for compliance monitoring. PMID:2493663
Mycobacterium lentiflavum in Drinking Water Supplies, Australia
Carter, Robyn; Torbey, Matthew J.; Minion, Sharri; Tolson, Carla; Sidjabat, Hanna E.; Huygens, Flavia; Hargreaves, Megan; Thomson, Rachel M.
2011-01-01
Mycobacterium lentiflavum, a slow-growing nontuberculous mycobacterium, is a rare cause of human disease. It has been isolated from environmental samples worldwide. To assess the clinical significance of M. lentiflavum isolates reported to the Queensland Tuberculosis Control Centre, Australia, during 2001–2008, we explored the genotypic similarity and geographic relationship between isolates from humans and potable water in the Brisbane metropolitan area. A total of 47 isolates from 36 patients were reported; 4 patients had clinically significant disease. M. lentiflavum was cultured from 13 of 206 drinking water sites. These sites overlapped geographically with home addresses of the patients who had clinically significant disease. Automated repetitive sequence–based PCR genotyping showed a dominant environmental clone closely related to clinical strains. This finding suggests potable water as a possible source of M. lentiflavum infection in humans. PMID:21392429
A total of 116 samples from numerous aquatic sources including water from faucets, showerheads, dental units, fire sprinklers, and surface waters were examined for the presence of Legionella by the EnviroAmp Legionella PCR kit, culture on BCYEx, or direct fluorescent antibody (DF...
Drinking water microbiological survey of the Northwestern State of Sinaloa, Mexico.
Chaidez, Cristobal; Soto, Marcela; Martinez, Celida; Keswick, Bruce
2008-03-01
A potable water survey, in two important municipalities of the state of Sinaloa, Mexico was conducted. Culiacan, capital city of Sinaloa and its neighboring municipality, Navolato were selected to enumerate Aeromonas hydrophila, Escherichia coli, fecal and total coliforms, Pseudomonas aeruginosa, and Heterotrophic plate count bacteria from 100 households' taps. Manganese; residual chlorine; pH; temperature and turbidity were also examined. Overall, Aeromonas hydrophila was not detected in any of the samples, 3% contained Escherichia coli, 28% had fecal and 46 total coliforms, P. aeruginosa was present in 15% of the samples. HPC bacteria were found in all of the samples but 43% had numbers greater than 500 CFU per ml. The average numbers obtained for the physico-chemical parameters were 0.15 mg/L; 0.32 mg/L; 6.5; 28.7 degrees C and 2.92 NTU for manganese, residual chlorine, pH, temperature and turbidity, respectively. The findings of the current study demonstrate that potable water from both municipalities can harbor substantial numbers of indicator and opportunistic pathogens suggesting that additional treatment in the household may be needed.
Feasibility of potable water generators to meet vessel numeric ballast water discharge limits.
Albert, Ryan J; Viveiros, Edward; Falatko, Debra S; Tamburri, Mario N
2017-07-15
Ballast water is taken on-board vessels into ballast water tanks to maintain vessel draft, buoyancy, and stability. Unmanaged ballast water contains aquatic organisms that, when transported and discharged to non-native waters, may establish as invasive species. Technologies capable of achieving regulatory limits designed to decrease the likelihood of invasion include onboard ballast water management systems. However, to date, the treatment development and manufacturing marketplace is limited to large vessels with substantial ballast requirements. For smaller vessels or vessels with reduced ballast requirements, we evaluated the feasibility of meeting the discharge limits by generating ballast water using onboard potable water generators. Case studies and parametric analyses demonstrated the architectural feasibility of installing potable water generators onboard actual vessels with minimal impacts for most vessel types evaluated. Furthermore, land-based testing of a potable water generator demonstrated capability to meet current numeric discharge limits for living organisms in all size classes. Published by Elsevier Ltd.
Kruse, Eva-Brigitta; Wehner, Arno; Wisplinghoff, Hilmar
2016-04-01
Worldwide, Legionella spp are a common cause of community-acquired pneumonia. Potable water systems are a main reservoir; however, exposure in the community is unknown. Water samples from 718 buildings in Germany were collected. Possible risk factors were prospectively recorded. All samples were tested for Legionella spp using cultural microbiologic methods. Samples were assigned to 1 of 5 levels of contamination. Statistical analysis was performed to determine the influence of risk factors for contamination and, in a subgroup of buildings, for unsuccessful thermal disinfection. In total, 4,482 water samples from 718 different water supply systems were analyzed. In 233 buildings (32.7%), Legionella spp were identified, 148 (63.5%) of which had a medium or higher level of contamination. The most common species was Legionella pneumophila (94%). Contamination was strongly associated with temperature in the circulation, but not with the size of the building, time of the year, or transport time to the laboratory. Thermal disinfection was successful in fewer than half of the buildings. There is relevant exposure to Legionella spp in the community. Water systems are not always up to current technical standards. Although microbiological risk assessment remains a challenge, there is a case for monitoring for Legionella spp outside of hospitals. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Health risk assessment of organic micropollutants in greywater for potable reuse.
Etchepare, Ramiro; van der Hoek, Jan Peter
2015-04-01
In light of the increasing interest in development of sustainable potable reuse systems, additional research is needed to elucidate the risks of producing drinking water from new raw water sources. This article investigates the presence and potential health risks of organic micropollutants in greywater, a potential new source for potable water production introduced in this work. An extensive literature survey reveals that almost 280 organic micropollutants have been detected in greywater. A three-tiered approach is applied for the preliminary health risk assessment of these chemicals. Benchmark values are derived from established drinking water standards for compounds grouped in Tier 1, from literature toxicological data for compounds in Tier 2, and from a Threshold of Toxicological Concern approach for compounds in Tier 3. A risk quotient is estimated by comparing the maximum concentration levels reported in greywater to the benchmark values. The results show that for the majority of compounds, risk quotient values were below 0.2, which suggests they would not pose appreciable concern to human health over a lifetime exposure to potable water. Fourteen compounds were identified with risk quotients above 0.2 which may warrant further investigation if greywater is used as a source for potable reuse. The present findings are helpful in prioritizing upcoming greywater quality monitoring and defining the goals of multiple barriers treatment in future water reclamation plants for potable water production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potable water bactericide agent development
NASA Technical Reports Server (NTRS)
Hurley, T. L.; Bambenek, R. A.
1972-01-01
The results are summarized of the work performed for the development and evaluation of a bactericide agent/system concept capable of being used in the space shuttle potable water system. The concept selected for evaluation doses fuel cell water with silver ions before the water is stored and used, by passing this water through columns packed with silver chloride and silver bromide particles, respectively. Four simulated space shuttle potable water system tests, each of seven days duration, were performed to demonstrate that this concept is capable of delivering sterile water even though 3 + or - 1 x 10 to the 9th power Type IIIa or Pseudomonas aeruginosa bacteria, two types which have been found in the Apollo potable water system, are purposely injected into the system each day. This result, coupled with the fact that silver ions do not have to be periodically added to the stored water, indicates that this concept is superior to the chlorine and iodine techniques used on Apollo.
Biological warfare agents as threats to potable water.
Burrows, W D; Renner, S E
1999-01-01
Nearly all known biological warfare agents are intended for aerosol application. Although less effective as potable water threats, many are potentially capable of inflicting heavy casualties when ingested. Significant loss of mission capability can be anticipated even when complete recovery is possible. Properly maintained field army water purification equipment can counter this threat, but personnel responsible for the operation and maintenance of the equipment may be most at risk of exposure. Municipal water treatment facilities would be measurably less effective. Some replicating (infectious) agents and a few biotoxins are inactivated by chlorine disinfection; for others chlorine is ineffective or of unknown efficacy. This report assesses the state of our knowledge of agents as potable water threats and contemplates the consequences of intentional or collateral contamination of potable water supplies by 18 replicating agents and 9 biotoxins known or likely to be weaponized or otherwise used as threats. PMID:10585901
Varden, Lara; Bou-Abdallah, Fadi
2017-01-01
Capillary zone electrophoresis (CZE) is a sensitive and rapid technique for determining traces of inorganic cations in water samples. CZE with indirect UV-diode array detection (CZE-DAD) was utilized to identify several inorganic cations in natural, potable, and wastewater samples. A pH 4.35 background electrolyte system was employed and consisted of 15 mM imidazole, 8 mM malonic acid, 2 mM 18-crown-6 ether as complexing agents, 10% v/v methanol as an organic modifier with indirect absorbance reference at 214 nm. The CZE method involved electromigration injection at 5 kV for 5 s, a separation voltage of 20 kV at 25°C, and a detection wavelength of 280 nm. Six main cations (ammonium NH4+, potassium K+, calcium Ca2+, sodium Na+, magnesium Mg2+, and lead Pb2+) were tested, and all but lead, were detected in the water samples at concentrations between 0.03 and 755 ppm with a detection limit ranging between 0.023 and 0.084 ppm. The successful evaluation of the proposed methodology allowed us to reliably detect and separate six metal ions in different water samples without any pretreatment. All water samples were collected from Northern New York towns and the Raquette River water system, the third longest river in New York State and the largest watershed of the central and western Adirondacks. PMID:29057144
Biosensor for detection of dissolved chromium in potable water: A review.
Biswas, Puja; Karn, Abhinav Kumar; Balasubramanian, P; Kale, Paresh G
2017-08-15
The unprecedented deterioration rate of the environmental quality due to rapid urbanization and industrialization causes a severe global health concern to both ecosystem and humanity. Heavy metals are ubiquitous in nature and being used extensively in industrial processes, the exposure to excessive levels could alter the biochemical cycles of living systems. Hence the environmental monitoring through rapid and specific detection of heavy metal contamination in potable water is of paramount importance. Various standard analytical techniques and sensors are used for the detection of heavy metals include spectroscopy and chromatographic methods along with electrochemical, optical waveguide and polymer based sensors. However, the mentioned techniques lack the point of care application as it demands huge capital cost as well as the attention of expert personnel for sample preparation and operation. Recent advancements in the synergetic interaction among biotechnology and microelectronics have advocated the biosensor technology for a wide array of applications due to its characteristic features of sensitivity and selectivity. This review paper has outlined the overview of chromium toxicity, conventional analytical techniques along with a particular emphasis on electrochemical based biosensors for chromium detection in potable water. This article emphasized porous silicon as a host material for enzyme immobilization and elaborated the working principle, mechanism, kinetics of an enzyme-based biosensor for chromium detection. The significant characteristics such as pore size, thickness, and porosity make the porous silicon suitable for enzyme entrapment. Further, several schemes on porous silicon-based immobilized enzyme biosensors for the detection of chromium in potable water are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Flight Testing of the Forward Osmosis Bag for Water Recovery on STS-135
NASA Technical Reports Server (NTRS)
Roberts, Michael S.; Soler, Monica; Mortenson, Todd; McCoy, LaShelle; Woodward, Spencer; Levine, Howard G.
2011-01-01
The Forward Osmosis Bag (FOB) is a personal water purification device for recovery of potable liquid from almost any non-potable water source. The FOB experiment was flown as a sortie mission on STS-135/ULF7 using flight-certified materials and a design based on the X-Pack(TradeMark) from Hydration Technology Innovations (Albany, OR). The primary objective was to validate the technology for use under microgravity conditions. The FOB utilizes a difference in solute concentration across a selectively permeable membrane to draw water molecules from the non-potable water while rejecting most chemical and all microbial contaminants contained within. Six FOB devices were tested on STS-135 for their ability to produce a potable liquid permeate from a feed solution containing 500 mL potassium chloride (15 g/L) amended with 0.1% methyl blue dye (w:v) tracer against an osmotic gradient created by addition of 60 mL of concentrate containing the osmolytes fructose and glucose, and 0.01% sodium fluorescein (w:v) tracer. Three FOB devices were physically mixed by hand for 2 minutes by a crewmember after loading to augment membrane wetting for comparison with three unmixed FOB devices. Hydraulic flux rate and rejection of salt and dye in microgravity were determined from a 60-mL sample collected by the crew on orbit after 6 hours. Post-flight analysis of samples collected on orbit demonstrated that the Forward Osmosis Bag achieved expected design specifications in microgravity. The hydraulic flux rate of water across the membrane was reduced approximately 50% in microgravity relative to ground controls that generated an average of 50 mL per hour using the same water and osmolyte solutions. The membrane rejected both potassium and chloride at >92% and methyl blue dye at >99.9%. Physical mixing of the FOB during water recovery did not have any significant effect on either flux rate or rejection of solutes from the water solution. The absence of buoyancy-driven convection in microgravity suggests that mass transport was dominated by diffusion, slowing the rate of permeate production across the membrane. It is possible that a predicted reduction in concentration polarization at the membrane surface that may have acted to increase the rate of permeate production in microgravity was negligible under the described test conditions.
Prototype solar heating and cooling systems, including potable hot water
NASA Technical Reports Server (NTRS)
Bloomquist, D.; Oonk, R. L.
1977-01-01
Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.
Onyango, Laura A.; Quinn, Chloe; Tng, Keng H.; Wood, James G.; Leslie, Greg
2015-01-01
Potable reuse is implemented in several countries around the world to augment strained water supplies. This article presents a public health perspective on potable reuse by comparing the critical infrastructure and institutional capacity characteristics of two well-established potable reuse schemes with conventional drinking water schemes in developed nations that have experienced waterborne outbreaks. Analysis of failure events in conventional water systems between 2003 and 2013 showed that despite advances in water treatment technologies, drinking water outbreaks caused by microbial contamination were still frequent in developed countries and can be attributed to failures in infrastructure or institutional practices. Numerous institutional failures linked to ineffective treatment protocols, poor operational practices, and negligence were detected. In contrast, potable reuse schemes that use multiple barriers, online instrumentation, and operational measures were found to address the events that have resulted in waterborne outbreaks in conventional systems in the past decade. Syndromic surveillance has emerged as a tool in outbreak detection and was useful in detecting some outbreaks; increases in emergency department visits and GP consultations being the most common data source, suggesting potential for an increasing role in public health surveillance of waterborne outbreaks. These results highlight desirable characteristics of potable reuse schemes from a public health perspective with potential for guiding policy on surveillance activities. PMID:27053920
Onyango, Laura A; Quinn, Chloe; Tng, Keng H; Wood, James G; Leslie, Greg
2015-01-01
Potable reuse is implemented in several countries around the world to augment strained water supplies. This article presents a public health perspective on potable reuse by comparing the critical infrastructure and institutional capacity characteristics of two well-established potable reuse schemes with conventional drinking water schemes in developed nations that have experienced waterborne outbreaks. Analysis of failure events in conventional water systems between 2003 and 2013 showed that despite advances in water treatment technologies, drinking water outbreaks caused by microbial contamination were still frequent in developed countries and can be attributed to failures in infrastructure or institutional practices. Numerous institutional failures linked to ineffective treatment protocols, poor operational practices, and negligence were detected. In contrast, potable reuse schemes that use multiple barriers, online instrumentation, and operational measures were found to address the events that have resulted in waterborne outbreaks in conventional systems in the past decade. Syndromic surveillance has emerged as a tool in outbreak detection and was useful in detecting some outbreaks; increases in emergency department visits and GP consultations being the most common data source, suggesting potential for an increasing role in public health surveillance of waterborne outbreaks. These results highlight desirable characteristics of potable reuse schemes from a public health perspective with potential for guiding policy on surveillance activities.
Water Supply and Treatment Equipment. Change Notice 1
2014-08-05
Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis
Kettlitz, Beate; Kemendi, Gabriella; Thorgrimsson, Nigel; Cattoor, Nele; Verzegnassi, Ludovica; Le Bail-Collet, Yves; Maphosa, Farai; Perrichet, Aurélie; Christall, Birgit; Stadler, Richard H
2016-06-01
Recently, reports have been published on the occurrence of chlorate mainly in fruits and vegetables. Chlorate is a by-product of chlorinating agents used to disinfect water, and can be expected to be found in varying concentrations in drinking water. Data on potable water taken at 39 sampling points across Europe showed chlorate to range from < 0.003 to 0.803 mg l(-1) with a mean of 0.145 mg l(-1). Chlorate, however, can also be used as a pesticide, but authorisation was withdrawn in the European Union (EU), resulting in a default maximum residue limit (MRL) for foods of 0.01 mg kg(-1). This default MRL has now led to significant problems in the EU, where routinely disinfected water, used in the preparation of food products such as vegetables or fruits, leaves chlorate residues in excess of the default MRL, and in strict legal terms renders the food unmarketable. Due to the paucity of data on the chlorate content of prepared foods in general, we collated chlorate data on more than 3400 samples of mainly prepared foods, including dairy products, meats, fruits, vegetables and different food ingredients/additives. In total, 50.5% of the food samples contained chlorate above 0.01 mg kg(-1), albeit not due to the use of chlorate as a pesticide but mainly due to the occurrence of chlorate as an unavoidable disinfectant by-product. A further entry point of chlorate into foods may be via additives/ingredients that may contain chlorate as a by-product of the manufacturing process (e.g. electrolysis). Of the positive samples in this study, 22.4% revealed chlorate above 0.1 mg kg(-1). In the absence of EU levels for chlorate in water, any future EU regulations must consider the already available WHO guideline value of 0.7 mg l(-1) in potable water, and the continued importance of the usage of oxyhalides for disinfection purposes.
This paper presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., locally-collected greywater, roof runoff, and stormwater). A probabilistic Quantitative Microbial Risk Assessment (QMRA) was use...
Mycobacterium avium complex--the role of potable water in disease transmission.
Whiley, H; Keegan, A; Giglio, S; Bentham, R
2012-08-01
Mycobacterium avium complex (MAC) is a group of opportunistic pathogens of major public health concern. It is responsible for a wide spectrum of disease dependent on subspecies, route of infection and patients pre-existing conditions. Presently, there is limited research on the incidence of MAC infection that considers both pulmonary and other clinical manifestations. MAC has been isolated from various terrestrial and aquatic environments including natural waters, engineered water systems and soils. Identifying the specific environmental sources responsible for human infection is essential in minimizing disease prevalence. This paper reviews current literature and case studies regarding the wide spectrum of disease caused by MAC and the role of potable water in disease transmission. Potable water was recognized as a putative pathway for MAC infection. Contaminated potable water sources associated with human infection included warm water distribution systems, showers, faucets, household drinking water, swimming pools and hot tub spas. MAC can maintain long-term contamination of potable water sources through its high resistance to disinfectants, association with biofilms and intracellular parasitism of free-living protozoa. Further research is required to investigate the efficiency of water treatment processes against MAC and into construction and maintenance of warm water distribution systems and the role they play in MAC proliferation. No claim to Australian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Ahlen, Catrine; Aas, Marianne; Krusnell, Jadwiga; Iversen, Ole-Jan
2016-01-01
Recurrent legionella outbreaks at one and the same location are common. We have identified a single Legionella pneumophila genotype associated with recurrent Legionella outbreaks over 6 years. Field emergency surveys following Legionella outbreaks were performed on a vessel in 2008, 2009 and 2013. Water samples from both the distribution and technical parts of the potable water system were analyzed with respect to L. pneumophila [Real-Time PCR, cultivation, serotyping and genotyping (PFGE)] and free-living amoebae, (FLA). Legionella pneumophila serogroup 1 was present in the ship's potable water system during every outbreak. Genotyping of the 2008 survey material showed two separate PFGE genotypes while those in 2009 and 2013 demonstrated the presence of only one of the two genotypes. FLA with intracellular L. pneumophila of the same genotype were also detected. Analyses of the freshwater system on a ship following three separate Legionella outbreaks, for L. pneumophila and FLAs, revealed a single L. pneumophila genotype and FLA (Hartmanella). It is reasonable to assume that the L. pneumophila genotype detected in the freshwater system was the causal agent in the outbreaks onboard. Persistence of an apparently low-pathogenic L. pneumophila genotype and FLA in a potable water system represent a potential risk for recurrent outbreaks.
21 CFR 1250.84 - Water in galleys and medical care spaces.
Code of Federal Regulations, 2014 CFR
2014-04-01
... care spaces. (a) Potable water, hot and cold, shall be available in the galley and pantry except that... least 170 °F before discharge from the heater. (c) Potable water, hot and cold, shall be available in...
Analysis and Operational Feasibility of Potable Water Production
2015-09-01
III. MODELING, SIMULATION, AND TEST RESULTS ANALYSIS ..............27 A. INTRODUCTION...Regions of Study ......................57 Table 10. Drinking Water Tests ...chemicals, and coliform bacteria. Testing of the condensed water is important to ensure potability, as common tests have been conducted to ensure
Majuru, Batsirai; Jagals, Paul; Hunter, Paul R
2012-10-01
Although a number of studies have reported on water supply improvements, few have simultaneously taken into account the reliability of the water services. The study aimed to assess whether upgrading water supply systems in small rural communities improved access, availability and potability of water by assessing the water services against selected benchmarks from the World Health Organisation and South African Department of Water Affairs, and to determine the impact of unreliability on the services. These benchmarks were applied in three rural communities in Limpopo, South Africa where rudimentary water supply services were being upgraded to basic services. Data were collected through structured interviews, observations and measurement, and multi-level linear regression models were used to assess the impact of water service upgrades on key outcome measures of distance to source, daily per capita water quantity and Escherichia coli count. When the basic system was operational, 72% of households met the minimum benchmarks for distance and water quantity, but only 8% met both enhanced benchmarks. During non-operational periods of the basic service, daily per capita water consumption decreased by 5.19l (p<0.001, 95% CI 4.06-6.31) and distances to water sources were 639 m further (p ≤ 0.001, 95% CI 560-718). Although both rudimentary and basic systems delivered water that met potability criteria at the sources, the quality of stored water sampled in the home was still unacceptable throughout the various service levels. These results show that basic water services can make substantial improvements to water access, availability, potability, but only if such services are reliable. Copyright © 2012 Elsevier B.V. All rights reserved.
Community-acquired Legionnaires' Disease in a Newly Constructed Apartment Building.
Ryu, Sukhyun; Yang, Kyungho; Chun, Byung Chul
2017-07-01
Legionnaires' disease (LD) is a severe type of pneumonia caused by inhalation of aerosols contaminated with Legionella . On September 22, 2016, a single case of LD was reported from a newly built apartment building in Gyeonggi province. This article describes an epidemiologic investigation of LD and identification of the possible source of infection. To identify the source of LD, we interviewed the patient's husband using a questionnaire based on the Legionella management guidelines from the Korea Centers for Disease Control and Prevention. Water samples from the site were collected and analyzed. An epidemiological investigation of the residents and visitors in the apartment building was conducted for 14 days before the index patient's symptoms first appeared to 14 days after the implementation of environmental control measures. Legionella pneumophila serogroup 1 was isolated from the heated-water samples from the patient's residence and the basement of the apartment complex. Thirty-two suspected cases were reported from the apartment building during the surveillance period, yet all were confirmed negative based on urinary antigen tests. The likely source of infection was the building's potable water, particularly heated water. Further study of effective monitoring systems in heated potable water should be considered.
Development of an automated potable water bactericide monitoring unit
NASA Technical Reports Server (NTRS)
Walsh, J. M.; Brawner, C. C.; Sauer, R. L.
1975-01-01
A monitor unit has been developed that permits the direct determination of the level of elemental iodine, used for microbiological control, in a spacecraft potable water supply system. Salient features of unit include low weight, volume and maintenance requirements, complete automatic operation, no inflight calibration, no expendables (except electrical current) and high accuracy and precision. This unit is capable of providing a signal to a controller that, in turn, automatically adjusts the addition rate of iodine to the potable water system so that a predetermined level of iodine can be maintained. In addition, the monitor provides a reading whereby the crewman can verify that the proper amount of iodine (within a range) is present in the water. A development history of the monitor is presented along with its design and theory of operation. Also presented are the results generated through testing of the unit in a simulated Shuttle potable water system.
Moore, Matthew R.; Pryor, Marsha; Fields, Barry; Lucas, Claressa; Phelan, Maureen; Besser, Richard E.
2006-01-01
Legionnaires' disease (LD) outbreaks are often traced to colonized potable water systems. We collected water samples from potable water systems of 96 buildings in Pinellas County, Florida, between January and April 2002, during a time when chlorine was the primary residual disinfectant, and from the same buildings between June and September 2002, immediately after monochloramine was introduced into the municipal water system. Samples were cultured for legionellae and amoebae using standard methods. We determined predictors of Legionella colonization of individual buildings and of individual sampling sites. During the chlorine phase, 19 (19.8%) buildings were colonized with legionellae in at least one sampling site. During the monochloramine phase, six (6.2%) buildings were colonized. In the chlorine phase, predictors of Legionella colonization included water source (source B compared to all others, adjusted odds ratio [aOR], 6.7; 95% confidence interval [CI], 2.0 to 23) and the presence of a system with continuously circulating hot water (aOR, 9.8; 95% CI, 1.9 to 51). In the monochloramine phase, there were no predictors of individual building colonization, although we observed a trend toward greater effectiveness of monochloramine in hotels and single-family homes than in county government buildings. The presence of amoebae predicted Legionella colonization at individual sampling sites in both phases (OR ranged from 15 to 46, depending on the phase and sampling site). The routine introduction of monochloramine into a municipal drinking water system appears to have reduced colonization by Legionella spp. in buildings served by the system. Monochloramine may hold promise as community-wide intervention for the prevention of LD. PMID:16391067
Navoni, Julio A; De Pietri, Diana; Garcia, Susana; Villaamil Lepori, Edda C
2012-01-01
To analyze the concentration of arsenic in water collected in localities of the province of Buenos Aires, Argentina, and the epidemiological relationship of that concentration to factors of susceptibility and associated pathologies. In 152 samples from 52 localities of Buenos Aires from 2003-2008, the concentration of arsenic was quantified through the generation of hydride spectrophotometry of atomic absorption. A composite index of health (CIH) was constructed using the content of arsenic and the percentages of households with unmet basic needs and dwellings without access to the potable water. Through the CIH, risk areas associated with mortality from malignant neoplasms related to arsenic were defined. Concentrations of arsenic spanned a broad range from 0.3 to 187 mg/L, with a median of 40 mg/L. Of the samples, 82% presented levels of arsenic higher than the acceptable limit of 10 mg/L, and more than half of those came from households with potable water connections. In the departments studied, the average mortality (deaths/100 000 inhabitants) from tumors was greater in men than in women: respiratory tract (310 versus 76), urinary tract (44 versus 11), and skin (21 versus 11), respectively. The regions with greater concentrations of arsenic and of poverty, together with the lack of potable water connections, had a two-to-four times greater risk. The findings from the composite index of health summarized the health risk from exposure to arsenic for lower socioeconomic levels of the population for a broad area of the province of Buenos Aires.
NASA Technical Reports Server (NTRS)
Adam, Niklas M.
2009-01-01
The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.
COMPUTING SI AND CCPP USING SPREADSHEET PROGRAMS
Lotus 1-2-3 worksheets for calculating the calcite saturation index (SI) and calcium carbonate precipitation potential of a water sample are described. A simplified worksheet illustrates the principles of the method, and a more complex worksheet suitable for modeling most potabl...
Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Henderson, Alden K; Reissman, Dori B
2004-08-15
In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation's source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments.
Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B.
2004-01-01
In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation's source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments. ?? 2004 Elsevier B.V. All rights reserved.
Potable and monitoring wells located in close proximity to a large groundwater recharge project which utilizes a blend of surface water and reclaimed wastewater for recharge were tested for coliphage over a period of 6 months to assess the potential for virus migration. During th...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Primates 2 Animal Health and Husbandry Standards § 3.83 Watering. Potable water must be provided in sufficient quantity to every nonhuman primate housed at the facility. If potable water is not continually available to the nonhuman primates, it must be offered to them as often as necessary to ensure their health...
RARE OCCURRENCE OF HETEROTROPHIC BACTERIA WITH PATHOGENIC POTENTIAL IN POTABLE WATER
Since the discovery of Legionella pneumophila, an opportunistic pathogen that is indigenous to water, microbiologists have speculated that there may be other opportunistic pathogens among the numerous heterotrophic bacteria found in potable water. The USEPA developed a series of...
Baseline models of trace elements in major aquifers of the United States
Lee, L.; Helsel, D.
2005-01-01
Trace-element concentrations in baseline samples from a survey of aquifers used as potable-water supplies in the United States are summarized using methods appropriate for data with multiple detection limits. The resulting statistical distribution models are used to develop summary statistics and estimate probabilities of exceeding water-quality standards. The models are based on data from the major aquifer studies of the USGS National Water Quality Assessment (NAWQA) Program. These data were produced with a nationally-consistent sampling and analytical framework specifically designed to determine the quality of the most important potable groundwater resources during the years 1991-2001. The analytical data for all elements surveyed contain values that were below several detection limits. Such datasets are referred to as multiply-censored data. To address this issue, a robust semi-parametric statistical method called regression on order statistics (ROS) is employed. Utilizing the 90th-95th percentile as an arbitrary range for the upper limits of expected baseline concentrations, the models show that baseline concentrations of dissolved Ba and Zn are below 500 ??g/L. For the same percentile range, dissolved As, Cu and Mo concentrations are below 10 ??g/L, and dissolved Ag, Be, Cd, Co, Cr, Ni, Pb, Sb and Se are below 1-5 ??g/L. These models are also used to determine the probabilities that potable ground waters exceed drinking water standards. For dissolved Ba, Cr, Cu, Pb, Ni, Mo and Se, the likelihood of exceeding the US Environmental Protection Agency standards at the well-head is less than 1-1.5%. A notable exception is As, which has approximately a 7% chance of exceeding the maximum contaminant level (10 ??g/L) at the well head.
Barton, G.J.; Burruss, R.C.; Ryder, R.T.
1998-01-01
Environmental samples collected in the Mosquito Creek Lake area were used to characterize water quality in relation to the chemistry of locally occurring oil, natural gas, and brine and to establish baseline water quality. Mosquito Creek Lake (a manmade reservoir) and the shallow bedrock aquifers near the lake are major sources of potable water in central Trumbull County. The city of Warren relies on the lake as a sole source of potable water. Some of the lake bottom may be in direct hydraulic connection with the underlying aquifers. The city of Cortland, along the southeastern shore of the lake, relies on the Cussewago Sandstone aquifer as a sole source of potable water. This aquifer subcrops beneath the glacio-fluvial sediments that underlie the lake. Nearly all residential homes around the lake, with the exception of homes in the city of Cortland, rely on domestic supply wells as a source of potable water.Oil and natural gas exploration and production have been ongoing in the Mosquito Creek Lakearea since the discovery of the historic Mecca Oil Pool in the Mississippian Berea and Cussewago Sandstones in 1860. Since the late 1970' s, the major drilling objective and zone of production is the Lower Silurian Clinton sandstone. The oil and natural gas resources of the Mosquito Creek Lake area, including reservoir pressure, production history, and engineering and abandonment practices are described in this report.The chemical and isotopic characteristics of the historic Mecca oil and natural gas are very different than those of the Clinton sandstone oil and natural gas. Gas chromatograms show that Mecca oil samples are extensively altered by biodegradation, whereas Clinton sandstone oils are not. Extensive alteration of Mecca oil is consistent with their occurrence at very shallow depths (less than 100 ft below land surface) where microbial activity can affect their composition. Also, the carbon-isotope composition of dissolved methane gas from Berea and Cussewago Sandstone water samples indicates that the gas is microbially generated, whereas the Clinton sandstone gases are thermogenically generated.Methane gas, in addition to crude oil, occurs naturally in the shallow Berea and Cussewago Sandstone aquifers in the Mosquito Creek Lake area and concentrations of dissolved methane are significant in the city of Cortland public-supply wells and in the domestic-supply wells near the southern shore of the lake. Water associated with oil and gas in the Clinton sandstone is a brine with high concentrations of chloride. Water from the Berea and Cussewago Sandstones, however, is fresh and potable. The contrasting geochemical characteristics are important for addressing water-quality issues that relate to oil and natural gas development in the Mosquito Creek area.A reexamination of the geologic framework and results of a subsurface-gas survey show that crude oil in the historic Mecca Oil Pool probably does not seep into Mosquito Creek Lake. Environmental samples show no evidence of any measurable release of oil, gas, or brine from the deeper Clinton sandstone oil and gas wells to the shallow aquifers, the lake, or lake tributaries. Brine is not associated with the hydrocarbons in the shallow Berea-Cussewago aquifer system and therefore cannot be a source of brine contamination. A mixing diagram constructed for dissolved bromide and chloride in surface water and water-supply wells shows no demonstrable mixing of these water resources with brine from the Clinton sandstone. There is some notable salinity in surface waters; however, the water is bromide poor, and a mixing diagram indicates that some local ground waters are influenced by halite solutions, presumably derived from leaching of road salt or from septic effluent.
75 FR 30844 - General Mills, Inc.; Withdrawal of Food Additive Petition
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
... for the reduction of pathogens and other microorganisms in aqueous sugar solutions and potable water... reduction of pathogens and other microorganisms in aqueous sugar solutions and potable water intended for...
Chemical Characterization and Identification of Organosilicon Contaminants in ISS Potable Water
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Gazda, Daniel B.
2016-01-01
2015 marked the 15th anniversary of continuous human presence on board the International Space Station. During the past year crew members from Expeditions 42-46, including two participating in a one-year mission, continued to rely on reclaimed water as their primary source of potable water. This paper presents and discusses results from chemical analyses performed on ISS water samples returned in 2015. Since the U.S. water processor assembly (WPA) became operational in 2008, there have been 5 instances of organic contaminants breaking through the treatment process. On each occasion, the breakthrough was signaled by an increase in the total organic carbon (TOC) concentration in the product water measured by the onboard TOC analyzer (TOCA). Although the most recent TOC rise in 2015 was not unexpected, it was the first time where dimethylsilanediol (DMSD) was not the primary compound responsible for the increase. Results from ground analysis of a product water sample collected in June of 2015 and returned on Soyuz 41 showed that DMSD only accounted for 10% of the measured TOC. After considerable laboratory investigation, the compound responsible for the majority of the TOC was identified as monomethysilanetriol (MMST). MMST is a low-toxicity compound that is structurally similar to DMSD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axness, Carl L.; Ferrando, Ana
2010-08-01
Our family of three lives comfortably off-grid without a well in an arid region ({approx}9 in/yr, average). This year we expect to achieve water sustainability with harvested or grey water supporting all of our needs (including a garden and trees), except drinking water (about 7 gallons/week). We discuss our implementation and the implication that for an investment of a few thousand dollars, many single family homes could supply a large portion of their own water needs, significantly reducing municipal water demand. Generally, harvested water is very low in minerals and pollutants, but may need treatment for microbes in order tomore » be potable. This may be addressed via filters, UV light irradiation or through chemical treatment (bleach). Looking further into the possibility of commercial water harvesting from malls, big box stores and factories, we ask whether water harvesting could supply a significant portion of potable water by looking at two cities with water supply problems. We look at the implications of separate municipal water lines for potable and clean non-potable uses. Implications on changes to future building codes are explored.« less
TECHNIQUES AND METHODS FOR THE DETERMINATION OF HALOACETIC ACIDS IN POTABLE WATER
Haloethanoic (haloacetic) acids (HAAs) are formed as disinfection byproducts (DBPs) during the chlorination of natural water to make it fit for consumption. Sundry analytical techniques have been applied in order to determine the concentrations of the HAAs in potable water suppli...
Potable water taste enhancement
NASA Technical Reports Server (NTRS)
1974-01-01
An analysis was conducted to determine the causes of and remedies for the unpalatability of potable water in manned spacecraft. Criteria and specifications for palatable water were established and a quantitative laboratory analysis technique was developed for determinig the amounts of volatile organics in good tasting water. Prototype spacecraft water reclamation systems are evaluated in terms of the essential palatability factors.
Potable Water Treatment Facility General Permit (PWTF GP) for Massachusetts & New Hampshire
Documents, links & contacts for the Notice of Availability of the draft NPDES General Permit for Discharges from Potable Water Treatment Facilities in Massachusetts (MAG640000) and New Hampshire (NHG640000).
Surface, Water and Air Biocharacterization (SWAB)
2009-08-18
ISS020-E-031558 (18 Aug. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.
Bailey, Emily S; Casanova, Lisa M; Simmons, Otto D; Sobsey, Mark D
2018-07-15
Treated wastewater is increasingly of interest for either nonpotable purposes, such as agriculture and industrial use, or as source water for drinking water supplies; however, this type of advanced treatment for water supply is not always possible for many low resource settings. As an alternative, multiple barriers of physical, chemical and biological treatment with lower cost and simpler operation and maintenance have been proposed as more globally applicable. One such water reclamation system for both non-potable and potable reuse, is that approved by the State of North Carolina "for Type 2" reclaimed water (NCT2RW). NC Type 2 potable reuse systems consist of a sequence of tertiary treatment to produce well oxidized reclaimed water that is then then further treated by two steps of disinfection, typically UV radiation and chlorination. In this case study, the log10 microbial reduction performance of NCT2RW producing water reclamation facilities is evaluated. Based on the results presented here, NCT2RW consistently achieved high (6 for bacteria, 4 for virus and 4 for protozoan parasite surrogates) log10 reductions using the NC proposed treatment methods. Additionally, lower but significant log10 reduction performance was also documented for protozoan parasites and human enteric viruses. Copyright © 2018 Elsevier B.V. All rights reserved.
Shower Water Reuse System-Expanded Operations to Laundry Water
2014-09-01
19 10 Point of Contact ...come into contact with fecal material) allows for more efficient use of non-potable water in bases or encampments and reduces the need for potable...Research Council’s (NRC) Drinking Water and Health (NRC 1980), were also consulted. Commercial suppliers are sometimes contacted for results of in
40 CFR 35.918-1 - Additional limitations on awards for individual systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...
40 CFR 35.918-1 - Additional limitations on awards for individual systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...
40 CFR 35.918-1 - Additional limitations on awards for individual systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...
40 CFR 35.918-1 - Additional limitations on awards for individual systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...
2015-12-01
groundwater), infrastructure/utilities (i.e., sanitary sewer, potable water, solid waste management, drainage, transportation systems, electricity and...on water resources (i.e., surface water and groundwater), infrastructure/utilities (i.e., sanitary sewer, potable water, solid waste management...3-8 3.3.6.4 Sanitary Sewer
Ultraviolet-Absorption Spectroscopic Biofilm Monitor
NASA Technical Reports Server (NTRS)
Micheels, Ronald H.
2004-01-01
An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.
Pathogen Treatment Guidance and Monitoring Approaches fro On-Site Non-Potable Water Reuse
On-site non-potable water reuse is increasingly used to augment water supplies, but traditional fecal indicator approaches for defining and monitoring exposure risks are limited when applied to these decentralized options. This session emphasizes risk-based modeling to define pat...
Development of a method for the determination of iodine in spacecraft potable water
NASA Technical Reports Server (NTRS)
Whittle, G. P.
1972-01-01
A one-reagent indicator solution has been prepared for the analysis of iodine concentrations in the range of 0.5 to 12 mg/1 of I2 for use on the potable water proposed for the Skylab project. The indicator solution was formulated to contain the minimum concentrations of reagents for optimum analytical performance. Performance tests indicated that the reagent is stable for at least six months and is reliable for the determination of I2 under a variety of conditions of I(-) concentrations and sample temperatures. Visual estimations as low as 0.5 mg/1 were obtained without difficulty and the stability of the developed color allows visual determinations from 0.5 to 12 mg/1 of I2 with a relatively small error.
Dietary intake of 210Po and 210Pb in the environment of Goa of south-west Coast of India.
Avadhani, D N; Mahesh, H M; Karunakara, N; Narayana, Y; Somashekarappa, H M; Siddappa, K
2001-10-01
This paper deals with the distribution and activity intake of 210Po and 210Pb in food, diet, and potable water samples of the Goa region and the estimated committed effective dose due to ingestion of these radionuclides. The activity concentrations of 210Po and 210Pb were determined in about 30 food and diet samples from different places of Goa in order to know the distribution and intake of these radionuclides. The activity concentration of 210Po in fish and prawn samples were significantly higher than concentrations found in vegetable and rice samples. Higher concentrations of 210Po and 210Pb were observed in leafy vegetables than in non-leafy vegetables. Among the diet samples the activity concentrations of 210Po and 210Pb in non-vegetarian meal samples were relatively higher than in vegetarian meal and breakfast samples. The committed effective dose due to annual intake of 210Po was found to be 94.6 microSv, 49.1 microSv, 10.5 microSv, and 2.2 microSv and that of 210Pb found to be 81.6 microSv, 59.9 microSv, 14.6 microSv, and 2.0 microSv for the ingestion of non-vegetarian meal, vegetarian meal, breakfast, and potable water, respectively.
PILOT STUDY OF FLUORIDE AND ARSENIC REMOVAL FROM POTABLE WATER
Pilot plant studies were conducted on the removal of fluoride and arsenic from potable water using activated alumina as the adsorbent. The tests were run using water from the community of Why, Arizona, that contained 3 mg/L fluoride and 0.15 mg/L arsenic. The experimental data sh...
International Space Station USOS Potable Water Dispenser On-Orbit Functionality Versus Design
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lovell, Randal W.
2010-01-01
The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmember food and drinking packages. There is one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. Shuttle mission STS-126 delivered the USOS Potable Water Dispenser (PWD) to ISS on ULF2; subsequent activation occurred on November 2008. The PWD is capable of supporting an ISS crew of six, but nominally supplies only half this crew size. The PWD design provides incremental quantities of hot and ambient temperature potable water to US food and beverage packages. PWD receives iodinated water from the US Water Recovery System (WRS) Fuel Cell Water Bus, which feeds from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 L of hot water (65 to 93 ?C) every 30 min. During a single meal, this quantity of water supports three to four crewmembers? food rehydration and beverages. The unit design has a functional life expectancy of 10 years, with replacement of limited life items, such as filters. To date, the PWD on-orbit performance is acceptable. Since activation of the PWD, there were several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is discussed for the following key areas: 1) microbial contamination, 2) no-dispense and water leakage scenarios, and 3) under-dispense scenarios.
Assessing the Impact of Chlorinated-Solvent Sites on Metropolitan Groundwater Resources
Brusseau, Mark L.; Narter, Matthew
2014-01-01
Chlorinated-solvent compounds are among the most common groundwater contaminants in the U.S.A. The majority of the many sites contaminated by chlorinated-solvent compounds are located in metropolitan areas, and most such areas have one or more chlorinated-solvent contaminated sites. Thus, contamination of groundwater by chlorinated-solvent compounds may pose a potential risk to the sustainability of potable water supplies for many metropolitan areas. The impact of chlorinated-solvent sites on metropolitan water resources was assessed for Tucson, AZ, by comparing the aggregate volume of extracted groundwater for all pump-and-treat systems associated with contaminated sites in the region to the total regional groundwater withdrawal. The analysis revealed that the aggregate volume of groundwater withdrawn for the pump-and-treat systems operating in Tucson, all of which are located at chlorinated-solvent contaminated sites, was 20% of the total groundwater withdrawal in the city for the study period. The treated groundwater was used primarily for direct delivery to local water supply systems or for reinjection as part of the pump-and-treat system. The volume of the treated groundwater used for potable water represented approximately 13% of the total potable water supply sourced from groundwater, and approximately 6% of the total potable water supply. This case study illustrates the significant impact chlorinated-solvent contaminated sites can have on groundwater resources and regional potable-water supplies. PMID:24116872
Water and Life in the International Year of Chemistry
ERIC Educational Resources Information Center
Bernal, Pedro J.
2011-01-01
This commentary talks about the worldwide health impact of lack of access to potable water. Household water treatment and storage (HWTS) is described as one approach to improving potable water accessibility in which students and educators can make a contribution to alleviate the problem of lack of access. The author suggests that, as chemists,…
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Anderson, Molly; Adams, Niklas; Vega, Leticia; Botkin, Douglas
2013-01-01
Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle Program, there is a need to develop redundant biocide systems that do not require regular up-mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that a wide variability exists with regards to efficacy in both concentration and exposure time of these disinfectants; therefore, baseline efficacy values were established. This paper describes a series of tests performed to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on the ISS.
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Anderson, Molly; Anderson, Molly; Adam, Niklas; Vega, Leticia; Modica, Catherine; Bodkin, Douglas
2012-01-01
Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.
Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H
2014-01-01
This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.
Review of water disinfection techniques
NASA Technical Reports Server (NTRS)
Colombo, Gerald V.; Sauer, Richard L.
1987-01-01
Throughout the history of manned space flight the supply of potable water to the astronauts has presented unique problems. Of particular concern has been the microbiological quality of the potable water. This has required the development of both preflight water system servicing procedures to disinfect the systems and inflight disinfectant addition and monitoring devices to ensure continuing microbiological control. The disinfectants successfully used to date have been aqueous chlorine or iodine. Because of special system limitations the use of iodine has been the most successful for inflight use and promises to be the agent most likely to be used in the future. Future spacecraft potable, hygiene, and experiment water systems will utilize recycled water. This will present special problems for water quality control. NASA is currently conducting research and development to solve these problems.
Molecular method for detection of total coliforms in drinking water samples.
Maheux, Andrée F; Boudreau, Dominique K; Bisson, Marc-Antoine; Dion-Dupont, Vanessa; Bouchard, Sébastien; Nkuranga, Martine; Bergeron, Michel G; Rodriguez, Manuel J
2014-07-01
This work demonstrates the ability of a bacterial concentration and recovery procedure combined with three different PCR assays targeting the lacZ, wecG, and 16S rRNA genes, respectively, to detect the presence of total coliforms in 100-ml samples of potable water (presence/absence test). PCR assays were first compared to the culture-based Colilert and MI agar methods to determine their ability to detect 147 coliform strains representing 76 species of Enterobacteriaceae encountered in fecal and environmental settings. Results showed that 86 (58.5%) and 109 (74.1%) strains yielded a positive signal with Colilert and MI agar methods, respectively, whereas the lacZ, wecG, and 16S rRNA PCR assays detected 133 (90.5%), 111 (75.5%), and 146 (99.3%) of the 147 total coliform strains tested. These assays were then assessed by testing 122 well water samples collected in the Québec City region of Canada. Results showed that 97 (79.5%) of the samples tested by culture-based methods and 95 (77.9%), 82 (67.2%), and 98 (80.3%) of samples tested using PCR-based methods contained total coliforms, respectively. Consequently, despite the high genetic variability of the total coliform group, this study demonstrated that it is possible to use molecular assays to detect total coliforms in potable water: the 16S rRNA molecular assay was shown to be as efficient as recommended culture-based methods. This assay might be used in combination with an Escherichia coli molecular assay to assess drinking water quality. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Molecular Method for Detection of Total Coliforms in Drinking Water Samples
Boudreau, Dominique K.; Bisson, Marc-Antoine; Dion-Dupont, Vanessa; Bouchard, Sébastien; Nkuranga, Martine; Bergeron, Michel G.; Rodriguez, Manuel J.
2014-01-01
This work demonstrates the ability of a bacterial concentration and recovery procedure combined with three different PCR assays targeting the lacZ, wecG, and 16S rRNA genes, respectively, to detect the presence of total coliforms in 100-ml samples of potable water (presence/absence test). PCR assays were first compared to the culture-based Colilert and MI agar methods to determine their ability to detect 147 coliform strains representing 76 species of Enterobacteriaceae encountered in fecal and environmental settings. Results showed that 86 (58.5%) and 109 (74.1%) strains yielded a positive signal with Colilert and MI agar methods, respectively, whereas the lacZ, wecG, and 16S rRNA PCR assays detected 133 (90.5%), 111 (75.5%), and 146 (99.3%) of the 147 total coliform strains tested. These assays were then assessed by testing 122 well water samples collected in the Québec City region of Canada. Results showed that 97 (79.5%) of the samples tested by culture-based methods and 95 (77.9%), 82 (67.2%), and 98 (80.3%) of samples tested using PCR-based methods contained total coliforms, respectively. Consequently, despite the high genetic variability of the total coliform group, this study demonstrated that it is possible to use molecular assays to detect total coliforms in potable water: the 16S rRNA molecular assay was shown to be as efficient as recommended culture-based methods. This assay might be used in combination with an Escherichia coli molecular assay to assess drinking water quality. PMID:24771030
Code of Federal Regulations, 2012 CFR
2012-04-01
... CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.48 Plumbing. (a) Potable water shall be supplied under continuous positive pressure in a plumbing system free of defects that could contribute contamination to any drug product. Potable water shall meet the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.48 Plumbing. (a) Potable water shall be supplied under continuous positive pressure in a plumbing system free of defects that could contribute contamination to any drug product. Potable water shall meet the...
Code of Federal Regulations, 2013 CFR
2013-04-01
... CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.48 Plumbing. (a) Potable water shall be supplied under continuous positive pressure in a plumbing system free of defects that could contribute contamination to any drug product. Potable water shall meet the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.48 Plumbing. (a) Potable water shall be supplied under continuous positive pressure in a plumbing system free of defects that could contribute contamination to any drug product. Potable water shall meet the...
Jones, Steven M; Chowdhury, Zaid K; Watts, Michael J
2017-03-01
As reuse of municipal water resource recovery facility (WRRF) effluent becomes vital to augment diminishing fresh drinking water resources, concern exists that conventional barriers may prove deficient, and the upcycling of chemicals of emerging concern (CECs) could prove harmful to human health and aquatic species if more effective and robust treatment barriers are not in place. A multiple month survey, of both primary and secondary effluents, from three (3) WRRFs, for 95 CECs was conducted in 2014 to classify CECs by their persistence through conventional water reclamation processes. By sampling the participating WRRF process trains at their peak performance (as determined by measured bulk organics and particulates removal), a short-list of recalcitrant CECs that warrant monitoring to assess treatment performance at advanced water reclamation and production facilities. The list of identified CECs for potable water reclamation (indirect or direct potable reuse) include a herbicide and its degradants, prescription pharmaceuticals and antibiotics, a female hormone, an artificial sweetener, and chlorinated flame retardants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Silk, Benjamin J; Foltz, Jennifer L; Ngamsnga, Kompan; Brown, Ellen; Muñoz, Mary Grace; Hampton, Lee M; Jacobs-Slifka, Kara; Kozak, Natalia A; Underwood, J Michael; Krick, John; Travis, Tatiana; Farrow, Olivia; Fields, Barry S; Blythe, David; Hicks, Lauri A
2013-06-27
During a Legionnaires' disease (LD) outbreak, combined epidemiological and environmental investigations were conducted to identify prevention recommendations for facilities where elderly residents live independently but have an increased risk of legionellosis. Survey responses (n = 143) were used to calculate attack rates and describe transmission routes by estimating relative risk (RR) and 95% confidence intervals (95% CI). Potable water collected from five apartments of LD patients and three randomly-selected apartments of residents without LD (n = 103 samples) was cultured for Legionella. Eight confirmed LD cases occurred among 171 residents (attack rate = 4.7%); two visitors also developed LD. One case was fatal. The average age of patients was 70 years (range: 62-77). LD risk was lower among residents who reported tub bathing instead of showering (RR = 0.13, 95% CI: 0.02-1.09, P = 0.03). Two respiratory cultures were characterized as L. pneumophila serogroup 1, monoclonal antibody type Knoxville (1,2,3), sequence type 222. An indistinguishable strain was detected in 31 (74%) of 42 potable water samples. Managers of elderly-housing facilities and local public health officials should consider developing a Legionella prevention plan. When Legionella colonization of potable water is detected in these facilities, remediation is indicated to protect residents at higher risk. If LD occurs among residents, exposure reduction, heightened awareness, and clinical surveillance activities should be coordinated among stakeholders. For prompt diagnosis and effective treatment, clinicians should recognize the increased risk and atypical presentation of LD in older adults.
Chate, R A C
2006-11-11
To improve the quality of water emanating from dental unit waterlines (DUWLs). A prospective clinical audit. Three geographically separate district dental facilities of a United Kingdom NHS Trust, involving two community clinics and one hospital orthodontic department, which were evaluated between 2002 and 2004. Samples of water discharged from the DUWLs were collected prior to the start and midway through a morning session. These were tested microbiologically at a United Kingdom Accreditation Service testing laboratory within six hours of sampling. One of the clinics followed the contemporaneous BDA advice of flushing water through its DUWLs while the other two clinics used separate intermittent disinfection purging regimes instead. One of them used a two stage protocol of Ethylene Diamine Tetra-Acetic acid followed by hydrogen peroxide, while the other used Bio 2000 as a single agent, which was subsequently superseded by the continuous use of super-oxidised water (Sterilox). To assess whether the samples either met the American Dental Association's guideline on the quality of DUWL water, or the more stringent European Union standards for potable (drinking) water. The two units which used a disinfection regime both complied with the ADA guideline and the EU potable water standard. However, the unit which only flushed through its DUWLs without using a disinfectant failed to comply with either of them. After all three dental facilities subsequently standardised their DUWL disinfection regimes by using Bio 2000, the colony counts from all of the water samples thereafter remained well below the EU recommended level. The unit which progressed to using Sterilox as a continuous disinfectant achieved and maintained zero readings from its water samples. Clinical audit can result in the improvement of the quality of water that is discharged through DUWLs, thereby minimising both the risk of cross infection to vulnerable patients, as well as to dental staff chronically exposed to contaminated aerosols.
OCCURRENCE OF HETEROTROPHIC BACTERIA WITH VIRULENCE CHARACTERISTICS IN POTABLE WATER
Treated potable water contains a variety of heterotrophic bacteria that survive current treatment processes. There is evidence that these bacteria are not hazardous to the healthy population, however, the possibility exists that some of them may be opportunistic pathogens capabl...
Metering gun for dispensing precisely measured charges of fluid
NASA Technical Reports Server (NTRS)
Cook, T. A.; Scheibe, H. (Inventor)
1974-01-01
A cyclically operable fluid dispenser for use in dispensing precisely measured charges of potable water aboard spacecraft is described. The dispenser is characterized by (1) a sealed housing adapted to be held within a crewman's palm and coupled with a pressurized source of potable water; (2) a dispensing jet projected from the housing and configured to be received within a crewman's lips; (3) an expansible measuring chamber for measuring charges of drinking water received from the source; (4) and a dispenser actuator including a lever extended from the housing to be digitated for initiating operational cycles, whereby precisely measured charges of potable water selectively are delivered for drinking purposes in a weightless environment.
NASA Technical Reports Server (NTRS)
Holder, Donald W., Jr.; Bagdigian, Robert M.
1992-01-01
A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a Space Station Freedom (SSF) pre-development water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated for a total of 35 days, including 23 days in closed-loop mode with man-in-the-loop. Although several significant subsystem physical anomalies were encountered, reclaimed potable and hygiene water routinely met current SSF water quality specifications. This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.
Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun
2014-04-01
Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.
Water Reuse and Wastewater Recycling at U.S. Army Installations: Policy Implications
2011-06-01
Definition Blackwater Water captured from toilets and urinals along with kitchen waste. Direct potable reuse The introduction of highly treated reclaimed...reused. It does not include water from kitchen sinks or dishwashers. Indirect potable reuse The planned incorporation of reclaimed water into a raw...industrial cooling. * Some organizations do accept a definition of “graywater” that does include kitchen and dishwasher waste- water along with wastewater
Water security-National and global issues
Tindall, James A.; Campbell, Andrew A.
2010-01-01
Potable or clean freshwater availability is crucial to life and economic, environmental, and social systems. The amount of freshwater is finite and makes up approximately 2.5 percent of all water on the Earth. Freshwater supplies are small and randomly distributed, so water resources can become points of conflict. Freshwater availability depends upon precipitation patterns, changing climate, and whether the source of consumed water comes directly from desalination, precipitation, or surface and (or) groundwater. At local to national levels, difficulties in securing potable water sources increase with growing populations and economies. Available water improves living standards and drives urbanization, which increases average water consumption per capita. Commonly, disruptions in sustainable supplies and distribution of potable water and conflicts over water resources become major security issues for Government officials. Disruptions are often influenced by land use, human population, use patterns, technological advances, environmental impacts, management processes and decisions, transnational boundaries, and so forth.
Co-occurrence profiles of trace elements in potable water systems: a case study.
Andra, Syam S; Makris, Konstantinos C; Charisiadis, Pantelis; Costa, Costas N
2014-11-01
Potable water samples (N = 74) from 19 zip code locations in a region of Greece were profiled for 13 trace elements composition using inductively coupled plasma mass spectrometry. The primary objective was to monitor the drinking water quality, while the primary focus was to find novel associations in trace elements occurrence that may further shed light on common links in their occurrence and fate in the pipe scales and corrosion products observed in urban drinking water distribution systems. Except for arsenic at two locations and in six samples, rest of the analyzed elements was below maximum contaminant levels, for which regulatory values are available. Further, we attempted to hierarchically cluster trace elements based on their covariances resulting in two groups; one with arsenic, antimony, zinc, cadmium, and copper and the second with the rest of the elements. The grouping trends were partially explained by elements' similar chemical activities in water, underscoring their potential for co-accumulation and co-mobilization phenomena from pipe scales into finished water. Profiling patterns of trace elements in finished water could be indicative of their load on pipe scales and corrosion products, with a corresponding risk of episodic contaminant release. Speculation was made on the role of disinfectants and disinfection byproducts in mobilizing chemically similar trace elements of human health interest from pipe scales to tap water. It is warranted that further studies may eventually prove useful to water regulators from incorporating the acquired knowledge in the drinking water safety plans.
Detection of Cyanotoxins During Potable Water Treatment
USDA-ARS?s Scientific Manuscript database
In 2007, the U.S. EPA listed three cyanobacterial toxins on the CCL3 containment priority list for potable drinking waters. This paper describes all methodologies used for detection of these toxins, and assesses each on a cost/benefit basis. Methodologies for microcystin, cylindrospermopsin, and a...
2013-12-01
Safe Drinking Water Act28 and the Clean Water Act.29 • Potable water : According to Waterworks officials, Guam’s potable water system currently is in...noncompliance with the Safe Drinking Water Act. The unreliable drinking water distribution system has historically resulted in bacterial...Protection Consolidated Grants program, provided Guam with almost $6.8 million in fiscal year 2012 to fund drinking water and wastewater system
CARCINOGENIC EFFECTS IN A/J MICE OF PARTICULATE OF A COAL TAR PAINT USED IN POTABLE WATER SYSTEMS
Coal tar paints are among the products used as inside coatings for water pipes and storage tanks to retard corrosion in potable water supply systems. Four different formulations of these paints were tested in earlier work by this laboratory in the Ames mutagenesis and the mouse s...
NASA Technical Reports Server (NTRS)
Vega, Leticia; Aber, Gregory; Adam, Niklas; Clements, Anna; Modica, Catherine; Younker, Diane
2011-01-01
Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems which are less dependent on hardware that would need to be launched on a regular basis. Three systems for electrochemical production of potable water disinfectants are being assessed for use on the International Space Station (ISS). Since there is a wide variability in the literature with regards to efficacy in both concentration and exposure time of these disinfectants, there is a need to establish baseline efficacy values. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria and to determine whether these electrochemical disinfection devices are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.
NASA Astrophysics Data System (ADS)
Sahoo, S.; Kaur, A.; Litoria, P.; Pateriya, B.
2014-11-01
Over period of time, the water usage and management is under stress for various reasons including pollution in both surface and subsurface. The groundwater quality decreases due to the solid waste from urban and industrial nodes, rapid use of insecticides and pesticides in agricultural practices. In this study, ground water quality maps for Rupnagar district of Punjab has been prepared using geospatial interpolation technique through Inverse Distance Weighted (IDW) approach. IDW technique has been used for major ground water quality parameters observed from the field samples like Arsenic, Hardness, pH, Iron, Fluoride, TDS, and Sulphate. To assess the ground water quality of the Rupnagar district, total 280 numbers of samples from various sources of tubewells for both pre and post monsoon have collected. Out of which, 80 to 113 samples found Iron with non potable limits ranging 0.3-1.1mg/l and 0.3-1.02mg/l according to BIS standard for both the seasons respectively. Chamkaur Sahib, Rupnagar, Morinda blocks have been found non potable limit of iron in both pre & post-monsoon. 11 to 52 samples in this region have sulphate with permissible limits in both the season ranging 200-400mg/l and 201-400mg/l. But arsenic had acceptable limit in both the season. Various parameters-wise ground water quality map is generated using the range values of drinking water quality to know the distribution of different parameters and diversification in the concentration of different elements. These maps are very much needful for human being to expand awareness among the people to maintain the Cleanness of water at their highest quality and purity levels to achieve a healthy life.
Indirect Potable Reuse: A Sustainable Water Supply Alternative
Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip
2009-01-01
The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440
Environmental benefit analysis of strategies for potable water savings in residential buildings.
Marinoski, Ana Kelly; Rupp, Ricardo Forgiarini; Ghisi, Enedir
2018-01-15
The objective of this study is to assess the environmental benefit of using rainwater, greywater, water-efficient appliances and their combinations in low-income houses. The study was conducted surveying twenty households located in southern Brazil, which resulted in water end-uses estimation. Then, embodied energy, potential for potable water savings and sewage reduction when using the different strategies were estimated. The environmental benefit analysis of these strategies was performed using an indicator that includes embodied energy, potable water savings, reduction of sewage and energy consumption in the water utility, and sewage production during the life cycle of the system. The results indicated that the strategy with the greatest environmental benefit is the use of water-efficient appliances, which resulted in substantial water savings and reduction of sewage, causing low environmental impact due to lower embodied energy over the life cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.
Indirect potable reuse: a sustainable water supply alternative.
Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip
2009-03-01
The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.
46 CFR 176.645 - AHE Procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...
46 CFR 176.645 - AHE Procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...
46 CFR 176.645 - AHE Procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...
46 CFR 176.645 - AHE Procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...
46 CFR 176.645 - AHE Procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...
International Space Station USOS Potable Water Dispenser On-Orbit Functionality vs Design
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lovell, Randal W.
2009-01-01
The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmembers food and drinking packages with one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. The USOS Potable Water Dispenser (PWD) was delivered to ISS on ULF2, Shuttle Mission STS-126, and was subsequently activated in November 2008. The PWD activation on ISS is capable of supporting an ISS crew of six but nominally supplies only half the crew. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to US style food packages. PWD receives iodinated water from the US Laboratory Fuel Cell Water Bus, which is fed from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity supports three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. To date, the PWD on-orbit performance has been acceptable. Since activation of the PWD, there have been several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is outlined for the following key areas: microbiology, PWD to food package water leakage, no-dispense scenarios, under-dispense scenarios, and crewmember feedback on actual on-orbit use.
Arvanitoyannis, Ioannis S; Hadjichristodoulou, Christos; Tserkezou, Persefoni; Mouchtouri, Varvara; Kremastinou, Jenny; Nichols, Gordon
2010-06-01
The high number of people moving around by ferries and cruise ships in conjunction with great amounts of food and potable water transported (occasionally overloaded) and consumed by passengers constitute a possible risk for communicable diseases. Another issue of equally great importance is the food handlers who come from diverse origin and have a different mentality, habits, and background. In this paper an attempt is made to present comparatively EU and US legislation that could be potentially applicable to passenger ships food premises and potable water supplies. Moreover, food and water related hazards, not currently covered by EU legislation, were assessed together with US legislation and other guidelines for cruise ships.
Recent reports have attempted to show that fluoridating potable water is linked to increased levels of lead(II) in the blood. We examine these claims in light of the established science and critically evaluate their significance. The completeness of hexafluorosilicate hydrolysi...
McArthur hydrates a juice drink using the potable water heater on Expedition 12
2006-03-21
ISS012-E-22572 (21 March 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, adds potable water to a soft beverage container at the galley in Zvezda Service Module of the International Space Station.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vessels are prohibited from transiting the safety zone with any non-potable water on board if they intend to release that water in any form within, or on the other side of the safety zone. Non-potable water includes but is not limited to any water taken on board to control or maintain trim, draft, stability or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... safety zone with any non-potable water on board if they intend to release that water in any form within, or on the other side of the safety zone. Non-potable water includes but is not limited to any water taken on board to control or maintain trim, draft, stability or stresses of the vessel, or taken on...
Nechwatal, R; Ehret, W; Klatte, O J; Zeissler, H J; Prull, A; Lutz, H
1993-01-01
Ten patients from a rehabilitation center were admitted to hospital with serious respiratory infections within ten weeks. An outbreak of Legionnaire's disease was suspected based on the epidemic and atypical manifestation of pneumonia and could be proven microbiologically. Pulmonary and extrapulmonary complications included respiratory failure, lung abscess, transitory renal impairment in five patients and acute renal failure requiring dialysis in one, tetraparesis caused by peripheral neuropathy and acute psychosis. Three patients died despite immediate institution of therapy with erythromycin. Legionella pneumophila serogroup 1 subtype Pontiac was isolated from a bronchial lavage sample of one patient and from the water supply of the rehabilitation center. Monoclonal antibody subtyping and restriction endonuclease analysis were performed on both environmental and patient isolates. Potable water was identified as the source of the outbreak based on identical patterns on restriction endonuclease analysis. Despite thermic and chemical disinfection with chlorination (up to 15 ppm) in the rehabilitation clinic, an eleventh case of Legionnaire's disease was detected 11 months later.
2013-01-01
Background During a Legionnaires’ disease (LD) outbreak, combined epidemiological and environmental investigations were conducted to identify prevention recommendations for facilities where elderly residents live independently but have an increased risk of legionellosis. Methods Survey responses (n = 143) were used to calculate attack rates and describe transmission routes by estimating relative risk (RR) and 95% confidence intervals (95% CI). Potable water collected from five apartments of LD patients and three randomly-selected apartments of residents without LD (n = 103 samples) was cultured for Legionella. Results Eight confirmed LD cases occurred among 171 residents (attack rate = 4.7%); two visitors also developed LD. One case was fatal. The average age of patients was 70 years (range: 62–77). LD risk was lower among residents who reported tub bathing instead of showering (RR = 0.13, 95% CI: 0.02–1.09, P = 0.03). Two respiratory cultures were characterized as L. pneumophila serogroup 1, monoclonal antibody type Knoxville (1,2,3), sequence type 222. An indistinguishable strain was detected in 31 (74%) of 42 potable water samples. Conclusions Managers of elderly-housing facilities and local public health officials should consider developing a Legionella prevention plan. When Legionella colonization of potable water is detected in these facilities, remediation is indicated to protect residents at higher risk. If LD occurs among residents, exposure reduction, heightened awareness, and clinical surveillance activities should be coordinated among stakeholders. For prompt diagnosis and effective treatment, clinicians should recognize the increased risk and atypical presentation of LD in older adults. PMID:23806063
2015-04-22
ISS043E128431 (04/22/2015) --- The International Space Station employs one of the most complex water recycling systems ever designed, reclaiming waste water from astronauts and the environment and turning it into potable water. NASA astronaut Scott Kelly tweeted out this image of part of the innovative device with this remark: " Recycle Good to the last drop! Making pee potable and turning it into coffee on @space station. #NoPlaceLikeHome"
Potable groundwater quality in some villages of Haryana, India: focus on fluoride.
Bishnoi, Mukul; Arora, Shalu
2007-04-01
The fluoride concentration in ground water was determined in ten villages of Rohtak district of Haryana state (India). The fluoride concentration in the underground water of these villages varied from 0.034-2.09 mg/l. Various other water quality parameters, viz., pH, electrical conductivity, total dissolved salts, total hardness, total alkalinity sodium, potassium, calcium, magnesium, carbonate, bicarbonate, chloride and sulfate were also measured. A systematic calculation of correlation coefficients among different physicochemical parameters indicated considerable variations among the analyzed samples with respect to their chemical composition. Majority of the samples do not comply with Indian as well as WHO standards for most of the water quality parameters measured. Overall water quality was found unsatisfactory for drinking purposes. Fluoride content was higher than permissible limit in 50% samples.
Assessment of groundwater quality in a typical rural settlement in southwest Nigeria.
Adekunle, I M; Adetunji, M T; Gbadebo, A M; Banjoko, O P
2007-12-01
In most rural settlements in Nigeria, access to clean and potable water is a great challenge, resulting in water borne diseases. The aim of this study was to assess the levels of some physical, chemical, biochemical and microbial water quality parameters in twelve hand - dug wells in a typical rural area (Igbora) of southwest region of the country. Seasonal variations and proximity to pollution sources (municipal waste dumps and defecation sites) were also examined. Parameters were determined using standard procedures. All parameters were detected up to 200 m from pollution source and most of them increased in concentration during the rainy season over the dry periods, pointing to infiltrations from storm water. Coliform population, Pb, NO3- and Cd in most cases, exceeded the World Health Organization recommended thresholds for potable water. Effect of distance from pollution sources was more pronounced on fecal and total coliform counts, which decreased with increasing distance from waste dumps. The qualities of the well water samples were therefore not suitable for human consumption without adequate treatment. Regular monitoring of groundwater quality, abolishment of unhealthy waste disposal practices and introduction of modern techniques are recommended.
46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...
46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...
46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...
46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...
21 CFR 1250.82 - Potable water systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Potable water systems. 1250.82 Section 1250.82 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE SANITATION Sanitation Facilities and Conditions...
NASA Technical Reports Server (NTRS)
Bagdigian, R. M.; Traweek, M. S.; Griffith, G. K.; Griffin, M. R.
1991-01-01
A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a predevelopment water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated in open and partially closed-loop modes, with man-in-the-loop, for a total of 28 days. Several significant subsystem physical anomalies were encountered during testing. Reclaimed potable and hygiene water generally met the current Space Station Freedom (SSF) water quality specifications for inorganic and microbiological constituents, but exceeded the maximum allowable concentrations for Total Organic Carbon (TOC). This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.
Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart
2013-09-17
In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.
Water recovery and solid waste processing for aerospace and domestic applications
NASA Technical Reports Server (NTRS)
Murawczyk, C.
1973-01-01
The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.
Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection.
Cooper, I R; Hanlon, G W
2010-02-01
The presence of Legionella spp. in potable water systems is a major concern to municipal water providers and consumers alike. Despite the inclusion of chlorine in potable supplies and frequent chlorination cycles, the bacterium is a recalcitrant human pathogen capable of causing incidents of Legionnaires' disease, Pontiac fever and community-acquired pneumonia in humans. Using two materials routinely employed for the delivery of potable water as a substratum, copper and stainless steel, the development of Legionella pneumophila biofilms and their response to chlorination was monitored over a three-day and a three-month period, respectively. Preliminary in vitro studies using broth and sterile tap water as culture media indicated that the bacterium was capable of surviving in low numbers for 28 days in the presence of chlorine. Subsequently, biofilms were grown for three days, one month and two months, respectively, on stainless steel and copper sections, which are widely used for the conveyance of potable water. Immediately after exposure to 50mg/L chlorine for 1h, the biofilms yielded no recoverable colonies, but colonies did reappear in low numbers over the following days. Despite chlorination at 50mg/L for 1h, both one- and two-month-old L. pneumophila biofilms were able to survive this treatment and to continue to grow, ultimately exceeding 1x10(6)cfu per disc. This research provides an insight into the resistance afforded to L. pneumophila against high levels of chlorine by the formation of biofilms and has implications for the delivery of potable water.
Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin
2010-01-01
In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the presence of high levels of iodine in water can cause taste and odor issues that result in decreased water consumption by the crew. There are also concerns about potential impacts on thyroid function following exposure to high levels of iodine. With silver, there is a risk of developing argyria, an irreversible blue-gray discoloration of the skin, associated with long term consumption of water containing high concentrations of silver. The need to ensure that safe, effective levels of biocide are maintained in the potable water systems on the ISS provides a perfect platform for evaluating the suitability of CSPE technology for in-flight water quality monitoring. This paper provides an overview of CSPE technology and details on the silver and iodine methods used in the CWQMK. It also reports results obtained during in-flight analyses performed with the CWQMK and briefly discusses other potential applications for CSPE technology in both the spacecraft and terrestrial environments.
Marrie, T. J.; Haldane, D.; MacDonald, S.; Clarke, K.; Fanning, C.; Le Fort-Jost, S.; Bezanson, G.; Joly, J.
1991-01-01
In a setting where potable water is contaminated with Legionella pneumophila serogroup 1, we performed two case control studies. The first case control study consisted of 17 cases of nosocomial Legionnaires' disease (LD) and 33 control (the patients who were admitted to the ward where the case was admitted immediately before and after the case) subjects. Cases had a higher mortality rate 65% vs 12% (P less than 0.004); were more likely to have received assisted ventilation (P less than 0.00001); to have nasogastric tubes (P less than 0.0004) and to be receiving corticosteroids or other immunosuppressive therapy (P less than 0.0001). Based on the results of this study, sterile water was used to flush nasogastric tubes and to dilute nasogastric feeds. Only 3 cases of nosocomial LD occurred during the next year compared with 12 the previous year (P less than 0.0001). Nine cases subsequently occurred and formed the basis for the second case-control study. Eighteen control subjects were those patients admitted to the same unit where the case developed LD, immediately before and after the case. The mortality rate for the cases was 89% vs 6% for controls (P less than 0.00003). The only other significant difference was that cases were more likely to be receiving corticosteroids or other immunosuppressive therapy 89% vs 39% (less than 0.01). We hypothesized that microaspiration of contaminated potable water by immunocompromised patients was a risk factor for nosocomial Legionnaires' disease. From 17 March 1989 onwards such patients were given only sterile potable water. Only two cases of nosocomial LD occurred from June 1989 to September 1990 and both occurred on units where the sterile water policy was not in effect. We conclude that aspiration of contaminated potable water is a possible route for acquisition of nosocomial LD in our hospital and that provision of sterile potable water to high risk patients (those who are receiving corticosteroids or other immunosuppressive drugs; organ transplant recipients or hospitalized in an intensive care unit) should be mandatory. PMID:1752308
Quality requirements for reclaimed/recycled water
NASA Technical Reports Server (NTRS)
Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.
1987-01-01
Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.
Zebra Mussel Chemical Control Guide, Version 2.0
2015-07-01
delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection. Since this invasive organism’s...delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection (Mackie and Claudi 2010). Zebra mussels...generators, pipes, valves, sensing equipment (level, flow, and pressure) and fire protection (Mackie and Claudi 2010; Prescott et al. 2014). Other USACE
Drinking water and rural schools in the Western Amazon: an environmental intervention study
Ribeiro, Maura Regina; de Abreu, Luiz Carlos
2018-01-01
Background Although water and sanitation are considered human rights, worldwide approximately three of 10 people (2.1 billion) do not have access to safe drinking water. In 2016, 5.6 million students were enrolled in the 34% of Brazilian schools located in rural areas, but only 72% had a public water supply network. The objective was to evaluate effectiveness of environmental intervention for water treatment in rural schools of the Western Amazonia, and determine the efficacy of water treatment using a simplified chlorinator on potability standards for turbidity, fecal coliforms and Escherichia coli. Methods A simplified chlorinator was installed for treatment of potable water in 20 public schools in the rural area of Rio Branco municipality, Acre state, Brazil. Results Before the intervention, 20% (n = 4), 100% (n = 20) and 70% (n = 14) of schools had water that failed to meet potability standards for turbidity, fecal coliforms and E. coli, respectively. However, after intervention, 70% (p = 0.68), 75% (p < 0.001) and 100% (p < 0.001) of schools complied with potability standards. Discussion This intervention considerably improved schools’ water quality, thus decreasing children’s health vulnerability due to inadequate water. Ancillary activities including training, educational lectures, installation of equipment, supply of materials and supplies (65% calcium hypochlorite and reagents) were considered fundamental to achieving success full outcomes. Installation of a simplified chlorinator in rural schools of the Western Amazon is therefore proposed as a social technology aiming at social inclusion, as well as economic and environmental sustainability. PMID:29922512
Drinking water and rural schools in the Western Amazon: an environmental intervention study.
Ribeiro, Maura Regina; de Abreu, Luiz Carlos; Laporta, Gabriel Zorello
2018-01-01
Although water and sanitation are considered human rights, worldwide approximately three of 10 people (2.1 billion) do not have access to safe drinking water. In 2016, 5.6 million students were enrolled in the 34% of Brazilian schools located in rural areas, but only 72% had a public water supply network. The objective was to evaluate effectiveness of environmental intervention for water treatment in rural schools of the Western Amazonia, and determine the efficacy of water treatment using a simplified chlorinator on potability standards for turbidity, fecal coliforms and Escherichia coli . A simplified chlorinator was installed for treatment of potable water in 20 public schools in the rural area of Rio Branco municipality, Acre state, Brazil. Before the intervention, 20% ( n = 4), 100% ( n = 20) and 70% ( n = 14) of schools had water that failed to meet potability standards for turbidity, fecal coliforms and E. coli , respectively. However, after intervention, 70% ( p = 0.68), 75% ( p < 0.001) and 100% ( p < 0.001) of schools complied with potability standards. This intervention considerably improved schools' water quality, thus decreasing children's health vulnerability due to inadequate water. Ancillary activities including training, educational lectures, installation of equipment, supply of materials and supplies (65% calcium hypochlorite and reagents) were considered fundamental to achieving success full outcomes. Installation of a simplified chlorinator in rural schools of the Western Amazon is therefore proposed as a social technology aiming at social inclusion, as well as economic and environmental sustainability.
Bissonnette, Luc; Maheux, Andrée F; Bergeron, Michel G
2017-01-01
The microbial assessment of potable/drinking water is done to ensure that the resource is free of fecal contamination indicators or waterborne pathogens. Culture-based methods for verifying the microbial safety are limited in the sense that a standard volume of water is generally tested for only one indicator (family) or pathogen.In this work, we describe a membrane filtration-based molecular microbiology method, CRENAME (Concentration Recovery Extraction of Nucleic Acids and Molecular Enrichment), exploiting molecular enrichment by whole genome amplification (WGA) to yield, in less than 4 h, a nucleic acid preparation which can be repetitively tested by real-time PCR for example, to provide multiparametric presence/absence tests (1 colony forming unit or microbial particle per standard volume of 100-1000 mL) for bacterial or protozoan parasite cells or particles susceptible to contaminate potable/drinking water.
Legionnaires' Disease Outbreak at a Resort in Cozumel, Mexico
Hampton, Lee M.; Garrison, Laurel; Kattan, Jessica; Brown, Ellen; Kozak-Muiznieks, Natalia A.; Lucas, Claressa; Fields, Barry; Fitzpatrick, Nicole; Sapian, Luis; Martin-Escobar, Teresa; Waterman, Stephen; Hicks, Lauri A.; Alpuche-Aranda, Celia; Lopez-Gatell, Hugo
2016-01-01
Background. A Legionnaires' disease (LD) outbreak at a resort on Cozumel Island in Mexico was investigated by a joint Mexico-United States team in 2010. This is the first reported LD outbreak in Mexico, where LD is not a reportable disease. Methods. Reports of LD among travelers were solicited from US health departments and the European Working Group for Legionella Infections. Records from the resort and Cozumel Island health facilities were searched for possible LD cases. In April 2010, the resort was searched for possible Legionella exposure sources. The temperature and total chlorine of the water at 38 sites in the resort were measured, and samples from those sites were tested for Legionella. Results. Nine travelers became ill with laboratory-confirmed LD within 2 weeks of staying at the resort between May 2008 and April 2010. The resort and its potable water system were the only common exposures. No possible LD cases were identified among resort workers. Legionellae were found to have extensively colonized the resort's potable water system. Legionellae matching a case isolate were found in the resort's potable water system. Conclusions. Medical providers should test for LD when treating community-acquired pneumonia that is severe or affecting patients who traveled in the 2 weeks before the onset of symptoms. When an LD outbreak is detected, the source should be identified and then aggressively remediated. Because LD can occur in tropical and temperate areas, all countries should consider making LD a reportable disease if they have not already done so. PMID:27704023
Legionnaires' Disease Outbreak at a Resort in Cozumel, Mexico.
Hampton, Lee M; Garrison, Laurel; Kattan, Jessica; Brown, Ellen; Kozak-Muiznieks, Natalia A; Lucas, Claressa; Fields, Barry; Fitzpatrick, Nicole; Sapian, Luis; Martin-Escobar, Teresa; Waterman, Stephen; Hicks, Lauri A; Alpuche-Aranda, Celia; Lopez-Gatell, Hugo
2016-09-01
Background. A Legionnaires' disease (LD) outbreak at a resort on Cozumel Island in Mexico was investigated by a joint Mexico-United States team in 2010. This is the first reported LD outbreak in Mexico, where LD is not a reportable disease. Methods. Reports of LD among travelers were solicited from US health departments and the European Working Group for Legionella Infections. Records from the resort and Cozumel Island health facilities were searched for possible LD cases. In April 2010, the resort was searched for possible Legionella exposure sources. The temperature and total chlorine of the water at 38 sites in the resort were measured, and samples from those sites were tested for Legionella . Results. Nine travelers became ill with laboratory-confirmed LD within 2 weeks of staying at the resort between May 2008 and April 2010. The resort and its potable water system were the only common exposures. No possible LD cases were identified among resort workers. Legionellae were found to have extensively colonized the resort's potable water system. Legionellae matching a case isolate were found in the resort's potable water system. Conclusions. Medical providers should test for LD when treating community-acquired pneumonia that is severe or affecting patients who traveled in the 2 weeks before the onset of symptoms. When an LD outbreak is detected, the source should be identified and then aggressively remediated. Because LD can occur in tropical and temperate areas, all countries should consider making LD a reportable disease if they have not already done so.
Varden, Lara; Smith, Britannia; Bou-Abdallah, Fadi
2017-01-01
Capillary zone electrophoresis (CZE) is a sensitive and rapid technique used for determining traces of inorganic and organic anions in potable, natural, and wastewaters. Here, CZE with indirect UV-diode array detection (CZE-DAD) was employed with a background electrolyte system comprising of an Agilent Technologies proprietary basic anion buffer at pH 12.0 and a forensic anion detection method. The limits of detection (LOD) for this method ranged between 3 and 5 ppm and involved hydrodynamic injection of 50 mbar for 6 s with a negative polarity separation voltage of −30 kV at 30°C, a detection wavelength of 350 nm and indirect reference of 275 nm. Fourteen different anions were checked for in the water samples that were examined and included bromide, chloride, thiosulfate, nitrate, nitrite, sulfate, azide, carbonate, fluoride, arsenate, phosphate, acetate, lactate, and silicate. The water samples were collected from Northern New York towns and the Raquette River water system, the third longest river in New York State and the largest watershed of the central and western Adirondacks. The concentrations detected for these anions ranged from <5.0 ppm to 260 ppm. PMID:29057145
Wautersia: The Contingency Water Container Bacterial Contamination Investigation
NASA Technical Reports Server (NTRS)
Shkedi, Brienne; Labuda, Laura; Bruce, Rebekah
2009-01-01
The Orbiter delivers water to the International Space Station (ISS) in Contingency Water Containers (CWCs) on each flight to the ISS. These CWCs are routinely sampled during each mission to verify the quality of the delivered water. Of the 5 samples returned on STS118/ 13A.1 in August 2007, two exhibited microbial growth exceeding potable water acceptability limits and historical data by orders of magnitude . The microbe was identified as Wautersia species and an investigation was launched to find the source of the contamination. Since then, samples collected on subsequent flights indicated additional CWCs had the same bacteria, as well as several on-orbit systems. An investigation was launched to try to find and address the source of the bacterial contamination. This paper will discuss how Wautersia was found, what Wautersia is, the investigation, and resolution.
ATP monitoring technology for microbial growth control in potable water systems
NASA Astrophysics Data System (ADS)
Whalen, Patrick A.; Whalen, Philip J.; Cairns, James E.
2006-05-01
ATP (Adenosine Triphosphate) is the primary energy transfer molecule present in all living biological cells on Earth. ATP cannot be produced or maintained by anything but a living organism, and as such, its measurement is a direct indication of biological activity. The main advantage of ATP as a biological indicator is the speed of the analysis - from collecting the sample to obtaining the result, only minutes are required. The technology to measure ATP is already widely utilized to verify disinfection efficacy in the food industry and is also commonly applied in industrial water processes such as cooling water systems to monitor microbial growth and biocide applications. Research has indicated that ATP measurement technology can also play a key role in such important industries as potable water distribution and biological wastewater treatment. As will be detailed in this paper, LuminUltra Technologies has developed and applied ATP measurement technologies designed for any water type, and as such can provide a method to rapidly and accurately determine the level of biological activity in drinking water supplies. Because of its speed and specificity to biological activity, ATP measurement can play a key role in defending against failing drinking water quality, including those encountered during routine operation and also bioterrorism.
Source And Sink Of Iodine For Drinking Water
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Flanagan, David T.; Gibbons, Randall E.
1991-01-01
Proposed system for controlling concentration of iodine in potable water exploits temperature dependence of equilibrium partition of iodine between solution in water and residence in ion-exchange resin. Used to maintain concentration of iodine sufficient to kill harmful microbes, but not so great to make water unpalatable. Requires little attention, yet controls concentration of iodine more precisely than iodination and deiodination by manual techniques. Conceived for use aboard spacecraft, system has terrestrial applications in regions where water must be kept potable, resupply difficult, and system must operate largely unattended.
Evaluation of minerals content of drinking water in Malaysia.
Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal
2012-01-01
The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.
Evaluation of Minerals Content of Drinking Water in Malaysia
Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal
2012-01-01
The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292
Foale performs potable water analysis OPS in the SM during Expedition 8
2003-11-07
ISS008-E-05553 (7 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, floats in front of the galley in the Zvezda Service Module on the International Space Station (ISS) as he fills a Crew Healthcare System (CheCSS) Water Microbiology (WMK) in-flight analysis bag from the potable warter dispenser.
We examined potable water in Los Angeles, California, as a possible source of infection in AIDS and non-AIDS patients. Nontuberculous mycobacteria were recovered from 12 (92%) of 13 reservoirs, 45 (82%) of 55 homes, 31 (100%) of 31 commercial buildings, and 15 (100%) of 15 hospit...
We examined potable water in Los Angeles, California, as a possible source of infection in AIDS and non-AIDS patients. Nontuberculous mycobacteria were recovered from 12 (92%) of 13 reservoirs, 45 (82%) of 55 homes, 31 (100%) of 31 commercial buildings, and 15 (100%) of 15 hospi...
NASA Astrophysics Data System (ADS)
Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit
2018-03-01
New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.
Review of pathogen treatment reductions for onsite non ...
Communities face a challenge when implementing onsite reuse of collected waters for non-potable purposes given the lack of national microbial standards. Quantitative Microbial Risk Assessment (QMRA) can be used to predict the pathogen risks associated with the non-potable reuse of onsite-collected waters; the present work reviewed the relevant QMRA literature to prioritize knowledge gaps and identify health-protective pathogen treatment reduction targets. The review indicated that ingestion of untreated, onsite-collected graywater, rainwater, seepage water and stormwater from a variety of exposure routes resulted in gastrointestinal infection risks greater than the traditional acceptable level of risk. We found no QMRAs that estimated the pathogen risks associated with onsite, non-potable reuse of blackwater. Pathogen treatment reduction targets for non-potable, onsite reuse that included a suite of reference pathogens (i.e., including relevant bacterial, protozoan, and viral hazards) were limited to graywater (for a limited set of domestic uses) and stormwater (for domestic and municipal uses). These treatment reductions corresponded with the health benchmark of a probability of infection or illness of 10−3 per person per year or less. The pathogen treatment reduction targets varied depending on the target health benchmark, reference pathogen, source water, and water reuse application. Overall, there remains a need for pathogen reduction targets that are heal
Rai, BB; Pal, Ranabir; Kar, Sumit; Tsering, Dechen C
2010-01-01
Background: Solar radiations improve the microbiological quality of water and offer a method for disinfection of drinking water that requires few resources and no expertise and may reduce the prevalence of diarrhea among under-five children. Aims and Objectives: To find out the reduction in the prevalence of diarrhea in the under-five children after consumption of potable water treated with solar disinfection method. Materials and Methods: This was a population-based interventional prospective study in the urban slum area of Mazegoan, Jorethang, south Sikkim, during the period 1st May 2007 to 30th November 2007 on 136 children in the under-five age group in 102 households selected by random sampling. Main outcome measure was the assessment of the reduction of the prevalence of diarrhea among under-five children after consumption of potable water treated with solar disinfection method practiced by the caregivers in the intervention group keeping water in polyethylene terephthalate (PET) bottles as directed by the investigators. The data were collected by the interview method using a pre-tested questionnaire prepared on the basis of socio-demographics and prevalence of diarrhea. The data were subjected to percentages and chi-square tests, which were used to find the significance. Results: After four weeks of intervention among the study group, the diarrhea prevalence was 7.69% among solar disinfection (SODIS) users, while 31.82% prevalence was observed among non-users in that period; the reduction in prevalence of diarrhea was 75.83%. After eight weeks of intervention, the prevalence of diarrhea was 7.58% among SODIS users and 31.43% among non-users; the reduction in diarrhea was 75.88% in the study group. The findings were found to be statistically significant. Conclusions: In our study, we observed that the prevalence of diarrhea decreased significantly after solar disinfection of water was practiced by the caregivers keeping potable water in PET bottles in the intervention group. PMID:20927281
Operation REDWING Commander Task Group 7.3, Operation Plan Number 1-56.
1956-01-24
lagoon water samples, when and as directed." "(32) Provide water spray equipment aboard all ships likely to be in the fallout area." 2 I 7 I FF3/7.3/30... coconuts , other fruits, etc.) may contain radiation materials in amounts which could be harmful for human consumption, the eating of any native food...1-8 17... 1 Delete entire paragraph and sutstitute the following: "e. In potable water , a continuous level of 5 x lO-3uc/cc (calculated to H plus
NASA Astrophysics Data System (ADS)
Price, J.; Fielding, K. S.; Gardner, J.; Leviston, Z.; Green, M.
2015-04-01
Community opposition is a barrier to potable recycled water schemes. Effective communication strategies about such schemes are needed. Drawing on social psychological literature, two experimental studies are presented, which explore messages that improve public perceptions of potable recycled water. The Elaboration-Likelihood Model of information processing and attitude change is tested and supported. Study 1 (N = 415) premeasured support for recycled water, and trust in government information at Time 1. Messages varied in complexity and sidedness were presented at Time 2 (3 weeks later), and support and trust were remeasured. Support increased after receiving information, provided that participants received complex rather than simple information. Trust in government was also higher after receiving information. There was tentative evidence of this in response to two-sided messages rather than one-sided messages. Initial attitudes to recycled water moderated responses to information. Those initially neutral or ambivalent responded differently to simple and one-sided messages, compared to participants with positive or negative attitudes. Study 2 (N = 957) tested the effectiveness of information about the low relative risks, and/or benefits of potable recycled water, compared to control groups. Messages about the low risks resulted in higher support when the issue of recycled water was relevant. Messages about benefits resulted in higher perceived issue relevance, but did not translate into greater support. The results highlight the importance of understanding people's motivation to process information, and need to tailor communication to match attitudes and stage of recycled water schemes' development.
NASA Astrophysics Data System (ADS)
Wessley, G. Jims John
2017-10-01
The propagation of shock waves through any media results in an instantaneous increase in pressure and temperature behind the shockwave. The scope of utilizing this sudden rise in pressure and temperature in new industrial, biological and commercial areas has been explored and the opportunities are tremendous. This paper presents the design and testing of a portable semi-automatic shock tube on water samples mixed with salt. The preliminary analysis shows encouraging results as the salinity of water samples were reduced up to 5% when bombarded with 250 shocks generated using a pressure ratio of 2. 5. Paper used for normal printing is used as the diaphragm to generate the shocks. The impact of shocks of much higher intensity obtained using different diaphragms will lead to more reduction in the salinity of the sea water, thus leading to production of potable water from saline water, which is the need of the hour.
Jombo, G T A; Egah, D Z; Akosu, J T
2007-03-01
To assess the level of parasite burden in a village community and the predisposing factors. Two hundred subjects each were recruited from three communities- Tyogbenda, Jato-Aka and Adikpo during an episode of free medical outreach. A simple random sampling method was adopted and a questionnaire was interviewer administered on relevant aspects of basic hygiene such as- sources of water supply, methods of domestic sewage disposal and frequency of hand washing. Stool samples were collected and tested and findings analysed using appropriate statistical methods, p values < 0.05 were considered significant. The prevalence of intestinal parasites in Tyogbenda, Jato-Aka and Adikpo communities was found to be 71.5%, 65.5% and 40.5% respectively. Ascaris lumbricoides was the commonest parasite in the three centres (34.5%, 28.5% and 19.0% respectively for Tyogbenda, Jato-Aka and Adikpo communities). Other parasites identified were- Entamoeba histolytica, Entamoeba coli, Hookworm. Enterobius vermicularis, Strongyloides stercoralis, Schistosoma mansoni and Trichuris trichura. Multiple parasitic infestation was common in the communities where quality of water supply and methods of sewage disposal facilities were below standard. The prevalence of intestinal parasitism is still high in Nigerian rural communities. The present resolve by the federal ministry of water resources to supply potable water to all Nigerian rural communities should be sustained. Furthermore, a health education program should be properly constituted and integrated into the present primary health care policy for the country.
Strategic Siting of Contingency Bases: Assessing Options for Potable Water
2017-02-01
Assessing Options for Potable Water Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Lucy A. Whalley, David A. Krooks, and...George W. Calfas February 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research and Development...geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s
Offpost Interim Response Action, Alternatives Assessment, Version 2.3
1988-12-01
copper resulting from the use as algicides or herbicides of basic copper carbonate (molachite), copper sulfate (see below), copper monoethandime, and...mart per million for potable water for residues of -copper resulting from the use as algicides or herbicides of basic copper sulfat. and the other...Water ARAR: 21 C.F.R. § 193.90 (TPFA) -- tolerance of 1 part per million for potable water for residues of copper resulting from the use as algicides or
2013-11-18
the experimental filter media Next-SandTM was used, thus turbidity results may not be translatable to conventional filtration media. The media...performance objective was not met. Further optimization of the media filtration process would result in meeting the objective. Dissolved Organic Carbon...FINAL REPORT Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration ESTCP Project ER
Discovery and Identification of Dimethylsilanediol as a Contaminant in ISS Potable Water
NASA Technical Reports Server (NTRS)
Rutz, Jeffrey A.; Schultz, John R.; Kuo, C. Mike; Curtis, Matthew; Jones, Patrick R.; Sparkman, O. David; McCoy, J. Torin
2011-01-01
In September 2010, analysis of ISS potable water samples was undertaken to determine the contaminant(s) responsible for a rise of total organic carbon (TOC) in the Water Processor Assembly (WPA) product water. As analysis of the routine target list of organic compounds did not reveal the contaminant, efforts to look for unknown compounds were initiated, resulting in discovery of an unknown peak in the gas chromatography/mass spectrometry (GC/MS) analysis for glycols. A mass spectrum of the contaminant was then generated by concentrating one of the samples and analyzing it by GC/MS in full-scan mode. Although a computer match of the compound identity could not be obtained with the instrument database, a search with a more up-to-date mass spectral library yielded a good match with dimethylsilanediol (DMSD). Inductively coupled plasma/mass spectrometry (ICP/MS) analyses showed abnormally high silicon levels in the samples, confirming that the unknown compound(s) contained silicon. DMSD was then synthesized to confirm the identification and provide a standard to develop a calibration curve. Further confirmation was provided by external direct analysis in real time time of flight (DART TOF) mass spectrometry. To routinely test for DMSD in the future, a quantitative method was needed. A preliminary GC/MS method was developed and archived samples from various locations on ISS were analyzed to determine the extent of the contamination and provide data for troubleshooting. This paper describes these events in more detail as well as problems encountered in routine GC/MS analyses and the subsequent development of high performance liquid chromatography and LC/MS/MS methods for measuring DMSD.
From source to filter: changes in bacterial community composition during potable water treatment.
Zanacic, Enisa; McMartin, Dena W; Stavrinides, John
2017-06-01
Rural communities rely on surface water reservoirs for potable water. Effective removal of chemical contaminants and bacterial pathogens from these reservoirs requires an understanding of the bacterial community diversity that is present. In this study, we carried out a 16S rRNA-based profiling approach to describe the bacterial consortia in the raw surface water entering the water treatment plants of 2 rural communities. Our results show that source water is dominated by the Proteobacteria, Bacteroidetes, and Cyanobacteria, with some evidence of seasonal effects altering the predominant groups at each location. A subsequent community analysis of transects of a biological carbon filter in the water treatment plant revealed a significant increase in the proportion of Proteobacteria, Acidobacteria, Planctomycetes, and Nitrospirae relative to raw water. Also, very few enteric coliforms were identified in either the source water or within the filter, although Mycobacterium was of high abundance and was found throughout the filter along with Aeromonas, Legionella, and Pseudomonas. This study provides valuable insight into bacterial community composition within drinking water treatment facilities, and the importance of implementing appropriate disinfection practices to ensure safe potable water for rural communities.
Wastewater reclamation and recharge: A water management strategy for Albuquerque
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorder, P.J.; Brunswick, R.J.; Bockemeier, S.W.
1995-12-31
Approximately 61,000 acre-feet of the pumped water is annually discharged to the Rio Grande as treated wastewater. Albuquerque`s Southside Water Reclamation Plant (SWRP) is the primary wastewater treatment facility for most of the Albuquerque area. Its current design capacity is 76 million gallons per day (mgd), which is expected to be adequate until about 2004. A master plan currently is being prepared (discussed here in Wastewater Master Planning and the Zero Discharge Concept section) to provide guidelines for future expansions of the plant and wastewater infrastructure. Construction documents presently are being prepared to add ammonia and nitrogen removal capability tomore » the plant, as required by its new discharge permit. The paper discusses water management strategies, indirect potable reuse for Albuquerque, water quality considerations for indirect potable reuse, treatment for potable reuse, geohydrological aspects of a recharge program, layout and estimated costs for a conceptual reclamation and recharge system, and work to be accomplished under phase 2 of the reclamation and recharge program.« less
Monitoring on The Quality and Quantity of DIY Rainwater Harvesting System
NASA Astrophysics Data System (ADS)
Kasmin, H.; Bakar, N. H.; Zubir, M. M.
2016-07-01
Rainwater harvesting is an alternative sources of water supply and can be used for potable and non-potable uses. It could helps to store treated rainwater for more beneficial use and also for flood mitigation. Sustainable approach for flooding problem reduction in urban areas is by slowing down the rate of surface runoff flows at source by providing more storage area/tank. In order to understand the performance of a rainwater harvesting system (RWH), a preliminary monitoring on a ‘do it yourself’ (DIY) RWH model with additional first -flush strategy for water quality treatment was done. The main concept behind first flush diversion is to prevent initial polluted rainwater from entering the storage tank. Based on seven rainfall events observed in Parit Raja, both quality and quantity of the rainfalls were analysed. For rainwater quality, the samples from first flush diverter and storage tank were taken to understand their performance based on pH, dissolved oxygen (DO), turbidity, total dissolved solid (TDS), total suspended solid (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD) parameters. While for rainwater quantity, hydrograph analysis were done based on the performance of total rainfall and runoff, peak flow of rainfall and runoff; and delayed time parameters. Based on Interim National Water Quality Standard (INWQS) and National Drinking Water Quality Standard (NDWQS), first flush diverter apparently helps on water quality improvement in storage tanks when pH, DO, TDS, TSS and turbidity were classified as Class I (INWQS) and is allowable for drinking; but BOD and COD parameters were classified as Class III (INWQS). Hence, it has potential to be used as potable usage but will need extensive treatment to reduce its poor microbial quality. Based on the maximum observed rainfall event which had total volume of 3195.5 liter, had peakflow reduction from 0.00071 m3/s to 0.00034 m3/s and delayed runoff between 5 and 10 minutes after rainfall started. It concludes that the performance of water retention could be due to total rainfall and the tank capacity. Therefore, RWH has a potential to be used as potable use and at the same time it also has a potential to reduce local urban flooding.
Potable water supply in U.S. manned space missions
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Straub, John E., II
1992-01-01
A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.
Silver ion bactericide system. [for Space Shuttle Orbiter potable water
NASA Technical Reports Server (NTRS)
Jasionowski, W. J.; Allen, E. T.
1974-01-01
Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.
Prediction of contaminant fate and transport in potable water systems using H2OFate
NASA Astrophysics Data System (ADS)
Devarakonda, Venkat; Manickavasagam, Sivakumar; VanBlaricum, Vicki; Ginsberg, Mark
2009-05-01
BlazeTech has recently developed a software called H2OFate to predict the fate and transport of chemical and biological contaminants in water distribution systems. This software includes models for the reactions of these contaminants with residual disinfectant in bulk water and at the pipe wall, and their adhesion/reactions with the pipe walls. This software can be interfaced with sensors through SCADA systems to monitor water distribution networks for contamination events and activate countermeasures, as needed. This paper presents results from parametric calculations carried out using H2OFate for a simulated contaminant release into a sample water distribution network.
NASA Astrophysics Data System (ADS)
Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan
2017-06-01
Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of 0.8 cm2 and weighs only 180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a limit of detection of 12 cysts per 10 ml, an average cyst capture efficiency of 79%, and an accuracy of 95%. Providing rapid detection and quantification of waterborne pathogens without the need for a microbiology expert, this field-portable imaging and sensing platform running on a smartphone could be very useful for water quality monitoring in resource-limited settings.
Anand, C; Apul, D S
2011-03-01
The current sanitation technology in developed countries is based on diluting human excreta with large volumes of centrally provided potable water. This approach is a poor use of water resources and is also inefficient, expensive, and energy intensive. The goal of this study was to compare the standard sanitation technology (Scenario 1) with alternative technologies that require less or no potable water use in toilets. The alternative technologies considered were high efficiency toilets flushed with potable water (Scenario 2), standard toilets flushed with rainwater (Scenario 3), high efficiency toilets flushed with rainwater (Scenario 4), and composting toilets (Scenario 5). Cost, energy, and carbon implications of these five design scenarios were studied using two existing University of Toledo buildings. The results showed that alternative systems modeled in Scenarios 2, 4, and 5 were viable options both from an investment and an environmental performance perspective. High efficiency fixtures that use potable water (Scenario 2) is often the most preferred method in high efficiency buildings due to reduced water use and associated reductions in annual water and wastewater costs. However, the cost, energy, and CO(2)EE analyses all showed that Scenarios 4 and 5 were preferable over Scenario 2. Cost payback periods of scenarios 2, 4 and 5 were less than 10 years; in the future, increase in water and wastewater services would further decrease the payback periods. The centralized water and wastewater services have high carbon footprints; therefore if carbon footprint reduction is a primary goal of a building complex, alternative technologies that require less potable water and generate less wastewater can largely reduce the carbon footprint. High efficiency fixtures flushed with rainwater (Scenario 4) and composting toilets (Scenario 5) required considerably less energy than direct energy demands of buildings. However, the annual carbon footprint of these technologies was comparable to the annual carbon footprint from space heating. Similarly, the carbon savings that could be achieved from Scenario 4 or 5 were comparable to a recycling program that can be implemented in buildings. Copyright © 2010 Elsevier Ltd. All rights reserved.
Legionella spp. in dental unit waterlines.
Sedlata Juraskova, E; Sedlackova, H; Janska, J; Holy, O; Lalova, I; Matouskova, I
2017-01-01
To determine the current presence of Legionella spp. in the output water of dental unit waterlines (DUWLs) and examine its mitigation by disinfection at the Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc. The first stage of our survey involved collecting samples of DUWL output water from 50 dental chair units (DCUs), and 2 samples of the incoming potable water. In October 2015, a one-time disinfection (1 % Stabimed) of DUWLs was conducted. This was followed by collecting 10 control samples (survey stage 2). From the total of 50 samples (survey stage 1), 18 samples (36.0 %) tested positive for Legionella spp. Following the disinfection, nine of the ten samples no longer showed any presence of Legionella. Based on culture results, the one-time disinfection (1 % Stabimed) was effective. We are unable to comment on the duration of positive effect of disinfection on the occurrence of Legionella spp. in the outlet water. It was a one-time survey (Tab. 2, Ref. 32).
Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development
Llewellyn, Garth T.; Dorman, Frank; Westland, J. L.; Yoxtheimer, D.; Grieve, Paul; Sowers, Todd; Humston-Fulmer, E.; Brantley, Susan L.
2015-01-01
High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼1–3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad—the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide. PMID:25941400
Llewellyn, Garth T; Dorman, Frank; Westland, J L; Yoxtheimer, D; Grieve, Paul; Sowers, Todd; Humston-Fulmer, E; Brantley, Susan L
2015-05-19
High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼ 1-3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad-the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide.
Assessing the urban water balance: the Urban Water Flow Model and its application in Cyprus.
Charalambous, Katerina; Bruggeman, Adriana; Lange, Manfred A
2012-01-01
Modelling the urban water balance enables the understanding of the interactions of water within an urban area and allows for better management of water resources. However, few models today provide a comprehensive overview of all water sources and uses. The objective of the current paper was to develop a user-friendly tool that quantifies and visualizes all water flows, losses and inefficiencies in urban environments. The Urban Water Flow Model was implemented in a spreadsheet and includes a water-savings application that computes the contributions of user-selected saving options to the overall water balance. The model was applied to the coastal town of Limassol, Cyprus, for the hydrologic years 2003/04-2008/09. Data were collected from the different authorities and hydrologic equations and estimations were added to complete the balance. Average precipitation was 363 mm/yr, amounting to 25.4 × 10(6)m(3)/yr, more than double the annual potable water supply to the town. Surface runoff constituted 29.6% of all outflows, while evapotranspiration from impervious areas was 21.6%. Possible potable water savings for 2008/09 were estimated at 5.3 × 10(3) m(3), which is 50% of the total potable water provided to the area. This saving would also result in a 6% reduction of surface runoff.
Hamlin, S.N.; Takasaki, K.J.
1996-01-01
A reconnaissance of ground-water quality in 24 inhabited outer islands in Chuuk State was made between January 1984 and October 1985. Most of the islands are part of low-lying coral atolls within the Western, Namonuito, Hall, and Mortlock Island Groups. A total of 648 wells were located and sampled for temperature and specific conductance. A few miscellaneous sites such as taro patches also were sampled. The nitrate concentration was determined for 308 water samples. To develop a relation between specific conductance and chloride concentration, the chloride concentration was determined for 63 water samples. In addition, 21 water samples were analyzed for major and trace constituent ion concentrations. Chloride and nitrate are the primary constituents affecting the potability of ground water in the inhabited outer islands of Chuuk State. The source of chloride in ground water is seawater, whereas nitrate is derived fro plant and animal waste materials. The chloride concentrations in many well waters exceed the World Health Organization guideline for drinking water, particularly in wells near the shoreline or on small islands. In addition, the nitrate concentrations in some well waters exceeded the World Health Organization guideline for drinking water.
Chaudhry, Rabia M; Hamilton, Kerry A; Haas, Charles N; Nelson, Kara L
2017-06-13
Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium , and Salmonella . Consumer microbial risks of surface source water quality (impacted by 0-100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0-100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10 -4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10 -4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR.
Chaudhry, Rabia M.; Hamilton, Kerry A.; Haas, Charles N.; Nelson, Kara L.
2017-01-01
Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0–100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0–100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10−4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10−4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR. PMID:28608808
Measuring water ingestion from spray exposures.
Sinclair, Martha; Roddick, Felicity; Nguyen, Thang; O'Toole, Joanne; Leder, Karin
2016-08-01
Characterisation of exposure levels is an essential requirement of health risk assessment; however for water exposures other than drinking, few quantitative exposure data exist. Thus, regulatory agencies must use estimates to formulate policy on treatment requirements for non-potable recycled water. We adapted the use of the swimming pool chemical cyanuric acid as a tracer of recreational water ingestion to permit detection of small water volumes inadvertently ingested from spray exposures. By using solutions of 700-1000 mg/L cyanuric acid in an experimental spray exposure scenario, we were able to quantify inadvertent water ingestion in almost 70% of participants undertaking a 10 min car wash activity using a high pressure spray device. Skin absorption was demonstrated to be negligible under the experimental conditions, and the measured ingestion volumes ranged from 0.06 to 3.79 mL. This method could be applied to a range of non-potable water use activities to generate exposure data for risk assessment processes. The availability of such empirical measurements will provide greater assurance to regulatory agencies and industry that potential health risks from exposure to non-potable water supplies are well understood and adequately managed to protect public health. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Incidence of non-communicable diseases and health risks due to potable water quality].
Skudarnov, S E; Kurkatov, S V
2011-01-01
Iron and fluorine concentrations and water mineralization and hardness, which exceeded the maximum allowable concentrations, were found to cause an increase in overall morbidity and morbidity from skeletal-and-muscular, urogenital, and digestive system involvement in the population of the Krasnoyarsk Region. A quantitative relationship were found between the concentrations of iron, the hardness and dry residue of water and the incidence rates of urogenital, skeletal-and-muscular and digestive diseases. The consumption of potable water contaminated with chloroform and methane tetrachloride presents unacceptable carcinogenic risks to the population of the Krasnoyarsk Region.
NASA Astrophysics Data System (ADS)
Pasqualini, D.; Witkowski, M.
2005-12-01
The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.
Morakinyo, Oyewale Mayowa; Adebowale, Stephen Ayo; Oloruntoba, Elizabeth Omoladun
2015-01-01
Source of potable water has implication on the population health. Availability of Improved Drinking Water Sources (IDWS) is a problem in developing countries, but variation exists across segments of the population. This study therefore examined the relationship between wealth status, sex of household head and source of potable water. The 2013 Nigeria Demographic and Health Survey data was used. A representative sample of 40,680 households was selected for the survey, with a minimum target of 943 completed interviews per state covering the entire population residing in non-institutional dwelling units in the country. Households where information on drinking water sources was not reported were excluded, thus reducing the sample to 38021. The dependent and key independent variables were IDWS and Wealth Index respectively. Data were analysed using Chi-square and binary logistic regression (α = .05). Households that used IDWS were headed by females (66.7 %) than males (58.7 %). Highest proportion of households who used IDWS was found in the rich wealth index group (76.7 %). The likelihood of using IDWS was higher in household headed by females (OR = 1.41; C.I = 1.33-1.49, p <0.001). Households that belong to rich wealth index and middle class were 5.06(C.I = 4.81-5.32, p <0.001) and 2.62(C.I = 2.46-2.78, p <0.001) respectively times more likely to IDWS than the poor. This pattern was sustained when other confounding variables were introduced into the regression equation as control. Households headed by women used improved drinking water sources than those headed by men. However, wealth index has strong influence on the strength of relationship between sex of household head and improved drinking water sources.
Material Testing in Support of the ISS Electrochemical Disinfection Feasibility Study
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Shindo, David; Modica, Cathy
2012-01-01
Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.
Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation
NASA Technical Reports Server (NTRS)
Wells, G. W.
1975-01-01
A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.
Discovery and Identification of Dimethylsilanediol as a Contaminant in ISS Potable Water
NASA Technical Reports Server (NTRS)
Rutz, Jeffrey A.; Schultz, John R.; Kuo, C. Mike; Cole, Hraold E.; Manuel, Sam; Curtis, Matthew; Jones, Patrick R.; Sparkman, O. David; McCoy, J. Torin
2010-01-01
In September of 2010, analysis of ISS potable water samples was undertaken to determine the contaminant responsible for a rise in total organic carbon (TOC). As analysis of the routine target list of organic compounds did not reveal the contaminant, efforts to look for unknown compounds was initiated, resulting in an unknown peak being discovered in the gas chromatography/mass spectrometry (GC/MS) analysis for glycols. A mass spectrum of the contaminant was then generated by concentrating one of the samples by evaporation and analyzing by GC/MS in full-scan mode. Although a computer match of the compound s identity could not be obtained with the instrument s database, a search with a more up to date mass spectral library yielded a good match with dimethylsilanediol (DMSD). Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) analyses showed abnormally high silicon levels in the samples, confirming that the unknown contained silicon. DMSD was then synthesized to confirm the identification and provide a standard to develop a calibration curve. Further confirmation was provided by external Direct Analysis in Real Time (DART) GC/MS analysis. A preliminary GC/MS method was then developed and archived samples from various locations on ISS were analyzed to determine the extent of the contamination and provide data for troubleshooting. This paper describes these events in more detail as well as problems encountered in routine GC/MS analyses and the subsequent development of high performance liquid chromatography and LC/MS/MS methods for quantitation of DMSD.
Ground-water exploration in the Bosque del Apache Grant, Socorro County, New Mexico
Cooper, James B.
1968-01-01
Test drilling along the Rio Grande in the Bosque del Apache Grant in Socorro County, New Mexico has shown that the area is hydrologically complex and that the quality of the ground water varies from saline to fresh within short distances both laterally and vertically. Nearly all of the riverside land in the Grant is occupied by the migratory waterfowl refuge of the Bosque del Apache National Wildlife Refuge. Potable and near-potable water is obtained from 12 wells in this area that tap sand and gravel, and the wells are capable of yielding 1,000 gallons per minute or more. Stallion Range Center, a military installation on the White Sands Missile Range, about 15 miles east of =he waterfowl refuge, needs about 100,000 gallons per day of potable water. Potable water in large quantities is not known to be available at a location closer to the Center than the refuge area. The Fish and Wildlife Service, which operates the waterfowl refuge, gave permission to White Sands Missile Range to test drill and to develop a supply well in certain areas along the Rio Grande outside the managed lands of the refuge. The U.S. Geological Survey was then asked by White Sands Missile Range to choose locations for test drilling and to monitor drilling and testing of the wells. Between 1963 and 1967 test wells were drilled and a suitable location for a supply well as found. The well would be about 250 feet deep and would tap a body of potable water that is about 100 feet in thickness and is thought to underlie an area of at least 5 square miles. This report contains diagrammatic sections that show the lateral and vertical relation of waters of different quality along the Rio Grande in a part of the Bosque del Apache Grant. Basic data are given in tables; they include records of 7 test wells and 12 high-yield supply wells, and 52 chemical analyses of ground water from the wells.
Preprototype vapor compression distillation subsystem. [recovering potable water from wastewater
NASA Technical Reports Server (NTRS)
Ellis, G. S.; Wynveen, R. A.; Schubert, F. H.
1979-01-01
A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements.
Crew Exploration Vehicle (CEV) Potable Water System Verification Description
NASA Technical Reports Server (NTRS)
Peterson, Laurie; DeVera, Jean; Vega, Leticia; Adam, Nik; Steele, John; Gazda, Daniel; Roberts, Michael
2009-01-01
The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial control is a 0.1 micron point of use filter that will be used at the outlet of the Potable Water Dispenser (PWD). Because this may be the first time NASA is considering a stored water system for longterm missions that does not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point of use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform testing to help alleviate those concerns related to the CEV water system. Results from the test plans laid out in the paper presented to SAE last year (Crew Exploration Vehicle (CEV) Potable Water System Verification Coordination, 2008012083) will be detailed in this paper. Additionally, recommendations for the CEV verification will be described for risk mitigation in meeting the physicochemical and microbiological requirements on the CEV PWS.
Physico-chemical characteristics of groundwater in and around Surat City (India).
Raval, Viral H; Malik, G M
2010-10-01
Groundwater samples were collected from different locations of Surat city, Gujarat (India). These samples from 32 locations of Surat city were analysed for their physico-chemical characteristics involving pH, colour, odour, hardness, chloride, alkalinity, COD, sulfate, TDS, SS, iron, Cu, boron, chromium, temperature and Langelier Saturation Index. On comparing the results against drinking water quality standards laid by Indian Council of Medical Research (ICMR) and World Health Organization (WHO), it is found that most of the water samples are non-potable. Most of the samples indicated Total Alkalinity, Hardness, Chloride and TDS values much higher than the permissible level stipulated by ICMR and WHO. Even at some places Langelier Saturation Index values found higher too. The high values of these parameters may have health implications and therefore these need attention.
Use of sorption technology for treatment of humidity condensate for potable water
NASA Technical Reports Server (NTRS)
Ajjarapu, Sundara R. M.; Symons, J. M.
1992-01-01
This research focused on the testing of the original potable water processor aboard Space Station Freedom that was to produce potable water from the humidity condensate and additional water generated by carbon dioxide reduction. Humidity condensate was simulated by an influent water model 'Ersatz'. The humidity condensate was treated with multifiltration (MF) beds that consisted of a train of sorption beds (referred to as 'Unibed') designed to remove specific contaminants. For the complete simulated MF system runs tested for 100 bed volumes (BV) (volume processed/total column volume), 0.6 percent of the TOC was removed by the SAC/IRN 77 (Strong Acid Cation exchange resin), 39.6 percent of the total organic carbon (TOC) was removed by the WBA/IRA 68 (Weak Base Anion exchange resin), 13.2 percent of the TOC was removed by activated carbon adsorption (580-26), and the remaining sorbent media acted as polishing units to remove an additional 1.6 percent of the TOC at steady state. At steady state, 45 percent of the influent TOC passed through the MF bed.
Development of indirect potable reuse in impacted areas of the United States.
Jansen, H P; Stenstrom, M K; de Koning, J
2007-01-01
This paper demonstrates the development of indirect potable reuse (IPR) in the United States. A legislative review and a survey of plants show that IPR is becoming an integral part of water reclamation. Public resistance is the limiting factor to its development while technology is not.
Organics in water contamination analyzer, phase 1
NASA Technical Reports Server (NTRS)
1986-01-01
The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.
Kish, G.R.; Macy, J.A.; Mueller, R.T.
1987-01-01
The U.S. Geological Survey analyzed trace metal concentrations in tap water from domestic wells in newly constructed homes in Berkeley Township, Ocean County and Galloway Township, Atlantic County, N. J. The potable water distribution systems in all of the homes sampled are constructed primarily of copper with lead-based solder points. Home water treatment is used in Berkeley Township but not in Galloway Township. Tap water was collected after the water had been standing in the pipes overnight. In Berkeley, 6 to 11 samples exceeded both the U.S. Environmental Protection Agency 's primary drinking water regulation (DWR) for lead (50 microgram/L) and the secondary drinking water regulation (SDWR) for copper (1,000 microgram/L). In Galloway, 12 of 14 samples exceeded the DWR for lead and 13 of 14 exceeded the SDWR for copper. After collecting the standing-water samples, the water was left running for 15 minutes and a second sample was collected. None of the running-water samples exceeded the regulations for lead or copper. Available data suggest a correlation between the residence time of soft, acidic groundwater in new home plumbing systems and elevated trace-metal concentrations in drinking water derived from domestic wells within the New Jersey Coastal Plain. (USGS)
Effects of materials surface preparation for use in spacecraft potable water storage tanks
NASA Astrophysics Data System (ADS)
Wallace, William T.; Wallace, Sarah L.; Loh, Leslie J.; Kuo, C. K. Mike; Hudson, Edgar K.; Marlar, Tyler J.; Gazda, Daniel B.
2017-12-01
Maintaining a safe supply of potable water is of utmost importance when preparing for long-duration spaceflight missions, with the minimization of microbial growth being one major aspect. While biocides, such as ionic silver, historically have been used for microbial control in spaceflight, their effectiveness is sometimes limited due to surface reactions with the materials of the storage containers that reduce their concentrations below the effective range. For the Multi-Purpose Crew Vehicle, the primary wetted materials of the water storage system are stainless steel and a titanium alloy, and ionic silver has been chosen to serve as the biocide. As an attempt to understand what processes might reduce the known losses of silver, different treatment processes were attempted and samples of the wetted materials were tested, individually and together, to determine the relative loss of biocide under representative surface area-to-volume ratios. The results of testing presented here showed that the materials could be treated by a nitric acid rinse or a high-concentration silver spike to reduce the loss of silver and bacterial growth. It was also found that the minimum biocidal concentration could be maintained for over 28 days. These results have pointed to approaches that could be used to successfully maintain silver in spacecraft water systems for long-duration missions.
Sangodoyin, A. Y.
2015-01-01
A box-type solar heater was designed, constructed, and used to determine the effect of solar heating on quality of domestic roof-harvested rainwater (DRHRW). During testing, naturally contaminated DRHRW was harvested in Ibadan, Nigeria, and released into the system at 93.96 Lh−1 (2.61 × 10−5 m3 s−1) in a continuous flow process. Water temperatures at inlet, within the heating chamber, and at outlet from the heating chamber and solar radiation were monitored at 10 min interval. Samples were collected at both inlet to and outlet from the heating chamber at 10 min interval for microbiological analysis. The highest plate stagnation temperature, under no-load condition, was 100°C. The solar water heater attained a maximum operational temperature of 75°C with 89.6 and 94.4% reduction in total viable count and total coliform count, respectively, while Escherichia coli and Staphylococcus aureus were completely eradicated at this temperature. The solar heater developed proved to be effective in enhancing potability of DRHRW in Ibadan, Nigeria. This may be an appropriate household water treatment technology for developing countries, hence, a way of resolving problem of low quality water for potable uses. PMID:27347529
Akintola, O A; Sangodoyin, A Y
2015-01-01
A box-type solar heater was designed, constructed, and used to determine the effect of solar heating on quality of domestic roof-harvested rainwater (DRHRW). During testing, naturally contaminated DRHRW was harvested in Ibadan, Nigeria, and released into the system at 93.96 Lh(-1) (2.61 × 10(-5) m(3) s(-1)) in a continuous flow process. Water temperatures at inlet, within the heating chamber, and at outlet from the heating chamber and solar radiation were monitored at 10 min interval. Samples were collected at both inlet to and outlet from the heating chamber at 10 min interval for microbiological analysis. The highest plate stagnation temperature, under no-load condition, was 100°C. The solar water heater attained a maximum operational temperature of 75°C with 89.6 and 94.4% reduction in total viable count and total coliform count, respectively, while Escherichia coli and Staphylococcus aureus were completely eradicated at this temperature. The solar heater developed proved to be effective in enhancing potability of DRHRW in Ibadan, Nigeria. This may be an appropriate household water treatment technology for developing countries, hence, a way of resolving problem of low quality water for potable uses.
Wu, Qian-Yuan; Shao, Yi-Ru; Wang, Chao; Sun, Yan; Hu, Hong-Ying
2014-03-01
The estrogenic endocrine disruptors in reclaimed water from domestic wastewater may induce health risks to human being, when reclaimed water is used for augmentation of drinking water unplannedly and indirectly. This study investigated changes in concentrations of estrone, estradiol, 17alpha-ethinyl estradiol, bisphenol A, nonylphenol and octylphenol in reclaimed water during the reuse of reclaimed water for augmentation to water source such as lakes and reservoir via river. Thereafter, health risk induced by estrogens during the resue of reclaimed water was evaluated. The concentration of estrogen in secondary effluent ranged 0.1-100 ng x L(-1). The highest concentrations of bisphenol A and nonylphenol reached up to 1-10 microg x L(-1). During the indirect reuse of reclaimed water as potable water, the dilution and degradation in river and lake, and the removal by drinking water treatment process could change the concentrations of estrogen. The non-carcinogenic risks of estrone, estradiol, bisphenol A, nonylphenol and octylphenol were lower than 1. When the hydraulic retention time of 17alpha-ethinyl estradiol (EE2) in lakes and reservoir was higher than 30 days, the non-carcinogenic risk of EE2 was lower than 1 in most cases. When the hydraulic retention time of EE2 in lakes and reservoir was less than 30 days and the percentages of reclaimed water in drinking water were higher than 50%, the non-carcinogenic risk induced by EE2 was higher than 1 in 20%-50% samples. This indicated that the risks of EE2 should be concerned.
Cuoco, Emilio; Tedesco, Dario; Poreda, Robert J; Williams, Jeremy C; De Francesco, Stefano; Balagizi, Charles; Darrah, Thomas H
2013-01-15
On January 2, 2010 the Nyamuragira volcano erupted lava fountains extending up to 300 m vertically along an ~1.5 km segment of its southern flank cascading ash and gas on nearby villages and cities along the western side of the rift valley. Because rain water is the only available potable water resource within this region, volcanic impacts on drinking water constitutes a major potential hazard to public health within the region. During the 2010 eruption, concerns were expressed by local inhabitants about water quality and feelings of physical discomfort (e.g. nausea, bloating, indigestion, etc.) after consuming rain water collected after the eruption began. We present the elemental and ionic chemistry of drinking water samples collected within the region on the third day of the eruption (January 5, 2010). We identify a significant impact on water quality associated with the eruption including lower pH (i.e. acidification) and increases in acidic halogens (e.g. F(-) and Cl(-)), major ions (e.g. SO(4)(2-), NH(4)(+), Na(+), Ca(2+)), potentially toxic metals (e.g. Al(3+), Mn(2+), Cd(2+), Pb(2+), Hf(4+)), and particulate load. In many cases, the water's composition significantly exceeds World Health Organization (WHO) drinking water standards. The degree of pollution depends upon: (1) ash plume direction and (2) ash plume density. The potential negative health impacts are a function of the water's pH, which regulates the elements and their chemical form that are released into drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.
Meza-Lucas, Antonio; Pérez-Villagómez, María-Fernanda; Martínez-López, José-Patricio; García-Rodea, Ricardo; Martínez-Castelán, María-Guadalupe; Escobar-Gutiérrez, Alejandro; de-la-Rosa-Arana, Jorge-Luis; Villanueva-Zamudio, Altagracia
2016-09-01
A comparison of DOT-ELISA and Standard-ELISA was made for detection of Vibrio cholerae toxin in culture supernatants of bacteria isolated from human and environmental samples. A total of 293 supernatants were tested in a double blind assay. A correlation of 100 % was obtained between both techniques. The cholera toxin was found in 20 Inaba and 3 Ogawa strains. Positive samples were from seafood (17 samples), potable water (1 sample) and sewage (5 samples). The DOT-ELISA was useful as the standard-ELISA to confirm the presence of cholera toxin in the environmental samples.
The potable water system in Skylab
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Westover, J. B.
1974-01-01
Description of the medical requirements, development, system operation, and in-flight performance of the Skylab potable water system. Emphasized is the description of the unique features involving new space-flight concepts, procedures, and design incorporated in Skylab. The water supplied to the three Skylab missions was preloaded in stainless-steel tanks. These tanks were fitted with positive expulsion stainless-steel bellows. In-flight iodination of the water, for bacterial control, was accomplished as required. An in-flight bactericide monitor was used periodically to determine the level of bactericide in the water. Prior to the delivery of the water to the crewmen for consumption, the water was passed through a cation exchange resin for metallic ion removal and then heated for food reconstitution or chilled for drinking.
Pathogen Treatment Guidance and Monitoring Approaches fro ...
On-site non-potable water reuse is increasingly used to augment water supplies, but traditional fecal indicator approaches for defining and monitoring exposure risks are limited when applied to these decentralized options. This session emphasizes risk-based modeling to define pathogen log-reduction requirements coupled with alternative targets for monitoring enabled by genomic sequencing (i.e., the microbiome of reuse systems). 1. Discuss risk-based modeling to define pathogen log-reduction requirements 2. Review alternative targets for monitoring 3. Gain an understanding of how new tools can help improve successful development of sustainable on-site non-potable water reuse Presented at the Water Wastewater Equipment Treatment & Transport Show.
Amoueyan, Erfaneh; Ahmad, Sajjad; Eisenberg, Joseph N S; Pecson, Brian; Gerrity, Daniel
2017-08-01
This study evaluated the reliability and equivalency of three different potable reuse paradigms: (1) surface water augmentation via de facto reuse with conventional wastewater treatment; (2) surface water augmentation via planned indirect potable reuse (IPR) with ultrafiltration, pre-ozone, biological activated carbon (BAC), and post-ozone; and (3) direct potable reuse (DPR) with ultrafiltration, ozone, BAC, and UV disinfection. A quantitative microbial risk assessment (QMRA) was performed to (1) quantify the risk of infection from Cryptosporidium oocysts; (2) compare the risks associated with different potable reuse systems under optimal and sub-optimal conditions; and (3) identify critical model/operational parameters based on sensitivity analyses. The annual risks of infection associated with the de facto and planned IPR systems were generally consistent with those of conventional drinking water systems [mean of (9.4 ± 0.3) × 10 -5 to (4.5 ± 0.1) × 10 -4 ], while DPR was clearly superior [mean of (6.1 ± 67) × 10 -9 during sub-optimal operation]. Because the advanced treatment train in the planned IPR system was highly effective in reducing Cryptosporidium concentrations, the associated risks were generally dominated by the pathogen loading already present in the surface water. As a result, risks generally decreased with higher recycled water contributions (RWCs). Advanced treatment failures were generally inconsequential either due to the robustness of the advanced treatment train (i.e., DPR) or resiliency provided by the environmental buffer (i.e., planned IPR). Storage time in the environmental buffer was important for the de facto reuse system, and the model indicated a critical storage time of approximately 105 days. Storage times shorter than the critical value resulted in significant increases in risk. The conclusions from this study can be used to inform regulatory decision making and aid in the development of design or operational criteria for IPR and DPR systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahmood, A.; Hossain, F.
2016-12-01
Low-lying deltas of Asian region are usually densely populated and located in developing countries situated at the downstream end of major rivers. Extensive dam construction by the upstream countries has now caused water scarcity in large portions of low-lying deltas. Most inhabitants depend on shallow tube well for safe drinking water that tend to suffer from water quality issues (e.g. Arsenic contamination). In addition, people also get infected from water borne diseases like Cholera and Typhoid due to lack of safe drinking water. Developing a centralized piped network based water supply system is often not a feasible option in rural regions. Due to social acceptability, environment friendliness, lower capital and maintenance cost, rainwater harvesting can be the most sustainable option to supply safe drinking water in rural areas. In this study, first we estimate the monthly rainfall variability using long precipitation climatology from satellite precipitation data. The upper and lower bounds of monthly harvestable rainwater were estimated for each satellite precipitation grid. Taking this lower bound of monthly harvestable rainwater as input, we use quantitative water management concept to determine the percent of the time of the year potable water demand can be fulfilled. Analysis indicates that a 6 m³ reservoir tank can fulfill the potable water demand of a 6 person family throughout a year in almost all parts of this region.
Evolution of water recycling in Australian cities since 2003.
Radcliffe, J C
2010-01-01
The prolonged Australian drought which commenced in 2002, and the agreement between Australia's Commonwealth and States/Territories governments to progress water reform through the National Water Initiative, has resulted in many new recycling projects in Australia's capital cities. Dual reticulation systems are being advanced in new subdivision developments in Sydney, Melbourne and Adelaide. Brisbane has installed three large Advanced Water Treatment Plants that are designed to send indirect potable recycled water to the Wivenhoe Dam which is Brisbane's principal water reservoir. Numerous water recycling projects are serving industry and agriculture. Experimental managed aquifer recharge is being undertaken with wetland-treated stormwater in Adelaide and reverse osmosis treated wastewater in Perth. New National Water Quality Management Strategy recycled water guidelines have been developed for managing environmental risks, for augmentation of drinking water supplies, for managed aquifer recharge and for stormwater harvesting and reuse. Many recent investments are part-supported through Commonwealth government grants. Desalination plants are being established in Melbourne and Adelaide and a second one in Perth in addition to the newly-operational plants in Perth, South-East Queensland and Sydney. Despite there being numerous examples of unplanned indirect potable recycling, most governments remain reluctant about moving towards planned potable recycling. There is evidence of some policy bans still being maintained by governments but the National Water Commission continues to reinforce the necessity of an even-handed objective consideration of all water supply options.
Soyuz 22 Return Samples: Assessment of Air Quality Aboard the International Space Station
NASA Technical Reports Server (NTRS)
Jams, John T.
2010-01-01
Three mini-grab sample containers (m-GSCs) were returned aboard Soyuz 22 because of concerns that new air pollutants were present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The toxicological assessment of 3 m-GSCs from the ISS is shown in Table 1. The recoveries of the 3 standards (as listed above) from the GSCs averaged 103, 95 and 76%, respectively. Recovery from formaldehyde control badges were 90 and 91%.
Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater.
Dobrowsky, P H; Carstens, M; De Villiers, J; Cloete, T E; Khan, W
2015-12-01
Many studies have concluded that roof harvested rainwater is susceptible to chemical and microbial contamination. The aim of the study was thus to conduct a preliminary investigation into the efficiency of a closed-coupled solar pasteurization system in reducing the microbiological load in harvested rainwater and to determine the change in chemical components after pasteurization. The temperature of the pasteurized tank water samples collected ranged from 55 to 57°C, 64 to 66°C, 72 to 74°C, 78 to 81°C and 90 to 91°C. Cations analyzed were within drinking water guidelines, with the exception of iron [195.59 μg/L (55°C)-170.1 μg/L (91°C)], aluminum [130.98 μg/L (78°C)], lead [12.81 μg/L (55°C)-13.2 μg/L (91°C)] and nickel [46.43 μg/L (55°C)-32.82 μg/L (78°C)], which were detected at levels above the respective guidelines in the pasteurized tank water samples. Indicator bacteria including, heterotrophic bacteria, Escherichia coli and total coliforms were reduced to below the detection limit at pasteurization temperatures of 72°C and above. However, with the use of molecular techniques Yersinia spp., Legionella spp. and Pseudomonas spp. were detected in tank water samples pasteurized at temperatures greater than 72°C. The viability of the bacteria detected in this study at the higher temperature ranges should thus be assessed before pasteurized harvested rainwater is used as a potable water source. In addition, it is recommended that the storage tank of the pasteurization system be constructed from an alternative material, other than stainless steel, in order for a closed-coupled pasteurization system to be implemented and produce large quantities of potable water from roof harvested rainwater. Copyright © 2015 Elsevier B.V. All rights reserved.
The association between geographical factors and dental caries in a rural area in Mexico.
Maupome, Gerardo; Martínez-Mier, E Angeles; Holt, Alanna; Medina-Solís, Carlo Eduardo; Mantilla-Rodríguez, Andrés; Carlton, Brittany
2013-07-01
The aim of this study was to investigate the association between markers of oral disease and geographical factors influencing access to dental care (DMFT score) among school children in Central Mexico. Retrospective data were collected during an international service-learning program between 2002 and 2009. A sample of 1,143 children (55% females; mean age 12.7±13.1years) was analyzed. The mean DMFT score, represented largely by untreated tooth decay, was 4.02 (4.76). The variables that had the most significant effect on the DMFT score were proportion of paved roads between the community and dental services, and the availability of piped potable water. The DMFT score increased in proportion to the percentage of paved roads. In contrast, the DMFT score decreased with the availability of piped potable water. Similar results were found for untreated tooth decay. The main variable associated with a significant increase in dental fillings was proportion of paved roads. Together with Brazilian reports, this is one of the first investigations of the association between geographical factors and oral health in an underdeveloped setting.
Specific wavelength colorimeter. [for measuring given solute concentration in test sample
NASA Technical Reports Server (NTRS)
Brawner, C. C.; Mcdavid, L. S.; Walsh, J. M. (Inventor)
1974-01-01
A self contained, specific wavelength, single beam colorimeter is described for direct spectrophotometric measurement of the concentration of a given solute in a test sample. An electrical circuit employing a photoconductive cell converts the optical output into a linear, directly readable meter output. The colorimeter is simple to operate and is adapted for use in zero gravity conditions. In a specific application, the colorimeter is designed to analyze the concentration of iodine in potable water carried aboard a space vehicle such as the 4B stage of Skylab.
Amin, Muhammad Tahir; Han, Mooyoung
2009-01-01
Efficiency of solar disinfection (SODIS) was evaluated for the potability of rainwater in view of the increasing water and energy crises especially in developing countries. Rainwater samples were collected from an underground storage tank in 2 L polyethylene terephthalate (PET) bottles and SODIS efficiency was evaluated at different weather conditions. For optimizing SODIS, PET bottles with different backing surfaces to enhance the optical and thermal effects of SODIS were used and different physicochemical parameters were selected and evaluated along with microbial re-growth observations and calculating microbial decay constants. Total and fecal coliforms were used along with Escherichia Coli and Heterotrophic Plate Counts (HPC) as basic microbial and indicator organisms of water quality. For irradiance less than 600 W/m(2), reflective type PET bottles were best types while for radiations greater than 700 W/m(2), absorptive type PET bottles offered best solution due to the synergistic effects of both thermal and UV radiations. Microbial inactivation did not improve significantly by changing the initial pH and turbidity values but optimum SODIS efficiency is achieved for rainwater with acidic pH and low initial turbidity values by keeping air-spaced PET bottles in undisturbed conditions. Microbial re-growth occurred after one day only at higher turbidity values and with basic pH values. First-order reaction rate constant was in accordance with recent findings for TC but contradicted with previous researches for E. coli. No microbial parameter met drinking water guidelines even under strong experimental weather conditions rendering SODIS ineffective for complete disinfection and hence needed more exposure time or stronger sunlight radiations. With maximum possible storage of rainwater, however, and by using some means for accelerating SODIS process, rainwater can be disinfected and used for potable purposes.
NASA Technical Reports Server (NTRS)
Peterson, Laurie J.; Callahan, Michael R.
2007-01-01
Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions on strategies that could be used for CEV based on previous spacecraft water systems will be made in the form of questions and recommendations.
Bacteria associated with granular activated carbon particles in drinking water.
Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A
1986-01-01
A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356
Upgrades to the ISS Water Recovery System
NASA Technical Reports Server (NTRS)
Pruitt, Jennifer M.; Carter, Layne; Bagdigian, Robert M.; Kayatin, Mattthew J.
2015-01-01
The ISS Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. The WRS has been operational on ISS since November 2008, producing over 21,000 L of potable water during that time. Though the WRS has performed well during this time, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper lists these modifications, how they improve WRS performance, and a status on the ongoing development effort.
Chávez, Alma; Maya, Catalina; Gibson, Richard; Jiménez, Blanca
2011-05-01
The Tula Valley receives untreated wastewater from Mexico City for agricultural irrigation, half of which infiltrates to aquifers from where drinking water is extracted. Samples of wastewater and infiltrated water from three areas of the valley were analyzed for microorganisms, organic micropollutants, and some basic parameters. Concentrations of microorganisms in the infiltrated water were generally very low but the incidence of fecal coliforms (present in 68% of samples), somatic bacteriophages (36%), Giardia spp. (14%), and helminth eggs (8%) suggested a health risk. Organic micropollutants, often present at high concentrations in the wastewater, were generally absent from the infiltrated water except carbamazepine which was in 55% of samples (up to 193 ng/L). There was no correlation between carbamazepine concentrations and the presence of microorganisms but highest concentrations of carbamazepine and boron coincided. A treatment such as nanofiltration would be necessary for the infiltrated water to be a safe potable supply. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomas, G.
2002-12-01
This study presents the results of a survey on pesticides in fresh water in shallow aquifers, rivers and dams in Zaachila, Tlacolula and Etla and agricultural valleys close to Oaxaca City, SW of Mexico. In the study zones, there are generalized uses of pesticides and the impact on the water resources by inadequate use of agricultural activities. Water is used for irrigation and drinking. Surveying criteria was to sample the aquifer (production wells), its water table (dig wells) and a regional water collector (Plan Benito Juarez Yuayapan dam). A total of 14 samples were analyzed for the identification and quantification of organochlorine and organophosphorous pesticides. Method was 508-EPA. Gas chromatographer was a 5890 series II Hewlett Packard, calibrated with several patterns. Results: 10 samples are contaminated with some pesticide of the used patterns; Dieldrin, Chlordano, Malathion, Mirex were not found; Traces of organophosphorus compounds were found in 8 samples, mainly Merphos, Parathion Ethylic and Disulfoton ; There was detected traces of world-forbidden insecticides as Metoxychlor, Parathion Ethylic and Disulfoton; and In one sample (Cuilapam well #1) DDT exceeds, the Mexican maximum limit for potable water (1 mg/l),
Ross, Victoria L; Fielding, Kelly S; Louis, Winnifred R
2014-05-01
Faced with a severe drought, the residents of the regional city of Toowoomba, in South East Queensland, Australia were asked to consider a potable wastewater reuse scheme to supplement drinking water supplies. As public risk perceptions and trust have been shown to be key factors in acceptance of potable reuse projects, this research developed and tested a social-psychological model of trust, risk perceptions and acceptance. Participants (N = 380) were surveyed a few weeks before a referendum was held in which residents voted against the controversial scheme. Analysis using structural equation modelling showed that the more community members perceived that the water authority used fair procedures (e.g., consulting with the community and providing accurate information), the greater their sense of shared identity with the water authority. Shared social identity in turn influenced trust via increased source credibility, that is, perceptions that the water authority is competent and has the community's interest at heart. The findings also support past research showing that higher levels of trust in the water authority were associated with lower perceptions of risk, which in turn were associated with higher levels of acceptance, and vice versa. The findings have a practical application for improving public acceptance of potable recycled water schemes. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, Donald R.; Looper, Marshall G.
1979-08-15
A study of the use of a low-to-moderate temperature hydrothermal resource for space heating a 140-home residential community has been undertake. The approach centers on use of the existing culinary/potable water supply system to supply heated water to the homes, the culinary water being heated at a single pumping station and then distributed throughout the community through uninsulated, buried water mains. The heated potable water is pumped through individual house water-to-air heat exchangers using sealed, magnetic-drive house pumps and returned to the street distribution lines. These house heat exchangers are either add-on, wall mounted, convective heating units or coils addedmore » to existing forced air heating systems.« less
Santhi, V A; Sakai, N; Ahmad, E D; Mustafa, A M
2012-06-15
This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI). Copyright © 2012 Elsevier B.V. All rights reserved.
Characterization of modified PVDF membrane by gamma irradiation for non-potable water reuse.
Lim, Seung Joo; Kim, Tak-Hyun; Shin, In Hwan
2015-01-01
Poly(vinylidene fluorine) (PVDF) membranes were grafted by gamma-ray irradiation and were sulfonated by sodium sulfite to modify the surface of the membranes. The characteristics of the modified PVDF membranes were evaluated by the data of Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscope (FE-SEM), the contact angle of the membrane surface and the water permeability. From the results of FT-IR, XPS and FE-SEM, it was shown that the modified membranes were successfully grafted by gamma-ray irradiation and were sulfonated. The content of oxygen and sulfur increased with the monomer concentration, while the content of fluorine sharply decreased. The pore size of the modified membranes decreased after gamma-ray irradiation. The contact angle and the water permeability showed that the hydrophilicity of the modified membranes played a role in determining the membrane performance. The feasibility study of the modified PVDF membranes for using non-potable water reuse were carried out using a laboratory-scale microfiltration system. Grey wastewater was used as the influent in the filtration unit, and permeate quality satisfied non-potable water reuse guidelines in the Republic of Korea.
Sousa, Vitor; Silva, Cristina Matos; Meireles, Inês C
2017-11-10
Water is an essential and increasingly scarce resource that should be preserved. The evolution of the human population and communities has contributed to the global decrease of potable water availability and the reduction of its consumption is now compulsory. Rainwater harvesting systems (RWHS) are emerging as a viable alternative source for water consumption in non-potable uses. The present study aims to contribute to the promotion of water efficiency, focusing on the application of rainwater harvesting systems in commercial buildings, and comprises four stages: (i) development of a technical evaluation tool to aid the design of RWHS and support their financial evaluation; (ii) validation of the tool using operational data from an existing RWHS installed at Colombo Shopping Center, in Lisbon, Portugal; (iii) assessment of the sensibility of the technical evaluation tool results to the variation of the inputs, namely the precipitation and consumption, through a parametric analysis for the Colombo Shopping Center; and (iv) comparison of the performance and financial feasibility of hypothetical RWHS in two existing commercial buildings. The technical tool was applied to two Sonae Sierra's shopping centers, one in Portugal and one in Brazil. The installation of a 200-m 3 tank is advised for the first case study, allowing non-potable water savings of 60% but a payback period of about 19 years. In the Brazilian shopping, the implementation of a tank with a capacity ranging from 100 to 400 m 3 leads to non-potable savings between 20 and 50%, but with smaller payback period, under 2 years, due to the relatively lower investment costs and higher water fees.
NASA Astrophysics Data System (ADS)
Rodriguez-Winter, Thelma
All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon treated) 74% is process energy and 26% is non-process energy. Sixty-six percent of the process energy is consumed by the main treatment facility and high service distribution. When analyzing seasonal variations, the highest amount of process energy treated the largest amount of potable water with the maxiμm revealing four Btu used per gallon treated while utilizing 54% of the design capacity. Compared to the periods when the lowest amount of the design capacity was utilized, 32 - 33%, the facility consumed the seasonal high in energy, approximately 6.7 Btu per gallon treated. For the wastewater treatment and reclamation side, secondary treatment dominates all 3 categories by consuming 81,701,764 kBtu, 1.1 million, and 32,395 metric tons of CO2 equivalent. The total onsite energy was 2.79E-03 kWh per gallon treated, of which 43% was process energy, and the remainder was consumed by natural gas heating and `other non-process and process' energy, 34% and 23%, respectively. Most significantly during the months of April and May, when the influent flow of wastewater doubles and is diluted due to the addition of seasonal rain water, the amount of energy spent per gallon of treated wastewater decreases by 48% and 34% from the maximum (5.03E-03 kWh/gallon). By functioning closer to a forecasted design capacity, the efficiency of the potable water treatment facility could be dramatically improved. This can be achieved by implementing additional storage of ready-to-use potable water and/or by expanding the customer base and collaborating with other regional potable water utilities. For example, a county-wide approach to potable water planning falls into agreement with sustainable planning methods, providing regions of the county that have maximized treatment capacity of potable water and giving this region the opportunity to operate closer to the intended design capacity. On the wastewater treatment side, it is apparent that the more dense the BOD concentration in influent waters the more energy is spent in secondary treatment trying to remove it. Exploring more effective screening and pre-precipitation methods could also prove to save a significant amount in energy spent in the secondary treatment step, reducing the organic load prior to aeration. Coupling this with aeration blower and diffuser improvements can offer significant energy savings. Further water quality data and energy use data needs to be collected and analyzed on the individual wastewater treatment processes, especially regarding the impact and effectiveness of the preliminary and primary treatment steps on secondary treatment.
Water quality program elements for Space Station Freedom
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.
1991-01-01
A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.
Ishizuka, Akinori; Tanji, Masataka; Hayashi, Nobuatsu; Wakabayashi, Akihiro; Tatsumoto, Hideki; Hotta, Kunimoto
2006-12-01
For the long term storage of tap water, we developed a separate type of tank (5 m3) equipped with an electrolysis system to control bacterial growth. The electrolysis conditions using 20A direct current and a water flow rate of 10 L/min were capable of producing available chlorine (AC) at the rate of 5-8mg/min and raising the AC level of the stored tap water by about 0.2 mg/kg within 20-30 min The electrolyzed tap water with 0.2 mg/kg AC showed a capability per ml of killing 10(5)-10(6) cfu of bacteria such as Escherichia coli and Pseudomonas aeruginosa within 15 sec. A 6-month trial operation of the storage system with an automatic electrolysis control to keep AC level ranging 0.2-0.4 mg/kg demonstrated that the system worked well for the stored tap water in suppressing bacterial growth as well as in keeping good potable quality with reference to the 46 parameters specified for Japanese tap water. Actually, the electrolysis treatment was administered intermittently with an interval of about two weeks. Thus we believe the developed system has good potential to secure a potable water supply not only in the occasion of emergencies but also in countries having problems in the supply of safe drinking water.
NASA Astrophysics Data System (ADS)
Shakak, N.
2015-04-01
Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.
Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw
2016-09-01
The aim of this study was to demonstrate how seasonal variability in the removal efficacy of enteric viral pathogens from an MBR-based water recycling system might affect risks to human health if the treated product were to be used for the augmentation of potable water supplies. Samples were taken over a twelve month period (March 2014-February 2015), from nine locations throughout a water recycling plant situated in East London and tested for faecal indicator bacteria (thermotolerant coliforms, intestinal enterococci n = 108), phages (somatic coliphage, F-specific RNA phage and Bacteroides phage (GB-124) n = 108), pathogenic viruses (adenovirus, hepatitis A, norovirus GI/GII n = 48) and a range of physico-chemical parameters (suspended solids, DO, BOD, COD). Thermotolerant coliforms and intestinal enterococci were removed effectively by the water recycling plant throughout the study period. Significant mean log reductions of 3.9-5.6 were also observed for all three phage groups monitored. Concentrations of bacteria and phages did not vary significantly according to season (P < 0.05; Kruskal-Wallis), though recorded levels of norovirus (GI) were significantly higher during autumn/winter months (P = 0.027; Kruskal-Wallis). Log reduction values for norovirus and adenovirus following MBR treatment were 2.3 and 4.4, respectively. However, both adenovirus and norovirus were detected at low levels (2000 and 3240 gene copies/L, respectively) post chlorination in single samples. Whilst phage concentrations did correlate with viral pathogens, the results of this study suggest that phages may not be suitable surrogates, as viral pathogen concentrations varied to a greater degree seasonally than did the phage indicators and were detected on a number of occasions on which phages were not detected (false negative sample results). Copyright © 2016 Elsevier Ltd. All rights reserved.
Williams, Margaret M; Armbruster, Catherine R; Arduino, Matthew J
2013-01-01
Several bacterial species that are natural inhabitants of potable water distribution system biofilms are opportunistic pathogens important to sensitive patients in healthcare facilities. Waterborne healthcare-associated infections (HAI) may occur during the many uses of potable water in the healthcare environment. Prevention of infection is made more challenging by lack of data on infection rate and gaps in understanding of the ecology, virulence, and infectious dose of these opportunistic pathogens. Some healthcare facilities have been successful in reducing infections by following current water safety guidelines. This review describes several infections, and remediation steps that have been implemented to reduce waterborne HAIs.
International Space Station (ISS) Potable Water Dispenser (PWD) Beverage Adapter (BA) Redesign
NASA Technical Reports Server (NTRS)
Edgerly, Rachel; Benoit, Jace; Shindo, David
2012-01-01
The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on ]orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials were changed to be more corrosion resistant, and the Needle was redesigned to preclude leakage. The redesigns have been tested and proven.
International Space Station (ISS) Potable Water Dispenser (PWD) Beverage Adapter (BA) Redesign
NASA Technical Reports Server (NTRS)
Edgerly, Rachel; Benoit, Jace; Shindo, David
2011-01-01
The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on-orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials will be changed to be more corrosion resistant, and the Needle will be redesigned to preclude leakage. The redesigns have been tested and proven.
Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station
NASA Technical Reports Server (NTRS)
James, John T.
2011-01-01
Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.
Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico
Cooper, J.B.
1962-01-01
Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.
Breiman, R F; Cozen, W; Fields, B S; Mastro, T D; Carr, S J; Spika, J S; Mascola, L
1990-06-01
Epidemiologic studies have suggested that legionnaires' disease can be transmitted to susceptible hosts by contaminated aerosolized water from cooling towers and evaporative condensers; however, epidemic strains of Legionella have not been isolated by air sampling at such sites during epidemiologic investigations. An outbreak of legionnaires' disease occurred at a retirement hotel; Legionella pneumophila serogroup 1 was isolated from an evaporative condenser and from potable water. A case-control study showed that the only significant exposure risk was in area A. L. pneumophila serogroup 1 was isolated during air sampling near the evaporative condenser exhaust site, the air conditioning intake vent, and an air vent in area A, but not in shower stalls. Monoclonal antibody subtype patterns of L. pneumophila serogroup 1 isolates from patients matched those from the evaporative condenser but not from shower water. Air sampling and monoclonal antibody subtyping results support epidemiologic evidence that the evaporative condenser was the source of this outbreak.
Code of Federal Regulations, 2011 CFR
2011-07-01
... cleaned and maintained in good order. (b) Drinking water. (1) Potable drinking water shall be accessible... water and ice, and shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited...
Code of Federal Regulations, 2010 CFR
2010-07-01
... cleaned and maintained in good order. (b) Drinking water. (1) Potable drinking water shall be accessible... water and ice, and shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited...
Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.
Meresová, J; Belanová, A; Vrsková, M
2010-01-01
The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters. Copyright 2009 Elsevier Ltd. All rights reserved.
Potential fresh water saving using greywater in toilet flushing in Syria.
Mourad, Khaldoon A; Berndtsson, Justyna C; Berndtsson, Ronny
2011-10-01
Greywater reuse is becoming an increasingly important factor for potable water saving in many countries. Syria is one of the most water scarce countries in the Middle East. However, greywater reuse is still not common in the country. Regulations and standards for greywater reuse are not available. Recently, however, several stakeholders have started to plan for greywater reuse. The main objective of this paper is to evaluate the potential for potable water saving by using greywater for toilet flushing in a typical Syrian city. The Sweida city in the southern part of Syria was chosen for this purpose. Interviews were made in order to reflect the social acceptance, water consumption, and the percentage of different indoor water uses. An artificial wetland (AW) and a commercial bio filter (CBF) were proposed to treat the greywater, and an economic analysis was performed for the treatment system. Results show that using treated greywater for toilet flushing would save about 35% of the drinking water. The economic analyses of the two proposed systems showed that, in the current water tariff, the payback period for AW and CBF in block systems is 7 and 52 years, respectively. However, this period will reduce to 3 and 21 years, respectively, if full water costs are paid by beneficiaries. Hence, introducing artificial wetlands in order to make greywater use efficient appears to be a viable alternative to save potable water. Copyright © 2011 Elsevier Ltd. All rights reserved.
Toor, Gurpal S; Han, Lu; Stanley, Craig D
2013-05-01
Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg l(-1) in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg l(-1)) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg l(-1)), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.
Combination of an electrolytic pretreatment unit with secondary water reclamation processes
NASA Technical Reports Server (NTRS)
Wells, G. W.; Bonura, M. S.
1973-01-01
The design and fabrication of a flight concept prototype electrolytic pretreatment unit (EPU) and of a contractor-furnished air evaporation unit (AEU) are described. The integrated EPU and AEU potable water recovery system is referred to as the Electrovap and is capable of processing the urine and flush water of a six-man crew. Results of a five-day performance verification test of the Electrovap system are presented and plans are included for the extended testing of the Electrovap to produce data applicable to the combination of electrolytic pretreatment with most final potable water recovery systems. Plans are also presented for a program to define the design requirements for combining the electrolytic pretreatment unit with a reverse osmosis final processing unit.
This project will investigate total water management (TWM) as a way of improving water resource management and reducing waste streams. This project will also improve management of potable water, wastewater and wet-weather flow through combined management, reuse and recycling wil...
Adriaens, Peter; Goovaerts, Pierre; Skerlos, Steven; Edwards, Elizabeth; Egli, Thomas
2003-12-01
Recent commercial and residential development have substantially impacted the fluxes and quality of water that recharge the aquifers and discharges to streams, lakes and wetlands and, ultimately, is recycled for potable use. Whereas the contaminant sources may be varied in scope and composition, these issues of urban water sustainability are of public health concern at all levels of economic development worldwide, and require cheap and innovative environmental sensing capabilities and interactive monitoring networks, as well as tailored distributed water treatment technologies. To address this need, a roundtable was organized to explore the potential role of advances in biotechnology and bioengineering to aid in developing causative relationships between spatial and temporal changes in urbanization patterns and groundwater and surface water quality parameters, and to address aspects of socioeconomic constraints in implementing sustainable exploitation of water resources. An interactive framework for quantitative analysis of the coupling between human and natural systems requires integrating information derived from online and offline point measurements with Geographic Information Systems (GIS)-based remote sensing imagery analysis, groundwater-surface water hydrologic fluxes and water quality data to assess the vulnerability of potable water supplies. Spatially referenced data to inform uncertainty-based dynamic models can be used to rank watershed-specific stressors and receptors to guide researchers and policymakers in the development of targeted sensing and monitoring technologies, as well as tailored control measures for risk mitigation of potable water from microbial and chemical environmental contamination. The enabling technologies encompass: (i) distributed sensing approaches for microbial and chemical contamination (e.g. pathogens, endocrine disruptors); (ii) distributed application-specific, and infrastructure-adaptive water treatment systems; (iii) geostatistical integration of monitoring data and GIS layers; and (iv) systems analysis of microbial and chemical proliferation in distribution systems. This operational framework is aimed at technology implementation while maximizing economic and public health benefits. The outcomes of the roundtable will further research agendas in information technology-based monitoring infrastructure development, integration of processes and spatial analysis, as well as in new educational and training platforms for students, practitioners and regulators. The potential for technology diffusion to emerging economies with limited financial resources is substantial.
Space Station Freedom Water Recovery test total organic carbon accountability
NASA Technical Reports Server (NTRS)
Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary
1991-01-01
Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.
Effect of iodine disinfection products on higher plants
NASA Technical Reports Server (NTRS)
Janik, D.; Macler, B.; Macelroy, R. D.; Thorstenson, Y.; Sauer, R.
1989-01-01
Iodine is used to disinfect potable water on United States spacecraft. Iodinated potable water will likely be used to grow plants in space. Little is known about the effects of iodine disinfection products on plants. Seeds of select higher plants were germinated in water iodinated using the Shuttle Microbial Check Valve, and water to which measured amounts of iodine was added. Percent germination was decreased in seeds of most species germinated in iodinated water. Beans were most affected. Germination rates, determined from germination half-times, were decreased for beans germinated in iodinated water, and water to which iodide was added. Development was retarded and rootlets were conspicuously absent in bean and several other plant species germinated in iodinated water. Iodide alone did not elicit these responses. Clearly iodine disinfection products can affect higher plants. These effects must be carefully considered for plant experimentation and cultivation in space, and in design and testing of closed environmental life support systems.
Singh, Gulshan; Vajpayee, Poornima; Rani, Neetika; Amoah, Isaac Dennis; Stenström, Thor Axel; Shanker, Rishi
2016-08-15
The emergence of antimicrobial resistant bacteria is an important public health and environmental contamination issue. Antimicrobials of β-lactam group accounts for approximately two thirds, by weight, of all antimicrobials administered to humans due to high clinical efficacy and low toxicity. This study explores β-lactam resistance determinant gene (blaTEM) as emerging contaminant in Indo-Gangetic region using qPCR in molecular beacon format. Quantitative Microbial Risk Assessment (QMRA) approach was adopted to predict risk to human health associated with consumption/exposure of surface water, potable water and street foods contaminated with bacteria having blaTEM gene. It was observed that surface water and sediments of the river Ganga and Gomti showed high numbers of blaTEM gene copies and varied significantly (p<0.05) among the sampling locations. The potable water collected from drinking water facility and clinical settings exhibit significant number of blaTEM gene copies (13±0.44-10200±316 gene copies/100mL). It was observed that E.crassipes among aquatic flora encountered in both the rivers had high load of blaTEM gene copies. The information on prevalence of environmental reservoirs of blaTEM gene containing bacteria in Indo-Gangetic region and risk associated will be useful for formulating strategies to protect public from menace of clinical risks linked with antimicrobial resistant bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.
2011-01-01
Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in <180 minutes of contact time. With continued advances in the design and manufacture of UV-A LEDs and semi-conducting photocatalysts, LED activated photochemical process technology promises to extend its application to spacecraft environmental systems.
49 CFR 228.321 - Showering facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... and cold running potable water must be provided for showering purposes. The water supplied to a shower... provided with hot and cold water feeding a common discharge line. (3) Unless otherwise provided by a...
49 CFR 228.321 - Showering facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... provided with hot and cold water feeding a common discharge line. (3) Unless otherwise provided by a... and cold running potable water must be provided for showering purposes. The water supplied to a shower...
49 CFR 228.321 - Showering facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... provided with hot and cold water feeding a common discharge line. (3) Unless otherwise provided by a... and cold running potable water must be provided for showering purposes. The water supplied to a shower...
O'Driscoll, Connie; Ledesma, José L J; Coll, John; Murnane, John G; Nolan, Paul; Mockler, Eva M; Futter, Martyn N; Xiao, Liwen W
2018-07-15
Natural organic matter poses an increasing challenge to water managers because of its potential adverse impacts on water treatment and distribution, and subsequently human health. Projections were made of impacts of climate change on dissolved organic carbon (DOC) in the primarily agricultural Boyne catchment which is used as a potable water supply in Ireland. The results indicated that excluding a potential rise in extreme precipitation, future projected loads are not dissimilar to those observed under current conditions. This is because projected increases in DOC concentrations are offset by corresponding decreases in precipitation and hence river flow. However, the results presented assume no changes in land use and highlight the predicted increase in DOC loads from abstracted waters at water treatment plants. Copyright © 2018. Published by Elsevier B.V.
Sekar, R; Deines, P; Machell, J; Osborn, A M; Biggs, C A; Boxall, J B
2012-06-01
To determine the spatial and temporal variability in the abundance, structure and composition of planktonic bacterial assemblages sampled from a small, looped water distribution system and to interpret results with respect to hydraulic conditions. Water samples were collected from five sampling points, twice a day at 06:00 h and 09:00 h on a Monday (following low weekend demand) and a Wednesday (higher midweek demand). All samples were fully compliant with current regulated parameter standards. This study did not show obvious changes in bacterial abundance (DAPI count) or community structure Denaturing gradient gel electrophoresis analysis with respect to sample site and hence to water age; however, the study did show temporal variability with respect to both sampling day and sample times. Data suggests that variations in the bacterial assemblages may be associated with the local system hydraulics: the bacterial composition and numbers, over short durations, are governed by the interaction of the bulk water and the biofilm influenced by the hydraulic conditions. This study demonstrates general stability in bacterial abundance, community structure and composition within the system studied. Trends and patterns supporting the transfer of idealized understanding to the real world were evident. Ultimately, such work will help to safeguard potable water quality, fundamental to public health. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin
2011-01-01
The colorimetric water quality monitoring kit (CWQMK) was delivered to the International Space Station (ISS) on STS-128/17A and was initially deployed in September 2009. The kit was flown as a station development test objective (SDTO) experiment to evaluate the acceptability of colorimetric solid phase extraction (CSPE) technology for routine water quality monitoring on the ISS. During the SDTO experiment, water samples from the U.S. water processor assembly (WPA), the U.S. potable water dispenser (PWD), and the Russian system for dispensing ground-supplied water (SVO-ZV) were collected and analyzed with the CWQMK. Samples from the U.S. segment of the ISS were analyzed for molecular iodine, which is the biocide added to water in the WPA. Samples from the SVOZV system were analyzed for ionic silver, the biocide used on the Russian segment of the ISS. In all, thirteen in-flight analysis sessions were completed as part of the SDTO experiment. This paper provides an overview of the experiment and reports the results obtained with the CWQMK. The forward plan for certifying the CWQMK as operational hardware and expanding the capabilities of the kit are also discussed.
Future Water-Supply Scenarios, Cape May County, New Jersey, 2003-2050
Lacombe, Pierre J.; Carleton, Glen B.; Pope, Daryll A.; Rice, Donald E.
2009-01-01
Stewards of the water supply in New Jersey are interested in developing a plan to supply potable and non-potable water to residents and businesses of Cape May County until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non-potable, and ecological water supplies. This report documents past and projected potable, non-potable, and ecological water-supply demands. Past and ongoing adverse effects to production and domestic wells caused by withdrawals include saltwater intrusion and water-level declines in the freshwater aquifers. Adverse effects on the ecological water supplies caused by groundwater withdrawals include premature drying of seasonal wetlands, delayed recovery of water levels in the water-table aquifer, and reduced streamflow. To predict the effects of future actions on the water supplies, three baseline and six future scenarios were created and simulated. Baseline Scenarios 1, 2, and 3 represent withdrawals using existing wells projected until 2050. Baseline Scenario 1 represents average 1998-2003 withdrawals, and Scenario 2 represents New Jersey Department of Environmental Protection (NJDEP) full allocation withdrawals. These withdrawals do not meet projected future water demands. Baseline Scenario 3 represents the estimated full build-out water demands. Results of simulations of the three baseline scenarios indicate that saltwater would intrude into the Cohansey aquifer as much as 7,100 feet (ft) to adversely affect production wells used by Lower Township and the Wildwoods, as well as some other near-shore domestic wells; water-level altitudes in the Atlantic City 800-foot sand would decline to -156 ft; base flow in streams would be depleted by 0 to 26 percent; and water levels in the water-table aquifer would decline as much as 0.7ft. [Specific water-level altitudes, land-surface altitudes, and present sea level when used in this report are referenced to the North American Vertical Datum of 1988 (NAVD 88).] Future scenarios 4 to 9 represent withdrawals and the effects on the water supply while using estimated full build-out water demands. In most townships, existing wells would be used for withdrawals in the simulation. However, in Lower and Middle Townships, the Wildwoods, and the Cape Mays, withdrawals from some wells would be terminated, reduced, or increased. Depending on the scenario, proposed production wells would be installed in locations far from the saltwater fronts, in deep freshwater aquifers, in deeper saltwater aquifers, or proposed injection wells would be installed to inject reused water to create a freshwater barrier to saltwater intrusion. Simulations indicate that future Scenarios 4 to 9 would reduce many of the adverse effects of Scenarios 1, 2, and 3. No future scenario will minimize all adverse impacts. In Scenario 4, Lower Township would drill two production wells in the Cohansey aquifer farther from the Delaware shoreline than existing wells and reduce withdrawals from wells near the shoreline. Wildwood Water Utility (WWU) would reduce withdrawals from existing wells in the Cohansey aquifer and increase withdrawals from wells in the Rio Grande water-bearing zone. Results of the simulation indicate that saltwater intrusion and ecological-water supply problems would be reduced but not as much as in Scenarios 5, 7, 8, and 9. In Scenario 5, the Wildwoods and Lower Township each would install a desalination plant and drill two wells to withdraw saltwater from the Atlantic City 800-foot sand. Saltwater intrusion problems would be reduced to the greatest extent with this scenario. Ecological water supplies remain constant or decline from 2003 baseline values. Water-level altitudes would decline to -193 ft in the Atlantic City 800-foot sand, the deepest potentiometric level for all scenarios. In Scenario 6, Lower Township would build a tertiary treatment system and drill three wells open to the Cohanse
Chemical qualities of water that contribute to human health in a positive way
Hopps, Howard C.
1986-01-01
The emphasis on harmful substances that may occur in potable waters has almost obscured the fact that important beneficial constituents are commonly present.The chemical substances in water that make positive contributions to human health act mainly in two ways: (i) nutritionally, by supplying essential macro and micro elements that the diet (excluding water) may not provide in adequate amounts (for example, Mg, I and Zn); and (ii) by providing macro and micro elements that inhibit the absorption and/or effects of toxic elements such as Hg, Pb and Cd. Specific examples of these beneficial effects will be given, also examples of harmful effects on health that may result from excessive intake of these ordinarily beneficial elements.Because concentrations of the essential macro and micro elements that occur in natural, potable waters vary greatly, depending upon their source, geographic considerations are very important in any studies attempting to relate water quality to health. In this context, the inverse relationship between hard water and cardiovascular disease will be discussed. Specific data relating hardness and Mg and Ca content of potable waters to specific geographic regions of the U.S.A. will be presented. These data show a strong positive correlation between low Mg content and decreased longevity, and between high Ca and Mg content and increased longevity. In the regions considered, increased longevity correlates strongly with decreased cardiovascular mortality, and the decreased longevity with increased cardiovascular mortality.
BIOFILM IN DRINKING WATER DISTRIBUTION SYSTEMS
Throughout the world there are millions of miles of water distribution pipe lines which provide potable water for use by individuals and industry. Some of these water distribution systems have been in service well over one hundred years. Treated water moving through a distributio...
Ede, Alison Okorie; Nwaokoro, Joakin Chidozie; Iwuala, C C; Amadi, A N; Akpelu, Ugochinyere Alvana
2014-10-01
Guinea worm is a parasite found in unprotected drinking water sources, causes considerable morbidity and loss of agricultural production among rural people. The study was to determine the current status of Guinea worm infection in Ezza North and to evaluate the impact of control measures on guinea worm infection. A total of 200 individuals in Ezza North Southeastern, Nigeria were examined for guinea worm infection. A standardized questionnaire was used to determine the effect of potable water on guinea worm eradication/control, the source of drinking water, information on the knowledge, attitude, symptom management practices, availability of health facilities and boreholes installation status. The instrument for data collection was well constructed, validated and reliable tested questionnaire by an expert. Data obtained was analyzed using Epi-Info model 3.4 versions. Results of a study indicated majority of the respondents 195 (97.5 %) have access to safe drinking water supply which indicated no case of Guinea worm infection. The active use of potable water supply was found among the age group of 20-30 years 71 (35.5 %) and higher in male (57.5 %) than females (42.5 %). The drastic reduction of Guinea worm infection to zero (0) level in Ezza North were due to multiple factors as health education, availability of functional boreholes, presence of health centers for immediate treatment if any case discovered.
Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver
NASA Technical Reports Server (NTRS)
Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.
2011-01-01
Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.
Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymeras...
Crew Exploration Vehicle Potable Water System Verification Description
NASA Technical Reports Server (NTRS)
Tuan, George; Peterson, Laurie J.; Vega, Leticia M.
2010-01-01
A stored water system on the crew exploration vehicle (CEV) will supply the crew with potable water for: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain the quality of the water, transferred from the orbiter to the International Space Station, stored in contingency water containers. In the CEV water system, a depletion of the ionic silver biocide is expected due to ionic silver-plating onto the surfaces of materials within the CEV water system, thus negating its effectiveness as a biocide. Because this may be the first time NASA is considering a stored water system for long-term missions that do not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point-of-use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform the testing that will help alleviate concerns related to the CEV water system.
Investigation of DMSD Trend in the ISS Water Processor Assembly
NASA Technical Reports Server (NTRS)
Carter, Layne; Bowman, Elizabeth; Wilson, Mark; Gentry, Greg; Rector, Tony
2013-01-01
The ISS Water Recovery System (WRS) is responsible for providing potable water to the crew, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. The WRS includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WPA processes condensate from the cabin air and distillate produced by the UPA. In 2010, an increasing trend in the Total Organic Carbon (TOC) in the potable water was ultimately identified as dimethylsilanediol (DMSD). The increasing trend was ultimately reversed after replacing the WPA's two multifiltration beds. However, the reason for the TOC trend and the subsequent recovery was not understood. A subsequent trend occurred in 2012. This paper summarizes the current understanding of the fate of DMSD in the WPA, how the increasing TOC trend occurred, and the plan for modifying the WPA to prevent recurrence.
Catalytic distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Budininkas, P.; Rasouli, F.
1985-01-01
An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.
Pipes, W O; Minnigh, H A; Moyer, B; Troy, M A
1986-01-01
A total of 2,601 water samples from six different water systems were tested for coliform bacteria by Clark's presence-absence (P-A) test and by the membrane filter (MF) method. There was no significant difference in the fraction of samples positive for coliform bacteria for any of the systems tested. It was concluded that the two tests are equivalent for monitoring purposes. However, 152 samples were positive for coliform bacteria by the MF method but negative by the P-A test, and 132 samples were positive by the P-A test but negative by the MF method. Many of these differences for individual samples can be explained by random dispersion of bacteria in subsamples when the coliform density is low. However, 15 samples had MF counts greater than 3 and gave negative P-A results. The only apparent explanation for most of these results is that coliform bacteria were present in the P-A test bottles but did not produce acid and gas. Two other studies have reported more samples positive by Clark's P-A test than by the MF method. PMID:3532953
Ugly ducklings-the dark side of plastic materials in contact with potable water.
Neu, Lisa; Bänziger, Carola; Proctor, Caitlin R; Zhang, Ya; Liu, Wen-Tso; Hammes, Frederik
2018-01-01
Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 10 6 cells/cm 2 (clean water controls), 9.5 × 10 6 cells/cm 2 (real bath toys), and 7.3 × 10 7 cells/cm 2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users' microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water.
Thyroid function changes related to use of iodinated water in the U.S. Space Program.
McMonigal, K A; Braverman, L E; Dunn, J T; Stanbury, J B; Wear, M L; Hamm, P B; Sauer, R L; Billica, R D; Pool, S L
2000-11-01
The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in U.S. spacecraft and long-duration habitability modules. A review of thyroid function tests of NASA astronauts who had consumed iodinated water during spaceflight was conducted. Thyroid function tests of all past and present astronauts were reviewed. Medical records of astronauts with a diagnosis of thyroid disease were reviewed. Iodine consumption by space crews from water and food was determined. Serum thyroid-stimulating hormone (TSH) and urinary iodine excretion from space crews were measured following modification of the Space Shuttle potable water system to remove most of the iodine. Mean TSH significantly increased in 134 astronauts who had consumed iodinated water during spaceflight. Serum TSH, and urine iodine levels of Space Shuttle crewmembers who flew following modification of the potable water supply system to remove iodine did not show a statistically significant change. There was no evidence supporting association between clinical thyroid disease and the number of spaceflights, amount of iodine consumed, or duration of iodine exposure. It is suggested that pharmacological doses of iodine consumed by astronauts transiently decrease thyroid function, as reflected by elevated serum TSH values. Although adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during spaceflight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population.
Dutta, Joydev; Chetia, Mridul; Misra, A K
2011-10-01
Contamination of drinking water by arsenic and other heavy metals and their related toxicology is a serious concern now-a-days. Millions of individual world-wide are suffering from the arsenic and other heavy metal related diseases due to the consumption of contaminated groundwater. 60 water samples from different sources of 6 small tea gardens of Sonitpur district were collected to study the potability of water for drinking purposes. The water samples collected from sources like tube wells, ring wells and ponds were analyzed for arsenic, heavy metals like iron, manganese and mercury with sodium, potassium, calcium, magnesium, pH, total hardness, chloride, fluoride and sulphate. Some drain water samples of the tea garden areas were also collected to analyze the above mentioned water parameters to see the contamination level. Experiments revealed that 78% samples of total collection had arsenic content above the permissible limit (0.01 ppm) of WHO guideline value for drinking water. The highest arsenic was observed 0.09 ppm at one sample of Gobindra Dahal tea garden of Gohpur sub division of Sonitpur district. 94% samples had contamination due to manganese 39% samples had iron and 44% samples had Hg. The water quality data was subjected to some statistical treatments like NDA, cluster analysis and pearson correlation to observe the distribution pattern of the different water quality parameters. A strong pearson correlation coefficient was observed between parameters-arsenic and manganese (0.865) and arsenic and mercury (0.837) at 0.01 level, indicated the same sources of drinking water contamination.
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
30 CFR 71.601 - Drinking water; quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Pigs and Hamsters Animal Health and Husbandry Standards § 3.30 Watering. Unless food supplements consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Pigs and Hamsters Animal Health and Husbandry Standards § 3.30 Watering. Unless food supplements consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Pigs and Hamsters Animal Health and Husbandry Standards § 3.30 Watering. Unless food supplements consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Pigs and Hamsters Animal Health and Husbandry Standards § 3.30 Watering. Unless food supplements consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... or four occupants. (b) Water. Each lavatory must be provided with hot and cold potable running water... by a collective bargaining agreement, individual hand towels, of cloth or paper, warm air blowers, or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... or four occupants. (b) Water. Each lavatory must be provided with hot and cold potable running water... by a collective bargaining agreement, individual hand towels, of cloth or paper, warm air blowers, or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... or four occupants. (b) Water. Each lavatory must be provided with hot and cold potable running water... by a collective bargaining agreement, individual hand towels, of cloth or paper, warm air blowers, or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... contain the same acoustic energy as the time-varying sound level during the same time period. Nonwater... Agency's National Primary Drinking Water Standards set forth in 40 CFR part 141. Potable water system...
Code of Federal Regulations, 2014 CFR
2014-10-01
... contain the same acoustic energy as the time-varying sound level during the same time period. Nonwater... Agency's National Primary Drinking Water Standards set forth in 40 CFR part 141. Potable water system...
Code of Federal Regulations, 2013 CFR
2013-10-01
... contain the same acoustic energy as the time-varying sound level during the same time period. Nonwater... Agency's National Primary Drinking Water Standards set forth in 40 CFR part 141. Potable water system...
NASA Technical Reports Server (NTRS)
Geer, Richard D.
1989-01-01
To assure the quality of potable water (PW) on the Space Station (SS) a number of chemical and physical tests must be conducted routinely. After reviewing the requirements for potable water, both direct and indirect analytical methods are evaluated that could make the required tests and improvements compatible with the Space Station operation. A variety of suggestions are made to improve the analytical techniques for SS operation. The most important recommendations are: (1) the silver/silver chloride electrode (SB) method of removing I sub 2/I (-) biocide from the water, since it may interfere with analytical procedures for PW and also its end uses; (2) the orbital reactor (OR) method of carrying out chemistry and electrochemistry in microgravity by using a disk shaped reactor on an orbital table to impart artificial G force to the contents, allowing solution mixing and separation of gases and liquids; and (3) a simple ultra low volume highly sensitive electrochemical/conductivity detector for use with a capillary zone electrophoresis apparatus. It is also recommended, since several different conductivity and resistance measurements are made during the analysis of PW, that the bipolar pulse measuring circuit be used in all these applications for maximum compatibility and redundancy of equipment.
Zanacic, Enisa; Stavrinides, John; McMartin, Dena W
2016-11-01
Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Biological productivity in small impoundments
USDA-ARS?s Scientific Manuscript database
Most ponds and small impoundments are built or used with a principal use in mind. That use may be recreational fishing, commercial aquaculture, waterfowl hunting, potable water storage, irrigation water supply, livestock watering, stormwater retention, landscaping, swimming, or others. In practice, ...
PHOSPHATE CHEMICALS FOR BUILDING POTABLE WATER TREATMENT
Buildings can contribute significant quantities of trace metal contamination to drinking water, particularly lead, copper and zinc. Discolored water may also result in corroded galvanized and steel plumbing and after prolonged stagnation times. To protect human health as well as ...
Ditommaso, Savina; Giacomuzzi, Monica; Ricciardi, Elisa; Zotti, Carla M
2016-02-06
Legionella spp. are ubiquitous in aquatic habitats and water distribution systems, including dental unit waterlines (DUWLs). The aim of the present study was to determine the prevalence of Legionella in DUWLs and tap water samples using PMA-qPCR and standard culture methods. The total viable counts (TVCs) of aerobic heterotrophic bacteria in the samples were also determined. Legionella spp. were detected and quantified using the modified ISO 11731 culture method. Extracted genomic DNA was analysed using the iQ-Check Quanti Legionella spp. kit, and the TVCs were determined according to the ISO protocol 6222. Legionella spp. were detected in 100% of the samples using the PMA-qPCR method, whereas these bacteria were detected in only 7% of the samples using the culture method. The number of colony forming units (CFUs) of the TVCs in the DUWL and tap water samples differed, with the bacterial load being significantly lower in the tap water samples (p-value = 0). The counts obtained were within the Italian standard range established for potable water in only 5% of the DUWL water samples and in 77% of the tap water samples. Our results show that the level of Legionella spp. contamination determined using the culture method does not reflect the true scale of the problem, and consequently we recommend testing for the presence of aerobic heterotrophic bacteria based on the assumption that Legionella spp. are components of biofilms.
Ditommaso, Savina; Giacomuzzi, Monica; Ricciardi, Elisa; Zotti, Carla M.
2016-01-01
Legionella spp. are ubiquitous in aquatic habitats and water distribution systems, including dental unit waterlines (DUWLs). The aim of the present study was to determine the prevalence of Legionella in DUWLs and tap water samples using PMA-qPCR and standard culture methods. The total viable counts (TVCs) of aerobic heterotrophic bacteria in the samples were also determined. Legionella spp. were detected and quantified using the modified ISO 11731 culture method. Extracted genomic DNA was analysed using the iQ-Check Quanti Legionella spp. kit, and the TVCs were determined according to the ISO protocol 6222. Legionella spp. were detected in 100% of the samples using the PMA-qPCR method, whereas these bacteria were detected in only 7% of the samples using the culture method. The number of colony forming units (CFUs) of the TVCs in the DUWL and tap water samples differed, with the bacterial load being significantly lower in the tap water samples (p-value = 0). The counts obtained were within the Italian standard range established for potable water in only 5% of the DUWL water samples and in 77% of the tap water samples. Our results show that the level of Legionella spp. contamination determined using the culture method does not reflect the true scale of the problem, and consequently we recommend testing for the presence of aerobic heterotrophic bacteria based on the assumption that Legionella spp. are components of biofilms. PMID:26861373
NASA Technical Reports Server (NTRS)
Mcquillen, John; Brown, Dan; Hussey, Sam; Zoldak, John
2014-01-01
The Intravenous Fluid Generation (IVGEN) Experiment was a technology demonstration experiment that purified ISS potable water, mixed it with salt, and transferred it through a sterilizing filter. On-orbit performance was verified as appropriate and two 1.5 l bags of normal saline solution were returned to earth for post-flight testing by a FDA certified laboratory for compliance with United States Pharmacopiea (USP) standards. Salt concentration deviated from required values and an analysis identified probable causes. Current efforts are focused on Total Organic Content (TOC) testing, and shelf life.The Intravenous Fluid Generation (IVGEN) Experiment demonstrated the purification of ISS potable water, the mixing of the purified water with sodium chloride, and sterilization of the solution via membrane filtration. On-orbit performance was monitored where feasible and two 1.5-liter bags of normal saline solution were returned to earth for post-flight testing by a FDA-registered laboratory for compliance with United States Pharmacopeia (USP)standards [1]. Current efforts have been focused on challenge testing with identified [2] impurities (total organic-carbon), and shelf life testing. The challenge testing flowed known concentrations of contaminants through the IVGEN deionizing cartridge and membrane filters to test their effectiveness. One finding was that the filters and DI-resin themselves contribute to the contaminant load during initial startup, suggesting that the first 100 ml of fluid be discarded. Shelf life testing is ongoing and involves periodic testing of stored DI cartridges and membrane filters that are capped and sealed in hermetic packages. The testing is conducted at six month intervals measuring conductivity and endotoxins in the effluent. Currently, the packaging technique has been successfully demonstrated for one year of storage testing. The USP standards specifies that the TOC be conducted at point of generation as opposed to point of consumption. Samples were generated and shipped to an FDA facility however, testing determined that the samples failed the TOC specification with most likely due to leaching from the sample container. Shelf life testing is examining packaging techniques and periodic testing of samples of DI cartridges that are capped and sealed in hermetic packages. Periodic testing of the purified water output will be conducted at six month intervals.
Recreational Vehicle Water Tanks as a Possible Source for Legionella Infections
Litwin, Christine M.; Asebiomo, Bankole; Wilson, Katherine; Hafez, Michael; Stevens, Valerie; Fliermans, Carl B.; Fields, Barry S.; Fisher, John F.
2013-01-01
We investigated recreational vehicle (RV) water reservoirs in response to a case of pneumonia in which Legionella pneumophila was cultured both from the patient and a RV reservoir in which he travelled. Water samples processed and cultured at the CDC according to standard protocol were positive for Legionella spp. in 4/17 (24%) faucets, 1/11 (9%) water tanks from 4/20 (20%) RVs from three different campsites. Legionella spp. that were isolated included L. pneumophila (serogroups 1 and 6), L. anisa, L. feeleii, and L. quateriensis. Environmental controls from the potable water of the three campsites were culture-negative. A survey of maintenance practices by the RV users at the campsites revealed that chlorine disinfection of the water tanks was rarely performed. To prevent the possibility of Legionella infections, RV owners should implement regular chlorine disinfection of their water tanks and follow the recommended maintenance guidelines according to their owner's manuals. PMID:24371531
Chitosan-Based Nanocomposite Beads for Drinking Water Production
NASA Astrophysics Data System (ADS)
Masheane, ML; Nthunya, LN; Sambaza, SS; Malinga, SP; Nxumalo, EN; Mamba, BB; Mhlanga, SD
2017-05-01
Potable drinking water is essential for the good health of humans and it is a critical feedstock in a variety of industries such as food and pharmaceutical industries. For the first time, chitosan-alumina/functionalised multiwalled carbon nanotube (f-MWCNT) nanocomposite beads were developed and investigated for the reduction of various physico-chemical parameters from water samples collected from open wells used for drinking purposes by a rural community in South Africa. The water samples were analysed before and after the reduction of the identified contaminants by the nanocomposite beads. The nanocomposite beads were effective in the removal of nitrate, chromium and other physico-chemical parameters. Although, the water samples contained these contaminants within the WHO and SANS241 limits for no risk, the long-term exposure and accumulation is an environmental and health concern. The reduction of these contaminants was dependent on pH levels. At lower pH, the reduction was significantly higher, up to 99.2% (SPC), 91.0% (DOC), 92.2% (DO), 92.2% (turbidity), 96.5% (nitrate) and 97.7% (chromium). Generally, the chitosan-alumina/f-MWCNT nanocomposite beads offer a promising alternative material for reduction and removal of various physico-chemical parameters for production portable water.
REMOVAL OF MTBE FROM WATER WITH ZEOLITES
MTBE has impacted public drinking water wells from releases of gasoline making the water non-potable. MTBE is highly soluble in water, has a low volatility, does not adsorb strongly to soil, and is not thought to be easily biodegradable. Traditional methods of removing organics ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea...
Finding New Water: Development of On-Site Non-Potable Water Reuse Systems
By designing our buildings to collect and treat water generated on-site, can be and reused for flushing our toilets and irrigating our landscaping. Several water sources are generated with-in a building including: rainwater, stormwater, graywater, blackwater and foundation drain...
NASA Technical Reports Server (NTRS)
Gauthier, J. J.; Roman, M. C.; Kilgore, B. A.; Huff, T. L.; Obenhuber, D. C.; Terrell, D. W.; Wilson, M. E.; Jackson, N. E.
1991-01-01
NASA/MSFC is developing a physical/chemical treatment system to reclaim wastewater for reuse on Space Station Freedom (SSF). Integrated testing of hygiene and potable water subsystems assessed the capability to reclaim water to SSF specifications. The test was conducted from May through July 1990 with a total of 47 days of system test operation. Water samples were analyzed using standard cultural methods employing membrane filtration and spread plate techniques and epifluorescence microscopy. Fatty acid methyl ester and biochemical profiles were used for microbial identification. Analysis of waste and product water produced by the subsystems demonstrated the effective reduction of viable microbial populations greater than 8.0E + 06 colony forming units (CFU) per 100 mL to an average of 5 CFU/100 mL prior to distribution into storage tanks.
Water vapor diffusion membrane development. [for water recovery purposes onboard manned spacecraft
NASA Technical Reports Server (NTRS)
Tan, M. K.
1974-01-01
The phase separator component used as a membrane in the vapor diffusion process (VRD) for the recovery of potable water from urine on manned space missions of extended duration was investigated, with particular emphasis on cation-selective membranes because of their noted mechanical strength, superior resistance to acids, oxidants, and germicides, and their potential resistance to organic foulants. Two of the membranes were tested for 700 hours continuously, and were selected on the basis of criteria deemed important to an effective water reclamation system onboard spacecraft. The samples of urine were successfully processed by removing 93 percent of their water content in 70 hours using the selected membranes. Pretreatment with an acid-oxidant formulation improved product quality. Cation exchange membranes were shown to possess superior mechanical strength and chemical resistance, as compared to cellulosic membranes.
High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors.
Fujioka, Takahiro; Ishida, Kenneth P; Shintani, Takuji; Kodamatani, Hitoshi
2017-12-12
Direct potable reuse is becoming a feasible option to cope with water shortages. It requires more stringent water quality assurance than indirect potable reuse. Thus, the development of a high-rejection reverse osmosis (RO) membrane for the removal of one of the most challenging chemicals in potable reuse - N-nitrosodimethylamine (NDMA) - ensures further system confidence in reclaimed water quality. This study aimed to achieve over 90% removal of NDMA by modifying three commercial and one prototype RO membrane using heat treatment. Application of heat treatment to a prototype membrane resulted in a record high removal of 92% (1.1-log) of NDMA. Heat treatment reduced conductivity rejection and permeability, while secondary amines, selected as N-nitrosamine precursors, were still well rejected (>98%) regardless of RO membrane type. This study also demonstrated the highly stable separation performance of the heat-treated prototype membrane under conditions of varying feed temperature and permeate flux. Fouling propensity of the prototype membrane was lower than a commercial RO membrane. This study identified a need to develop highly selective RO membranes with high permeability to ensure the feasibility of using these membranes at full scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Potable water scarcity: options and issues in the coastal areas of Bangladesh.
Islam, Atikul; Sakakibara, Hiroyuki; Karim, Rezaul; Sekine, Masahiko
2013-09-01
In the coastal areas of Bangladesh, scarcity of drinking water is acute as freshwater aquifers are not available at suitable depths and surface water is highly saline. Households are mainly dependent on rainwater harvesting, pond sand filters and pond water for drinking purposes. Thus, individuals in these areas often suffer from waterborne diseases. In this paper, water consumption behaviour in two southwestern coastal districts of Bangladesh has been investigated. The data for this study were collected through a survey conducted on 750 rural households in 39 villages of the study area. The sample was selected using a random sampling technique. Households' choice of water source is complex and seasonally dependent. Water sourcing patterns, households' preference of water sourcing options and economic feasibility of options suggest that a combination of household and community-based options could be suitable for year-round water supply. Distance and time required for water collection were found to be difficult for water collection from community-based options. Both household and community-based options need regular maintenance. In addition to installation of water supply facilities, it is necessary to make the residents aware of proper operation and maintenance of the facilities.
78 FR 20128 - Extension of the Designation of Nicaragua for Temporary Protected Status
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... Nicaragua's roads are paved. Hurricane Mitch damaged potable water, sewage treatment systems, water uptake systems, wells, water pump stations, and pipes in Nicaragua. The storm floods and runoff polluted water... education facilities, water supply and sanitation facilities, and the agricultural sector. Living conditions...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
7 CFR 2902.12 - Water tank coatings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Water tank coatings. 2902.12 Section 2902.12... Items § 2902.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...
24 CFR 203.52 - Acceptance of individual residential water purification equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...
24 CFR 203.52 - Acceptance of individual residential water purification equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...
24 CFR 203.52 - Acceptance of individual residential water purification equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...
24 CFR 203.52 - Acceptance of individual residential water purification equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...
7 CFR 3201.12 - Water tank coatings.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Water tank coatings. 3201.12 Section 3201.12... Designated Items § 3201.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...
30 CFR 71.600 - Drinking water; general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...
7 CFR 2902.12 - Water tank coatings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Water tank coatings. 2902.12 Section 2902.12... Items § 2902.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...
7 CFR 3201.12 - Water tank coatings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Water tank coatings. 3201.12 Section 3201.12... Designated Items § 3201.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...
7 CFR 3201.12 - Water tank coatings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Water tank coatings. 3201.12 Section 3201.12... Designated Items § 3201.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus
2008-01-01
The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.
NASA Astrophysics Data System (ADS)
Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.
2015-12-01
In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.
Within potable water distribution systems, opportunistic pathogens such as Legionella species infect protozoa, gaining protection from disinfectant residuals. Analyzing the prokaryotic and eukaryotic populations in distribution system water provides a basis for understanding the...
Within potable water distribution systems, opportunistic pathogens such as Legionella species infect protozoa, gaining protection from disinfectant residuals. Analyzing the prokaryotic and eukaryotic populations in distribution system water provides a basis for understanding the...
FLOW SEPARATION CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS
Biofilm formations on pipe walls have been found in potable water distribution mains. The biofilm layers contribute to accelerated corrosion rates, increased flow resistance, and formation of encrustations that may deteriorate drinking water quality. Research to evaluate the depe...
STS-34 onboard view of iodine comparator assembly used to check water quality
NASA Technical Reports Server (NTRS)
1989-01-01
STS-34 closeup view taken onboard Atlantis, Orbiter Vehicle (OV) 104, is of the iodine comparator assembly. Potable water quality is checked by comparing the water color to the color chart on the surrounding board.
2016-03-22
ISS047e013845 (03/22/2016) --- ESA (European Space Agency) astronaut Tim Peake works on the Water Processor Assembly (WPA) aboard the International Space Station. The WPA is is responsible for treating waste water aboard the station for recycling back into potable water.
Isolation of Acanthamoeba Spp. from Drinking Waters in Several Hospitals of Iran
Bagheri, HR; Shafiei, R; Shafiei, F; Sajjadi, SA
2010-01-01
Background Acanthamoeba is an opportunistic amphizoic protozoan found in different water sources including swimming pool as well as in sewage. The aim of this study was to investigate the prevalence of Acanthamoeba in tap-water samples in Iran. Method In this descriptive cross-sectional study, 94 samples of cold and warm tap-water were collected from different wards of hospitals in 13 cities of Iran in 2007–2008. Free residual chlorine, pH, and temperature of samples were measured. After filtration through multipore nylon membrane, samples were cultured on non-nutrient agar. Then we investigated existence of Acanthamoeba by reverse contrast phase microscope. Results Acanthamoeba was found in 45 samples (48%). Thirty-four and 11 positive samples were collected from cold and warm tap water, respectively. The samples belonged to the category of 20–30°C temperature with 0–2 ppm free residual chlorine and pH 6–7.4 showed the most coincidence to the positive cases. The greatest proportion of positive samples was obtained from Mashhad hospitals, while all samples collected from Arak and Semnan hospitals were negative. Conclusion considering the results of this study and the pathogenic role of this protozoan on patients with immunodeficiency, as well as capability of this microorganism in carrying other pathogens such as Legionella, further studies are needed. What is more important, potable water in hospitals should follow the procedure of treatment and sanitation, in order to prevent the relevant nosocomial infections. PMID:22347240
NASA Astrophysics Data System (ADS)
Omar, Khairunnisa Fakhriah Mohd; Palaniandy, Puganeshwary; Adlan, Mohd Nordin; Aziz, Hamidi Abdul; Subramaniam, Ambarasi
2017-10-01
Generally, the rainwater has low concentration of pollutants, whereby it is applicable for domestic water supply. Due to the low concentration of pollutants, further treatment such as adsorption is necessary to treat the harvested rainwater as an alternative source of drinking water supply. Therefore, this research has been carried out to determine the quality of rainwater from different types of locations, which are; rural residential area, urban residential area, agricultural area, industrial area, and open surface. The rainwater sampling was carried out from September 2014 to December 2015. The parameters that have been analysed during the sampling process are chemical oxygen demand (COD), turbidity, heavy metals, and Escherichia coli (E.coli). The sampling results show that the rainwater provides low concentration of contaminants. Thus, it has high potential to be used as alternative source of potable and non potable water supply with a suitable treatment. Due to that, an experimental work contained of 86 of designated experiments for a batch study has been carried out to determine the performance of laterite soil as an adsorbent to remove pollutants that present in the rainwater (i.e. zinc, manganese, and E.coli). The operating factors involved in the experimental works are pH, mass of adsorbents, contact time, initial concentration of zinc, manganese, and E.coli. In this study, the experimental data of the batch study was analysed by developing regression model equation and analysis of variance. Perturbation plots were analysed to determine the effectiveness of the operating factors by developing response surface model, resulting that the high removals of zinc, manganese, and E.coli are 95.8%, 94.05% and 100%, respectively. Overall, this research works found out that the rainwater has a good quality as alternative source of drinking water by providing a suitable treatment. The application of laterite soil as natural adsorbent shows that it has potential to be used as the response surface model provide a good removal for zinc, manganese, and E.coli.
Emergency Response and Protection Water Treatment Technologies
The Expeditionary Unit Water Purifier (EUWP) is supported and deployed by NFESC, the TARDEC, and the USBR. The EUWP was deployed to Biloxi, MS after Hurricane Katrina to supply potable water to a hospital, using seawater from the Gulf of Mexico as the source water. The EUWP ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Watering. 3.83 Section 3.83 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... Primates 2 Animal Health and Husbandry Standards § 3.83 Watering. Potable water must be provided in...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Watering. 3.83 Section 3.83 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... Primates 2 Animal Health and Husbandry Standards § 3.83 Watering. Potable water must be provided in...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Watering. 3.83 Section 3.83 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... Primates 2 Animal Health and Husbandry Standards § 3.83 Watering. Potable water must be provided in...
Varughese, Eunice A; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer L; Fout, G Shay; Furlong, Edward T; Kolpin, Dana W; Glassmeyer, Susan T; Keely, Scott P
2018-04-01
Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR). However, true values may be underestimated due to challenges involved in a multi-step viral concentration process and due to PCR inhibition. In this study, water samples were concentrated from 25 drinking water treatment plants (DWTPs) across the US to study the occurrence of enteric viruses in source water and removal after treatment. The five different types of viruses studied were adenovirus, norovirus GI, norovirus GII, enterovirus, and polyomavirus. Quantitative PCR was performed on all samples to determine presence or absence of these viruses in each sample. Ten DWTPs showed presence of one or more viruses in source water, with four DWTPs having treated drinking water testing positive. Furthermore, PCR inhibition was assessed for each sample using an exogenous amplification control, which indicated that all of the DWTP samples, including source and treated water samples, had some level of inhibition, confirming that inhibition plays an important role in PCR-based assessments of environmental samples. PCR inhibition measurements, viral recovery, and other assessments were incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters. Published by Elsevier B.V.
Opryszko, Melissa C; Guo, Yayi; MacDonald, Luke; MacDonald, Laura; Kiihl, Samara; Schwab, Kellogg J
2013-04-01
Innovative solutions are essential to improving global access to potable water for nearly 1 billion people. This study presents an independent investigation of one alternative by examining for-profit water-vending kiosks, WaterHealth Centers (WHCs), in rural Ghana to determine their association with household drinking water quality. WHCs' design includes surface water treatment using filtration and ultraviolet light disinfection along with community-based hygiene education. Analyses of water samples for Escherichia coli and household surveys from 49 households across five villages collected one time per year for 3 years indicate that households using WHCs had improved water quality compared with households using untreated surface water (adjusted incidence rate ratio = 0.07, 95% confidence interval = 0.02, 0.21). However, only 38% of households used WHCs by the third year, and 60% of those households had E. coli in their water. Recontamination during water transport and storage is an obstacle to maintaining WHC-vended water quality.
Opryszko, Melissa C.; Guo, Yayi; MacDonald, Luke; MacDonald, Laura; Kiihl, Samara; Schwab, Kellogg J.
2013-01-01
Innovative solutions are essential to improving global access to potable water for nearly 1 billion people. This study presents an independent investigation of one alternative by examining for-profit water-vending kiosks, WaterHealth Centers (WHCs), in rural Ghana to determine their association with household drinking water quality. WHCs' design includes surface water treatment using filtration and ultraviolet light disinfection along with community-based hygiene education. Analyses of water samples for Escherichia coli and household surveys from 49 households across five villages collected one time per year for 3 years indicate that households using WHCs had improved water quality compared with households using untreated surface water (adjusted incidence rate ratio = 0.07, 95% confidence interval = 0.02, 0.21). However, only 38% of households used WHCs by the third year, and 60% of those households had E. coli in their water. Recontamination during water transport and storage is an obstacle to maintaining WHC-vended water quality. PMID:23382168
Methods development for total organic carbon accountability
NASA Technical Reports Server (NTRS)
Benson, Brian L.; Kilgore, Melvin V., Jr.
1991-01-01
This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.
EPA’s Research to Support On-Site Non-potable Water Systems
As the reuse of alternative water sources continues to gain popularity, public utilities and other stakeholders are seeking guidance on pathogen treatment requirements and monitoring approaches for nonpotable use of onsite collected water (e.g. combined wastewater, graywater, sto...
TECHNOLOGY TRANSFER HANDBOOK: MANAGEMENT OF WATER TREATMENT PLANT RESIDUALS
Potable water treatment processes produce safe drinking water and generate a wide variety of waste products known as residuals, including organic and inorganic compounds in liquid, solid, and gaseous forms. In the current regulatory climate, a complete management program for a w...
EXPLORATORY OCCURRENCE STUDY OF NEWLY EMERGING PATHOGENS IN POTABLE WATER
Recent attention has focused on the potential transmission via drinking water of two bacterial pathogens, Aeromonas and Helicobacter pylori, both of which are included in the current Contaminant Candidate List. Aeromonas bacteria occur naturally in surface waters and have been i...
SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS
Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...
Analytical technique characterizes all trace contaminants in water
NASA Technical Reports Server (NTRS)
Foster, J. N.; Lysyj, I.; Nelson, K. H.
1967-01-01
Properly programmed combination of advanced chemical and physical analytical techniques characterize critically all trace contaminants in both the potable and waste water from the Apollo Command Module. This methodology can also be applied to the investigation of the source of water pollution.
Investigation of the prevalence of Legionella species in domestic hot water systems.
Bates, M N; Maas, E; Martin, T; Harte, D; Grubner, M; Margolin, T
2000-06-09
To investigate the prevalence of Legionella spp. in the hot water systems of a representative sample of Wellington domestic residences with electrically heated hot water systems, and to investigate risk factors (eg water temperature, plumbing materials) for such contamination. 100 households with electrically heated hot water systems in the Wellington area were investigated. Samples of hot water from several hot water outlets were collected, and characteristics of the plumbing system were recorded. Water samples and swabs were cultured and further examined by polymerase chain reaction (PCR) and direct fluorescence antibody (DFA) testing to identify Legionella spp. and serogroups. No Legionella spp. were isolated by culture. PCR tested positive for Legionella in specimens from twelve residences. Six of these were also positive by DFA testing. The only environmental factor found to be associated with the presence of Legionella was recent plumbing work on the hot water system. Five of the twelve PCR-positive residences, and four of the six DFA-confirmed residences had hot water delivery temperatures in excess of 60 degrees C. The results suggest that either Legionellae colonise domestic hot water reticulation systems and/or that the organisms are killed during passage through the hot water tank. Both possibilities may be correct. Further work to characterise the microbial ecology of Legionella-positive hot water distribution systems would be useful, as would the development of improved methods for culturing the organisms from potable water.
THE EFFECT OF NUCLEAR EXPLOSIONS ON COMMERCIALLY PACKAGED BEVERAGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, E.R.; Sampson, G.O.; Sharf, J.M.
Representative commerciaily packaged beverages, such as soft drinks and beer, in glass bottles and metal cans were exposed to the radiation from nuclear explosions. Preliminary experimental resulthe were obtained from test layouts exposed to a detonation of approximately nominal yield. Extensive test layouts were subsequently exposed during Operation Cue, of 50% greater than nominal yield, at varying distances from Ground Zero. These commerically packaged soft drinks and beer in giass botties or metal cans survived the blast overpressures even as close as 1270 ft from Ground Zero, and at more remote distances, with most failures being caused by flying missiles,more » crushing by surrounding structures, or dislodgment from shelves. Induced radioactivity, subsequently measured on representative samples, was not great in either soft drinks or beer, even at the forward positions, and these beverages could be used as potable water sources for immediate emergency purposes as soon as the storage area ms safe to enter after a nuclear explosion. Although containers showed some induced radioactivity, none of this activity was transferred to the contents. Some flavor change was found in the beverages by taste panels, more in beer than in soft drinks, but was insufficient to detract from their potential usage as emergency supplies of potable water. (auth)« less
Sacchetti, Rossella; Baldissarri, Augusto; De Luca, Giovanna; Lucca, Paola; Stampi, Serena; Zanetti, Franca
2006-01-01
The investigation was carried out by evaluating the microbiological characteristics of the water before and after treatment with Er:YAG laser and turbine. The study was carried out in 2 dental surgeries. In both cases the laser and dental units were served by two independent circuits, fed by the same potable tap water. Samples were taken from the water supplying and the water leaving the turbine and laser before and after treatment on the same patient. Total heterotrophic plate count was measured at 36 degrees C and at 22 degrees C, and the presence of Staphylococcus species and non-fermenting Gram negative bacteria was investigated. Bacterial contamination was found within the circuit, especially in the laser device. Pseudomonas aeruginosa was detected in only 1 sample of supply water, in 11.1 % and in 19.4 % of the samples from the turbine and the laser respectively. No evidence of Staphylococcus aureus was found. The contamination of supply water was low, whereas that of the water leaving the handpieces of the 2 devices was high, especially in the laser. Attention should be paid to the control of the water leaving laser devices, given the increasingly wide use of such instruments in dental treatment exposed to risk of infection.
Rainwater harvesting in American Samoa: current practices and indicative health risks.
Kirs, Marek; Moravcik, Philip; Gyawali, Pradip; Hamilton, Kerry; Kisand, Veljo; Gurr, Ian; Shuler, Christopher; Ahmed, Warish
2017-05-01
Roof-harvested rainwater (RHRW) is an important alternative source of water that many island communities can use for drinking and other domestic purposes when groundwater and/or surface water sources are contaminated, limited, or simply not available. The aim of this pilot-scale study was to investigate current RHRW practices in American Samoa (AS) and to evaluate and compare the quality of water from common potable water sources including RHRW stored in tanks, untreated stream water, untreated municipal well water, and treated municipal tap water samples. Samples were analyzed using culture-based methods, quantitative polymerase chain reaction (qPCR), and 16S amplicon sequencing-based methods. Based on indicator bacteria (total coliform and Escherichia coli) concentrations, the quality of RHRW was slightly lower than well and chlorinated tap water but exceeded that of untreated stream water. Although no Giardia or Leptospira spp. were detected in any of the RHRW samples, 86% of the samples were positive for Cryptosporidium spp. All stream water samples tested positive for Cryptosporidium spp. Opportunistic pathogens (Pseudomonas aeruginosa and Mycobacterium intracellulare) were also detected in the RHRW samples (71 and 21% positive samples, respectively). Several potentially pathogenic genera of bacteria were also detected in RHRW by amplicon sequencing. Each RHRW system was characterized by distinct microbial communities, 77% of operational taxonomic units (OTUs) were detected only in a single tank, and no OTU was shared by all the tanks. Risk of water-borne illness increased in the following order: chlorinated tap water/well water < RHRW < stream water. Frequent detection of opportunistic pathogens indicates that RHRW should be treated before use. Stakeholder education on RHRW system design options as well as on importance of regular cleaning and proper management techniques could improve the quality of the RHRW in AS.
Code of Federal Regulations, 2012 CFR
2012-10-01
... waters, non-potable waters, and water-reuse-based water supplies; (2) Has a positive effect on public and... THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Appraisal Investigations § 404.44 What criteria... in the investigation, whether the alternative: (1) Identifies viable water supplies and water rights...
Code of Federal Regulations, 2013 CFR
2013-10-01
... waters, non-potable waters, and water-reuse-based water supplies; (2) Has a positive effect on public and... THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Appraisal Investigations § 404.44 What criteria... in the investigation, whether the alternative: (1) Identifies viable water supplies and water rights...
Code of Federal Regulations, 2014 CFR
2014-10-01
... waters, non-potable waters, and water-reuse-based water supplies; (2) Has a positive effect on public and... THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Appraisal Investigations § 404.44 What criteria... in the investigation, whether the alternative: (1) Identifies viable water supplies and water rights...
As the reuse of alternative water sources continues to gain popularity, public utilities and other stakeholders are seeking guidance on pathogen treatment requirements and monitoring approaches for nonpotable use of onsite collected waters. Given that alternative water...
ERIC Educational Resources Information Center
Roman, Harry T.
2011-01-01
It is important to let students see the value of mathematics in design--and how mathematics lends perspective to problem solving. In this article, the author describes a water-service challenge which enables students to design a water utility system that uses surface runoff into an open reservoir as the potable water source. This challenge…
9 CFR 3.139 - Food and water requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Food and water requirements. 3.139..., and Marine Mammals Transportation Standards § 3.139 Food and water requirements. (a) All live animals shall be offered potable water within 4 hours prior to being transported in commerce. Dealers...
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
30 CFR 75.1718-1 - Drinking water; quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...
9 CFR 3.139 - Food and water requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Food and water requirements. 3.139..., and Marine Mammals Transportation Standards § 3.139 Food and water requirements. (a) All live animals shall be offered potable water within 4 hours prior to being transported in commerce. Dealers...
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
30 CFR 75.1718-1 - Drinking water; quality.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...
30 CFR 75.1718-1 - Drinking water; quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
30 CFR 75.1718-1 - Drinking water; quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
30 CFR 75.1718 - Drinking water.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...
30 CFR 75.1718-1 - Drinking water; quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...
Due to their extensive use, silver nanoparticles (Ag NPs) are likely to occur in drinking water sources. Once released into the environment they are considered an emerging contaminant in water and wastewater. The main objective of this research is to investigate the removal of di...
Crew Exploration Vehicle (CEV) Potable Water System Verification Description
NASA Technical Reports Server (NTRS)
Peterson, Laurie; DeVera, Jean; Vega, Leticia; Adam, Nik; Steele, John; Rector, Tony; Gazda, Daniel; Roberts, Michael
2008-01-01
The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial
Trautwein, Christoph; Berset, Jean-Daniel; Wolschke, Hendrik; Kümmerer, Klaus
2014-09-01
In 2030, the World Health Organization estimates that more than 350 million people will be diagnosed with diabetes. Consequently, Metformin - the biguanide drug of choice orally administered for diabetes type II - is anticipated to see a spike in production. Unlike many pharmaceutical drugs, Metformin (Met) is not metabolized by humans but passes through the body unchanged. Entering aquatic compartments, such as in sewage, it can be bacterially transformed to the ultimate transformation product Guanylurea (Gua). Sampling over one week (n=5) from a Southern German sewage treatment plant revealed very high average (AV) concentrations in influent (AVMet=111,800ng/L, AVGua=1300ng/L) and effluent samples (AVMet=4800ng/L, AVGua=44,000ng/L). To provide a more complete picture of the distribution and potential persistence of these compounds in the German water cycle, a new, efficient and highly sensitive liquid chromatography mass spectrometric method with direct injection was used for the measurement of Metformin and Guanylurea in drinking, surface, sewage and seawater. Limits of quantification (LOQ) ranging from 2-10ng/L allowed the detection of Metformin and Guanylurea in different locations such as: Lake Constance (n=11: AVMet=102ng/L, AVGua=16ng/L), river Elbe (n=12: AVMet=472ng/L, AVGua=9ng/L), river Weser (n=6: AVMet=349ng/L, AVGua=137ng/L) and for the first time in marine North Sea water (n=14: AVMet=13ng/L, AVGua=11ng/L). Based on daily water discharges, Metformin loads of 15.2kg/d (Elbe) and 6.4kg/d (Weser) into the North Sea were calculated. Lake Constance is used to abstract potable water which is further purified to be used as drinking water. A first screening of two tap water samples contained 2ng/L and 61ng/L of Metformin, respectively. The results of this study suggest that Metformin and Guanylurea could be distributed over a large fraction of the world's potable water sources and oceans. With no natural degradation processes, these compounds can be easily reintroduced to humans as they enter the food chain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Macova, Miroslava; Toze, Simon; Hodgers, Leonie; Mueller, Jochen F; Bartkow, Michael; Escher, Beate I
2011-08-01
A bioanalytical test battery was used for monitoring organic micropollutants across an indirect potable reuse scheme testing sites across the complete water cycle from sewage to drinking water to assess the efficacy of different treatment barriers. The indirect potable reuse scheme consists of seven treatment barriers: (1) source control, (2) wastewater treatment plant, (3) microfiltration, (4) reverse osmosis, (5) advanced oxidation, (6) natural environment in a reservoir and (7) drinking water treatment plant. Bioanalytical results provide complementary information to chemical analysis on the sum of micropollutants acting together in mixtures. Six endpoints targeting the groups of chemicals with modes of toxic action of particular relevance for human and environmental health were included in the evaluation: genotoxicity, estrogenicity (endocrine disruption), neurotoxicity, phytotoxicity, dioxin-like activity and non-specific cell toxicity. The toxicity of water samples was expressed as toxic equivalent concentrations (TEQ), a measure that translates the effect of the mixtures of unknown and potentially unidentified chemicals in a water sample to the effect that a known reference compound would cause. For each bioassay a different representative reference compound was selected. In this study, the TEQ concept was applied for the first time to the umuC test indicative of genotoxicity using 4-nitroquinoline as the reference compound for direct genotoxicity and benzo[a]pyrene for genotoxicity after metabolic activation. The TEQ were observed to decrease across the seven treatment barriers in all six selected bioassays. Each bioassay showed a differentiated picture representative for a different group of chemicals and their mixture effect. The TEQ of the samples across the seven barriers were in the same order of magnitude as seen during previous individual studies in wastewater and advanced water treatment plants and reservoirs. For the first time a benchmarking was performed that allows direct comparison of different treatment technologies and covers several orders of magnitude of TEQ from highly contaminated sewage to drinking water with TEQ close or below the limit of detection. Detection limits of the bioassays were decreased in comparison to earlier studies by optimizing sample preparation and test protocols, and were comparable to or lower than the quantification limits of the routine chemical analysis, which allowed monitoring of the presence and removal of micropollutants post Barrier 2 and in drinking water. The results obtained by bioanalytical tools were reproducible, robust and consistent with previous studies assessing the effectiveness of the wastewater and advanced water treatment plants. The results of this study indicate that bioanalytical results expressed as TEQ are useful to assess removal efficiency of micropollutants throughout all treatment steps of water recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.
POPULATION DIVERSITY IN MODEL DRINKING WATER BIOFILMS RECEIVING CHLORINE OR MONOCHLORAMINE RESIDUAL
Most water utilities add monochloramine or chlorine as a residual disinfectant in potable water distribution systems (WDS) to control bacterial regrowth. While monochloramine is considered more stable than chlorine, little is known about the fate of this disinfectant or the effec...
Development of an Analytical Method to Extract and Detect Pharmaceuticals in Plant Matrices
It has been shown that human-use macrolide antibiotics (azithromycin, clindamycin, and roxithromycin) are environmentally available in wastewaters, source waters, and biosolids. Since some water authorities use the treated wastewater effluent for non-potable water reuse such as f...
Irrigation of floricultural and nursery crops with saline wastewaters
USDA-ARS?s Scientific Manuscript database
Water security has become a major concern throughout the western United States and other arid and semiarid regions worldwide. Uncertainties concerning the allocation and dependability of good quality water have led to increased interest in the use alternative, non-potable waters for irrigated agric...
18 CFR 806.32 - Reopening/modification.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Reopening/modification. 806.32 Section 806.32 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION... temporary source of potable water at the project sponsor's expense, pending a final determination of...
Review of cost versus scale: water and wastewater treatment and reuse processes.
Guo, Tianjiao; Englehardt, James; Wu, Tingting
2014-01-01
The US National Research Council recently recommended direct potable water reuse (DPR), or potable water reuse without environmental buffer, for consideration to address US water demand. However, conveyance of wastewater and water to and from centralized treatment plants consumes on average four times the energy of treatment in the USA, and centralized DPR would further require upgradient distribution of treated water. Therefore, information on the cost of unit treatment processes potentially useful for DPR versus system capacity was reviewed, converted to constant 2012 US dollars, and synthesized in this work. A logarithmic variant of the Williams Law cost function was found applicable over orders of magnitude of system capacity, for the subject processes: activated sludge, membrane bioreactor, coagulation/flocculation, reverse osmosis, ultrafiltration, peroxone and granular activated carbon. Results are demonstrated versus 10 DPR case studies. Because economies of scale found for capital equipment are counterbalanced by distribution/collection network costs, further study of the optimal scale of distributed DPR systems is suggested.
Autogenous Metallic Pipe Leak Repair in Potable Water Systems.
Tang, Min; Triantafyllidou, Simoni; Edwards, Marc A
2015-07-21
Copper and iron pipes have a remarkable capability for autogenous repair (self-repair) of leaks in potable water systems. Field studies revealed exemplars that metallic pipe leaks caused by nails, rocks, and erosion corrosion autogenously repaired, as confirmed in the laboratory experiments. This work demonstrated that 100% (N = 26) of 150 μm leaks contacting representative bulk potable water in copper pipes sealed autogenously via formation of corrosion precipitates at 20-40 psi, pH 3.0-11.0, and with upward and downward leak orientations. Similar leaks in carbon steel pipes at 20 psi self-repaired at pH 5.5 and 8.5, but two leaks did not self-repair permanently at pH 11.0 suggesting that water chemistry may control the durability of materials that seal the leaks and therefore the permanence of repair. Larger 400 μm holes in copper pipes had much lower (0-33%) success of self-repair at pH 3.0-11.0, whereas all 400 μm holes in carbon steel pipes at 20 psi self-repaired at pH 4.0-11.0. Pressure tests indicated that some of the repairs created at 20-40 psi ambient pressure could withstand more than 100 psi without failure. Autogenous repair has implications for understanding patterns of pipe failures, extending the lifetime of decaying infrastructure, and developing new plumbing materials.
Impact of green roofs on stormwater quality in a South Australian urban environment.
Razzaghmanesh, M; Beecham, S; Kazemi, F
2014-02-01
Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing. © 2013.
21 CFR 1240.95 - Sanitation of water boats.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...
21 CFR 1240.95 - Sanitation of water boats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...
21 CFR 1240.95 - Sanitation of water boats.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...
21 CFR 1240.95 - Sanitation of water boats.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...
21 CFR 1240.95 - Sanitation of water boats.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...
Code of Federal Regulations, 2014 CFR
2014-10-01
...; (3) Addresses environmental quality and source water protection issues; (4) Addresses opportunities to treat and use low-quality or non-potable water, water-reuse based supplies, and brackish and... technologies to reduce water use and water system costs; (6) Addresses opportunities to take advantage of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... global economic crisis. Economic development has also been hindered and disrupted by electoral fraud and... damaged water supplies, leaving whole communities lacking potable water. According to the United Nations...
GLYPHOSATE REMOVAL FROM DRINKING WATER
Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...
Ultraviolet disinfection of potable water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, R.L.
Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as wellmore » as the advantages and disadvantages of UV disinfection. 38 refs.« less
Widmer, Jocelyn M.; Weppelmann, Thomas A.; Alam, Meer T.; Morrissey, B. David; Redden, Edsel; Rashid, Mohammed H.; Diamond, Ulrica; Ali, Afsar; De Rochars, Madsen Beau; Blackburn, Jason K.; Johnson, Judith A.; Morris, J. Glenn
2014-01-01
We inventoried non-surface water sources in the Leogane and Gressier region of Haiti (approximately 270 km2) in 2012 and 2013 and screened water from 345 sites for fecal coliforms and Vibrio cholerae. An international organization/non-governmental organization responsible for construction could be identified for only 56% of water points evaluated. Sixteen percent of water points were non-functional at any given time; 37% had evidence of fecal contamination, with spatial clustering of contaminated sites. Among improved water sources (76% of sites), 24.6% had fecal coliforms versus 80.9% in unimproved sources. Fecal contamination levels increased significantly from 36% to 51% immediately after the passage of Tropical Storm Sandy in October of 2012, with a return to 34% contamination in March of 2013. Long-term sustainability of potable water delivery at a regional scale requires ongoing assessment of water quality, functionality, and development of community-based management schemes supported by a national plan for the management of potable water. PMID:25071005
Widmer, Jocelyn M; Weppelmann, Thomas A; Alam, Meer T; Morrissey, B David; Redden, Edsel; Rashid, Mohammed H; Diamond, Ulrica; Ali, Afsar; De Rochars, Madsen Beau; Blackburn, Jason K; Johnson, Judith A; Morris, J Glenn
2014-10-01
We inventoried non-surface water sources in the Leogane and Gressier region of Haiti (approximately 270 km(2)) in 2012 and 2013 and screened water from 345 sites for fecal coliforms and Vibrio cholerae. An international organization/non-governmental organization responsible for construction could be identified for only 56% of water points evaluated. Sixteen percent of water points were non-functional at any given time; 37% had evidence of fecal contamination, with spatial clustering of contaminated sites. Among improved water sources (76% of sites), 24.6% had fecal coliforms versus 80.9% in unimproved sources. Fecal contamination levels increased significantly from 36% to 51% immediately after the passage of Tropical Storm Sandy in October of 2012, with a return to 34% contamination in March of 2013. Long-term sustainability of potable water delivery at a regional scale requires ongoing assessment of water quality, functionality, and development of community-based management schemes supported by a national plan for the management of potable water. © The American Society of Tropical Medicine and Hygiene.
Microfluidic desalination techniques and their potential applications.
Roelofs, S H; van den Berg, A; Odijk, M
2015-09-07
In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, B; Beller, H; Bartel, C M
This project was designed to investigate the important but virtually unstudied topic of the subsurface transport and fate of Endocrine Disrupting Compounds (EDCs) when treated wastewater is used for landscape irrigation (non-potable water reuse). Although potable water reuse was outside the scope of this project, the investigation clearly has relevance to such water recycling practices. The target compounds, which are discussed in the following section and include EDCs such as 4-nonylphenol (NP) and 17{beta}-estradiol, were studied not only because of their potential estrogenic effects on receptors but also because they can be useful as tracers of wastewater residue in groundwater.more » Since the compounds were expected to occur at very low (part per trillion) concentrations in groundwater, highly selective and sensitive analytical techniques had to be developed for their analysis. This project assessed the distributions of these compounds in wastewater effluents and groundwater, and examined their fate in laboratory soil columns simulating the infiltration of treated wastewater into an aquifer (e.g., as could occur during irrigation of a golf course or park with nonpotable treated water). Bioassays were used to determine the estrogenic activity present in effluents and groundwater, and the results were correlated with those from chemical analysis. In vitro assays for estrogenic activity were employed to provide an integrated measure of estrogenic potency of environmental samples without requiring knowledge or measurement of all bioactive compounds in the samples. For this project, the Las Positas Golf Course (LPGC) in the City of Livermore provided an ideal setting. Since 1978, irrigation of this area with treated wastewater has dominated the overall water budget. For a variety of reasons, a group of 10 monitoring wells were installed to evaluate wastewater impacts on the local groundwater. Additionally, these wells were regularly monitored for tritium ({sup 3}H). Overall volumes of irrigation water have been recorded along with total flows through the Livermore Water Reclamation Plant (LWRP). The Environmental Protection Department at LLNL has carefully monitored {sup 3}H effluent leaving the laboratory for many years. For two years preceding the initiation of this project, Grayson and Hudson, working with LWRP staff, had demonstrated that these data could be used to accurately calculate the {sup 3}H concentration in the applied irrigation water as a function of time. This was accomplished by performing two carefully monitored tritium releases from LLNL and following the {sup 3}H through the LWRP. Combining these data with our ability to age-date groundwater using the {sup 3}H-{sup 3}He age-dating technique, it was possible determine both the age and the degree of dilution from other water sources. This information was critical in the evaluation of observed concentrations of trace organic compounds from wastewater. The project included the following tasks: (1) Develop a conceptual model for Las Positas Golf Course (LPGC) irrigation that integrates existing meteorological, hydrologic, and environmental monitoring data. (2) Develop analytical methods (involving solid-phase extraction and isotope dilution LC/MS/MS) for the specific and sensitive measurement of target EDCs. (3) Develop a bioassay for estrogenic activity for application to effluent and groundwater samples. (4) Perform detailed hydrological evaluation of groundwater taken from LPGC. (5) Characterize the source term for target EDCs in wastewater. (6) Evaluate the utility of EDCs as source tracers for groundwater contamination.« less
Movement of Endotoxin Through Soil Columns
Goyal, Sagar M.; Gerba, Charles P.; Lance, J. Clarence
1980-01-01
Land treatment of wastewater is an attractive alternative to conventional sewage treatment systems and is gaining widespread acceptance. Although land application systems prevent surface water pollution and augment the available water supplies, the potential dangers to human health should be evaluated. Since sewage may contain high amounts of bacterial endotoxin, the removal of endotoxin from sewage by percolation through soil was investigated. It was found that 90 to 99% of the endotoxin was removed after travel of sewage through 100 to 250 cm of loamy sand soil. When distilled water was allowed to infiltrate into the soil to simulate rainfall, the endotoxin was mobilized and moved in a concentrated band through the soil column. On testing samples from actual land treatment sites, as much as 480 ng of endotoxin per milliliter was found in some groundwater samples. The presence of endotoxin in potable water is known to be a potential problem under some circumstances, but the importance of endotoxin in water supplies has not been fully assessed. Therefore, the design, operation, and management of land application systems should take into account the fate of endotoxin in groundwater beneath the sites. PMID:7387154
Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul
2011-10-01
A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Waterborne outbreak of gastroenteritis caused by Norovirus transmitted through drinking water].
Godoy, P; Nuín, C; Alsedà, M; Llovet, T; Mazana, R; Domínguez, A
2006-10-01
The aim of this study was to conduct an investigation into an outbreak of waterborne disease caused by Norovirus due to the consumption of contaminated drinking water. The first week after the school summer holidays we detected an outbreak of gastroenteritis at a school in Borges Blanques (Lleida, Spain). A retrospective cohort study was carried out to investigate: water consumption and food (six items). We assessed RNA Norovirus by RT-PCR in 6 stool samples. The risk of gastroenteritis was assessed by applying adjusted risk ratio (RRa) analysis at 95% confidence intervals (CI). The overall attack rate was 45% (96/213). The main symptoms were: abdominal pain, 88.4% (84/95); nausea, 65.9% (62/94), and vomiting, 64.6% (62/96). The consumption of school drinking water was statistically associated with the disease (RRa: 2.8; 95% CI: 1.3-6.2). The school water tank was dirty, but this drinking water was qualified as potable. Six stool samples gave positive results for Norovirus. Norovirus caused this waterborne outbreak of gastroenteritis transmitted through treated drinking water. It should be obligatory to regularly clean school drinking water deposit tanks, especially after the summer holidays.
NASA Technical Reports Server (NTRS)
Rodgers, E. B.; Obenhuber, D. C.; Huff, T. L.
1992-01-01
NASA is developing a water recovery system (WRS) for Space Station Freedom to reclaim human waste water for reuse by astronauts as hygiene or potable water. A water recovery test (WRT) currently in progress investigates the performance of a prototype of the WRS. Analysis of biofilm accumulation, the potential for microbially influenced corrosion (MIC) in the WRT, and studies of iodine disinfection of biofilm are reported. Analysis of WRT components indicated the presence of organic deposits and biofilms in selected tubing. Water samples for the WRT contained acid-producing and sulfate-reducing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples; however, stainless steel corrosion rates were not accelerated. Biofilm iodine sensitivity tests using an experimental laboratory scale recycled water system containing a microbial check valve (MCV) demonstrated that an iodine concentration of 1 to 2 mg/L was ineffective in eliminating microbial biofilm. For complete disinfection, an initial concentration of 16 mg/L was required, which was gradually reduced by the MCV over 4 to 8 hours to 1 to 2 mg/L. This treatment may be useful in controlling biofilm formation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... apply to changes in the requirements of FWPCA or SDWA. (k) Provide potable water to communities through... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.9 Uses. Grant funds may be used...) Construction of new wells, reservoirs, transmission lines, treatment plants, and other sources of water. (f...
Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico
This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...
24 CFR 3280.602 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the free atmosphere between the lowest opening from any pipe or faucet supplying water to a tank, plumbing fixture, water supplied appliances, or other device and the flood level rim of the receptacle... other liquids, mixtures, or substances into the distributing pipes of a potable supply of water from any...
Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway.
Allibone, Rachel; Cronin, Shane J; Charley, Douglas T; Neall, Vince E; Stewart, Robert B; Oppenheimer, Clive
2012-04-01
Ambrym in Vanuatu is a persistently degassing island volcano whose inhabitants harvest rainwater for their potable water needs. The findings from this study indicate that dental fluorosis is prevalent in the population due to fluoride contamination of rainwater by the volcanic plume. A dental survey was undertaken of 835 children aged 6-18 years using the Dean's Index of Fluorosis. Prevalence of dental fluorosis was found to be 96% in the target area of West Ambrym, 71% in North Ambrym, and 61% in Southeast Ambrym. This spatial distribution appears to reflect the prevailing winds and rainfall patterns on the island. Severe cases were predominantly in West Ambrym, the most arid part of the island, and the most commonly affected by the volcanic plume. Over 50 km downwind, on a portion of Malakula Island, the dental fluorosis prevalence was 85%, with 36% prevalence on Tongoa Island, an area rarely affected by volcanic emissions. Drinking water samples from West Ambrym contained fluoride levels from 0.7 to 9.5 ppm F (average 4.2 ppm F, n = 158) with 99% exceeding the recommended concentration of 1.0 ppm F. The pathway of fluoride-enriched rainwater impacting upon human health as identified in this study has not previously been recognised in the aetiology of fluorosis. This is an important consideration for populations in the vicinity of degassing volcanoes, particularly where rainwater comprises the primary potable water supply for humans or animals.
Microbial Risk Assessment of Air Conditioning Condensate Reuse
Air conditioning condensate can provide a substantial water source for building-scale collection and non-potable use. Although produced water is anticipated to be of generally high quality, the potential for microbial contamination by biofilm-associated opportunistic pathogens t...
21 CFR 1240.86 - Protection of pier water system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...
21 CFR 1240.86 - Protection of pier water system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...
21 CFR 1240.86 - Protection of pier water system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...
21 CFR 1250.86 - Water for making ice.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable water...
21 CFR 1250.86 - Water for making ice.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable water...
9 CFR 3.89 - Food and water requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Food and water requirements. 3.89... Transportation of Nonhuman Primates 2 Transportation Standards § 3.89 Food and water requirements. (a) Each... nonhuman primate must be offered potable water at least once every 12 hours. These time periods apply to...
21 CFR 1250.86 - Water for making ice.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water for making ice. 1250.86 Section 1250.86 Food... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable water shall be piped into a freezer for making ice for drinking and culinary purposes. ...
21 CFR 1250.86 - Water for making ice.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable water...
NASA Technical Reports Server (NTRS)
Carter, Donald Layne
2017-01-01
The ISS WRS produces potable water from crew urine, crew latent, and Sabatier product water. This system has been operational on ISS since November 2008, producing over 30,000 L of water during that time. The WRS includes a Urine Processor Assembly (UPA) to produce a distillate from the crew urine. This distillate is combined with the crew latent and Sabatier product water and further processed by the Water Processor Assembly (WPA) to the potable water. The UPA and WPA use technologies commonly used on ISS for water purification, including filtration, distillation, adsorption, ion exchange, and catalytic oxidation. The primary challenge with the design and operation of the WRS has been with implementing these technologies in microgravity. The absence of gravity has created unique issues that impact the constituency of the waste streams, alter two-phase fluid dynamics, and increases the impact of particulates on system performance. NASA personnel continue to pursue upgrades to the existing design to improve reliability while also addressing their viability for missions beyond ISS.
Baig, Shams Ali A; Xu, Xinhua; Khan, Rashid
2012-01-01
In mid-July 2010 flash flooding in Pakistan destroyed the basic water, environmental sanitation and livelihood infrastructures in 82 districts. Two months later, the local press of Swat (northern Pakistan) reported that several residents of Marghazar town became ill and were hospitalized after drinking contaminated water. A non-governmental organization (Oxfam GB) team took action to determine the causes of this incident and analyzed the community drinking water supply. Standard methods were used to analyze six physio-chemical and four microbiological water quality parameters at five selected sampling locations in the water supply system. The samples from sites numbers (SN)02, 03, 04 and 05 were found to be microbiologically unfit for drinking due to the presence of Escherichia coli, Shigella, Salmonella and Staphylococcus aureus (range 18-96 ± 14 cfu/100 mL). However, the pH, conductivity, total dissolved solid, total hardness as calcium carbonate and nitrate as NO3(-2) of all the samples were within WHO permissible limits. Higher turbidities were recorded at SN04 and 05 of 6 ± 0.23 and 9 ± 1.23, respectively. Quantitative results revealed the presence of pathogenic organisms and water quality risk factors due to the damaged water and environmental sanitation infrastructure. Continued water quality monitoring, the application of household based disinfectants, and healthy domestic hygiene practices are highly recommended in similar circumstances.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...
NASA Astrophysics Data System (ADS)
Gulliver, D. M.; Lowry, G. V.; Gregory, K.
2013-12-01
Geological carbon sequestration is likely to be part of a comprehensive strategy to minimize the atmospheric release of greenhouse gasses, establishing a concern of sequestered CO2 leakage into overlying potable aquifers. Leaking CO2 may affect existing biogeochemical processes and therefore water quality. There is a critical need to understand the evolution of CO2 exposed microbial communities that influence the biogeochemistry in these freshwater aquifers. The evolution of microbial ecology for different CO2 exposure concentrations was investigated using fluid-slurry samples obtained from a shallow freshwater aquifer (55 m depth, 0.5 MPa, 22 °C, Escatawpa, MS). The microbial community of well samples upstream and downstream of CO2 injection was characterized. In addition, batch vessel experiments were conducted with the upstream aquifer samples exposed to varying pCO2 from 0% to 100% under reservoir temperature and pressure for up to 56 days. The microbial community of the in situ experiment and the batch reactor experiment were analyzed with 16S rRNA clone libraries and qPCR. In both the in situ experiment and the batch reactor experiment, DNA concentration did not correlate with CO2 exposure. Both the in situ experiment and the batch reactors displayed a changing microbial community with increased CO2 exposure. The well water isolate, Curvibacter, appeared to be the most tolerant genus to high CO2 concentrations in the in situ experiments and to mid-CO2 concentrations in the batch reactors. In batch reactors with pCO2 concentrations higher than experienced in situ (pCO2 = 0.5 MPa), Pseudomonas appeared to be the most tolerant genus. Findings provide insight into a dynamic biogeochemical system that will alter with CO2 exposure. Adapted microbial populations will eventually give rise to the community that will impact the metal mobility and water quality. Knowledge of the surviving microbial populations will enable improved models for predicting the fate of CO2 following leakage and lead to better strategies for ensuring the quality of potable aquifer water.
Reese, Ronald S.; Alvarez-Zarikian, Carlos A.
2007-01-01
Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement between flow zones is better in southwestern Florida than in southeastern Florida. Vertical hydraulic conductivity in the upper part of the aquifer also may be higher in southeastern Florida because of unconformities present at formation contacts within the aquifer that may be better developed in this area. Recovery efficiencies per cycle varied widely. Eight sites had recovery efficiencies of less than about 10 percent for the first cycle, and three of these sites had not yet achieved recoveries exceeding 10 percent, even after three to five cycles. The highest recovery efficiency achieved per cycle was 94 percent. Three southeastern coastal sites and two southwestern coastal sites have achieved potable water recoveries per cycle exceeding 60 percent. One of the southeastern coastal sites and both of the southwestern coastal sites achieved good recoveries, even with long storage periods (from 174 to 191 days). The high recovery efficiencies for some cycles apparently resulted from water banking?an operational approach whereby an initial cycle with a large recharge volume of water is followed by cycles with much smaller recharge volume. This practice flushes out the aquifer around the well and builds up a buffer zone that can maintain high recovery efficiency in the subsequent cycles. The relative performance of all sites with adequate cycle test data was determined. Performance was arbitrarily grouped into ?high? (greater than 40 percent), ?medium? (between 20 and 40 percent), and ?low? (less than 20 percent) categories based primarily on their cumulative recovery efficiency for the first seven cycles, or projected to seven cycles if fewer cycles were conducted. The ratings of three sites, considered to be borderline, were modified using the overall recharge rate derived from the cumulative recharge volumes. A higher overall recharge rate (greater than 300 million gallons per year) can improve recovery efficiency because of the water-bankin
Monitoring from source to tap: the new paradigm for ensuring water security and quality
NASA Astrophysics Data System (ADS)
Kroll, Dan
2011-06-01
The threat of terrorist action targeting water supplies is often overlooked for the more historically obvious threats of an air attack or a dirty bomb. Studies have shown that an attack on water is simple to orchestrate, inexpensive and can result in mass casualties. The twin motivators of the terrorist threat to water along with consumer demands for safe and potable supplies has lead to a sea change in the drinking water industry. From a historical perspective, most monitoring in the distribution system as well as source water has been relegated to the occasional snapshot provided by grab sampling for a few limited parameters or the infrequent regulatory testing required by mandates such as the Total Coliform Rule. New technologies are being deployed to ameliorate the threat from both intentional and accidental water contamination. The threat to water and these new technologies are described as well as needs and requirements for new sensors to improve the monitoring structure.
Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films.
Alrousan, Dheaya M A; Dunlop, Patrick S M; McMurray, Trudy A; Byrne, J Anthony
2009-01-01
Photocatalysis is a promising method for the disinfection of potable water in developing countries where solar irradiation can be employed, thus reducing the cost of treatment. In addition to microbial contamination, water normally contains suspended solids, dissolved inorganic ions and organic compounds (mainly humic substances) which may affect the efficacy of solar photocatalysis. In this work the photocatalytic and photolytic inactivation rates of Escherichia coli using immobilised nanoparticle TiO2 films were found to be significantly lower in surface water samples in comparison to distilled water. The presence of nitrate and sulphate anions spiked into distilled water resulted in a decrease in the rate of photocatalytic disinfection. The presence of humic acid, at the concentration found in the surface water, was found to have a more pronounced affect, significantly decreasing the rate of disinfection. Adjusting the initial pH of the water did not markedly affect the photocatalytic disinfection rate, within the narrow range studied.
NASA Astrophysics Data System (ADS)
Hamid, T.; Ahmed, K. M.
2016-12-01
Bangladesh is among the most densely populated countries in the world. Rapid and unplanned urbanization in Bangladesh has resulted in heterogeneous land use pattern and larger demands for municipal water. To meet the ever-increasing demand of water for such population, the usage of treated domestic waste water (DWW) has become a viable option that can serve specific purposes, i.e. homestead irrigation, managed aquifer recharge (MAR) in major cities like Khulna, the largest city in the southwest coastal region. It is an attractive solution to minimize the deficit between the demand and supply of water in the study area where, in specific parts, city-dwellers suffer year round shortage of potable water due to high salinity in shallow depths. However, certain degree of treatment is mandatory for DWW in order to ensure the compliance of the output water with a set of standards and regulations for the DWW reuse. At present, the DWW is being treated through Constructed Wetlands but the treated water is not used and discharged into the sewer system. Wastewater that has been treated through a constructed wetland is a resource that can be used for productive uses in homestead garden irrigation, artificial aquifer recharge, and other non-potable uses. The study addresses the effectiveness of constructed wetlands in improving the quality of wastewater through on the hydro-geochemical characterization of both raw and treated DWW as well as baseline water quality analysis of surface and ground water in and around the treatment plant with consideration of seasonal variations. The study aims at sustainable development through conservation of water, satisfaction of demands, reliability of water supply, contribution to urban food supply, sustenance of livelihood and replenishment of the depleting aquifer by assessing the suitability of the treated DWW for various non-potable uses and also to provide guidelines for possible uses of treated DWW without adverse impact on environment and ecology.
REMOVAL OF ORGANIC CONTAMINANTS FROM GROUNDWATER.
More are than lOO million Americans depend on groundwater as a source of drinking water. hree quarters of U.S. cities get their water supplies totally or in part from groundwater and one-third of the largest cities rely on groundwater for at least part of their potable water supp...
MTBE OXIDATION BYPRODUCTS FROM THE TREATMENT OF SURFACE WATERS BY OZONATION AND UV-OZONATION
In recent years, there has been considerable concern over the release of methyl tert-butyl ether (MTBE), as gasoline additive, into the aquifers used as potable water sources. MTBE readily dissolves in water and has entered the environment via gasoline spills and leaking...
7 CFR 1780.49 - Rural or Native Alaskan villages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...
7 CFR 1780.49 - Rural or Native Alaskan villages.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...
7 CFR 1780.49 - Rural or Native Alaskan villages.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...
7 CFR 1780.49 - Rural or Native Alaskan villages.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...
DISTRIBUTION SYSTEM: COST OF REPAIR AND REPLACEMENT
The Safe Drinking Water Act of 1974 mandates that EPA be concerned with the supply of potable water to the consumer. Although most emphasis has been placed on water quality as it leaves the treatment plant interest is increasing in the role of the distribution system in causing w...
Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies
One of the biggest challenges for humanity in the 21st century is easy access to purified and potable water. The presence of pathogens and toxins in water causes more than two million deaths annually, mostly among children under the age of five. Identifying and deploying effectiv...
SUSTAINABILITY OF THE FILTR&OACUTE;N FOR MICROBIAL DISINFECTION
A significant portion, ~20%, of the world's population lives without access to safe water. Point of use (POU) devices for disinfection have been under-utilized as a tool to provide access to safe water. One such effective POU for producing potable water is the Filtr&oacut...
The quality of potable water is such that the concentration of nutrients available for growth of microorganisms within distribution systems is limited. In such systems carbon is often the growth limiting nutrient. Research conducted in the Netherlands has indicated that low level...
Nuclear Energy for Water Desalting, A Bibliography.
ERIC Educational Resources Information Center
Kuhns, Helen F., Comp.; And Others
This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…
Delgado-Gardea, Ma Carmen E; Tamez-Guerra, Patricia; Gomez-Flores, Ricardo; Mendieta-Mendoza, Aurora; Zavala-Díaz de la Serna, Francisco Javier; Contreras-Cordero, Juan Francisco; Erosa-de la Vega, Gilberto; Pérez-Recoder, María Concepción; Sánchez-Ramírez, Blanca; González-Horta, Carmen; Infante-Ramírez, Rocío
2017-05-05
In areas lacking potable water treatment, drinking contaminated water may represent a public health threat. In addition to enteropathogenic bacteria and parasites, fecal contamination in water environments is associated with the transmission of enteric viruses and other causal agents of infectious disease. Rotavirus and norovirus are the main enteric viral agents responsible for diarrheic outbreaks. The aim of the present study was to detect seasonal variation of rotavirus and norovirus in the surface water at Bassaseachic Falls National Park during 2013. Rivers and streams within and nearby this park were sampled once in each season during 2013. Viral concentration was carried out by a handmade filtration equipment, using a commercial electropositive membrane coupled with the virus absortion elution technique (VIRADEL©). Detection of rotavirus and norovirus was performed by SYBR Green reverse transcription-real time polymerase chain reaction (SYBR GREEN© RT-qPCR) analyses. Norovirus genogroup II was detected in samples collected in June and October 2013. In the case of rotavirus, genogroup A was detected in March and June. The presence of rotavirus and norovirus was related to viral acute diarrhea in children less than five years of age, who were inhabiting the sampled areas. This may indicates that the contaminated water was potentially a risk factor for regional diarrheic outbreaks.
NASA Technical Reports Server (NTRS)
Wong, Willy; Garcia, Veronica; Castro, Victoria; Ott, Mark; Duane
2009-01-01
As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the vehicle. Pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony forming units (CFU) per ml. Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with non-sterile water and left at room temperature for over one month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, which included Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides., and Cupriavidus pauculus. After 5 days of incubation, these hoses were challenged with various chemical disinfectants including hydrogen peroxide, colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. Disinfection efficacy over time was measured by collecting daily heterotrophic plate counts following exposure to the disinfectants. A single flush with either 6% hydrogen peroxide solution or a mixture of 3% hydrogen peroxide and 400 ppb colloidal silver effectively reduced the bacterial concentrations to less than 1 CFU/ml for a period of up to 2 months. Testing results indicated that hydrogen peroxide and mixtures of hydrogen peroxide and colloidal silver have tremendous potential as alternative disinfectants for ISS water systems.
Education & Collection Facility GSHP Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joplin, Jeff
The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to amore » recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient system.« less
Water Collection from Air Humidity in Bahrain
NASA Astrophysics Data System (ADS)
Dahman, Nidal A.; Al Juboori, Khalil J.; BuKamal, Eman A.; Ali, Fatima M.; AlSharooqi, Khadija K.; Al-Banna, Shaima A.
2017-11-01
The Kingdom of Bahrain falls geographically in one of the driest regions in the world. Conventional fresh surface water bodies, such as rivers and lakes, are nonexistent and for water consumption, Bahrain prominently relies on the desalination of sea water. This paper presents an ongoing project that is being pursued by a group of student and their advising professors to investigate the viability of extracting water from air humidity. Dehumidifiers have been utilized as water extraction devices. Those devices have been distributed on six areas that were selected based on a rigorous geospatial modeling of historical meteorological data. The areas fall in residential and industrial neighborhoods that are located in the main island and the island of Muharraq. Water samples have been collected three times every week since May of 2016 and the collection process will continue until May of 2017. The collected water samples have been analyzed against numerous variables individually and in combinations including: amount of water collected per hour versus geographical location, amount of water collected per hour versus meteorological factors, suitability of collected water for potable human consumption, detection of air pollution in the areas of collection and the economy of this method of water collection in comparison to other nonconventional methods. An overview of the completed analysis results is presented in this paper.
Benowitz, Isaac; Fitzhenry, Robert; Boyd, Christopher; Dickinson, Michelle; Levy, Michael; Lin, Ying; Nazarian, Elizabeth; Ostrowsky, Belinda; Passaretti, Teresa; Rakeman, Jennifer; Saylors, Amy; Shamoonian, Elena; Smith, Terry-Ann; Balter, Sharon
2018-04-01
We investigated an outbreak of eight Legionnaires' disease cases among persons living in an urban residential community of 60,000 people. Possible environmental sources included two active cooling towers (air-conditioning units for large buildings) <1 km from patient residences, a market misting system, a community-wide water system used for heating and cooling, and potable water. To support a timely public health response, we used real-time polymerase chain reaction (PCR) to identify Legionella DNA in environmental samples within hours of specimen collection. We detected L. pneumophila serogroup 1 DNA only at a power plant cooling tower, supporting the decision to order remediation before culture results were available. An isolate from a power plant cooling tower sample was indistinguishable from a patient isolate by pulsed-field gel electrophoresis, suggesting the cooling tower was the outbreak source. PCR results were available <1 day after sample collection, and culture results were available as early as 5 days after plating. PCR is a valuable tool for identifying Legionella DNA in environmental samples in outbreak settings.
EXPLORATORY OCCURRENCE OF HETEROTROPHIC BACTERIA IN POTABLE WATER
Heterotrophic bacteria (HPC) are common to community distribution systems conveying treated drinking water to consumers. There are known opportunistic pathogens among these organisms, for example some Legionella and some Aeromonas strains; and there may be others of which we are ...
Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...
Ecology of Legionella pneumophila within water distribution systems.
Stout, J E; Yu, V L; Best, M G
1985-01-01
The reservoir for hospital-acquired Legionnaires disease has been shown to be the potable water distribution system. We investigated the influence of the natural microbial population and sediment (scale and organic particulates) found in water systems as growth-promoting factors for Legionella pneumophila. Our in vitro experiments showed that: (i) water from hot-water storage tank readily supported the survival of L. pneumophila, (ii) the concentration of sediment was directly related to the survival of L. pneumophila, (iii) the presence of environmental bacteria improved the survival of L. pneumophila via nutritional symbiosis, (iv) the combination of sediment and environmental bacteria acted synergistically to improve the survival of L. pneumophila, and (v) the role of sediment in this synergistic effect was determined to be nutritional. Sediment was found to stimulate the growth of environmental microflora, which in turn stimulated the growth of L. pneumophila. These findings confirm the empiric observations of the predilection of L. pneumophila for growth in hot-water tanks and its localization to sediment. L. pneumophila occupies an ecological niche within the potable water system, with interrelationships between microflora, sediment, and temperature. Images PMID:3977311
Data gaps in evidence-based research on small water enterprises in developing countries.
Opryszko, Melissa C; Huang, Haiou; Soderlund, Kurt; Schwab, Kellogg J
2009-12-01
Small water enterprises (SWEs) are water delivery operations that predominantly provide water at the community level. SWEs operate beyond the reach of piped water systems, selling water to households throughout the world. Their ubiquity in the developing world and access to vulnerable populations suggests that these small-scale water vendors may prove valuable in improving potable water availability. This paper assesses the current literature on SWEs to evaluate previous studies and determine gaps in the evidence base. Piped systems and point-of-use products were not included in this assessment. Results indicate that SWES are active in urban, peri-urban and rural areas of Africa, Asia and Latin America. Benefits of SWEs include: no upfront connection fees; demand-driven and flexible to local conditions; and service to large populations without high costs of utility infrastructure. Disadvantages of SWEs include: higher charges for water per unit of volume compared with infrastructure-based utilities; lack of regulation; operation often outside legal structures; no water quality monitoring; increased potential for conflict with local utilities; and potential for extortion by local officials. No rigorous, evidence-based, peer-reviewed scientific studies that control for confounders examining the effectiveness of SWEs in providing potable water were identified.
Lisle, J.T.; Smith, J.J.; Edwards, D.D.; McFeters, G.A.
2004-01-01
McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.