Science.gov

Sample records for potassium 49

  1. Potassium

    MedlinePlus

    ... the potassium you need. However, certain diseases (e.g., kidney disease and gastrointestinal disease with vomiting and ... substitute and to eat potassium-rich foods (e.g., bananas, prunes, raisins, and milk).

  2. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  3. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  4. Potassium test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003484.htm Potassium test To use the sharing features on this ... enable JavaScript. This test measures the amount of potassium in the fluid portion (serum) of the blood. ...

  5. Potassium physiology.

    PubMed

    Thier, S O

    1986-04-25

    Potassium is the most abundant exchangeable cation in the body. It exists predominantly in the intracellular fluid at concentrations of 140 to 150 meq/liter and in the extracellular fluid at concentrations of 3.5 to 5 meq/liter. The maintenance of the serum potassium concentration is a complex bodily function and results from the balance between intake, excretion, and distribution between intracellular and extracellular space. Ingested potassium is virtually completely absorbed from and minimally excreted through the intestine under nonpathologic circumstances. Renal excretion of potassium, which is the major chronic protective mechanism against abnormalities in potassium balance, depends on filtration, reabsorption, and a highly regulated distal nephron secretory process. Factors regulating potassium secretion include prior potassium intake, intracellular potassium, delivery of sodium chloride and poorly reabsorbable anions to the distal nephron, the urine flow rate, hormones such as aldosterone and beta-catecholamines, and the integrity of the renal tubular cell. The maintenance of distribution between the inside and outside of cells depends on the integrity of the cell membrane and its pumps, osmolality, pH, and the hormones insulin, aldosterone, beta 2-catecholamines, alpha-catecholamines, and prostaglandins. Both distribution across cell membranes and/or renal excretion of potassium may be altered by pharmacologic agents such as diuretics, alpha- and beta-catechol antagonists and agonists, depolarizing agents, and digitalis. Problems with hypokalemia and hyperkalemia can be analyzed on the basis of potassium physiology and pharmacology; proper treatment depends on an accurate analysis.

  6. Potassium Iodide

    MedlinePlus

    ... radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. ... only take potassium iodide if there is a nuclear radiation emergency and public officials tell you that you ...

  7. Potassium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium cyanide is included in

  8. Potassium in diet

    MedlinePlus

    ... the diet; Hypokalemia - potassium in the diet; Chronic kidney disease - potassium in diet; Kidney failure - potassium in diet ... are also excellent sources of potassium. People with kidney problems, especially those on dialysis, should not eat ...

  9. Mapping Potassium

    NASA Image and Video Library

    2015-04-16

    During the first year of NASA MESSENGER orbital mission, the spacecraft GRS instrument measured the elemental composition of Mercury surface materials. mong the most important discoveries from the GRS was the observation of higher abundances of the moderately volatile elements potassium, sodium, and chlorine than expected from previous scientific models and theories. Particularly high concentrations of these elements were observed at high northern latitudes, as illustrated in this potassium abundance map, which provides a view of the surface centered at 60° N latitude and 120° E longitude. This map was the first elemental map ever made of Mercury's surface and is to-date the only map to report absolute elemental concentrations, in comparison to element ratios. Prior to MESSENGER's arrival at Mercury, scientists expected that the planet would be depleted in moderately volatile elements, as is the case for our Moon. The unexpectedly high abundances observed with the GRS have forced a reevaluation of our understanding of the formation and evolution of Mercury. In addition, the K map provided the first evidence for distinct geochemical terranes on Mercury, as the high-potassium region was later found to also be distinct in its low Mg/Si, Ca/Si, S/Si, and high Na/Si and Cl/Si abundances. Instrument: Gamma-Ray Spectrometer (GRS) http://photojournal.jpl.nasa.gov/catalog/PIA19414

  10. Dietary potassium modulates active potassium absorption and secretion in rat distal colon

    SciTech Connect

    Foster, E.S.; Sandle, G.I.; Hayslett, J.P.; Binder, H.J.

    1986-11-01

    To determine the effect of variations in body stores of potassium on the rate of active potassium transport in the large intestine, unidirectional 42K fluxes were performed under short-circuit conditions across isolated distal colonic mucosa of control, dietary potassium-depleted and dietary potassium-loaded rats. Potassium depletion stimulated net potassium absorption (JK net) (0.87 +/- 0.19 vs. 0.49 +/- 0.04 mu eq X h-1 X cm-2, P less than 0.025) due to a 40% increase in mucosal-to-serosal potassium transport (JK m----s). In sodium-free Ringer solution JK net in the potassium-depleted group was also significantly greater than in controls (1.93 +/- 0.26 vs. 1.01 +/- 0.11 mu eq X h-1 X cm-2, P less than 0.005). In contrast, in chloride-free Ringer solution JK net was identical in the control and potassium-depleted groups (0.39 +/- 0.05 vs. 0.46 +/- 0.07 mu eq X h-1 X cm-2, P = NS). Potassium loading reversed net potassium absorption to net potassium secretion (-0.76 +/- 0.08 mu eq X h-1 X cm-2, P less than 0.001) as the result of a decrease in JK m----s and an increase in serosal-to-mucosal potassium transport (JK s----m). Net potassium secretion was abolished in the absence of either sodium or chloride from the bathing solution but not by mucosal amiloride. In sodium-free Ringer solution JK net was similar in control and potassium-loaded groups, respectively.

  11. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  12. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Low Potassium (Hypokalemia)

    MedlinePlus

    ... can be life-threatening and requires urgent medical attention. Low potassium (hypokalemia) has many causes. The most common cause is excessive potassium loss in urine due to prescription medications that increase urination. Also ...

  14. Potassium: more beneficial effects.

    PubMed

    He, F J; MacGregor, G A

    2003-10-01

    Over 70 years ago, potassium was found to have a natriuretic effect and was used in patients with heart failure. However, it took many years for its role in the control of blood pressure to be recognized. Recently, epidemiological and clinical studies in man and experimental studies in animals have shown that increasing potassium intake towers blood pressure and that communities with a high potassium intake tend to have lower population blood pressures. Several studies have shown an interaction between salt intake and potassium intake. However, the recent DASH-Sodium (Dietary Approaches to Stop Hypertension) study demonstrates an additive effect of a low salt and high potassium diet on blood pressure. Increasing potassium intake may have other beneficial effects, for example, reducing the risk of stroke and preventing the development of renal disease independent of its effect on blood pressure. A high potassium intake reduces calcium excretion and could play an important role in the management of hypercalciuria and kidney stone formation, as well as bone demineralization. Potassium intake may also play an important role in carbohydrate intolerance. A reduced serum potassium increases the risk of lethal ventricular arrhythmias in those at risk, i.e. patients with ischemic heart disease, heart failure or left ventricular hypertrophy, and increasing potassium intake may prevent this. In this article, we address the evidence for the important role of potassium intake in regulating blood pressure and other beneficial effects of potassium which may be independent of and additional to its effect on blood pressure.

  15. Derangements of potassium.

    PubMed

    Medford-Davis, Laura; Rafique, Zubaid

    2014-05-01

    Changes in potassium elimination, primarily due to the renal and GI systems, and shifting potassium between the intracellular and extracellular spaces cause potassium derangement. Symptoms are vague, but can be cardiac, musculoskeletal, or gastrointestinal. There are no absolute guidelines for when to treat, but it is generally recommended when the patient is symptomatic or has ECG changes. Treatment of hyperkalemia includes cardiac membrane stabilization with IV calcium, insulin and beta-antagonists to push potassium intracellularly, and dialysis. Neither sodium bicarbonate nor kayexelate are recommended. Treatment of symptomatic hypokalemia consists of PO or IV repletion with potassium chloride and magnesium sulfate.

  16. Potassium Secondary Batteries.

    PubMed

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  17. Estimated potassium content in Hanford workers.

    PubMed

    Lynch, T P; Rivard, J W; Garcia, S

    2004-01-01

    Potassium content in male and female workers at the US Department of Energy Hanford Site was estimated based on measurements made in 2002 of 40K activity in the body. The 40K activity in females ranged from 2.1 to 4.1 kBq with an average of 3.1 +/- 0.02 kBq. The total body potassium (TBK) content in females averaged 98 +/- 0.6 g. The 40K activity in males ranged from 2.8 to 6.6 kBq with an average of 4.2 +/- 0.01 kBq and the average TBK was 136 +/- 0.3 g. The average TBK value for males aged 20-49 y was 140 g. The average TBK values for both genders decreased with age. The average potassium concentrations calculated for the different age ranges for males were 15-25% less than the value (1.9 gK per kg) obtained using the reported ICRP reference potassium and reference weight values. Potassium concentrations were inversely correlated with body-build index, body-mass index and body weight. These correlations could possibly be utilised to help assess the risk for disease. Future work is planned to evaluate whether monitoring of potassium concentrations could be used as a tool for the detection of diabetes and hypertension.

  18. Penicillin V Potassium Oral

    MedlinePlus

    Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, scarlet fever, and ear, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken every 6 hours (four ...

  19. Potassium food supplement

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Huber, C. S.; Rambaut, C.; Heidelbaugh, N. D.

    1973-01-01

    Potassium gluconate is considered best supplementary source for potassium. Gluconate consistently received highest taste rating and was indistinguishable from nonsupplemented samples. No unfavorable side effects were found during use, and none are reported in literature. Gluconate is normal intermediary metabolite that is readily adsorbed and produces no evidence of gastrointestinal ulcerations.

  20. Potassium and Health123

    PubMed Central

    Weaver, Connie M.

    2013-01-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints. PMID:23674806

  1. Potassium and health.

    PubMed

    Weaver, Connie M

    2013-05-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints.

  2. Potassium targets from KI

    NASA Astrophysics Data System (ADS)

    Sletten, G.

    1982-09-01

    Targets of potassium iodide (KI) on thin carbon backings have been prepared. Potassium isotopes are supplied as chlorides, and the chlorine is, in certain experiments, an unwanted contaminant. Target peeparation involves conversion of KCl to KI and subsequent vacuum evaporation of the iodide. Targets of both 39K and 41K in the thickness range of 60 to 100 μg/cm 2 of potassium have been prepared. These targets contain less than 0.5 μg/cm 2 of chlorine impurity and are stable in α-beams of 25 MeV.

  3. Potassium carbonate poisoning

    MedlinePlus

    ... is a white powder used to make soap, glass, and other items. This article discusses poisoning from ... Potassium carbonate is found in: Glass Some dishwasher soaps Some ... that is used in fertilizers) Some home permanent-wave solutions ...

  4. Low potassium level

    MedlinePlus

    ... laxative, which can cause diarrhea Chronic kidney disease Diuretic medicines (water pills), used to treat heart failure ... potassium through a vein (IV). If you need diuretics, your provider may: Switch you to a form ...

  5. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  6. Recipe for potassium

    SciTech Connect

    Izutani, Natsuko

    2012-11-12

    I investigate favorable conditions for producing potassium (K). Observations show [K/Fe] > 0 at low metallicities, while zero-metal supernova models show low [K/Fe] (< 0). Theoretically, it is natural that the odd-Z element, potassium decreases with lower metallicity, and thus, the observation should imply new and unknown sites for potassium. In this proceedings, I calculate proton-rich nucleosynthesis with three parameters, the initial Y{sub e} (from 0.51 to 0.60), the initial density {rho}{sub max} (10{sup 7}, 10{sup 8}, and 10{sup 9} [g/cm{sup 3}]), and the e-fold time {tau} for the density (0.01, 0.1, and 1.0 [sec]). Among 90 models I have calculated, only 26 models show [K/Fe] > 0, and they all have {rho}{sub max} = 10{sup 9}[g/cm{sup 3}]. I discuss parameter dependence of [K/Fe].

  7. Effect of high potassium diet on endothelial function.

    PubMed

    Blanch, N; Clifton, P M; Petersen, K S; Willoughby, S R; Keogh, J B

    2014-09-01

    Increased potassium intake is related to reduced blood pressure (BP) and reduced stroke rate. The effect of increased dietary potassium on endothelial function remains unknown. The aim was to determine the effect of increased dietary potassium from fruit and vegetables on endothelial function. Thirty five healthy men and women (age 32 ± 12 y) successfully completed a randomised cross-over study of 2 × 6 day diets either high or low in potassium. Flow mediated dilatation (FMD), BP, pulse wave velocity (PWV), augmentation index (AI) and a fasting blood sample for analysis of Intercellular Adhesion Molecule-1 (ICAM-1), E-selectin, asymmetric dimethylarginine (ADMA) and endothelin-1 were taken on completion of each intervention. Dietary change was achieved by including bananas and potatoes in the high potassium and apples and rice/pasta in the low potassium diet. Dietary adherence was assessed using 6 day weighed food diaries and a 24 h urine sample. The difference in potassium excretion between the two diets was 48 ± 32 mmol/d (P = 0.000). Fasting FMD was significantly improved by 0.6% ± 1.5% following the high compared to the low potassium diet (P = 0.03). There were no significant differences in BP, PWV, AI, ICAM-1, ADMA or endothelin-1 between the interventions. There was a significant reduction in E-selectin following the high (Median = 5.96 ng/ml) vs the low potassium diet (Median = 6.24 ng/ml), z = -2.49, P = 0.013. Increased dietary potassium from fruit and vegetables improves FMD within 1 week in healthy men and women but the mechanisms for this effect remain unclear. ACTRN12612000822886. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Potassium Beta-Alumina/Molybdenum/Potassium Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Williams, R.; Kisor, A.; Ryan, M.; Nakamura, B.; Kikert, S.; O'Connor, D.

    1994-01-01

    potassium alkali metal thermal-to-electric converter (K-AMTEC) cells utilizing potassium beta alumina solid electrolyte (K-BASE) are predicted to have improved properties for thermal to electric conversion at somewhat lower temperatures than sodium AMTEC's.

  9. Errors in potassium balance

    SciTech Connect

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by /sup 40/K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies.

  10. Potassium urine test

    MedlinePlus

    ... test. Alternative Names Urine potassium Images Male urinary system References Batlle D, Chen S, Haque SK. Physiologic principles in the clinical evaluation of electrolyte, water, and acid-base disorders. In: Alpern RJ, Orson WM, Caplan M, eds. Seldin and Giebisch's The Kidney . ...

  11. Potassium silver cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium silver cyanide is inclu

  12. Detecting potassium on Mercury

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Potter, A. E.; Morgan, T. H.

    1991-01-01

    A critical comment on the work of A.L. Sprague et al. (1990) is presented. It is argued that, in attributing an enhanced emission in the potassium D lines on Oct. 14, 1987 in the equatorial region of Mercury to a diffusion source centered on Caloris Basin, Sprague et al. misinterpreted the data. Sprague et al. present a reply, taking issue with the commenters.

  13. [Diet low in potassium].

    PubMed

    Sáez Rodríguez, Loreto; Meizoso Ameneiro, Ana; Pérez Paz, Ma Jesús; Valiño Pazos, Cristina

    2011-11-01

    After confirming the high prevalence rates in our hemodialysis unit of the following nursing diagnoses: nutritional imbalances--both excesses and shortages, willingness to improve nutrition and fear related to the consequences of excessive intake of potassium and manifested by the inhibition in some people towards the enjoyment of food, we decided to plan an educational strategy which later resulted in a nursing intervention for these diagnoses, with the objective of providing adequate resources for the monitoring of balanced diets with a restriction of potassium. Inspired by dietary rations, as well as recognized dietary programs of learning by points, we decided to incorporate these ideas to design an educational tool to facilitate advice to our patients on how to follow diet plans as well as the choice of appropriate foods. The result was a set of cards incorporating nutritional information of various kinds, aimed at our patients covering different aspects of the diet appropriate food rations using household measurements, promoting good food preparation, appropriate dietary advice for different chronic diseases and a scoring system of foods according to their potassium content. Together they form a board game available during the hemodialysis sessions that also takes into consideration other issues of importance related to conditions such as cognitive stimulation, coping with the disease, improving the therapeutic performance or resources to increase patient motivation. Although initially it was only an educational exercise, the result has turned out to be both enjoyable and entertaining.

  14. Potassium Channelopathies and Gastrointestinal Ulceration

    PubMed Central

    Han, Jaeyong; Lee, Seung Hun; Giebisch, Gerhard; Wang, Tong

    2016-01-01

    Potassium channels and transporters maintain potassium homeostasis and play significant roles in several different biological actions via potassium ion regulation. In previous decades, the key revelations that potassium channels and transporters are involved in the production of gastric acid and the regulation of secretion in the stomach have been recognized. Drugs used to treat peptic ulceration are often potassium transporter inhibitors. It has also been reported that potassium channels are involved in ulcerative colitis. Direct toxicity to the intestines from nonsteroidal anti-inflammatory drugs has been associated with altered potassium channel activities. Several reports have indicated that the long-term use of the antianginal drug Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, increases the chances of ulceration and perforation from the oral to anal regions throughout the gastrointestinal (GI) tract. Several of these drug features provide further insights into the role of potassium channels in the occurrence of ulceration in the GI tract. The purpose of this review is to investigate whether potassium channelopathies are involved in the mechanisms responsible for ulceration that occurs throughout the GI tract. PMID:27784845

  15. Longitudinal magnetoresistance of potassium

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.

    1987-06-01

    Recently, Zhu and Overhauser showed that the Hall coefficient of potassium is anisotropic, depending on the angle between the applied magnetic field and the charge-density wave. It follows that the Hall coefficient of a polydomain sample is inhomogeneous. By means of effective-medium theory, the magnetoresistance of a domain structure has been evaluated. It is shown that both the longitudinal and transverse magnetoresistance increase with increasing field. The Kohler slope depends on the domain distribution. For a random distribution, the longitudinal and transverse Kohler slopes are about (1/2)% and 1(1/2)%, respectively.

  16. Thermal magnetoresistance of potassium

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.

    1988-11-01

    It has recently been shown that an inhomogeneous, anisotropic Hall coefficient, arising from a charge-density-wave domain structure, explains the nonsaturating electrical magnetoresistance of potassium. It is shown here that the same mechanism also explains the observed behavior of the thermal magnetoresistance. The transverse thermal magnetoresistance of a domain structure increases with increasing field, having both a linear and quadratic component. The longitudinal thermal magnetoresistance of a domain structure initially increases linearly with increasing field. Its behavior in higher fields, however, depends on whether or not the domain distribution is symmetric about the field direction. If the distribution is symmetric, saturation occurs; otherwise, a residual increase is possible.

  17. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium carbonate...

  18. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride solution...

  19. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food... Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2CO3, CAS... potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating a...

  20. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium salt...

  1. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  2. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...

  3. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium salt...

  4. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  5. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium salt...

  6. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...

  7. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  8. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...

  9. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium salt...

  10. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...

  11. Potassium channels of pig articular chondrocytes are blocked by propofol.

    PubMed

    Mozrzymas, J W; Visintin, M; Vittur, F; Ruzzier, F

    1994-07-15

    The effect of propofol on the voltage-activated potassium channels in pig articular chondrocytes was investigated. Propofol was found to reversibly block the potassium channels in a dose-dependent manner. The blocking effect was voltage-independent and the Hill coefficient was 1.85 +/- 0.18. No changes either in the slope conductance or in the single channel kinetics were observed. The half-blocking concentration (Ec50) was 6.0 +/- 0.49 microM which is much lower than the concentrations used to observe the scavenging effect of the drug in an artificial synovial fluid. Interestingly, Ec50 found in our experiments is also smaller than the blood concentration of propofol used in anaesthesia. These results show that propofol may strongly affect the potassium channels in some non-excitable cells.

  12. Total body potassium measurement method

    SciTech Connect

    Tomlinson, F.K.

    1985-09-01

    The body counter facility at Mound was used to measure the total body potassium (TBK) in hypertensive patients. Radioactive /sup 40/K accounts for 0.0118% of natural potassium and can be readily measured in vivo. The normal adult human generally has 80 to 185 g of TBK depending on sex, age, height, etc. 10 refs., 1 tab.

  13. Frequently Asked Questions on Potassium Iodide (KI)

    MedlinePlus

    ... needs to take potassium iodide (KI) after a nuclear radiation release? What potassium iodide (KI) products are currently ... needs to take potassium iodide (KI) after a nuclear radiation release? The FDA guidance prioritizes groups based on ...

  14. Dietary sodium, dietary potassium, and systolic blood pressure in US adolescents.

    PubMed

    Chmielewski, Jennifer; Carmody, J Bryan

    2017-09-01

    Both high sodium and low potassium diets are associated with hypertension, but whether these risk factors are distinct or overlapping has not been thoroughly investigated. The authors evaluated the relationship between dietary sodium, potassium, and high systolic blood pressure among 4716 adolescents aged 12 to 14 years who participated in the National Health and Nutrition Examination Survey from 1999 to 2012. There was no association with blood pressure across most values of sodium or potassium intake. However, participants who reported sodium intake ≥7500 mg/d, potassium <700 mg/d, or sodium-potassium ratio ≥2.5 had increased odds for high systolic blood pressure (≥95th percentile for age, sex, and height). Although the high sodium and low potassium groups did not overlap, 49.2% of these adolescents also had a sodium-potassium ratio ≥2.5. In young adolescents, both excessive sodium and limited potassium are associated with high systolic blood pressure, but the balance between sodium and potassium intake may be more useful in explaining blood pressure in this population. © 2017 Wiley Periodicals, Inc.

  15. Sodium and chloride transport in the large intestine of potassium-loaded rats

    SciTech Connect

    Budinger, M.E.; Foster, E.S.; Hayslett, J.P.; Binder, H.J.

    1986-08-01

    Increased dietary potassium (potassium loading) induces several adaptive changes in colonic function, including increased potential dependent potassium secretion, active potassium secretion, and Na-K-ATPase activity, but does not alter net sodium absorption in vivo. To establish whether potassium loading stimulates active sodium transport, unidirectional, net sodium, and chloride fluxes were determined under voltage-clamp conditions across isolated rat distal colonic mucosa. In normal animals net sodium flux (J/sub net/sup Na/), net chloride flux (J/sub net/sub Cl/) and short-circuit current (I/sub sc/) were 6.1 +/- 1.1, 8.4 +/-1.0, and 0.7 +/- 0.1 eq h cm S, respectively; potassium loading significantly increased J/sub net/sup Na/ and I/sup sc/ by 4.9 +/- 1.4 and 3.5 +/- 0.7 eq h cm S, respectively, without changing J/sub net/sup Na/ and I/sub sc/ produced by potassium loading. In Cl-free Ringer solution in normal animals J/sub net/sup Na was reduced to 0.6 +/- 0.3 eq h cm S. Potassium loading produced identical increases in J/sub net/sup Na/ and I/sub sc/, which were also completely inhibited by 0.1 mM amiloride. These studies establish that potassium loading induces amiloride-sensitive electrogenic sodium absorption without affecting electroneutral sodium-chloride absorption.

  16. The relation of potassium and sodium intakes to diet cost among US adults

    PubMed Central

    Drewnowski, Adam; Rehm, Colin D; Maillot, Matthieu; Monsivais, Pablo

    2014-01-01

    The 2010 Dietary Guidelines recommended that Americans increase potassium and decrease sodium intakes to reduce the burden of hypertension. One reason why so few Americans meet the recommended potassium or sodium goals may be perceived or actual food costs. This study explored the monetary costs associated with potassium and sodium intakes using national food prices and a representative sample of US adults. Dietary intake data from the 2001-2002 National Health and Nutrition Examination Survey were merged with a national food prices database. In a population of 4,744 adults, the association between the energy-adjusted sodium and potassium intakes and the sodium-to-potassium ratio (Na:K), and energy-adjusted diet cost was evaluated. Diets that were more potassium-rich or had lower sodium-potassium ratios were associated with higher diet costs, while sodium intakes were not related to cost. The difference in diet cost among participants with highest and lowest potassium intakes was $1.49 (95% CI 1.29, 1.69). A food-level analysis showed that beans, potatoes, coffee, milk, bananas, citrus juices and carrots are frequently consumed and low-cost sources of potassium. Based on existing dietary data and current American eating habits, a potassium-dense diet was associated with higher diet costs, while sodium was not. Price interventions may be an effective approach to improve potassium intakes and reduce the Na:K ratio of the diet. The present methods helped identify some alternative low-cost foods that were effective in increasing potassium intakes. The identification and promotion of lower-cost foods to help individuals meet targeted dietary recommendations could accompany future dietary guidelines. PMID:24871907

  17. Oral potassium supplementation in surgical patients.

    PubMed

    Hainsworth, Alison J; Gatenby, Piers A

    2008-08-01

    Hospital inpatients are frequently hypokalaemic. Low plasma potassium levels may cause life threatening complications, such as cardiac arrhythmias. Potassium supplementation may be administered parenterally or enterally. Oral potassium supplements have been associated with oesophageal ulceration, strictures and gastritis. An alternative to potassium salt tablets or solution is dietary modification with potassium rich food stuffs, which has been proven to be a safe and effective method for potassium supplementation. The potassium content of one medium banana is equivalent to a 12 mmol potassium salt tablet. Potassium supplementation by dietary modification has been shown to be equally efficacious to oral potassium salt supplementation and is preferred by the majority of patients. Subsequently, it is our practice to replace potassium using dietary modification, particularly in surgical patients having undergone oesophagogastrectomy or in those with peptic ulcer disease.

  18. Electrocaloric properties of potassium tantalate niobate crystals

    NASA Astrophysics Data System (ADS)

    Maiwa, Hiroshi

    2016-10-01

    The electrocaloric properties of potassium tantalate niobate (KTN) crystals were investigated by indirect estimation and direct measurement of temperature-electric field (T-E) hysteresis loops. The measured T-E loops showed a similar shape to strain-electric field (s-E) loops. The adiabatic temperature change ΔT due to the electrocaloric effect was estimated from the polarization change of this sample to be 0.49 K under a field of 20 kV/cm. The measured temperature change ΔT in these samples upon the release of the electric field from 20 kV/cm to zero was 0.42 K. The temperature dependences of the electromechanical and electrocaloric properties were measured. The maximum performance appeared at approximately the phase transition temperature of KTN crystal and the properties were relatively moderate-temperature-dependent.

  19. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide. (b...

  20. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  1. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely...

  2. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown...

  3. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely...

  4. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  5. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg. No. 7447-40-7) is a white... manufacturing practice. Potassium chloride may be used in infant formula in accordance with section 412(g) of...

  6. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  7. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  8. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  9. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  10. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown...

  11. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium carbonate. 184.1619 Section 184.1619... GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2CO3, CAS Reg. No. 584-08-7) is produced by the following methods of manufacture: (1) By electrolysis of potassium chloride followed by...

  12. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  13. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide. (b...

  14. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  15. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely...

  16. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  17. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  18. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  19. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown...

  20. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 172.375 Section 172.375 Food and....375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely added to a food as a source of the...

  1. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown...

  2. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  3. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  4. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide. (b...

  5. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  6. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  7. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide. (b...

  8. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  9. Potassium Disorders: Hypokalemia and Hyperkalemia.

    PubMed

    Viera, Anthony J; Wouk, Noah

    2015-09-15

    Hypokalemia and hyperkalemia are common electrolyte disorders caused by changes in potassium intake, altered excretion, or transcellular shifts. Diuretic use and gastrointestinal losses are common causes of hypokalemia, whereas kidney disease, hyperglycemia, and medication use are common causes of hyperkalemia. When severe, potassium disorders can lead to life-threatening cardiac conduction disturbances and neuromuscular dysfunction. Therefore, a first priority is determining the need for urgent treatment through a combination of history, physical examination, laboratory, and electrocardiography findings. Indications for urgent treatment include severe or symptomatic hypokalemia or hyperkalemia; abrupt changes in potassium levels; electrocardiography changes; or the presence of certain comorbid conditions. Hypokalemia is treated with oral or intravenous potassium. To prevent cardiac conduction disturbances, intravenous calcium is administered to patients with hyperkalemic electrocardiography changes. Insulin, usually with concomitant glucose, and albuterol are preferred to lower serum potassium levels in the acute setting; sodium polystyrene sulfonate is reserved for subacute treatment. For both disorders, it is important to consider potential causes of transcellular shifts because patients are at increased risk of rebound potassium disturbances.

  10. [Potassium channelopathies and Morvan's syndromes].

    PubMed

    Serratrice, Georges; Pellissier, Jean-François; Serra-Trice, Jacques; Weiller, Pierre-Jean

    2010-02-01

    Interest in Morvan's disease or syndrome has grown, owing to its close links with various potassium channelopathies. Potassium is crucial for gating mechanisms (channel opening and closing), and especially for repolarization. Defective potassium regulation can lead to neuronal hyperexcitability. There are three families of potassium channels: voltage-gated potassium channels or VGKC (Kv1.1-Kv1.8), inward rectifier K+ channels (Kir), and two-pore channels (K2p). VGK channels are the commonest, and especially those belonging to the Shaker group (neuromyotonia and Morvan's syndrome, limbic encephalitis, and type 1 episodic ataxia). Brain and heart K+ channelopathies are a separate group due to KCNQ1 mutation (severe type 2 long QT syndrome). Kv7 channel mutations (in KNQ2 and KCNQ3) are responsible for benign familial neonatal seizures. Mutation of the Ca+ activated K+ channel gene causes epilepsy and paroxysmal dyskinesia. Inward rectifier K+ channels regulate intracellular potassium levels. The DEND syndrome, a treatable channelopathy of the brain and pancreas, is due to KCNJ1 mutation. Andersen's syndrome, due to KCNJ2 mutation, is characterized by periodic paralysis, cardiac arrythmia, and dysmorphia. Voltage-insensitive K2p channelopathies form a final group.

  11. The relation of potassium and sodium intakes to diet cost among U.S. adults.

    PubMed

    Drewnowski, A; Rehm, C D; Maillot, M; Monsivais, P

    2015-01-01

    The 2010 Dietary Guidelines recommended that Americans increase potassium and decrease sodium intakes to reduce the burden of hypertension. One reason why so few Americans meet the recommended potassium or sodium goals may be perceived or actual food costs. This study explored the monetary costs associated with potassium and sodium intakes using national food prices and a representative sample of US adults. Dietary intake data from the 2001-2002 National Health and Nutrition Examination Survey were merged with a national food prices database. In a population of 4744 adults, the association between the energy-adjusted sodium and potassium intakes, and the sodium-to-potassium ratio (Na:K) and energy-adjusted diet cost was evaluated. Diets that were more potassium-rich or had lower Na:K ratios were associated with higher diet costs, while sodium intakes were not related to cost. The difference in diet cost between extreme quintiles of potassium intakes was $1.49 (95% confidence interval: 1.29, 1.69). A food-level analysis showed that beans, potatoes, coffee, milk, bananas, citrus juices and carrots are frequently consumed and low-cost sources of potassium. Based on existing dietary data and current American eating habits, a potassium-dense diet was associated with higher diet costs, while sodium was not. Price interventions may be an effective approach to improve potassium intakes and reduce the Na:K ratio of the diet. The present methods helped identify some alternative low-cost foods that were effective in increasing potassium intakes. The identification and promotion of lower-cost foods to help individuals meet targeted dietary recommendations could accompany future dietary guidelines.

  12. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric acid with potassium...

  13. Does Hemodialysis Dialysate Potassium Composition Matter?.

    PubMed

    Haras, Mary S

    2015-01-01

    Dyskalemia is known to cause cardiac arrhythmias and cardiac arrest. In persons undergoing hemodialysis, potassium dialysate composition has been identified as a contributingfactor in addition to co-morbidities, medications, dietary potassium intake, and stage of kidney disease. Current evidence recommends a thorough evaluation of all factors affecting potassium balance, and lower potassium concentration should be used cautiously in patients who are likely to develop cardiac arrhythmias. Nephrology nurses play a key role inpatient assessment and edu- cation related to potassium balance.

  14. DPPX potassium channel antibody

    PubMed Central

    Tobin, William Oliver; Lennon, Vanda A.; Komorowski, Lars; Probst, Christian; Clardy, Stacey Lynn; Aksamit, Allen J.; Appendino, Juan Pablo; Lucchinetti, Claudia F.; Matsumoto, Joseph Y.; Pittock, Sean J.; Sandroni, Paola; Tippmann-Peikert, Maja; Wirrell, Elaine C.

    2014-01-01

    Objective: To describe the detection frequency and clinical associations of immunoglobulin G (IgG) targeting dipeptidyl-peptidase-like protein-6 (DPPX), a regulatory subunit of neuronal Kv4.2 potassium channels. Methods: Specimens from 20 patients evaluated on a service basis by tissue-based immunofluorescence yielded a synaptic immunostaining pattern consistent with DPPX-IgG (serum, 20; CSF, all 7 available). Transfected HEK293 cell-based assay confirmed DPPX specificity in all specimens. Sixty-nine patients with stiff-person syndrome and related disorders were also evaluated by DPPX-IgG cell-based assay. Results: Of 20 seropositive patients, 12 were men; median symptom onset age was 53 years (range, 13–75). Symptom onset was insidious in 15 and subacute in 5. Twelve patients reported prodromal weight loss. Neurologic disorders were multifocal. All had one or more brain or brainstem manifestations: amnesia (16), delirium (8), psychosis (4), depression (4), seizures (2), and brainstem disorders (15; eye movement disturbances [8], ataxia [7], dysphagia [6], dysarthria [4], respiratory failure [3]). Nine patients reported sleep disturbance. Manifestations of central hyperexcitability included myoclonus (8), exaggerated startle (6), diffuse rigidity (6), and hyperreflexia (6). Dysautonomia involved the gastrointestinal tract (9; diarrhea [6], gastroparesis, and constipation [3]), bladder (7), cardiac conduction system (3), and thermoregulation (1). Two patients had B-cell neoplasms: gastrointestinal lymphoma (1), and chronic lymphocytic leukemia (1). Substantial neurologic improvements followed immunotherapy in 7 of 11 patients with available treatment data. DPPX-IgG was not detected in any of the stiff-person syndrome patients. Conclusions: DPPX-IgG is a biomarker for an immunotherapy-responsive multifocal neurologic disorder of the central and autonomic nervous systems. PMID:25320100

  15. Regulation of renal potassium secretion: molecular mechanisms.

    PubMed

    Welling, Paul A

    2013-05-01

    A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.

  16. [Determination of potassium in farmland soil using laser-induced breakdown spectroscopy].

    PubMed

    Dong, Da-Ming; Zheng, Wen-Gang; Zhao, Chun-Jiang; Zhao, Xian-De; Jiao, Lei-Zi; Zhang, Shi-Rui

    2013-03-01

    The real-time measurement of potassium in farmland soil has great importance. A method to determine the potassium content in farmland soil based on laser-induced breakdown spectroscopy (LIBS) was studied using a LIBS equipment consisting of a 1,064 nm laser generator and a high resolution spectrometer. The farmland soil samples with potassium content in the range of 8.74-34.56 g.kg-1 were analyzed. The 766.49 nm was chosen as the analysis line, by comparing the potassium atom characteristic lines of 404.40, 404.72, 766.49 and 769.90 nm. The errors of characteristic line strength caused by the laser stability and random noise was analyzed. The silicon, which is nearly constant in farmland soil, was chosen as the standard element, and a calibration model between the ratio of potassium to silicon (K/Si) and the potassium content was established. The linear fitting degree of the calibration curve was 0.935, and the relative standard deviation of the calibration model for prediction set samples was 9.26%.

  17. Equatorial potassium currents in lenses.

    PubMed

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K

  18. Cold blood--potassium cardioplegia.

    PubMed

    Levinsky, L; Lee, A B; Lee, K C; Tatransky, F; Dockstader, R; Schimert, G

    1980-09-01

    A technique is described for providing myocardial protection utilizing oxygenated blood that is drawn from the pump oxygenator and passed through two disposable cardioplegic cooling coils, which are joined in series and submerged in ice slush. A potassium-containing cardioplegic solution is run into the oxygenated blood at the level of the cooling coils. The amount of blood used in the blood-potassium cardioplegic mixture is controlled using a screw clamp. This method has been used with excellent results in 150 consecutive patients undergoing aortocoronary saphenous vein bypass grafting.

  19. Amiodarone Inhibits Apamin-Sensitive Potassium Currents

    PubMed Central

    Turker, Isik; Yu, Chih-Chieh; Chang, Po-Cheng; Chen, Zhenhui; Sohma, Yoshiro; Lin, Shien-Fong; Chen, Peng-Sheng; Ai, Tomohiko

    2013-01-01

    Background Apamin sensitive potassium current (IKAS), carried by the type 2 small conductance Ca2+-activated potassium (SK2) channels, plays an important role in post-shock action potential duration (APD) shortening and recurrent spontaneous ventricular fibrillation (VF) in failing ventricles. Objective To test the hypothesis that amiodarone inhibits IKAS in human embryonic kidney 293 (HEK-293) cells. Methods We used the patch-clamp technique to study IKAS in HEK-293 cells transiently expressing human SK2 before and after amiodarone administration. Results Amiodarone inhibited IKAS in a dose-dependent manner (IC50, 2.67±0.25 µM with 1 µM intrapipette Ca2+). Maximal inhibition was observed with 50 µM amiodarone which inhibited 85.6±3.1% of IKAS induced with 1 µM intrapipette Ca2+ (n = 3). IKAS inhibition by amiodarone was not voltage-dependent, but was Ca2+-dependent: 30 µM amiodarone inhibited 81.5±1.9% of IKAS induced with 1 µM Ca2+ (n = 4), and 16.4±4.9% with 250 nM Ca2+ (n = 5). Desethylamiodarone, a major metabolite of amiodarone, also exerts voltage-independent but Ca2+ dependent inhibition of IKAS. Conclusion Both amiodarone and desethylamiodarone inhibit IKAS at therapeutic concentrations. The inhibition is independent of time and voltage, but is dependent on the intracellular Ca2+ concentration. SK2 current inhibition may in part underlie amiodarone's effects in preventing electrical storm in failing ventricles. PMID:23922993

  20. Physiology and pathophysiology of potassium homeostasis.

    PubMed

    Palmer, Biff F; Clegg, Deborah J

    2016-12-01

    Total body potassium content and proper distribution of potassium across the cell membrane is of critical importance for normal cellular function. Potassium homeostasis is maintained by several different methods. In the kidney, total body potassium content is achieved by alterations in renal excretion of potassium in response to variations in intake. Insulin and beta-adrenergic tone play critical roles in maintaining the internal distribution of potassium under normal conditions. Despite homeostatic pathways designed to maintain potassium levels within the normal range, disorders of altered potassium homeostasis are common. The clinical approach to designing effective treatments relies on understanding the pathophysiology and regulatory influences which govern the internal distribution and external balance of potassium. Here we provide an overview of the key regulatory aspects of normal potassium physiology. This review is designed to provide an overview of potassium homeostasis as well as provide references of seminal papers to guide the reader into a more in depth discussion of the importance of potassium balance. This review is designed to be a resource for educators and well-informed clinicians who are teaching trainees about the importance of potassium balance. Copyright © 2016 the American Physiological Society.

  1. Extrarenal potassium adaptation: role of skeletal muscle

    SciTech Connect

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-08-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using /sup 86/Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of /sup 86/Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium.

  2. Role of Circadian Rhythms in Potassium Homeostasis

    PubMed Central

    Gumz, Michelle L.; Rabinowitz, Lawrence

    2013-01-01

    It has been known for decades that urinary potassium excretion varies with a circadian pattern. In this review, we consider the historical evidence for this phenomenon and present an overview of recent developments in the field. Extensive evidence from the latter part of the last century clearly demonstrates that circadian potassium excretion does not depend on endogenous aldosterone. Of note is the recent discovery that the expression of several renal potassium transporters varies with a circadian pattern that appears to be consistent with substantial clinical data regarding daily fluctuations in urinary potassium levels. We propose the circadian clock mechanism as a key regulator of renal potassium transporters, and consequently renal potassium excretion. Further investigation into the mechanism of regulation of renal potassium transport by the circadian clock is warranted in order to increase our understanding of the clinical relevance of circadian rhythms to potassium homeostasis. PMID:23953800

  3. Can Diuretics Decrease Your Potassium Level?

    MedlinePlus

    Diseases and Conditions High blood pressure (hypertension) Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, M.D. Yes, some diuretics — also called water pills — decrease potassium in the ...

  4. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....730 Potassium bromate. The food additive potassium bromate may be safely used in the malting of barley... barley under conditions whereby the amount of the additive present in the malt from the treatment...

  5. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric...

  6. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is...

  7. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric...

  8. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is...

  9. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric...

  10. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is prepared commercially by...

  11. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No. 006100-0905-096) is the potassium salt of citric acid. It is prepared by neutralizing citric...

  12. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is...

  13. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is...

  14. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) [Reserved] (c) Limitations...

  15. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  18. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use. This...

  19. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions...

  20. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions...

  1. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used...

  2. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions, or explanation. This substance is...

  3. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions...

  4. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  5. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used...

  7. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...

  8. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use. This...

  9. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3640 Potassium sorbate. (a) Product. Potassium...

  10. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use. This...

  11. 75 FR 51112 - Potassium Permanganate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... COMMISSION Potassium Permanganate From China AGENCY: United States International Trade Commission. ACTION: Scheduling of an expedited five-year review concerning the antidumping duty order on potassium permanganate... whether revocation of the antidumping duty order on potassium permanganate from China would be likely to...

  12. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  13. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  14. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use. This...

  15. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing...

  16. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  17. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  18. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use. This...

  19. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or...

  20. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) [Reserved] (c) Limitations...

  2. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...

  3. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use. This...

  4. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  5. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) [Reserved] (c) Limitations...

  7. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions...

  9. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use. This...

  10. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or...

  11. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium nitrate. 172.160 Section 172.160 Food... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing agent in the processing of cod...

  12. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  13. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...

  14. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or...

  15. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  17. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Other Specific Usage Additives § 172.730 Potassium bromate. The food additive potassium bromate may be...

  18. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium bisulfite. 182.3616 Section 182.3616...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or explanation. This substance is generally...

  19. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use. This...

  20. 75 FR 23298 - Potassium Permanganate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... COMMISSION Potassium Permanganate From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on potassium permanganate from China... antidumping duty order on potassium permanganate from China would be likely to lead to continuation or...

  1. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use. This...

  2. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  4. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  5. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  7. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  8. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate. (b...

  9. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate. (b...

  10. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  11. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  12. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or...

  13. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  15. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or...

  17. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  18. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium content...

  19. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions...

  20. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  1. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  2. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  3. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate. (b...

  4. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium content...

  5. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...

  7. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium bisulfite. (a) Product. Potassium bisulfite. (b) [Reserved] (c) Limitations, restrictions, or...

  8. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  9. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate. (b...

  10. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  11. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  12. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or...

  13. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or...

  14. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium content...

  15. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  16. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used...

  17. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use. This...

  18. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate. (b...

  19. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions...

  20. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...

  1. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  2. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  3. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This...

  4. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions...

  5. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  6. Potassium channels and their evolving gates.

    PubMed

    Jan, L Y; Jan, Y N

    1994-09-08

    Potassium channels allow potassium ions to flow across the membrane and play a key role in maintaining membrane potential. Recent research has begun to reveal how these channels transport potassium in preference to other ions, how their activity is controlled, and how they are related to other channels.

  7. Clinical Utility of Potassium-Sparing Diuretics to Maintain Normal Serum Potassium in Peritoneal Dialysis Patients.

    PubMed

    Fülöp, Tibor; Zsom, Lajos; Rodríguez, Betzaida; Afshan, Sabahat; Davidson, Jamie V; Szarvas, Tibor; Dixit, Mehul P; Tapolyai, Mihály B; Rosivall, László

    ♦ BACKGROUND: Hypokalemia is a vexing problem in end-stage renal disease patients on peritoneal dialysis (PD), and oral potassium supplements (OPS) have limited palatability. Potassium-sparing diuretics (KSD) (spironolactone, amiloride) may be effective in these patients. ♦ METHODS: We performed a cross-sectional review of 75 current or past (vintage > 6 months) PD patients with regard to serum potassium (K+), OPS, and KSD utilization. We reviewed charts for multiple clinical and laboratory variables, including dialysis adequacy, residual renal function, nutritional status and co-existing medical therapy. ♦ RESULTS: The cohort was middle-aged with a mean age of 49.2 years (standard deviation [SD] = 14.7) and overweight with a body mass index of 29.5 (6.7) kg/m(2). Of all the participants, 57.3% were female, 73.3% African-American, and 48% diabetic with an overall PD vintage of 28.2 (24.3) months at the time of enrollment. Weekly Kt/V was 2.12 (0.43), creatinine clearance was 73.5 (33.6) L/week/1.73 m(2) with total daily exchange volume of 10.8 (2.7) L. Residual urine output (RUO) measured at 440 (494) mL (anuric 30.6%). Three-month averaged serum K(+) measured at 4 (0.5) mmol/L with 36% of the participants receiving K(+) supplements (median: 20 [0;20] mmol/day) and 41.3% KSD (spironolactone dose: 25 - 200 mg/day; amiloride dose: 5 - 10 mg/day). Serum K(+) correlated positively with weekly Kt/V (r = 0.239; p = 0.039), PD vintage (r = 0.272; p = 0.018) but not with PD modality, daily exchange volume, RUO, or KSD use. However, KSD use was associated with decreased use of OPS (r = -0.646; p < 0.0001). ♦ CONCLUSIONS: Potassium-sparing diuretics were effective in this cohort of PD patients and decreased the need for OPS utilization. Copyright © 2017 International Society for Peritoneal Dialysis.

  8. [Effects of fertilization on aquic brown soil potassium budget and crop potassium allocation].

    PubMed

    Jiang, Zishao; Yu, Wantai; Zhang, Lu

    2006-12-01

    Through a consecutive 15 years field trial on the aquic brown soil in Shenyang suburb of Northeast China, this paper studied the soil potassium budget and crop potassium allocation under effects of different fertilization systems. The results indicated that applying nitrogen or nitrogen plus phosphorous without potassium application accelerated the deficit of soil potassium. The potassium concentration in soybean grain and stalk was higher under potassium application than with no potassium supply, while that in maize grain had no significant difference in different fertilization treatments. The reutilization of recycled nutrients in farming system could mitigate the deficit of soil potassium budget, and such reutilization assorted with appropriate amount of potassium fertilization could not only produce high crop yield, but also balance soil potassium budget.

  9. Serum potassium, mortality, and kidney outcomes in the Atherosclerosis Risk in Communities (ARIC) Study

    PubMed Central

    Chen, Yan; Chang, Alex R.; McAdams DeMarco, Mara A.; Inker, Lesley A.; Matsushita, Kunihiro; Ballew, Shoshana H.; Coresh, Josef; Grams, Morgan E.

    2017-01-01

    Objectives To investigate the association between serum potassium, mortality, and kidney outcomes in the general population and whether potassium-altering medications modify these associations. Patients and Methods We studied 15,539 adults in the Atherosclerosis Risk in Communities (ARIC) study. Cox proportional hazard regression was used to investigate the association of serum potassium at baseline (1987–1989), evaluated categorically (hypokalemia, <3.5 mmol/L; normokalemia, ≥3.5 and < 5.5 mmol/L; hyperkalemia, ≥5.5 mmol/L) and continuously using linear spline terms (knots at 3.5 and 5.5 mmol/L), with mortality, sudden cardiac death (SCD), incident chronic kidney disease (CKD), and end-stage renal disease (ESRD). The end date of follow up for all outcomes was December 31, 2012. We also evaluated whether classes of potassium-altering medications modified the association between serum potassium and adverse outcomes. Results Overall, 2.7% of the participants had hypokalemia and 2.1% had hyperkalemia. In a fully adjusted model, hyperkalemia was significantly associated with mortality (HR: 1.24; 95% CI: 1.04–1.49) but not SCD, CKD, or ESRD. Hypokalemia as a categorical variable was not associated with any outcome; however, associations of hypokalemia with all-cause mortality and kidney outcomes were observed among those who were not taking potassium-wasting diuretics (all P for interaction <.001). Conclusions Higher values of serum potassium were associated with higher risk of mortality in the general population. Lower levels of potassium were associated with adverse kidney outcomes and mortality among participants not taking potassium-wasting diuretics. PMID:27499535

  10. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    PubMed

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Plasma Potassium Levels in Healthy Prehypertension Subjects and the Role of A High Potassium Drink.

    PubMed

    Farapti, Farapti; Sayogo, Savitri; Siregar, Parlindungan

    2017-02-24

    Most populations around the world consume less than the recommended levels of potassium. Long term low potassium intake could lead to decreased plasma potassium levels and induce hypokalemia. The increasing of plasma potassium levels 0,2-0,4 mmol/L by improving potassium intake decreased significantly blood pressure (BP). Assessing plasma potassium levels in healthy people related to potassium intake have not been studied. In this study, we analysed plasma potassium levels in prehypertension (PHT) subjects and to evaluate the effect of tender coconut water (TCW) as a high potassium drink on plasma potassium levels in PHT adults. Thirthy-two female aged 25-44 years were randomly allocated to 14 days on TCW or water in a parallel randomized clinical trial . The treatment (T) group received TCW 300 ml twice daily and the control (C) group received water 300 ml twice daily too. At baseline, plasma potassium levels was 3.71±0.41 mmol/L, and 22.58% were categorized as hypokalemia. After 14 days treatment, potassium plasma level between T and C groups were not significantly different (p=0,247). The change of plasma potassium levels in both groups showed tendency to increase but not statistically significant (p=0.166). In healthy prehypertension women, the low levels of potassium plasma may be caused by low potassium intake for long time and intervension with TCW 300 ml twice daily for 14 consecutive days has not proven yet to increase plasma potassium levels. It is necessary to give higher dose and longer time to increase potassium plasma in low potassium plasma level subjects.

  12. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    PubMed Central

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  13. Potassium Intake, Bioavailability, Hypertension, and Glucose Control.

    PubMed

    Stone, Michael S; Martyn, Lisa; Weaver, Connie M

    2016-07-22

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  14. Reducing the sodium-potassium ratio in the US diet: a challenge for public health123

    PubMed Central

    Drewnowski, Adam; Maillot, Matthieu; Rehm, Colin

    2012-01-01

    Background: The 2010 Dietary Guidelines emphasized that dietary sodium should be limited to 2300 mg/d, with a lower limit of 1500 mg/d for adults aged >50 y, non-Hispanic blacks, and those with diabetes, hypertension, or chronic kidney disease. The potassium goal remained at 4700 mg/d. Objective: The objective was to identify subpopulations for whom the 1500- or 2300-mg Na/d goals applied and to examine the joint sodium and potassium intakes for these persons. Design: The analyses were based on NHANES 2003–2008 data for 12,038 adult men and women aged ≥20 y. Persons aged >50 y, non-Hispanic blacks, and persons with hypertension, diabetes, and chronic kidney disease were identified. Mean sodium, potassium, and energy intakes were obtained from 2 nonconsecutive 24-h dietary recalls. Historical analyses of the sodium-potassium ratios in the American diet were based on NHANES 1971–2006. Results: Among persons recommended to consume <2300 mg Na/d, <0.12% jointly met the sodium and potassium guidelines. In the 1500-mg/d group, the guidelines were jointly met by <0.015%. Based on Dietary Guidelines, the corresponding dietary sodium-potassium ratio was either 0.49 (2300/4700) or 0.32 (1500/4700). Historical analyses of NHANES data by age-sex groups from 1971 to 2006 showed that sodium-potassium ratios were never <0.83. Conclusions: Joint dietary guidelines for sodium and potassium, intended for most American adults, are currently being met by ≤0.015% of the population. Extraordinary efforts will be needed to meet the recommendations of the Dietary Guidelines. PMID:22760562

  15. [Rare, severe hypersensitivity reaction to potassium iodide].

    PubMed

    Korsholm, Anne Sofie; Ebbehøj, Eva; Richelsen, Bjørn

    2014-07-07

    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acneiform iododerma that responded dramatically to withdrawal of the potassium iodide and administration with corticosteroids. Awareness of these adverse reactions may prevent prolonged hospitalization and unnecessary tests and treatments.

  16. Potassium

    MedlinePlus

    ... a Healthy Heart Healthy Kids Our Kids Programs Childhood Obesity What is childhood obesity? Overweight in Children BMI in Children Is Childhood Obesity an Issue in Your Home? Addressing your Child's ...

  17. Genetic Control of Potassium Channels.

    PubMed

    Amin, Ahmad S; Wilde, Arthur A M

    2016-06-01

    Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.

  18. Recent advances in distal tubular potassium handling

    PubMed Central

    Rodan, Aylin R.; Cheng, Chih-Jen

    2011-01-01

    It is well known that sodium reabsorption and aldosterone play important roles in potassium secretion by the aldosterone-sensitive distal nephron. Sodium- and aldosterone-independent mechanisms also exist. This review focuses on some recent studies that provide novel insights into the sodium- and aldosterone-independent potassium secretion by the aldosterone-sensitive distal nephron. In addition, we discuss a study reporting on the regulation of the mammalian potassium kidney channel ROMK by intracellular and extracellular magnesium, which may be important in the pathogenesis of persistent hypokalemia in patients with concomitant potassium and magnesium deficiency. We also discuss outstanding questions and propose working models for future investigation. PMID:21270092

  19. The importance of potassium in managing hypertension.

    PubMed

    Houston, Mark C

    2011-08-01

    Dietary potassium intake has been demonstrated to significantly lower blood pressure (BP) in a dose-responsive manner in both hypertensive and nonhypertensive patients in observational studies, clinical trials, and several meta-analyses. In hypertensive patients, the linear dose-response relationship is a 1.0 mm Hg reduction in systolic BP and a 0.52 mm Hg reduction in diastolic BP per 0.6 g per day increase in dietary potassium intake that is independent of baseline potassium deficiency. The average reduction in BP with 4.7 g (120 mmol) of dietary potassium per day is 8.0/4.1 mm Hg, depending race and on the relative intakes of other minerals such as sodium, magnesium, and calcium. If the dietary sodium chloride intake is high, there is a greater BP reduction with an increased intake of dietary potassium. Blacks have a greater decrease in BP than Caucasians with an equal potassium intake. Potassium-induced reduction in BP significantly lowers the incidence of stroke (cerebrovascular accident, CVA), coronary heart disease, myocardial infarction, and other cardiovascular events. However, potassium also reduces the risk of CVA independent of BP reductions. Increasing consumption of potassium to 4.7 g per day predicts lower event rates for future cardiovascular disease, with estimated decreases of 8% to 15% in CVA and 6% to 11% in myocardial infarction.

  20. Serum potassium level and dietary potassium intake as risk factors for stroke.

    PubMed

    Green, D M; Ropper, A H; Kronmal, R A; Psaty, B M; Burke, G L

    2002-08-13

    Numerous studies have found that low potassium intake and low serum potassium are associated with increased stroke mortality, but data regarding stroke incidence have been limited. Serum potassium levels, dietary potassium intake, and diuretic use in relation to risk for stroke in a prospectively studied cohort were investigated. The study comprised 5,600 men and women older than 65 years who were free of stroke at enrollment. Baseline data included serum potassium level, dietary potassium intake, and diuretic use. Participants were followed for 4 to 8 years, and the incidence and types of strokes were recorded. Low serum potassium was defined as less than 4.1 mEq/L, and low potassium intake as less than 2.4 g/d. Among diuretic users, there was an increased risk for stroke associated with lower serum potassium (relative risk [RR]: 2.5, p < 0.0001). Among individuals not taking diuretics, there was an increased risk for stroke associated with low dietary potassium intake (RR: 1.5, p < 0.005). The small number of diuretic users with lower serum potassium and atrial fibrillation had a 10-fold greater risk for stroke compared with those with higher serum potassium and normal sinus rhythm. A lower serum potassium level in diuretic users, and low potassium intake in those not taking diuretics were associated with increased stroke incidence among older individuals. Lower serum potassium was associated with a particularly high risk for stroke in the small number of diuretic users with atrial fibrillation. Further study is required to determine if modification of these factors would prevent strokes.

  1. The scorpion toxin and the potassium channel.

    PubMed

    Swartz, Kenton J

    2013-05-21

    The structure of a complex containing a toxin bound to a potassium ion channel has been solved for the first time, revealing how scorpions have designed toxins that can recognize and target the filter that controls the movement of potassium ions through these channels.

  2. Process for preparation of potassium-38

    DOEpatents

    Lambrecht, Richard M.; Wolf, Alfred P.

    1981-01-01

    A solution of potassium-38 suitable for use as a radiopharmaceutical and a method for its production. Argon is irradiated with protons having energies above the threshold for the .sup.40 Ar(p,3n).sup.38 K reaction. The resulting potassium-38 is dissolved in a sterile water and any contaminating chlorine-38 is removed.

  3. Potassium - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Center Chinese - Traditional (繁體中文) Potassium Content of Common Foods (High) English 含高量鉀質的食品(每份所含鉀質多過200毫克) - 繁體中文 (Chinese - Traditional) PDF Chinese Community Health Resource Center Potassium Content ...

  4. How Potassium Can Help Control High Blood Pressure

    MedlinePlus

    ... heart-healthy benefits of potassium Foods that are rich in potassium are important in managing high blood ... mashed sweet potatoes has 475 mg. Other potassium-rich foods include: Apricots and apricot juice Cantaloupe and ...

  5. Shifting the Balance of Sodium and Potassium in Your Diet

    MedlinePlus

    ... Resources About FAQ Contact Shifting the Balance of Sodium and Potassium in Your Diet Most Americans consume ... doctor before trying a potassium-based salt substitute. Sodium and Potassium Amounts in Fresh and Processed Foods ...

  6. Relationship between dietary sodium, potassium, and calcium, anthropometric indexes, and blood pressure in young and middle aged Korean adults.

    PubMed

    Park, Juyeon; Lee, Jung-Sug; Kim, Jeongseon

    2010-04-01

    Epidemiological evidence of the effects of dietary sodium, calcium, and potassium, and anthropometric indexes on blood pressure is still inconsistent. To investigate the relationship between dietary factors or anthropometric indexes and hypertension risk, we examined the association of systolic and diastolic blood pressure (SBP and DBP) with sodium, calcium, and potassium intakes and anthropometric indexes in 19~49-year-olds using data from Korean National Health and Nutrition Examination Survey (KNHANES) III. Total of 2,761 young and middle aged adults (574 aged 19~29 years and 2,187 aged 30~49 years) were selected from KNHANES III. General information, nutritional status, and anthropometric data were compared between two age groups (19~29 years old and 30~49 years old). The relevance of blood pressure and risk factors such as age, sex, body mass index (BMI), weight, waist circumference, and the intakes of sodium, potassium, and calcium was determined by multiple regression analysis. Multiple regression models showed that waist circumference, weight, and BMI were positively associated with SBP and DBP in both age groups. Sodium and potassium intakes were not associated with either SBP or DBP. Among 30~49-year-olds, calcium was inversely associated with both SBP and DBP (P = 0.012 and 0.010, respectively). Our findings suggest that encouraging calcium consumption and weight control may play an important role in the primary prevention and management of hypertension in early adulthood.

  7. Potassium in hypertension and cardiovascular disease.

    PubMed

    Castro, Hector; Raij, Leopoldo

    2013-05-01

    The increased prevalence of hypertension and cardiovascular disease in industrialized societies undoubtedly is associated with the modern high-sodium/low-potassium diet. Extensive experimental and clinical data strongly link potassium intake to cardiovascular outcome. Most studies suggest that the sodium-to-potassium intake ratio is a better predictor of cardiovascular outcome than either nutrient individually. A high-sodium/low-potassium environment results in significant abnormalities in central hemodynamics, leading to potential target organ damage. Altered renal sodium handling, impaired endothelium-dependent vasodilatation, and increased oxidative stress are important mediators of this effect. It remains of paramount importance to reinforce consumption of a low-sodium/high-potassium diet as a critical strategy for prevention and treatment of hypertension and cardiovascular disease. Published by Elsevier Inc.

  8. Novel Nanocomposite-based Potassium Ion Biosensor

    NASA Astrophysics Data System (ADS)

    Xue, R.; Gouma, P. I.

    2009-05-01

    Potassium ion (K+) is important in regulating normal cell function in the human body, specifically the heartbeat and the muscle function. Thus, it is important to be able to monitor potassium ion concentrations in human fluids. This paper describes a novel concept for a potassium ion biosensor that accurately, rapidly, and efficiently monitors the presence and records the concentration of potassium ions with high specificity, not only in serum and urine, but also in the sweat or even eye fluid. This specific biosensor design utilizes a nanomanufacturing technique, i.e. electrospinning, to produce advanced nano-bio-composites that specifically trace even minute quantities of potassium ions through the use of selective bio-receptors (ionophores) attached to high surface area nanofibers. Electroactive polymers are then employed as transducers to produce an electronic (rather than ionic) output that changes instantly with the change in K+ concentration. Such biosensors may be manufactured in a skin patch configuration.

  9. 49 CFR 195.49 - Annual report.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Annual report. 195.49 Section 195.49... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.49 Annual report. Beginning no... dioxide pipelines. Operators are encouraged, but not required, to file an annual report by June 15,...

  10. 49 CFR 511.49 - Fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Fees. 511.49 Section 511.49 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ADJUDICATIVE PROCEDURES Hearings § 511.49 Fees. (a) Witnesses. Any person...

  11. Polymeric potassium triformatocobalt(II)

    PubMed Central

    Wöhlert, Susanne; Wriedt, Mario; Jess, Inke; Näther, Christian

    2011-01-01

    In the crystal structure of the title compound, poly[tri-μ-formato-cobalt(II)potassium], [CoK(CHO2)3]n the Co2+ cations are coordinated by six O-bonded formate anions in an octa­hedral coordination mode and the K+ cations are eightfold coordinated by seven O-bonded formate anions within irregular polyhedra. The Co2+ cations are connected by bridging formate anions into a three-dimensional coordination network in which the K+ cations are embedded. The asymmetric unit consits of one Co2+ cation located on a center of inversion, one K+ cation located on a twofold axis and two crystallographically independent formato anions, of which one is located on a twofold axis and the other occupies a general position. PMID:21753951

  12. Potassium salts of hypodiphosphoric acid.

    PubMed

    Szafranowska, Barbara; Slepokura, Katarzyna; Lis, Tadeusz

    2012-12-01

    The synthesis and crystal structures of a series of six crystalline potassium salts of hypodiphosphoric acid, H(4)P(2)O(6), are reported, namely potassium hydrogen phosphonophosphonate, K(+)·H(3)P(2)O(6)(-), (I), dipotassium dihydrogen hypodiphosphate monohydrate, 2K(+)·H(2)P(2)O(6)(2-)·H(2)O, (II), dipotassium dihydrogen hypodiphosphate dihydrate, 2K(+)·H(2)P(2)O(6)(2-)·2H(2)O, (III), pentapotassium hydrogen hypodiphosphate dihydrogen hypodiphosphate dihydrate, 5K(+)·HP(2)O(6)(3-)·H(2)P(2)O(6)(2-)·2H(2)O, (IV), tripotassium hydrogen hypodiphosphate tetrahydrate, 3K(+)·HP(2)O(6)(3-)·4H(2)O, (V), and tetrapotassium hypodiphosphate tetrahydrate, 4K(+)·P(2)O(6)(4-)·4H(2)O, (VI). All the hypodiphosphate anions, viz. H(3)P(2)O(6)(-), H(2)P(2)O(6)(2-), HP(2)O(6)(3-) and P(2)O(6)(4-), adopt a staggered conformation. The P-P bond lengths [2.1722 (7)-2.1892 (10) Å] do not depend on the basicity of the anion. The compounds are organized into different types of one-, two- or three-dimensional polymeric hydrogen-bonded networks, or simply exist in the form of isolated or dimeric units. The coordination numbers of the K(+) cations range from 6 to 9, and the cationic sublattices are polymeric one-, two- or three-dimensional networks, or isolated [KO(6)] or dimeric [K(2)O(12)] polyhedra.

  13. Potassium in the atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1986-01-01

    Spectral data are reported from a search for potassium in the Mercury atmosphere. The data were collected with instrumentation at Kitt Peak (7699 A) and at McDonald Observatory (7698.98 and 7664.86 A). The equivalent mean widths of the potassium emission lines observed are tabulated, along with the estimated abundances, which are compared with sodium abundances as determined by resonance lines. The average column abundance of potassium is projected to be 1 billion atoms/sq cm, about 1 percent the column abundance of sodium.

  14. Potassium in the atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1986-01-01

    Spectral data are reported from a search for potassium in the Mercury atmosphere. The data were collected with instrumentation at Kitt Peak (7699 A) and at McDonald Observatory (7698.98 and 7664.86 A). The equivalent mean widths of the potassium emission lines observed are tabulated, along with the estimated abundances, which are compared with sodium abundances as determined by resonance lines. The average column abundance of potassium is projected to be 1 billion atoms/sq cm, about 1 percent the column abundance of sodium.

  15. Serum potassium concentrations: Importance of normokalaemia.

    PubMed

    Heras, Manuel; Fernández-Reyes, María José

    2017-06-21

    Abnormalities in potassium concentrations are associated with morbidity and mortality. In recent years it has been considered that small variations in serum potassium concentrations within normal intervals may also be associated with mortality. Strategies for achieving normokalaemia include dietary measures, limiting the use of potassium retaining drugs, and use of conventional cation exchange resins (calcium/sodium polystyrene sulfonate) and/or the new non-absorbed cation exchange polymer (patiromer). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  16. [Potassium physiology, hypokalaemia and hyperkalaemia].

    PubMed

    Dussol, Bertrand

    2010-06-01

    Potassium (K+) is a key component of the resting membrane potential of all cells that influences many important biologic events. The clinical importance of K+ is that surpluses or deficits in K+ in the extracellular fluid may predispose the patient to cardiac arrhythmias. The kidneys adjust overall K+ homeostasis by increasing or decreasing the rate of excretion of K+. Urinary excretion of K+ has 2 components: (i) the concentration of K+ in the tubular fluid that depends on the capacity of the cortical collecting duct to secrete K+. The capacity is determined by the lumen-negative transepithelial potential difference generated by the electrogenic reabsorption of Na+. Aldosterone and to a lesser degree HCO3- and Na+ in the tubular fluid are implicated in the generation of the potential difference. This component is evaluated by the transtubular K+ gradient (TTKG). (ii) The volume of fluid delivered to the cortical collecting duct that depends on the osmolar rate of excretion. These 2 components can be calculated if blood osmolality is higher than urine osmolality. Thus, investigating K+ abnormalities is based on the determination of TTKG and osmolar rate of excretion in the cortical collecting duct, on other clinical (extracellular fluid, blood pressure...) and biological data (24-hour K+ excretion, renin, aldosterone...) easily available. First treatment of K+ abnormality is the treatment of its cause. Insulin and glucose supply and dialysis are the best symptomatic treatments of hyperkalaemia.

  17. Calcium Activation of Mougeotia Potassium Channels 1

    PubMed Central

    Lew, Roger R.; Serlin, Bruce S.; Schauf, Charles L.; Stockton, Marsha E.

    1990-01-01

    Phytochrome mediates chloroplast movement in the alga Mougeotia, possibly via changes in cytosolic calcium. It is known to regulate a calcium-activated potassium channel in the algal plasma membrane. As part of a characterization of the potassium channel, we examined the properties of calcium activation. The calcium ionophore A23187 activates the channel at external [Ca2+] as low as 20 micromolar. However, external [Ca2+] is not required for activation of the channel by photoactivated phytochrome. Furthermore, when an inhibitor of calcium release from internal stores, 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, hydrochloride (TMB-8), is present, red light no longer stimulates channel activity. We conclude that phytochrome activates the plasma membrane potassium channel by releasing calcium from intracellular calcium vesicles; the elevated cytosolic calcium then stimulates channel activity by an unknown mechanism. In the presence of TMB-8, red light does induce chloroplast rotation; thus, potassium channel activation may not be coupled to chloroplast rotation. PMID:16667356

  18. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  19. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to... susceptible to penicillin V potassium. (3) Limitations. Administer orally 1 to 2 hours prior to feeding for...

  20. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  1. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  2. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  3. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to... susceptible to penicillin V potassium. (3) Limitations. Administer orally 1 to 2 hours prior to feeding for...

  4. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products and...

  5. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products and...

  6. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red meat...

  7. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red meat...

  8. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products and...

  9. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued... potassium nitrite, in the production of cured red meat products and cured poultry products. ...

  10. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrite and potassium nitrite. 181.34... nitrite and potassium nitrite. Sodium nitrite and potassium nitrite are subject to prior sanctions issued... without sodium or potassium nitrate, in the curing of red meat and poultry products. ...

  11. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to... susceptible to penicillin V potassium. (3) Limitations. Administer orally 1 to 2 hours prior to feeding for...

  12. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red meat...

  13. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products and...

  14. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  15. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red meat...

  16. Estimated Potassium Content in Hanford Workers

    SciTech Connect

    Lynch, Timothy P.; Rivard, James; Garcia, Silvia

    2004-10-15

    Potassium content in male and female workers at the Department of Energy Hanford Site was estimated based on measurements made in 2002 of 40K activity in the body. A coaxial germanium detection system was used for the measurements. The activity in female workers ranged from 2.1 to 4.1 kBq with an average of 3.1 ± 0.02 kBq. Total body potassium (TBK) content in female workers averaged 96 ± 0.3 g. The activity in male workers ranged from 2.8 to 6.6 kBq with an average of 4.3 ± 0.01 kBq and the average TBK was 136 ± 0.3 g. The average potassium concentration decreased with age in both males and females. The average potassium content and potassium concentrations for both males and females were less than the corresponding reference values. Potassium concentrations were inversely correlated with body-build index, body-mass index, and body weight for both males and females.

  17. Renal and extrarenal regulation of potassium.

    PubMed

    Giebisch, G; Krapf, R; Wagner, C

    2007-08-01

    The ISN Forefronts in Nephrology Symposium took place 8-11 September 2005 in Kartause Ittingen, Switzerland. It was dedicated to the memory of Robert W. Berliner, who died at age 86 on 5 February 2002. Dr Berliner contributed in a major way to our understanding of potassium transport in the kidney. Starting in the late 1940s, without knowledge of how potassium was transported across specific nephron segments and depending only on renal clearance methods, he and his able associates provided a still-valid blueprint of the basic transport properties of potassium handling by the kidney. They firmly established that potassium was simultaneously reabsorbed and secreted along the nephron; that variations in secretion in the distal nephron segments play a major role in regulating potassium excretion; and that such secretion is modulated by sodium, acid-base factors, hormones, and diuretics. These conclusions were presented in a memorable Harvey Lecture some forty years ago, and they have remained valid ever since. The concepts have also provided the foundation and stimulation for later work on single nephrons, tubule cells, and transport proteins involved in potassium transport.

  18. Drug-induced abnormalities of potassium metabolism.

    PubMed

    Kokot, Franciszek; Hyla-Klekot, Lidia

    2008-01-01

    Pharmacotherapy has progressed rapidly over the last 20 years with the result that general practioners more and more often use drugs which may influence potassium metabolism at the kidney or gastrointestinal level, or the transmembrane transport of potassium at the cellular level. Potassium abnormalities may result in life-theatening clinical conditions. Hypokalemia is most frequently caused by renal loss of this electrolyte (thiazide, thiazide-like and loop diuretics, glucocorticoids) and the gastrointestinal tract (laxatives, diarrhea, vomiting, external fistula), and may be the result of an increased intracellular potassium influx induced by sympathicomimetics used mostly by patients with asthma, or by insulin overdosage in diabetic subjects. The leading symptoms of hypokalemia are skeletal and smooth muscle weakness and cardiac arrhythmias. Hyperkalemia may be caused by acute or end-stage renal failure, impaired tubular excretion of potassium (blockers of the renin-angiotensin-aldosterone system, nonsteroidal anti-inflammatory drugs, cyclosporine, antifungal drugs, potassium sparing diuretics), acidemia, and severe cellular injury (tumor lysis syndrome). Hyperkalemia may be the cause of severe injury of both skeletal and smooth muscle cells. The specific treatment counteracting hyperkalemia is a bolus injection of calcium salts and, when necessary, hemodialysis.

  19. Circadian variation of intercompartmental potassium fluxes in man

    NASA Technical Reports Server (NTRS)

    Moore Ede, M. C.; Brennan, M. F.; Ball, M. R.

    1975-01-01

    Circadian rhythms of plasma potassium concentration and urinary potassium excretion persisted in three normal volunteers when diurnal variations in activity, posture, and dietary intake were eliminated for 3-10 days. Measurements of the arteriovenous difference in plasma potassium concentration across the resting forearm and of erythrocyte potassium concentration suggested that there is a net flux of potassium from ICF to ECF in the early morning and a reverse net flux later in the day. The total net ICF-ECF fluxes were estimated from the diurnal variations in extracellular potassium content corrected for dietary intake and urinary potassium loss. The net fluxes between ICF and ECF were found to be counterbalanced by the circadian rhythm in urinary potassium excretion. Desynchronization of these rhythms would result in marked fluctuations in extracellular potassium content. These findings suggest that some revision is required of the concept of basal state in potassium homeostasis.

  20. Circadian variation of intercompartmental potassium fluxes in man

    NASA Technical Reports Server (NTRS)

    Moore Ede, M. C.; Brennan, M. F.; Ball, M. R.

    1975-01-01

    Circadian rhythms of plasma potassium concentration and urinary potassium excretion persisted in three normal volunteers when diurnal variations in activity, posture, and dietary intake were eliminated for 3-10 days. Measurements of the arteriovenous difference in plasma potassium concentration across the resting forearm and of erythrocyte potassium concentration suggested that there is a net flux of potassium from ICF to ECF in the early morning and a reverse net flux later in the day. The total net ICF-ECF fluxes were estimated from the diurnal variations in extracellular potassium content corrected for dietary intake and urinary potassium loss. The net fluxes between ICF and ECF were found to be counterbalanced by the circadian rhythm in urinary potassium excretion. Desynchronization of these rhythms would result in marked fluctuations in extracellular potassium content. These findings suggest that some revision is required of the concept of basal state in potassium homeostasis.

  1. 49 CFR 260.49 - Avoiding defaults.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Avoiding defaults. 260.49 Section 260.49... Avoiding defaults. Borrowers are encouraged to contact the Administrator prior to the occurrence of an event of default to explore possible avenues for avoiding such an occurrence. ...

  2. 49 CFR 195.49 - Annual report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Annual report. 195.49 Section 195.49 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... dioxide pipelines, and fuel grade ethanol pipelines. For each state a pipeline traverses, an operator must...

  3. [The relationship between PMI and concentration of potassium ion and sodium ion in swine aqueous humor after death].

    PubMed

    Han, Ju; Yu, Guang-biao; Dong, Ye-qiang; Fang, Chao; Jing, Hua-lan; Luo, Si-min

    2010-04-01

    To explored the relationship between the concentration of potassium ion as well as sodium ion in the aqueous humor and post-mortem interval (PMI). The concentrations of potassium ion and sodium ion in the aqueous humor of swine within 48 h after death at 4 degrees C and 28 degrees C were detected using Z-500 atomic absorption spectrophotometer. The concentrations of potassium ion and sodium ion in aqueous humor of isolated swine eyeballs within 48 h after death when the environmental temperature was 4 degrees C were significantly related to PMI. The relationship between PMI and the concentration of potassium ion was PMI = -0.178[K+]2 + 49.978 (R2 = 0.995). The relationship between PMI and the rate of sodium ion and potassium ion was PMI = 120.987/[Na+/K+]-28.834 (R2 = 0.905). The concentration of potassium in aqueous humor of isolated swine eyeballs may be one of the reference indicators to estimate PMI of the corpses at lower temperatures.

  4. Potassium induced cardiac standstill during conventional cardiopulmonary resuscitation in a pig model of prolonged ventricular fibrillation cardiac arrest: a feasibility study.

    PubMed

    Lee, Hyoung Youn; Lee, Byung Kook; Jeung, Kyung Woon; Lee, Sung Min; Jung, Yong Hun; Lee, Geo Sung; Heo, Tag; Min, Yong Il

    2013-03-01

    Potassium-based cardioplegia has been the gold standard for cardioprotection during cardiac surgery. We sought to evaluate the feasibility and the effects of potassium-induced cardiac standstill during conventional cardiopulmonary resuscitation (CPR) in a pig model of prolonged ventricular fibrillation (VF). VF was induced in 20 pigs, and circulatory arrest was maintained for 14 min. Animals were then resuscitated by standard CPR. Coincident with the start of CPR, 20 ml of saline (control group) or 0.9 mequiv.kg(-1) of potassium chloride diluted to 20 ml (potassium group) was administered into right atrium. Administration of potassium resulted in asystole lasting for 1.0 min (0.2) in the potassium group animals. VF reappeared in all but one animal, in which wide QRS complex bradycardia followed. Restoration of spontaneous circulation (ROSC) was attained in two animals (20%) in the control group and in seven animals (70%) in the potassium group (p=0.070). Resuscitated animals in the potassium group required fewer countershocks (3, 4 vs. 2 (1-2)), smaller doses of adrenaline (1.84, 1.84 vs. 0.94 (0.90-1.00)mg), and shorter duration of CPR (8, 10 vs. 4.0 (4.0-4.0)min) than did the control group. Potassium concentrations normalised rapidly after ROSC in both groups, and the potassium concentrations at 5 min (5.5, 6.6 vs. 6.8 (6.5-7.8)mequiv.l(-1)) and 4h (4.9, 5.4 vs. 5.9 (5.1-6.4)mequiv.l(-1)) after ROSC were similar in the both groups. In a pig model of untreated VF cardiac arrest for 14 min, resuscitation with potassium-induced cardiac standstill during conventional CPR was found to be feasible. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is also called potassium bitartrate or cream of...

  6. Serum potassium and the racial disparity in diabetes risk: the Atherosclerosis Risk in Communities (ARIC) Study1234

    PubMed Central

    Chatterjee, Ranee; Yeh, Hsin-Chieh; Shafi, Tariq; Anderson, Cheryl; Pankow, James S; Miller, Edgar R; Levine, David; Selvin, Elizabeth; Brancati, Frederick L

    2011-01-01

    Background: Low serum potassium appears to be independently associated with incident type 2 diabetes, and low dietary potassium is more common in African Americans than in whites. Objective: We hypothesized that low serum potassium contributes to the excess risk of diabetes in African Americans. Design: We analyzed data collected from 1987 to 1996 from the Atherosclerosis Risk in Communities (ARIC) Study. At baseline, we identified 2716 African American and 9493 white participants without diabetes. We used multivariate Cox models to estimate the relative hazards (RHs) of incident diabetes related to baseline serum potassium during 9 y of follow-up. Results: Mean serum potassium concentrations were lower in African Americans than in whites at baseline (4.2 compared with 4.5 mEq/L; P < 0.01), and African Americans had a greater incidence of diabetes than did whites (26 compared with 13 cases/1000 person-years). The adjusted RHs (95% CI) of incident diabetes for those with serum potassium concentrations of <4.0, 4.0–4.4, and 4.5–4.9 mEq/L, compared with those with serum potassium concentrations of 5.0–5.5 mEq/L (referent), were 2.28 (1.21, 4.28), 1.97 (1.06, 3.65), and 1.85 (0.99, 3.47) for African Americans and 1.53 (1.14, 2.05), 1.49 (1.19, 1.87), and 1.27 (1.02, 1.58) for whites, respectively. Racial differences in serum potassium appeared to explain 18% of the excess risk of diabetes in African Americans, which is comparable with the percentage of risk explained by racial differences in body mass index (22%). Conclusions: Low serum potassium concentrations in African Americans may contribute to their excess risk of type 2 diabetes relative to whites. Whether interventions to increase serum potassium concentrations in African Americans might reduce their excess risk deserves further study. The ARIC Study is registered at clinicaltrials.gov as NCT00005131. PMID:21367942

  7. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for potassium and sodium intake.

    PubMed

    Freedman, Laurence S; Commins, John M; Moler, James E; Willett, Walter; Tinker, Lesley F; Subar, Amy F; Spiegelman, Donna; Rhodes, Donna; Potischman, Nancy; Neuhouser, Marian L; Moshfegh, Alanna J; Kipnis, Victor; Arab, Lenore; Prentice, Ross L

    2015-04-01

    We pooled data from 5 large validation studies (1999-2009) of dietary self-report instruments that used recovery biomarkers as referents, to assess food frequency questionnaires (FFQs) and 24-hour recalls (24HRs). Here we report on total potassium and sodium intakes, their densities, and their ratio. Results were similar by sex but were heterogeneous across studies. For potassium, potassium density, sodium, sodium density, and sodium:potassium ratio, average correlation coefficients for the correlation of reported intake with true intake on the FFQs were 0.37, 0.47, 0.16, 0.32, and 0.49, respectively. For the same nutrients measured with a single 24HR, they were 0.47, 0.46, 0.32, 0.31, and 0.46, respectively, rising to 0.56, 0.53, 0.41, 0.38, and 0.60 for the average of three 24HRs. Average underreporting was 5%-6% with an FFQ and 0%-4% with a single 24HR for potassium but was 28%-39% and 4%-13%, respectively, for sodium. Higher body mass index was related to underreporting of sodium. Calibration equations for true intake that included personal characteristics provided improved prediction, except for sodium density. In summary, self-reports capture potassium intake quite well but sodium intake less well. Using densities improves the measurement of potassium and sodium on an FFQ. Sodium:potassium ratio is measured much better than sodium itself on both FFQs and 24HRs. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Pooled Results From 5 Validation Studies of Dietary Self-Report Instruments Using Recovery Biomarkers for Potassium and Sodium Intake

    PubMed Central

    Freedman, Laurence S.; Commins, John M.; Moler, James E.; Willett, Walter; Tinker, Lesley F.; Subar, Amy F.; Spiegelman, Donna; Rhodes, Donna; Potischman, Nancy; Neuhouser, Marian L.; Moshfegh, Alanna J.; Kipnis, Victor; Arab, Lenore; Prentice, Ross L.

    2015-01-01

    We pooled data from 5 large validation studies (1999–2009) of dietary self-report instruments that used recovery biomarkers as referents, to assess food frequency questionnaires (FFQs) and 24-hour recalls (24HRs). Here we report on total potassium and sodium intakes, their densities, and their ratio. Results were similar by sex but were heterogeneous across studies. For potassium, potassium density, sodium, sodium density, and sodium:potassium ratio, average correlation coefficients for the correlation of reported intake with true intake on the FFQs were 0.37, 0.47, 0.16, 0.32, and 0.49, respectively. For the same nutrients measured with a single 24HR, they were 0.47, 0.46, 0.32, 0.31, and 0.46, respectively, rising to 0.56, 0.53, 0.41, 0.38, and 0.60 for the average of three 24HRs. Average underreporting was 5%–6% with an FFQ and 0%–4% with a single 24HR for potassium but was 28%–39% and 4%–13%, respectively, for sodium. Higher body mass index was related to underreporting of sodium. Calibration equations for true intake that included personal characteristics provided improved prediction, except for sodium density. In summary, self-reports capture potassium intake quite well but sodium intake less well. Using densities improves the measurement of potassium and sodium on an FFQ. Sodium:potassium ratio is measured much better than sodium itself on both FFQs and 24HRs. PMID:25787264

  9. Effect of polacrilin potassium as disintegrant on bioavailability of diclofenac potassium in tablets : a technical note.

    PubMed

    Bele, Mrudula H; Derle, Diliprao V

    2012-09-01

    Polacrilin potassium is an ion exchange resin used in oral pharmaceutical formulations as a tablet disintegrant. It is a weakly acidic cation exchange resin. Chemically, it is a partial potassium salt of a copolymer of methacrylic acid with divinyl benzene. It ionizes to an anionic polymer chain and potassium cations. It was hypothesized that polacrilin potassium may be able to improve the permeability of anionic drugs according to the Donnan membrane phenomenon. The effect of polacrilin potassium on the permeability of diclofenac potassium, used as a model anionic drug, was tested in vitro using diffusion cells and in vivo by monitoring serum levels in rats. The amount of drug permeated across a dialysis membrane in vitro was significantly more in the presence of polacrilin potassium. Significant improvement was found in the extent of drug absorption in vivo. It could be concluded that polacrilin potassium may be used as a high-functionality excipient for improving the bioavailability of anionic drugs having poor gastrointestinal permeability.

  10. Potassium acetate and potassium lactate enhance the microbiological and physical properties of marinated catfish fillets

    USDA-ARS?s Scientific Manuscript database

    Sodium or potassium salts such as lactate and acetate can be used to inhibit the growth of spoilage bacteria and food-borne pathogens, and thereby prolong the shelf-life of refrigerated seafood. However, minimal information is available regarding the combined effects of potassium salts (acetate and ...

  11. Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives.

    PubMed

    He, Feng J; Marciniak, Maciej; Carney, Christine; Markandu, Nirmala D; Anand, Vidya; Fraser, William D; Dalton, R Neil; Kaski, Juan C; MacGregor, Graham A

    2010-03-01

    To determine the effects of potassium supplementation on endothelial function, cardiovascular risk factors, and bone turnover and to compare potassium chloride with potassium bicarbonate, we carried out a 12-week randomized, double-blind, placebo-controlled crossover trial in 42 individuals with untreated mildly raised blood pressure. Urinary potassium was 77+/-16, 122+/-25, and 125+/-27 mmol/24 hours after 4 weeks on placebo, potassium chloride, and potassium bicarbonate, respectively. There were no significant differences in office blood pressure among the 3 treatment periods, and only 24-hour and daytime systolic blood pressures were slightly lower with potassium chloride. Compared with placebo, both potassium chloride and potassium bicarbonate significantly improved endothelial function as measured by brachial artery flow-mediated dilatation, increased arterial compliance as assessed by carotid-femoral pulse wave velocity, decreased left ventricular mass, and improved left ventricular diastolic function. There was no significant difference between the 2 potassium salts in these measurements. The study also showed that potassium chloride reduced 24-hour urinary albumin and albumin:creatinine ratio, and potassium bicarbonate decreased 24-hour urinary calcium, calcium:creatinine ratio, and plasma C-terminal cross-linking telopeptide of type 1 collagen significantly. These results demonstrated that an increase in potassium intake had beneficial effects on the cardiovascular system, and potassium bicarbonate may improve bone health. Importantly, these effects were found in individuals who already had a relatively low-salt and high-potassium intake.

  12. Bioavailability of potassium from potatoes and potassium gluconate: a randomized dose response trial.

    PubMed

    Macdonald-Clarke, Claire J; Martin, Berdine R; McCabe, Linda D; McCabe, George P; Lachcik, Pamela J; Wastney, Meryl; Weaver, Connie M

    2016-08-01

    The bioavailability of potassium should be considered in setting requirements, but to our knowledge, the bioavailability from individual foods has not been determined. Potatoes provide 19-20% of potassium in the American diet. We compared the bioavailability and dose response of potassium from nonfried white potatoes with skin [targeted at 20, 40, and 60 milliequivalents (mEq) K] and French fries (40 mEq K) with potassium gluconate at the same doses when added to a basal diet that contained ∼60 mEq K. Thirty-five healthy, normotensive men and women with a mean ± SD age of 29.7 ± 11.2 y and body mass index (in kg/m(2)) of 24.3 ± 4.4 were enrolled in a single-blind, crossover, randomized controlled trial. Participants were partially randomly assigned to the order of testing for nine 5-d interventions of additional potassium as follows: 0 (control; repeated at phases 1 and 5), 20, 40, and 60 mEq K/d consumed as a potassium gluconate supplement or as unfried potato or 40 mEq K from French fries completed at phase 9. The bioavailability of potassium was determined from the area under the curve (AUC) of serial blood draws and cumulative urinary excretion during a 24-h period and from a kinetic analysis. The effects of the potassium source and dose on the change in blood pressure and augmentation index (AIx) were determined. The serum potassium AUC increased with the dose (P < 0.0001) and did not differ because of the source (P = 0.53). Cumulative 24-h urinary potassium also increased with the dose (P < 0.0001) and was greater with the potato than with the supplement (P < 0.0001). The kinetic analysis showed the absorption efficiency was high across all interventions (>94% ± 12%). There were no significant differences in the change in blood pressure or AIx with the treatment source or dose. The bioavailability of potassium is as high from potatoes as from potassium gluconate supplements. Future studies that measure the effect of dietary potassium on blood pressure

  13. Potassium, calcium, and magnesium intakes and risk of stroke in women.

    PubMed

    Larsson, Susanna C; Virtamo, Jarmo; Wolk, Alicja

    2011-07-01

    The authors examined the association between dietary potassium, calcium, and magnesium intakes and the incidence of stroke among 34,670 women 49-83 years of age in the Swedish Mammography Cohort who completed a food frequency questionnaire in 1997. The authors used Cox proportional hazards regression models to estimate relative risks and 95% confidence intervals. During a mean follow-up of 10.4 years (1998-2008), 1,680 stroke events were ascertained, including 1,310 cerebral infarctions, 154 intracerebral hemorrhages, 79 subarachnoid hemorrhages, and 137 unspecified strokes. There was no overall association between potassium, calcium, or magnesium intake and the risk of any stroke or cerebral infarction. However, among women with a history of hypertension, potassium intake was inversely associated with risk of all types of stroke (for highest vs. lowest quintile, adjusted relative risk = 0.64, 95% confidence interval (CI): 0.45, 0.92) and cerebral infarction (corresponding adjusted relative risk = 0.56, 95% CI: 0.38, 0.84), and magnesium intake was inversely associated with risk of cerebral infarction (corresponding adjusted relative risk = 0.63, 95% CI: 0.42, 0.93). Calcium intake was positively associated with risk of intracerebral hemorrhage (for highest vs. lowest tertile, adjusted relative risk = 2.04, 95% CI: 1.24, 3.35). These findings suggest that potassium and magnesium intakes are inversely associated with the risk of cerebral infarction among hypertensive women.

  14. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  15. Serum Potassium Levels in Sigmoid Volvulus

    PubMed Central

    Atamanalp, S. Selcuk; Keles, M. Sait; Aydinli, Bulent

    2009-01-01

    Objective: This study aimed to determine the serum potassium concentrations in patients with sigmoid volvulus (SV), which is a rare large bowel obstruction. Materials and Methods: The records of 86 patients with SV were reviewed retrospectively, while the records of 41 patients diagnosed with obstructive rectosigmoid cancer (ORC) were considered as the control group and as such, served as a source for comparison. Results: The analysis revealed a mean serum potassium concentration of 3.9 ± 0.6 mEq/L for the patients with SV, while the mean potassium concentration was 3.9 ± 0.5 mEq/L for the patients diagnosed with ORC (t:0.1, P>0.05). The number of hypokalemic and hyperkalemic patients identified in this study sample were 11 versus 5 patients and 1 versus 0 patients, respectively for the SV and ORC groups (x2 = 0.1 and 0.5, respectively with a P>0.05). Conclusions: No cause-and-effect relationship was observed between the serum potassium concentrations and SV. The serum potassium concentration is not pathognomonic for SV. PMID:25610090

  16. The effect of diuretics on extrarenal potassium tolerance.

    PubMed Central

    Tanoue, L. T.; Aronson, P. S.; Bia, M. J.

    1982-01-01

    A potassium loading study was performed in acutely nephrectomized rats to determine the extrarenal effects of diuretics on potassium tolerance. Four diuretics were evaluated: hydrochlorothiazide, furosemide, bumetanide, and spironolactone. Following an intravenous potassium load (0.17 mEq/100 g over one hour), plasma potassium concentration rose by 2.69 +/- 0.26 to 3.67 +/- 0.20 mEq/L in all groups. There was no difference in the observed increment in plasma potassium concentration between animals receiving diuretics and control animals. These results demonstrate that, at the doses used, diuretics do not impair extrarenal potassium disposal in the rat. PMID:7183021

  17. Potassium channels in pulmonary arterial hypertension.

    PubMed

    Boucherat, Olivier; Chabot, Sophie; Antigny, Fabrice; Perros, Frédéric; Provencher, Steeve; Bonnet, Sébastien

    2015-10-01

    Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder with various origins. All forms of PAH share a common pulmonary arteriopathy characterised by vasoconstriction, remodelling of the pre-capillary pulmonary vessel wall, and in situ thrombosis. Although the pathogenesis of PAH is recognised as a complex and multifactorial process, there is growing evidence that potassium channels dysfunction in pulmonary artery smooth muscle cells is a hallmark of PAH. Besides regulating many physiological functions, reduced potassium channels expression and/or activity have significant effects on PAH establishment and progression. This review describes the molecular mechanisms and physiological consequences of potassium channel modulation. Special emphasis is placed on KCNA5 (Kv1.5) and KCNK3 (TASK1), which are considered to play a central role in determining pulmonary vascular tone and may represent attractive therapeutic targets in the treatment of PAH.

  18. Relationship and interaction between sodium and potassium.

    PubMed

    Morris, R Curtis; Schmidlin, Olga; Frassetto, Lynda A; Sebastian, Anthony

    2006-06-01

    Compared with the Stone Age diet, the modern human diet is both excessive in NaCl and deficient in fruits and vegetables which are rich in K+ and HCO3- -yielding organates like citrate. With the modern diet, the K+/Na+ ratio and the HCO3-/Cl- ratio have both become reversed. Yet, the biologic machinery that evolved to process these dietary electrolytes remains largely unchanged, genetically fixed in Paleolithic time. Thus, the electrolytic mix of the modern diet is profoundly mismatched to its processing machinery. Dietary potassium modulates both the pressor and hypercalciuric effects of the modern dietary excess of NaCl. A marginally deficient dietary intake of potassium amplifies both of these effects, and both effects are dose-dependently attenuated and may be abolished either with dietary potassium or supplemental KHCO3. The pathogenic effects of a dietary deficiency of potassium amplify, and are amplified by, those of a dietary excess of NaCl and in some instances a dietary deficiency of bicarbonate precursors. Thus, in those ingesting the modern diet, it may not be possible to discern which of these dietary electrolytic dislocations is most determining of salt-sensitive blood pressure and hypercalciuria, and the hypertension, kidney stones, and osteoporosis they may engender. Obviously abnormal plasma electrolyte concentrations rarely characterize these dietary electrolytic dislocations, and when either dietary potassium or supplemental KHCO3 corrects the pressor and hypercalciuric effects of these dislocations, the plasma concentrations of sodium, potassium, bicarbonate and chloride change little and remain well within the normal range.

  19. Improved Synthesis Of Potassium Beta' '-Alumina

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Underwood, Mark

    1996-01-01

    Improved formulations of precursor materials synthesize nearly-phase-pure potassium beta' '-alumina solid electrolyte (K-BASE) powder. Materials are microhomogeneous powders (or, alternatively, gels) containing K(+,) Mg(2+), and Al(3+). K-BASE powder produced used in potassium-working-fluid alkali-metal thermal-to-electric conversion (K-AMTEC), in which heat-input and heat-rejection temperatures lower than sodium-working-fluid AMTEC (Na-AMTEC). Additional potential use lies in purification of pottassium by removal of sodium and calcium.

  20. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  1. Titanium-potassium heat pipe corrosion studies

    SciTech Connect

    Lundberg, L.B.

    1984-07-01

    An experimental study of the susceptibility of wickless titanium/potassium heat pipes to corrosive attack has been conducted in vacuo at 800/sup 0/K for 6511h and at 900/sup 0/K for 4797h without failure or degradation. Some movement of carbon, nitrogen and oxygen was observed in the titanium container tube, but no evidence of attack could be detected in metallographic cross sections of samples taken along the length of the heat pipes. The lack of observable attack of titanium by potassium under these conditions refutes previous reports of Ti-K incompatibility.

  2. Lower serum potassium associated with increased mortality in dialysis patients: A nationwide prospective observational cohort study in Korea

    PubMed Central

    Lee, Sunhwa; Kang, Eunjeong; Yoo, Kyung Don; Choi, Yunhee; Kim, Dong Ki; Joo, Kwon Wook; Yang, Seung Hee; Kim, Yong-Lim; Kang, Shin-Wook; Yang, Chul Woo; Kim, Nam Ho; Kim, Yon Su; Lee, Hajeong

    2017-01-01

    Background Abnormal serum potassium concentration has been suggested as a risk factor for mortality in patients undergoing dialysis patients. We investigated the impact of serum potassium levels on survival according to dialysis modality. Methods A nationwide, prospective, observational cohort study for end stage renal disease patients has been ongoing in Korea since August 2008. Our analysis included patients whose records contained data regarding serum potassium levels. The relationship between serum potassium and mortality was analyzed using competing risk regression. Results A total of 3,230 patients undergoing hemodialysis (HD, 64.3%) or peritoneal dialysis (PD, 35.7%) were included. The serum potassium level was significantly lower (P < 0.001) in PD (median, 4.5 mmol/L; interquartile range, 4.0–4.9 mmol/L) than in HD patients (median, 4.9 mmol/L; interquartile range, 4.5–5.4 mmol/L). During 4.4 ± 1.7 years of follow-up, 751 patients (23.3%) died, mainly from cardiovascular events (n = 179) and infection (n = 120). In overall, lower serum potassium level less than 4.5 mmol/L was an independent risk factor for mortality after adjusting for age, comorbidities, and nutritional status (sub-distribution hazard ratio, 1.30; 95% confidence interval 1.10–1.53; P = 0.002). HD patients showed a U-shaped survival pattern, suggesting that both lower and higher potassium levels were deleterious, although insignificant. However, in PD patients, only lower serum potassium level (<4.5 mmol/L) was an independent predictor of mortality (sub-distribution hazard ratio, 1.35; 95% confidence interval 1.00–1.80; P = 0.048). Conclusion Lower serum potassium levels (<4.5 mmol/L) occur more commonly in PD than in HD patients. It represents an independent predictor of survival in overall dialysis, especially in PD patients. Therefore, management of dialysis patients should focus especially on reducing the risk of hypokalemia, not only that of hyperkalemia. PMID:28264031

  3. Removal of potassium from tuberous root vegetables by leaching.

    PubMed

    Burrowes, Jerrilynn D; Ramer, Nicholas J

    2006-10-01

    To determine analytically the amount of potassium in raw tuberous root vegetables (TRV); to estimate the amount of potassium that can be leached from raw TRV by soaking in water; and to determine whether the duration of soaking and the cooking method selected affect potassium extraction. Fresh TRV (ie, fresh and sweet batata, cocomalanga, dasheen, eddo, black yam, white yam, yellow yam, yampi, malanga, red yautia, white yautia, and yuca) were obtained from an ethnic market. Five experimental conditions with variations in soak time and cooking method were applied. Potassium was extracted from the ash of dried samples. The potassium content of aqueous extractions was determined through atomic absorption spectrophotometry. Mean potassium content was highest in raw cocomalanga and lowest in raw dasheen. All of the raw TRV, except for dasheen, had a potassium content >200 mg (5.1 mEq)/100 g sample. Soaking was not effective in the leaching of significant amounts of potassium from most TRV. The double cooking (DC) method (ie, boil, rinse, boil again) leached more potassium from most TRV than did the normal cooking (NC) method (ie, boil), except with dasheen and yellow yam. More vegetables retained a potassium content >200 mg (5.1 mEq)/100 g following NC versus DC (92% versus 54%). The potassium content of raw TRV varied considerably, with most tubers retaining a moderate or high potassium content following the leaching procedures. However, this study showed that DC appears to be more effective than NC for leaching potassium from TRV.

  4. Potentiating potassium nitrate's desensitization with dimethyl isosorbide.

    PubMed

    Hodosh, M

    2001-01-01

    Desensitization of hypersensitive teeth by the combination of dimethyl isosorbide (DMI) and potassium nitrate (KNO3) is more effective than when KNO3 is used alone. KNO3/DMI work together to desensitize hypersensitive teeth at a higher, quicker, and more profound and lasting level.

  5. Dialysate and serum potassium in hemodialysis.

    PubMed

    Hung, Adriana M; Hakim, Raymond M

    2015-07-01

    Most patients with end-stage renal disease depend on intermittent hemodialysis to maintain levels of serum potassium and other electrolytes within a normal range. However, one of the challenges has been the safety of using a low-potassium dialysate to achieve that goal, given the concern about the effects that rapid and/or large changes in serum potassium concentrations may have on cardiac electrophysiology and arrhythmia. Additionally, in this patient population, there is a high prevalence of structural cardiac changes and ischemic heart disease, making them even more susceptible to acute arrhythmogenic triggers. This concern is highlighted by the knowledge that about two-thirds of all cardiac deaths in dialysis are due to sudden cardiac death and that sudden cardiac death accounts for 25% of the overall death for end-stage renal disease. Developing new approaches and practice standards for potassium removal during dialysis, as well as understanding other modifiable triggers of sudden cardiac death, such as other electrolyte components of the dialysate (magnesium and calcium), rapid ultrafiltration rates, and safety of a number of medications (ie, drugs that prolong the QT interval or use of digoxin), are critical in order to decrease the unacceptably high cardiac mortality experienced by hemodialysis-dependent patients.

  6. Potassium ferrate treatment of RFETS` contaminated groundwater

    SciTech Connect

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe {sup +6}) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern.

  7. [Use of potassium canrenoate in cardiosurgery].

    PubMed

    Tufano, R; Scopa, M; Brando, G; Leone, D

    1981-04-01

    The influence of canrenoate of potassium, a new injectable antialdosteronic, on serum, urinary and intraerythrocyte ionograms has been evaluated as part of a random controlled study on patients submitted to ECC heart surgery. The results show that the drug maintains correct ionic homoestasis and gradualises and potentiates diuresis, in association with furosemide. The possible clinical implications of these results are discussed.

  8. Dendritic potassium channels in hippocampal pyramidal neurons

    PubMed Central

    Johnston, Daniel; Hoffman, Dax A; Magee, Jeffrey C; Poolos, Nicholas P; Watanabe, Shigeo; Colbert, Costa M; Migliore, Michele

    2000-01-01

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 μm of the apical dendrites, so that action potentials recorded farther than 200 μm from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials. PMID:10811726

  9. The physiology of potassium in crop production

    USDA-ARS?s Scientific Manuscript database

    Potassium plays a major role in the basic functions of plant growth and development. In addition, K is also involved in numerous physiological functions related to plant health and tolerance to biotic and abiotic stress. However, deficiencies occur widely resulting in poor growth, lost yield and red...

  10. Calcium, magnesium, and potassium in food

    USDA-ARS?s Scientific Manuscript database

    The biochemical and physiological functions and consequences of deficient intakes, which show the nutritional importance of calcium, magnesium and potassium for humans, are reviewed. The dietary recommendations and food sources for these essential mineral elements for humans are presented. Factors t...

  11. Ezogabine: a new angle on potassium gates.

    PubMed

    Faught, Edward

    2011-05-01

    Ezogabine is a new drug for adjunctive therapy of partial-onset seizures with a novel mechanism of action. As a potassium-channel facilitator, it promotes membrane repolarization and thus opposes rapid repetitive discharges. Side effects are typical for antiepileptic drugs and the safety profile is good. Occasional instances of urinary difficulty may require surveillance.

  12. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as...

  13. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.800...

  14. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as...

  15. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as...

  16. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as...

  17. Hg0 absorption in potassium persulfate solution*

    PubMed Central

    Ye, Qun-feng; Wang, Cheng-yun; Wang, Da-hui; Sun, Guan; Xu, Xin-hua

    2006-01-01

    The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed. PMID:16615172

  18. Dendritic potassium channels in hippocampal pyramidal neurons.

    PubMed

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  19. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is...

  20. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is also...

  1. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium potassium tartrate. 184.1804 Section 184... as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is also called the Rochelle...

  2. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is...

  3. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is...

  4. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is...

  5. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is also...

  6. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is also...

  7. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is also...

  8. Proton conductivity of potassium doped barium zirconates

    SciTech Connect

    Xu Xiaoxiang; Tao Shanwen; Irvine, John T.S.

    2010-01-15

    Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} at 600 deg. C is 2.2x10{sup -3} S/cm in wet 5% H{sub 2}. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2) eV in wet 5% H{sub 2} and 0.31(1), 0.74(3) eV in dry 5% H{sub 2}. A power density of 7.7 mW/cm{sup 2} at 718 deg. C was observed when a 1 mm thick Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} pellet was used as electrolyte and platinum electrodes. - Graphical abstract: Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10 %. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. Five percent doping of potassium at A-site can double the total conductivity.

  9. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  10. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting under...

  11. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium salt...

  12. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of...

  13. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  14. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No. 12673-69...

  15. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  16. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hetacillin potassium for intramammary infusion... § 526.1130 Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See No...

  17. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting under...

  18. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium salt...

  19. 75 FR 63856 - Potassium Permanganate From China Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... COMMISSION Potassium Permanganate From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on potassium permanganate from China would be likely to lead to continuation or... Potassium Permanganate from China: Investigation No. 731-TA- 125 (Third Review). Issued: October 1, 2010. By...

  20. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting under...

  1. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of...

  2. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use. This...

  3. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of polyolefin...

  4. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  5. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  6. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium salt...

  7. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hetacillin potassium for intramammary infusion... § 526.1130 Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See No...

  8. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  9. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of...

  10. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of use...

  11. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use. This...

  12. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of polyolefin...

  13. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No. 12673-69...

  14. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  15. Extracellular Potassium Homeostasis: Insights from Hypokalemic Periodic Paralysis

    PubMed Central

    Cheng, Chih-Jen; Kuo, Elizabeth; Huang, Chou-Long

    2014-01-01

    The extracellular potassium makes up only about 2% of the total body potassium store. The majority of the body potassium is distributed in the intracellular space, and of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na+, K+-ATPase and release by inward rectifier K+ channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward rectifier K+ channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings will be reviewed. PMID:23953801

  16. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use. This...

  17. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  18. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  19. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium salt...

  20. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of polyolefin...

  1. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  2. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hetacillin potassium for intramammary infusion... § 526.1130 Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See No...

  3. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of polyolefin...

  4. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting under...

  5. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of...

  6. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium salt...

  7. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use. This...

  8. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting under...

  9. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hetacillin potassium for intramammary infusion... Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See No. 000010 in § 510.600(c...

  10. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use. This...

  11. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of...

  12. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of polyolefin...

  13. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of use...

  14. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of use...

  15. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of use...

  16. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of use...

  17. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum potassium sulfate. 182.1129 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  19. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  20. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  1. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  2. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  3. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  4. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  5. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  6. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  7. Comparative Efficacy of Potassium Levulinate with/without Potassium Diacetate and Potassium Propionate vs Potassium Lactate and Sodium Diacetate for Control of Listeria monocytogenes on commercially prepared uncured t.breast

    USDA-ARS?s Scientific Manuscript database

    We evaluated the efficacy of potassium levulinate, potassium diacetate, and potassium propionate to inhibit Listeria monocytogenes on commercially-prepared, uncured turkey breast during refrigerated storage. Whole muscle, uncured turkey breast chubs (ca. 5 kg each) were formulated with or without po...

  8. Extracellular potassium homeostasis: insights from hypokalemic periodic paralysis.

    PubMed

    Cheng, Chih-Jen; Kuo, Elizabeth; Huang, Chou-Long

    2013-05-01

    Extracellular potassium makes up only about 2% of the total body's potassium store. The majority of the body potassium is distributed in the intracellular space, of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na(+), K(+)-adenosine triphosphatase and release by inward-rectifier K(+) channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons, and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis, focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward-rectifier K(+) channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings are reviewed. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Time to Consider Use of the Sodium-to-Potassium Ratio for Practical Sodium Reduction and Potassium Increase

    PubMed Central

    Miura, Katsuyuki; Ueshima, Hirotsugu

    2017-01-01

    Pathogenetic studies have demonstrated that the interdependency of sodium and potassium affects blood pressure. Emerging evidences on the sodium-to-potassium ratio show benefits for a reduction in sodium and an increase in potassium compared to sodium and potassium separately. As presently there is no known review, this article examined the practical use of the sodium-to-potassium ratio in daily practice. Epidemiological studies suggest that the urinary sodium-to-potassium ratio may be a superior metric as compared to separate sodium and potassium values for determining the relation to blood pressure and cardiovascular disease risks. Higher correlations and better agreements are seen for the casual urine sodium-to-potassium ratio than for casual urine sodium or potassium alone when compared with the 24-h urine values. Repeated measurements of the casual urine provide reliable estimates of the 7-day 24-h urine value with less bias for the sodium-to-potassium ratio as compared to the common formulas used for estimating the single 24-h urine from the casual urine for sodium and potassium separately. Self-monitoring devices for the urinary sodium-to-potassium ratio measurement makes it possible to provide prompt onsite feedback. Although these devices have been evaluated with a view to support an individual approach for sodium reduction and potassium increase, there has yet to be an accepted recommended guideline for the sodium-to-potassium ratio. This review concludes with a look at the practical use of the sodium-to-potassium ratio for assistance in practical sodium reduction and potassium increase. PMID:28678188

  10. Time to Consider Use of the Sodium-to-Potassium Ratio for Practical Sodium Reduction and Potassium Increase.

    PubMed

    Iwahori, Toshiyuki; Miura, Katsuyuki; Ueshima, Hirotsugu

    2017-07-05

    Pathogenetic studies have demonstrated that the interdependency of sodium and potassium affects blood pressure. Emerging evidences on the sodium-to-potassium ratio show benefits for a reduction in sodium and an increase in potassium compared to sodium and potassium separately. As presently there is no known review, this article examined the practical use of the sodium-to-potassium ratio in daily practice. Epidemiological studies suggest that the urinary sodium-to-potassium ratio may be a superior metric as compared to separate sodium and potassium values for determining the relation to blood pressure and cardiovascular disease risks. Higher correlations and better agreements are seen for the casual urine sodium-to-potassium ratio than for casual urine sodium or potassium alone when compared with the 24-h urine values. Repeated measurements of the casual urine provide reliable estimates of the 7-day 24-h urine value with less bias for the sodium-to-potassium ratio as compared to the common formulas used for estimating the single 24-h urine from the casual urine for sodium and potassium separately. Self-monitoring devices for the urinary sodium-to-potassium ratio measurement makes it possible to provide prompt onsite feedback. Although these devices have been evaluated with a view to support an individual approach for sodium reduction and potassium increase, there has yet to be an accepted recommended guideline for the sodium-to-potassium ratio. This review concludes with a look at the practical use of the sodium-to-potassium ratio for assistance in practical sodium reduction and potassium increase.

  11. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses

    PubMed Central

    Hanson, Sara; Gutierrez, Hialy; Hooper, Lee; Elliott, Paul; Cappuccio, Francesco P

    2013-01-01

    Objective To conduct a systematic review of the literature and meta-analyses to fill the gaps in knowledge on potassium intake and health. Data sources Cochrane Central Register of Controlled Trials, Medline, Embase, WHO International Clinical Trials Registry Platform, Latin American and Caribbean Health Science Literature Database, and the reference lists of previous reviews. Study selection Randomised controlled trials and cohort studies reporting the effects of potassium intake on blood pressure, renal function, blood lipids, catecholamine concentrations, all cause mortality, cardiovascular disease, stroke, and coronary heart disease were included. Data extraction and synthesis Potential studies were independently screened in duplicate, and their characteristics and outcomes were extracted. When possible, meta-analysis was done to estimate the effects (mean difference or risk ratio with 95% confidence interval) of higher potassium intake by using the inverse variance method and a random effect model. Results 22 randomised controlled trials (including 1606 participants) reporting blood pressure, blood lipids, catecholamine concentrations, and renal function and 11 cohort studies (127 038 participants) reporting all cause mortality, cardiovascular disease, stroke, or coronary heart disease in adults were included in the meta-analyses. Increased potassium intake reduced systolic blood pressure by 3.49 (95% confidence interval 1.82 to 5.15) mm Hg and diastolic blood pressure by 1.96 (0.86 to 3.06) mm Hg in adults, an effect seen in people with hypertension but not in those without hypertension. Systolic blood pressure was reduced by 7.16 (1.91 to 12.41) mm Hg when the higher potassium intake was 90-120 mmol/day, without any dose response. Increased potassium intake had no significant adverse effect on renal function, blood lipids, or catecholamine concentrations in adults. An inverse statistically significant association was seen between potassium intake and risk of

  12. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses.

    PubMed

    Aburto, Nancy J; Hanson, Sara; Gutierrez, Hialy; Hooper, Lee; Elliott, Paul; Cappuccio, Francesco P

    2013-04-03

    To conduct a systematic review of the literature and meta-analyses to fill the gaps in knowledge on potassium intake and health. Cochrane Central Register of Controlled Trials, Medline, Embase, WHO International Clinical Trials Registry Platform, Latin American and Caribbean Health Science Literature Database, and the reference lists of previous reviews. Randomised controlled trials and cohort studies reporting the effects of potassium intake on blood pressure, renal function, blood lipids, catecholamine concentrations, all cause mortality, cardiovascular disease, stroke, and coronary heart disease were included. Potential studies were independently screened in duplicate, and their characteristics and outcomes were extracted. When possible, meta-analysis was done to estimate the effects (mean difference or risk ratio with 95% confidence interval) of higher potassium intake by using the inverse variance method and a random effect model. 22 randomised controlled trials (including 1606 participants) reporting blood pressure, blood lipids, catecholamine concentrations, and renal function and 11 cohort studies (127,038 participants) reporting all cause mortality, cardiovascular disease, stroke, or coronary heart disease in adults were included in the meta-analyses. Increased potassium intake reduced systolic blood pressure by 3.49 (95% confidence interval 1.82 to 5.15) mm Hg and diastolic blood pressure by 1.96 (0.86 to 3.06) mm Hg in adults, an effect seen in people with hypertension but not in those without hypertension. Systolic blood pressure was reduced by 7.16 (1.91 to 12.41) mm Hg when the higher potassium intake was 90-120 mmol/day, without any dose response. Increased potassium intake had no significant adverse effect on renal function, blood lipids, or catecholamine concentrations in adults. An inverse statistically significant association was seen between potassium intake and risk of incident stroke (risk ratio 0.76, 0.66 to 0.89). Associations between

  13. 40 CFR 49.921-49.1970 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.921-49.1970 Section 49.921-49.1970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region V §§ 49.921-49.1970...

  14. 40 CFR 49.681-49.710 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.681-49.710 Section 49.681-49.710 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region III §§ 49.681-49.710...

  15. 40 CFR 49.5511-49.9860 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.5511-49.9860 Section 49.5511-49.9860 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region IX §§ 49.5511-49.9860...

  16. 40 CFR 49.711-49.920 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.711-49.920 Section 49.711-49.920 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region IV §§ 49.711-49.920...

  17. 40 CFR 49.3921-49.4160 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.3921-49.4160 Section 49.3921-49.4160 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region VII §§ 49.3921-49.4160...

  18. 40 CFR 49.4161-49.5510 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.4161-49.5510 Section 49.4161-49.5510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region VIII §§ 49.4161-49.5510...

  19. 40 CFR 49.1971-49.3920 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.1971-49.3920 Section 49.1971-49.3920 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region VI §§ 49.1971-49.3920...

  20. 40 CFR 49.101-49.120 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.101-49.120 Section 49.101-49.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY General Federal Implementation Plan Provisions §§ 49.101-49.120 General Rules...

  1. 40 CFR 49.12-49.21 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.12-49.21 Section 49.12-49.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Tribal Authority §§ 49.12-49.21...

  2. 40 CFR 49.51-49.100 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.51-49.100 Section 49.51-49.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY General Provisions §§ 49.51-49.100...

  3. 40 CFR 49.25-49.50 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.25-49.50 Section 49.25-49.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Tribal Authority §§ 49.25-49.50...

  4. Potassium and Its Discontents: New Insight, New Treatments.

    PubMed

    Ellison, David H; Terker, Andrew S; Gamba, Gerardo

    2016-04-01

    Hyperkalemia is common in patients with impaired kidney function or who take drugs that inhibit the renin-angiotensin-aldosterone axis. During the past decade, substantial advances in understanding how the body controls potassium excretion have been made, which may lead to improved standard of care for these patients. Renal potassium disposition is primarily handled by a short segment of the nephron, comprising part of the distal convoluted tubule and the connecting tubule, and regulation results from the interplay between aldosterone and plasma potassium. When dietary potassium intake and plasma potassium are low, the electroneutral sodium chloride cotransporter is activated, leading to salt retention. This effect limits sodium delivery to potassium secretory segments, limiting potassium losses. In contrast, when dietary potassium intake is high, aldosterone is stimulated. Simultaneously, potassium inhibits the sodium chloride cotransporter. Because more sodium is then delivered to potassium secretory segments, primed by aldosterone, kaliuresis results. When these processes are disrupted, hyperkalemia results. Recently, new agents capable of removing potassium from the body and treating hyperkalemia have been tested in clinical trials. This development suggests that more effective and safer approaches to the prevention and treatment of hyperkalemia may be on the horizon.

  5. [Kinetics on ethanethiol oxidation by potassium permanganate in drinking water].

    PubMed

    Liu, Yao; Zhang, Xiao-Jian; Dai, Ji-Sheng; Xu, Huan

    2008-05-01

    Reaction kinetics of ethanethiol oxidation with potassium permanganate in water was studied, and the effect of ethanethiol oxidation in raw water under coagulation condition has been investigated. The results showed that the oxidation reaction of ethanethiol by potassium permanganate was very efficient, the removing effect could be more than 90%. The rate of ethanethiol decomposition by potassium permanganate in aqueous solution followed second-order kinetics. When potassium permanganate was excessive, pseudo-first-order rate and concentration of potassium permanganate followed the equation: k' = 0.025 [KMnO4] - 0.008. And then, the second-order reaction rate constant was k = 0.025 L/(min x mg). The removal of ethanethiol in raw water by potassium permanganate under coagulation condition was poorer than in pure water condition, So predicted concentration of potassium permanganate was lower than real concentration.

  6. Sodium retention by insulin may depend on decreased plasma potassium.

    PubMed

    Friedberg, C E; Koomans, H A; Bijlsma, J A; Rabelink, T J; Dorhout Mees, E J

    1991-02-01

    Evidence is accumulating that insulin is a hypertensive factor in humans. The involved mechanism may be its sodium-retaining effect. We examined whether insulin causes sodium retention through a direct action on the kidney, as is generally assumed, or indirectly through hypokalemia. Insulin was infused (euglycemic clamp technique) with and without potassium infusion to prevent hypokalemia in six healthy subjects. Without potassium infusion, insulin caused a marked decrease in plasma potassium (-0.75 mmol/L), and decreased urinary sodium and potassium excretions by, approximately 38% and 65%, respectively. Simultaneous potassium infusion largely prevented the decrease in plasma potassium, as well as the decrease in urinary sodium and potassium excretions. These data suggest that the acute antinatriuretic effect of insulin may be largely mediated in an indirect way, ie, through hypokalemia.

  7. Sodium and potassium in the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1991-01-01

    The discovery that sodium and potassium vapor can be observed in the lunar atmosphere using ground-based telescopes has opened up a field of investigation that was closed after the last Apollo mission to the Moon. Sodium has been detected at altitudes up to 1500 km above the surface. This implies a high effective temperature for sodium, of the order of 1000 K. However, there is some evidence for two populations of sodium and potassium, one at temperatures corresponding to the surface, and another corresponding to high temperatures. The sources for the lunar atmosphere are not understood. Meteoric bombardment of the surface, solar wind sputtering of the surface, and photo-sputtering of the surface have all been suggested as possible sources for the lunar atmosphere. One of the objectives of the current research is to test different hypotheses by measurements of the atmosphere under different conditions of solar illumination and shielding from the solar wind by the Earth.

  8. The Ketogenic Diet and Potassium Channel Function

    DTIC Science & Technology

    2014-10-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The overall objective of this Discovery Award is to explore the hypothesis the ketogenic diet ...have examining the impact of the ketogenic diet on mice in which the gene that encodes Kvβ2 has been deleted (Kvβ2 KO mice) using an in vitro model of

  9. The Ketogenic Diet and Potassium Channel Function

    DTIC Science & Technology

    2015-11-01

    observation is not reversed by the KD which to some extent supports our initial hypothesis. 15. SUBJECT TERMS Epilepsy , Ketogenic Diet, Seizure Disorder...ketogenic diet (KD), which is used to treat epilepsy (primarily in children) exerts a positive effect on seizure activity by regulating neuronal... Epilepsy , Ketogenic Diet, Seizure Disorder, Potassium Channels, Neurophysiology 3. Overall Project Summary: To determine the impact of KD on

  10. [About the history chemistry and potassium iodide].

    PubMed

    Fournier, Josette

    2008-07-01

    Louis Melsen was born at Louvain, he spent four years in Paris, working in Dumas's laboratory. Four letters from Melsens to Chevreul, since 1951 to 1880, are commented on. Two letters relate to Van Helmont and common interest of the two scientists in history of sciences. The others recall Melsens's proposal that potassium iodide can cure and prevent lead and mercury poisoning, and Chevreul's researches about colours seeing.

  11. Structural and spectroscopic characterization of potassium fluoroborohydrides.

    PubMed

    Heyn, Richard H; Saldan, Ivan; Sørby, Magnus H; Frommen, Christoph; Arstad, Bjørnar; Bougza, Aud M; Fjellvåg, Helmer; Hauback, Bjørn C

    2013-07-21

    Mechanochemical reactions between KBH4 and KBF4 result in the formation of potassium fluoroborohydrides K(BH(x)F(4-x)) (x = 0-4), as determined by (11)B and (19)F solid state NMR. The materials maintain the cubic KBH4 structure. Thermogravimetric (TG) data for a ball-milled sample with KBH4 : KBF4 = 3 : 1 are consistent with only desorption of hydrogen.

  12. Nitrate, ammonium, and potassium sensing and signaling.

    PubMed

    Ho, Cheng-Hsun; Tsay, Yi-Fang

    2010-10-01

    Plants acquire numerous nutrients from the soil. In addition, nutrients elicit many physiological and morphological responses especially in roots. Recently, there has been significant progress in identifying the sensing and regulatory mechanisms of several essential nutrients. In this review, we describe the newly identified signaling components of nitrate, ammonium, and potassium, focusing specifically on the initial sensing steps. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. New enzymatic assay with urea amidolyase for determining potassium in serum.

    PubMed

    Kimura, S; Iyama, S; Yamaguchi, Y; Hayashi, S; Fushimi, R; Amino, N

    1997-07-01

    We developed a new simple assay for potassium ion in serum using urea amidolyase (UAL) from yeast sp. The method is based on activation of the enzyme by potassium ion. We eliminated endogenous ammonium ion by use of glutamate dehydrogenase (GLDH), and then monitored the production of ammonium ion by UAL, urea, ATP, bicarbonate and magnesium ions. Ammonium ion was produced proportional to the potassium ion concentration and was determined by adding GLDH to produce NADP+ in the presence of 2-oxoglutarate and NADPH. We monitored the change of absorbance at 340 nm. The inhibitory effect of calcium ion to this assay was eliminated by adding glycoletherdiamine-N, N, N', N'-tetraacetic acid to the reaction. The within-assay coefficients of variation (CV) of this method were 0.9-1.55% (n = 10) at 3.32-6.18 mmol/L. Day-to-day CVs ranged from 1.49% to 2.46%. The analytical recovery was 96-108%. The correlation coefficient between the values obtained by our method (y) and those by the ion-selective electrode (ISE) method (x) was 0.994 (y = 1.032x-0.166 mmol/L, Syx = 0.110, n = 100). The presence of bilirubin, haemoglobin or other ions did not affect this assay, confirming the usefulness of this assay for clinical purposes.

  14. Historical and technical developments of potassium resources.

    PubMed

    Ciceri, Davide; Manning, David A C; Allanore, Antoine

    2015-01-01

    The mining of soluble potassium salts (potash) is essential for manufacturing fertilizers required to ensure continuous production of crops and hence global food security. As of 2014, potash is mined predominantly in the northern hemisphere, where large deposits occur. Production tonnage and prices do not take into account the needs of the farmers of the poorest countries. Consequently, soils of some regions of the southern hemisphere are currently being depleted of potassium due to the expansion and intensification of agriculture coupled with the lack of affordable potash. Moving away from mined salts towards locally available resources of potassium, such as K-bearing silicates, could be one option to improve this situation. Overall, the global potash production system and its sustainability warrant discussion. In this contribution we examine the history of potash production and discuss the different sources and technologies used throughout the centuries. In particular, we highlight the political and economic conditions that favored the development of one specific technology over another. We identified a pattern of needs driving innovation. We show that as needs evolved throughout history, alternatives to soluble salts have been used to obtain K-fertilizers. Those alternatives may meet the incoming needs of our century, providing the regulatory and advisory practices that prevailed in the 20th century are revised. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Potassium iodide capsule treatment of feline sporotrichosis.

    PubMed

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  16. Formulation and optimization of potassium iodide tablets.

    PubMed

    Al-Achi, Antoine; Patel, Binit

    2015-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light.

  17. Formulation and optimization of potassium iodide tablets

    PubMed Central

    Al-Achi, Antoine; Patel, Binit

    2014-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  18. Lower serum potassium associated with increased mortality in dialysis patients: A nationwide prospective observational cohort study in Korea.

    PubMed

    Lee, Sunhwa; Kang, Eunjeong; Yoo, Kyung Don; Choi, Yunhee; Kim, Dong Ki; Joo, Kwon Wook; Yang, Seung Hee; Kim, Yong-Lim; Kang, Shin-Wook; Yang, Chul Woo; Kim, Nam Ho; Kim, Yon Su; Lee, Hajeong

    2017-01-01

    Abnormal serum potassium concentration has been suggested as a risk factor for mortality in patients undergoing dialysis patients. We investigated the impact of serum potassium levels on survival according to dialysis modality. A nationwide, prospective, observational cohort study for end stage renal disease patients has been ongoing in Korea since August 2008. Our analysis included patients whose records contained data regarding serum potassium levels. The relationship between serum potassium and mortality was analyzed using competing risk regression. A total of 3,230 patients undergoing hemodialysis (HD, 64.3%) or peritoneal dialysis (PD, 35.7%) were included. The serum potassium level was significantly lower (P < 0.001) in PD (median, 4.5 mmol/L; interquartile range, 4.0-4.9 mmol/L) than in HD patients (median, 4.9 mmol/L; interquartile range, 4.5-5.4 mmol/L). During 4.4 ± 1.7 years of follow-up, 751 patients (23.3%) died, mainly from cardiovascular events (n = 179) and infection (n = 120). In overall, lower serum potassium level less than 4.5 mmol/L was an independent risk factor for mortality after adjusting for age, comorbidities, and nutritional status (sub-distribution hazard ratio, 1.30; 95% confidence interval 1.10-1.53; P = 0.002). HD patients showed a U-shaped survival pattern, suggesting that both lower and higher potassium levels were deleterious, although insignificant. However, in PD patients, only lower serum potassium level (<4.5 mmol/L) was an independent predictor of mortality (sub-distribution hazard ratio, 1.35; 95% confidence interval 1.00-1.80; P = 0.048). Lower serum potassium levels (<4.5 mmol/L) occur more commonly in PD than in HD patients. It represents an independent predictor of survival in overall dialysis, especially in PD patients. Therefore, management of dialysis patients should focus especially on reducing the risk of hypokalemia, not only that of hyperkalemia.

  19. Race, Serum Potassium, and Associations With ESRD and Mortality.

    PubMed

    Chen, Yan; Sang, Yingying; Ballew, Shoshana H; Tin, Adrienne; Chang, Alex R; Matsushita, Kunihiro; Coresh, Josef; Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Grams, Morgan E

    2017-08-01

    Recent studies suggest that potassium levels may differ by race. The basis for these differences and whether associations between potassium levels and adverse outcomes differ by race are unknown. Observational study. Associations between race and potassium level and the interaction of race and potassium level with outcomes were investigated in the Racial and Cardiovascular Risk Anomalies in Chronic Kidney Disease (RCAV) Study, a cohort of US veterans (N=2,662,462). Associations between African ancestry and potassium level were investigated in African Americans in the Atherosclerosis Risk in Communities (ARIC) Study (N=3,450). Race (African American vs non-African American and percent African ancestry) for cross-sectional analysis; serum potassium level for longitudinal analysis. Potassium level for cross-sectional analysis; mortality and end-stage renal disease for longitudinal analysis. The RCAV cohort was 18% African American (N=470,985). Potassium levels on average were 0.162mmol/L lower in African Americans compared with non-African Americans, with differences persisting after adjustment for demographics, comorbid conditions, and potassium-altering medication use. In the ARIC Study, higher African ancestry was related to lower potassium levels (-0.027mmol/L per each 10% African ancestry). In both race groups, higher and lower potassium levels were associated with mortality. Compared to potassium level of 4.2mmol/L, mortality risk associated with lower potassium levels was lower in African Americans versus non-African Americans, whereas mortality risk associated with higher levels was slightly greater. Risk relationships between potassium and end-stage renal disease were weaker, with no difference by race. No data for potassium intake. African Americans had slightly lower serum potassium levels than non-African Americans. Consistent associations between potassium levels and percent African ancestry may suggest a genetic component to these differences. Higher and

  20. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  1. The relationship between uric acid and potassium in normal subjects.

    PubMed Central

    Kennedy, A C; Boddy, K; King, P C; Brennan, J; Anderson, J A; Buchanan, W W

    1978-01-01

    The serum uric acid concentration in normal healthy subjects has been studied in relation to sex, height, weight, lean body mass measured from total body potassium and predicted from the Hume-Weyers formula (1971), total body potassium, plasma potassium and urea, and packed cell volume. The strongest correlation was found with sex, but height, weight, total body potassium, lean body mass (measured and predicted) also correlated significantly with serum uric acid concentration. However, when the sex variable was removed, the other factors lost their significant correlation. Finally, total red blood cell and plasma volumes were predicted (Hume and Goldberg, 1964) and from these an estimate of total plasma uric acid, total plasma potassium, and total red blood cell potassium obtained. Measured total body potassium was found to correlate well with total plasma potassium and total red blood cell potassium independent of sex. Total plasma uric acid correlated well with measured total body potassium when both sexes were considered and when separated into male and female groups the males retained a significant correlation as did the female group. PMID:686865

  2. Proapoptotic Role of Potassium Ions in Liver Cells

    PubMed Central

    Xia, Zhenglin; Huang, Xusen; Chen, Kaiyun; Wang, Hanning; Xiao, Jinfeng; He, Ke; Huang, Rui; Duan, Xiaopeng; Liu, Hao; Zhang, Jinqian; Xiang, Guoan

    2016-01-01

    Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1. PMID:27069917

  3. Correlation between sodium and potassium excretion in 24- and 12-h urine samples.

    PubMed

    Mill, J G; Silva, A B T da; Baldo, M P; Molina, M C B; Rodrigues, S L

    2012-09-01

    Low-sodium and high-potassium diets have been recommended as an adjunct to prevention and treatment of hypertension. Analysis of these nutrients in 24-h urine has been considered the reference method to estimate daily intake of these minerals. However, 24-h urine collection is difficult in epidemiological studies, since urine must be collected and stored in job environments. Therefore, strategies for shorter durations of urine collection at home have been proposed. We have previously reported that collecting urine during a 12-h period (overnight) is more feasible and that creatinine clearance correlated strongly with that detected in 24-h samples. In the present study, we collected urine for 24 h divided into two 12-h periods (from 7:00 am to 7:00 pm and from 7:00 pm to 7:00 am next day). A sample of 109 apparently healthy volunteers aged 30 to 74 years of both genders working in a University institution was investigated. Subjects with previous myocardial infarction, stroke, renal insufficiency, and pregnant women were not included. Significant (P < 0.001) Spearman correlation coefficients (r s) were found between the total amount of sodium and potassium excreted in the urine collected at night and in the 24-h period (r s = 0.76 and 0.74, respectively). Additionally, the 12-h sodium and potassium excretions (means ± SD, 95% confidence interval) corresponded to 47.3 ± 11.2%, 95%CI = 45.3-49.3, and 39.3 ± 4.6%, 95%CI = 37.3-41.3, respectively, of the 24-h excretion of these ions. Therefore, these findings support the assumption that 12-h urine collected at night can be used as a reliable tool to estimate 24-h intake/excretion of sodium and potassium.

  4. New Stability-Indicating RP-HPLC Method for Determination of Diclofenac Potassium and Metaxalone from their Combined Dosage Form

    PubMed Central

    Panda, Sagar Suman; Patanaik, Debasis; Ravi Kumar, Bera V. V.

    2012-01-01

    A simple, precise and accurate isocratic RP-HPLC stability-indicating assay method has been developed to determine diclofenac potassium and metaxalone in their combined dosage forms. Isocratic separation was achieved on a Hibar-C18, Lichrosphere-100® (250 mm × 4.6 mm i.d., particle size 5 μm) column at room temperature in isocratic mode, the mobile phase consists of methanol: water (80:20, v/v) at a flow rate of 1.0 ml/min, the injection volume was 20 μl and UV detection was carried out at 280nm. The drug was subjected to acid and alkali hydrolysis, oxidation, photolysis and heat as stress conditions. The method was validated for specificity, linearity, precision, accuracy, robustness and system suitability. The method was linear in the drug concentration range of 2.5–30 μg/ml and 20–240 μg/ml for diclofenac potassium and metaxalone, respectively. The precision (RSD) of six samples was 0.83 and 0.93% for repeatability, and the intermediate precision (RSD) among six-sample preparation was 1.63 and 0.49% for diclofenac potassium and metaxalone, respectively. The mean recoveries were between 100.99–102.58% and 99.97–100.01% for diclofenac potassium and metaxalone, respectively. The proposed method can be used successfully for routine analysis of the drug in bulk and combined pharmaceutical dosage forms. PMID:22396909

  5. An XPS study of the iron surface promoted by potassium

    SciTech Connect

    Perov, V.M.

    1995-03-01

    The surface composition of a model iron-potassium catalytic system in oxidized and reduced states is studied by XPS. It is found that the potassium-to-oxygen atomic ratio for the surface of reduced samples is one. The distributions of elements in subsurface layers of the reduced system are determined by varying the detection angle of emitted electrons and by ion sputtering of the surface. It is shown that potassium and oxygen form a monolayer on the surface of iron crystallites.

  6. Changes in potassium content of different potato varieties after cooking.

    PubMed

    Burrowes, Jerrilynn D; Ramer, Nicholas J

    2008-11-01

    We sought to determine analytically the potassium content of different varieties of raw potatoes, and to estimate the amount of potassium that can be extracted or leached from raw potatoes by cooking. Six different varieties of fresh potatoes were obtained from the Whole Foods Market in Manhasset, New York. Two different cooking methods (normal cooking [NC] and double cooking [DC]) were applied to each potato. Potassium was extracted from the ash of dried samples. The potassium content of aqueous extractions was ascertained by atomic absorption spectrophotometry. Mean potassium content was highest in the purple Viking potato (448.1 +/- 60.5 mg [11.5 +/- 1.6 mEq]/100 g [values are mean +/- SD unless otherwise noted]), and lowest in the Idaho potato (295 +/- 15.7 mg [7.6 +/- 0.4 mEq]/100 g). All raw potatoes had a mean potassium content of about 300 mg (7.7 mEq)/100 g or greater. The DC method resulted in a greater reduction in potassium from raw potatoes than the NC method. All potatoes retained a mean potassium content greater than 200 mg (5.1 mEq)/100 g, using the NC versus the DC method. The potassium content of the raw potatoes studied varied considerably, with most tubers retaining a moderate amount of potassium after leaching. This study showed that the DC method appears to be more effective than the NC method in leaching potassium from the potatoes studied. Our findings provide useful information for dietitians involved in menu planning for people on potassium-restricted diets.

  7. Active dendrites, potassium channels and synaptic plasticity.

    PubMed Central

    Johnston, Daniel; Christie, Brian R; Frick, Andreas; Gray, Richard; Hoffman, Dax A; Schexnayder, Lalania K; Watanabe, Shigeo; Yuan, Li-Lian

    2003-01-01

    The dendrites of CA1 pyramidal neurons in the hippocampus express numerous types of voltage-gated ion channel, but the distributions or densities of many of these channels are very non-uniform. Sodium channels in the dendrites are responsible for action potential (AP) propagation from the axon into the dendrites (back-propagation); calcium channels are responsible for local changes in dendritic calcium concentrations following back-propagating APs and synaptic potentials; and potassium channels help regulate overall dendritic excitability. Several lines of evidence are presented here to suggest that back-propagating APs, when coincident with excitatory synaptic input, can lead to the induction of either long-term depression (LTD) or long-term potentiation (LTP). The induction of LTD or LTP is correlated with the magnitude of the rise in intracellular calcium. When brief bursts of synaptic potentials are paired with postsynaptic APs in a theta-burst pairing paradigm, the induction of LTP is dependent on the invasion of the AP into the dendritic tree. The amplitude of the AP in the dendrites is dependent, in part, on the activity of a transient, A-type potassium channel that is expressed at high density in the dendrites and correlates with the induction of the LTP. Furthermore, during the expression phase of the LTP, there are local changes in dendritic excitability that may result from modulation of the functioning of this transient potassium channel. The results support the view that the active properties of dendrites play important roles in synaptic integration and synaptic plasticity of these neurons. PMID:12740112

  8. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  9. Arthropod toxins acting on neuronal potassium channels.

    PubMed

    Jiménez-Vargas, Juana María; Possani, Lourival D; Luna-Ramírez, Karen

    2017-09-20

    Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K(+) channels classification and structure is included and a compendium of neuronal K(+) channels and the arthropod toxins that modify them have been listed. Copyright © 2017. Published by Elsevier Ltd.

  10. Microfluidic screening of potassium nitrate polymorphism

    NASA Astrophysics Data System (ADS)

    Laval, Philippe; Giroux, Céline; Leng, Jacques; Salmon, Jean-Baptiste

    2008-06-01

    We developed a microfluidic device for the investigation of crystallization kinetics from solution. The device allows to store hundreds of ≈100 nL droplets containing a given solute and to control their temperature within 0.1 °C. Upon cooling, we observe independent and mononuclear crystallization events; crystal dissolution occurs as the temperature is raised. For potassium nitrate (KNO 3) in water, these thermal cycles reveal the existence of two concomitant polymorphic forms. We measured, for the first time, the solubility curves of both these polymorphs, defined unambiguously the metastability extent of the solution and described why these results essentially stem from the miniaturized scale of the crystallization reactors.

  11. Nuclear magnetic resonance study of potassium dihydrophosphate

    NASA Astrophysics Data System (ADS)

    Uskova, N. I.; Podorozhkin, D. Yu.; Charnaya, E. V.; Nefedov, D. Yu.; Baryshnikov, S. V.; Bugaev, A. S.; Lee, M. K.; Chang, L. J.

    2016-04-01

    A powder sample of potassium dihydrophosphate KH2PO4 has been studied by the 31P NMR method in a wide temperature range covering the ferroelectric phase transition. Changes in the position and shape of the resonance line at the transition to the ferroelectric phase have been revealed. The parameters of the chemical shift tensor of 31P (isotropic shift, anisotropy, and asymmetry) in the ferroelectric phase have been calculated from the experimental data. A sharp increase in the anisotropy of the tensor at the phase transition has been demonstrated. Dielectric measurements have also been carried out to verify the transition temperature.

  12. Potassium deca­borate monohydrate

    PubMed Central

    Gao, Yi-Hong

    2011-01-01

    In the crystal structure of the title compound, K2[B10O14(OH)4]·H2O, the polyborate [B10O14(OH)4]2− anions are linked together through their common O atoms, forming a helical chain-like structure. Adjacent chains are further connected into a three-dimensional structure by O—H⋯O hydrogen bonds. The water mol­ecules and potassium cations are located between these chains. Further O—H⋯O hydrogen bonds occur between the anions and the water mol­ecules PMID:22058681

  13. Dietary potassium regulates vascular calcification and arterial stiffness.

    PubMed

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E; Dell'Italia, Louis J; Sanders, Paul W; Agarwal, Anupam; Wu, Hui; Chen, Yabing

    2017-10-05

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium-fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element-binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet-fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease.

  14. What do we not know about mitochondrial potassium channels?

    PubMed

    Laskowski, Michał; Augustynek, Bartłomiej; Kulawiak, Bogusz; Koprowski, Piotr; Bednarczyk, Piotr; Jarmuszkiewicz, Wieslawa; Szewczyk, Adam

    2016-08-01

    In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Potassium Chloride Versus Voltage Clamp Contractures in Ventricular Muscle

    NASA Astrophysics Data System (ADS)

    Morad, M.; Reeck, S.; Rao, M.

    1981-01-01

    In frog ventricle, developed tension was markedly larger in response to depolarization caused by a voltage clamp step than to depolarization induced by high concentrations of potassium chloride. Measurement of extracellular potassium activity at the surface and at the depth of muscle during the development of contractures showed that the diffusion of potassium is much slower than the spread of depolarization through the cross section of muscle. These two observations suggest that competition between the depolarizing and the negative inotropic effects of an increase in the extracellular potassium ion concentration may determine the time course and magnitude of contractile tension in heart muscle.

  16. Terahertz spectral detection of potassium sorbate in milk powder

    NASA Astrophysics Data System (ADS)

    Li, Pengpeng; Zhang, Yuan; Ge, Hongyi

    2017-02-01

    The spectral characteristics of potassium sorbate in milk powder in the range of 0.2 2.0 THz have been measured with THz time-domain spectroscopy(THz-TDS). Its absorption and refraction spectra are obtained at room temperature in the nitrogen atmosphere. The results showed that potassium sorbate at 0.98 THz obvious characteristic absorption peak. The simple linear regression(SLR) model was taken to analyze the content of potassium sorbate in milk powder. The results showed that the absorption coefficient increases as the mixture potassium sorbate increases. The research is important to food quality and safety testing.

  17. Simultaneous recovery of phosphorus and potassium as magnesium potassium phosphate from synthetic sewage sludge effluent.

    PubMed

    Nakao, Satoshi; Nishio, Takayuki; Kanjo, Yoshinori

    2016-12-11

    Bench-scale experiments were performed to investigate simultaneous recovery of phosphorus and potassium from synthetic sewage sludge effluent as crystals of magnesium potassium phosphate (MPP or struvite-(K), MgKPO4·6H2O). The optimal pH of MPP formation was 11.5. A phosphorus level of at least 3 mM and K:P molar ratio over 3 were necessary to form MPP, which showed higher content rate of phosphorus and potassium in precipitate. MPP crystallization was confirmed by analysing the precipitates using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) apparatus and an X-ray Diffractometer (XRD). Inhibition of MPP crystallization by iron and aluminium was confirmed by precipitation experiments and SEM-EDX analysis. Potassium ratio against magnesium in precipitate decreased for iron concentrations greater than over 0.2 mM and aluminium concentrations over 0.05 mM.

  18. Dialysate Potassium, Serum Potassium, Mortality, and Arrhythmia Events in Hemodialysis: Results From the Dialysis Outcomes and Practice Patterns Study (DOPPS).

    PubMed

    Karaboyas, Angelo; Zee, Jarcy; Brunelli, Steven M; Usvyat, Len A; Weiner, Daniel E; Maddux, Franklin W; Nissenson, Allen R; Jadoul, Michel; Locatelli, Francesco; Winkelmayer, Wolfgang C; Port, Friedrich K; Robinson, Bruce M; Tentori, Francesca

    2017-02-01

    Sudden death is a leading cause of death in patients on maintenance hemodialysis therapy. During hemodialysis sessions, the gradient between serum and dialysate levels results in rapid electrolyte shifts, which may contribute to arrhythmias and sudden death. Controversies exist about the optimal electrolyte concentration in the dialysate; specifically, it is unclear whether patient outcomes differ among those treated with a dialysate potassium concentration of 3 mEq/L compared to 2 mEq/L. Prospective cohort study. 55,183 patients from 20 countries in the Dialysis Outcomes and Practice Patterns Study (DOPPS) phases 1 to 5 (1996-2015). Dialysate potassium concentration at study entry. Cox regression was used to estimate the association between dialysate potassium concentration and both all-cause mortality and an arrhythmia composite outcome (arrhythmia-related hospitalization or sudden death), adjusting for potential confounders. During a median follow-up of 16.5 months, 24% of patients died and 7% had an arrhythmia composite outcome. No meaningful difference in clinical outcomes was observed for patients treated with a dialysate potassium concentration of 3 versus 2 mEq/L (adjusted HRs were 0.96 [95% CI, 0.91-1.01] for mortality and 0.98 [95% CI, 0.88-1.08] for arrhythmia composite). Results were similar across predialysis serum potassium levels. As in prior studies, higher serum potassium level was associated with adverse outcomes. However, dialysate potassium concentration had only minimal impact on serum potassium level measured predialysis (+0.09 [95% CI, 0.05-0.14] mEq/L serum potassium per 1 mEq/L greater dialysate potassium concentration). Data were not available for delivered (vs prescribed) dialysate potassium concentration and postdialysis serum potassium level; possible unmeasured confounding. In combination, these results suggest that approaches other than altering dialysate potassium concentration (eg, education on dietary potassium sources and

  19. Effects of ATP-sensitive potassium channel opener on potassium transport and alveolar fluid clearance in the resected human lung.

    PubMed

    Sakuma, T; Takahashi, K; Ohya, N; Nakada, T; Matthay, M A

    1998-07-01

    Since the effect of an ATP-sensitive potassium channel (KATP channel) opener on the function of alveolar epithelial cells is unknown, the effect of YM934, a newly synthesized KATP channel opener, on potassium influx into the alveolar spaces and alveolar fluid clearance was determined in the resected human lung. An isosmolar albumin solution with a low potassium concentration was instilled into the distal airspaces of resected human lungs. Alveolar fluid clearance was measured by the progressive increase in alveolar protein concentration. Net potassium transport was measured by the change in potassium concentration and alveolar fluid volume. YM934 (10(-4) M) increased net influx of potassium by 140% into the alveolar spaces and also increased alveolar fluid clearance by 60% in the experiments with a potassium concentration of 0.3 mEq/1. Glibenclamide (10(-4) M), a KATP channel blocker, inhibited the YM934-increased influx of potassium transport and the increase in alveolar fluid clearance. Also amiloride (10(-5) M), an inhibitors of apical sodium uptake, blocked the YM934 stimulated increase in net alveolar fluid clearance. These results indicate that a KATP channel opener can effect potassium transport and net vectorial fluid movement across the human alveolar epithelium.

  20. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO[sub 2], highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO[sub 4]/2.5M H[sub 3]PO[sub 4] solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO[sub 2] (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  1. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO{sub 2}, highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO{sub 4}/2.5M H{sub 3}PO{sub 4} solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO{sub 2} (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  2. Clofilium inhibits Slick and Slack potassium channels

    PubMed Central

    de los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na+ and Cl−, and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels. PMID:23271893

  3. Source of potassium in shocked ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Weirich, J. R.; Swindle, T. D.; Isachsen, C. E.; Sharp, T. G.; Li, C.; Downs, R. T.

    2012-12-01

    Argon-argon dating (a variation of potassium-argon dating) of ordinary chondrites is being used to reconstruct the collisional impact history of their parent bodies. However, due to the fine-grained, multi-mineral, highly shocked nature of chondrites, the sources of potassium (K) in these meteorites have not been fully identified. By locating and isolating the different sources prior to analysis, better ages can be obtained. To distinguish between possible sources, we have analyzed Chico and Northwest Africa 091 (both L6 chondrites) via K mass balance, Raman spectroscopy, and argon (Ar) diffusion studies. In accordance with previous studies on other ordinary chondrites, the Ar in these two chondrites is nearly equally split between two releases, and the lower temperature release is identified as sodium-rich feldspar. Various scenarios for the higher temperature release are investigated, but no scenario meets all the required criteria. The Ar activation energy of the higher temperature release is the same as pyroxene, but the pyroxene has no detectable K. The K mass balance shows feldspar can account for all the K in the chondrite; hence feldspar must be the ultimate source of the higher temperature release. Raman spectroscopy rules out a high-pressure phase of feldspar. Neither melt veins, nor feldspar inclusions in pyroxene, are abundant enough to account for the higher temperature release in these meteorites.

  4. Potassium balance and the control of renin secretion

    PubMed Central

    Sealey, Jean E.; Clark, Irwin; Bull, Marcia B.; Laragh, John H.

    1970-01-01

    Plasma renin activity and renin substrate were measured in nine groups of rats which were maintained for 7 wk on diets in which the proportions of sodium and potassium were varied. Balance data indicated that the highest dietary intake of potassium employed (92 mEq K+/100 g food) consistently induced sodium depletion. With less consistency, the highest sodium intake employed (52 mEq Na+/100 g food) tended to induce potassium depletion. In accordance with previous reports, sodium deprivation induced significant increases in plasma renin activity. But the present results indicated that changes in potassium intake exerted a highly significant modulating influence on this characteristic response. The results describe an inverse relationship between potassium administration and the concurrent level of plasma renin activity. The highest serum renin levels of all occurred in the potassium-depleted animals and the usual renin response to sodium deprivation was virtually abolished in the presence of a high potassium diet. Neither the suppressing effect of K+ administration nor the stimulating effect of K+ depletion on plasma renin activity could be explained in terms of any predicted changes in aldosterone secretion or observed changes in sodium balance. Therefore, the effect seems to be mediated by a direct influence of potassium ions on renal renin secretion, perhaps via induced changes in sodium load to the macula densa. These studies point to an important role for potassium in the regulation of renin secretion. The results in turn raise the possibility that renin secretion per se may be importantly involved in effecting potassium conservation and potassium elimination. The means by which these interactions are finally mediated remain to be clarified. Images PMID:4319969

  5. [Norfloxacin Solution Degradation Under Ultrasound, Potassium Persulfate Collaborative System].

    PubMed

    Wei, Hong; Shi, Jing-zhuan; Li, Jia-lin; Li, Ke-bin; Zhao, Lin; Han, Kai

    2015-11-01

    High oxidative sulfate radicals can be produced by potassium persulfate (K2S2O8). The integrated effect of ultrasonic and K2S2O8, on norfloxacin degradation was investigated. The experimental parameters such as K2S2O8 concentration, norfloxacin initial concentration, initial pH value, free radicals quenching agents such as methanol and tert-butyl on norfloxacin degradation were discussed. The results indicated that ultrasonic/K2S2O8, system had an obvious degradation and mineralization effect on norfloxacin. Norfloxacin removal efficiencies were 3.2 and 8.9 times in ultrasonic/K2S2O8 system than those in single K252O8 and ultrasonic oxidation system, respectively. And the reaction followed the first-order kinetics. Norfloxacin removal efficiency varied gently with K2S2O8 concentration. Solution initial pH had a significant effect on norfloxacin degradation, which was attributed to the different oxidizing species under different pH values. The radicals were sulfate radicals under acidic and neutral conditions, and was the combination of sulfate and hydroxyl radicals under alkaline conditions. TOC and agar diffusion test with E. coli showed that 49.12% norfloxacin was mineralized and antibacterial activity was completely removed, with the diameter of E. coli inhibition zone decreased from 45 mm to 14 mm (filter paper diameter). The result implied that ultrasound/K2S2O8 showed promising results as a possible application for treatment of norfloxacin antibiotics wastewater.

  6. Oxidation kinetics of antibiotics during water treatment with potassium permanganate.

    PubMed

    Hu, Lanhua; Martin, Heather M; Strathmann, Timothy J

    2010-08-15

    The ubiquitous occurrence of antibiotics in aquatic environments raises concerns about potential adverse effects on aquatic ecology and human health, including the promotion of increased antibiotic resistance. This study examined the oxidation of three widely detected antibiotics (ciprofloxacin, lincomycin, and trimethoprim) by potassium permanganate [KMnO(4); Mn(VII)]. Reaction kinetics were described by second-order rate laws, with apparent second-order rate constants (k(2)) at pH 7 and 25 degrees C in the order of 0.61 +/- 0.02 M(-1) s(-1) (ciprofloxacin) < 1.6 +/- 0.1 M(-1) s(-1) (trimethoprim) < 3.6 +/- 0.1 M(-1) s(-1) (lincomycin). Arrhenius temperature dependence was observed with apparent activation energies (E(a)) ranging from 49 kJ mol(-1) (trimethoprim) to 68 kJ mol(-1) (lincomycin). Rates of lincomycin and trimethoprim oxidation exhibited marked pH dependences, whereas pH had only a small effect on rates of ciprofloxacin oxidation. The effects of pH were quantitatively described by considering parallel reactions between KMnO(4) and individual acid-base species of the target antibiotics. Predictions from a kinetic model that included temperature, KMnO(4) dosage, pH, and source water oxidant demand as input parameters agreed reasonably well with measurements of trimethoprim and lincomycin oxidation in six drinking water utility sources. Although Mn(VII) reactivity with the antibiotics was lower than that reported for ozone and free chlorine, its high selectivity and stability suggests a promising oxidant for treating sensitive micropollutants in organic-rich matrices (e.g., wastewater).

  7. The role of dietary potassium in hypertension and diabetes.

    PubMed

    Ekmekcioglu, Cem; Elmadfa, Ibrahim; Meyer, Alexa L; Moeslinger, Thomas

    2016-03-01

    Potassium is an essential mineral which plays major roles for the resting membrane potential and the intracellular osmolarity. In addition, for several years, it has been known that potassium also affects endothelial and vascular smooth muscle functions and it has been repeatedly shown that an increase in potassium intake shifts blood pressure to a more preferable level. Meanwhile, the blood pressure lowering effects of potassium were presented in several intervention trials and summarized in a handful of meta-analyses. Furthermore, accumulating epidemiological evidence from, especially, the last decade relates low dietary potassium intake or serum potassium levels to an increased risk for insulin resistance or diabetes. However, intervention trials are required to confirm this association. So, in addition to reduction of sodium intake, increasing dietary potassium intake may positively affect blood pressure and possibly also glucose metabolism in many populations. This concise review not only summarizes the studies linking potassium to blood pressure and diabetes but also discusses potential mechanisms involved, like vascular smooth muscle relaxation and endothelium-dependent vasodilation or stimulation of insulin secretion in pancreatic β-cells, respectively.

  8. An improved automotive brake lining using fibrous potassium titanate

    NASA Technical Reports Server (NTRS)

    Mansfield, J. A.; Halberstadt, M. L.; Riccitiello, S. R.; Rhee, S. K.

    1976-01-01

    Simultaneous fade reduction and wear improvement of a commercial automotive brake lining were achieved by adding fibrous potassium titanate. The dependence of friction and wear characteristics on quantitative variations in potassium titanate, asbestos, phenolic binder, and organic and inorganic modifiers was evaluated.

  9. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as iron...

  10. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as iron...

  11. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as iron...

  12. STUDIES INTO THE MECHANISMS OF POTASSIUM BROMATE INDUCED THYROID CARCINOGENESIS

    EPA Science Inventory

    Studies into the Mechanisms of Potassium Bromate Induced Thyroid Carcinogenesis.

    Potassium bromate (KBrO3) occurs in finished drinking water as a by-product of the ozonation disinfection process and has been found to induce thyroid follicular cell tumors in the rat after ...

  13. Process for preparation of potassium-38. [DOE patent application

    DOEpatents

    Lambrecht, R.M.; Wolf, A.P.

    A solution of potassium-38 suitable for use as a radiopharmaceutical and a method for its production. Argon is irradiated with protons having energies above the threshold for the /sup 40/Ar(p,3n)/sup 38/K reaction. The resulting potassium-38 is dissolved in a sterile water and any contaminating chlorine-38 is removed.

  14. Nutrient effects on the calcium economy: emphasizing the potassium controversy.

    PubMed

    Rafferty, Karen; Heaney, Robert P

    2008-01-01

    The calcium economy is a dynamic state influenced by fluxes in dietary calcium intake, intestinal calcium absorption, and renal calcium conservation. The relationship of selected bone-related nutrients to these calcium fluxes exhibits both constructive and destructive interactions that affect the overall state of calcium balance. The basis of the calcium requirement and the impact of vitamin D, protein, phosphorus, sodium, and caffeine on the calcium economy are reviewed. Against this background, emerging data on potassium are presented. Data from balance studies of healthy white women at midlife were reviewed to assess the effect of diet potassium on the calcium economy under steady-state conditions. Potassium was inversely associated with both urinary calcium excretion and intestinal calcium absorption, yielding no significant net change in calcium balance. In the population reported on here, dairy, meat, and cereal grains together contributed 56%, and fruits and vegetables 44%, of total dietary potassium. To the extent that fruit and vegetable potassium is a surrogate for high bicarbonate, this cohort did not have a dietary intake pattern allowing for measurement or interpretation of the potential effect of a high-bicarbonate-containing diet on long-term steady-state calcium balance. Potassium itself is uniformly well absorbed regardless of the dietary source. Mean 24-h urinary potassium averaged 92% of dietary intake. According to nationwide food consumption surveys, milk is the number 1 single food source of potassium in all age groups in the United States.

  15. The stability of potassium iodate in crude table salt.

    PubMed

    ARROYAVE, G; PINEDA, O; SCRIMSHAW, N S

    1956-01-01

    An experiment carried out by the authors confirms that the addition, under commercial conditions, of potassium iodate to crude sea salt is a reliable method for the iodization of salt, a fact of particular significance to countries in which iodization by potassium iodide is unsatisfactory owing to adverse environmental conditions.

  16. 75 FR 42783 - Certain Potassium Phosphate Salts From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... COMMISSION Certain Potassium Phosphate Salts From China Determinations On the basis of the record \\1... of certain potassium phosphate salts, specifically anhydrous dipotassium phosphate (``DKP'') and... monopotassium phosphate (``MKP''), provided for in subheading 2835.24.00 of the Harmonized Tariff Schedule of...

  17. Differences in serum potassium concentrations between Chinese, Indians and Malays.

    PubMed

    Hawkins, Robert C

    2010-01-01

    It has been suggested that potassium concentrations may vary between different geographical regions, possibly reflecting ethnic differences in potassium status. This study compared the serum potassium concentrations of three Asian ethnicities in a single geographical location. Details of simultaneous serum potassium, creatinine, cholesterol, triglyceride and serum index measurements for samples from polyclinics and health screening were extracted for multivariable linear regression. Haemolysed and duplicate patient samples were excluded. Separate analysis was performed based on measurement platform (Roche or Beckman-Coulter) and patient location. Eighty-five thousand nine hundred and ninety-seven records met the inclusion criteria. When controlled for age, gender, serum creatinine, cholesterol and triglyceride, the average serum potassium concentration in Indians was 0.13-0.16 mmol/L higher than in Malays, who in turn had average serum potassium concentrations 0.05-0.06 mmol/L higher than Chinese when controlled for age, gender, serum creatinine, cholesterol and triglyceride concentrations. For patients undergoing health screening, the average serum potassium concentration in Indians and Malays was 0.12 mmol/L higher than in Chinese. Chinese individuals have lower average serum potassium concentrations than Indians and Malays. This may have clinical implications in relation to the high occurrence of thyrotoxic hypokalaemic paralysis and the aetiology of sudden unexplained death syndrome (SUDS) in Asians.

  18. 75 FR 24572 - Certain Potassium Phosphate Salts from the People's Republic of China: Preliminary Affirmative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... International Trade Administration Certain Potassium Phosphate Salts from the People's Republic of China... investigation of certain potassium phosphate salts (``salts'') from the People's Republic of China (``PRC''). See Certain Potassium Phosphate Salts From the People's Republic of China: Preliminary Determination...

  19. Enhanced Photovoltaic Properties of Potassium-Adsorbed Titania Nanotubes

    SciTech Connect

    Richter, C.; Jaye, C; Fischer, D; Lewis, L; Willey, R; Menon, L

    2009-01-01

    It is demonstrated that vertically-aligned titania nanotube planar arrays fabricated by electrochemical anodization using standard potassium-containing electrolytes invariably contain a significant amount of surface-adsorbed potassium ions, hitherto undetected, that affect the titania photoelectrochemical or PEC performance. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy reveals the strong ionic nature of surface potassium-titania bonds that alters the PEC performance over that of pure titania nanotubes through reduction of the external electrical bias needed to produce hydrogen at maximum efficiency. This result implies that the external electrical energy input required per liter of solar hydrogen produced with potassium-adsorbed titania nanotubes may be reduced. Tailoring the potassium content may thus be an alternative means to fine-tune the photoelectrochemical response of TiO2 nanotube-based PEC electrodes.

  20. [What we don't know about mitochondrial potassium channels?

    PubMed

    Augustynek, Bartłomiej; Wrzosek, Antoni; Koprowski, Piotr; Kiełbasa, Agnieszka; Bednarczyk, Piotr; Łukasiak, Agnieszka; Dołowy, Krzysztof; Szewczyk, Adam

    2016-01-01

    In the current work the authors present the most interesting, yet not fully understood issues regarding origin, function and pharmacology of the mitochondrial potassium channels. There are eight potassium channels known to contribute to the potassium permeability of the inner mitochondrial membrane: ATP-regulated channel, calcium-regulated channels of large, intermediate and small conductance, voltage-regulated Kv1.3 and Kv7.4 channels, two-pore-domain TASK-3 channel and SLO2 channel. The primary function of the mitochondrial potassium channels is regulation of the mitochondrial membrane potential. Additionally, mitochondrial potassium channels alter cellular respiration, regulation of the mitochondrial volume and ROS synthesis. However, mechanisms underlying these processes are not fully understood yet. In this work, the authors not only present available knowledge about this topic, but also put certain hypotheses that may set the direction for the future research on these proteins.

  1. Multimegawatt potassium Rankine power for nuclear electric power

    NASA Technical Reports Server (NTRS)

    Rovang, Richard D.; Mills, Joseph C.; Baumeister, Ernie B.

    1991-01-01

    A cermet fueled potassium rankine power system concept has been developed for various power ranges and operating lifetimes. This concept utilizes a single primary lithium loop to transport thermal energy from the reactor to the boiler. Multiple, independent potassium loops are employed to achieve the required reliability of 99 percent. The potassium loops are two phase systems which expand heated potassium vapor through multistage turboalternators to produce a 10-kV dc electrical output. Condensation occurs by-way-of a shear-flow condenser, producing a 100 percent liquid potassium stream which is pumped back to the boiler. Waste heat is rejected by an advanced carbon-carbon radiator at approximately 1000 K. Overall system efficiencies of 19.3 percent to 20.5 percent were calculated depending on mission life and power level.

  2. Potassium dihydrogen phosphate and potassium tantalate niobate pyroelectric materials and far-infrared detectors

    SciTech Connect

    Baumann, Hilary Beatrix

    1993-10-01

    This thesis discusses characterization of two ferroelectric materials and the fabrication of bolometers. Potassium tantalate niobate (KTN) and potassium dihydrogen phosphate (KDP) are chosen because they can be optimized for operation near 100K. Chap. 2 reviews the physics underlying pyroelectric materials and its subclass of ferroelectric materials. Aspects of pyroelectric detection are discussed in Chap. 3 including measurement circuit, noise sources, and effects of materials properties on pyroelectric response. Chap. 4 discusses materials selection and specific characteristics of KTN and KDP; Chap. 5 describes materials preparation; and Chap. 6 presents detector configuration and a thermal analysis of the pyroelectric detector. Electrical techniques used to characterize the materials and devices and results are discussed in Chap. 7 followed by conclusions on feasibility of KDP and KTN pyroelectric detectors in Chap. 8.

  3. Sodium and Potassium Interactions with Nucleic Acids.

    PubMed

    Auffinger, Pascal; D'Ascenzo, Luigi; Ennifar, Eric

    2016-01-01

    Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples.

  4. High pressure studies of potassium perchlorate

    DOE PAGES

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; ...

    2016-07-29

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 hv→ KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. As a result, we present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregatemore » at high pressure.« less

  5. High pressure studies of potassium perchlorate

    SciTech Connect

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; Reiser, Sharissa; White, Melanie

    2016-07-29

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 hv→ KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. As a result, we present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregate at high pressure.

  6. Researches toward potassium channels on tumor progressions.

    PubMed

    Shen, Zheng; Yang, Qian; You, Qidong

    2009-01-01

    As trans-membrane proteins located in cytoplasm and organelle membrane, potassium (K(+)) channels are generally divided into four super-families: voltage-gated K(+) channels (K(v)), Ca(2+)-activated K(+) channels (K(Ca)), inwardly rectifying K(+) channels (K(ir)) and two-pore domain K(+) channels (K(2P)). Since dysfunctions of K(+) channels would induce many diseases, various studies toward their functions in physiologic and pathologic process have been extensively launched. This review focuses on the recent advances of K(+) channels in tumor progression, including the brief introduction of K(+) channels, the role of K(+) channels in tumor cells, the possible mechanism of action at cellular level, and the possible application of K(+) channel modulators in cancer chemotherapy.

  7. DKDP /potassium dideuterium phosphate/ light valves

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1977-01-01

    The use of potassium dideuterium phosphate (DKDP) light valves for optical data processing is discussed. The operating principles and structure of optically and electron beam addressed DKDPs are compared, and specifications for both devices given. Optically addressed DKDPs are capable of higher resolution and contrast, but both systems represent viable real time spatial light modulators adaptable to optical processing. Examples of real time data processing performed by the DKDPs include: image addition and subtraction; reduction of noise introduced by scattered light in recording media; reconstruction of computer generated and acoustic holograms; reconstruction of synthetic aperture radar data; retrieval of three-dimensional information in X-ray diagnoses; radar signal processing and display; and optical pattern recognition and correlation of images, which has applications for missile guidance systems.

  8. Intense slow beams of bosonic potassium isotopes

    NASA Astrophysics Data System (ADS)

    Catani, J.; Maioli, P.; de Sarlo, L.; Minardi, F.; Inguscio, M.

    2006-03-01

    We report on an experimental realization of a two-dimensional magneto-optical trap (2D-MOT) that allows the generation of cold atomic beams of K39 and K41 bosonic potassium isotopes. The high measured fluxes up to 1.0×1011atoms/s and low atomic velocities around 33m/s are well suited for a fast and reliable three-dimensional magneto-optical trap loading, a basilar feature for new generation experiments on Bose-Einstein condensation of dilute atomic samples. We also present a simple multilevel theoretical model for the calculation of the light-induced force acting on an atom moving in a MOT. The model gives a good agreement between predicted and measured flux and velocity values for our 2D-MOT.

  9. Sir Charles Locock and potassium bromide.

    PubMed

    Eadie, M J

    2012-01-01

    On 12 May 1857, Edward Sieveking read a paper on epilepsy to the Royal Medical and Chirurgical Society in London. During the discussion that followed Sir Charles Locock, obstetrician to Queen Victoria, was reported to have commented that during the past 14 months he had used potassium bromide to successfully stop epileptic seizures in all but one of 14 or 15 women with 'hysterical' or catamenial epilepsy. This report of Locock's comment has generally given him credit for introducing the first reasonably effective antiepileptic drug into medical practice. However examination of the original reports raises questions as to how soundly based the accounts of Locock's comments were. Subsequently, others using the drug to treat epilepsy failed to obtain the degree of benefit that the reports of Locock's comments would have led them to expect. The drug might not have come into more widespread use as a result, had not Samuel Wilks provided good, independent evidence for the drug's antiepileptic efficacy in 1861.

  10. Potassium transport and signaling in higher plants.

    PubMed

    Wang, Yi; Wu, Wei-Hua

    2013-01-01

    As one of the most important mineral nutrient elements, potassium (K(+)) participates in many plant physiological processes and determines the yield and quality of crop production. In this review, we summarize K(+) signaling processes and K(+) transport regulation in higher plants, especially in plant responses to K(+)-deficiency stress. Plants perceive external K(+) fluctuations and generate the initial K(+) signal in root cells. This signal is transduced into the cytoplasm and encoded as Ca(2+) and reactive oxygen species signaling. K(+)-deficiency-induced signals are subsequently decoded by cytoplasmic sensors, which regulate the downstream transcriptional and posttranslational responses. Eventually, plants produce a series of adaptive events in both physiological and morphological alterations that help them survive K(+) deficiency.

  11. Proteinase inhibitor homologues as potassium channel blockers.

    PubMed

    Lancelin, J M; Foray, M F; Poncin, M; Hollecker, M; Marion, D

    1994-04-01

    We report here the NMR structure of dendrotoxin I, a powerful potassium channel blocker from the venom of the African Elapidae snake Dendroaspis polylepis polylepis (black mamba), calculated from an experimentally-derived set of 719 geometric restraints. The backbone of the toxin superimposes on bovine pancreatic trypsin inhibitor (BPTI) with a root-mean-square deviation of < 1.7 A. The surface electrostatic potential calculated for dendrotoxin I and BPTI, reveal an important difference which might account for the differences in function of the two proteins. These proteins may provide examples of adaptation for specific and diverse biological functions while at the same time maintaining the overall three-dimensional structure of a common ancestor.

  12. Comparative evaluation of the genotoxic properties of potassium bromate and potassium superoxide in V79 Chinese hamster cells.

    PubMed

    Speit, G; Haupter, S; Schütz, P; Kreis, P

    1999-02-19

    The genotoxic potential of two oxidizing compounds, potassium bromate and potassium superoxide, was comparatively tested in various genotoxicity tests with V79 Chinese hamster cells. Both substances clearly induced cytotoxicity, chromosome aberrations and increased DNA migration in the alkaline comet assay. Using a modified comet assay protocol with FPG protein, a DNA repair enzyme which specifically nicks DNA at sites of 8-oxoguanines and formamidopyrimidines, we detected oxidative DNA base damage only after potassium bromate treatment. HPLC analysis also revealed significantly increased levels of 8-oxodeoxyguanosine after potassium bromate treatment but not after potassium superoxide treatment. Furthermore, potassium bromate clearly induced gene mutations at the HPRT locus while potassium superoxide only had a small effect on HPRT mutant frequencies. Molecular analysis of potassium bromate-induced mutations indicated a high portion of deletion mutations. Three out of four point mutations were G to T transversions which typically arise after replication of 8-oxoguanine. Our results suggest that the two oxidizing compounds induce specific patterns of genotoxic effects that reflect the types of DNA alterations induced by different reactive oxygen species (ROS). Copyright 1999 Elsevier Science B.V.

  13. 40 CFR 49.10051-49.10100 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.10051-49.10100 Section 49.10051-49.10100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region X Implementation Plan for the...

  14. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Control valves for brakes. 393.49 Section 393.49 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as...

  15. 40 CFR 49.140-49.200 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.140-49.200 Section 49.140-49.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY General Federal Implementation Plan Provisions General Rules for Application...

  16. 40 CFR 49.472-49.680 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.472-49.680 Section 49.472-49.680 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region II Implementation Plan for the Saint...

  17. 40 CFR 49.202-49.470 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.202-49.470 Section 49.202-49.470 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region I Implementation Plan for the Mohegan...

  18. 49 CFR 386.49 - Form of written evidence.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Form of written evidence. 386.49 Section 386.49... General Rules and Hearings § 386.49 Form of written evidence. All written evidence should be submitted in the following forms: (a) A written statement of a person having personal knowledge of the facts...

  19. 49 CFR 386.49 - Form of written evidence.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Form of written evidence. 386.49 Section 386.49... General Rules and Hearings § 386.49 Form of written evidence. All written evidence should be submitted in the following forms: (a) A written statement of a person having personal knowledge of the facts...

  20. 49 CFR 821.49 - Issues on appeal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Issues on appeal. 821.49 Section 821.49 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD RULES OF PRACTICE IN AIR SAFETY PROCEEDINGS Appeal From Initial Decision § 821.49 Issues on appeal. (a...

  1. 49 CFR 821.49 - Issues on appeal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Issues on appeal. 821.49 Section 821.49 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD RULES OF PRACTICE IN AIR SAFETY PROCEEDINGS Appeal From Initial Decision § 821.49 Issues on appeal. (a...

  2. 49 CFR 821.49 - Issues on appeal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Issues on appeal. 821.49 Section 821.49 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD RULES OF PRACTICE IN AIR SAFETY PROCEEDINGS Appeal From Initial Decision § 821.49 Issues on appeal. (a...

  3. 49 CFR 821.49 - Issues on appeal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Issues on appeal. 821.49 Section 821.49 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD RULES OF PRACTICE IN AIR SAFETY PROCEEDINGS Appeal From Initial Decision § 821.49 Issues on appeal. (a...

  4. 49 CFR 821.49 - Issues on appeal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Issues on appeal. 821.49 Section 821.49 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD RULES OF PRACTICE IN AIR SAFETY PROCEEDINGS Appeal From Initial Decision § 821.49 Issues on appeal. (a...

  5. Alternatives for sodium-potassium alloy treatment

    SciTech Connect

    Takacs, T.J.; Johnson, M.E.

    1993-04-08

    Sodium-potassium alloy (NaK) is currently treated at the Y-12 Plant by open burning. Due to uncertainties with future permits for this process alternative treatment methods were investigated, revealing that two treatment processes are feasible. One process reacts the NaK with water in a highly concentrated molten caustic solution (sodium and potassium hydroxide). The final waste is a caustic that may be used elsewhere in the plant. This process has two safety concerns: Hot corrosive materials used throughout the process present handling difficulties and the process must be carefully controlled (temperature and water content) to avoid explosive NaK reactions. To avoid these problems a second process was developed that dissolves NaK in a mixture of propylene glycol and water at room temperature. While this process is safer, it generates more waste than the caustic process. The waste may possibly be used as a carbon food source in biological waste treatment operations at the Y-12 Plant. Experiments were conducted to demonstrate both processes, and they showed that both processes are feasible alternatives for NaK treatment. Process flow sheets with mass balances were generated for both processes and compared. While the caustic process generates less waste, the propylene glycol process is safer in several ways (temperature, material handling, and reaction control). The authors recommend that the propylene glycol alternative be pursued further as an alternative for NaK treatment. To optimize this process for a larger scale several experiments should be conducted. The amount of NaK dissolved in propylene glycol and subsequent waste generated should be optimized. The offgas processes should be optimized. The viability of using this waste as a carbon food source at one of the Y-12 Plant treatment facilities should be investigated. If the state accepts this process as an alternative, design and construction of a pilot-scale treatment system should begin.

  6. A theoretical framework to study potassium utilization efficiency in response to withdrawal of potassium.

    PubMed

    Moriconi, Jorge I; Santa-María, Guillermo E

    2013-11-01

    An important objective of plant research is to improve the efficiency in the utilization of major nutrients, particularly nitrogen, phosphorus, and potassium. Several definitions of internal nutrient utilization efficiency (NUE) have been proposed, but the theoretical consistence of their use has been poorly explored. Here, a non-mechanistic approach was developed to theoretically examine the dynamics of commonly used NUE indicators following complete potassium deprivation. This approach was used to study the sensitivity of NUE indicators to changes in the actual NUE (NUEa) of K(+) in virtual plants. Three empirically based models that differ in the relationship between NUE and the internal K(+) concentration were examined. Frequently used indicators (potassium use efficiency, utilization efficiency, physiological efficiency, and nutrient productivity) and two additional ones introduced here (accumulated productivity and physiological ratio) differed in their capacity to reflect differences in NUEa. They also exhibited large disparities in their temporal variation and in their responsiveness to the concentration of K(+) before the beginning of the deprivation period. According to this analysis, the simultaneous use of several indicators could help to refine plant breeding for high NUE. The data also suggest that a trade off between plant productivity and the time necessary to reduce the concentration of K(+) by half is inherent to the dynamics of plant systems. Finally, it is proposed that for some plant species selection for high NUEa would not always be in conflict with selection for improved relative plant performance in low K(+) environments.

  7. Kinetics of potassium transport across single distal tubules of rat kidney

    PubMed Central

    de Mello-Aires, Margarida; Giebisch, Gerhard; Malnic, Gerhard; Curran, Peter F.

    1973-01-01

    1. The transport of potassium across the distal tubular epithelium was studied in vivo in rats on a normal potassium intake and in rats in which distal tubular potassium secretion was either stimulated by potassium loading or the I.V. administration of a 5% sodium bicarbonate solution or in which potassium secretion was suppressed by dietary deprivation of potassium or sodium. 2. 42K was used to measure unidirectional fluxes across the luminal and peritubular cell membranes and to assess the magnitude of cellular potassium partaking in the transport process. This was accomplished by the simultaneous perfusion of the peritubular capillary network with 42K-Ringer and of the distal tubular lumen with initially tracer-free solution. From the steady-state flux and the time course of tracer washout into the lumen after discontinuing the peritubular perfusion, unidirectional fluxes, rate coefficients of ion transfer and cellular transport pools could be measured. 3. Transepithelial movement of potassium involves mixing with a variable cellular potassium transport pool. The latter is significantly elevated in conditions of enhanced distal tubular potassium secretion; cellular potassium labelling is reduced in conditions in which potassium secretion has been suppressed by potassium deprivation. 4. Evidence is presented that changes in the peritubular transport pattern are primarily responsible for modifications of potassium translocation. Thus, stimulation of potassium secretion is associated with increased peritubular potassium uptake; a reduced potassium uptake across the peritubular cell membrane accounts for the fall in potassium secretion in potassium-depleted animals. Whereas passive entry of potassium across the peritubular membrane is augmented in potassium-loaded animals, the induction of metabolic alkalosis by the administration of 5% sodium bicarbonate stimulates active potassium uptake across the peritubular cell membrane. Sodium deprivation stimulates active

  8. A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: a study in awake goats.

    PubMed

    Wester, Maarten; Gerritsen, Karin G; Simonis, Frank; Boer, Walther H; Hazenbrink, Diënty H; Vaessen, Koen R; Verhaar, Marianne C; Joles, Jaap A

    2017-06-01

    Patients on standard intermittent haemodialysis suffer from strong fluctuations in plasma potassium and phosphate. Prolonged dialysis with a wearable device, based on continuous regeneration of a small volume of dialysate using ion exchangers, could moderate these fluctuations and offer increased clearance of these electrolytes. We report in vivo results on the efficacy of potassium and phosphate adsorption from a wearable dialysis device. We explore whether equilibration of ion exchangers at physiological Ca 2+ , Mg 2+ and hypotonic NaCl can prevent calcium/magnesium adsorption and net sodium release, respectively. Effects on pH and HCO3- were studied. Healthy goats were instrumented with a central venous catheter and dialysed. Potassium and phosphate were infused to achieve plasma concentrations commonly observed in dialysis patients. An adsorption cartridge containing 80 g sodium poly(styrene-divinylbenzene) sulphonate and 40 g iron oxide hydroxide beads for potassium and phosphate removal, respectively, was incorporated in a dialysate circuit. Sorbents were equilibrated and regenerated with a solution containing NaCl, CaCl 2 and MgCl 2 . Blood was pumped over a dialyser and dialysate was recirculated over the adsorption cartridge in a countercurrent direction. Potassium and phosphate adsorption was 7.7 ± 2.7 and 4.9 ± 1.3 mmol in 3 h, respectively. Adsorption capacity remained constant during consecutive dialysis sessions and increased with increasing K + and PO43-. Equilibration at physiological Ca 2+ and Mg 2+ prevented net adsorption, eliminating the need for post-cartridge calcium and magnesium infusion. Equilibration at hypotonic NaCl prevented net sodium release Fe 2+ and arterial pH did not change. Bicarbonate was adsorbed, which could be prevented by equilibrating at HCO3- 15 mM. We demonstrate clinically relevant, concentration-dependent, pH-neutral potassium and phosphate removal in vivo with small volumes of regenerable ion exchangers in our

  9. Urinary and dietary sodium and potassium associated with blood pressure control in treated hypertensive kidney transplant recipients: an observational study.

    PubMed

    Saint-Remy, Annie; Somja, Mélanie; Gellner, Karen; Weekers, Laurent; Bonvoisin, Catherine; Krzesinski, Jean-Marie

    2012-09-26

    In kidney transplant (Kt) recipients , hypertension is a major risk for cardiovascular complications but also for graft failure. Blood pressure (BP) control is therefore mandatory. Office BP (OBP) remains frequently used for clinical decisions, however home BP (HBP) have brought a significant improvement in the BP control. Sodium is a modifiable risk factor, many studies accounted for a decrease of BP with a sodium restricted diet. Increased potassium intake has been also recommended in hypertension management. Using an agreement between office and home BP, the present study investigated the relations between the BP control in Kt recipients and their urinary excretion and dietary consumption of sodium and potassium. The BP control defined by OBP <140/90 mmHg and HBP <135/85 mmHg was tested in 70 Kt recipients (mean age 56 ± 11.5 years; mean graft survival 7 ± 6.6 years) treated with antihypertensive medications. OBP and HBP were measured with a validated oscillometric device (Omron M6®). The 24-hour urinary sodium (Na+) and potassium (K+) excretions as well as dietary intakes were compared between controlled and uncontrolled (in office and at home) recipients. Non parametric Wilcoxon Mann-Whitney Test was used for between groups comparisons and Fisher's exact test for frequencies comparisons. Pearson correlation coefficients and paired t-test were used when sample size was >30. Using an agreement between OBP and HBP, we identified controlled (21%) and uncontrolled recipients (49%). Major confounding effects susceptible to interfere with the BP regulation did not differ between groups, the amounts of sodium excretion were similar (154 ± 93 vs 162 ± 88 mmol/24 h) but uncontrolled patients excreted less potassium (68 ± 14 vs 54 ± 20 mmol/24 h; P = 0.029) and had significantly lower potassium intakes (3279 ± 753 vs 2208 ± 720 mg/24 h; P = 0.009), associated with a higher urinary Na+/K + ratio. Systolic HBP was inversely and significantly

  10. Estimating Sodium and Potassium Intakes and Their Ratio in the American Diet: Data from the 2011–2012 NHANES1234

    PubMed Central

    Bailey, Regan L; Parker, Elizabeth A; Rhodes, Donna G; Goldman, Joseph D; Clemens, John C; Moshfegh, Alanna J; Thuppal, Sowmyanarayanan V; Weaver, Connie M

    2016-01-01

    Background: The dietary sodium-to-potassium ratio (Na:K) is shown to be more strongly associated with an increased risk of cardiovascular disease (CVD) and CVD-related mortality than either sodium or potassium intake alone. Objective: The aim was to estimate the Na:K in the diet of US adults. Methods: Among US adults from the 2011–2012 NHANES (≥20 y; 2393 men and 2337 women), the National Cancer Institute method was used to estimate sodium and potassium intakes, Na:K, and the percentage of individuals with Na:K <1.0 utilizing the complex, stratified, multistage probability cluster sampling design. Results: Overall, women had a significantly lower Na:K than men (mean ± SE: 1.32 ± 0.02 compared with 1.45 ± 0.02). Non-Hispanic whites had a significantly lower Na:K than non-Hispanic blacks and non-Hispanic Asians (1.34 ± 0.02 compared with 1.54 ± 0.03 and 1.49 ± 0.04, respectively). Only 12.2% ± 1.5% of US adults had a Na:K < 1.0. The Na:K decreased linearly as age increased. Most adults (90% ± 0.8%) had sodium intakes >2300 mg/d, whereas <3% had potassium intakes >4700 mg/d. Grains and vegetables were among the highest contributors to sodium intakes for adults with Na:K < 1.0, compared with protein foods and grains for those with Na:K ≥ 1.0. Vegetables and milk and dairy products constituted the primary dietary sources of potassium for individuals with Na:K < 1.0, whereas mixed dishes and protein foods contributed the most potassium for individuals with ratios ≥1.0. Individuals with a Na:K < 1.0 were less likely to consume mixed dishes and condiments and were more likely to consume vegetables, milk and dairy products, and fruit than those with a Na:K ≥ 1.0. Conclusion: Only about one-tenth of US adults have a Na:K consistent with the WHO guidelines for reduced risk of mortality. Continued efforts to reduce sodium intake in tandem with novel strategies to increase potassium intake are warranted. PMID:26962185

  11. Potassium secretion in rat distal colon during dietary potassium loading: role of pH regulated apical potassium channels

    PubMed Central

    Sandle, G; Butterfield, I

    1999-01-01

    +-H+ exchange, which may be a manifestation of the secondary hyperaldosteronism associated with this model of colonic K+ adaptation. 

 Keywords: colon; dietary potassium; pH; potassium channels PMID:9862824

  12. An interlaboratory study of potassium determination in rocks and minerals.

    PubMed

    Rice, T D

    1976-05-01

    Seven laboratories took part in this interlaboratory study which was part of an investigation of the flame-speetrometric determination of potassium in rocks and minerals suitable for potassium-argon age-measurement. Three of these laboratories determined potassium in the following five international reference rocks: tonalite T-1, basalt BCR-1, andesite AGV-1, granite G-2, and granodiorite GSP-1. The other five samples (with the number of laboratories analysing them in parentheses) were: a chlorite rock (7), an altered basic igneous rock (5), an altered basaltic andesite (5), a biotite (6) and a potassium feldspar (7). Details of sample preparation and methods of analysis are given; no laboratory used exactly the same method as any of the other six laboratories. Results have been examined by analysis of variance; larger relative between- and within-laboratory variations occurred for the two samples containing less than 0.1% potassium than for seven of the eight other (higher potassium) samples; between-laboratory variations for the basalt BCR-1 and, to a lesser extent, the andesite AGV-1, were high and of similar magnitude to those for the samples containing less than 0.1% potassium. The causes of any poor interlaboratory agreement in the present study are considered.

  13. Generating potassium abundance variations in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2016-08-01

    An intriguing aspect of chondritic meteorites is that they are complementary: while their separate components have wildly varying abundances, bulk chondrites have nearly solar composition. This implies that the nearly solar reservoirs in which chondrites were born were in turn assembled from sub-reservoirs of differing compositions that birthed the different components. We focus on explaining the potassium abundance variations between chondrules even within a single chondrite, while maintaining the observed CI 41K to 39K ratios. This requires physically separating potassium and chondrules while the temperature is high enough for K to be in the gas phase. We examine several mechanisms which could drive the dust through gas and show that to do so locally would have required long (sub-orbital to many orbits) time scales; with shortest potassium depletion time-scales occurring in a scenario where chondrules formed high above the mid-plane and settled out of the evaporated potassium. While orbital time-scales are at odds with laboratory chondrule cooling rate estimates, any other model for the origin for the potassium abundance variation has to wrestle with the severe logistical difficulty of generating a plethora of correlated reservoirs which varied strongly in their potassium abundances, but not in their potassium isotope ratios.

  14. Biphasic effects of losartan potassium on immobility in mice.

    PubMed

    Vijayapandi, Pandi; Nagappa, Anantha Naik

    2005-08-01

    The effects of losartan potassium, an angiotensin AT(1) receptor blocker on immobility in forced swim test have been studied. Effect of losartan potassium, nortriptyline HCl, fluoxetine HCl and reserpine per se and in combination on forced swimming-induced immobility in mice have also been studied. In mice, losartan potassium elicits biphasic responses i.e. positive responses at lower doses (0.1, 1.0 and 5 mg/kg, i.p.) in the forced swim test, a test of potential antidepressant activity and vice versa at higher dose (20 and 100 mg/kg, i.p.). In chronic studies, enhancement in immobility was observed for losartan potassium (3 and 30 mg/kg, p.o., 21 days). In acute combination studies, losartan potassium (1 and 5 mg/kg) significantly reversed the reserpine-induced immobility, but vice versa at 100 mg/kg. Losartan potassium (0.1 and 5 mg/kg) potentiate antidepressant activity of nortriptyline (30 mg/kg, i.p.) in mice, but vice versa at 100 mg/kg. Likewise, Losartan potassium (100 mg/kg), significantly reversed antidepressant activity of fluoxetine HCl, but at 0.1 and 5 mg/kg, failed to modify fluoxetine HCl induced immobility. The obtained biphasic effect of losartan potassium on immobility in mice might be due to inhibitory effect on AT(1) receptor at lower dose and pronounced effect on AT(2) receptor at higher dose (large concentrations of losartan potassium can displace Angiotensin II (Ang II) from its AT(1) receptor to AT(2) receptor.

  15. Regulation of serum potassium during insulin-induced hypoglycemia.

    PubMed

    Petersen, K G; Schlüter, K J; Kerp, L

    1982-07-01

    Counterregulatory secretion of epinephrine occurs during severe insulin-induced hypoglycemia. Under these conditions (minimal plasma glucose 27.4 +/- 1 mg/dl) the decrease of serum potassium concentration (0.9 mVal/L) is mediated by two mechanisms: insulin-induced (0.48 mVal/L) and epinephrine-induced (0.42 mVal/L) cellular uptake of potassium. Epinephrine-induced serum potassium uptake appears to be more sensitive to beta-adrenoceptor blockade than glucose production. The intensification of insulin-induced hypokalemia by epinephrine is of clinical significance.

  16. Onset of superconductivity in sodium and potassium intercalated molybdenum disulphide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Rembaum, A.

    1971-01-01

    Molybdenum disulfide in the form of natural crystals or powder has been intercalated at -65 to -70 C with sodium and potassium using the liquid ammonia technique. All intercalated samples were found to show a superconducting transition. A plot of the percent of diamagnetic throw versus temperature indicates the possible existence of two phases in the potassium intercalated molybdenum disulfide. The onset of superconductivity in potassium and sodium intercalated molybdenite powder was found to be approximately 6.2 and approximately 4.5 K, respectively. The observed superconductivity is believed to be due to an increase in electron density as a result of intercalation.

  17. The abundance of potassium in the Earth's core

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Ohtani, E.; Kamada, S.; Miyahara, M.

    2013-12-01

    Potassium (K) has a radioactive isotope (40K), and it has been proposed that potassium might exist in the Earth's core (e.g., Wasserburg et al., 1964). If a large amount of potassium is in the core, it has a large impact on total heat budget and thermal history of the Earth. To reveal the amount of potassium in the core, many previous studies have been reported on potassium partitioning between metallic melts and silicate melts (e.g., Gessmann and Wood, 2002; Murthy et al., 2003; Hirao et al., 2006; Bouhifd et al., 2007; Corgne et al., 2007). Since there are considerable contradictions on temperature, pressure, and metal compositional dependencies, the potassium abundance in the core is not yet constrained well. In order to reveal the abundance accurately, we studied partitioning of potassium between aluminosilicate (adularia, KAlSi3O8) and metal (pure iron, iron-oxygen alloy, and iron-silicon alloy) up to 50 GPa and 3500 K using a double sided laser-heated diamond anvil cell. Our results revealed following pressure, temperature, and compositional dependencies on the partitioning coefficient of potassium DK (= the potassium contents in metal [wt%] / the potassium contents in silicate [wt%]); the pressure effect is a very weak but positive when the results by Hirao et al. (2006) are included, and the temperature effect is a positive but weaker than those reported previously. Oxygen fugacity has a positive effect, and oxygen in the metallic phase increases the K contents in the metallic phase, whereas silicon in the metallic phase has a negative effect. Based on these results, we estimated that the amount of the potassium in the core was less than 10 ppm and that the amount of 40K was about 1.0 ppb resulting generation of about 0.01 TW heat in the core. This amount of heat is relatively small compared to the heat flux at the core-mantle boundary (5 ~ 15 TW, Lay et al., 2008), therefore the radiogenic energy of potassium is not the major heat source of Earth's core.

  18. Simultaneous determination of potassium and rubidium content in yeast.

    PubMed

    Mulet, Jose M; Serrano, Ramón

    2002-11-01

    Rubidium is widely used as a potassium analogue in transport studies in yeast and other organisms. As rubidium (potassium) uptake is modulated by the internal potassium concentration, it is often necessary to determine both Rb(+) and K(+) concentrations in the same cell extract. Current methods based on atomic absorption/emission spectroscopy require separate analysis for each cation. Alternatively, unsafe radioactive isotopes can be used. Here we report a convenient, non-radioactive, HPLC/conductivity-based method that allows a complete analysis of both cations with a single injection from a cell extract. The increase in Rb(+) uptake during K(+) starvation in yeast is easily demonstrated with this method.

  19. The application of potassium ferrate for sewage treatment.

    PubMed

    Jiang, Jia-Qian; Panagoulopoulos, Alex; Bauer, Mike; Pearce, Pete

    2006-04-01

    The comparative performance of potassium ferrate(VI), ferric sulphate and aluminium sulphate for the removal of turbidity, chemical oxygen demand (COD), colour (as Vis400-abs) and bacteria in sewage treatment was evaluated. For coagulation and disinfection of sewage, potassium ferrate(VI) can remove more organic contaminants, COD and bacteria in comparison with the other two coagulants for the same doses used. Also, potassium ferrate(VI) produces less sludge volume and removes more contaminants, which should make subsequent sludge treatment easier.

  20. Thermodynamic properties of potassium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  1. Sea Anemone Toxins Affecting Potassium Channels

    NASA Astrophysics Data System (ADS)

    Diochot, Sylvie; Lazdunski, Michel

    The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

  2. Modulation of Potassium Channels Inhibits Bunyavirus Infection*

    PubMed Central

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N.; Mankouri, Jamel

    2016-01-01

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K+) channels to infect cells. Time of addition assays using K+ channel modulating agents demonstrated that K+ channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K+ channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K+ channels (K2P) were identified as the K+ channel family mediating BUNV K+ channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease. PMID:26677217

  3. Submersion of potassium clusters in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    An der Lan, Lukas; Bartl, Peter; Leidlmair, Christian; Schöbel, Harald; Denifl, Stephan; Märk, Tilmann D.; Ellis, Andrew M.; Scheier, Paul

    2012-03-01

    Small alkali clusters do not submerge in liquid helium nanodroplets but instead survive predominantly in high spin states that reside on the surface of the nanodroplet. However, a recent theoretical prediction by Stark and Kresin [Phys. Rev. BPLRBAQ1098-012110.1103/PhysRevB.81.085401 81, 085401 (2010)], based on a classical description of the energetics of bubble formation for a fully submerged alkali cluster, suggests that the alkali clusters can submerge on energetic grounds when they exceed a critical size. Following recent work on sodium clusters, where ion yield data from electron impact mass spectrometry was used to obtain the first experimental evidence for alkali cluster submersion, we report here on similar experiments for potassium clusters. Evidence is presented for full cluster submersion at n>80 for Kn clusters, which is in good agreement with the recent theoretical prediction. In an additional observation, we report “magic number” sizes for both Kn+ and Kn2+ ions derived from helium droplets, which are found to be consistent with the jellium model.

  4. Potassium selectivity of frog gastric luminal membrane.

    PubMed

    Kasbekar, D K

    1986-06-01

    Transmural potential difference (PD) and resistance (R) changes after luminal or serosal instillation of K+ were determined under various conditions in chambered preparations of frog gastric mucosae. Potassium selectivity of the luminal membrane is indicated by the rapid reversal of the inverted PD of mucosae bathed in NaCl-free, choline sulfate (Ch2SO4)-Ringer on the serosal side and unbuffered hypertonic Ch2SO4 solution on the luminal side on luminal K+ instillation. The delta PD responses are significantly attenuated, however, in histamine-stimulated mucosae bathed in hypotonic or in burimamide-inhibited mucosae bathed in hyper- and hypotonic luminal media, which suggests that the K+ selectivity of the luminal membrane resides largely in the tubular cell apical membrane. Imposing a serosal-to-luminal transmucosal K+ gradient in both histamine-stimulated and omeprazole-inhibited mucosae also reversed the normal orientation of PD but not in those inhibited with burimamide. In the latter, the PD inversion was attenuated but maintained its normal orientation. These data suggest that burimamide, but not omeprazole, acts by blocking luminal membrane K+ conductance. The inverted PD in mucosae bathed in Cl-free media may thus be due partially or fully to K+ diffusion driven by the cell-to-lumen K+ gradient via the luminal K+ conductance pathway. These findings have implications for the controversy surrounding the postulated electrogenicity of the gastric proton pump.

  5. Modulation of Potassium Channels Inhibits Bunyavirus Infection.

    PubMed

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N; Mankouri, Jamel

    2016-02-12

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Djerfisherite: nebular source of refractory potassium

    NASA Astrophysics Data System (ADS)

    Ebel, Denton S.; Sack, Richard O.

    2013-09-01

    Djerfisherite is an important carrier of potassium in highly reduced enstatite chondrites, where it occurs in sub-round metal-sulfide nodules. These nodules were once free-floating objects in the protoplanetary nebula. Here, we analyze existing and new data to derive an equation of state (EOS) for djerfisherites of structural formula. We use this EOS to calculate the thermal stability of djerfisherite coexisting in equilibrium with a cooling vapor of solar composition enriched in a dust analogous to anhydrous, chondritic interplanetary dust (C-IDP). We find that condensed mineral assemblages closely match those found in enstatite chondrites, with djerfisherite condensing above 1,000 K in C-IDP dust-enriched systems. Results may have implications for the volatile budgets of terrestrial planets and the incorporation of K into early formed, highly reduced, planetary cores. Previous work links enstatite chondrites to the planet Mercury, where the surface has a terrestrial K/Th ratio, high S/Si ratio, and very low FeO content. Mercury's accretion history may yield insights into Earth's.

  7. Potassium transport in the maturing kidney.

    PubMed

    Gurkan, Sevgi; Estilo, Genevieve K; Wei, Yuan; Satlin, Lisa M

    2007-07-01

    The distal nephron and colon are the primary sites of regulation of potassium (K(+)) homeostasis, responsible for maintaining a zero balance in adults and net positive balance in growing infants and children. Distal nephron segments can either secrete or reabsorb K(+) depending on the metabolic needs of the organism. In the healthy adult kidney, K(+) secretion predominates over K(+) absorption. Baseline K(+) secretion occurs via the apical low-conductance secretory K(+) (SK) channel, whereas the maxi-K channel mediates flow-stimulated net urinary K(+) secretion. The K(+) retention characteristic of the neonatal kidney appears to be due not only to the absence of apical secretory K(+) channels in the distal nephron but also to a predominance of apical H-K-adenosine triphosphatase (ATPase), which presumably mediates K(+) absorption. Both luminal and peritubular factors regulate the balance between K(+) secretion and absorption. Perturbation in any of these factors can lead to K(+) imbalance. In turn, these factors may serve as effective targets for the treatment of both hyper-and hypokalemia. The purpose of this review is to present an overview of recent advances in our understanding of mechanisms of K(+) transport in the maturing kidney.

  8. Control of potassium excretion: a Paleolithic perspective.

    PubMed

    Halperin, Mitchell L; Cheema-Dhadli, Surinder; Lin, Shih-Hua; Kamel, Kamel S

    2006-07-01

    Regulation of potassium (K) excretion was examined in an experimental setting that reflects the dietary conditions for humans in Paleolithic times (high, episodic intake of K with organic anions; low intake of NaCl), because this is when major control mechanisms were likely to have developed. The major control of K secretion in this setting is to regulate the number of luminal K channels in the cortical collecting duct. Following a KCl load, the K concentration in the medullary interstitial compartment rose; the likely source of this medullary K was its absorption by the H/K-ATPase in the inner medullary collecting duct. As a result of the higher medullary K concentration, the absorption of Na and Cl was inhibited in the loop of Henle, and this led to an increased distal delivery of a sufficient quantity of Na to raise K excretion markedly, while avoiding a large natriuresis. In addition, because K in the diet was accompanied by 'future' bicarbonate, a role for bicarbonate in the control of K secretion via 'selecting' whether aldosterone would be a NaCl-conserving or a kaliuretic hormone is discussed. This way of examining the control of K excretion provides new insights into clinical disorders with an abnormal plasma K concentration secondary to altered K excretion, and also into the pathophysiology of calcium-containing kidney stones.

  9. Gating of two pore domain potassium channels

    PubMed Central

    Mathie, Alistair; Al-Moubarak, Ehab; Veale, Emma L

    2010-01-01

    Two-pore-domain potassium (K2P) channels are responsible for background leak currents which regulate the membrane potential and excitability of many cell types. Their activity is modulated by a variety of chemical and physical stimuli which act to increase or decrease the open probability of individual K2P channels. Crystallographic data and homology modelling suggest that all K+ channels possess a highly conserved structure for ion selectivity and gating mechanisms. Like other K+ channels, K2P channels are thought to have two primary conserved gating mechanisms: an inactivation (or C-type) gate at the selectivity filter close to the extracellular side of the channel and an activation gate at the intracellular entrance to the channel involving key, identified, hinge glycine residues. Zinc and hydrogen ions regulate Drosophila KCNK0 and mammalian TASK channels, respectively, by interacting with the inactivation gate of these channels. In contrast, the voltage dependence of TASK3 channels is mediated through its activation gate. For KCNK0 it has been shown that the gates display positive cooperativity. It is of much interest to determine whether other K2P regulatory compounds interact with either the activation gate or the inactivation gate to alter channel activity or, indeed, whether additional regulatory gating pathways exist. PMID:20566661

  10. The Sodium-Potassium Exchange Pump

    PubMed Central

    Rapoport, Stanley I.

    1971-01-01

    A model for the Na-K exchange pump was applied to data on Na+-loaded frog sartorius muscle, and was used to relate the rate of adenosine triphosphate (ATP) hydrolysis to the electrical properties of the cell membrane. Membrane hyperpolarization was considered to arise from an electrical current which was produced by the hydrolysis reaction coupled to ion movements, and which flowed across the membrane. The reaction rate, as calculated from hyperpolarization, agreed with direct measurements of ATP hydrolysis and with the rate estimated from Na+ tracer efflux studies. Although Na+ is actively extruded, the model showed that K+ is inwardly transported if the potassium permeability of the membrane is less than about 6.6 × 10-6 cm/sec, as is suggested by resistance data. Calculations indicated that the reaction conductance Lrr was relatively constant when compared with the reaction rate and reaction free energy for large changes in internal and external ionic concentrations. Its value agreed with the value obtained from the dependence of Na+ tracer efflux on external K+. A set of experiments was suggested which would provide a more complete interpretation of the data. PMID:5116580

  11. Gating of two pore domain potassium channels.

    PubMed

    Mathie, Alistair; Al-Moubarak, Ehab; Veale, Emma L

    2010-09-01

    Two-pore-domain potassium (K2P) channels are responsible for background leak currents which regulate the membrane potential and excitability of many cell types. Their activity is modulated by a variety of chemical and physical stimuli which act to increase or decrease the open probability of individual K2P channels. Crystallographic data and homology modelling suggest that all K(+) channels possess a highly conserved structure for ion selectivity and gating mechanisms. Like other K(+) channels, K2P channels are thought to have two primary conserved gating mechanisms: an inactivation (or C-type) gate at the selectivity filter close to the extracellular side of the channel and an activation gate at the intracellular entrance to the channel involving key, identified, hinge glycine residues. Zinc and hydrogen ions regulate Drosophila KCNK0 and mammalian TASK channels, respectively, by interacting with the inactivation gate of these channels. In contrast, the voltage dependence of TASK3 channels is mediated through its activation gate. For KCNK0 it has been shown that the gates display positive cooperativity. It is of much interest to determine whether other K2P regulatory compounds interact with either the activation gate or the inactivation gate to alter channel activity or, indeed, whether additional regulatory gating pathways exist.

  12. Voltage sensor inactivation in potassium channels.

    PubMed

    Bähring, Robert; Barghaan, Jan; Westermeier, Regina; Wollberg, Jessica

    2012-01-01

    In voltage-gated potassium (Kv) channels membrane depolarization causes movement of a voltage sensor domain. This conformational change of the protein is transmitted to the pore domain and eventually leads to pore opening. However, the voltage sensor domain may interact with two distinct gates in the pore domain: the activation gate (A-gate), involving the cytoplasmic S6 bundle crossing, and the pore gate (P-gate), located externally in the selectivity filter. How the voltage sensor moves and how tightly it interacts with these two gates on its way to adopt a relaxed conformation when the membrane is depolarized may critically determine the mode of Kv channel inactivation. In certain Kv channels, voltage sensor movement leads to a tight interaction with the P-gate, which may cause conformational changes that render the selectivity filter non-conductive ("P/C-type inactivation"). Other Kv channels may preferably undergo inactivation from pre-open closed-states during voltage sensor movement, because the voltage sensor temporarily uncouples from the A-gate. For this behavior, known as "preferential" closed-state inactivation, we introduce the term "A/C-type inactivation". Mechanistically, P/C- and A/C-type inactivation represent two forms of "voltage sensor inactivation."

  13. Incommensurate lattice modulations in Potassium Vanadate

    NASA Astrophysics Data System (ADS)

    Chakoumakos, Bryan; Banerjee, Arnab; Mark, Lumsden; Cao, Huibo; Kim, Jong-Woo; Hoffman, Christina; Wang, Xiaoping

    Potassium Vanadate (K2V3O8) is an S = 1/2 2D square lattice antiferromagnet that shows spin reorientation indicating a strong coupling between the magnetism and its dielectric properties with a promise of rich physics that promises multiferroicity. These tangible physical properties are strongly tied through a spin-lattice coupling to the underlying lattice and superlattice behavior. It has a superlattice (SL) onsetting below Tc = 115 K with an approximate [3 x 3 x 2] modulation. Here we present our recent experiments at TOPAZ beamline at SNS which for the first time proves conclusively that the lattice modulations are incommensurate, with an in-plane Q of 0.315. We will also show our attempts to refine the data using JANA which requires a redefinition of the lattice, as well as the temperature and Q dependence of the superlattice modulation measured using neutrons at HFIR and synchrotron x-rays at APS. Our results are not only relevant for the ongoing search of multifunctional behavior in K2V3O8 but also generally for the superlattice modulations observed in a large family of fresnoites. Work performed at ORNL and ANL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.

  14. Potassium permanganate for mercury vapor environmental control

    NASA Technical Reports Server (NTRS)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  15. Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards

    NASA Technical Reports Server (NTRS)

    Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.

    2013-01-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.

  16. The use of chromic potassium sulphate in bone electron microscopy.

    PubMed

    Liem, R S; Jansen, H W

    1984-10-01

    The ultrastructure of endochondral bone was studied using an aqueous solution of chromic potassium sulphate as the decalcifying agent. 0.5 mm thick sections of rat tibiae were fixed in buffered glutaraldehyde, immersed in an aqueous solution of 1% chromic potassium sulphate pH 3.4, dehydrated and embedded in Poly Bed 812 without exposure to osmium tetroxide. In unstained sections we observed clusters of crystal like structures throughout the osteoid and calcifying cartilage matrix as well as solitary needle shaped structures in association with collagen fibrils. Stained sections revealed nuclei, endoplasmic reticulum, membrane limited dense granules, mitochondrial particles and other cell components typical of bone cells. It appeared that the chromic potassium sulphate method preserves the relationship between hard and soft tissues well, gives fine cytological detail and produces images of intracellular and extracellular deposits identical to untreated crystallites. It is concluded that the chromic potassium sulphate method is indicated for ultrastructural studies of bone.

  17. Equilibrium among potassium polytellurides in N,N-dimethylformamide solution

    NASA Astrophysics Data System (ADS)

    McAfee, Jason L.; Andreatta, Jeremy R.; Sevcik, Richard S.; Schultz, Linda D.

    2012-08-01

    Reactions between elemental potassium and tellurium in N,N-dimethylformamide (DMF) are monitored using UV-visible spectroscopy and compared with those in liquid ammonia solution. In liquid ammonia, the elements react together, via a step-wise sequence, to form polytellurides, each of which is characterized by a distinctive color, the highest being potassium tritelluride. However, when the elements are combined in DMF, these distinctive color changes are not observed - the solution develops an initial plum color, which gradually darkens to purple as the reaction progresses. UV-visible and Raman spectroscopic studies indicate that equilibrium exists among the mono-, di-, and tritelluride in DMF. This equilibrium is not seen in liquid ammonia solution due to the insolubility of potassium monotelluride in that solvent. Spectral data also indicate that potassium tetratelluride is formed in DMF solution.

  18. Intracellular mediators of potassium-induced aldosterone secretion

    SciTech Connect

    Ganguly, A.; Chiou, S.; Davis, J.S. )

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) in {sup 3}H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium.

  19. Potassium: Tips for People with Chronic Kidney Disease (CKD)

    MedlinePlus

    ... high in protein at meals and for snacks: meat, poultry, fish, beans, dairy, and nuts. ■ Use spices and herbs in cooking and at the table. Salt substitutes often contain potassium and should not be used. ■ ...

  20. 21 CFR 201.306 - Potassium salt preparations intended for oral ingestion by man.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Potassium salt preparations intended for oral... Drug Products § 201.306 Potassium salt preparations intended for oral ingestion by man. (a) The Food... coated tablets containing potassium chloride or other potassium salts which supply 100 milligrams or more...