Sample records for potassium katp channel

  1. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity

    PubMed Central

    Davies, Lowri M; Purves, Gregor I; Barrett-Jolley, Richard; Dart, Caroline

    2010-01-01

    ATP-sensitive potassium channels (KATP channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of KATP channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 ± 8.3 pA pF−1, n= 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 ± 35.9 pA pF−1, n= 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell KATP currents, indicating that a significant proportion of vascular KATP channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 ± 0.01 to 0.005 ± 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type KATP channel

  2. Minoxidil opens mitochondrial KATP channels and confers cardioprotection

    PubMed Central

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2003-01-01

    ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoKATP channel) rather than in the sarcolemma (sarcKATP channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcKATP and mitoKATP channels in guinea-pig ventricular myocytes. Minoxidil activated a glybenclamide-sensitive sarcKATP channel current in the whole-cell recording mode with an EC50 of 182.6 μM. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoKATP channel activity, in a concentration-dependent manner. The EC50 for mitoKATP channel activation was estimated to be 7.3 μM; this value was notably ≈25-fold lower than that for sarcKATP channel activation. Minoxidil (10 μM) significantly attenuated the ouabain-induced increase of mitochondrial Ca2+ concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 μM) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoKATP channel blocker 5-hydroxydecanoate (500 μM). Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoKATP channels. PMID:14691056

  3. Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules.

    PubMed

    Yang, Shao-Nian; Wenna, Nancy Dekki; Yu, Jia; Yang, Guang; Qiu, Hua; Yu, Lina; Juntti-Berggren, Lisa; Köhler, Martin; Berggren, Per-Olof

    2007-09-01

    beta cells rely on adenosine triphosphate-sensitive potassium (K(ATP)) channels to initiate and end glucose-stimulated insulin secretion through changes in membrane potential. These channels may also act as a constituent of the exocytotic machinery to mediate insulin release independent of their electrical function. However, the molecular mechanisms whereby the beta cell plasma membrane maintains an appropriate number of K(ATP) channels are not known. We now show that glucose increases K(ATP) current amplitude by increasing the number of K(ATP) channels in the beta cell plasma membrane. The effect was blocked by inhibition of protein kinase A (PKA) as well as by depletion of extracellular or intracellular Ca(2+). Furthermore, glucose promoted recruitment of the potassium inward rectifier 6.2 to the plasma membrane, and intracellular K(ATP) channels localized in chromogranin-positive/insulin-negative dense-core granules. Our data suggest that glucose can recruit K(ATP) channels to the beta cell plasma membrane via non-insulin-containing dense-core granules in a Ca(2+)- and PKA-dependent manner.

  4. BAD and KATP channels regulate neuron excitability and epileptiform activity

    PubMed Central

    Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L

    2018-01-01

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD’s influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a ‘dentate gate’ function that is reinforced by increased KATP channel activity. PMID:29368690

  5. The role of KATP channels in cerebral ischemic stroke and diabetes

    PubMed Central

    Szeto, Vivian; Chen, Nai-hong; Sun, Hong-shuo; Feng, Zhong-ping

    2018-01-01

    ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke. PMID:29671418

  6. Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through KATP Channels

    PubMed Central

    Kim, Do Young; Abdelwahab, Mohammed G.; Lee, Soo Han; O’Neill, Derek; Thompson, Roger J.; Duff, Henry J.; Sullivan, Patrick G.; Rho, Jong M.

    2015-01-01

    Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels. PMID:25848768

  7. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels

    PubMed Central

    Martin, Gregory M.; Chen, Pei-Chun; Devaraneni, Prasanna; Shyng, Show-Ling

    2013-01-01

    ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed. PMID:24399968

  8. KATP channel inhibition blunts electromechanical decline during hypoxia in left ventricular working rabbit hearts

    PubMed Central

    Garrott, Kara; Kuzmiak‐Glancy, Sarah; Wengrowski, Anastasia; Zhang, Hanyu; Rogers, Jack

    2017-01-01

    Key points Heart function is critically dependent upon the balance of energy production and utilization. Sarcolemmal ATP‐sensitive potassium channels (KATP channels) in cardiac myocytes adjust contractile function to compensate for the level of available energy.Understanding the activation of KATP channels in working myocardium during high‐stress situations is crucial to the treatment of cardiovascular disease, especially ischaemic heart disease.Using a new optical mapping approach, we measured action potentials from the surface of excised contracting rabbit hearts to assess when sarcolemmal KATP channels were activated during physiologically relevant workloads and during gradual reductions in myocardial oxygenation.We demonstrate that left ventricular pressure is closely linked to KATP channel activation and that KATP channel inhibition with a low concentration of tolbutamide prevents electromechanical decline when oxygen availability is reduced. As a result, KATP channel inhibition probably exacerbates a mismatch between energy demand and energy production when myocardial oxygenation is low. Abstract Sarcolemmal ATP‐sensitive potassium channel (KATP channel) activation in isolated cells is generally understood, although the relationship between myocardial oxygenation and KATP activation in excised working rabbit hearts remains unknown. We optically mapped action potentials (APs) in excised rabbit hearts to test the hypothesis that hypoxic changes would be more severe in left ventricular (LV) working hearts (LWHs) than Langendorff (LANG) perfused hearts. We further hypothesized that KATP inhibition would prevent those changes. Optical APs were mapped when measuring LV developed pressure (LVDP), coronary flow rate and oxygen consumption in LANG and LWHs. Hearts were paced to increase workload and perfusate was deoxygenated to study the effects of myocardial hypoxia. A subset of hearts was perfused with 1 μm tolbutamide (TOLB) to identify the level of AP

  9. KATP Channels in the Cardiovascular System.

    PubMed

    Foster, Monique N; Coetzee, William A

    2016-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. Copyright © 2016 the American Physiological Society.

  10. KATP Channels in the Cardiovascular System

    PubMed Central

    Foster, Monique N.; Coetzee, William A.

    2015-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. PMID:26660852

  11. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review.

    PubMed

    Seino, Susumu

    2003-01-01

    K(ATP) channels are present in pancreatic and extrapancreatic tissues such as heart and smooth muscle, and display diverse molecular composition. They contain two different structural subunits: an inwardly rectifying potassium channel subunit (Kir6.x) and a sulfonylurea receptor (SURX). Recent studies on genetically engineered Kir6.2 knockout mice have provided a better understanding of the physiological and pathophysiological roles of Kir6.2-containing K(ATP) channels. Kir6.2/SUR1 has a pivotal role in pancreatic insulin secretion. Kir6.2/SUR2A mediates the effects of K(ATP) channels openers on cardiac excitability and contractility and contributes to ischemic preconditioning. However, controversy remains on the physiological properties of the K(ATP) channels in vascular smooth muscle cells. Kir6.1 knockout mice exhibit sudden cardiac death due to cardiac ischemia, indicating that Kir6.1 rather than Kir6.2 is critical in the regulation of vascular tone. This article summarizes current understanding of the physiology and pathophysiology of Kir6.1- and Kir6.2-containing K(ATP) channels.

  12. Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia

    PubMed Central

    Sun, Hong-shuo; Feng, Zhong-ping

    2013-01-01

    ATP-sensitive potassium (KATP) channels are weak, inward rectifiers that couple metabolic status to cell membrane electrical activity, thus modulating many cellular functions. An increase in the ADP/ATP ratio opens KATP channels, leading to membrane hyperpolarization. KATP channels are ubiquitously expressed in neurons located in different regions of the brain, including the hippocampus and cortex. Brief hypoxia triggers membrane hyperpolarization in these central neurons. In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the KATP channels increases ischemic infarction, and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults. These findings provide the basis for a practical strategy whereby activation of endogenous KATP channels reduces cellular damage resulting from cerebral ischemic stroke. KATP channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future. PMID:23123646

  13. Cardioselective K(ATP) channel blockers derived from a new series of m-anisamidoethylbenzenesulfonylthioureas.

    PubMed

    Englert, H C; Gerlach, U; Goegelein, H; Hartung, J; Heitsch, H; Mania, D; Scheidler, S

    2001-03-29

    Sulfonylthioureas exhibiting cardioselective blockade of ATP-sensitive potassium channels (K(ATP) channels) were discovered by stepwise structural variations of the antidiabetic sulfonylurea glibenclamide. As screening assays, reversal of rilmakalim-induced shortening of the cardiac action potential in guinea pig papillary muscles was used to probe for activity on cardiac K(ATP) channels as the target, and membrane depolarization in CHO cells stably transfected with hSUR1/hKir6.2 was used to probe for unwanted side effects on pancreatic K(ATP) channels. Changing glibenclamide's para-arrangement of substituents in the central aromatic ring to a meta-pattern associated with size reduction of the substituent at the terminal nitrogen atom of the sulfonylurea moiety was found to achieve cardioselectivity. An additional change from a sulfonylurea moiety to a sulfonylthiourea moiety along with an appropriate substituent in the ortho-position of the central aromatic system was a successful strategy to further improve potency on the cardiac K(ATP) channel. Among this series of sulfonylthioureas HMR1883, 1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3-methylthiourea, and its sodium salt HMR1098 were selected for development and represent a completely new therapeutic approach toward the prevention of life-threatening arrhythmias and sudden cardiac death in patients with coronary heart disease.

  14. Selective block of KATP channels: why the anti-diabetic sulphonylureas and rosiglitazone have more in common than we thought

    PubMed Central

    Dart, Caroline

    2012-01-01

    Rosiglitazone, the thiazolidinedione class anti-diabetic withdrawn from Europe in 2010 amid reports of adverse cardiovascular effects, is revealed by Yu et al. in this issue of the British Journal of Pharmacology to be a selective blocker of ATP-sensitive potassium (KATP) channels. This seems little cause for excitement given that the closure of pancreatic KATP channels is integral to insulin secretion; and sulphonylureas, which inhibit KATP channels, are widely used to treat type II diabetes. However, rosiglitazone, whose primary targets are nuclear transcription factors that regulate genes involved in lipid metabolism, blocks KATP channels by a novel mechanism different to that of the sulphonylureas and has a worrying preference for blood flow–regulating vascular KATP channels. Identification of a new molecule that modulates KATP channel gating will not only tell us more about how these complex metabolic sensors work but also raises questions as to whether rosiglitazone suppresses the cardiovascular system's ability to cope with metabolic stress – a claim that has dogged the sulphonylureas for many years. LINKED ARTICLE This article is a commentary on Yu et al., pp. 26–36 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2012.01934.x PMID:22506686

  15. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism.

    PubMed

    Chen, Pei-Chun; Olson, Erik M; Zhou, Qing; Kryukova, Yelena; Sampson, Heidi M; Thomas, David Y; Shyng, Show-Ling

    2013-07-19

    ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.

  16. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations*

    PubMed Central

    Martin, Gregory M.; Rex, Emily A.; Devaraneni, Prasanna; Denton, Jerod S.; Boodhansingh, Kara E.; DeLeon, Diva D.; Stanley, Charles A.; Shyng, Show-Ling

    2016-01-01

    ATP-sensitive potassium (KATP) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by KATP channel openers. Cross-linking experiments showed that KATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the KATP channel opener diazoxide. Our study expands the list of KATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. PMID:27573238

  17. Dystrophin Is Required for the Normal Function of the Cardio-Protective KATP Channel in Cardiomyocytes

    PubMed Central

    Graciotti, Laura; Becker, Jodi; Granata, Anna Luisa; Procopio, Antonio Domenico; Tessarollo, Lino; Fulgenzi, Gianluca

    2011-01-01

    Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients. PMID:22066028

  18. Protective effects of phosphodiesterase-1 (PDE1) and ATP sensitive potassium (KATP) channel modulators against 3-nitropropionic acid induced behavioral and biochemical toxicities in experimental Huntington׳s disease.

    PubMed

    Gupta, Surbhi; Sharma, Bhupesh

    2014-06-05

    Huntington׳s disease (HD), a devastating neurodegenerative disorder, is characterized by weight loss, impairment of motor function, cognitive dysfunction, neuropsychiatric disturbances and striatal damage. Phosphodiesterase-1 (PDE1) has been implicated in various neurological diseases. Mitochondrial potassium channels in the brain take part in neuroprotection. This study has been structured to investigate the role of vinpocetine, a selective PDE1 inhibitor as well as nicorandil, selective ATP sensitive potassium (KATP) channel opener in 3-nitropropionic acid (3-NP) induced HD symptoms in rats. Systemic administration of 3-NP significantly, reduced body weight, impaired locomotion, grip strength and impaired cognition. 3-NP elicited marked oxidative stress in the brain (enhanced malondialdehyde-MDA, reduced glutathione-GSH content, superoxide dismutase-SOD and catalase-CAT), elevated brain acetylcholinesterase activity and inflammation (myeloperoxidase-MPO), with marked nitrosative stress (nitrite/nitrate) in the brain. 3-NP has also induced mitochondrial dysfunction (impaired mitochondrial NADH dehydrogenase-complex I, succinate dehydrogenase-complex II and cytochrome oxidase-complex IV) activities in the striatum of the rat. Tetrabenazine was used as a positive control. Treatment with vinpocetine, nicorandil and tetrabenazine ameliorated 3-NP induced reduction in body weight, impaired locomotion, grip strength and impaired cognition. Treatment with these drugs reduced brain striatum oxidative (MDA, GSH, SOD and CAT) and nitrosative (nitrite/nitrate) stress, acetylcholinesterase activity, inflammation and mitochondrial dysfunctions. These results indicate that vinpocetine, a selective PDE1 inhibitor and nicorandil, a KATP channel opener have attenuated 3-NP induced experimental HD. Hence, pharmacological modulation of PDE1 as well as KATP channels may be considered as potential research targets for mitigation of HD. Copyright © 2014 Elsevier B.V. All rights

  19. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  20. Diadenosine tetraphosphate-gating of cardiac K(ATP) channels requires intact actin cytoskeleton.

    PubMed

    Jovanović, S; Jovanović, A

    2001-09-01

    Diadenosine polyphosphates (ApnA) have been recently discovered in the heart, and their levels found to be regulated by ischemia. These signaling molecules are believed to regulate cellular processes that alarm a cell to metabolic stress. In particular, changes in cardiac diadenosine polyphosphates (ApnA) levels may contribute to the regulation of ATP-sensitive K+ (K(ATP)) channel activity, an ion channel that couples the cellular metabolic state with membrane excitability. A feature of myocardial ischemia is the disruption of the actin cytoskeleton which critically regulates the behavior of K(ATP) channels. Whether the integrity of actin microfilaments regulates the interaction of ApnA with K(ATP) channels is not known. The inside-out configuration of the patch-clamp technique was applied to cardiomyocytes isolated from guinea-pig heart. Following patch excision, the prototype dinucleotide, diadenosine tetraphosphate (Ap4A), inhibited K(ATP) channel opening. Treatment of the internal side of membrane patches with either cytochalasin B or DNase I, disrupters of the actin cytoskeleton, prevented Ap4A-induced inhibition of K(ATP) channel opening. Application of purified actin to DNase-treated membrane patches restored the ability of Ap4A to close K(ATP) channels. This study shows that inhibition of cardiac K(ATP) channel by Ap4A, a putative alarmone, requires intact subsarcolemmal actin network. Such interaction between K(ATP) channels, the cardiomyocyte cytoskeleton and intracellular Ap4A could affect different channel-dependent functions.

  1. Amiodarone inhibits sarcolemmal but not mitochondrial KATP channels in Guinea pig ventricular cells.

    PubMed

    Sato, Toshiaki; Takizawa, Taichi; Saito, Tomoaki; Kobayashi, Satoru; Hara, Yukio; Nakaya, Haruaki

    2003-12-01

    ATP-sensitive K(+) (KATP) channels are present on the sarcolemma (sarcKATP channels) and mitochondria (mitoKATP channels) of cardiac myocytes. Amiodarone, a class III antiarrhythmic drug, reduces sudden cardiac death in patients with organic heart disease. The objective of the present study was to investigate the effects of amiodarone on sarcKATP and mitoKATP channels. Single sarcKATP channel current and flavoprotein fluorescence were measured in guinea pig ventricular myocytes to assay sarcKATP and mitoKATP channel activity, respectively. Amiodarone inhibited the sarcKATP channel currents in a concentration-dependent manner without affecting its unitary amplitude. The IC50 values were 0.35 microM in the inside-out patch exposed to an ATP-free solution and 2.8 microM in the cell-attached patch under metabolic inhibition, respectively. Amiodarone (10 microM) alone did not oxidize the flavoprotein. In addition, the oxidative effect of the mitoKATP channel opener diazoxide (100 microM) was unaffected by amiodarone. Exposure to ouabain (1 mM) for 30 min produced mitochondrial Ca(2+) overload, and the intensity of rhod-2 fluorescence increased to 246 +/- 16% of baseline (n = 9). Amiodarone did not alter the ouabain-induced mitochondrial Ca(2+) overload (236 +/- 10% of baseline, n = 7). Treatment with diazoxide significantly reduced the ouabain-induced mitochondrial Ca(2+) overload (158 +/- 15% of baseline, n = 8, p < 0.05 versus ouabain); this effect was not abolished by amiodarone (154 +/- 10% of baseline, n = 8, p < 0.05 versus ouabain). These results suggest that amiodarone inhibits sarcKATP but not mitoKATP channels in cardiac myocytes. Such an action of amiodarone may effectively prevent ischemic arrhythmias without causing ischemic damage.

  2. CARDIAC SULFONYLUREA RECEPTOR SHORT FORM-BASED CHANNELS CONFER A GLIBENCLAMIDE-INSENSITIVE KATP ACTIVITY

    PubMed Central

    Pu, Jie-Lin,; Ye, Bin; Kroboth, Stacie L.; McNally, Elizabeth M.; Makielski, Jonathan C.; Shi, Nian-Qing

    2008-01-01

    The cardiac sarcolemmal ATP-sensitive potassium channel (KATP) consists of a Kir6.2 pore and a SUR2 regulatory subunit, which is an ATP-binding cassette (ABC) transporter. KATP channels have been proposed to play protective roles during ischemic preconditioning. A SUR2 mutant mouse was previously generated by disrupting the first nucleotide-binding domain (NBD1), where a glibenclamide action site was located. In the mutant ventricular myocytes, a non-conventional glibenclamide-insensitive (10 μM), ATP-sensitive current (IKATPn) was detected in 33% of single-channel recordings with an average amplitude of 12.3±5.4 pA per patch, an IC50 to ATP inhibition at 10 μM, and a mean burst duration at 20.6±1.8 ms. Newly designed SUR2-isoform or variant-specific antibodies identified novel SUR2 short forms in the sizes of 28 and 68 kDa in addition to a 150-kDa long form in the sarcolemmal membrane of wild-type (WT) heart. We hypothesized that channels constituted by these short forms that lack NBD1, confer IKATPn. The absence of the long form in the mutant corresponded to loss of the conventional glibenclamide-sensitive KATP currents (IKATP) in isolated cardiomyocytes and vascular smooth muscle cells but the SUR2 short forms remained intact. Nested exonic RT-PCR in the mutant indicated that the short forms lacked NBD1 but contained NBD2. The SUR2 short forms co-immunoprecipitated with Kir6.1 or Kir6.2 suggesting that the short forms may function as hemi-transporters reported in other eukaryotic ABC transporter subgroups. Our results indicate that different KATP compositions may co-exist in cardiac sarcolemmal membrane. PMID:18001767

  3. Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2013-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335

  4. Metabolism Regulates the Spontaneous Firing of Substantia Nigra Pars Reticulata Neurons via KATP and Nonselective Cation Channels

    PubMed Central

    Lutas, Andrew; Birnbaumer, Lutz

    2014-01-01

    Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. PMID:25471572

  5. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  6. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase

    PubMed Central

    Shyng, S.-L.; Barbieri, A.; Gumusboga, A.; Cukras, C.; Pike, L.; Davis, J. N.; Stahl, P. D.; Nichols, C. G.

    2000-01-01

    ATP-sensitive potassium channels (KATP channels) regulate cell excitability in response to metabolic changes. KATP channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K+ channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), activate KATP channels and antagonize ATP inhibition of KATP channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP2 levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed KATP channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K1/2, the half maximal inhibitory concentration, ≈ 60 μM) than the sensitivities from control cells (K1/2 ≈ 10 μM). An inactive form of the PIP5K had little effect on the K1/2 of wild-type channels but increased the ATP-sensitivity of a mutant KATP channel that has an intrinsically lower ATP sensitivity (from K1/2 ≈ 450 μM to K1/2 ≈ 100 μM), suggesting a decrease in membrane PIP2 levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP2 and PI-3,4,5-P3 levels, is a significant determinant of the physiological nucleotide sensitivity of KATP channels. PMID:10639183

  7. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    PubMed

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  8. Metabolism regulates the spontaneous firing of substantia nigra pars reticulata neurons via KATP and nonselective cation channels.

    PubMed

    Lutas, Andrew; Birnbaumer, Lutz; Yellen, Gary

    2014-12-03

    Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. Copyright © 2014 the authors 0270-6474/14/3416336-12$15.00/0.

  9. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.

    PubMed

    Miki, Takashi; Minami, Kohtaro; Zhang, Li; Morita, Mizuo; Gonoi, Tohru; Shiuchi, Tetsuya; Minokoshi, Yasuhiko; Renaud, Jean-Marc; Seino, Susumu

    2002-12-01

    ATP-sensitive potassium (K(ATP)) channels are known to be critical in the control of both insulin and glucagon secretion, the major hormones in the maintenance of glucose homeostasis. The involvement of K(ATP) channels in glucose uptake in the target tissues of insulin, however, is not known. We show here that Kir6.2(-/-) mice lacking Kir6.2, the pore-forming subunit of these channels, have no K(ATP) channel activity in their skeletal muscles. A 2-deoxy-[(3)H]glucose uptake experiment in vivo showed that the basal and insulin-stimulated glucose uptake in skeletal muscles and adipose tissues of Kir6.2(-/-) mice is enhanced compared with that in wild-type (WT) mice. In addition, in vitro measurement of glucose uptake indicates that disruption of the channel increases the basal glucose uptake in Kir6.2(-/-) extensor digitorum longus and the insulin-stimulated glucose uptake in Kir6.2(-/-) soleus muscle. In contrast, glucose uptake in adipose tissue, measured in vitro, was similar in Kir6.2(-/-) and WT mice, suggesting that the increase in glucose uptake in Kir6.2(-/-) adipocytes is mediated by altered extracellular hormonal or neuronal signals altered by disruption of the K(ATP) channels.

  10. Nandrolone decanoate negatively reverses the beneficial effects of exercise on cardiac muscle via sarcolemmal, but not mitochondrial K(ATP) channel.

    PubMed

    Bayat, Gholamreza; Javan, Mohammad; Safari, Fatemeh; Khalili, Azadeh; Shokri, Saeed; Goudarzvand, Mahdi; Salimi, Mehdi; Hajizadeh, Sohrab

    2016-03-01

    ATP-sensitive potassium channels are supposed to have a substantial role in improvement of cardiac performance. This study was performed to evaluate whether nandrolone decanoate (ND) and (or) exercise training could affect the expression of cardiac K(ATP) channel subunits. Thirty-five male albino Wistar rats were randomly divided into 5 groups, including sedentary control (SC), sedentary vehicle (SV), sedentary ND (SND), exercise control (EC), and exercise and ND (E+ND). Exercise training was performed on a treadmill 5 times per week. ND was injected (10 mg/kg/week, i.m.) to the rats in the SND and E+ND groups. Following cardiac isolation, the expression of both sarcolemmal and mitochondrial subunits of K(ATP) channel was measured using Western blot method. The expression of sarcolemmal, but not mitochondrial, subunits of K(ATP) channel (Kir6.2 and SUR2) of EC group was significantly higher compared with SC group while ND administration (SND group) did not show any change in their expression. In the E+ND group, ND administration led to decrease of the over-expression of sarcolemmal Kir6.2 and SUR2 which was previously induced by exercise. There was no significant association between the mitochondrial expression of either Kir6.2 or SUR2 proteins and administration of ND or exercise. Supra-physiological dosage of ND negatively reverses the effects of exercise on the cardiac muscle expression of sarcolemmal, but not mitochondrial, K(ATP) channel subunits.

  11. Adiponectin may be a biomarker of early atherosclerosis of smokers and decreased by nicotine through KATP channel in adipocytes.

    PubMed

    Fan, Li Hong; He, Ying; Xu, Wei; Tian, Hong Yan; Zhou, Yan; Liang, Qi; Huang, Xin; Huo, Jian Hua; Li, Hong Bin; Bai, Ling; Ma, Ai Qun

    2015-01-01

    Plasm adiponectin is decreased in smokers. Adiponectin is emerging as a potential key molecular marker in atherosclerosis and other cardiovascular diseases. The aim of this study was to investigate the association between serum adiponectin levels and early atherosclerosis in smokers. Furthermore, the role of the KATP channel in the down-regulation of adiponectin by smoking was preliminarily explored. We consecutively enrolled 96 men, including 50 smokers with atherosclerosis and 46 nonsmokers. Serum adiponectin was detected with enzyme-linked immunosorbent assay - in all participants. Large (C1) and small (C2) artery elasticity indices and carotid intima-media thickness (IMT) were measured as evaluation indexes of early atherosclerosis in smokers. Finally, the effect of nicotine via ATP-dependent potassium (KATP) channels on adiponectin secretion by 3T3-L1 preadipocytes was examined in vitro. Adiponectin levels of smokers were statistically negatively correlated to IMT (r = -.440; P < 0.001) and positively correlated to C1 (r = 0.448; P < 0.001) as well as C2 (r = 0.426; P = 0.002). In 3-T3-L1 preadipocytes, nicotine treatment significantly decreased adiponectin levels (P = 0.003), whereas the adiponectin level was rescued by the inhibition of KATP channel (P < 0.001). Serum adiponectin level was an independent predictor of early atherosclerosis in smokers. Nicotine might decrease adiponectin in part through altering KATP channels in adipocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil.

    PubMed

    Shorter, Katie; Farjo, Nilofer P; Picksley, Steven M; Randall, Valerie A

    2008-06-01

    Hair disorders cause psychological distress but are generally poorly controlled; more effective treatments are required. Despite the long-standing use of minoxidil for balding, its mechanism is unclear; suggestions include action on vasculature or follicle cells. Similar drugs also stimulate hair, implicating ATP-sensitive potassium (K(ATP)) channels. To investigate whether K(ATP) channels are present in human follicles, we used organ culture, molecular biological, and immunohistological approaches. Minoxidil and tolbutamide, a K(ATP) channel blocker, opposed each other's effects on the growing phase (anagen) of scalp follicles cultured in media with and without insulin. Reverse transcriptase-polymerase chain reaction identified K(ATP) channel component gene expression including regulatory sulfonylurea receptors (SUR) SUR1 and SUR2B but not SUR2A and pore-forming subunits (Kir) Kir6.1 and Kir6.2. When hair bulb tissues were examined separately, epithelial matrix expressed SUR1 and Kir6.2, whereas both dermal papilla and sheath exhibited SUR2B and Kir6.1. Immunohistochemistry demonstrated similar protein distributions. Thus, human follicles respond biologically to K(ATP) channel regulators in culture and express genes and proteins for two K(ATP) channels, Kir6.2/SUR1 and Kir6.1/SUR2B; minoxidil only stimulates SUR2 channels. These findings indicate that human follicular dermal papillae contain K(ATP) channels that can respond to minoxidil and that tolbutamide may suppress hair growth clinically; novel drugs designed specifically for these channels could treat hair disorders.

  13. Upregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets.

    PubMed

    Yildirim, Vehpi; Vadrevu, Suryakiran; Thompson, Benjamin; Satin, Leslie S; Bertram, Richard

    2017-07-01

    Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly, when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and relatively normal blood glucose levels are maintained. Compensation must therefore occur to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study, we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP) because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets have an upregulated inward rectifying K+ current that helps to compensate for the loss of K(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels. We used mathematical modeling to determine whether an ionic current having the biophysical characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to those of wild-type islets. By experimentally testing a key model prediction we suggest that Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets from mice deficient in K(ATP) channels.

  14. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    PubMed

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system. © 2013 The British Pharmacological Society.

  15. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  16. ATP-sensitive potassium currents from channels formed by Kir6 and a modified cardiac mitochondrial SUR2 variant

    PubMed Central

    Aggarwal, Nitin T; Shi, Nian-Qing; Makielski, Jonathan C

    2013-01-01

    Cardiac ATP-sensitive potassium channels (KATP) are found in both the sarcoplasmic reticulum (sarcKATP) and the inner membrane of mitochondria (mitoKATP). SarcKATP are composed of a pore containing subunit Kir6.2 and a regulatory sulfonylurea receptor subunit (SUR2), but the composition of mitoKATP remains unclear. An unusual intra-exonic splice variant of SUR2 (SUR2A-55) was previously identified in mitochondria of mammalian heart and brain, and by analogy with sarcKATP we proposed SUR2A-55 as a candidate regulatory subunit of mitoKATP. Although SUR2A-55 lacks the first nucleotide binding domain (NBD) and 2 transmembrane domains (TMD), it has a hybrid TMD and retains the second NBD. It resembles a hemi-ABC transporter suggesting it could multimerize to function as a regulatory subunit. A putative mitochondrial targeting signal in the N-terminal domain of SUR2A-55 was removed by truncation and when co-expressed with Kir6.1 and Kir6.2 it targeted to the plasma membrane and yielded KATP currents. Single channel conductance, mean open time, and burst open time of SUR2A-55 based KATP was similar to the full-length SUR2A based KATP. However, the SUR2A-55 KATP were 70-fold less sensitive to block by ATP, and twice as resistant to intracellular Ca2+ inhibition compared with the SUR2A KATP, and were markedly insensitive to KATP drugs, pinacidil, diazoxide, and glybenclamide. These results suggest that the SUR2A-55 based channels would tend to be open under physiological conditions and in ischemia, and could account for cardiac and mitochondrial phenotypes protective for ischemia. PMID:24037327

  17. Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts.

    PubMed

    Dudek, Magdalena; Knutelska, Joanna; Bednarski, Marek; Nowiński, Leszek; Zygmunt, Małgorzata; Bilska-Wilkosz, Anna; Iciek, Małgorzata; Otto, Monika; Żytka, Iwona; Sapa, Jacek; Włodek, Lidia; Filipek, Barbara

    2014-06-01

    The cardiovascular effects of alpha lipoic acid were evaluated in isolated rat hearts exposed to ischemia-reperfusion injury in vitro. Alpha-lipoic acid raised the level of sulfane sulfur playing an important role in the release of hydrogen sulfide. H2S was shown to prevent the post-reperfusion arrhythmias and to protect the cardiomyocytes from death caused by hypoxia. The activation of potassium ATP-sensitive channels (K(ATP) channels) is one of the most important mechanisms of action of hydrogen sulfide in the cardiovascular system. The aim of this study was to investigate whether alpha lipoic acid can prevent the occurrence of post-reperfusion arrhythmias in vitro using a Langendorff model of ischemia-reperfusion in rats affecting the K(ATP) channels. Alpha lipoic acid significantly improved post-reperfusion cardiac function (reducing incidence of arrhythmias), especially in a dose of 10(-7)M. These cardiovascular effects of this compound on the measured parameters were reversed by glibenclamide, a selective K(ATP) blocker. Alpha lipoic acid increased the level of sulfane sulfur in the hearts. This may suggest that the positive effects caused by alpha lipoic acid in the cardiovascular system are not only related to its strong antioxidant activity, and the influence on the activity of such enzymes as aldehyde dehydrogenase 2, as previously suggested, but this compound can affect K(ATP) channels. It is possible that this indirect effect of alpha lipoic acid is connected with changes in the release of sulfane sulfur and hydrogen sulfide. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity.

    PubMed

    Lund, Trine M; Ploug, Kenneth B; Iversen, Anne; Jensen, Anders A; Jansen-Olesen, Inger

    2015-03-01

    Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β-hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β-hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β-hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release. Energy metabolism and neurotransmission are linked and involve ATP-sensitive potassium (KATP ) channels. However, it is still unclear how and to what degree available energy substrate affects this link. We investigated the effect of changing energy substrate from only glucose to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release. © 2014 International Society for Neurochemistry.

  19. Inhibition of KATP channel activity augments baroreflex-mediated vasoconstriction in exercising human skeletal muscle

    PubMed Central

    Keller, David Melvin; Ogoh, Shigehiko; Greene, Shane; Olivencia-Yurvati, A; Raven, Peter B

    2004-01-01

    In the present investigation we examined the role of ATP-sensitive potassium (KATP) channel activity in modulating carotid baroreflex (CBR)-induced vasoconstriction in the vasculature of the leg. The CBR control of mean arterial pressure (MAP) and leg vascular conductance (LVC) was determined in seven subjects (25 ± 1 years, mean ± s.e.m.) using the variable-pressure neck collar technique at rest and during one-legged knee extension exercise. The oral ingestion of glyburide (5 mg) did not change mean arterial pressure (MAP) at rest (86 versus 89 mmHg, P > 0.05), but did appear to increase MAP during exercise (87 versus 92 mmHg, P = 0.053). However, the CBR–MAP function curves were similar at rest before and after glyburide ingestion. The CBR-mediated decrease in LVC observed at rest (∼39%) was attenuated during exercise in the exercising leg (∼15%, P < 0.05). Oral glyburide ingestion partially restored CBR-mediated vasoconstriction in the exercising leg (∼40% restoration, P < 0.05) compared to control exercise. These findings indicate that KATP channel activity modulates sympathetic vasoconstriction in humans and may prove to be an important mechanism by which functional sympatholysis operates in humans during exercise. PMID:15345750

  20. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    PubMed

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  1. LPS from Escherichia coli protects against indomethacin-induced gastropathy in rats--role of ATP-sensitive potassium channels.

    PubMed

    Gomes, Antoniella S; Lima, Lívia M F; Santos, Camila L; Cunha, Fernando Q; Ribeiro, Ronaldo A; Souza, Marcellus H L P

    2006-10-10

    The effect of lipopolysaccharide (LPS) in gastric protection has not been elucidated, but ATP-sensitive potassium (K(ATP)) channels are known to be involved in gastric defense. We evaluated the effect of LPS administration on indomethacin-induced gastropathy, and the role of K(ATP) channels in this event. Rats received intravenous (i.v.) LPS administration. After 1/2, 6, 24 or 48 h, indomethacin was injected. 3H later, gastric damage and myeloperoxidase activity were determined. Another group received LPS and 5 h later, glibenclamide, diazoxide or glibenclamide plus diazoxide. After 1 h, the rats received indomethacin and 3 h later, gastric damage and myeloperoxidase activity were evaluated. LPS reduced dose dependently gastric damage and myeloperoxidase activity induced by indomethacin. Glibenclamide reversed this LPS effect on indomethacin-induced gastropathy. Glibenclamide plus diazoxide administration did not change this LPS effect. Thus LPS has a protective effect against indomethacin-induced gastropathy, probably through activation of K(ATP) channels.

  2. Inhibitory effect of protopine on K(ATP) channel subunits expressed in HEK-293 cells.

    PubMed

    Jiang, Bo; Cao, Kun; Wang, Rui

    2004-12-15

    Protopine is an isoquinoline alkaloid purified from Corydalis tubers and other families of medicinal plants. The purpose of the present study was to investigate the effects of protopine on K(ATP) channels and big conductance (BKCa) channels. Protopine concentration-dependently inhibited K(ATP) channel currents in human embryonic kidney cells (HEK-293) which were cotransfected with Kir6.1 and sulfonylurea receptor 1 (SUR1) subunits, but not that with Kir6.1 cDNA transfection alone. At 25 muM, protopine reversibly decreased Kir6.1/SUR1 currents densities from -17.4+/-3 to -13.2+/-2.4 pA/pF at -60 mV (n=5, P<0.05). The heterologously expressed mSlo-encoded BK(Ca) channel currents in HEK-293 cells were not affected by protopine (25 muM), although iberiotoxin (100 nM) significantly inhibited the expressed BK(Ca) currents (n=5, P<0.05). In summary, protopine selectively inhibited K(ATP) channels by targeting on SUR1 subunit. This discovery may help design specific agents to selectively modulate the function of Kir6.1/SUR1 channel complex and facilitate the understanding of the structure-function relationship of specific subtype of K(ATP) channels.

  3. Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure.

    PubMed

    Traverse, Jay H; Chen, YingJie; Hou, MingXiao; Li, Yunfang; Bache, Robert J

    2007-06-08

    K(+)(ATP) channels are important metabolic regulators of coronary blood flow (CBF) that are activated in the setting of reduced levels of ATP or perfusion pressure. In the normal heart, blockade of K(+)(ATP) channels results in a approximately 20% reduction in resting CBF but does not impair the increase in CBF that occurs during exercise. In contrast, adenosine receptor blockade fails to alter CBF or myocardial oxygen consumption (MVO(2)) in the normal heart but contributes to the increase in CBF during exercise when vascular K(+)(ATP) channels are blocked. Congestive heart failure (CHF) is associated with a decrease in CBF that is matched to a decrease in MVO(2) suggesting downregulation of myocardial energy utilization. Because myocardial ATP levels and coronary perfusion pressure are reduced in CHF, this study was undertaken to examine the role of K(+)(ATP) channels and adenosine in dogs with pacing-induced CHF. Myocardial blood flow (MBF) and MVO(2) were measured during rest and treadmill exercise before and after K(+)(ATP) channel blockade with glibenclamide (50 microg/kg/min ic) or adenosine receptor blockade with 8-phenyltheophylline (8-PT; 5 mg/kg iv). Inhibition of K(+)(ATP) channels resulted in a decrease in CBF and MVO(2) at rest and during exercise without a change in the relationship between CBF and MVO(2). In contrast, adenosine receptor blockade caused a significant increase in CBF that occurred secondary to an increase of MVO(2). These findings demonstrate that coronary K(+)(ATP) channel activity contribute to the regulation of resting MBF in CHF, and that endogenous adenosine may act to inhibit MVO(2) in the failing heart.

  4. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    PubMed Central

    Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu; Heldsinger, Andrea; Song, Il; Zhou, Shi-Yi; Owyang, Chung

    2015-01-01

    Abstract Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Key points Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological

  5. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth

    PubMed Central

    Jackson, William F.

    2017-01-01

    Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression and function of large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. PMID:28212804

  6. Preconditioning by isoflurane elicits mitochondrial protective mechanisms independent of sarcolemmal KATP channel in mouse cardiomyocytes

    PubMed Central

    Muravyeva, Maria; Sedlic, Filip; Dolan, Nicholas; Bosnjak, Zeljko J; Stadnicka, Anna

    2013-01-01

    Cardiac mitochondria and the sarcolemmal (sarc)KATP channels contribute to cardioprotective signaling of anesthetic-induced preconditioning (APC). Changes in mitochondrial bioenergetics influence the sarcKATP channel function, but whether this channel has impacts on mitochondria is uncertain. We used the mouse model with deleted pore-forming Kir6.2 subunit of sarcKATP channel (Kir6.2 KO) to investigate whether the functional sarcKATP channels are necessary for isoflurane activation of mitochondrial protective mechanisms. Ventricular cardiomyocytes were isolated from C57Bl6 wild type (WT) and Kir6.2 KO mouse hearts. Flavoprotein autofluorescence, mitochondrial ROS production and mitochondrial membrane potential were monitored by laser-scanning confocal microscopy in intact cardiomyocytes. Cell survival was assessed using H2O2-induced stress. Isoflurane (0.5 mM) increased flavoprotein fluorescence to 180±14% and 190±15% and ROS production to 118±2% and 124±6% of baseline in WT and Kir6.2 KO myocytes, respectively. TMRE fluorescence decreased to 84±6% in WT and to 86±4% in Kir6.2 KO myocytes. This effect was abolished by 5HD. Pretreatment with isoflurane decreased the stress-induced cell death from 31±1% to 21±1% in WT and from 44±2% to 35±2% in Kir6.2 KO myocytes. In conclusion, Kir6.2 deletion increases sensitivity of intact cardiomyocytes t o oxidative stress, but does not alter the isoflurane-elicited protective mitochondrial mechanisms, suggesting independent roles for cardiac mitochondria and sarcKATP channels in APC by isoflurane. PMID:23318991

  7. K(ATP) channel blocker HMR 1883 reduces monophasic action potential shortening during coronary ischemia in anesthetised pigs.

    PubMed

    Wirth, K J; Uhde, J; Rosenstein, B; Englert, H C; Gögelein, H; Schölkens, B A; Busch, A E

    2000-02-01

    ATP-sensitive potassium channels (KATP) open during myocardial ischemia. The ensuing repolarising potassium efflux shortens the action potential. Accumulation of extracellular potassium is able to partially depolarise the membrane, reducing the upstroke velocity of the action potential and thereby impairing impulse conduction. Both mechanisms are believed to be involved in the development of reentrant arrhythmias during cardiac ischemia. The sulfonylthiourea HMR 1883 (1-[[5-[2-(5-chloro-O-anisamido)ethyl]-methoxyphenyl]sulfonyl]-3-m ethylthiourea) was designed as a cardioselective KATP channel blocker for the prevention of arrhythmic sudden death in patients with ischemic heart disease. The aim of this study was to show that this compound, which has already shown antifibrillatory efficacy in dogs and rats, is able to inhibit ischemic changes of the action potential induced by coronary artery occlusion in anesthetised pigs. Action potentials were taken in situ with the technique of monophasic action potential (MAP) recording. In a control group (n=7), three consecutive occlusions of a small branch of the left circumflex coronary artery resulted in reproducible reductions in MAP duration and a decrease in upstroke velocity. In a separate group (n=7), HMR 1883 (3 mg/kg i.v.) significantly (P<0.05) reduced the ischemia-induced shortening of the MAP: during the first and second control occlusion of the coronary artery in the HMR 1883-group, MAP50 duration shortened from 218.5 +/- 3.0 ms to 166.7 +/- 3.3 ms and from 219.7 +/- 4.5 ms to 164.9 +/- 1.8 ms, respectively. After HMR 1883, during the third occlusion, MAP duration decreased from 226.9 +/- 3.6 ms to 205.3 +/- 4.3 ms only corresponding to 59% inhibition. HMR 1883 also improved the upstroke velocity of the MAP, which was depressed by ischemia: in the two preceding control occlusions ischemia prolonged the time to peak of the MAP, an index for upstroke velocity, from 10.83 +/- 0.43 ms to 39.42 +/- 1.60 ms and from

  8. Involvement of ATP-sensitive potassium channels and the opioid system in the anticonvulsive effect of zolpidem in mice.

    PubMed

    Sheikhi, Mehdi; Shirzadian, Armin; Dehdashtian, Amir; Amiri, Shayan; Ostadhadi, Sattar; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2016-09-01

    Zolpidem is a hypnotic medication that mainly exerts its function through activating γ-aminobutyric acid (GABA)A receptors. There is some evidence that zolpidem may have anticonvulsive effects. However, the mechanisms underlying this effect have not been elucidated yet. In the present study, we used the pentylentetrazole (PTZ)-induced generalized seizure model in mice to investigate whether zolpidem can affect seizure threshold. We also further evaluated the roles of ATP-sensitive potassium (KATP) channels as well as μ-opioid receptors in the effects of zolpidem on seizure threshold. Our data showed that zolpidem in a dose-dependent manner increased the PTZ-induced seizure threshold. The noneffective (i.e., did not significantly alter the PTZ-induced seizure threshold by itself) doses of KATP channel blocker (glibenclamide) and nonselective opioid receptor antagonist (naloxone) were able to inhibit the anticonvulsive effect of zolpidem. Additionally, noneffective doses of either KATP channel opener (cromakalim) or nonselective μ-opioid receptor agonist (morphine) in combination with a noneffective dose of zolpidem exerted a significant anticonvulsive effect on PTZ-induced seizures in mice. A combination of noneffective doses of naloxone and glibenclamide, which separately did not affect zolpidem effect on seizure threshold, inhibited the anticonvulsive effects of zolpidem. These results suggest a role for KATP channels and the opioid system, alone or in combination, in the anticonvulsive effects of zolpidem. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Functional K(ATP) channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration.

    PubMed

    Ishizaki, Eisuke; Fukumoto, Masanori; Puro, Donald G

    2009-05-15

    The essential task of the circulatory system is to match blood flow to local metabolic demand. However, much remains to be learned about this process. To better understand how local perfusion is regulated, we focused on the functional organization of the retinal microvasculature, which is particularly well adapted for the local control of perfusion. Here, we assessed the distribution and regulation of functional K(ATP) channels whose activation mediates the hyperpolarization induced by adenosine. Using microvascular complexes freshly isolated from the rat retina, we found a topographical heterogeneity in the distribution of functional K(ATP) channels; capillaries generate most of the K(ATP) current. The initiation of K(ATP)-induced responses in the capillaries supports the concept that the regulation of retinal perfusion is highly decentralized. Additional study revealed that microvascular K(ATP) channels are redox sensitive, with oxidants increasing their activity. Furthermore, the oxidant-mediated activation of these channels is driven by the polyamine spermine, whose catabolism produces oxidants. In addition, our observation that spermine-dependent oxidation occurs predominately in the capillaries accounts for why they generate most of the K(ATP) current detected in retinal microvascular complexes. Here, we also analysed retinal microvessels of streptozotocin-injected rats. We found that soon after the onset of diabetes, an increase in spermine-dependent oxidation at proximal microvascular sites boosts their K(ATP) current and thereby virtually eliminates the topographical heterogeneity of functional K(ATP) channels. We conclude that spermine-dependent oxidation is a previously unrecognized mechanism by which this polyamine modulates ion channels; in addition to a physiological role, spermine-dependent oxidation may also contribute to microvascular dysfunction in the diabetic retina.

  10. Isosteviol Sensitizes sarcKATP Channels towards Pinacidil and Potentiates Mitochondrial Uncoupling of Diazoxide in Guinea Pig Ventricular Myocytes.

    PubMed

    Fan, Zhuo; Wen, Ting; Chen, Yaoxu; Huang, Lijie; Lin, Wei; Yin, Chunxia; Tan, Wen

    2016-01-01

    KATP channel is an important mediator or factor in physiological and pathological metabolic pathway. Activation of KATP channel has been identified to be a critical step in the cardioprotective mechanism against IR injury. On the other hand, desensitization of the channel to its opener or the metabolic ligand ATP in pathological conditions, like cardiac hypertrophy, would decrease the adaption of myocardium to metabolic stress and is a disadvantage for drug therapy. Isosteviol, obtained by acid hydrolysis of stevioside, has been demonstrated to play a cardioprotective role against diseases of cardiovascular system, like anti-IR injury, antihypertension, antihyperglycemia, and so forth. The present study investigated the effect of isosteviol (STV) on sarcKATP channel current induced by pinacidil and mitochondrial flavoprotein oxidation induced by diazoxide. Our results showed that preincubating cells with STV not only increased the current amplitude and activating rate of sarcKATP channels induced by pinacidil but also potentiated diazoxide-elicited oxidation of flavoprotein in mitochondria.

  11. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria.

    PubMed

    Brustovetsky, Tatiana; Shalbuyeva, Natalia; Brustovetsky, Nickolay

    2005-10-01

    Pharmacological modulation of the mitochondrial ATP-sensitive K+ channel (mitoKATP) sensitive to diazoxide and 5-hydroxydecanoate (5-HD) represents an attractive strategy to protect cells against ischaemia/reperfusion- and stroke-related injury. To re-evaluate a functional role for the mitoKATP in brain, we used Percoll-gradient-purified brain nonsynaptosomal mitochondria in a light absorbance assay, in radioisotope measurements of matrix volume, and in measurements of respiration, membrane potential (DeltaPsi) and depolarization-induced K+ efflux. The changes in mitochondrial morphology were evaluated by transmission electron microscopy (TEM). Polyclonal antibodies raised against certain fragments of known sulphonylurea receptor subunits, SUR1 and SUR2, and against different epitopes of K+ inward rectifier subunits Kir 6.1 and Kir 6.2 of the ATP-sensitive K+ channel of the plasma membrane (cellKATP), were employed to detect similar subunits in brain mitochondria. A variety of plausible blockers (ATP, 5-hydroxydecanoate, glibenclamide, tetraphenylphosphonium cation) and openers (diazoxide, pinacidil, chromakalim, minoxidil, testosterone) of the putative mitoKATP were applied to show the role of the channel in regulating matrix volume, respiration, and DeltaPsi and K+ fluxes across the inner mitochondrial membrane. None of the pharmacological agents applied to brain mitochondria in the various assays pinpointed processes that could be unequivocally associated with mitoKATP activity. In addition, immunoblotting analysis did not provide explicit evidence for the presence of the mitoKATP, similar to the cellKATP, in brain mitochondria. On the other hand, the depolarization-evoked release of K+ suppressed by ATP could be re-activated by carboxyatractyloside, an inhibitor of the adenine nucleotide translocase (ANT). Moreover, bongkrekic acid, another inhibitor of the ANT, inhibited K+ efflux similarly to ATP. These observations implicate the ANT in ATP-sensitive K

  12. Subclinical Doses of ATP-Sensitive Potassium Channel Modulators Prevent Alterations in Memory and Synaptic Plasticity Induced by Amyloid-β.

    PubMed

    Salgado-Puga, Karla; Rodríguez-Colorado, Javier; Prado-Alcalá, Roberto A; Peña-Ortega, Fernando

    2017-01-01

    In addition to coupling cell metabolism and excitability, ATP-sensitive potassium channels (KATP) are involved in neural function and plasticity. Moreover, alterations in KATP activity and expression have been observed in Alzheimer's disease (AD) and during amyloid-β (Aβ)-induced pathology. Thus, we tested whether KATP modulators can influence Aβ-induced deleterious effects on memory, hippocampal network function, and plasticity. We found that treating animals with subclinical doses (those that did not change glycemia) of a KATP blocker (Tolbutamide) or a KATP opener (Diazoxide) differentially restrained Aβ-induced memory deficit, hippocampal network activity inhibition, and long-term synaptic plasticity unbalance (i.e., inhibition of LTP and promotion of LTD). We found that the protective effect of Tolbutamide against Aβ-induced memory deficit was strong and correlated with the reestablishment of synaptic plasticity balance, whereas Diazoxide treatment produced a mild protection against Aβ-induced memory deficit, which was not related to a complete reestablishment of synaptic plasticity balance. Interestingly, treatment with both KATP modulators renders the hippocampus resistant to Aβ-induced inhibition of hippocampal network activity. These findings indicate that KATP are involved in Aβ-induced pathology and they heighten the potential role of KATP modulation as a plausible therapeutic strategy against AD.

  13. Diadenosine tetraphosphate (AP4A) mimics cardioprotective effect of ischemic preconditioning in the rat heart: contribution of KATP channel and PKC.

    PubMed

    Ahmet, I; Sawa, Y; Nishimura, M; Ichikawa, H; Matsuda, H

    2000-06-01

    Diadenosine tetraphosphate (AP4A) administration is reported to mimic the effect of ischemic preconditioning (PC) via purine 2y receptors (P2yR) and adenosine receptors. This study was designed to test the contributions of the ATP-sensitive potassium channel (KATP channel) and protein kinase C (PKC), two of the main regulator in PC, to the effect of AP4A. Isolated buffer-perfused rat hearts were subjected to 20 min of global ischemia (37 degrees C) and 20 min of reperfusion. Three cycles of 1-min ischemia and 3-min reperfusion induced PC. Chemicals were administrated for 2 min before 20 min of ischemia. AP4A (10 microM) administration was as effective as PC in improving the recovery of post-ischemic contractile function and reducing creatine kinase leakage after reperfusion, whereas adenosine (10 and 100 microM) have not effect. AP4A had not effect on reperfusion-induced arrhythmia, whereas PC significantly prevented it. These effects of AP4A and PC were reversed by co-administration of glibenclimade (KATP channel blocker, 100 microM) and GF109203X (PKC inhibitor, 10 microM); the effects of AP4A but not PC were reversed by co-administration of reactive blue (P2yR antagonist, 13 nM). AP4A appears to activate the KATP channel and PKC via P2yR mimic the effects of PC in part. The role of P2yR indicated that trigger mechanism of the effect of PC and AP4A administration might differ in rat hearts.

  14. Three C-terminal residues from the sulphonylurea receptor contribute to the functional coupling between the KATP channel subunits SUR2A and Kir6.2

    PubMed Central

    Dupuis, Julien P; Revilloud, Jean; Moreau, Christophe J; Vivaudou, Michel

    2008-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are metabolic sensors formed by the association of the inward rectifier potassium channel Kir6.2 and the sulphonylurea receptor SUR2A. SUR2A adjusts channel gating as a function of intracellular ATP and ADP and is the target of pharmaceutical openers and blockers which, respectively, up- and down-regulate Kir6.2. In an effort to understand how effector binding to SUR2A translates into Kir6.2 gating modulation, we examined the role of a 65-residue SUR2A fragment linking transmembrane domain TMD2 and nucleotide-binding domain NBD2 that has been shown to interact with Kir6.2. This fragment of SUR2A was replaced by the equivalent residues of its close homologue, the multidrug resistance protein MRP1. The chimeric construct was expressed in Xenopus oocytes and characterized using the patch-clamp technique. We found that activation by MgADP and synthetic openers was greatly attenuated although apparent affinities were unchanged. Further chimeragenetic and mutagenetic studies showed that mutation of three residues, E1305, I1310 and L1313 (rat numbering), was sufficient to confer this defective phenotype. The same mutations had no effects on channel block by the sulphonylurea glibenclamide or by ATP, suggesting a role for these residues in activatory – but not inhibitory – transduction processes. These results indicate that, within the KATP channel complex, the proximal C-terminal of SUR2A is a critical link between ligand binding to SUR2A and Kir6.2 up-regulation. PMID:18450778

  15. BAD-Dependent Regulation of Fuel Metabolism and KATP Channel Activity Confers Resistance to Epileptic Seizures

    PubMed Central

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K.; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R.; Lutas, Andrew; Yellen, Gary; Danial, Nika N.

    2012-01-01

    Summary Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phospho-regulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive KATP channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the KATP channel, implicating the BAD-KATP axis in metabolic control of neuronal excitation and seizure responses. PMID:22632729

  16. Sarcolemmal cardiac K(ATP) channels as a target for the cardioprotective effects of the fluorine-containing pinacidil analogue, flocalin.

    PubMed

    Voitychuk, Oleg I; Strutynskyi, Ruslan B; Yagupolskii, Lev M; Tinker, Andrew; Moibenko, Olexiy O; Shuba, Yaroslav M

    2011-02-01

    A class of drugs known as K(ATP) -channel openers induce cardioprotection. This study examined the effects of the novel K(ATP) -channel opener, the fluorine-containing pinacidil derivative, flocalin, on cardiac-specific K(ATP) -channels, excitability of native cardiac myocytes and on the ischaemic heart. The action of flocalin was investigated on: (i) membrane currents through cardiac-specific K(ATP) -channels (I(KATP) ) formed by K(IR) 6.2/SUR2A heterologously expressed in HEK-293 cells (HEK-293(₆.₂/₂A) ); (ii) excitability and intracellular Ca²(+) ([Ca²(+) ](i) ) transients of cultured rat neonatal cardiac myocytes; and (iii) functional and ultrastructural characteristics of isolated guinea-pig hearts subjected to ischaemia-reperfusion. Flocalin concentration-dependently activated a glibenclamide-sensitive I(KATP) in HEK-293(₆.₂/₂A) cells with an EC₅₀= 8.1 ± 0.4 µM. In cardiac myocytes, flocalin (5 µM) hyperpolarized resting potential by 3-5 mV, markedly shortened action potential duration, reduced the amplitude of [Ca²(+) ](i) transients by 2-3-fold and suppressed contraction. The magnitude and extent of reversibility of these effects depended on the type of cardiac myocytes. In isolated hearts, perfusion with 5 µmol·L⁻¹ flocalin, before inducing ischaemia, facilitated restoration of contraction during reperfusion, decreased the number of extrasystoles, prevented the appearance of coronary vasoconstriction and reduced damage to the cardiac tissue at the ultrastructural level (state of myofibrils, membrane integrity, mitochondrial cristae structure). Flocalin induced potent cardioprotection by activating cardiac-type K(ATP) -channels with all the benefits of the presence of fluorine group in the drug structure: higher lipophilicity, decreased toxicity, resistance to oxidation and thermal degradation, decreased metabolism in the organism and prolonged therapeutic action. © 2011 The Authors. British Journal of Pharmacology © 2011 The

  17. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    PubMed

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  18. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    PubMed

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  19. Localization and function of ATP-sensitive potassium channels in human skeletal muscle.

    PubMed

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva; Bangsbo, Jens; Juel, Carsten

    2003-02-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel inhibitor glibenclamide reduced (P < 0.05) interstitial K+ at rest from approximately 4.5 to 4.0 mM, whereas the concentration in the control leg remained constant. Glibenclamide had no effect on the interstitial K+ accumulation during knee-extensor exercise at a power output of 60 W. In contrast to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+.

  20. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  1. The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman

    PubMed Central

    Akasaka, Takeshi; Klinedinst, Susan; Ocorr, Karen; Bustamante, Erika L.; Kim, Seung K.; Bodmer, Rolf

    2006-01-01

    The homeobox transcription factor Tinman plays an important role in the initiation of heart development. Later functions of Tinman, including the target genes involved in cardiac physiology, are less well studied. We focused on the dSUR gene, which encodes an ATP-binding cassette transmembrane protein that is expressed in the heart. Mammalian SUR genes are associated with KATP (ATP-sensitive potassium) channels, which are involved in metabolic homeostasis. We provide experimental evidence that Tinman directly regulates dSUR expression in the developing heart. We identified a cis-regulatory element in the first intron of dSUR, which contains Tinman consensus binding sites and is sufficient for faithful dSUR expression in the fly’s myocardium. Site-directed mutagenesis of this element shows that these Tinman sites are critical to dSUR expression, and further genetic manipulations suggest that the GATA transcription factor Pannier is synergistically involved in cardiac-restricted dSUR expression in vivo. Physiological analysis of dSUR knock-down flies supports the idea that dSUR plays a protective role against hypoxic stress and pacing-induced heart failure. Because dSUR expression dramatically decreases with age, it is likely to be a factor involved in the cardiac aging phenotype of Drosophila. dSUR provides a model for addressing how embryonic regulators of myocardial cell commitment can contribute to the establishment and maintenance of cardiac performance. PMID:16882722

  2. Glucose elicits cephalic-phase insulin release in mice by activating KATP channels in taste cells

    PubMed Central

    Frim, Yonina G.; Hochman, Ayelet; Lubitz, Gabrielle S.; Basile, Anthony J.; Sclafani, Anthony

    2017-01-01

    The taste of sugar elicits cephalic-phase insulin release (CPIR), which limits the rise in blood glucose associated with meals. Little is known, however, about the gustatory mechanisms that trigger CPIR. We asked whether oral stimulation with any of the following taste stimuli elicited CPIR in mice: glucose, sucrose, maltose, fructose, Polycose, saccharin, sucralose, AceK, SC45647, or a nonmetabolizable sugar analog. The only taste stimuli that elicited CPIR were glucose and the glucose-containing saccharides (sucrose, maltose, Polycose). When we mixed an α-glucosidase inhibitor (acarbose) with the latter three saccharides, the mice no longer exhibited CPIR. This revealed that the carbohydrates were hydrolyzed in the mouth, and that the liberated glucose triggered CPIR. We also found that increasing the intensity or duration of oral glucose stimulation caused a corresponding increase in CPIR magnitude. To identify the components of the glucose-specific taste-signaling pathway, we examined the necessity of Calhm1, P2X2+P2X3, SGLT1, and Sur1. Among these proteins, only Sur1 was necessary for CPIR. Sur1 was not necessary, however, for taste-mediated attraction to sugars. Given that Sur1 is a subunit of the ATP-sensitive K+ channel (KATP) channel and that this channel functions as a part of a glucose-sensing pathway in pancreatic β-cells, we asked whether the KATP channel serves an analogous role in taste cells. We discovered that oral stimulation with drugs known to increase (glyburide) or decrease (diazoxide) KATP signaling produced corresponding changes in glucose-stimulated CPIR. We propose that the KATP channel is part of a novel signaling pathway in taste cells that mediates glucose-induced CPIR. PMID:28148491

  3. Binding and effects of KATP channel openers in the vascular smooth muscle cell line, A10

    PubMed Central

    Russ, Ulrich; Metzger, Friedrich; Kickenweiz, Elisabeth; Hambrock, Annette; Krippeit-Drews, Peter; Quast, Ulrich

    1997-01-01

    The ATP-sensitive K+ channel (KATP channel) in A10 cells, a cell line derived from rat thoracic aorta, was characterized by binding studies with the tritiated KATP channel opener, [3H]-P1075, and by electrophysiological techniques. Saturation binding experiments gave a KD value of 9.2±5.2 nM and a binding capacity (BMax) of 140±40 fmol mg−1 protein for [3H]-P1075 binding to A10 cells; from the BMax value a density of binding sites of 5–10 per μm2 plasmalemma was estimated. KATP channel modulators such as the openers P1075, pinacidil, levcromakalim and minoxidil sulphate and the blocker glibenclamide inhibited [3H]-P1075 binding. The extent of inhibition at saturation depended on the compound, levcromakalim inhibiting specific [3H]-P1075 binding by 85%, minoxidil sulphate and glibenclamide by 70%. The inhibition constants were similar to those determined in strips of rat aorta. Resting membrane potential, recorded with microelectrodes, was −51±1 mV. P1075 and levcromakalim produced a concentration-dependent hyperpolarization by up to −25 mV with EC50 values of 170±40 nM and 870±190 nM, respectively. The hyperpolarization induced by levcromakalim (3 μM) was completely reversed by glibenclamide with an IC50 value of 86±17 nM. Voltage clamp experiments were performed in the whole cell configuration under a physiological K+ gradient. Levcromakalim (10 μM) induced a current which reversed around −80 mV; the current-voltage relationship showed considerable outward rectification. Glibenclamide (3 μM) abolished the effect of levcromakalim. Analysis of the noise of the levcromakalim (10 μM)-induced current at −40 and −20 mV yielded estimates of the channel density, the single channel conductance and the probability of the channel to be open of 0.14 μm−2, 8.8 pS and 0.39, respectively. The experiments showed that A10 cells are endowed with functional KATP channels which resemble those in vascular tissue; hence, these

  4. Activation of ATP-sensitive potassium channels antagonize nociceptive behavior and hyperexcitability of DRG neurons from rats.

    PubMed

    Du, Xiaona; Wang, Chao; Zhang, Hailin

    2011-05-14

    Nociceptive responses to noxious stimuli are initiated at peripheral nociceptor terminals. Ion channels play a vital role in pain signal initiation and conduction. Activation of KATP channels has been implicated in mediating the analgesic effects of agents such as morphine. However, systematic studies regarding the effects of KATP activators on nociception and neuronal excitability are scarce. In this study, we describe the antagonistic effects of KATP activators pinacidil and diazoxide on nocifensive behavior induced by bradykinin (BK), thermo and mechanical stimuli, and the bradykinin-induced hyperexcitability of DRG neurons. We also found that KATP activators can moderately activate KATP in DRG neurons. Because the effects of KATP activators can be reversed by the KATP blocker glyburide, direct activation of KATP is most likely the underlying mechanism. This systematic study clearly demonstrates that activation of KATP could have significant modulatory effects on the excitability of sensory neurons and thus on sensory behaviors, such as nociception. KATP activators can be evaluated clinically for the treatment of pain symptoms.

  5. The cardioprotective effect of uridine and uridine-5'-monophosphate: the role of the mitochondrial ATP-dependent potassium channel.

    PubMed

    Krylova, Irina B; Kachaeva, Evgeniya V; Rodionova, Olga M; Negoda, Alexander E; Evdokimova, Nataliya R; Balina, Maria I; Sapronov, Nikolay S; Mironova, Galina D

    2006-07-01

    The activity of mitochondrial ATP-dependent potassium channel (mitoKATP) of rat heart and liver mitochondria was shown to decrease during aging. This partially explains the increase of risk of ischemia at a mature age since mitoKATP activation provides cardioprotection. We demonstrated that uridine-5'-diphosphate (UDP) possesses the property to activate mitoKATP. At a concentration of 30 microM, it reactivated mitoKATP in mitochondria, and 5-hydroxydecanoate (5-HD) eliminated this effect. In experimental animals, UDP precursors uridine and uridine-5'-monophosphate (UMP) (both 30 mg/kg, administered intravenously 5 min before coronary occlusion) decreased the myocardium ischemic alteration index (1.9 and 3.5 times, respectively) and the T-wave amplitude within 60 min after occlusion. Both effects were inhibited by Glibenclamide (Glib) and 5-HD. UMP and uridine decreased the number of premature ventricular beats 5.6 and 1.9 times and the duration of ventricular tachycardia 9.4 and 4.1 times, respectively. Glib and 5-HD inhibited the anti-arrhythmic parameters, 5-HD being less effective. Uridine and UMP decreased the duration of fibrillation 10.8 and 3.6 times, respectively, and this effect was not abolished by Glib and 5-HD. Thus, uridine and UMP, which are the precursors of UDP in the cell, possess cardioprotective properties. MitoKATP prevents mainly ischemic injuries and partially rhythm disorders.

  6. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels.

    PubMed

    Ma, Weiyuan; Berg, Jim; Yellen, Gary

    2007-04-04

    A low-carbohydrate ketogenic diet remains one of the most effective (but mysterious) treatments for severe pharmacoresistant epilepsy. We have tested for an acute effect of physiological ketone bodies on neuronal firing rates and excitability, to discover possible therapeutic mechanisms of the ketogenic diet. Physiological concentrations of ketone bodies (beta-hydroxybutyrate or acetoacetate) reduced the spontaneous firing rate of neurons in slices from rat or mouse substantia nigra pars reticulata. This region is thought to act as a "seizure gate," controlling seizure generalization. Consistent with an anticonvulsant role, the ketone body effect is larger for cells that fire more rapidly. The effect of ketone bodies was abolished by eliminating the metabolically sensitive K(ATP) channels pharmacologically or by gene knock-out. We propose that ketone bodies or glycolytic restriction treat epilepsy by augmenting a natural activity-limiting function served by K(ATP) channels in neurons.

  7. Pretreatment with xenon protected immature rabbit heart from ischaemia/reperfusion injury by opening of the mitoKATP channel.

    PubMed

    Li, Qian; Lian, Chunwei; Zhou, Ronghua; Li, Tao; Xiang, Xujin; Liu, Bin

    2013-04-01

    The noble gas anaesthetic, xenon has previously been shown to protect the adult myocardium from ischaemia/reperfusion (I/R) injury, however its effect on immature myocardium is unclear. The aim of this study was to investigate the effect of xenon on the isolated immature heart. Isolated, immature (2-3weeks old) New Zealand rabbit hearts were perfused with Krebs-Henseleit buffer via Langendorff-mode. After 20min of baseline equilibration, hearts were pretreated with 75% xenon, 75% xenon+100μM diazoxide, or 75% xenon+100μM 5-hydroxydecanoate, and then subjected to 1h of global ischaemia and 3h of reperfusion. Pretreatment with 75% xenon significantly improved cardiac function (P<0.01 vs. the I/R group, respectively), limited myocardial infarct size (20.83±2.16%, P<0.01 vs. 35.82±2.14% of the I/R group), reduced cardiac enzyme release (CK-MB, 1.00±0.19IU/L, P<0.01 vs. 0.44±0.14IU/L of the I/R group; LDH, 6.15±1.06IU/L P<0.01 vs. 3.49±0.37IU/L of the I/R group) and decreased apoptosis (6.17±0.56%, P<0.01 vs. 11.31±0.93% of the I/R group). In addition, the mitochondrial structure changes caused by I/R injury were largely prevented by 75% xenon pretreatment (1.37±0.16, P<0.01 vs. 2.32±0.13 of the I/R group). The mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP) channel opener diazoxide did not influence the effect of xenon, but the specific mitoKATP channel blocker 5-hydroxydecanoate completely abolished this effect. Our study demonstrated that pretreatment with 75% xenon protected immature heart from I/R injury, and this protection was probably mediated by preservation of myocardial mitochondria and opening of mitoKATP channel. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  8. Possible role of opioids and KATP channels in neuroprotective effect of postconditioning in mice.

    PubMed

    Pateliya, Bharat Bhai; Singh, Nirmal; Jaggi, Amteshwar Singh

    2008-09-01

    The present study was designed to investigate the possible role of opioids and K(ATP) channels in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion (I/R) induced neuronal injury. Mice were subjected to global ischemia by bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h, to produce neuronal injury. Ischemic postconditioning was induced by three episodes of carotid artery occlusion and reperfusion of 10 s each, immediately after global ischemia. Morphine postconditioning was induced by administration of morphine (5 mg/kg i.v.), 5 min prior to reperfusion. Naloxone (5 mg/kg i.v.), opioid receptor antagonist, and glibenclamide (5 mg/kg i.v.), K(ATP) channel blocker were administered 10 min before global ischemia. Extent of cerebral injury was assessed by measuring cerebral infarct size using triphenyl tetrazolium chloride (TTC) staining. Short-term memory was evaluated using the elevated plus maze test, while degree of motor incoordination was evaluated using inclined beam-walking, rota-rod and lateral push tests. Bilateral carotid artery occlusion followed by reperfusion resulted in significant increase in infarct size, impairment in short-term memory and motor co-ordination. Ischemic/morphine postconditioning significantly attenuated I/R induced neuronal injury and behavioural alterations. Pretreatments with naloxone and glibenclamide attenuated the neuroprotective effects of ischemic/morphine postconditioning. It may be concluded that ischemic/morphine postconditioning protects I/R induced cerebral injury via activating opioid receptor and K(ATP) channel opening.

  9. Potassium channels in brain mitochondria.

    PubMed

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  10. Significance of KATP channels, L-type Ca2+ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles In vivo

    PubMed Central

    2013-01-01

    Background ATP-sensitive K+ channels (KATP channels), NO, prostaglandins, 20-HETE and L-type Ca2+ channels have all been suggested to be involved in oxygen sensing in skeletal muscle arterioles, but the role of the individual mechanisms remain controversial. We aimed to establish the importance of these mechanisms for oxygen sensing in arterioles in an in vivo model of metabolically active skeletal muscle. For this purpose we utilized the exteriorized cremaster muscle of anesthetized mice, in which the cremaster muscle was exposed to controlled perturbation of tissue PO2. Results Change from “high” oxygen tension (PO2 = 153.4 ± 3.4 mmHg) to “low” oxygen tension (PO2 = 13.8 ± 1.3 mmHg) dilated cremaster muscle arterioles from 11.0 ± 0.4 μm to 32.9 ± 0.9 μm (n = 28, P < 0.05). Glibenclamide (KATP channel blocker) caused maximal vasoconstriction, and abolished the dilation to low oxygen, whereas the KATP channel opener cromakalim caused maximal dilation and prevented the constriction to high oxygen. When adding cromakalim on top of glibenclamide or vice versa, the reactivity to oxygen was gradually restored. Inhibition of L-type Ca2+ channels using 3 μM nifedipine did not fully block basal tone in the arterioles, but rendered them unresponsive to changes in PO2. Inhibition of the CYP450-4A enzyme using DDMS blocked vasoconstriction to an increase in PO2, but had no effect on dilation to low PO2. Conclusions We conclude that: 1) L-type Ca2+ channels are central to oxygen sensing, 2) KATP channels are permissive for the arteriolar response to oxygen, but are not directly involved in the oxygen sensing mechanism and 3) CYP450-4A mediated 20-HETE production is involved in vasoconstriction to high PO2. PMID:23663730

  11. Potassium channels in articular chondrocytes

    PubMed Central

    Mobasheri, Ali; Lewis, Rebecca; Ferreira-Mendes, Alexandrina; Rufino, Ana; Dart, Caroline; Barrett-Jolley, Richard

    2012-01-01

    Chondrocytes are the resident cells of cartilage, which synthesize and maintain the extracellular matrix. The range of known potassium channels expressed by these unique cells is continually increasing. Since chondrocytes are non-excitable, and do not need to be repolarized following action potentials, the function of potassium channels in these cells has, until recently, remained completely unknown. However, recent advances in both traditional physiology and “omic” technologies have enhanced our knowledge and understanding of the chondrocyte channelome. A large number of potassium channels have been identified and a number of putative, but credible, functions have been proposed. Members of each of the potassium channel sub-families (calcium activated, inward rectifier, voltage-gated and tandem pore) have all been identified. Mechanotransduction, cell volume regulation, apoptosis and chondrogenesis all appear to involve potassium channels. Since evidence suggests that potassium channel gene transcription is altered in osteoarthritis, future studies are needed that investigate potassium channels as potential cellular biomarkers and therapeutic targets for treatment of degenerative joint conditions. PMID:23064164

  12. Sevoflurane postconditioning against cerebral ischemic neuronal injury is abolished in diet-induced obesity: role of brain mitochondrial KATP channels.

    PubMed

    Yang, Zecheng; Chen, Yunbo; Zhang, Yan; Jiang, Yi; Fang, Xuedong; Xu, Jingwei

    2014-03-01

    Obesity is associated with increased infarct volumes and adverse outcomes following ischemic stroke. However, its effect on anesthetic postconditioning‑induced neuroprotection has not been investigated. The present study examined the effect of sevoflurane postconditioning on focal ischemic brain injury in diet‑induced obesity. Sprague‑Dawley rats were fed a high‑fat diet (HF; 45% kcal as fat) for 12 weeks to develop obesity syndrome. Rats fed a low‑fat diet (LF; 10% kcal as fat) served as controls. The HF or LF‑fed rats were subjected to focal cerebral ischemia for 60 min, followed by 24 h of reperfusion. Postconditioning was performed by exposure to sevoflurane for 15 min immediately at the onset of reperfusion. The involvement of the mitochondrial KATP (mitoKATP) channel was analyzed by the administration of a selective inhibitor of 5‑hydroxydecanoate (5‑HD) prior to sevoflurane postconditioning or by administration of diazoxide (DZX), a mitoKATP channel opener, instead of sevoflurane. The cerebral infarct volume, neurological score and motor coordination were evaluated 24 h after reperfusion. The HF‑fed rats had larger infarct volumes, and lower neurological scores than the LF‑fed rats and also failed to respond to neuroprotection by sevoflurane or DZX. By contrast, sevoflurane and DZX reduced the infarct volumes and improved the neurological scores and motor coordination in the LF‑fed rats. Pretreatment with 5‑HD inhibited sevoflurane‑induced neuroprotection in the LF‑fed rats, whereas it had no effect in the HF‑fed rats. Molecular studies demonstrated that the expression of Kir6.2, a significant mitoKATP channel component, was reduced in the brains of the HF‑fed rats compared with the LF‑fed rats. The results of this study indicate that diet‑induced obesity eliminates the ability of anesthetic sevoflurane postconditioning to protect the brain against cerebral ischemic neuronal injury, most likely due to an impaired brain

  13. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels.

    PubMed

    Phillis, John W

    2004-01-01

    A considerable volume of evidence implicates the purine adenosine in the regulation of cerebral blood flow during states such as hypotension, neural activation, hypoxia/ischemia, and hypercapnia/acidosis. The aim of this review is to describe developments in our understanding of the roles that adenosine and the adenine nucleotides play in cerebral blood flow control, with some comparisons to coronary blood flow. The first part of the review focuses on the categorization of receptors for adenosine (A1, A2A, A2B, and A3) and the adenine nucleotides, ATP and ADP (P2X and P2Y). Frequently used agonists and antagonists for these different receptors are mentioned. A description follows of the distribution of these different receptors in cerebral arterioles. The second part of the review initially deals with the literature on the release of adenosine and adenine nucleotides into the extracellular space of the brain, describing the various techniques used to make these measurements and assessing the pitfalls associated with their use. This is followed by a discussion of the factors affecting purine release, which include cell swelling and acidosis. The third section evaluates the role of smooth muscle potassium channels in controlling arteriolar diameter. There is evidence for an important role of KATP and KCa channels, but less is known about the contributions of voltage-dependent (KV) and inwardly rectifying (KIR) channels. This section ends with a discussion on the reported inhibitory effect of nitric oxide synthase inhibitors on the KATP channel and the consequences of such an action for the interpretation of much of the published work on nitric oxide as a regulator of cerebral blood flow. The fourth section evaluates the data supporting a role of adenosine and ATP in the regulation of cerebral blood flow during autoregulation, hypotension, neural activity, hypoxia/ ischemia, and hypercapnia. Studies using antagonists and potentiators of adenosine's actions have led to

  14. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures.

    PubMed

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R; Lutas, Andrew; Yellen, Gary; Danial, Nika N

    2012-05-24

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].

    PubMed

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2004-01-01

    We have examined the influence of ATP-sensitive potassium (KATP) channel opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on the changes of energy metabolism in the liver of rats under the stress conditions. The rats were divided in two groups with high and low resistance to hypoxia. The stress was modeled by placing the rats in a cage filled with water and closed with a net. The distance from water to the net was only 5 cm. The effects of KATP opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on ADP-stimulating mitochondrial respiration by Chance, calcium capacity of organellas and processes of lipid peroxidation in the liver of rats with different resistance to hypoxia under the stress condition have been investigated. We have used the next substrates of oxidation: 0.35 mM succinate and 1 mM alpha-ketoglutarate. The additional analyses were conducted with the use of inhibitors: mitochondrial enzyme complex I 10 mM rotenone and succinate dehydrohenase 2 mM malonic acid. It was shown that the stress condition evoked the succinate oxidation and the decrease of alpha-ketoglutarate efficacy, the increase of calcium mitochondrial capacity and the intensification of lipid peroxidation processes. Under the presence of succinate, the increase of O2 uptake with simultaneous decrease of ADP/O ratio in rats with high resistance under stress was observed. Simultaneously, oxidation of alpha-ketoglutarate, a NAD-dependent substrate, was inhibited. Pinacidil caused the reorganization of mitochondrial energy metabolism in favour of NAD-dependent oxidation and the improvment of the protection against stress. The decrease of the efficacy of mitochondrial energy processes functioning was shown in animals with low resistance to hypoxia. KATP channel opener pinacidil has a protective effect on the processes of mitochondrial liver energy support under stress. These changes deal with the increase of alpha-ketoglutarate oxidation (respiratory rate and

  16. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action.

    PubMed

    Pirotte, Bernard; de Tullio, Pascal; Florence, Xavier; Goffin, Eric; Somers, Fabian; Boverie, Stéphane; Lebrun, Philippe

    2013-04-25

    The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

  17. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    PubMed

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  18. Closure of mitochondrial potassium channels favors opening of the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.

    PubMed

    Korotkov, Sergey M; Brailovskaya, Irina V; Shumakov, Anton R; Emelyanova, Larisa V

    2015-06-01

    It is known that a closure of ATP sensitive (mitoKATP) or BK-type Ca(2+) activated (mitoKCa) potassium channels triggers opening of the mitochondrial permeability transition pore (MPTP) in cells and isolated mitochondria. We found earlier that the Tl(+)-induced MPTP opening in Ca(2+)-loaded rat liver mitochondria was accompanied by a decrease of 2,4-dinitrophenol-uncoupled respiration and increase of mitochondrial swelling and ΔΨmito dissipation in the medium containing TlNO3 and KNO3. On the other hand, our study showed that the mitoKATP inhibitor, 5-hydroxydecanoate favored the Tl(+)-induced MPTP opening in the inner membrane of Ca(2+)-loaded rat heart mitochondria (Korotkov et al. 2013). Here we showed that 5-hydroxydecanoate increased the Tl(+)-induced MPTP opening in the membrane of rat liver mitochondria regardless of the presence of mitoKATP modulators (diazoxide and pinacidil). This manifested in more pronounced decrease in the uncoupled respiration and acceleration of both the swelling and the ΔΨmito dissipation in isolated rat liver mitochondria, incubated in the medium containing TlNO3, KNO3, and Ca(2+). A slight delay in Ca(2+)-induced swelling of the mitochondria exposed to diazoxide could be result of an inhibition of succinate oxidation by the mitoKATP modulator. Mitochondrial calcium retention capacity (CRC) was markedly decreased in the presence of the mitoKATP inhibitor (5-hydroxydecanoate) or the mitoKCa inhibitor (paxilline). We suggest that the closure of mitoKATP or mitoKCa in calcium loaded mitochondria favors opening of the Tl(+)-induced MPTP in the inner mitochondrial membrane.

  19. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels

    PubMed Central

    Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline

    2009-01-01

    Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2′-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 ± 4.7% inhibition (mean ±s.e.m.; n= 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2′-O-Me-cAMP caused a transient 171.0 ± 18.0 nm (n= 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2′-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow. PMID:19491242

  20. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain.

    PubMed

    Thomzig, Achim; Laube, Gregor; Prüss, Harald; Veh, Rüdiger W

    2005-04-11

    K-ATP channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a sulfonylurea receptor (SUR1, SUR2, SUR2A, SUR2B) with regulatory activity. The functional diversity of K-ATP channels in brain is broad and of fundamental importance for neuronal activity. Here, using immunocytochemistry with monospecific antibodies against the Kir6.1 and Kir6.2 subunits, we analyze the regional and cellular distribution of both proteins in the adult rat brain. We find Kir6.2 to be widely expressed in all brain regions, suggesting that the Kir6.2 subunit forms the pore of the K-ATP channels in most neurons, presumably protecting the cells during cellular stress conditions such as hypoglycemia or ischemia. Especially in hypothalamic nuclei, in particular the ventromedial and arcuate nucleus, neurons display Kir6.2 immunoreactivity only, suggesting that Kir6.2 is the pore-forming subunit of the K-ATP channels in the glucose-responsive neurons of the hypothalamus. In contrast, Kir6.1-like immunolabeling is restricted to astrocytes (Thomzig et al. [2001] Mol Cell Neurosci 18:671-690) in most areas of the rat brain and very weak or absent in neurons. Only in distinct nuclei or neuronal subpopulations is a moderate or even strong Kir6.1 staining detected. The biological functions of these K-ATP channels still need to be elucidated. Copyright 2005 Wiley-Liss, Inc.

  1. Diadenosine tetraphosphate stimulates atrial ANP release via A(1) receptor: involvement of K(ATP) channel and PKC.

    PubMed

    Yuan, Kuichang; Cao, Chunhua; Bai, Guang Yi; Kim, Sung Zoo; Kim, Suhn Hee

    2007-07-01

    Diadenosine polyphosphates (APnAs) are endogenous compounds and exert diverse cardiovascular functions. However, the effects of APnAs on atrial ANP release and contractility have not been studied. In this study, the effects of diadenosine tetraphosphate (AP4A) on atrial ANP release and contractility, and their mechanisms were studied using isolated perfused rat atria. Treatment of atria with AP4A resulted in decreases in atrial contractility and extracellular fluid (ECF) translocation whereas ANP secretion and cAMP levels in perfusate were increased in a dose-dependent manner. These effects of AP4A were attenuated by A(1) receptor antagonist but not by A(2A) or A(3) receptor antagonist. Other purinoceptor antagonists also did not show any effects on AP4A-induced ANF release and contractility. The increment of ANP release and negative inotropy induced by AP4A was similar to those induced by AP3A, AP5A, and AP6A. Protein kinase A inhibitors accentuated AP4A-induced ANP secretion. In contrast, an inhibitor of phospholipase C, protein kinase C or sarcolemma K(ATP) channel completely blocked AP4A-induced ANP secretion. However, an inhibitor of adenylyl cyclase or mitochondria K(ATP) channel had no significant modification of AP4A effects. These results suggest that AP4A regulates atrial inotropy and ANP release mainly through A(1) receptor signaling involving phospholipase C-protein kinase C and sarcolemmal K(ATP) channel and that protein kinase A negatively modulates the effects of AP4A.

  2. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    PubMed Central

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  3. Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition.

    PubMed Central

    Vivaudou, M; Forestier, C

    1995-01-01

    1. The molecular mechanisms underlying pH regulation of skeletal muscle ATP-sensitive K+ (KATP) channels were studied using the patch clamp technique in the inside-out configuration. Two effects of intracellular protons were studied in detail: the decrease in magnitude of single-channel currents and the increase in open probability (Po) of nucleotide-inhibited channels. 2. The pH dependence of inward unit currents under different ionic conditions was in poor agreement with either a direct block of the pore by protons or an indirect proton-induced conformational change, but was compatible with the protonation of surface charges located near the cytoplasmic entrance of the pore. This latter electrostatic mechanism was modelled using Gouy-Chapman-Stern theory, which predicted the data accurately with a surface charge density of about 0.1 negative elementary charges per square nanometre and a pK (pH value for 50% effect) value for protonation of these charges of 6.25. The same mechanism, i.e. neutralization of negative surface charges by cation binding, could also account for the previously reported reduction of inward unit currents by Mg2+. 3. Intracellular alkalization did not affect Po of the KATP channels. Acidification increased Po. In the presence of 0.1 mM ATP (no Mg2+), the channel activation vs. pH relationship could be fitted with a sigmoid curve with a Hill coefficient slightly above 2 and a pK value of 6. This latter value was dependent on the ATP concentration, decreasing from 6.3 in 30 microM ATP to 5.3 in 1 microM ATP. 4. Conversely, the channel inhibition vs. ATP concentration curve was shifted to the right when the pH was lowered. At pH 7.1, the ATP concentration causing half-maximal inhibition was about 10 microM. At pH 5.4, it was about 400 microM. The Hill coefficient values remained slightly below 2. Similar effects were observed when ADP was used as the inhibitory nucleotide. 5. These results confirm that a reciprocal competitive link exists

  4. Phenformin has a direct inhibitory effect on the ATP-sensitive potassium channel.

    PubMed

    Aziz, Qadeer; Thomas, Alison; Khambra, Tapsi; Tinker, Andrew

    2010-05-25

    The biguanides, phenformin and metformin, are used in the treatment of type II diabetes mellitus, as well as being routinely used in studies investigating AMPK activity. We used the patch-clamp technique and rubidium flux assays to determine the role of these drugs in ATP-sensitive K+ channel (K(ATP)) regulation in cell lines expressing the cloned components of K(ATP) and the current natively expressed in vascular smooth muscle cells (VSMCs). Phenformin but not metformin inhibits a number of variants of K(ATP) including the cloned equivalents of currents present in vascular and non-vascular smooth muscle (Kir6.1/SUR2B and Kir6.2/SUR2B) and pancreatic beta-cells (Kir6.2/SUR1). However it does not inhibit the current potentially present in cardiac myocytes (Kir6.2/SUR2A). The highest affinity interaction is seen with Kir6.1/SUR2B (IC50=0.55 mM) and it also inhibits the current in native vascular smooth muscle cells. The extent and rate of inhibition are similar to that seen with the known K(ATP) blocker PNU 37883A. Additionally, phenformin inhibited the current elicited through the Kir6.2DeltaC26 (functional without SUR) channel with an IC50 of 1.78 mM. Phenformin reduced the open probability of Kir6.1/SUR2B channels by approximately 90% in inside-out patches. These findings suggest that phenformin interacts directly with the pore-forming Kir6.0 subunit however the sulphonylurea receptor is able to significantly modulate the affinity. It is likely to block from the intracellular side of the channel in a manner analogous to that of PNU 37883A. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts.

    PubMed

    Kuniyasu, Akihiko; Kaneko, Kazuyoshi; Kawahara, Kohichi; Nakayama, Hitoshi

    2003-09-25

    Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.

  6. Modulation of K(ATP) currents in rat ventricular myocytes by hypoxia and a redox reaction.

    PubMed

    Yan, Xi-Sheng; Ma, Ji-Hua; Zhang, Pei-Hua

    2009-10-01

    The present study investigated the possible regulatory mechanisms of redox agents and hypoxia on the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. Single-channel and whole-cell patch-clamp techniques were used to record the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. Oxidized glutathione (GSSG, 1 mmol/L) increased the I(KATP), while reduced glutathione (GSH, 1 mmol/L) could reverse the increased I(KATP) during normoxia. To further corroborate the effect of the redox agent on the K(ATP) channel, we employed the redox couple DTT (1 mmol/L)/H2O2 (0.3, 0.6, and 1 mmol/L) and repeated the previous processes, which produced results similar to the previous redox couple GSH/GSSG during normoxia. H2O2 increased the I(KATP) in a concentration dependent manner, which was reversed by DTT (1 mmol/L). In addition, our results have shown that 15 min of hypoxia increased the I(KATP), while GSH (1 mmol/L) could reverse the increased I(KATP). Furthermore, in order to study the signaling pathways of the I(KATP) augmented by hypoxia and the redox agent, we applied a protein kinase C(PKC) inhibitor bisindolylmaleimide VI (BIM), a protein kinase G(PKG) inhibitor KT5823, a protein kinase A (PKA) inhibitor H-89, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitors KN-62 and KN-93. The results indicated that BIM, KT5823, KN-62, and KN-93, but not H-89, inhibited the I(KATP) augmented by hypoxia and GSSG; in addition, these results suggest that the effects of both GSSG and hypoxia on K(ATP) channels involve the activation of the PKC, PKG, and CaMK II pathways, but not the PKA pathway. The present study provides electrophysiological evidence that hypoxia and the oxidizing reaction are closely related to the modulation of I(KATP).

  7. Clinical Trial of the Potassium Channel Activator Diazoxide for Major Depressive Disorder Halted Due to Intolerability.

    PubMed

    Kadriu, Bashkim; Yuan, Shiwen; Farmer, Cristan; Nugent, Allison C; Lener, Marc S; Niciu, Mark J; Park, Minkyung; Yazdian, Aaron; Ballard, Elizabeth D; Henn, Fritz A; Henter, Ioline D; Park, Lawrence T; Zarate, Carlos A

    2018-06-01

    Some glutamatergic modulators have demonstrated rapid and relatively sustained antidepressant properties in patients with major depressive disorder. Because the potassium channel activator diazoxide increases glutamate uptake via potassium channel activation, we hypothesized that it might exert antidepressant effects by increasing the removal of glutamate from the synaptic cleft, thereby reducing excessive glutamate transmission. This randomized, double-blind, placebo-controlled, crossover, single-site inpatient clinical study was conducted at the National Institute of Mental Health to assess the efficacy and safety of a 3-week course of diazoxide (200-400 mg daily, twice a day) versus a 3-week course of placebo in 6 participants with treatment-refractory major depressive disorder. The primary clinical outcome measure was change in Montgomery-Asberg Depression Rating Scale score from baseline to posttreatment. Quantitative insulin sensitivity check index, as well as concomitant imaging measures (electroencephalography, proton magnetic resonance spectroscopy, magnetoencephalography), were used as potential surrogate markers of target (KATP channel) engagement. The study was halted due to severe adverse effects. Given the small sample size, statistical evaluation of the effect of diazoxide on Montgomery-Asberg Depression Rating Scale scores or the imaging measures was not pursued. Visual inspection of the quantitative insulin sensitivity check index test revealed no evidence of target engagement. Although the results are negative, they are an important addition to the literature in this rapidly changing field.

  8. Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: a mechanistic study.

    PubMed

    Proks, Peter; de Wet, Heidi; Ashcroft, Frances M

    2014-11-01

    Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K(+) (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas. © 2014 Proks et al.

  9. Selective activation of the K(+)(ATP) channel is a mechanism by which sudden death is produced by low-energy chest-wall impact (Commotio cordis).

    PubMed

    Link, M S; Wang, P J; VanderBrink, B A; Avelar, E; Pandian, N G; Maron, B J; Estes, N A

    1999-07-27

    Sudden death due to relatively innocent chest-wall impact has been described in young individuals (commotio cordis). In our previously reported swine model of commotio cordis, ventricular fibrillation (with T-wave strikes) and ST-segment elevation (with QRS strikes) were produced by 30-mph baseball impacts to the precordium. Because activation of the K(+)(ATP) channel has been implicated in the pathogenesis of ST elevation and ventricular fibrillation in myocardial ischemia, we hypothesized that this channel could be responsible for the electrophysiologic findings in our experimental model and in victims of commotio cordis. In the initial experiment, 6 juvenile swine were given 0.5 mg/kg IV glibenclamide, a selective inhibitor of the K(+)(ATP) channel, and chest impact was given on the QRS. The results of these strikes were compared with animals in which no glibenclamide was given. In the second phase, 20 swine were randomized to receive glibenclamide or a control vehicle (in a double-blind fashion), with chest impact delivered just before the T-wave peak. With QRS impacts, the maximal ST elevation was significantly less in those animals given glibenclamide (0.16+/-0.10 mV) than in controls (0.35+/-0.20 mV; P=0.004). With T-wave impacts, the animals that received glibenclamide had significantly fewer occurrences of ventricular fibrillation (1 episode in 27 impacts; 4%) than controls (6 episodes in 18 impacts; 33%; P=0.01). In this experimental model of commotio cordis, blockade of the K(+)(ATP) channel reduced the incidence of ventricular fibrillation and the magnitude of ST-segment elevation. Therefore, selective K(+)(ATP) channel activation may be a pivotal mechanism in sudden death resulting from low-energy chest-wall trauma in young people during sporting activities.

  10. Coronary effects of diadenosine tetraphosphate resemble those of adenosine in anesthetized pigs: involvement of ATP-sensitive potassium channels.

    PubMed

    Nakae, I; Takahashi, M; Takaoka, A; Liu, Q; Matsumoto, T; Amano, M; Sekine, A; Nakajima, H; Kinoshita, M

    1996-07-01

    Diadenosine tetraphosphate (Ap4A) is an adenine nucleotide with vasodilatory properties. We examined the effects of Ap4A on coronary circulation in comparison with those of adenosine, its metabolite, in anesthetized pigs. Left atrial (LA) infusion of Ap4A at increasing doses of 100, 200, and 300 micrograms/kg/min increased coronary blood flow (CBF) and decreased systemic blood pressure (BP) and coronary vascular resistance (CVR). Ap4A had no effect on large epicardial coronary artery diameter (CoD). Likewise, LA infusion of adenosine at doses of 150 and 300 micrograms/kg/min increased CBF and decreased BP and coronary vascular resistance (CVR) but did not affect CoD. Therefore, the vasodilatory effects of Ap4A and adenosine were predominant in small coronary resistance vessels and negligible in large coronary arteries. Pretreatment with glibenclamide (2 mg/kg, intravenously, i.v.), a specific blocker of ATP-sensitive potassium channels (KATP), attenuated alterations of CBF, BP, and CVR induced by Ap4A and by adenosine. In contrast, treatment with cromakalim (0.5 microgram/kg/min i.v.), an activator of KATP, enhanced the coronary effects of Ap4A and adenosine. Therefore, the opening of KATP in the pig coronary circulation is involved in the in vivo vasodilatory effects of Ap4A and adenosine. Treatment with 8-phenyltheophylline (8-PT, 4 mg/kg i.v.), an adenosine receptor antagonist, suppressed CBF increases induced by Ap4A (20 micrograms/kg/min, intracoronarily, i.c.) and adenosine (5 micrograms/kg/min i.c.) by 68 and 90%, respectively. These findings suggest that the in vivo coronary effects of Ap4A are largely caused by the opening of KATP through rapid degradation to adenosine to activate adenosine receptors.

  11. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels.

    PubMed

    Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M

    2001-01-01

    Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases

  12. Inhibitors of ATP-sensitive potassium channels in guinea pig isolated ischemic hearts.

    PubMed

    Weyermann, A; Vollert, H; Busch, A E; Bleich, M; Gögelein, H

    2004-04-01

    During heart ischemia, ATP-sensitive potassium channels in the sarcolemmal membrane (sarcK(ATP)) open and cause shortening of the action potential duration. This creates heterogeneity of repolarization, being responsible for the development of re-entry arrhythmias and sudden cardiac death. Therefore, the aim is to develop selective blockers of the cardiac sarcK(ATP) channel. In the present study we established an in vitro model and classified 5 K(ATP) channel inhibitors with respect to their potency and selectivity between cardiomyocytes and the coronary vasculature and compared the results with inhibition of Kir6.2/SUR2A channels expressed in HEK293 cells, recorded with the Rb(+)-efflux methods. We used Langendorff-perfused guinea pig hearts, where low-flow ischemia plus hypoxia was performed by reducing the coronary flow (CF) to 1.2 ml/min and by gassing the perfusion solution with N(2) instead of O(2). Throughout the experiment, the monophasic action potential duration at 90% repolarization (MAPD(90)) was recorded. In separate experiments, high-flow hypoxia was produced by oxygen reduction in the perfusate from 95% to 20%, which caused an increase in the coronary flow. Under normoxic conditions, the substances glibenclamide, repaglinide, meglitinide, HMR 1402 and HMR 1098 (1 microM each) reduced the CF by 34%, 38%, 19%, 12% and 5%, respectively. The hypoxia-induced increase in CF was inhibited by the compounds half-maximally at 25 nM, approximately 200 nM, 600 nM, approximately 9 microM and >100 microM, respectively. In control experiments after 5 min low-flow ischemia plus hypoxia, the MAPD(90) shortened from 121+/-2 to 99+/-2 ms ( n=29). This shortening was half-maximally inhibited by the substances at concentrations of 95 nM, 74 nM, 400 nM, 110 nM and 550 nM, respectively. In HEK293 cells the Rb(+)-efflux through KIR6.2/SUR2A channels was inhibited by the compounds with IC(50) values of 21 nM, 67 nM, 205 nM, 60 nM and 181 nM, respectively. In summary, the

  13. Neonatal Diabetes Caused by Mutations in Sulfonylurea Receptor 1: Interplay between Expression and Mg-Nucleotide Gating Defects of ATP-Sensitive Potassium Channels

    PubMed Central

    Zhou, Qing; Garin, Intza; Castaño, Luis; Argente, Jesús; Muñoz-Calvo, Ma. Teresa; Perez de Nanclares, Guiomar; Shyng, Show-Ling

    2010-01-01

    Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4− or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating. PMID:20810569

  14. Roderick MacKinnon and Ion Channels - Potassium Channels and Sodium

    Science.gov Websites

    very first potassium channel structure, which revealed the way that positively charged potassium ions explain how a fundamental feedback loop worked. Now, with the structure of the voltage-dependent ion channel, based on research carried out at The Rockefeller University, the National Synchrotron Light

  15. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells.

    PubMed

    Yee, Karen K; Sukumaran, Sunil K; Kotha, Ramana; Gilbertson, Timothy A; Margolskee, Robert F

    2011-03-29

    Although the heteromeric combination of type 1 taste receptors 2 and 3 (T1r2 + T1r3) is well established as the major receptor for sugars and noncaloric sweeteners, there is also evidence of T1r-independent sweet taste in mice, particularly so for sugars. Before the molecular cloning of the T1rs, it had been proposed that sweet taste detection depended on (a) activation of sugar-gated cation channels and/or (b) sugar binding to G protein-coupled receptors to initiate second-messenger cascades. By either mechanism, sugars would elicit depolarization of sweet-responsive taste cells, which would transmit their signal to gustatory afferents. We examined the nature of T1r-independent sweet taste; our starting point was to determine if taste cells express glucose transporters (GLUTs) and metabolic sensors that serve as sugar sensors in other tissues. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we determined that several GLUTs (GLUT2, GLUT4, GLUT8, and GLUT9), a sodium-glucose cotransporter (SGLT1), and two components of the ATP-gated K(+) (K(ATP)) metabolic sensor [sulfonylurea receptor (SUR) 1 and potassium inwardly rectifying channel (Kir) 6.1] were expressed selectively in taste cells. Consistent with a role in sweet taste, GLUT4, SGLT1, and SUR1 were expressed preferentially in T1r3-positive taste cells. Electrophysiological recording determined that nearly 20% of the total outward current of mouse fungiform taste cells was composed of K(ATP) channels. Because the overwhelming majority of T1r3-expressing taste cells also express SUR1, and vice versa, it is likely that K(ATP) channels constitute a major portion of K(+) channels in the T1r3 subset of taste cells. Taste cell-expressed glucose sensors and K(ATP) may serve as mediators of the T1r-independent sweet taste of sugars.

  16. The molecular basis of the specificity of action of KATP channel openers

    PubMed Central

    Moreau, Christophe; Jacquet, Hélène; Prost, Anne-Lise; D’hahan, Nathalie; Vivaudou, Michel

    2000-01-01

    KATP channels incorporate a regulatory subunit of the ATP-binding cassette (ABC) transporter family, the sulfonylurea receptor (SUR), which defines their pharmacology. The therapeutically important K+ channel openers (e.g. pinacidil, cromakalim, nicorandil) act specifically on the SUR2 muscle isoforms but, except for diazoxide, remain ineffective on the SUR1 neuronal/pancreatic isoform. This SUR1/2 dichotomy underpinned a chimeric strategy designed to identify the structural determinants of opener action, which led to a minimal set of two residues within the last transmembrane helix of SUR. Transfer of either residue from SUR2A to SUR1 conferred opener sensitivity to SUR1, while the reverse operation abolished SUR2A sensitivity. It is therefore likely that these residues form part of the site of interaction of openers with the channel. Thus, openers would target a region that, in other ABC transporters, is known to be tightly involved with the binding of substrates and other ligands. This first glimpse of the site of action of pharmacological openers should permit rapid progress towards understanding the structural determinants of their affinity and specificity. PMID:11118199

  17. Role of nitric oxide and KATP channel in the protective effect mediated by nicorandil in bile duct ligation-induced liver fibrosis in rats.

    PubMed

    Mohamed, Yasmin S; Ahmed, Lamiaa A; Salem, Hesham A; Agha, Azza M

    2018-05-01

    Liver fibrosis is one of the most serious conditions affecting patients worldwide. In the present study, the role of nitric oxide and KATP channel was investigated for the first time in the possible protection mediated by nicorandil in bile duct ligation-induced liver fibrosis in rats. Nicorandil (3 mg/kg/day) was given orally 24 h after bile duct ligation for 14 days till the end of the experiment. Nicorandil group showed marked improvement in liver function tests, hepatic oxidative stress and inflammatory markers as well as inducible and endothelial nitric oxide synthase protein expressions. Furthermore, nicorandil administration led to significant decrement of phosphorylated protein kinase C, fibrosis and hepatic stellate cells activation as indicated by decreased alpha smooth muscle actin expression. Oral co-administration of glibenclamide (5 mg/kg/day) (a KATP channel blocker) with nicorandil mostly showed similar improvement though not reaching to that of nicorandil group. However, co-adminstration of L-NAME (15 mg/kg/day) (an inhibitor of nitric oxide synthase) completely abolished the protective effects of nicorandil and produced more or less similar results to that of untreated bile duct ligated group. In conclusion, nicorandil is an effective therapy against the development of bile duct ligation-induced liver fibrosis in rats where nitric oxide plays a more prominent role in the protective effect of nicorandil than KATP channel opening. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.

    PubMed

    Cifelli, Carlo; Boudreault, Louise; Gong, Bing; Bercier, Jean-Philippe; Renaud, Jean-Marc

    2008-10-01

    Muscles deficient in ATP-dependent potassium (KATP) channels develop contractile dysfunctions during fatigue that may explain their apparently faster rate of fatigue compared with wild-type muscles. The objectives of this study were to determine: (1) whether the contractile dysfunctions, namely unstimulated force and depressed force recovery, result from excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) whether reducing the magnitude of these two contractile dysfunctions reduces the rate of fatigue in KATP channel-deficient muscles. To reduce Ca2+ influx, we lowered the extracellular Ca2+ concentration ([Ca2+]o) from 2.4 to 0.6 mM or added 1 microM verapamil, an L-type Ca2+ channel blocker. Flexor digitorum brevis (FDB) muscles deficient in KATP channels were obtained by exposing wild-type muscles to 10 microM glibenclamide or by using FDB from Kir6.2-/- mice. Fatigue was elicited with one contraction per second for 3 min at 37 degrees C. In wild-type FDB, lowered [Ca2+]o or verapamil did not affect the decrease in peak tetanic force and unstimulated force during fatigue and force recovery following fatigue. In KATP channel-deficient FDB, lowered [Ca2+]o or verapamil slowed down the decrease in peak tetanic force recovery, reduced unstimulated force and improved force recovery. In Kir6.2-/- FDB, the rate of fatigue became slower than in wild-type FDB in the presence of verapamil. The cell membrane depolarized from -83 to -57 mV in normal wild-type FDB. The depolarizations in some glibenclamide-exposed fibres were similar to those of normal FDB, while in other fibres the cell membrane depolarized to -31 mV in 80 s, which was also the time when these fibres supercontracted. It is concluded that: (1) KATP channels are crucial in preventing excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) they contribute to the decrease in force during fatigue.

  19. Putative subunits of the rat mesangial KATP: a type 2B sulfonylurea receptor and an inwardly rectifying K+ channel.

    PubMed

    Szamosfalvi, Balázs; Cortes, Pedro; Alviani, Rebecca; Asano, Kenichiro; Riser, Bruce L; Zasuwa, Gary; Yee, Jerry

    2002-05-01

    Sulfonylurea agents exert their physiological effects in many cell types via binding to specific sulfonylurea receptors (SUR). SUR couple to inwardly-rectifying K+ channel (Kir6.x) to form tetradimeric ATP-sensitive K+ channels (KATP). The SUR subunits confer ATP-sensitivity on KATP and also provide the binding sites for sulfonylureas and other pharmacological agents. Our previous work demonstrated that the exposure of mesangial cells (MC) to sulfonylureas generated profound effects on MC glucose uptake and matrix metabolism and induced heightened cell contractility in association with Ca2+ transients. Because these responses likely resulted from the binding of sulfonylurea to a mesangial SUR2, we subsequently documented [3H]-glibenclamide binding to MC and the gene expression of several mesangial SUR2 transcripts. From these data, we inferred that MC expressed the components of a mesangial KATP and sought to establish their presence in primary MC. To obtain mesangial SUR2 cDNA sequences, rapid amplification of cDNA ends (RACE) was utilized. DNA sequences were established by the fluorescent dye termination method. Gene expression of mesangial SUR2 and Kir6.1/2 was examined by reverse transcription polymerase chain reaction (RT-PCR) and Northern analysis. SUR2 proteins were identified by immunoblotting of mesangial proteins from membrane-enriched fractions with polyclonal antiserum directed against SUR2. RACE cloning yielded two mesangial SUR2 cDNAs of 4.8 and 6.7 kbp whose open reading frames translated proteins of 964 and 1535 aa, respectively. Using probes specific to each cDNA, the presence of a unique, 5.5 kbp serum-regulated mesangial SUR2 splice variant was established. The sequence of this mesangial SUR2 (mcSUR2B) shares identity with the recently cloned rat SUR2B (rSUR2B), but, in comparison to rSUR2B, is truncated by 12 exons at the N-terminus where it contains a unique insert of 16 aa. Immunoblotting studies with anti-SUR2 antiserum demonstrated SUR2

  20. Potassium Channels in Epilepsy

    PubMed Central

    Köhling, Rüdiger; Wolfart, Jakob

    2016-01-01

    This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. PMID:27141079

  1. A human intermediate conductance calcium-activated potassium channel.

    PubMed

    Ishii, T M; Silvia, C; Hirschberg, B; Bond, C T; Adelman, J P; Maylie, J

    1997-10-14

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.

  2. Functional diversity of potassium channel voltage-sensing domains.

    PubMed

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  3. Functional diversity of potassium channel voltage-sensing domains

    PubMed Central

    Islas, León D.

    2016-01-01

    Abstract Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology. PMID:26794852

  4. Sodium and potassium competition in potassium-selective and non-selective channels

    NASA Astrophysics Data System (ADS)

    Sauer, David B.; Zeng, Weizhong; Canty, John; Lam, Yeeling; Jiang, Youxing

    2013-11-01

    Potassium channels selectively conduct K+, primarily to the exclusion of Na+, despite the fact that both ions can bind within the selectivity filter. Here we perform crystallographic titration and single-channel electrophysiology to examine the competition of Na+ and K+ binding within the filter of two NaK channel mutants; one is the potassium-selective NaK2K mutant and the other is the non-selective NaK2CNG, a CNG channel pore mimic. With high-resolution structures of these engineered NaK channel constructs, we explicitly describe the changes in K+ occupancy within the filter upon Na+ competition by anomalous diffraction. Our results demonstrate that the non-selective NaK2CNG still retains a K+-selective site at equilibrium, whereas the NaK2K channel filter maintains two high-affinity K+ sites. A double-barrier mechanism is proposed to explain K+ channel selectivity at low K+ concentrations.

  5. Intractable hyperkalemia due to nicorandil induced potassium channel syndrome.

    PubMed

    Chowdhry, Vivek; Mohanty, B B

    2015-01-01

    Nicorandil is a commonly used antianginal agent, which has both nitrate-like and ATP-sensitive potassium (K ATP ) channel activator properties. Activation of potassium channels by nicorandil causes expulsion of potassium ions into the extracellular space leading to membrane hyperpolarization, closure of voltage-gated calcium channels and finally vasodilatation. However, on the other hand, being an activator of K ATP channel, it can expel K + ions out of the cells and can cause hyperkalemia. Here, we report a case of nicorandil induced hyperkalemia unresponsive to medical treatment in a patient with diabetic nephropathy.

  6. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+.

    PubMed

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D

    2005-03-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  7. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+

    NASA Technical Reports Server (NTRS)

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D.

    2005-01-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  8. Some cannabinoid receptor ligands and their distomers are direct-acting openers of SUR1 KATP channels

    PubMed Central

    Zhou, Qing; Shyng, Show-Ling; Heal, David J.; Cheetham, Sharon C.; Dickinson, Keith; Gregory, Peter; Firnges, Michael; Nordheim, Ulrich; Goshorn, Stephanie; Reiche, Dania; Turski, Lechoslaw; Antel, Jochen

    2012-01-01

    Here, we examined the chronic effects of two cannabinoid receptor-1 (CB1) inverse agonists, rimonabant and ibipinabant, in hyperinsulinemic Zucker rats to determine their chronic effects on insulinemia. Rimonabant and ibipinabant (10 mg·kg−1·day−1) elicited body weight-independent improvements in insulinemia and glycemia during 10 wk of chronic treatment. To elucidate the mechanism of insulin lowering, acute in vivo and in vitro studies were then performed. Surprisingly, chronic treatment was not required for insulin lowering. In acute in vivo and in vitro studies, the CB1 inverse agonists exhibited acute K channel opener (KCO; e.g., diazoxide and NN414)-like effects on glucose tolerance and glucose-stimulated insulin secretion (GSIS) with approximately fivefold better potency than diazoxide. Followup studies implied that these effects were inconsistent with a CB1-mediated mechanism. Thus effects of several CB1 agonists, inverse agonists, and distomers during GTTs or GSIS studies using perifused rat islets were unpredictable from their known CB1 activities. In vivo rimonabant and ibipinabant caused glucose intolerance in CB1 but not SUR1-KO mice. Electrophysiological studies indicated that, compared with diazoxide, 3 μM rimonabant and ibipinabant are partial agonists for K channel opening. Partial agonism was consistent with data from radioligand binding assays designed to detect SUR1 KATP KCOs where rimonabant and ibipinabant allosterically regulated 3H-glibenclamide-specific binding in the presence of MgATP, as did diazoxide and NN414. Our findings indicate that some CB1 ligands may directly bind and allosterically regulate Kir6.2/SUR1 KATP channels like other KCOs. This mechanism appears to be compatible with and may contribute to their acute and chronic effects on GSIS and insulinemia. PMID:22167524

  9. Slack, Slick, and Sodium-Activated Potassium Channels

    PubMed Central

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  10. The Ketogenic Diet and Potassium Channel Function

    DTIC Science & Technology

    2015-11-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function PRINCIPAL INVESTIGATOR: Dr. Geoffrey Murphy...NUMBER The Ketogenic Diet and Potassium Channel Function 5b. GRANT NUMBER W81XWH-13-1-0463 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey Murphy...The overall objective of this Discovery Award was to explore the hypothesis the ketogenic diet (KD) regulates neuronal excitability by influencing

  11. Leptin and insulin stimulation of signalling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and KATP channel activation

    PubMed Central

    Mirshamsi, Shirin; Laidlaw, Hilary A; Ning, Ke; Anderson, Erin; Burgess, Laura A; Gray, Alexander; Sutherland, Calum; Ashford, Michael LJ

    2004-01-01

    Background Leptin and insulin are long-term regulators of body weight. They act in hypothalamic centres to modulate the function of specific neuronal subtypes, by altering transcriptional control of releasable peptides and by modifying neuronal electrical activity. A key cellular signalling intermediate, implicated in control of food intake by these hormones, is the enzyme phosphoinositide 3-kinase. In this study we have explored further the linkage between this enzyme and other cellular mediators of leptin and insulin action on rat arcuate nucleus neurones and the mouse hypothalamic cell line, GT1-7. Results Leptin and insulin increased the levels of various phosphorylated signalling intermediates, associated with the JAK2-STAT3, MAPK and PI3K cascades in the arcuate nucleus. Inhibitors of PI3K were shown to reduce the hormone driven phosphorylation through the PI3K and MAPK pathways. Using isolated arcuate neurones, leptin and insulin were demonstrated to increase the activity of KATP channels in a PI3K dependent manner, and to increase levels of PtdIns(3,4,5)P3. KATP activation by these hormones in arcuate neurones was also sensitive to the presence of the actin filament stabilising toxin, jasplakinolide. Using confocal imaging of fluorescently labelled actin and direct analysis of G- and F-actin concentration in GT1-7 cells, leptin was demonstrated directly to induce a re-organization of cellular actin, by increasing levels of globular actin at the expense of filamentous actin in a PI3-kinase dependent manner. Leptin stimulated PI3-kinase activity in GT1-7 cells and an increase in PtdIns(3,4,5)P3 could be detected, which was prevented by PI3K inhibitors. Conclusions Leptin and insulin mediated phosphorylation of cellular signalling intermediates and of KATP channel activation in arcuate neurones is sensitive to PI3K inhibition, thus strengthening further the likely importance of this enzyme in leptin and insulin mediated energy homeostasis control. The

  12. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    PubMed

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  13. [Voltage-gated potassium channels and human neurological diseases].

    PubMed

    Jin, Hong-Wei; Wang, Xiao-Liang

    2002-01-01

    Voltage-gated potassium channels (Kv) is the largest, most complex in potassium channel superfamily. It can be divided into Kv alpha subunit and auxiliary two groups. The roles of some Kv channels types, e.g. rapidly inactivating (A-Type channel) and muscarine sensitive channels (M-type channel) are beginning to be understood. They are prominent in nervous system, acting in delicate and accurate ways to control or modify many physiological and pathological functions including membrane excitability, neurotransmitter release, cell proliferation or degeneration, signal transduction in neuronal network. Many human neurological disease pathogenesis are found to be related to mutant of Kv-channels subunit or subtype, such as, learning and memory impairing, ataxia, epilepsy, deafness, etc.

  14. Minoxidil opens mitochondrial K(ATP) channels and confers cardioprotection.

    PubMed

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2004-01-01

    1. ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoK(ATP) channel) rather than in the sarcolemma (sarcK(ATP) channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcK(ATP) and mitoK(ATP) channels in guinea-pig ventricular myocytes. 2. Minoxidil activated a glybenclamide-sensitive sarcK(ATP) channel current in the whole-cell recording mode with an EC(50) of 182.6 microm. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoK(ATP) channel activity, in a concentration-dependent manner. The EC(50) for mitoK(ATP) channel activation was estimated to be 7.3 microm; this value was notably approximately 25-fold lower than that for sarcK(ATP) channel activation. 3. Minoxidil (10 microm) significantly attenuated the ouabain-induced increase of mitochondrial Ca(2+) concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 microm) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microm). 4. Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoK(ATP) channels.

  15. Functional role for mouse cerebellar NO/cGMP/KATP pathway in ethanol-induced ataxia.

    PubMed

    Saeed Dar, M

    2014-01-01

    We have previously shown that brain adenosine A1 receptors and nitric oxide (NO) play an important role in ethanol (EtOH)-induced cerebellar ataxia (EICA) through glutamate/NO/cGMP pathway. I now report possible modulation of EICA by the cerebellar NO/cGMP/K(ATP) pathway. EICA was evaluated by Rotorod in CD-1 male mice. All drugs (K(ATP) activators pinacidil, 0.05, 0.1, 0.5 nmol; minoxidil, 0.01, 0.1, 1.0 pmol; antagonists glipizide/glibenclamide, 0.01, 0.05, 0.1 nmol; NO donor l-arginine, 20 nmol; NOS inhibitors [iNOS] inhibitor L-NAME, 50 nmol; glutamate, 1.5 nmol; adenosine A1 receptor agonist N(6) -cyclohexyladenosine [CHA], 6, 12 pmol; antagonist DPCPX, 0.1 or 0.4 nmol) were given by direct intracerebellar microinfusion via stereotaxically implanted guide cannulas, except EtOH (2 g/kg, i.p.). Pinacidil and minoxidil dose-dependently accentuated, whereas glipizide and glibenclamide markedly attenuated EICA, indicating tonic participation of K(ATP) channels. Glipizide abolished the pinacidil potentiation of EICA, which confirmed both drugs acted via K(ATP) channels. A possible link between K(ATP) channels and glutamate/NO pathway was suggested when (i) CHA (12 pmol) totally abolished l-arginine-induced attenuation of EICA; (ii) L-NAME abolished l-arginine-induced attenuation of EICA associated with further increase in EICA; and (iii) the combined l-arginine and glutamate infusion virtually abolished EICA. Also, whereas CHA abolished glibenclamide-induced attenuation and potentiated pinacidil/minoxidil-induced accentuation of EICA, the effects of DPCPX were just the opposite to those of CHA. The results with CHA therefore suggest a functional link between K(ATP) and A1 receptors and between K(ATP) and glutamate/NO and as an extension may involve participation of NO/cGMP/K(ATP) pathway in EICA. Copyright © 2013 by the Research Society on Alcoholism.

  16. Clofilium inhibits Slick and Slack potassium channels.

    PubMed

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  17. BAD and KATP channels regulate neuron excitability and epileptiform activity.

    PubMed

    Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L; Danial, Nika N; Yellen, Gary

    2018-01-25

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad ( B CL-2 a gonist of cell d eath) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (K ATP ) channels. Here we investigated the effect of BAD manipulation on K ATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal K ATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal K ATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of K ATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased K ATP channel activity. © 2018, Martínez-François et al.

  18. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type K(ATP) channels.

    PubMed

    Chachin, Motohiko; Yamada, Mitsuhiko; Fujita, Akikazu; Matsuoka, Tetsuro; Matsushita, Kenji; Kurachi, Yoshihisa

    2003-03-01

    A novel antidiabetic agent, nateglinide, is a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety. We examined with the patch-clamp method the effect of nateglinide on recombinant ATP-sensitive K(+) (K(ATP)) channels expressed in human embryonic kidney 293T cells transfected with a Kir6.2 subunit and either of a sulfonylurea receptor (SUR) 1, SUR2A, and SUR2B. In inside-out patches, nateglinide reversibly inhibited the spontaneous openings of all three types of SUR/Kir6.2 channels. Nateglinide inhibited SUR1/Kir6.2 channels with high and low affinities (K(i) = 75 nM and 114 microM) but SUR2A/Kir6.2 and SUR2B/Kir6.2 channels only with low affinity (K(i) = 105 and 111 microM, respectively). Nateglinide inhibited the K(ATP) current mediated by Kir6.2 lacking C-terminal 26 amino acids only with low affinity (K(i) = 290 microM) in the absence of SUR. Replacement of serine at position 1237 of SUR1 to tyrosine [SUR1(S1237Y)] specifically abolished the high-affinity inhibition of SUR1/Kir6.2 channels by nateglinide. MgADP or MgUDP (100 microM) augmented the inhibitory effect of nateglinide on SUR1/Kir6.2 but not SUR1(S1237Y)/Kir6.2 or SUR2A/Kir6.2 channels. This augmenting effect of MgADP was also observed with the SUR1/Kir6.2(K185Q) channel, which was not inhibited by MgADP, but not with the SUR1(K1384A)/Kir6.2 channel, which was not activated by MgADP. These results indicate that therapeutic concentrations of nateglinide (approximately 10 microM) may selectively inhibit pancreatic type SUR1/Kir6.2 channels through SUR1, especially when the channel is activated by intracellular MgADP, even though the agent does not contain either a sulfonylurea or benzamido moiety.

  19. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    PubMed

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  20. Potassium dependent rescue of a myopathy with core-like structures in mouse

    PubMed Central

    Hanson, M Gartz; Wilde, Jonathan J; Moreno, Rosa L; Minic, Angela D; Niswander, Lee

    2015-01-01

    Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations. DOI: http://dx.doi.org/10.7554/eLife.02923.001 PMID:25564733

  1. [The role of opiate receptors and ATP-dependent potassium channels of mitochondria in the formation of myocardial adaptive resistance to the arrhythmogenic effect of ischemia and reperfusion].

    PubMed

    Lishmanov, Iu B; Naryzhnaia, N V; Krylatov, A V; Maslov, L N; Bogomaz, S A; Ugdyzhekova, D S; Gross, G J; Stefano, J B

    2003-01-01

    Preliminary stimulation of opiate receptors (ORs) by intravenous administration of mu agonist DALDA (0.5 mg/kg), delta 1 agonist DPDPE (0.5 mg/kg), and kappa agonist (-)-U-50.488 (1 mg/kg) increases rat myocardial resistance to arrhythmogenic effect of coronary occlusion (10 min) and reperfusion (10 min). Activation of delta 2 ORs (DSLET, 0.5 mg/kg) has no effect on the incidence rate of ischemic and reperfusion arrhythmias. Preliminary administration of glibenclamide (0.3 mg/kg), an inhibitor of KATP channels, blocks the antiarrhythmic effect of DALDA and DPDPE. Repeated short-term exposures of rats to immobilization within two weeks increases the heart tolerance to the arrhythmogenic effect of coronary occlusion and reperfusion. This effect disappears after administration of CTAP (0.5 mg/kg), a mu antagonist, or injection of 5-hydroxydecanoate (5 mg/kg), an inhibitor of mitochondrial KATP channels. The selective antagonists of delta and kappa ORs have no effect on cardiac adaptation-induced resistance to the arrhythmogenic effect of ischemia and reperfusion. We believe that stimulation of mu, delta, and kappa ORs increases myocardial tolerance to the arrhythmogenic effect of ischemia and reperfusion through activation of KATP channels. The antiarrhythmic effect of the adaptation is mediated by stimulation of mu ORs and mitochondrial KATP channels.

  2. Potassium channels: the importance of transport signals.

    PubMed

    Griffith, L C

    2001-03-20

    The number, type and distribution of ion channels on a neuron's surface determine its electrical response to stimulation. One way that a cell determines how many molecules of each channel type are sent to the surface has been eludicated in a recent study of intrinsic protein transport signals within potassium channels.

  3. Diadenosine tetraphosphate-gating of recombinant pancreatic ATP-sensitive K(+) channels.

    PubMed

    Jovanovic, S; Jovanovic, A

    2001-02-01

    Diadenosine tetraphosphate (Ap4A) has been recently discovered in the pancreatic beta cells where targets ATP-sensitive K(+) (K(ATP)) channels, depolarizes the cell membrane and induces insulin secretion. However, whether Ap4A inhibit pancreatic K(ATP) channels by targeting protein channel complex itself was unknown. Therefore, we coexpressed pancreatic K(ATP) channel subunits, Kir6.2 and SUR1, in COS-7 cells and examined the effect of Ap4A on the single channel behavior using the inside-out configuration of the patch-clamp technique. Ap4A inhibited channel opening in a concentration-dependent manner. Analysis of single channels demonstrated that Ap4A did not change intraburst kinetic behavior of K(ATP) channels, but rather decreased burst duration and increased between-burst duration. It is concluded that Ap4A antagonizes K(ATP) channel opening by targeting channel subunits themselves and by keeping channels longer in closed interburst states.

  4. Changes by short-term hypoxia in the membrane properties of pyramidal cells and the levels of purine and pyrimidine nucleotides in slices of rat neocortex; effects of agonists and antagonists of ATP-dependent potassium channels.

    PubMed

    Pissarek, M; Garcia de Arriba, S; Schäfer, M; Sieler, D; Nieber, K; Illes, P

    1998-10-01

    In a first series of experiments, intracellular recordings were made from pyramidal cells in layers II-III of the rat primary somatosensory cortex. Superfusion of the brain slice preparations with hypoxic medium (replacement of 95%O2-5%CO2 with 95%N2-5%CO2) for up to 30 min led to a time-dependent depolarization (HD) without a major change in input resistance. Short periods of hypoxia (5 min) induced reproducible depolarizations which were concentration-dependently depressed by an agonist of ATP-dependent potassium (K(ATP)) channels, diazoxide (3-300 microM). The effect of 30 but not 300 microM diazoxide was reversed by washout. Tolbutamide (300 microM), an antagonist of K(ATP) channels, did not alter the HD when given alone. It did, however, abolish the inhibitory effect of diazoxide (30 microM) on the HD. Neither diazoxide (3-300 microM) nor tolbutamide (300 microM) influenced the membrane potential or the apparent input resistance of the neocortical pyramidal cells. Current-voltage (I-V) curves constructed at a membrane potential of -90 mV by injecting both de- and hyperpolarizing current pulses were not altered by diazoxide (30 microM) or tolbutamide (300 microM). Moreover, normoxic and hypoxic I-V curves did not cross each other, excluding a reversal of the HD at any membrane potential between -130 and -50 mV. The hypoxia-induced change of the I-V relation was the same both in the absence and presence of tolbutamide (300 microM). In a second series of experiments, nucleoside di- and triphosphates separated with anion exchange HPLC were measured in the neocortical slices. After 5 min of hypoxia, levels of nucleoside triphosphates declined by 29% (GTP), 34% (ATP), 44% (UTP) and 58% (CTP). By contrast, the levels of nucleoside diphosphates either did not change (UDP) or increased by 13% (GDP) and 40% (ADP). In slices subjected to 30 min of hypoxia the triphosphate levels continued to decrease, while the levels of GDP and ADP returned to control values. The tri

  5. Molecular structure of human KATP in complex with ATP and ADP

    PubMed Central

    Lee, Kenneth Pak Kin

    2017-01-01

    In many excitable cells, KATP channels respond to intracellular adenosine nucleotides: ATP inhibits while ADP activates. We present two structures of the human pancreatic KATP channel, containing the ABC transporter SUR1 and the inward-rectifier K+ channel Kir6.2, in the presence of Mg2+ and nucleotides. These structures, referred to as quatrefoil and propeller forms, were determined by single-particle cryo-EM at 3.9 Å and 5.6 Å, respectively. In both forms, ATP occupies the inhibitory site in Kir6.2. The nucleotide-binding domains of SUR1 are dimerized with Mg2+-ATP in the degenerate site and Mg2+-ADP in the consensus site. A lasso extension forms an interface between SUR1 and Kir6.2 adjacent to the ATP site in the propeller form and is disrupted in the quatrefoil form. These structures support the role of SUR1 as an ADP sensor and highlight the lasso extension as a key regulatory element in ADP’s ability to override ATP inhibition. PMID:29286281

  6. The effects of glibenclamide, a K(ATP) channel blocker, on the warm-up phenomenon.

    PubMed

    Ferreira, Beatriz M A; Moffa, Paulo J; Falcão, Andrea; Uchida, Augusto; Camargo, Paulo; Pereyra, Pascual; Soares, Paulo R; Hueb, Whady; Ramires, Jose A F

    2005-07-01

    The warm-up phenomenon observed after the second of two sequential exercise tests is characterized by an increased time to ischemia and ischemic threshold, and the latter is related to ischemic preconditioning. Previous studies have demonstrated that a single dose of glibenclamide, a cardiac ATP-sensitive K (K(ATP)) channel blocker, prevents ischemic preconditioning. This study aimed to investigate the effects of chronic treatment with glibenclamide during two sequential exercise tests. Forty patients with angina pectoris were divided into three groups: 20 nondiabetics (NDM), 10 patients with diabetes in treatment with glibenclamide (DMG) and 10 diabetic patients with other treatments (DMO). All patients underwent two consecutive exercise tests. Heart rate and rate-pressure product at 1.0 mm ST-segment depression significantly increased during the second exercise test in NDM group (121.3+/-16.5 vs 127.3+/-15.3 beats/min, P<0.001, and 216.7+43.1 vs 232.1+/-43.0 beats.min-1.mmHg.10(2), P<0.001), and in DMO group (114.1+/-19.6 vs 119.6+/-18.1 beats/min, P=0.001, and 199.8+/-36.6 vs 222.2+/-29.2 beats.min-1.mmHg.10(2), P=0.019), but it did not change in patients in DMG group (130.7+/-14.5 vs 132.1+/-4.7 beats/min, P=ns, and 251.7+/-47.2 vs 250.3+/-42.8 beats.min-1.mmHg.10(2), P=ns). In the three groups, NDM, DMO, and DMG, the time to 1.0 mm ST-segment depression during the second exercise test was greater than during the first (225.0+/-112.5 vs 267.0+/-122.3 seconds, P=0.006; 187.5+/-54.0 vs 226.5+/-74.6 seconds, P=0.029 and 150.0+/-78.7 vs 186.0+/-81.9 seconds, P<0.001). The chronic use of glibenclamide may have mediated the loss of preconditioning benefits in the warm-up phenomenon, probably through its KATP channel-blocker activity, but without acting upon the tolerance to exercise.

  7. Cardiac Delayed Rectifier Potassium Channels in Health and Disease

    PubMed Central

    Chen, Lei; Sampson, Kevin J.; Kass, Robert S.

    2016-01-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  8. [Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets].

    PubMed

    Nakaya, Haruaki; Miki, Takashi; Seino, Susumu; Yamada, Katsuya; Inagaki, Nobuya; Suzuki, Masashi; Sato, Toshiaki; Yamada, Mitsuhiko; Matsushita, Kenji; Kurachi, Yoshihisa; Arita, Makoto

    2003-09-01

    ATP-sensitive K(+) (K(ATP)) channels comprise the pore-forming subunit (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptors (SUR1 or SUR2). K(ATP) channels with different combinations of these subunits are present in various tissues and regulate cellular functions. From the analysis of mouse models with targeted deletion of the gene encoding the pore-forming subunit Kir6.1 or Kir6.2, functional roles of K(ATP) channels in various organs have been clarified. Kir6.1(-/-) mice showed sudden death associated with ST elevation and atrioventricular block in ECG, a phenotype resembling Prinzmetal angina in humans. Kir6.2(-/-) mice were more susceptible to generalized seizure during hypoxia than wild-type (WT) mice, suggesting that neuronal K(ATP) channels, probably composed of Kir6.2 and SUR1, play a crucial role for the protection of the brain against lethal damage due to seizure. In Kir6.2(-/-) mice lacking the sarcolemmal K(ATP) channel activity in cardiac cells, ischemic preconditioning failed to reduce the infarct size, suggesting that sarcolemmal K(ATP) channels play an important role in cardioprotection against ischemia/reperfusion injuries in the heart. Mitochondrial K(ATP) channels have been also proposed to play a crucial role in cardioprotection, although the molecular identity of the channel has not been established. Nicorandil and minoxidil, K(+) channel openers activating mitochondrial K(ATP) channels, decreased the mitochondrial membrane potential, thereby preventing the Ca(2+) overload in the mitochondria of guinea-pig ventricular cells. SURs are the receptors for K(+) channel openers and the activating effects on sarcolemmal K(ATP) channels in cardiovascular tissues could be modulated by the interaction of nucleotides. Due to the molecular diversity of the accessory and pore subunits of K(ATP) channels, there would be considerable differences in the tissue selectivity of K(ATP) channel-acting drugs. Studies of Kir6.1 and Kir6.2 knockout

  9. Aprikalim a potassium adenosine triphosphate channel opener reduces neurologic injury in a rabbit model of spinal cord ischemia.

    PubMed

    Lozos, Vasileios A; Toumpoulis, Ioannis K; Agrogiannis, Georgios; Giamarellos-Bourboulis, Evangelos J; Chamogeorgakis, Themistocles P; Rizos, Ioannis K; Patsouris, Efstratios S; Anagnostopoulos, Constantine E; Rokkas, Chris K

    2013-01-01

    Potassium adenosine triphosphate (KATP) channel openers have been involved in the enhancement of ischemic tolerance in various tissues. The purpose of the present study is to evaluate the effects of aprikalim, a specific KATP channel opener, on spinal cord ischemic injury. Fifty-four rabbits were randomly assigned to three groups: group 1 (n = 18, sham operation), group 2 (n = 18, 30 min of normothermic aortic cross-clamping) and group 3 (n = 18, aprikalim 100 μg/kg was administered 15 min before 30 min of normothermic aortic cross-clamping). Neurologic evaluation was performed according to the modified Tarlov scale. Six animals from each group were sacrificed at 24, 48 and 168 h postoperatively. The lumbar spinal cords were harvested and examined histologically. The motor neurons were counted and the histologic lesions were scored (0-3, 3: normal). Group 3 (aprikalim group) had better Tarlov scores compared to group 2 at all-time points (P < 0.025). The histologic changes were proportional to the Tarlov scores and group 3 had better functional outcome as compared to group 2 at 168 h (number of neurons: 21.2 ± 4.9 vs. 8.0 ± 2.7, P < 0.001 and histologic score: 1.67 ± 1.03 vs. 0.50 ± 0.55, P = 0.03). Although aprikalim exhibited improved effect on clinical and histologic neurologic outcome when compared to normothermic spinal cord ischemia, animals in group 3 had worse Tarlov score, reduced number of motor neurons and worse histologic score when compared to group 1 (sham operation) at 168 h (P = 0.003, P = 0.001 and P = 0.019 respectively). Aprikalim reduces the severity of spinal cord ischemic injury in a rabbit model of spinal cord ischemia. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  10. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    PubMed

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Expression and distribution of Kv4 potassium channel subunits and potassium channel interacting proteins in subpopulations of interneurons in the basolateral amygdala.

    PubMed

    Dabrowska, J; Rainnie, D G

    2010-12-15

    The Kv4 potassium channel α subunits, Kv4.1, Kv4.2, and Kv4.3, determine some of the fundamental physiological properties of neurons in the CNS. Kv4 subunits are associated with auxiliary β-subunits, such as the potassium channel interacting proteins (KChIP1 - 4), which are thought to regulate the trafficking and gating of native Kv4 potassium channels. Intriguingly, KChIP1 is thought to show cell type-selective expression in GABA-ergic inhibitory interneurons, while other β-subunits (KChIP2-4) are associated with principal glutamatergic neurons. However, nothing is known about the expression of Kv4 family α- and β-subunits in specific interneurons populations in the BLA. Here, we have used immunofluorescence, co-immunoprecipitation, and Western Blotting to determine the relative expression of KChIP1 in the different interneuron subtypes within the BLA, and its co-localization with one or more of the Kv4 α subunits. We show that all three α-subunits of Kv4 potassium channel are found in rat BLA neurons, and that the immunoreactivity of KChIP1 closely resembles that of Kv4.3. Indeed, Kv4.3 showed almost complete co-localization with KChIP1 in the soma and dendrites of a distinct subpopulation of BLA neurons. Dual-immunofluorescence studies revealed this to be in BLA interneurons immunoreactive for parvalbumin, cholecystokin-8, and somatostatin. Finally, co-immunoprecipitation studies showed that KChIP1 was associated with all three Kv4 α subunits. Together our results suggest that KChIP1 is selectively expressed in BLA interneurons where it may function to regulate the activity of A-type potassium channels. Hence, KChIP1 might be considered as a cell type-specific regulator of GABAergic inhibitory circuits in the BLA. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. [Role of ATP-sensitive potassium channel activators in liver mitochondrial function in rats with different resistance to hypoxia].

    PubMed

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2003-01-01

    Effects of ATP-sensitive potassium (KATP) channels opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) in rats with different resistance to hypoxia on indices of ADP-stimulation of mitochondrial respiration by Chance, calcium capacity and processes of lipid peroxidation in liver has been investigated. We used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate. Additional analyses contain the next inhibitors: mitochondrial fermentative complex I-10 mkM rotenone, succinate dehydrogenase 2 mM malonic acid. It was shown that effects of pinacidil induced the increasing of oxidative phosporylation efficacy and ATP synthesis together with lowering of calcium capacity in rats with low resistance to hypoxia. Effects of pinacidil were leveled by glibenclamide. These changes are connected with the increasing of respiratory rate, calcium overload and intensification of lipid peroxidation processes. A conclusion was made about protective effect of pinacidil on mitochondrial functioning by economization of oxygen-dependent processes, adaptive potentialities of organisms with low resistance to hypoxia being increased.

  13. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells.

    PubMed

    Velasco, Myrian; Díaz-García, Carlos Manlio; Larqué, Carlos; Hiriart, Marcia

    2016-09-01

    Pancreatic beta cells, unique cells that secrete insulin in response to an increase in glucose levels, play a significant role in glucose homeostasis. Glucose-stimulated insulin secretion (GSIS) in pancreatic beta cells has been extensively explored. In this mechanism, glucose enters the cells and subsequently the metabolic cycle. During this process, the ATP/ADP ratio increases, leading to ATP-sensitive potassium (KATP) channel closure, which initiates depolarization that is also dependent on the activity of TRP nonselective ion channels. Depolarization leads to the opening of voltage-gated Na(+) channels (Nav) and subsequently voltage-dependent Ca(2+) channels (Cav). The increase in intracellular Ca(2+) triggers the exocytosis of insulin-containing vesicles. Thus, electrical activity of pancreatic beta cells plays a central role in GSIS. Moreover, many growth factors, incretins, neurotransmitters, and hormones can modulate GSIS, and the channels that participate in GSIS are highly regulated. In this review, we focus on the principal ionic channels (KATP, Nav, and Cav channels) involved in GSIS and how classic and new proteins, hormones, and drugs regulate it. Moreover, we also discuss advances on how metabolic disorders such as metabolic syndrome and diabetes mellitus change channel activity leading to changes in insulin secretion. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Kir6.2-dependent high-affinity repaglinide binding to β-cell KATP channels

    PubMed Central

    Hansen, Ann Maria K; Hansen, John Bondo; Carr, Richard D; Ashcroft, Frances M; Wahl, Philip

    2005-01-01

    The β-cell KATP channel is composed of two types of subunit – the inward rectifier K+ channel (Kir6.2) which forms the channel pore, and the sulphonylurea receptor (SUR1), which serves as a regulatory subunit. The N-terminus of Kir6.2 is involved in transduction of sulphonylurea binding into channel closure, and deletion of the N-terminus (Kir6.2ΔN14) results in functional uncoupling of the two subunits. In this study, we investigate the interaction of the hypoglycaemic agents repaglinide and glibenclamide with SUR1 and the effect of Kir6.2 on this interaction. We further explore how the binding properties of repaglinide and glibenclamide are affected by functional uncoupling of SUR1 and Kir6.2 in Kir6.2ΔN14/SUR1 channels. All binding experiments are performed on membranes in ATP-free buffer at 37°C. Repaglinide was found to bind with low affinity (KD=59±16 nM) to SUR1 alone, but with high affinity (increased ∼150-fold) when SUR1 was co-expressed with Kir6.2 (KD=0.42±0.03 nM). Glibenclamide, tolbutamide and nateglinide all bound with marginally lower affinity to SUR1 than to Kir6.2/SUR1. Repaglinide bound with low affinity (KD=51±23 nM) to SUR1 co-expressed with Kir6.2ΔN14. In contrast, the affinity for glibenclamide, tolbutamide and nateglinide was only mildly changed as compared to wild-type channels. In whole-cell patch-clamp experiments inhibition of Kir6.2ΔN14/SUR1 currents by both repaglinide and nateglinde is abolished. The results suggest that Kir6.2 causes a conformational change in SUR1 required for high-affinity repaglinide binding, or that the high-affinity repaglinide-binding site includes contributions from both SUR1 and Kir6.2. Glibenclamide, tolbutamide and nateglinide binding appear to involve only SUR1. PMID:15678092

  15. The renal TRPV4 channel is essential for adaptation to increased dietary potassium

    PubMed Central

    Mamenko, Mykola; Boukelmoune, Nabila; Tomilin, Viktor; Zaika, Oleg; Jensen, V. Behrana; O’Neil, Roger G.; Pochynyuk, Oleh

    2016-01-01

    To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance. PMID:28187982

  16. The renal TRPV4 channel is essential for adaptation to increased dietary potassium.

    PubMed

    Mamenko, Mykola V; Boukelmoune, Nabila; Tomilin, Viktor N; Zaika, Oleg L; Jensen, V Behrana; O'Neil, Roger G; Pochynyuk, Oleh M

    2017-06-01

    To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Cardioprotective benefits of adenosine triphosphate-sensitive potassium channel opener diazoxide are lost with administration after the onset of stress in mouse and human myocytes.

    PubMed

    Janjua, M Burhan; Makepeace, Carol M; Anastacio, Melissa M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2014-10-01

    Adenosine triphosphate-sensitive (KATP) potassium channel opener diazoxide (DZX) maintains myocyte volume and contractility during stress via an unknown mechanism when administered at the onset of stress. This study was performed to investigate the cardioprotective potential of DZX when added after the onset of the stresses of hyperkalemic cardioplegia, metabolic inhibition, and hypo-osmotic stress. Isolated mouse ventricular and human atrial myocytes were exposed to control Tyrode's solution (TYR) for 10 to 20 minutes, test solution for 30 minutes (hypothermic hyperkalemic cardioplegia [CPG], CPG + 100uM diazoxide [CPG+DZX], metabolic inhibition [MI], MI+DZX, mild hypo-osmotic stress [0.9T], or 0.9T + DZX), with DZX added after 10 or 20 minutes of stress, followed by 20 minutes of re-exposure to TYR (±DZX). Myocyte volume (human + mouse) and contractility (mouse) were compared. Mouse and human myocytes demonstrated significant swelling during exposure to CPG, MI, and hypo-osmotic stress that was not prevented by DZX when administered either at 10 or 20 minutes after the onset of stress. Contractility after the stress of CPG in mouse myocytes significantly declined when DZX was administered 20 minutes after the onset of stress (p < 0.05 vs TYR). Contractility after hypo-osmotic stress in mouse myocytes was not altered by the addition of DZX. To maintain myocyte volume homeostasis and contractility during stress (hyperkalemic cardioplegia, metabolic inhibition, and hypo-osmotic stress), KATP channel opener diazoxide requires administration at the onset of stress in this isolated myocyte model. These data have potential implications for any future clinical application of diazoxide. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  18. G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action.

    PubMed

    Lewohl, J M; Wilson, W R; Mayfield, R D; Brozowski, S J; Morrisett, R A; Harris, R A

    1999-12-01

    G-protein-coupled inwardly rectifying potassium channels (GIRKs) are important for regulation of synaptic transmission and neuronal firing rates. Because of their key role in brain function, we asked if these potassium channels are targets of alcohol action. Ethanol enhanced function of cerebellar granule cell GIRKs coupled to GABAB receptors. Enhancement of GIRK function by ethanol was studied in detail using Xenopus oocytes expressing homomeric or heteromeric channels. Function of all GIRK channels was enhanced by intoxicating concentrations of ethanol, but other, related inwardly rectifying potassium channels were not affected. GIRK2/IRK1 chimeras and GIRK2 truncation mutants were used to identify a region of 43 amino acids in the carboxyl (C) terminus that is critical for the action of ethanol on these channels.

  19. Potassium Channels and Uterine Vascular Adaptation to Pregnancy and Chronic Hypoxia

    PubMed Central

    Zhu, Ronghui; Xiao, DaLiao; Zhang, Lubo

    2014-01-01

    During a normal course of pregnancy, uterine vascular tone is significantly decreased resulting in a striking increase in uterine blood flow, which is essential for fetal development and fetal growth. Chronic hypoxia during gestation may adversely affect the normal adaptation of uterine vascular tone and increase the risk of preeclampsia and fetal intrauterine growth restriction. In this review, we present evidence that the regulation of K+ channels is an important mechanism in the adaptation of uterine vascular tone to pregnancy and hypoxia. There are four types of K+ channels identified in arterial smooth muscle cells: 1) voltage-dependent K+ (Kv) channels, 2) Ca2+-activated K+ (KCa) channels, 3) inward rectifier K+ (KIR) channels, and 4) ATP-sensitive K+ (KATP) channels. Pregnancy differentially augments the expression and activity of K+ channels via downregulation of protein kinase C signaling in uterine and other vascular beds, leading to decreased uterine vascular tone and increased uterine blood flow. Sex steroid hormones play an important role in the pregnancy-mediated alteration of K+ channels in the uterine vasculature. In addition, chronic hypoxia alters uterine vascular K+ channels expression and activities via modulation of steroid hormones/receptors-mediated signaling, resulting in increased uterine vascular tone during pregnancy. PMID:24063385

  20. Role of potassium ion channels in detrusor smooth muscle function and dysfunction

    PubMed Central

    Petkov, Georgi V.

    2013-01-01

    Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K+ channels, including voltage-gated K+ (KV) channels, Ca2+-activated K+ (KCa) channels, inward-rectifying ATP-sensitive K+ (Kir, KATP) channels, and two-pore-domain K+ (K2P) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K+ channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K+ channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K+ channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K+ channels in DSM in health and disease, with special emphasis on current advancements in the field. PMID:22158596

  1. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    PubMed

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    PubMed

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    PubMed

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  4. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    PubMed

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Age-dependent axonal expression of potassium channel proteins during development in mouse hippocampus.

    PubMed

    Prüss, Harald; Grosse, Gisela; Brunk, Irene; Veh, Rüdiger W; Ahnert-Hilger, Gudrun

    2010-03-01

    The development of the hippocampal network requires neuronal activity, which is shaped by the differential expression and sorting of a variety of potassium channels. Parallel to their maturation, hippocampal neurons undergo a distinct development of their ion channel profile. The age-dependent dimension of ion channel occurrence is of utmost importance as it is interdependently linked to network formation. However, data regarding the exact temporal expression of potassium channels during postnatal hippocampal development are scarce. We therefore studied the expression of several voltage-gated potassium channel proteins during hippocampal development in vivo and in primary cultures, focusing on channels that were sorted to the axonal compartment. The Kv1.1, Kv1.2, Kv1.4, and Kv3.4 proteins showed a considerable temporal variation of axonal localization among neuronal subpopulations. It is possible, therefore, that hippocampal neurons possess cell type-specific mechanisms for channel compartmentalization. Thus, age-dependent axonal sorting of the potassium channel proteins offers a new approach to functionally distinguish classes of hippocampal neurons and may extend our understanding of hippocampal circuitry and memory processing.

  6. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    PubMed

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  7. Ion Conduction through the hERG Potassium Channel

    PubMed Central

    Cavalli, Andrea; Recanatini, Maurizio

    2012-01-01

    The inward rectifier voltage-gated potassium channel hERG is of primary importance for the regulation of the membrane potential of cardiomyocytes. Unlike most voltage-gated K+-channels, hERG shows a low elementary conductance at physiological voltage and potassium concentration. To investigate the molecular features underlying this unusual behavior, we simulated the ion conduction through the selectivity filter at a fully atomistic level by means of molecular dynamics-based methods, using a homology-derived model. According to our calculations, permeation of potassium ions can occur along two pathways, one involving site vacancies inside the filter (showing an energy barrier of about 6 kcal mol−1), and the other characterized by the presence of a knock-on intermediate (about 8 kcal mol−1). These barriers are indeed in accordance with a low conductance behavior, and can be explained in terms of a series of distinctive structural features displayed by the hERG ion permeation pathway. PMID:23133669

  8. Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria.

    PubMed

    Checchetto, Vanessa; Segalla, Anna; Allorent, Guillaume; La Rocca, Nicoletta; Leanza, Luigi; Giacometti, Giorgio Mario; Uozumi, Nobuyuki; Finazzi, Giovanni; Bergantino, Elisabetta; Szabò, Ildikò

    2012-07-03

    A potassium channel (SynK) of the cyanobacterium Synechocystis sp. PCC 6803, a photoheterotrophic model organism for the study of photosynthesis, has been recently identified and demonstrated to function as a potassium selective channel when expressed in a heterologous system and to be located predominantly to the thylakoid membrane in cyanobacteria. To study its physiological role, a SynK-less knockout mutant was generated and characterized. Fluorimetric experiments indicated that SynK-less cyanobacteria cannot build up a proton gradient as efficiently as WT organisms, suggesting that SynK might be involved in the regulation of the electric component of the proton motive force. Accordingly, measurements of flash-induced cytochrome b(6)f turnover and respiration pointed to a reduced generation of ΔpH and to an altered linear electron transport in mutant cells. The lack of the channel did not cause an altered membrane organization, but decreased growth and modified the photosystem II/photosystem I ratio at high light intensities because of enhanced photosensitivity. These data shed light on the function of a prokaryotic potassium channel and reports evidence, by means of a genetic approach, on the requirement of a thylakoid ion channel for optimal photosynthesis.

  9. Regulation of ATP sensitive potassium channel of isolated guinea pig ventricular myocytes by sarcolemmal monocarboxylate transport.

    PubMed

    Coetzee, W A

    1992-11-01

    The aim was to describe the effects of extracellular application of monocarboxylates (pyruvate, lactate, or acetate) on current through KATP channels (iK,ATP) in isolated guinea pig ventricular myocytes. The iK,ATP was elicited during whole cell voltage clamping by application of metabolic poisons, 2,4-dinitrophenol (150 microM) or glucose free cyanide (1 mM) and could be blocked by glibenclamide (3 microM). Extracellular application of monocarboxylates, pyruvate (0.1-10 mM), L-lactate (0.1-10 mM), and acetate (10 mM) led to a rapid inhibition of iK,ATP--an effect which was fully reversible upon washout. Substances without any effect on iK,ATP were (10 mM each) gluconate, citrate, glutamate, creatine, succinate, and glycine. The mechanism underlying the effects of monocarboxylates on iK,ATP was unlikely to be related to an increased ATP production, since D-lactate (10 mM) essentially had the same effect on iK,ATP as the L-isomer of lactate. Furthermore, with intracellular dialysis of alpha-cyano-4-hydroxycinnamate (0.1-0.5 mM), which inhibits pyruvate uptake into mitochondria, extracellular pyruvate exerted the same inhibitory effect on iK,ATP. High concentrations of extracellular alpha-cyano-4-hydroxycinnamate (4 mM), which blocks the sarcolemmal monocarboxylate carrier, prevented the effects on iK,ATP by pyruvate, L-lactate, D-lactate, and acetate. Furthermore, intracellular dialysis with D-lactate (10 mM) led to a more rapid onset of iK,ATP when activated by ATP free dialysis. Activity of isolated KATP channels, measured in isolated membrane patches in the inside out or outside out configuration, typically had a single channel conductance of around 80 pS and was blocked by glibenclamide (3-9 microM). No significant effect of pyruvate was observed in either patch configuration. In cardiac tissue there may be some modulatory role involving monocarboxylate transport on KATP channel activity, the nature of which is unclear at present but which may involve cytosolic

  10. Relative similarity within purine nucleotide and ligand structures operating on nitric oxide synthetase, guanylyl cyclase and potassium (K ATP, BK Ca) channels.

    PubMed

    Williams, W Robert

    2011-01-01

    Purine nucleotides play a central role in signal transduction events initiated at the cell membrane. The NO-cGMP-cGK pathway, in particular, mediates events involving NOS and some classes of K(+) ion channel. The aim of this study is to investigate relative molecular similarity within the ligands binding to NOS, K(ATP), BK(Ca) channels and regulatory nucleotides. Minimum energy conformers of the ligand structures were superimposed and fitted to L-arginine and the nucleotides of adenine and guanine using a computational program. Distinctive patterns were evident in the fitting of NOS isoform antagonists to L-arginine. K(ATP) channel openers and antagonists superimposed on the glycosidic linkage and imidazole ring of the purine nucleotides, and guanidinium and ribose groups of GTP in the case of glibenclamide. The fits of BK(Ca) channel openers and antagonists to cGMP were characterized by the linear dimensions of their structures; distances between terminal oxy groups in respect of dexamethasone and aldosterone. The findings provide structural evidence for the functional interaction between K(+) channel openers/antagonists and the regulatory nucleotides. Use of the purine nucleotide template systematizes the considerable heterogeneity evident within the structures of ligands operating on K(+) ion channels. © 2010 The Author. JPP © 2010 Royal Pharmaceutical Society.

  11. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    PubMed Central

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  12. Diadenosine tetraphosphate-induced inhibition of ATP-sensitive K+ channels in patches excised from ventricular myocytes.

    PubMed Central

    Jovanovic, A.; Terzic, A.

    1996-01-01

    Diadenosine 5',5''-P1,P4-tetraphosphate (Ap4A) has been termed 'alarmone' due to its role in intracellular signaling during metabolic stress. It is not known whether Ap4A could modulate ATP-sensitive K+ (KATP) channels, a family of channels regulated by the metabolic status of a cell. We applied the single-channel patch-clamp technique to measure the effect of Ap4A on KATP channels. When applied to the intracellular side of patches, excised from guinea-pig ventricular myocytes, Ap4A inhibited KATP channel activity, in a reversible and concentration-dependent (half-maximal concentration approximately 17 microM) manner. We conclude that Ap4A, a naturally occurring diadenosine polyphosphate, is actually an inhibitor of the myocardial KATP channel. PMID:8789372

  13. St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats.

    PubMed

    Almeida, R T; Galdino, G; Perez, A C; Silva, G; Romero, T R; Duarte, I D

    2017-02-01

    Orofacial pain is pain perceived in the face and/or oral cavity, generally caused by diseases or disorders of regional structures, by dysfunction of the nervous system, or through referral from distant sources. Treatment of orofacial pain is mainly pharmacological, but it has increased the number of reports demonstrating great clinical results with the use of non-pharmacological therapies, among them electroacupuncture. However, the mechanisms involved in the electroacupuncture are not well elucidated. Thus, the present study investigate the involvement of the nitric oxide synthase (NOS) and ATP sensitive K + channels (KATP) in the antinociception induced by electroacupuncture (EA) at acupoint St36. Thermal nociception was applied in the vibrissae region of rats, and latency time for face withdrawal was measured. Electrical stimulation of acupoint St36 for 20 minutes reversed the thermal withdrawal latency and this effect was maintained for 150 min. Intraperitoneal administration of specific inhibitors of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and a KATP channels blocker reversed the antinociception induced by EA. Furthermore, nitrite concentration in cerebrospinal fluid (CSF) and plasma, increased 4 and 3-fold higher, respectively, after EA. This study suggests that NO participates of antinociception induced by EA by nNOS, iNOS and ATP-sensitive K + channels activation.

  14. Role of ER Export Signals in Controlling Surface Potassium Channel Numbers

    NASA Astrophysics Data System (ADS)

    Ma, Dzwokai; Zerangue, Noa; Lin, Yu-Fung; Collins, Anthony; Yu, Mei; Jan, Yuh Nung; Yeh Jan, Lily

    2001-01-01

    Little is known about the identity of endoplasmic reticulum (ER) export signals and how they are used to regulate the number of proteins on the cell surface. Here, we describe two ER export signals that profoundly altered the steady-state distribution of potassium channels and were required for channel localization to the plasma membrane. When transferred to other potassium channels or a G protein-coupled receptor, these ER export signals increased the number of functional proteins on the cell surface. Thus, ER export of membrane proteins is not necessarily limited by folding or assembly, but may be under the control of specific export signals.

  15. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body. Published by Elsevier Inc.

  16. Free RCK arrangement in Kch, a putative escherichia coli potassium channel, as suggested by electron crystallography.

    PubMed

    Kuang, Qie; Purhonen, Pasi; Jegerschöld, Caroline; Koeck, Philip J B; Hebert, Hans

    2015-01-06

    The ligand-gated potassium channels are stimulated by various kinds of messengers. Previous studies showed that ligand-gated potassium channels containing RCK domains (the regulator of the conductance of potassium ion) form a dimer of tetramer structure through the RCK octameric gating ring in the presence of detergent. Here, we have analyzed the structure of Kch, a channel of this type from Escherichia coli, in a lipid environment using electron crystallography. By combining information from the 3D map of the transmembrane part of the protein and docking of an atomic model of a potassium channel, we conclude that the RCK domains face the solution and that an RCK octameric gating ring arrangement does not form under our crystallization condition. Our findings may be applied to other potassium channels that have an RCK gating ring arrangement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel.

    PubMed

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na + /K + -ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K + -battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  18. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na+/K+-ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K+-battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  19. In-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K+ Channels; Interaction and New Targets

    PubMed Central

    Moreno, Cristina; de la Cruz, Alicia; Valenzuela, Carmen

    2016-01-01

    Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the KV channel modulation by PUFAs: (i) the exact residues involved in PUFAs-KV channels interaction; (ii) the structural PUFAs determinants important for their effects on KV channels; (iii) the mechanism of the gating modulation of KV channels and, finally, (iv) the PUFAs modulation of a few new targets present in smooth muscle cells (SMC), KCa1.1, K2P, and KATP channels, involved in vascular relaxation. PMID:27933000

  20. In vivo Expression of a Light-activatable Potassium Channel Using Unnatural Amino Acids

    PubMed Central

    Kang, Ji-Yong; Kawaguchi, Daichi; Coin, Irene; Xiang, Zheng; O’Leary, Dennis D. M.; Slesinger, Paul A.; Wang, Lei

    2013-01-01

    SUMMARY Optical control of protein function provides excellent spatial-temporal resolution for studying proteins in situ. Although light-sensitive exogenous proteins and ligands have been employed to manipulate neuronal activity, a method for optical control of neuronal proteins using unnatural amino acids (Uaa) in vivo is lacking. Here, we describe the genetic incorporation of a photoreactive Uaa into the pore of an inwardly-rectifying potassium channel Kir2.1. The Uaa occluded the pore, rendering the channel non-conducting, and upon brief light illumination, was released to permit outward K+ current. Expression of this photo-inducible inwardly rectifying potassium (PIRK) channel in rat hippocampal neurons created a light-activatable PIRK switch for suppressing neuronal firing. We also expressed PIRK channels in embryonic mouse neocortex in vivo and demonstrated a light-activated PIRK current in cortical neurons. The principles applied here to a potassium channel could be generally expanded to other proteins expressed in the brain to enable optical regulation. PMID:24139041

  1. Cantú Syndrome Resulting from Activating Mutation in the KCNJ8 Gene

    PubMed Central

    Cooper, Paige E.; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K.; van Haaften, Gijs; van Bon, Bregje W.; Hoischen, Alexander; Nichols, Colin G.

    2014-01-01

    ATP-sensitive potassium (KATP) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome, a distinct multi-organ disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of Cantú syndrome (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether co-expressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in Cantú syndrome, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from Kir6-independent SUR2 function. PMID:24700710

  2. Cantú syndrome resulting from activating mutation in the KCNJ8 gene.

    PubMed

    Cooper, Paige E; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K; van Haaften, Gijs; van Bon, Bregje W; Hoischen, Alexander; Nichols, Colin G

    2014-07-01

    ATP-sensitive potassium (KATP ) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome (CS), a distinct multiorgan disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of CS (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether coexpressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in CS, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from a Kir6-independent SUR2 function. © 2014 WILEY PERIODICALS, INC.

  3. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins.

    PubMed

    Ponnalagu, Devasena; Gururaja Rao, Shubha; Farber, Jason; Xin, Wenyu; Hussain, Ahmed Tafsirul; Shah, Kajol; Tanda, Soichi; Berryman, Mark; Edwards, John C; Singh, Harpreet

    2016-03-01

    Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  4. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus

    PubMed Central

    Mohamed, Zahurin; Abdullah, Nor Azizan; Haghvirdizadeh, Pantea; Haerian, Monir Sadat

    2015-01-01

    Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM. PMID:26448950

  5. Coulomb interaction rules timescales in potassium ion channel tunneling

    NASA Astrophysics Data System (ADS)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  6. MitoKATP regulating HIF/miR210/ISCU signaling axis and formation of a positive feedback loop in chronic hypoxia-induced PAH rat model.

    PubMed

    Lu, Yang; Huang, Jing; Geng, Shuang; Chen, Hao; Song, Cheng; Zhu, Shan; Zhao, Su; Yuan, Mingli; Li, Xueying; Hu, Hongling

    2017-05-01

    In the present study, we studied the mechanism of mitochondrial ATP-sensitive potassium (mitoKATP) channels regulating hypoxia-inducible factor (HIF)-1α/microRNA (miR)-210/mitochondrial iron-sulfur protein integrin (ISCU) signaling axis and forming a positive feedback loop in chronic hypoxia-induced pulmonary arterial hypertension (PAH) by using in vivo animal model. Two hundred healthy adult SPF Sprague-Dawley rats were randomly divided into five groups: Control, a mimic miR-210 agent (mimic-210) intervention, a miR-210 inhibitor (anti-210) intervention, a chronic PAH and an anti-210 intervention PAH groups, with 40 rats in each group. After the chronic PAH rat model was successfully established, the rats were intervened with mimic-210 and anti-210. The pulmonary artery smooth muscle cells (PASMCs) of rats in each group were acutely isolated and the activity of mitoKATP and mitochondria-derived oxygen free radicals reactive oxygen species (ROS) was detected. RT-qPCR was used to detect the gene of HIF-1α/miR-210/ISCU and western blot analysis was used to detect the protein of HIF-1α and ISCU. The gene and protein expression were detected again after mitoKATP-specific opener diazoxide and blocker 5-HD was given via tail vein and took effect on each group of rats, respectively. Additionally, the indicators were detected again after ISCU recombinant protein was given via tail vein and ISCU small interfering RNA (siRNA) via nasal feeding and took effect on each group of rats, respectively. It was found that the activity of mitoKATP and ROS and the gene and protein levels of HIF-1α/miR-210/ISCU of the mimic-210 group were significantly higher than those of the control group while that of the anti-210 group was significantly reduced (P<0.05). The indicators in the chronic PAH group were significantly higher than those of the control group while those of the anti-210 intervention PAH group were significantly reduced (P<0.05). The indicators of all the groups were

  7. Susceptibility of ATP-sensitive K+ channels to cell stress through mediation of phosphoinositides as examined by photoirradiation

    PubMed Central

    Fan, Zheng; Neff, Robert A

    2000-01-01

    Cell stress is implicated in a number of pathological states of metabolism, such as ischaemia, reperfusion and apoptosis in heart, neurons and other tissues. While it is known that the ATP-sensitive K+ (KATP) channel plays a role during metabolic abnormality, little information is available about the direct response of this channel to cell stress. Using photoirradiation stimulation, we studied the effects of cell stress on both native and cloned KATP channels. Single KATP channel currents were recorded from cell-attached and inside-out patches of rat ventricular myocytes and COS-1 cells coexpressing SUR2 and Kir6.2. KATP channel activity increased within < 1 min upon irradiation. The activity resulted from increased maximal open probability and decreased ATP inhibition. The effects remained after the irradiation was stopped. Irradiation also affected the channels formed only by Kir6.2ΔC35. The irradiation-induced activation was comparable to that induced by phosphoinositides. Analysis of phosphatidylinositol composition revealed an elevated phosphatidylinositol bisphosphate level with irradiation. Wortmannin, an inhibitor of phosphatidylinositol kinases, decreased both the irradiation-induced channel activity and the production of phosphatidylinositol bisphosphates. Radical scavengers also reduced the irradiation-induced activation, suggesting a role for free radicals, an immediate product of photoirradiation. We conclude that photoirradiation can modify the single-channel properties of KATP, which appears to be mediated by phosphoinositides. Our study suggests that cellular stress may be linked with KATP channels, and we offer a putative mechanism for such a linkage. PMID:11118500

  8. ATP-Sensitive K+ Channel Knockout Induces Cardiac Proteome Remodeling Predictive of Heart Disease Susceptibility

    PubMed Central

    Arrell, D. Kent; Zlatkovic, Jelena; Kane, Garvan C.; Yamada, Satsuki; Terzic, Andre

    2010-01-01

    Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (KATP) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 KATP channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved > 800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. KATP channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the KATP channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a KATP channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the KATP channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by KATP channel deletion, establishing a systems

  9. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy

    PubMed Central

    Ge, Lisheng; Hoa, Neil T.; Wilson, Zechariah; Arismendi-Morillo, Gabriel; Kong, Xia-Tang; Tajhya, Rajeev B.; Beeton, Christine; Jadus, Martin R.

    2017-01-01

    The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, Stretch-activated potassium channels, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of BK channels, especially its role, and that it has in the immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered. PMID:25027630

  10. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    PubMed

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  11. Hybrid assemblies of ATP-sensitive K+ channels determine their muscle-type-dependent biophysical and pharmacological properties.

    PubMed

    Tricarico, Domenico; Mele, Antonietta; Lundquist, Andrew L; Desai, Reshma R; George, Alfred L; Conte Camerino, Diana

    2006-01-24

    ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.

  12. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans.

    PubMed

    Yun, JiEun; Lee, Dong Gun

    2017-03-01

    Chlorogenic acid (CRA) is an abundant phenolic compound in the human diet. CRA has a potent antifungal effect, inducing cell death in Candida albicans. However, there are no further studies to investigate the antifungal mechanism of CRA, associated with ion channels. To evaluate the inhibitory effects on CRA-induced cell death, C. albicans cells were pretreated with potassium and chloride channel blockers, separately. Flow cytometry was carried out to detect several hallmarks of apoptosis, such as cell cycle arrest, caspase activation, and DNA fragmentation, after staining of the cells with SYTOX green, FITC-VAD-FMK, and TUNEL. CRA caused excessive potassium efflux, and an apoptotic volume decrease (AVD) was observed. This change, in turn, induced cytosolic calcium uptake and cell cycle arrest in C. albicans. Moreover, CRA induced caspase activation and DNA fragmentation, which are considered apoptotic markers. In contrast, the potassium efflux and proapoptotic changes were inhibited when potassium channels were blocked, whereas there was no inhibitory effect when chloride channels were blocked. CRA induces potassium efflux, leading to AVD and G2/M cell cycle arrest in C. albicans. Therefore, potassium efflux via potassium channels regulates the CRA-induced apoptosis, stimulating several apoptotic processes. This study improves the understanding of the antifungal mechanism of CRA and its association with ion homeostasis, thereby pointing to a role of potassium channels in CRA-induced apoptosis. Copyright © 2016. Published by Elsevier B.V.

  13. The Ketogenic Diet and Potassium Channel Function

    DTIC Science & Technology

    2014-10-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The overall objective of this Discovery Award is to explore the hypothesis the ketogenic diet ...have examining the impact of the ketogenic diet on mice in which the gene that encodes Kvβ2 has been deleted (Kvβ2 KO mice) using an in vitro model of

  14. Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.

    PubMed

    Kline, Crystal F; Kurata, Harley T; Hund, Thomas J; Cunha, Shane R; Koval, Olha M; Wright, Patrick J; Christensen, Matthew; Anderson, Mark E; Nichols, Colin G; Mohler, Peter J

    2009-09-29

    The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.

  15. Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia.

    PubMed

    Tomasello, Danielle L; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin

    2017-01-01

    The Slick (Kcnt2) sodium-activated potassium (K Na ) channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs), we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene-related peptide (CGRP)-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV)-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO) mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs), and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  16. Effect of potassium channel modulators in mouse forced swimming test

    PubMed Central

    Galeotti, Nicoletta; Ghelardini, Carla; Caldari, Bernardetta; Bartolini, Alessandro

    1999-01-01

    The effect of intracerebroventricular (i.c.v.) administration of different potassium channel blockers (tetraethylammonium, apamin, charybdotoxin, gliquidone), potassium channel openers (pinacidil, minoxidil, cromakalim) and aODN to mKv1.1 on immobility time was evaluated in the mouse forced swimming test, an animal model of depression. Tetraethylammonium (TEA; 5 μg per mouse i.c.v.), apamin (3 ng per mouse i.c.v.), charybdotoxin (1 μg per mouse i.c.v.) and gliquidone (6 μg per mouse i.c.v.) administered 20 min before the test produced anti-immobility comparable to that induced by the tricyclic antidepressants amitriptyline (15 mg kg−1 s.c.) and imipramine (30 mg kg−1 s.c.). By contrast pinacidil (10–20 μg per mouse i.c.v.), minoxidil (10–20 μg per mouse i.c.v.) and cromakalim (20–30 μg per mouse i.c.v.) increased immobility time when administered in the same experimental conditions. Repeated administration of an antisense oligonucleotide (aODN) to the mKv1.1 gene (1 and 3 nmol per single i.c.v. injection) produced a dose-dependent increase in immobility time of mice 72 h after the last injection. At day 7, the increasing effect produced by aODN disappeared. A degenerate mKv1.1 oligonucleotide (dODN), used as control, did not produce any effect in comparison with saline- and vector-treated mice. At the highest effective dose, potassium channels modulators and the mKv1.1 aODN did not impair motor coordination, as revealed by the rota rod test, nor did they modify spontaneous motility as revealed by the Animex apparatus. These results suggest that modulation of potassium channels plays an important role in the regulation of immobility time in the mouse forced swimming test. PMID:10323599

  17. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel.

    PubMed

    Wang, Ming-Xiao; Cuevas, Catherina A; Su, Xiao-Tong; Wu, Peng; Gao, Zhong-Xiuzi; Lin, Dao-Hong; McCormick, James A; Yang, Chao-Ling; Wang, Wen-Hui; Ellison, David H

    2018-04-01

    Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  19. Involvement of WNK1-mediated potassium channels in the sexual dimorphism of blood pressure.

    PubMed

    Yu, Guofeng; Cheng, Mengting; Wang, Wei; Zhao, Rong; Liu, Zhen

    2017-04-01

    Potassium homeostasis plays an essential role in the control of blood pressure. It is unknown, however, whether potassium balance is involved in the gender-associated blood pressure differences. We therefore investigated the possible mechanism of sexual dimorphism in blood pressure regulation by measuring the blood pressure, plasma potassium, renal actions of potassium channels and upstream regulator in male and female mice. Here we found that female mice exhibited lower blood pressure and higher plasma K + level as compared to male littermates. Western blot analyses of mouse kidney extract revealed a significant decrease in renal outer medullary potassium (ROMK) channel expression, while large-conductance Ca 2+ -activated K + (BK) channel and Na-K-2Cl cotransporter (NKCC2) as well as the upstream regulator with-no-lysine kinase 1 (WNK1) enhanced in female mice under normal condition. Surprisingly, both dietary K + loading and K + depletion eliminated the differences in plasma K + and blood pressure between females and males, and the differences of renal K + channels and WNK1 also attenuated in both groups of mice. These findings indicated the existence of a close correlation between K + homeostasis and sex-associated blood pressure. Moreover, the differential regulation of ROMK, BK-α and NKCC2 between female and male mice, at least, were partly mediated via WNK1 pathway, which may contribute to the sexual dimorphism of plasma K + and blood pressure control. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Differential effect of brief electrical stimulation on voltage-gated potassium channels.

    PubMed

    Cameron, Morven A; Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H; Morley, John W

    2017-05-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (Na V channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (K V channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different K V -channel subtypes. Computational modeling reveals substantial differences in the response of specific K V -channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different K V -channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that K V -channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (K V channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between K V channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or

  1. Differential effect of brief electrical stimulation on voltage-gated potassium channels

    PubMed Central

    Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.

    2017-01-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or

  2. The dipole moment of membrane proteins: potassium channel protein and beta-subunit.

    PubMed

    Takashima, S

    2001-12-25

    The mechanism of ion channel opening is one of the most fascinating problems in membrane biology. Based on phenomenological studies, early researchers suggested that the elementary process of ion channel opening may be the intramembrane charge movement or the orientation of dipolar proteins in the channel. In spite of the far reaching significance of these hypotheses, it has not been possible to formulate a comprehensive molecular theory for the mechanism of channel opening. This is because of the lack of the detailed knowledge on the structure of channel proteins. In recent years, however, the research on the structure of channel proteins made marked advances and, at present, we are beginning to have sufficient information on the structure of some of the channel proteins, e.g. potassium-channel protein and beta-subunits. With these new information, we are now ready to have another look at the old hypothesis, in particular, the dipole moment of channel proteins being the voltage sensor for the opening and closing of ion channels. In this paper, the dipole moments of potassium channel protein and beta-subunit, are calculated using X-ray diffraction data. A large dipole moment was found for beta-subunits while the dipole moment of K-channel protein was found to be considerably smaller than that of beta-subunits. These calculations were conducted as a preliminary study of the comprehensive research on the dipolar structure of channel proteins in excitable membranes, above all, sodium channel proteins.

  3. Involvement of a Gardos-type potassium channel in head activator-induced mitosis of BON cells.

    PubMed

    Kayser, S T; Ulrich, H; Schaller, H C

    1998-06-01

    The human neuroendocrine cell line BON was used to study second messengers involved in signal transduction for entry into mitosis. BON cells produce the neuropeptide head activator (HA) and use it as autocrine growth factor. HA stimulates BON cell proliferation by triggering entry into mitosis. HA-induced mitosis is mediated by an inhibitory G protein, the action of which is blocked by pertussis toxin. HA signaling requires inhibition of the cAMP pathway, calcium influx, and hyperpolarization of cells. The latter is a very important and sensitive step involving a calcium-activated potassium channel. Cell cycle progression and proliferation of BON cells are most efficiently inhibited with specific inhibitors of this potassium channel. Pharmacology and RNA analysis suggest identity with the recently cloned Gardos-type potassium channel.

  4. Dominant missense mutations in ABCC9 cause Cantú syndrome.

    PubMed

    Harakalova, Magdalena; van Harssel, Jeske J T; Terhal, Paulien A; van Lieshout, Stef; Duran, Karen; Renkens, Ivo; Amor, David J; Wilson, Louise C; Kirk, Edwin P; Turner, Claire L S; Shears, Debbie; Garcia-Minaur, Sixto; Lees, Melissa M; Ross, Alison; Venselaar, Hanka; Vriend, Gert; Takanari, Hiroki; Rook, Martin B; van der Heyden, Marcel A G; Asselbergs, Folkert W; Breur, Hans M; Swinkels, Marielle E; Scurr, Ingrid J; Smithson, Sarah F; Knoers, Nine V; van der Smagt, Jasper J; Nijman, Isaac J; Kloosterman, Wigard P; van Haelst, Mieke M; van Haaften, Gijs; Cuppen, Edwin

    2012-05-18

    Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.

  5. Voltage Sensor Inactivation in Potassium Channels

    PubMed Central

    Bähring, Robert; Barghaan, Jan; Westermeier, Regina; Wollberg, Jessica

    2012-01-01

    In voltage-gated potassium (Kv) channels membrane depolarization causes movement of a voltage sensor domain. This conformational change of the protein is transmitted to the pore domain and eventually leads to pore opening. However, the voltage sensor domain may interact with two distinct gates in the pore domain: the activation gate (A-gate), involving the cytoplasmic S6 bundle crossing, and the pore gate (P-gate), located externally in the selectivity filter. How the voltage sensor moves and how tightly it interacts with these two gates on its way to adopt a relaxed conformation when the membrane is depolarized may critically determine the mode of Kv channel inactivation. In certain Kv channels, voltage sensor movement leads to a tight interaction with the P-gate, which may cause conformational changes that render the selectivity filter non-conductive (“P/C-type inactivation”). Other Kv channels may preferably undergo inactivation from pre-open closed-states during voltage sensor movement, because the voltage sensor temporarily uncouples from the A-gate. For this behavior, known as “preferential” closed-state inactivation, we introduce the term “A/C-type inactivation”. Mechanistically, P/C- and A/C-type inactivation represent two forms of “voltage sensor inactivation.” PMID:22654758

  6. KATP Channel Mutations and Neonatal Diabetes.

    PubMed

    Shimomura, Kenju; Maejima, Yuko

    2017-09-15

    Since the discovery of the K ATP channel in 1983, numerous studies have revealed its physiological functions. The K ATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K ATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K ATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K ATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.

  7. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  8. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues

    PubMed Central

    Principalli, Maria A; Dupuis, Julien P; Moreau, Christophe J; Vivaudou, Michel; Revilloud, Jean

    2015-01-01

    ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K+ channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels. PMID:26416970

  9. Modulation of Potassium Channels Inhibits Bunyavirus Infection.

    PubMed

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N; Mankouri, Jamel

    2016-02-12

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Remodeling of atrial ATP-sensitive K+ channels in a model of salt-induced elevated blood pressure

    PubMed Central

    Lader, Joshua M.; Vasquez, Carolina; Bao, Li; Maass, Karen; Qu, Jiaxiang; Kefalogianni, Eirini; Fishman, Glenn I.; Coetzee, William A.

    2011-01-01

    Hypertension is associated with the development of atrial fibrillation; however, the electrophysiological consequences of this condition remain poorly understood. ATP-sensitive K+ (KATP) channels, which contribute to ventricular arrhythmias, are also expressed in the atria. We hypothesized that salt-induced elevated blood pressure (BP) leads to atrial KATP channel activation and increased arrhythmia inducibility. Elevated BP was induced in mice with a high-salt diet (HS) for 4 wk. High-resolution optical mapping was used to measure atrial arrhythmia inducibility, effective refractory period (ERP), and action potential duration at 90% repolarization (APD90). Excised patch clamping was performed to quantify KATP channel properties and density. KATP channel protein expression was also evaluated. Atrial arrhythmia inducibility was 22% higher in HS hearts compared with control hearts. ERP and APD90 were significantly shorter in the right atrial appendage and left atrial appendage of HS hearts compared with control hearts. Perfusion with 1 μM glibenclamide or 300 μM tolbutamide significantly decreased arrhythmia inducibility and prolonged APD90 in HS hearts compared with untreated HS hearts. KATP channel density was 156% higher in myocytes isolated from HS animals compared with control animals. Sulfonylurea receptor 1 protein expression was increased in the left atrial appendage and right atrial appendage of HS animals (415% and 372% of NS animals, respectively). In conclusion, KATP channel activation provides a mechanistic link between salt-induced elevated BP and increased atrial arrhythmia inducibility. The findings of this study have important implications for the treatment and prevention of atrial arrhythmias in the setting of hypertensive heart disease and may lead to new therapeutic approaches. PMID:21724863

  11. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.

    PubMed Central

    Urbach, V; Van Kerkhove, E; Maguire, D; Harvey, B J

    1996-01-01

    Isolated frog skin epithelium, mounted in an Ussing chamber and bathed in standard NaCl Ringer solution, recycles K+ across the basolateral membrane of principal cells through an inward-rectifier K+ channel (Kir) operating in parallel with a Na+-K+-ATPase pump. Here we report on the metabolic control of the Kir channel using patch clamping, short-circuit current measurement and enzymatic determination of cellular (ATP (ATPi). 2. The constitutively active Kir channel in the basolateral membrane has the characteristics of an ATP-regulated K+ channel and is now classed as a KATP channel. In excised inside-out patches the open probability (Po) of KATP channels was reduced by ATPi with half-maximum inhibition at an ATPi concentration of 50 microM. 3. ATPi measured (under normal Na+ transport conditions) with luciferin-luciferase was 1.50 +/- 0.23 mM (mean +/- S.E.M.; range, 0.4-3.3 mM n = 11). Thus the KATP channel would be expected to be inactive in intact cells if ATPi was the sole regulator of channel activity. KATP channels which were inactivated by 1 mM ATPi in excised patches could be reactivated by addition of 100 microM ADP on the cytosolic side. When added alone, ADP blocks this channel with half-maximal inhibition at [ADPi] > 5 mM. 4. Sulphonylureas inhibit single KATP channels in cell-attached patches as well as the total basolateral K+ current measured in frog skin epithelia perforated with nystatin on the apical side. 5. Na+-K+-ATPase activity is a major determinant of cytosolic ATP. Blocking the pump activity with ouabain produced a time-dependent increase in ATPi and reduced the open probability of KATP channels in cell-attached membranes. 6. We conclude that the ratio of ATP/ADP is an important metabolic coupling factor between the rate of Na+-K+ pumping and K+ recycling. Images Figure 9 PMID:9011625

  12. A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels.

    PubMed

    Spauschus, A; Lentes, K U; Wischmeyer, E; Dissmann, E; Karschin, C; Karschin, A

    1996-02-01

    Transcripts of a gene, GIRK4, that encodes for a 419-amino-acid protein and shows high structural similarity to other subfamily members of G-protein-activated inwardly rectifying K+ channels (GIRK) have been identified in the human hippocampus. When expressed in Xenopus oocytes, GIRK4 yielded functional GIRK channels with activity that was enhanced by the stimulation of coexpressed serotonin 1A receptors. GIRK4 potentiated basal and agonist-induced currents mediated by other GIRK channels, possibly because of channel heteromerization. Despite the structural similarity to a putative rat KATP channel, no ATP sensitivity or KATP-typical pharmacology was observed for GIRK4 alone or GIRK4 transfected in conjunction with other GIRK channels in COS-7 cells. In rat brain, GIRK4 is expressed together with three other subfamily members, GIRK1-3, most likely in identical hippocampal neurons. Thus, heteromerization or an unknown molecular interaction may cause the physiological diversity observed within this class of K+ channels.

  13. Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels

    PubMed Central

    Blunck, Rikard; Batulan, Zarah

    2012-01-01

    Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3–4e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4–S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during

  14. Optical control of insulin release using a photoswitchable sulfonylurea.

    PubMed

    Broichhagen, Johannes; Schönberger, Matthias; Cork, Simon C; Frank, James A; Marchetti, Piero; Bugliani, Marco; Shapiro, A M James; Trapp, Stefan; Rutter, Guy A; Hodson, David J; Trauner, Dirk

    2014-10-14

    Sulfonylureas are widely prescribed for the treatment of type 2 diabetes mellitus (T2DM). Through their actions on ATP-sensitive potassium (KATP) channels, sulfonylureas boost insulin release from the pancreatic beta cell mass to restore glucose homeostasis. A limitation of these compounds is the elevated risk of developing hypoglycemia and cardiovascular disease, both potentially fatal complications. Here, we describe the design and development of a photoswitchable sulfonylurea, JB253, which reversibly and repeatedly blocks KATP channel activity following exposure to violet-blue light. Using in situ imaging and hormone assays, we further show that JB253 bestows light sensitivity upon rodent and human pancreatic beta cell function. Thus, JB253 enables the optical control of insulin release and may offer a valuable research tool for the interrogation of KATP channel function in health and T2DM.

  15. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    ERIC Educational Resources Information Center

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  16. Po2 cycling protects diaphragm function during reoxygenation via ROS, Akt, ERK, and mitochondrial channels.

    PubMed

    Zuo, Li; Pannell, Benjamin K; Re, Anthony T; Best, Thomas M; Wagner, Peter D

    2015-12-01

    Po2 cycling, often referred to as intermittent hypoxia, involves exposing tissues to brief cycles of low oxygen environments immediately followed by hyperoxic conditions. After experiencing long-term hypoxia, muscle can be damaged during the subsequent reintroduction of oxygen, which leads to muscle dysfunction via reperfusion injury. The protective effect and mechanism behind Po2 cycling in skeletal muscle during reoxygenation have yet to be fully elucidated. We hypothesize that Po2 cycling effectively increases muscle fatigue resistance through reactive oxygen species (ROS), protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and certain mitochondrial channels during reoxygenation. Using a dihydrofluorescein fluorescent probe, we detected the production of ROS in mouse diaphragmatic skeletal muscle in real time under confocal microscopy. Muscles treated with Po2 cycling displayed significantly attenuated ROS levels (n = 5; P < 0.001) as well as enhanced force generation compared with controls during reperfusion (n = 7; P < 0.05). We also used inhibitors for signaling molecules or membrane channels such as ROS, Akt, ERK, as well as chemical stimulators to close mitochondrial ATP-sensitive potassium channel (KATP) or open mitochondrial permeability transition pore (mPTP). All these blockers or stimulators abolished improved muscle function with Po2 cycling treatment. This current investigation has discovered a correlation between KATP and mPTP and the Po2 cycling pathway in diaphragmatic skeletal muscle. Thus we have identified a unique signaling pathway that may involve ROS, Akt, ERK, and mitochondrial channels responsible for Po2 cycling protection during reoxygenation conditions in the diaphragm. Copyright © 2015 the American Physiological Society.

  17. Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity.

    PubMed

    Tacconi, S; Carletti, R; Bunnemann, B; Plumpton, C; Merlo Pich, E; Terstappen, G C

    2001-01-01

    Small conductance calcium-activated potassium channels are voltage independent potassium channels which modulate the firing patterns of neurons by activating the slow component of the afterhyperpolarization. The genes encoding a family of small conductance calcium-activated potassium channels have been cloned and up to now three known members have been described and named small conductance calcium-activated potassium channel type 1, small conductance calcium-activated potassium channel type 2 and small conductance calcium-activated potassium channel type 3; the distribution of their messenger RNA in the rat CNS has already been performed but only in a limited detail. The present study represents the first detailed analysis of small conductance calcium-activated potassium channel type 3 mRNA distribution in the adult rat brain and resulted in a strong to moderate expression of signal in medial habenular nucleus, substantia nigra compact part, suprachiasmatic nucleus, ventral tegmental area, lateral septum, dorsal raphe and locus coeruleus. Immunohistological experiments were also performed and confirmed the presence of small conductance calcium-activated potassium channel type 3 protein in medial habenular nucleus, locus coeruleus and dorsal raphe. Given the importance of dorsal raphe, locus coeruleus and substantia nigra/ventral tegmental area for serotonergic, noradrenergic and dopaminergic transmission respectively, our results pose the morphological basis for further studies on the action of small conductance calcium-activated potassium channel type 3 in serotonergic, noradrenergic and dopaminergic transmission.

  18. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    PubMed Central

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  19. Disruption of the potassium channel regulatory subunit KCNE2 causes iron-deficient anemia

    PubMed Central

    Salsbury, Grace; Cambridge, Emma L.; McIntyre, Zoe; Arends, Mark J.; Karp, Natasha A.; Isherwood, Christopher; Shannon, Carl; Hooks, Yvette; Ramirez-Solis, Ramiro; Adams, David J.; White, Jacqueline K.; Speak, Anneliese O.

    2014-01-01

    Iron homeostasis is a dynamic process that is tightly controlled to balance iron uptake, storage, and export. Reduction of dietary iron from the ferric to the ferrous form is required for uptake by solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (Slc11a2) into the enterocytes. Both processes are proton dependent and have led to the suggestion of the importance of acidic gastric pH for the absorption of dietary iron. Potassium voltage-gated channel subfamily E, member 2 (KCNE2), in combination with potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), form a gastric potassium channel essential for gastric acidification. Deficiency of either Kcne2 or Kcnq1 results in achlorhydia, gastric hyperplasia, and neoplasia, but the impact on iron absorption has not, to our knowledge, been investigated. Here we report that Kcne2-deficient mice, in addition to the previously reported phenotypes, also present with iron-deficient anemia. Interestingly, impaired function of KCNQ1 results in iron-deficient anemia in Jervell and Lange-Nielsen syndrome patients. We speculate that impaired function of KCNE2 could result in the same clinical phenotype. PMID:25127743

  20. A bursting potassium channel in isolated cholinergic synaptosomes of Torpedo electric organ.

    PubMed Central

    Edry-Schiller, J; Ginsburg, S; Rahamimoff, R

    1991-01-01

    1. Pinched-off cholinergic nerve terminals (synaptosomes) prepared from the electric organ of Torpedo ocelata were fused into large structures (greater than 20 microns) using dimethyl sulphoxide and polyethylene glycol 1500, as previously described for synaptic vesicles from the same organ. 2. The giant fused synaptosomes were easily amenable to the patch clamp technique and 293 seals with a resistance greater than 4 G omega were obtained in the 'cell-attached' configuration. In a large fraction of the experiments, an 'inside-out' patch configuration was achieved. 3. Several types of unitary ionic currents were observed. This study describes the most frequently observed single-channel activity which was found in 247 out of the 293 membrane patches (84.3%). 4. The single-channel current-voltage relation was linear between -60 and 20 mV and showed a slope conductance of 23.8 +/- 1.3 pS when the pipette contained 350-390 mM-Na+ and the bath facing the inside of the synaptosomal membrane contained 390 mM-K+. 5. From extrapolated reversal potential measurements, it was concluded that this channel has a large selectivity for K+ over Na+ (70.4 +/- 11.5, mean +/- S.E.M.). Chloride ions are not transported significantly through this potassium channel. 6. This potassium channel has a low probability of opening. The probability of being in the open state increases upon depolarization and reaches about 1% when the inside of the patch is 20 mV positive compared to the pipette side. 7. The mean channel open time increases with depolarization; thus the product current x time (= charge) also increases upon depolarization, showing properties of an outward rectifier. 8. The potassium channel in the giant synaptosome membrane has a bursting behaviour. Open-time distribution, closed-time distribution and a Poisson analysis indicate that the minimal kinetic scheme requires one open state and three closed states. PMID:1654418

  1. High temperature sensitivity is intrinsic to voltage-gated potassium channels

    PubMed Central

    Yang, Fan; Zheng, Jie

    2014-01-01

    Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI: http://dx.doi.org/10.7554/eLife.03255.001 PMID:25030910

  2. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats

    PubMed Central

    Whidden, Melissa A.; Basgut, Bilgen; Kirichenko, Nataliya; Erdos, Benedek; Tümer, Nihal

    2016-01-01

    [Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli. PMID:27508155

  3. Vertebrate rod photoreceptors express both BK and IK calcium-activated potassium channels, but only BK channels are involved in receptor potential regulation.

    PubMed

    Pelucchi, Bruna; Grimaldi, Annalisa; Moriondo, Andrea

    2008-01-01

    In salamander rods, Ca(2+)-activated K(+) current (I(KCa)) provides an effective "clamp" of the dark membrane potential to its normal resting level. By a combination of electrophysiological, pharmacological, and immunohistochemical approaches, we show that salamander rods functionally express large-conductance Ca(2+)- and voltage-dependent potassium (BK) channel and intermediate-conductance Ca(2+)-dependent potassium (IK) channel, but not small-conductance Ca(2+)-dependent potassium channel (SK) subtypes. Application of 100 nM iberiotoxin and 100 nM clotrimazole reduced net I(KCa) to 36% and 63%, respectively, whereas the current was unaffected by application of 1 microM apamin. Consistently, anti- SK1, -SK2, and -SK3 antibodies were unable to stain rod photoreceptors, whereas both anti-BK and -SK4/ IK1 antibodies heavily stained the ellipsoid region of the inner segments of the rods. Moreover, by using current-clamp experiments, it was clearly seen that the strong clamping effect of the total I(KCa) was lost when IbTx, but not CLTZ, was applied to the bath. This behavior strongly suggests that of BK and IK channels, only the former are responsible for the clamping effect on the photoreceptor membrane potential.

  4. Biophysical Properties of ATP-sensitive Potassium Channels in CA3 Hippocampal Neurons

    NASA Astrophysics Data System (ADS)

    Obregón-Herrera, Armando; Márquez-Gamiño, Sergio; Onetti, Carlos G.

    2004-09-01

    Single-channel activity of glucose-sensitive channels from CA3 neurons of the rat hippocampus, was studied in cell-attached membrane patches. Single-channel activity was totally abolished at 20 mM external glucose. Glucose-sensitive channels were selective to K+ ions; the unitary conductance was 170 pS in 140 mM K+, and the K+ permeability was 3.86×10-13 cmṡs-1. The open-state probability (PO) increased with membrane depolarization as a result of mean open time enhancement and shortening of the closure periods. The activation midpoint was -79 mV. Glucose-sensitive K+ channel of CA3 neurons could be considered as an ATP-sensitive potassium channel.

  5. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1

    PubMed Central

    Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y

    2016-01-01

    KCa2.1, KCa2.2, KCa2.3 and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NDPK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here, we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site. DOI: http://dx.doi.org/10.7554/eLife.16093.001 PMID:27542194

  6. The K(ATP)+ channel is involved in a low-amplitude permeability transition in plant mitochondria.

    PubMed

    Petrussa, Elisa; Casolo, Valentino; Peresson, Carlo; Braidot, Enrico; Vianello, Angelo; Macrì, Francesco

    2004-04-01

    Pea (Pisum sativum) stem mitochondria, energized by NADH, succinate or malate plus glutamate, underwent a spontaneous low-amplitude permeability transition (PT), which could be monitored by dissipation of the electrical potential (deltapsi) or swelling. The occurrence of the latter effects was dependent on O2 availability, because O2 shortage anticipated the manifestation of both deltapsi dissipation and swelling. Spontaneous deltapsi collapse was also monitored in sucrose-resuspended mitochondria and again O2 deprivation caused an anticipation of the phenomenon. However, in this case deltapsi dissipation was not accompanied by a parallel mitochondrial swelling. The latter effect was, indeed, evident only if mitochondria were resuspended in KCl (as osmoticum), or other cations with a molecular mass up to 100 Da (choline+). PT was also induced by protonophores (carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or free fatty acids) or valinomycin (only in KCl). The FCCP-induced dissipation of deltapsi and swelling were inhibited by ATP and stimulated (anticipated) by cyclosporin A or O2 shortage. The FCCP-induced PT was accompanied by the release of pyridine nucleotides from the matrix and of cytochrome c from the intermembrane space of KCl-resuspended mitochondria. The spontaneous and FCCP-induced low-amplitude PT of plant mitochondria are interpreted as due to the activity of a recently identified K(ATP)+ channel whose open/closed state is dependent on polarization of the inner membrane and on the oxidoreductive state of some sulfhydryl groups.

  7. Interactions of the sulfonylurea receptor 1 subunit in the molecular assembly of beta-cell K(ATP) channels.

    PubMed

    Mikhailov, M V; Ashcroft, S J

    2000-02-04

    We have investigated protein interactions involved in pancreatic beta-cell ATP-sensitive potassium channel assembly. These channels, which are of key importance for control of insulin release, are a hetero-oligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits with two nucleotide-binding domains (NBD1 and NBD2). We divided SUR1 into two halves at Pro-1042. Expression of either the individual N- or C-terminal domain in a baculovirus expression system did not lead to glibenclamide binding activity, although studies with green fluorescent protein fusion proteins showed that both half-molecules were inserted into the plasma membrane. However, significant glibenclamide binding activity was observed when the half-molecules were co-expressed (even when NBD2 was deleted from the C-terminal half-molecule). Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity. We conclude that the glibenclamide-binding site includes amino acid residues from both halves of the molecule, that there is strong interaction between different regions of SUR1, that NBD2 is not essential for glibenclamide binding, and that interactions between Kir6.2 and SUR1 participate in ATP-sensitive potassium channel assembly. Investigation of NBD1-green fluorescent protein fusion protein distribution inside insect cells expressing C-terminal halves of SUR1 demonstrated strong interaction between NBD1 and NBD2. We also expressed and purified NBD1 from Escherichia coli. Purified NBD1 was found to exist as a tetramer indicating strong homomeric attractions and a possible role for NBD1 in SUR1 assembly.

  8. [Research progress in the role of aquaproin-4 and inward rectifying potassium channel 4.1 in spinal cord edema].

    PubMed

    Chen, Tiege; Dang, Yuexiu; Wang, Ming; Zhang, Dongliang; Guo, Yongqiang; Zhang, Haihong

    2018-05-28

    Spinal edema is a very important pathophysiological basis for secondary spinal cord injury, which affects the repair and prognosis of spinal cord injury. Aquaporin-4 is widely distributed in various organs of the body, and is highly expressed in the brain and spinal cord. Inward rectifying potassium channel 4.1 is a protein found in astrocytes of central nervous system. It interacts with aquaporins in function. Aquaporin-4 and inward rectifying potassium channel 4.1 play an important role in the formation and elimination of spinal cord edema, inhibition of glial scar formation and promotion of excitotoxic agents exclusion. The distribution and function of aquaporin-4 and inward rectifying potassium channel 4.1 in the central nervous system and their expression after spinal cord injury have multiple effects on spinal edema. Studies of aquaporin-4 and inward rectifying potassium channel 4.1 in the spinal cord may provide new ideas for the elimination and treatment of spinal edema.

  9. Regulation of ENaC and CFTR expression with K+ channel modulators and effect on fluid absorption across alveolar epithelial cells.

    PubMed

    Leroy, Claudie; Privé, Anik; Bourret, Jean-Charles; Berthiaume, Yves; Ferraro, Pasquale; Brochiero, Emmanuelle

    2006-12-01

    In a recent study (Leroy C, Dagenais A, Berthiaume Y, and Brochiero E. Am J Physiol Lung Cell Mol Physiol 286: L1027-L1037, 2004), we identified an ATP-sensitive K(+) (K(ATP)) channel in alveolar epithelial cells, formed by inwardly rectifying K(+) channel Kir6.1/sulfonylurea receptor (SUR)2B subunits. We found that short applications of K(ATP), voltage-dependent K(+) channel KvLQT1, and calcium-activated K(+) (K(Ca)) channel modulators modified Na(+) and Cl(-) currents in alveolar monolayers. In addition, it was shown previously that a K(ATP) opener increased alveolar liquid clearance in human lungs by a mechanism possibly related to epithelial sodium channels (ENaC). We therefore hypothesized that prolonged treatment with K(+) channel modulators could induce a sustained regulation of ENaC activity and/or expression. Alveolar monolayers were treated for 24 h with inhibitors of K(ATP), KvLQT1, and K(Ca) channels identified by PCR. Glibenclamide and clofilium (K(ATP) and KvLQT1 inhibitors) strongly reduced basal transepithelial current, amiloride-sensitive Na(+) current, and forskolin-activated Cl(-) currents, whereas pinacidil, a K(ATP) activator, increased them. Interestingly, K(+) inhibitors or membrane depolarization (induced by valinomycin in high-K(+) medium) decreased alpha-, beta-, and gamma-ENaC and CFTR mRNA. alpha-ENaC and CFTR proteins also declined after glibenclamide or clofilium treatment. Conversely, pinacidil augmented ENaC and CFTR mRNAs and proteins. Since alveolar fluid transport was found to be driven, at least in part, by Na(+) transport through ENaC, we tested the impact of K(+) channel modulators on fluid absorption across alveolar monolayers. We found that glibenclamide and clofilium reduced fluid absorption to a level similar to that seen in the presence of amiloride, whereas pinacidil slightly enhanced it. Long-term regulation of ENaC and CFTR expression by K(+) channel activity could benefit patients with pulmonary diseases affecting ion

  10. Quasi-specific access of the potassium channel inactivation gate

    PubMed Central

    Venkataraman, Gaurav; Srikumar, Deepa; Holmgren, Miguel

    2014-01-01

    Many voltage-gated potassium channels open in response to membrane depolarization and then inactivate within milliseconds. Neurons use these channels to tune their excitability. In Shaker K+ channels, inactivation is caused by the cytoplasmic amino terminus, termed the inactivation gate. Despite having four such gates, inactivation is caused by the movement of a single gate into a position that occludes ion permeation. The pathway that this single inactivation gate takes into its inactivating position remains unknown. Here we show that a single gate threads through the intracellular entryway of its own subunit, but the tip of the gate has sufficient freedom to interact with all four subunits deep in the pore, and does so with equal probability. This pathway demonstrates that flexibility afforded by the inactivation peptide segment at the tip of the N-terminus is used to mediate function. PMID:24909510

  11. MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain

    PubMed Central

    Sakai, Atsushi; Saitow, Fumihito; Maruyama, Motoyo; Miyake, Noriko; Miyake, Koichi; Shimada, Takashi; Okada, Takashi; Suzuki, Hidenori

    2017-01-01

    miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia. PMID:28677679

  12. Potassium channel gene associations with joint processing speed and white matter impairments in schizophrenia.

    PubMed

    Bruce, H A; Kochunov, P; Paciga, S A; Hyde, C L; Chen, X; Xie, Z; Zhang, B; Xi, H S; O'Donnell, P; Whelan, C; Schubert, C R; Bellon, A; Ament, S A; Shukla, D K; Du, X; Rowland, L M; O'Neill, H; Hong, L E

    2017-06-01

    Patients with schizophrenia show decreased processing speed on neuropsychological testing and decreased white matter integrity as measured by diffusion tensor imaging, two traits shown to be both heritable and genetically associated indicating that there may be genes that influence both traits as well as schizophrenia disease risk. The potassium channel gene family is a reasonable candidate to harbor such a gene given the prominent role potassium channels play in the central nervous system in signal transduction, particularly in myelinated axons. We genotyped members of the large potassium channel gene family focusing on putatively functional single nucleotide polymorphisms (SNPs) in a population of 363 controls, 194 patients with schizophrenia spectrum disorder (SSD) and 28 patients with affective disorders with psychotic features who completed imaging and neuropsychological testing. We then performed three association analyses using three phenotypes - processing speed, whole-brain white matter fractional anisotropy (FA) and schizophrenia spectrum diagnosis. We extracted SNPs showing an association at a nominal P value of <0.05 with all three phenotypes in the expected direction: decreased processing speed, decreased FA and increased risk of SSD. A single SNP, rs8234, in the 3' untranslated region of voltage-gated potassium channel subfamily Q member 1 (KCNQ1) was identified. Rs8234 has been shown to affect KCNQ1 expression levels, and KCNQ1 levels have been shown to affect neuronal action potentials. This exploratory analysis provides preliminary data suggesting that KCNQ1 may contribute to the shared risk for diminished processing speed, diminished white mater integrity and increased risk of schizophrenia. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

    PubMed Central

    Kim, Sung-Jo; Kang, Sun-Yang; Yi, Jin Woong; Kim, Seung-Min

    2014-01-01

    Purpose Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium (KCa) channel genes in HOKPP patients. Methods We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the KCa channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes KCa1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels. PMID:25379045

  14. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    NASA Astrophysics Data System (ADS)

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik

    2016-06-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.

  15. Dendritic A-type potassium channel subunit expression in CA1 hippocampal interneurons.

    PubMed

    Menegola, M; Misonou, H; Vacher, H; Trimmer, J S

    2008-06-26

    Voltage-gated potassium (Kv) channels are important and diverse determinants of neuronal excitability and exhibit specific expression patterns throughout the brain. Among Kv channels, Kv4 channels are major determinants of somatodendritic A-type current and are essential in controlling the amplitude of backpropagating action potentials (BAPs) into neuronal dendrites. BAPs have been well studied in a variety of neurons, and have been recently described in hippocampal and cortical interneurons, a heterogeneous population of GABAergic inhibitory cells that regulate activity of principal cells and neuronal networks. We used well-characterized mouse monoclonal antibodies against the Kv4.3 and potassium channel interacting protein (KChIP) 1 subunits of A-type Kv channels, and antibodies against different interneuron markers in single- and double-label immunohistochemistry experiments to analyze the expression patterns of Kv4.3 and KChIP1 in hippocampal Ammon's horn (CA1) neurons. Immunohistochemistry was performed on 40 mum rat brain sections using nickel-enhanced diaminobenzidine staining or multiple-label immunofluorescence. Our results show that Kv4.3 and KChIP1 component subunits of A-type channels are co-localized in the soma and dendrites of a large number of GABAergic hippocampal interneurons. These subunits co-localize extensively but not completely with markers defining the four major interneuron subpopulations tested (parvalbumin, calbindin, calretinin, and somatostatin). These results suggest that CA1 hippocampal interneurons can be divided in two groups according to the expression of Kv4.3/KChIP1 channel subunits. Antibodies against Kv4.3 and KChIP1 represent an important new tool for identifying a subpopulation of hippocampal interneurons with a unique dendritic A-type channel complement and ability to control BAPs.

  16. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    PubMed

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Molecular basis of potassium channels in pancreatic duct epithelial cells

    PubMed Central

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance. PMID:23962792

  18. KATP Channel Expression and Genetic Polymorphisms Associated with Progression and Survival in Amyotrophic Lateral Sclerosis.

    PubMed

    Vidal-Taboada, José M; Pugliese, Marco; Salvadó, Maria; Gámez, Josep; Mahy, Nicole; Rodríguez, Manuel J

    2018-02-28

    The ATP-sensitive potassium (K ATP ) channel directly regulates the microglia-mediated inflammatory response following CNS injury. To determine the putative role of the K ATP channel in amyotrophic lateral sclerosis (ALS) pathology, we investigated whether ALS induces changes in K ATP channel expression in the spinal cord and motor cortex. We also characterized new functional variants of human ABCC8, ABCC9, KCNJ8, and KCNJ11 genes encoding for the K ATP channel and analyzed their association with ALS risk, rate of progression, and survival in a Spanish ALS cohort. The expression of ABCC8 and KCNJ8 genes was enhanced in the spinal cord of ALS samples, and KCNJ11 increased in motor cortex of ALS samples, as determined by real-time polymerase chain reaction. We then sequenced the exons and regulatory regions of K ATP channel genes from a subset of 28 ALS patients and identified 50 new genetic variants. For the case-control association analysis, we genotyped five selected polymorphisms with predicted functional relevance in 185 Spanish ALS (134 spinal ALS and 51 bulbar ALS) patients and 493 controls. We found that bulbar ALS patients presenting the G/G genotype of the rs4148646 variant of ABCC8 and the T/T genotype of the rs5219 variant of KCNJ11 survived longer than other ALS patients presenting other genotypes. Also, the C/C genotype of the rs4148642 variant of ABCC8 and the T/C genotype of the rs148416760 variant of ABCC9 modified the progression rate in spinal ALS patients. Our results suggest that the K ATP channel plays a role in the pathophysiological mechanisms of ALS.

  19. Angiotensin II Inhibits the ROMK-like Small Conductance K Channel in Renal Cortical Collecting Duct during Dietary Potassium Restriction*

    PubMed Central

    Wei, Yuan; Zavilowitz, Beth; Satlin, Lisa M.; Wang, Wen-Hui

    2010-01-01

    Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction. PMID:17194699

  20. Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction.

    PubMed

    Wei, Yuan; Zavilowitz, Beth; Satlin, Lisa M; Wang, Wen-Hui

    2007-03-02

    Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction.

  1. Artificial phosphorylation sites modulate the activity of a voltage-gated potassium channel

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-03-01

    The KvAP potassium channel is representative of a family of voltage-gated ion channels where the membrane potential is sensed by a transmembrane helix containing several positively charged arginines. Previous work by Wang and Zocchi [A. Wang and G. Zocchi, PLoS ONE 6, e18598 (2011), 10.1371/journal.pone.0018598] showed how a negatively charged polyelectrolyte attached in proximity to the voltage sensing element can bias the opening probability of the channel. Here we introduce three phosphorylation sites at the same location and show that the response curve of the channel shifts by about 20 mV upon phosphorylation, while other characteristics such as the single-channel conductance are unaffected. In summary, we construct an artificial phosphorylation site which confers allosteric regulation to the channel.

  2. Creatine kinase is physically associated with the cardiac ATP-sensitive k+ channel in vivo

    PubMed Central

    Crawford, Russell M.; Ranki, Harri J.; Botting, Catherine H.; Budas, Grant R.; Jovanovic, Aleksandar

    2007-01-01

    Cardiac sarcolemmal ATP-sensitive K+ (KATP) channels, composed of Kir6.2 and SUR2A subunits, couple the metabolic status of cells with the membrane excitability. Based on previous functional studies, we have hypothesized that creatine kinase (CK) may be a part of the sarcolemmal KATP channel protein complex. The inside-out and whole cell patch clamp electrophysiology applied on guinea pig cardiomyocytes showed that substrates of CK regulate KATP channels activity. Following immunoprecipitation of guinea-pig cardiac membrane fraction with the anti-SUR2 antibody, Coomassie blue staining revealed, besides Kir6.2 and SUR2A, a polypeptide at ∼48 kDa. Western blotting analysis confirmed the nature of putative Kir6.2 and SUR2A, whereas matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis identified p48 kDa as a muscle form of CK. In addition, the CK activity was found in the anti-SUR2A immunoprecipitate and the cross reactivity between an anti-CK antibody and the anti-SUR2A immunoprecipitate was observed as well as vice verse. Further results obtained at the level of recombinant channel subunits demonstrated that CK is directly physically associated with the SUR2A, but not the Kir6.2, subunit. All together, these results suggest that the CK is associated with SUR2A subunit in vivo, which is an integral part of the sarcolemmal KATP channel protein complex. PMID:11729098

  3. Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons

    PubMed Central

    Sánchez-Ponce, Diana; DeFelipe, Javier; Garrido, Juan José; Muñoz, Alberto

    2012-01-01

    Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation. PMID:23119056

  4. Physical and functional interaction between integrins and hERG potassium channels.

    PubMed

    Arcangeli, A; Becchetti, A; Cherubini, A; Crociani, O; Defilippi, P; Guasti, L; Hofmann, G; Pillozzi, S; Olivotto, M; Wanke, E

    2004-11-01

    Integrins are adhesion receptors capable of transmitting intracellular signals that regulate many different cellular functions. Among integrin-mediated signals, the activation of ion channels can be included. We demonstrated that a long-lasting activation of hERG (human ether-a-go-go-related gene) potassium channels occurs in both human neuroblastoma and leukaemia cells after the activation of the beta1 integrin subunit. This activation is apparently a determining factor inducing neurite extension and osteoclastic differentiation in both the cell types. More recently, we provided evidences that beta1 integrins and hERG channels co-precipitate in both the cell types. Preliminary results suggest that a macromolecular signalling complex indeed occurs between integrins and the hERG1 protein and that hERG channel activity can modulate integrin downstream signalling.

  5. Modulation of inward rectifier potassium channel by toosendanin, a presynaptic blocker.

    PubMed

    Wang, Z F; Shi, Y L

    2001-07-01

    The effect of toosendanin, a presynaptic blocker, on the inward rectifier potassium channel (K(Kir)) of hippocampal CA1 pyramidal neurons of rats was studied by the single-channel patch-clamp technique. The results showed that toosendanin had an inhibitory effect on K(Kir) in an excised inside-out patch of the neuron under a symmetrical 150 mM K(+) condition. By decreasing the slower open time constant and increasing the slower close time constant, toosendanin (1x10(-6)-1x10(-4) g/ml) significantly reduced the open probability of the channel in a concentration-dependent manner. Meanwhile, a dose-dependent reduction in unitary conductance of the channel was also detected after toosendanin application. These data offer an explanation for toosendanin-induced facilitation of neurotransmitter release and antibotulismic effect of the drug.

  6. Purification, cloning, expression, and biochemical characterization of a monofunctional catalase, KatP, from Pigmentiphaga sp. DL-8.

    PubMed

    Dong, Weiliang; Hou, Ying; Li, Shuhuan; Wang, Fei; Zhou, Jie; Li, Zhoukun; Wang, Yicheng; Huang, Fei; Fu, Lei; Huang, Yan; Cui, Zhongli

    2015-04-01

    Catalases are essential components of the cellular equipment used to cope with oxidative stress. The monofunctional catalase KatP was purified from Pigmentiphaga sp. using ammonium sulfate precipitation (ASP), diethylaminoethyl ion exchange chromatography (IEC), and hydrophobic interaction chromatography (HIC). The purified catalase formed polymer with an estimated monomer molecular mass of 54kDa, which were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. KatP exhibited a specific catalytic activity of 73,000U/mg, which was higher than that of catalase-1 of Comamonas terrigena N3H (55,900U/mg). Seven short tryptic fragments of this catalase were obtained by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS/MS), and the gene, katP, was cloned by PCR amplification and overexpressed in Escherichia coli BL21 (DE3). Based on the complete amino acid sequence, KatP was identified as a clade 3 monofunctional catalase. The specific activities of recombinant KatP for hydrogen peroxide (690,000U/mg) increased 9-fold over that of the parent strain. The Km and Vmax of recombinant KatP were 9.48mM and 81.2mol/minmg, respectively. The optimal pH and temperature for KatP were 7.0 and 37°C, respectively, and the enzyme displayed abroad pH-stable range of 4.0-11.0. The enzyme was inhibited by Zn(2+), Cu(2+), Cr(2+), and Mn(2+), whereas Fe(3+) and Mg(2+) stimulated KatP enzymatic activity. Interestingly, the catalase activity of recombinant KatP displayed high stability under different temperature and pH conditions, suggesting that KatP is a potential candidate for the production of catalase. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Central Regulation of Glucose Production May Be Impaired in Type 2 Diabetes

    PubMed Central

    Esterson, Yonah B.; Carey, Michelle; Boucai, Laura; Goyal, Akankasha; Raghavan, Pooja; Zhang, Kehao; Mehta, Deeksha; Feng, Daorong; Wu, Licheng; Kehlenbrink, Sylvia; Koppaka, Sudha; Kishore, Preeti

    2016-01-01

    The challenges of achieving optimal glycemic control in type 2 diabetes highlight the need for new therapies. Inappropriately elevated endogenous glucose production (EGP) is the main source of hyperglycemia in type 2 diabetes. Because activation of central ATP-sensitive potassium (KATP) channels suppresses EGP in nondiabetic rodents and humans, this study examined whether type 2 diabetic humans and rodents retain central regulation of EGP. The KATP channel activator diazoxide was administered in a randomized, placebo-controlled crossover design to eight type 2 diabetic subjects and seven age- and BMI-matched healthy control subjects. Comprehensive measures of glucose turnover and insulin sensitivity were performed during euglycemic pancreatic clamp studies following diazoxide and placebo administration. Complementary rodent clamp studies were performed in Zucker Diabetic Fatty rats. In type 2 diabetic subjects, extrapancreatic KATP channel activation with diazoxide under fixed hormonal conditions failed to suppress EGP, whereas matched control subjects demonstrated a 27% reduction in EGP (P = 0.002) with diazoxide. Diazoxide also failed to suppress EGP in diabetic rats. These results suggest that suppression of EGP by central KATP channel activation may be lost in type 2 diabetes. Restoration of central regulation of glucose metabolism could be a promising therapeutic target to reduce hyperglycemia in type 2 diabetes. PMID:27207526

  8. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  9. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    PubMed Central

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  10. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.

    PubMed

    Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T

    2016-06-15

    Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel

  11. Voltage-Dependent Gating of hERG Potassium Channels

    PubMed Central

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  12. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    PubMed

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  13. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    PubMed Central

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  14. Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir 2.2.

    PubMed

    Raab-Graham, K F; Vandenberg, C A

    1998-07-31

    Strongly inwardly rectifying potassium channels of the Kir 2 subfamily (IRK1, IRK2, and IRK3) are involved in maintenance and modulation of cell excitability in brain and heart. Electrophysiological studies of channels expressed in heterologous systems have suggested that the pore-conducting pathway contains four subunits. However, inferences from electrophysiological studies have not been tested on native channels and do not address the possibility of nonconducting auxiliary subunits. Here, we investigate the subunit stoichiometry of endogenous inwardly rectifying potassium channel Kir 2.2 (IRK2) from rat brain. Using chemical cross-linking, immunoprecipitiation, and velocity sedimentation, we report physical evidence demonstrating the tetrameric organization of the native channel. Kir 2.2 was sequentially cross-linked to produce bands on SDS-polyacrylamide gel electrophoresis corresponding in size to monomer, dimer, trimer, and three forms of tetramer. Fully cross-linked channel was present as a single band of tetrameric size. Immunoprecipitation of biotinylated membranes revealed a single band corresponding to Kir 2.2, suggesting that the channel is composed of a single type of subunit. Hydrodynamic properties of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid-solubilized channel were used to calculate the molecular mass of the channel. Velocity sedimentation in H2O or D2O gave a sharp peak with a sedimentation coefficient of 17.3 S. Gel filtration yielded a Stokes radius of 5.92 nm. These data indicate a multisubunit protein with a molecular mass of 193 kDa, calculated to contain 3.98 subunits. Together, these results demonstrate that Kir 2.2 channels are formed by the homotetrameric association of Kir 2.2 subunits and do not contain tightly associated auxiliary subunits. These studies suggest that Kir 2.2 channels differ in structure from related heterooctomeric ATP-sensitive K channels and heterotetrameric G-protein-regulated inward rectifier K

  15. Potassium dynamics and seizures: Why is potassium ictogenic?

    PubMed

    de Curtis, Marco; Uva, Laura; Gnatkovsky, Vadym; Librizzi, Laura

    2018-07-01

    Potassium channels dysfunction and altered genes encoding for molecules involved in potassium homeostasis have been associated with human epilepsy. These observations are in agreement with a control role of extracellular potassium on neuronal excitability and seizure generation. Epileptiform activity, in turn, regulates potassium homeostasis through mechanisms that are still not well established. We review here how potassium-associated processes are regulated in the brain and examine the mechanisms that support the role of potassium in triggering epileptiform activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Comparative Study of the Energetics of Ion Permeation in Kv1.2 and KcsA Potassium Channels

    PubMed Central

    Baştuğ, Turgut; Kuyucak, Serdar

    2011-01-01

    Biological ion channels rely on a multi-ion transport mechanism for fast yet selective permeation of ions. The crystal structure of the KcsA potassium channel provided the first microscopic picture of this process. A similar mechanism is assumed to operate in all potassium channels, but the validity of this assumption has not been well investigated. Here, we examine the energetics of ion permeation in Shaker Kv1.2 and KcsA channels, which exemplify the six-transmembrane voltage-gated and two-transmembrane inward-rectifier channels. We study the feasibility of binding a third ion to the filter and the concerted motion of ions in the channel by constructing the potential of mean force for K+ ions in various configurations. For both channels, we find that a pair of K+ ions can move almost freely within the filter, but a relatively large free-energy barrier hinders the K+ ion from stepping outside the filter. We discuss the effect of the CMAP dihedral energy correction that was recently incorporated into the CHARMM force field on ion permeation dynamics. PMID:21281577

  17. Regulation of Ion Channels by Pyridine Nucleotides

    PubMed Central

    Kilfoil, Peter J.; Tipparaju, Srinivas M.; Barski, Oleg A.; Bhatnagar, Aruni

    2014-01-01

    Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion–transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide–binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP+ to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K+ transporters. These nucleotides also have been shown to modify the activity of the plasma membrane KATP channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit—the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP+ metabolite, NAADP+, regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias. PMID:23410881

  18. Superior diastolic function with KATP channel opener diazoxide in a novel mouse Langendorff model.

    PubMed

    Makepeace, Carol M; Suarez-Pierre, Alejandro; Kanter, Evelyn M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2018-07-01

    Adenosine triphosphate-sensitive potassium (K ATP ) channel openers have been found to be cardioprotective in multiple animal models via an unknown mechanism. Mouse models allow genetic manipulation of K ATP channel components for the investigation of this mechanism. Mouse Langendorff models using 30 min of global ischemia are known to induce measurable myocardial infarction and injury. Prolongation of global ischemia in a mouse Langendorff model could allow the determination of the mechanisms involved in K ATP channel opener cardioprotection. Mouse hearts (C57BL/6) underwent baseline perfusion with Krebs-Henseleit buffer (30 min), assessment of function using a left ventricular balloon, delivery of test solution, and prolonged global ischemia (90 min). Hearts underwent reperfusion (30 min) and functional assessment. Coronary flow was measured using an inline probe. Test solutions included were as follows: hyperkalemic cardioplegia alone (CPG, n = 11) or with diazoxide (CPG + DZX, n = 12). Although the CPG + DZX group had greater percent recovery of developed pressure and coronary flow, this was not statistically significant. Following a mean of 74 min (CPG) and 77 min (CPG + DZX), an additional increase in end-diastolic pressure was noted (plateau), which was significantly higher in the CPG group. Similarly, the end-diastolic pressure (at reperfusion and at the end of experiment) was significantly higher in the CPG group. Prolongation of global ischemia demonstrated added benefit when DZX was added to traditional hyperkalemic CPG. This model will allow the investigation of DZX mechanism of cardioprotection following manipulation of targeted K ATP channel components. This model will also allow translation to prolonged ischemic episodes associated with cardiac surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential

    PubMed Central

    Du, Xiaona; Gamper, Nikita

    2013-01-01

    Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design. PMID:24396338

  20. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.

    PubMed

    Martin, Gregory M; Rex, Emily A; Devaraneni, Prasanna; Denton, Jerod S; Boodhansingh, Kara E; DeLeon, Diva D; Stanley, Charles A; Shyng, Show-Ling

    2016-10-14

    ATP-sensitive potassium (K ATP ) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of K ATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by K ATP channel openers. Cross-linking experiments showed that K ATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the K ATP channel opener diazoxide. Our study expands the list of K ATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. [Water regulation in the cochlea : Do molecular water channels facilitate potassium-dependent sound transduction?].

    PubMed

    Eckhard, A; Löwenheim, H

    2014-06-01

    Sound transduction in the cochlea critically depends on the circulation of potassium ions (K(+)) along so-called "K(+) recycling routes" between the endolymph and perilymph. These K(+) currents generate high ionic and osmotic gradients, which potentially impair the excitability of sensory hair cells and threaten cell survival in the entire cochlear duct. Molecular water channels-aquaporins (AQP)-are expressed in all cochlear supporting cells along the K(+) recycling routes; however, their significance for osmotic equilibration in cochlear duct cells is unknown. The diffusive and osmotic water permeabilies of Reissner's membrane, the organ of Corti and the entire cochlear duct epithelium were determined. Expression of the potassium channel Kir4.1 and the water channel AQP4 in the cochlear duct was investigated by immunohistochemistry. The calculated water permeability values indicate the extent of AQP-facilitated water flux across the cochlear duct epithelium. Immunohistochemically, Kir4.1 and AQP4 were found to colocalize in distinct membrane domains of supporting cells along the K(+)-recycling routes. These observations suggest the presence of a rapid AQP-mediated water exchange between the endolymph, the cells of the cochlear duct and the perilymph. The subcellular colocalization of Kir4.1 and AQP4 in epithelial supporting cells indicates functional coupling of potassium and water flow in the cochlea. Finally, this offers an explanation for the hearing impairment observed in individuals with mutations in the AQP4 gene.

  2. Ameliorating Effects of Sulfonylurea Drugs on Insulin Resistance in Otsuka Long-Evans Tokushima Fatty Rats

    PubMed Central

    Park, Jeong-Kwon; Kim, Sang-Pyo

    2008-01-01

    OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium (KATP) channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of KATP channels, insulin receptor β-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that KATP-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on KATP channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects. PMID:20157388

  3. Endoplasmic reticulum membrane potassium channel dysfunction in high fat diet induced stress in rat hepatocytes

    PubMed Central

    Khodaee, Naser; Ghasemi, Maedeh; Saghiri, Reza; Eliassi, Afsaneh

    2014-01-01

    In a previous study we reported the presence of a large conductance K+ channel in the membrane of endoplasmic reticulum (ER) from rat hepatocytes. The channel open probability (Po) appeared voltage dependent and reached to a minimum 0.2 at +50 mV. Channel activity in this case was found to be totally inhibited at ATP concentration 2.5 mM, glibenclamide 100 µM and tolbutamide 400 µM. Existing evidence indicates an impairment of endoplasmic reticulum functions in ER stress condition. Because ER potassium channels have been involved in several ER functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the ER potassium channel function is altered in a high fat diet model of ER stress. Male Wistar rats were made ER stress for 2 weeks with a high fat diet. Ion channel incorporation of ER stress model into the bilayer lipid membrane allowed the characterization of K+ channel. Our results indicate that the channel Po was significantly increased at voltages above +30 mV. Interestingly, addition of ATP 7.5 mM, glibenclamide 400 µM and tolbutamide 2400 µM totally inhibited the channel activities, 3-fold, 4-fold and 6-fold higher than that in the control groups, respectively. Our results thus demonstrate a modification in the ER K+ channel gating properties and decreased sensitivity to drugs in membrane preparations coming from ER high fat model of ER stress, an effect potentially linked to a change in ER K+ channel subunits in ER stress condition. Our results may provide new insights into the cellular mechanisms underlying ER dysfunctions in ER stress. PMID:26417322

  4. Study of the interaction of potassium ion channel protein with micelle by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Talukdar, Keka

    2018-04-01

    Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.

  5. The Role of Potassium Channels in Arabidopsis thaliana Long Distance Electrical Signalling: AKT2 Modulates Tissue Excitability While GORK Shapes Action Potentials.

    PubMed

    Cuin, Tracey Ann; Dreyer, Ingo; Michard, Erwan

    2018-03-21

    Fast responses to an external threat depend on the rapid transmission of signals through a plant. Action potentials (APs) are proposed as such signals. Plant APs share similarities with their animal counterparts; they are proposed to depend on the activity of voltage-gated ion channels. Nonetheless, despite their demonstrated role in (a)biotic stress responses, the identities of the associated voltage-gated channels and transporters remain undefined in higher plants. By demonstrating the role of two potassium-selective channels in Arabidopsis thaliana in AP generation and shaping, we show that the plant AP does depend on similar Kv -like transport systems to those of the animal signal. We demonstrate that the outward-rectifying potassium-selective channel GORK limits the AP amplitude and duration, while the weakly-rectifying channel AKT2 affects membrane excitability. By computational modelling of plant APs, we reveal that the GORK activity not only determines the length of an AP but also the steepness of its rise and the maximal amplitude. Thus, outward-rectifying potassium channels contribute to both the repolarisation phase and the initial depolarisation phase of the signal. Additionally, from modelling considerations we provide indications that plant APs might be accompanied by potassium waves, which prime the excitability of the green cable.

  6. The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels.

    PubMed

    Gomes Castro, Allisson Jhonatan; Cazarolli, Luisa Helena; Bretanha, Lizandra C; Sulis, Paola Miranda; Rey Padilla, Diana Patricia; Aragón Novoa, Diana Marcela; Dambrós, Betina Fernanda; Pizzolatti, Moacir G; Mena Barreto Silva, Fátima Regina

    2018-06-15

    Betulinic acid (BA) has been described as an insulin secretagogue which may explain its potent antihyperglycemic effect; however, the exact role of BA as an insulinogenic agent is not clear. The aim of this study was to investigate the mechanism of BA on calcium influx and static insulin secretion in pancreatic islets isolated from euglycemic rats. We found that BA triggers calcium influx by a mechanism dependent on ATP-dependent potassium channels and L-type voltage-dependent calcium channels. Additionally, the voltage-dependent and calcium-dependent chloride channels are also involved in the mechanism of BA, probably due to an indirect stimulation of calcium entry and increased intracellular calcium. Additionally, the downstream activation of PKC, which is necessary for the effect of BA on calcium influx, is involved in the full stimulatory response of the triterpene. BA stimulated the static secretion of insulin in pancreatic islets, indicating that the abrupt calcium influx may be a key step in its secretagogue effect. As such, BA stimulates insulin secretion through the activation of electrophysiological mechanisms, such as the closure of potassium channels and opening of calcium and chloride channels, inducing cellular depolarization associated with metabolic-biochemical effects, in turn activating PKC and ensuring the secretion of insulin. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Role of inward rectifier potassium channels in salivary gland function and sugar feeding of the fruit fly, Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Ki...

  8. Magnolol and honokiol regulate the calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli-induced diarrhea mice.

    PubMed

    Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang; Zhou, Chuanshe; Wang, Min; Kang, Jinghe

    2015-05-15

    To explore the regulatory mechanisms of magnolol and honokiol on calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mice, the concentrations of serum chloride ion (Cl(-)), sodium ion (Na(+)), potassium ion (K(+)) and calcium ion (Ca(2+)) were measured. Additionally, the mRNA expressions of calmodulin 1 (CaM), calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and beta subunit (CaMKIIβ), ryanodine receptor 1, inositol 1,4,5-trisphosphate receptors (IP3 receptors), protein kinases C (PKC), potassium intermediate/small conductance calcium-activated channels (SK) and potassium large conductance calcium-activated channels(BK)were determined. A diarrhea mouse model was established using ETEC suspensions (3.29×10(9)CFU/ml) at a dosage of 0.02ml/g live body weight (BW). Magnolol or honokiol was intragastrically administered at dosages of 100 (M100 or H100), 300 (M300 or H300) and 500 (M500 or H500) mg/kg BW according to a 3×3 factorial arrangement. Magnolol and honokiol increased the Cl(-) and K(+) concentrations, further, upregulated the CaM, BKα1 and BKβ3 mRNA levels but downregulated the IP3 receptors 1, PKC, SK1, SK2, SK3, SK4 and BKβ4 mRNA expressions. Magnolol and honokiol did not alter the CaMKIIα, CaMKIIβ, ryanodine receptor 1, IP3 receptor 2, IP3 receptor 3, BKβ1 and BKβ2 mRNA expressions. These results clarify that magnolol and honokiol, acting through Ca(2+) channel blockade, inhibit the activation of IP3 receptor 1 to regulate the IP3-Ca(2+) store release, activate CaM to inhibit SK channels, and effectively suppress PKC kinases to promote BKα1 and BKβ3 channels opening and BKβ4 channel closing, which modulates the intestinal ion secretion. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS.

    PubMed

    Liu, Chiung-Hui; Chang, Hung-Ming; Wu, Tsung-Huan; Chen, Li-You; Yang, Yin-Shuo; Tseng, To-Jung; Liao, Wen-Chieh

    2017-10-01

    The voltage-gated potassium channels Kv1.1 and Kv1.2 that cluster at juxtaparanodal (JXP) regions are essential in the regulation of nerve excitability and play a critical role in axonal conduction. When demyelination occurs, Kv1.1/Kv1.2 activity increases, suppressing the membrane potential nearly to the equilibrium potential of K + , which results in an axonal conduction blockade. The recovery of K + -dependent communication signals and proper clustering of Kv1.1/Kv1.2 channels at JXP regions may directly reflect nerve regeneration following peripheral nerve injury. However, little is known about potassium channel expression and its relationship with the dynamic potassium ion distribution at the node of Ranvier during the regenerative process of peripheral nerve injury (PNI). In the present study, end-to-end neurorrhaphy (EEN) was performed using an in vivo model of PNI. The distribution of K + at regenerating axons following EEN was detected by time-of-flight secondary-ion mass spectrometry. The specific localization and expression of Kv1.1/Kv1.2 channels were examined by confocal microscopy and western blotting. Our data showed that the re-establishment of K + distribution and intensity was correlated with the functional recovery of compound muscle action potential morphology in EEN rats. Furthermore, the re-clustering of Kv1.1/1.2 channels 1 and 3 months after EEN at the nodal region of the regenerating nerve corresponded to changes in the K + distribution. This study provided direct evidence of K + distribution in regenerating axons for the first time. We proposed that the Kv1.1/Kv1.2 channels re-clustered at the JXP regions of regenerating axons are essential for modulating the proper patterns of K + distribution in axons for maintaining membrane potential stability after EEN.

  10. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3.

    PubMed

    Wright, Paul D; Veale, Emma L; McCoull, David; Tickle, David C; Large, Jonathan M; Ococks, Emma; Gothard, Gemma; Kettleborough, Catherine; Mathie, Alistair; Jerman, Jeffrey

    2017-11-04

    Two-pore domain potassium channels (K2Ps) are characterized by their four transmembrane domain and two-pore topology. They carry background (or leak) potassium current in a variety of cell types. Despite a number of important roles there is currently a lack of pharmacological tools with which to further probe K2P function. We have developed a cell-based thallium flux assay, using baculovirus delivered TASK3 (TWIK-related acid-sensitive K + channel 3, KCNK9, K2P9.1) with the aim of identifying novel, selective TASK3 activators. After screening a library of 1000 compounds, including drug-like and FDA approved molecules, we identified Terbinafine as an activator of TASK3. In a thallium flux assay a pEC50 of 6.2 ( ±0.12) was observed. When Terbinafine was screened against TASK2, TREK2, THIK1, TWIK1 and TRESK no activation was observed in thallium flux assays. Several analogues of Terbinafine were also purchased and structure activity relationships examined. To confirm Terbinafine's activation of TASK3 whole cell patch clamp electrophysiology was carried out and clear potentiation observed in both the wild type channel and the pathophysiological, Birk-Barel syndrome associated, G236R TASK3 mutant. No activity at TASK1 was observed in electrophysiology studies. In conclusion, we have identified the first selective activator of the two-pore domain potassium channel TASK3. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. [G-protein potentiates the activation of TNF-alpha on calcium-activated potassium channel in ECV304].

    PubMed

    Lin, L; Zheng, Y; Qu, J; Bao, G

    2000-06-01

    Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.

  12. Effect of tyrphostin AG879 on Kv4.2 and Kv4.3 potassium channels

    PubMed Central

    Yu, Haibo; Zou, Beiyan; Wang, Xiaoliang; Li, Min

    2015-01-01

    Background and Purpose A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv4.2/Kv channel-interacting protein 2 (KChIP2) channels. Experimental Approach To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv4.2/KChIP2 channels using a whole-cell patch-clamp technique. Key Results Tyrphostin AG879 selectively and dose-dependently inhibited Kv4.2 and Kv4.3 channels. In Kv4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. Conclusion and Implications AG879 was identified as a selective and potent inhibitor the Kv4.2 channel. AG879 inhibited Kv4.2 channels by preferentially interacting with the open state and further accelerating their inactivation. PMID:25752739

  13. Effect of tyrphostin AG879 on Kv 4.2 and Kv 4.3 potassium channels.

    PubMed

    Yu, Haibo; Zou, Beiyan; Wang, Xiaoliang; Li, Min

    2015-07-01

    A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv 4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv 4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv 4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv 4.2/Kv channel-interacting protein 2 (KChIP2) channels. To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv 4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv 4.2/KChIP2 channels using a whole-cell patch-clamp technique. Tyrphostin AG879 selectively and dose-dependently inhibited Kv 4.2 and Kv 4.3 channels. In Kv 4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv 4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. AG879 was identified as a selective and potent inhibitor the Kv 4.2 channel. AG879 inhibited Kv 4.2 channels by preferentially interacting with the open state and further accelerating their inactivation. © 2015 The British Pharmacological Society.

  14. MinK-dependent internalization of the IKs potassium channel.

    PubMed

    Xu, Xianghua; Kanda, Vikram A; Choi, Eun; Panaghie, Gianina; Roepke, Torsten K; Gaeta, Stephen A; Christini, David J; Lerner, Daniel J; Abbott, Geoffrey W

    2009-06-01

    KCNQ1-MinK potassium channel complexes (4alpha:2beta stoichiometry) generate IKs, the slowly activating human cardiac ventricular repolarization current. The MinK ancillary subunit slows KCNQ1 activation, eliminates its inactivation, and increases its unitary conductance. However, KCNQ1 transcripts outnumber MinK transcripts five to one in human ventricles, suggesting KCNQ1 also forms other heteromeric or even homomeric channels there. Mechanisms governing which channel types prevail have not previously been reported, despite their significance: normal cardiac rhythm requires tight control of IKs density and kinetics, and inherited mutations in KCNQ1 and MinK can cause ventricular fibrillation and sudden death. Here, we describe a novel mechanism for this control. Whole-cell patch-clamping, confocal immunofluorescence microscopy, antibody feeding, biotin feeding, fluorescent transferrin feeding, and protein biochemistry techniques were applied to COS-7 cells heterologously expressing KCNQ1 with wild-type or mutant MinK and dynamin 2 and to native IKs channels in guinea-pig myocytes. KCNQ1-MinK complexes, but not homomeric KCNQ1 channels, were found to undergo clathrin- and dynamin 2-dependent internalization (DDI). Three sites on the MinK intracellular C-terminus were, in concert, necessary and sufficient for DDI. Gating kinetics and sensitivity to XE991 indicated that DDI decreased cell-surface KCNQ1-MinK channels relative to homomeric KCNQ1, decreasing whole-cell current but increasing net activation rate; inhibiting DDI did the reverse. The data redefine MinK as an endocytic chaperone for KCNQ1 and present a dynamic mechanism for controlling net surface Kv channel subunit composition-and thus current density and gating kinetics-that may also apply to other alpha-beta type Kv channel complexes.

  15. The protective effect of ursodeoxycholic acid in an in vitro model of the human fetal heart occurs via targeting cardiac fibroblasts.

    PubMed

    Schultz, Francisca; Hasan, Alveera; Alvarez-Laviada, Anita; Miragoli, Michele; Bhogal, Navneet; Wells, Sarah; Poulet, Claire; Chambers, Jenny; Williamson, Catherine; Gorelik, Julia

    2016-01-01

    Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts. Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential. We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells. UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts

  16. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    PubMed

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  17. Analysis of inter-residue contacts reveals folding stabilizers in P-loops of potassium, sodium, and TRPV channels.

    PubMed

    Korkosh, V S; Zhorov, B S; Tikhonov, D B

    2016-05-01

    The family of P-loop channels includes potassium, sodium, calcium, cyclic nucleotide-gated and TRPV channels, as well as ionotropic glutamate receptors. Despite vastly different physiological and pharmacological properties, the channels have structurally conserved folding of the pore domain. Furthermore, crystallographic data demonstrate surprisingly similar mutual disposition of transmembrane and membrane-diving helices. To understand determinants of this conservation, here we have compared available high-resolution structures of sodium, potassium, and TRPV1 channels. We found that some residues, which are in matching positions of the sequence alignment, occur in different positions in the 3D alignment. Surprisingly, we found 3D mismatches in well-packed P-helices. Analysis of energetics of individual residues in Monte Carlo minimized structures revealed cyclic patterns of energetically favorable inter- and intra-subunit contacts of P-helices with S6 helices. The inter-subunit contacts are rather conserved in all the channels, whereas the intra-subunit contacts are specific for particular types of the channels. Our results suggest that these residue-residue contacts contribute to the folding stabilization. Analysis of such contacts is important for structural and phylogenetic studies of homologous proteins.

  18. A heteromeric potassium channel involved in the modulation of the plasma membrane potential is essential for the survival of African trypanosomes.

    PubMed

    Steinmann, Michael E; González-Salgado, Amaia; Bütikofer, Peter; Mäser, Pascal; Sigel, Erwin

    2015-08-01

    Discovery of novel drug targets may lead to improved treatment of trypanosomiasis. We characterize here 2 gene products of Trypanosoma brucei that are essential for the growth of bloodstream form (BSF) parasites, as shown by RNA interference (RNAi)-mediated down-regulation of the individual mRNAs. The primary sequences of the 2 proteins--protein encoded by gene Tb927.1.4450 (TbK1) and protein encoded by gene Tb927.9.4820 (TbK2)--indicate that both belong to the family of putative, Ca(2+)-activated potassium channels. The proteins were expressed in Xenopus laevis oocytes and their functions investigated by use of electrophysiological techniques. Only combined expression of TbK1 and TbK2 results in the formation of sizeable currents, indicating that these proteins probably assemble into a heteromeric ion channel. The current mediated by this channel shows little time and voltage dependence and displays a permeability ratio of K(+)/Na(+) of >20. The known potassium channel blocker barium inhibits this channel with a half-maximal inhibitory concentration (IC50) of 98 ± 15 μM. The membrane potential of trypanosomes was measured with a fluorescent dye. Individual RNAi-mediated down-regulation of TbK1 or TbK2 eliminates a potassium conductance in the plasma membrane of BSF. Thus, this heteromeric potassium channel is involved in the modulation of the plasma membrane potential and represents a novel drug target in T. brucei. © FASEB.

  19. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain.

    PubMed

    Holmqvist, Mats H; Cao, Jie; Hernandez-Pineda, Ricardo; Jacobson, Michael D; Carroll, Karen I; Sung, M Amy; Betty, Maria; Ge, Pei; Gilbride, Kevin J; Brown, Melissa E; Jurman, Mark E; Lawson, Deborah; Silos-Santiago, Inmaculada; Xie, Yu; Covarrubias, Manuel; Rhodes, Kenneth J; Distefano, Peter S; An, W Frank

    2002-01-22

    The Kv4 A-type potassium currents contribute to controlling the frequency of slow repetitive firing and back-propagation of action potentials in neurons and shape the action potential in heart. Kv4 currents exhibit rapid activation and inactivation and are specifically modulated by K-channel interacting proteins (KChIPs). Here we report the discovery and functional characterization of a modular K-channel inactivation suppressor (KIS) domain located in the first 34 aa of an additional KChIP (KChIP4a). Coexpression of KChIP4a with Kv4 alpha-subunits abolishes fast inactivation of the Kv4 currents in various cell types, including cerebellar granule neurons. Kinetic analysis shows that the KIS domain delays Kv4.3 opening, but once the channel is open, it disrupts rapid inactivation and slows Kv4.3 closing. Accordingly, KChIP4a increases the open probability of single Kv4.3 channels. The net effects of KChIP4a and KChIP1-3 on Kv4 gating are quite different. When both KChIP4a and KChIP1 are present, the Kv4.3 current shows mixed inactivation profiles dependent on KChIP4a/KChIP1 ratios. The KIS domain effectively converts the A-type Kv4 current to a slowly inactivating delayed rectifier-type potassium current. This conversion is opposite to that mediated by the Kv1-specific "ball" domain of the Kv beta 1 subunit. Together, these results demonstrate that specific auxiliary subunits with distinct functions actively modulate gating of potassium channels that govern membrane excitability.

  20. Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

    PubMed

    Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther

    2015-12-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.

  1. Effectiveness of copper sulfate and potassium permanganate on channel catfish infected with Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were evaluated for their effectiveness to curtail mortality and decrease bacterial load in fish tissues and water in channel catfish Ictalurus punctatus naturally infected with Flavobacterium columnare, the causative agent of columnaris. Fis...

  2. The heart and potassium: a banana republic.

    PubMed

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.

  3. Kv7 potassium channel subunits and M currents in cultured hippocampal interneurons.

    PubMed

    Grigorov, Alexej; Moskalyuk, Anastasia; Kravchenko, Mykola; Veselovsky, Nikolai; Verkhratsky, Alexei; Fedulova, Svetlana

    2014-09-01

    Potassium channels of the Kv7 family that mediate the non-inactivating M current regulate the excitability of many types of neurons in the central nervous system, including some in the hippocampus. We report here that individual interneurons from newborn rat hippocampi in long-term culture strongly express messenger RNA specific for Kv7.2 and Kv7.3 and, to a lesser extent, Kv7.5 channel subunits but not for the Kv7.4 subunit. An M-like current was electrophysiologically identified in two subpopulations of interneurons distinct in their spiking behaviour (regular or fast spiking). The M-channel enhancer retigabine reduced interneuronal excitability by constraining the number of action potentials generated during imposed depolarisations; this effect was inhibited by specific the M-channel blocking drugs. In paired synaptically connected interneuron-target cell recordings, anatomically localised applications of retigabine indicated that M channels were present in both the interneuron soma and its GABA-ergic inhibitory axon. We conclude that M-channel subunits and functional M channels are broadly expressed in hippocampal interneurons and their axons and are potentially capable of strongly regulating their firing properties.

  4. Slo1 is the principal potassium channel of human spermatozoa

    PubMed Central

    Mannowetz, Nadja; Naidoo, Natasha M; Choo, Seung-A Sara; Smith, James F; Lishko, Polina V

    2013-01-01

    Mammalian spermatozoa gain competence to fertilize an oocyte as they travel through the female reproductive tract. This process is accompanied by an elevation of sperm intracellular calcium and a membrane hyperpolarization. The latter is evoked by K+ efflux; however, the molecular identity of the potassium channel of human spermatozoa (hKSper) is unknown. Here, we characterize hKSper, reporting that it is regulated by intracellular calcium but is insensitive to intracellular alkalinization. We also show that human KSper is inhibited by charybdotoxin, iberiotoxin, and paxilline, while mouse KSper is insensitive to these compounds. Such unique properties suggest that the Slo1 ion channel is the molecular determinant for hKSper. We show that Slo1 is localized to the sperm flagellum and is inhibited by progesterone. Inhibition of hKSper by progesterone may depolarize the spermatozoon to open the calcium channel CatSper, thus raising [Ca2+] to produce hyperactivation and allowing sperm to fertilize an oocyte. DOI: http://dx.doi.org/10.7554/eLife.01009.001 PMID:24137539

  5. Molecular basis for the toxin insensitivity of scorpion voltage-gated potassium channel MmKv1.

    PubMed

    Zhang, Chuangeng; Xie, Zili; Li, Xinxin; Chen, Jing; Feng, Jing; Lang, Yange; Yang, Weishan; Li, Wenxin; Chen, Zongyun; Yao, Jing; Cao, Zhijian; Wu, Yingliang

    2016-05-01

    Scorpions are insensitive to their own venoms, which contain various neurotoxins specific for mammalian or insect ion channels, whose molecular mechanism remains unsolved. Using MmKv1, a potassium channel identified from the genome of the scorpion Mesobuthus martensii, channel kinetic experiments showed that MmKv1 was a classical voltage-gated potassium channel with a voltage-dependent fast activation and slow inactivation. Compared with the human Kv1.3 channel (hKv1.3), the MmKv1 channel exhibited a remarkable insensitivity to both scorpion venom and toxin. The chimaeric channels of MmKv1 and hKv1.3 revealed that both turret and filter regions of the MmKv1 channel were critical for the toxin insensitivity of MmKv1. Furthermore, mutagenesis of the chimaeric channel indicated that two basic residues (Arg(399) and Lys(403)) in the MmKv1 turret region and Arg(425) in the MmKv1 filter region significantly affected its toxin insensitivity. Moreover, when these three basic residues of MmKv1 were simultaneously substituted with the corresponding residues from hKv1.3, the MmKv1-R399T/K403S/R425H mutant channels exhibited similar sensitivity to both scorpion venom and toxin to hKv1.3, which revealed the determining role of these three basic residues in the toxin insensitivity of the MmKv1 channel. More strikingly, a similar triad sequence structure is present in all Shaker-like channels from venomous invertebrates, which suggested a possible convergent functional evolution of these channels to enable them to resist their own venoms. Together, these findings first illustrate the mechanism by which scorpions are insensitive to their own venoms at the ion channel receptor level and enrich our knowledge of the insensitivity of scorpions and other venomous animals to their own venoms. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  6. Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel.

    PubMed

    Jalily Hasani, Horia; Ganesan, Aravindhan; Ahmed, Marawan; Barakat, Khaled H

    2018-01-01

    The voltage-gated KCNQ1 potassium ion channel interacts with the type I transmembrane protein minK (KCNE1) to generate the slow delayed rectifier (IKs) current in the heart. Mutations in these transmembrane proteins have been linked with several heart-related issues, including long QT syndromes (LQTS), congenital atrial fibrillation, and short QT syndrome. Off-target interactions of several drugs with that of KCNQ1/KCNE1 ion channel complex have been known to cause fatal cardiac irregularities. Thus, KCNQ1/KCNE1 remains an important avenue for drug-design and discovery research. In this work, we present the structural and mechanistic details of potassium ion permeation through an open KCNQ1 structural model using the combined molecular dynamics and steered molecular dynamics simulations. We discuss the processes and key residues involved in the permeation of a potassium ion through the KCNQ1 ion channel, and how the ion permeation is affected by (i) the KCNQ1-KCNE1 interactions and (ii) the binding of chromanol 293B ligand and its derivatives into the complex. The results reveal that interactions between KCNQ1 with KCNE1 causes a pore constriction in the former, which in-turn forms small energetic barriers in the ion-permeation pathway. These findings correlate with the previous experimental reports that interactions of KCNE1 dramatically slows the activation of KCNQ1. Upon ligand-binding onto the complex, the energy-barriers along ion permeation path are more pronounced, as expected, therefore, requiring higher force in our steered-MD simulations. Nevertheless, pulling the ion when a weak blocker is bound to the channel does not necessitate high force in SMD. This indicates that our SMD simulations have been able to discern between strong and week blockers and reveal their influence on potassium ion permeation. The findings presented here will have some implications in understanding the potential off-target interactions of the drugs with the KCNQ1/KCNE1 channel

  7. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.

  8. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    PubMed Central

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  9. C-Terminal residues in small potassium channel blockers OdK1 and OSK3 from scorpion venom fine-tune the selectivity.

    PubMed

    Kuzmenkov, Alexey I; Peigneur, Steve; Chugunov, Anton O; Tabakmakher, Valentin M; Efremov, Roman G; Tytgat, Jan; Grishin, Eugene V; Vassilevski, Alexander A

    2017-05-01

    We report isolation, sequencing, and electrophysiological characterization of OSK3 (α-KTx 8.8 in Kalium and Uniprot databases), a potassium channel blocker from the scorpion Orthochirus scrobiculosus venom. Using the voltage clamp technique, OSK3 was tested on a wide panel of 11 voltage-gated potassium channels expressed in Xenopus oocytes, and was found to potently inhibit Kv1.2 and Kv1.3 with IC 50 values of ~331nM and ~503nM, respectively. OdK1 produced by the scorpion Odontobuthus doriae differs by just two C-terminal residues from OSK3, but shows marked preference to Kv1.2. Based on the charybdotoxin-potassium channel complex crystal structure, a model was built to explain the role of the variable residues in OdK1 and OSK3 selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Involvement of Potassium and Cation Channels in Hippocampal Abnormalities of Embryonic Ts65Dn and Tc1 Trisomic Mice

    PubMed Central

    Stern, Shani; Segal, Menahem; Moses, Elisha

    2015-01-01

    Down syndrome (DS) mouse models exhibit cognitive deficits, and are used for studying the neuronal basis of DS pathology. To understand the differences in the physiology of DS model neurons, we used dissociated neuronal cultures from the hippocampi of Ts65Dn and Tc1 DS mice. Imaging of [Ca2+]i and whole cell patch clamp recordings were used to analyze network activity and single neuron properties, respectively. We found a decrease of ~ 30% in both fast (A-type) and slow (delayed rectifier) outward potassium currents. Depolarization of Ts65Dn and Tc1 cells produced fewer spikes than diploid cells. Their network bursts were smaller and slower than diploids, displaying a 40% reduction in Δf / f0 of the calcium signals, and a 30% reduction in propagation velocity. Additionally, Ts65Dn and Tc1 neurons exhibited changes in the action potential shape compared to diploid neurons, with an increase in the amplitude of the action potential, a lower threshold for spiking, and a sharp decrease of about 65% in the after-hyperpolarization amplitude. Numerical simulations reproduced the DS measured phenotype by variations in the conductance of the delayed rectifier and A-type, but necessitated also changes in inward rectifying and M-type potassium channels and in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We therefore conducted whole cell patch clamp measurements of M-type potassium currents, which showed a ~ 90% decrease in Ts65Dn neurons, while HCN measurements displayed an increase of ~ 65% in Ts65Dn cells. Quantitative real-time PCR analysis indicates overexpression of 40% of KCNJ15, an inward rectifying potassium channel, contributing to the increased inhibition. We thus find that changes in several types of potassium channels dominate the observed DS model phenotype. PMID:26501103

  11. Voltage-Gated Potassium Channels Kv1.3--Potentially New Molecular Target in Cancer Diagnostics and Therapy.

    PubMed

    Teisseyre, Andrzej; Gąsiorowska, Justyna; Michalak, Krystyna

    2015-01-01

    Voltage-gated potassium channels, Kv1.3, which were discovered in 1984, are integral membrane proteins which are activated ("open") upon change of the cell membrane potential, enabling a passive flux of potassium ions across the cell membrane. The channels are expressed in many different tissues, both normal and cancer. Since 2005 it has been known that the channels are expressed not only in the plasma membrane, but also in the inner mitochondrial membrane. The activity of Kv1.3 channels plays an important role, among others, in setting the cell resting membrane potential, cell proliferation, apoptosis and volume regulation. For some years, these channels have been considered a potentially new molecular target in both the diagnostics and therapy of some cancer diseases. This review article focuses on: 1) changes of expression of the channels in cancer disorders with special regard to correlations between the channels' expression and stage of the disease, 2) influence of inhibitors of Kv1.3 channels on proliferation and apoptosis of cancer cells, 3) possible future applications of Kv1.3 channels' inhibitors in therapy of some cancer diseases. In the last section, the results of studies performed in our Laboratory of Bioelectricity on the influence of selected biologically active plant-derived compounds from the groups of flavonoids and stilbenes and their natural and synthetic derivatives on the activity of Kv1.3 channels in normal and cancer cells are reviewed. A possible application of some compounds from these groups to support therapy of cancer diseases, such as breast, colon and lymph node cancer, and melanoma or chronic lymphocytic leukemia (B-CLL), is announced.

  12. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    PubMed Central

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  13. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    PubMed Central

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  14. Effect of activators and inhibitors of K+ channels on insulin secretion in the amphibian pancreas.

    PubMed

    Francini, F; Pirotte, B; Gagliardino, J J

    1997-02-01

    The aim of this study was to obtain pharmacological evidence for the presence and participation of K+ channels in amphibian pancreatic islets. Pancreases from the toad Bufo arenarum were thus incubated with activators or blockers of K+ channels and the immunoreactive insulin released into the medium was measured by radioimmunoassay. Two K(+)-ATP channel openers (diazoxide and BPDZ44) inhibited; while a K(+)-ATP channel blocker (tolbutamide) and metabolizable sugars (glucose, glyceraldehyde) significantly stimulated the output of insulin. Although a nonmetabolizable sugar (galactose) failed to increase insulin release, dinitrophenol decreased the secretagogue effect of glucose. By contrast, although somatostatin and clonidine blocked the release of insulin, tetraethylammonium significantly stimulated secretion. For each compound tested, the effects on both insulin secretion and B-cell K+ channel activity were similar to those observed in the mammalian pancreas. These findings point to the existence of mammalian-like K+ channels in the B-cells of some amphibians.

  15. Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity

    PubMed Central

    Ader, Christian; Schneider, Robert; Hornig, Sönke; Velisetty, Phanindra; Vardanyan, Vitya; Giller, Karin; Ohmert, Iris; Becker, Stefan; Pongs, Olaf; Baldus, Marc

    2009-01-01

    Potassium (K+)-channel gating is choreographed by a complex interplay between external stimuli, K+ concentration and lipidic environment. We combined solid-state NMR and electrophysiological experiments on a chimeric KcsA–Kv1.3 channel to delineate K+, pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH-induced activation is correlated with protonation of glutamate residues at or near the activation gate. Moreover, K+ and channel blockers distinctly affect the open probability of both the inactivation gate comprising the selectivity filter of the channel and the activation gate. The results indicate that the two gates are coupled and that effects of the permeant K+ ion on the inactivation gate modulate activation-gate opening. Our data suggest a mechanism for controlling coordinated and sequential opening and closing of activation and inactivation gates in the K+-channel pore. PMID:19661921

  16. Transport Pathways—Proton Motive Force Interrelationship in Durum Wheat Mitochondria

    PubMed Central

    Trono, Daniela; Laus, Maura N.; Soccio, Mario; Pastore, Donato

    2014-01-01

    In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoKATP) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoKATP neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoKATP to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoKATP and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa. PMID:24821541

  17. Small-Conductance Ca2+-Activated Potassium Channels Negatively Regulate Aldosterone Secretion in Human Adrenocortical Cells.

    PubMed

    Yang, Tingting; Zhang, Hai-Liang; Liang, Qingnan; Shi, Yingtang; Mei, Yan-Ai; Barrett, Paula Q; Hu, Changlong

    2016-09-01

    Aldosterone, which plays a key role in maintaining water and electrolyte balance, is produced by zona glomerulosa cells of the adrenal cortex. Autonomous overproduction of aldosterone from zona glomerulosa cells causes primary hyperaldosteronism. Recent clinical studies have highlighted the pathological role of the KCNJ5 potassium channel in primary hyperaldosteronism. Our objective was to determine whether small-conductance Ca(2+)-activated potassium (SK) channels may also regulate aldosterone secretion in human adrenocortical cells. We found that apamin, the prototypic inhibitor of SK channels, decreased membrane voltage, raised intracellular Ca(2+) and dose dependently increased aldosterone secretion from human adrenocortical H295R cells. By contrast, 1-Ethyl-2-benzimidazolinone, an agonist of SK channels, antagonized apamin's action and decreased aldosterone secretion. Commensurate with an increase in aldosterone production, apamin increased mRNA expression of steroidogenic acute regulatory protein and aldosterone synthase that control the early and late rate-limiting steps in aldosterone biosynthesis, respectively. In addition, apamin increased angiotensin II-stimulated aldosterone secretion, whereas 1-Ethyl-2-benzimidazolinone suppressed both angiotensin II- and high K(+)-stimulated production of aldosterone in H295R cells. These findings were supported by apamin-modulation of basal and angiotensin II-stimulated aldosterone secretion from acutely prepared slices of human adrenals. We conclude that SK channel activity negatively regulates aldosterone secretion in human adrenocortical cells. Genetic association studies are necessary to determine whether mutations in SK channel subtype 2 genes may also drive aldosterone excess in primary hyperaldosteronism. © 2016 American Heart Association, Inc.

  18. Select α-arrestins control cell-surface abundance of the mammalian Kir2.1 potassium channel in a yeast model.

    PubMed

    Hager, Natalie A; Krasowski, Collin J; Mackie, Timothy D; Kolb, Alexander R; Needham, Patrick G; Augustine, Andrew A; Dempsey, Alison; Szent-Gyorgyi, Christopher; Bruchez, Marcel P; Bain, Daniel J; Kwiatkowski, Adam V; O'Donnell, Allyson F; Brodsky, Jeffrey L

    2018-05-21

    Protein composition at the plasma membrane is tightly regulated, with rapid protein internalization and selective targeting to the cell surface occurring in response to environmental changes. For example, ion channels are dynamically relocalized to or from the plasma membrane in response to physiological alterations, allowing cells and organisms to maintain osmotic and salt homeostasis. To identify additional factors that regulate the selective trafficking of a specific ion channel, we used a yeast model for a mammalian potassium channel, the K+ inwardly rectifying channel Kir2.1. Kir2.1 maintains potassium homeostasis in heart muscle cells, and Kir2.1 defects lead to human disease. By examining the ability of Kir2.1 to rescue the growth of yeast cells lacking endogenous potassium channels, we discovered that specific α-arrestins regulate Kir2.1 localization. Specifically, we found that the Ldb19/Art1, Aly1/Art6, and Aly2/Art3 α-arrestin adaptor proteins promote Kir2.1 trafficking to the cell surface, increase Kir2.1 activity at the plasma membrane, and raise intracellular potassium levels. To better quantify the intracellular and cell-surface populations of Kir2.1, we created fluorescence-activating protein fusions and for the first time used this technique to measure the cell-surface residency of a plasma membrane protein in yeast. Our experiments revealed that two α-arrestin effectors also control Kir2.1 localization. In particular, both the Rsp5 ubiquitin ligase and the protein phosphatase calcineurin facilitated the α-arrestin-mediated trafficking of Kir2.1. Together, our findings implicate α-arrestins in regulating an additional class of plasma membrane proteins and establish a new tool for dissecting the trafficking itinerary of any membrane protein in yeast. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    PubMed

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  20. In vitro effect of nicorandil on the carbachol-induced contraction of the lower esophageal sphincter of the rat.

    PubMed

    Shimbo, Tomonori; Adachi, Takeshi; Fujisawa, Susumu; Hongoh, Mai; Ohba, Takayoshi; Ono, Kyoichi

    2016-08-01

    The lower esophageal sphincter (LES) is a specialized region of the esophageal smooth muscle that allows the passage of a swallowed bolus into the stomach. Nitric oxide (NO) plays a major role in LES relaxation. Nicorandil possesses dual properties of a NO donor and an ATP-sensitive potassium channel (KATP channel) agonist, and is expected to reduce LES tone. This study investigated the mechanisms underlying the effects of nicorandil on the LES. Rat LES tissues were placed in an organ bath, and activities were recorded using an isometric force transducer. Carbachol-induced LES contraction was significantly inhibited by KATP channel agonists in a concentration-dependent manner; pinacidil > nicorandil ≈ diazoxide. Nicorandil-induced relaxation of the LES was prevented by pretreatment with glibenclamide, whereas N(G)-nitro-l-arginine methyl ester (l-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and iberiotoxin were ineffective at preventing nicorandil-induced LES relaxation. Furthermore, nicorandil did not affect high K(+)-induced LES contraction. Reverse-transcription polymerase chain reaction analysis and immunohistochemistry revealed expression of KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1) and ABCC9 (SUR2) subunits of the KATP channel in the rat lower esophagus. These findings indicate that nicorandil causes LES relaxation chiefly by activating the KATP channel, and that it may provide an additional pharmacological tool for the treatment of spastic esophageal motility disorders. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  1. Expression and Stress-Dependent Induction of Potassium Channel Transcripts in the Common Ice Plant1

    PubMed Central

    Su, Hua; Golldack, Dortje; Katsuhara, Maki; Zhao, Chengsong; Bohnert, Hans J.

    2001-01-01

    We have characterized transcripts for three potassium channel homologs in the AKT/KAT subfamily (Shaker type) from the common ice plant (Mesembryanthemum crystallinum), with a focus on their expression during salt stress (up to 500 mm NaCl). Mkt1 and 2, Arabidopsis AKT homologs, and Kmt1, a KAT homolog, are members of small gene families with two to three isoforms each. Mkt1 is root specific; Mkt2 is found in leaves, flowers, and seed capsules; and Kmt1 is expressed in leaves and seed capsules. Mkt1 is present in all cells of the root, and in leaves a highly conserved isoform is detected present in all cells with highest abundance in the vasculature. MKT1 for which antibodies were made is localized to the plasma membrane. Following salt stress, MKT1 (transcripts and protein) is drastically down-regulated, Mkt2 transcripts do not change significantly, and Kmt1 is strongly and transiently (maximum at 6 h) up-regulated in leaves and stems. The detection and stress-dependent behavior of abundant transcripts representing subfamilies of potassium channels provides information about tissue specificity and the complex regulation of genes encoding potassium uptake systems in a halophytic plant. PMID:11161018

  2. Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells

    PubMed Central

    Høy, Marianne; Olsen, Hervør L; Bokvist, Krister; Buschard, Karsten; Barg, Sebastian; Rorsman, Patrik; Gromada, Jesper

    2000-01-01

    Capacitance measurements were used to examine the effects of the sulphonylurea tolbutamide on Ca2+-dependent exocytosis in isolated glucagon-secreting rat pancreatic A-cells. When applied extracellularly, tolbutamide stimulated depolarization-evoked exocytosis 4.2-fold without affecting the whole-cell Ca2+ current. The concentration dependence of the stimulatory action was determined by intracellular application through the recording pipette. Tolbutamide produced a concentration-dependent increase in cell capacitance. Half-maximal stimulation was observed at 33 μm and the maximum stimulation corresponded to a 3.4-fold enhancement of exocytosis. The stimulatory action of tolbutamide was dependent on protein kinase C activity. The action of tolbutamide was mimicked by the general K+ channel blockers TEA (10 mm) and quinine (10 μm). A similar stimulation was elicited by 5-hydroxydecanoate (5-HD; 10 μm), an inhibitor of mitochondrial ATP-sensitive K+ (KATP) channels. Tolbutamide-stimulated, but not TEA-induced, exocytosis was antagonized by the K+ channel openers diazoxide, pinacidil and cromakalim. Dissipating the transgranular K+ gradient with nigericin and valinomycin inhibited tolbutamide- and Ca2+-evoked exocytosis. Furthermore, tolbutamide- and Ca2+-induced exocytosis were abolished by the H+ ionophore FCCP or by arresting the vacuolar (V-type) H+-ATPase with bafilomycin A1 or DCCD. Finally, ammonium chloride stimulated exocytosis to a similar extent to that obtained with tolbutamide. We propose that during granular maturation, a granular V-type H+-ATPase pumps H+ into the secretory granule leading to the generation of a pH gradient across the granular membrane and the development of a positive voltage inside the granules. The pumping of H+ is facilitated by the concomitant exit of K+ through granular K+ channels with pharmacological properties similar to those of mitochondrial KATP channels. Release of granules that have been primed is then facilitated by the

  3. Targeting solid tumours with potassium channel activators. A return to fundamentals?

    PubMed

    Trechot, Philippe

    2014-01-01

    From a pharmacological point of view nicotinamide and minoxidil are potassium channel activators. Nicotinamide is used as a radiosensitizer in ARCON (accelerated radiotherapy combined with carbogen breathing and nicotinamide) therapeutic strategy with promising results but not confirmed so far. Minoxidil has never been considered by radiotherapists. Based from recent pathophysiological considerations we suggest a new perspective for the use of these two "old" molecules in order to target solid tumours. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  4. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell

  5. Treating a natural outbreak of columnaris in channel catfish with copper sulfate and potassium permanganate

    USDA-ARS?s Scientific Manuscript database

    An F. Columnare-exclusive epizootic occurred in fingerling channel catfish (Ictalurus punctatus) during normal tank culture practices at SNARC. Fish were transferred to the ultra low-flow system and 2.1 mg/L copper sulfate or 3 mg/L potassium permanganate was administered; an untreated control was ...

  6. Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamb, A.; Weir, M.; Rudy, B.

    1989-06-01

    The study of gene family members has been aided by the isolation of related genes on the basis of DNA homology. The authors have adapted the polymerase chain reaction to screen animal genomes very rapidly and reliably for likely gene family members. Using conserved amino acid sequences to design degenerate oligonucleotide primers, they have shown that the genome of the nematode Caenorhabditis elegans contains sequences homologous to many Drosophila genes involved in pattern formation, including the segment polarity gene wingless (vertebrate int-1), and homeobox sequences characteristic of the Antennapedia, engrailed, and paired families. In addition, they have used this methodmore » to show that C. elegans contains at least five different sequences homologous to genes in the tyrosine kinase family. Lastly, they have isolated six potassium channel sequences from humans, a result that validates the utility of the method with large genomes and suggests that human potassium channel gene diversity may be extensive.« less

  7. VOLTAGE-GATED POTASSIUM CHANNELS AT THE CROSSROADS OF NEURONAL FUNCTION, ISCHEMIC TOLERANCE, AND NEURODEGENERATION

    PubMed Central

    Shah, Niyathi Hegde; Aizenman, Elias

    2013-01-01

    Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system, and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K+ efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer’s disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage-dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels, and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons, and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases. PMID:24323720

  8. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia

    PubMed Central

    Irani, Sarosh R.; Alexander, Sian; Waters, Patrick; Kleopa, Kleopas A.; Pettingill, Philippa; Zuliani, Luigi; Peles, Elior; Buckley, Camilla; Lang, Bethan

    2010-01-01

    Antibodies that immunoprecipitate 125I-α-dendrotoxin-labelled voltage-gated potassium channels extracted from mammalian brain tissue have been identified in patients with neuromyotonia, Morvan’s syndrome, limbic encephalitis and a few cases of adult-onset epilepsy. These conditions often improve following immunomodulatory therapies. However, the proportions of the different syndromes, the numbers with associated tumours and the relationships with potassium channel subunit antibody specificities have been unclear. We documented the clinical phenotype and tumour associations in 96 potassium channel antibody positive patients (titres >400 pM). Five had thymomas and one had an endometrial adenocarcinoma. To define the antibody specificities, we looked for binding of serum antibodies and their effects on potassium channel currents using human embryonic kidney cells expressing the potassium channel subunits. Surprisingly, only three of the patients had antibodies directed against the potassium channel subunits. By contrast, we found antibodies to three proteins that are complexed with 125I-α-dendrotoxin-labelled potassium channels in brain extracts: (i) contactin-associated protein-2 that is localized at the juxtaparanodes in myelinated axons; (ii) leucine-rich, glioma inactivated 1 protein that is most strongly expressed in the hippocampus; and (iii) Tag-1/contactin-2 that associates with contactin-associated protein-2. Antibodies to Kv1 subunits were found in three sera, to contactin-associated protein-2 in 19 sera, to leucine-rich, glioma inactivated 1 protein in 55 sera and to contactin-2 in five sera, four of which were also positive for the other antibodies. The remaining 18 sera were negative for potassium channel subunits and associated proteins by the methods employed. Of the 19 patients with contactin-associated protein-antibody-2, 10 had neuromyotonia or Morvan’s syndrome, compared with only 3 of the 55 leucine-rich, glioma inactivated 1 protein

  9. Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk.

    PubMed

    Vedovato, Natascia; Cliff, Edward; Proks, Peter; Poovazhagi, Varadarajan; Flanagan, Sarah E; Ellard, Sian; Hattersley, Andrew T; Ashcroft, Frances M

    2016-07-01

    The pancreatic ATP-sensitive potassium (KATP) channel plays a pivotal role in linking beta cell metabolism to insulin secretion. Mutations in KATP channel genes can result in hypo- or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, respectively. To date, all patients affected by neonatal diabetes due to a mutation in the pore-forming subunit of the channel (Kir6.2, KCNJ11) are heterozygous for the mutation. Here, we report the first clinical case of neonatal diabetes caused by a homozygous KCNJ11 mutation. A male patient was diagnosed with diabetes shortly after birth. At 5 months of age, genetic testing revealed he carried a homozygous KCNJ11 mutation, G324R, (Kir6.2-G324R) and he was successfully transferred to sulfonylurea therapy (0.2 mg kg(-1) day(-1)). Neither heterozygous parent was affected. Functional properties of wild-type, heterozygous and homozygous mutant KATP channels were examined after heterologous expression in Xenopus oocytes. Functional studies indicated that the Kir6.2-G324R mutation reduces the channel ATP sensitivity but that the difference in ATP inhibition between homozygous and heterozygous channels is remarkably small. Nevertheless, the homozygous patient developed neonatal diabetes, whereas the heterozygous parents were, and remain, unaffected. Kir6.2-G324R channels were fully shut by the sulfonylurea tolbutamide, which explains why the patient's diabetes was well controlled by sulfonylurea therapy. The data demonstrate that tiny changes in KATP channel activity can alter beta cell electrical activity and insulin secretion sufficiently to cause diabetes. They also aid our understanding of how the Kir6.2-E23K variant predisposes to type 2 diabetes.

  10. A novel muscarinic receptor-independent mechanism of KCNQ2/3 potassium channel blockade by Oxotremorine-M.

    PubMed

    Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele

    2016-11-15

    Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Kv10.1 potassium channel: from the brain to the tumors.

    PubMed

    Cázares-Ordoñez, V; Pardo, L A

    2017-10-01

    The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.

  12. Molecular mechanism underlying ethanol activation of G-protein–gated inwardly rectifying potassium channels

    PubMed Central

    Bodhinathan, Karthik; Slesinger, Paul A.

    2013-01-01

    Alcohol (ethanol) produces a wide range of pharmacological effects on the nervous system through its actions on ion channels. The molecular mechanism underlying ethanol modulation of ion channels is poorly understood. Here we used a unique method of alcohol-tagging to demonstrate that alcohol activation of a G-protein–gated inwardly rectifying potassium (GIRK or Kir3) channel is mediated by a defined alcohol pocket through changes in affinity for the membrane phospholipid signaling molecule phosphatidylinositol 4,5-bisphosphate. Surprisingly, hydrophobicity and size, but not the canonical hydroxyl, were important determinants of alcohol-dependent activation. Altering levels of G protein Gβγ subunits, conversely, did not affect alcohol-dependent activation, suggesting a fundamental distinction between receptor and alcohol gating of GIRK channels. The chemical properties of the alcohol pocket revealed here might extend to other alcohol-sensitive proteins, revealing a unique protein microdomain for targeting alcohol-selective therapeutics in the treatment of alcoholism and addiction. PMID:24145411

  13. Voltage-gated potassium channel-complex autoimmunity and associated clinical syndromes.

    PubMed

    Irani, Sarosh R; Vincent, Angela

    2016-01-01

    Voltage-gated potassium channel (VGKC)-complex antibodies are defined by the radioimmunoprecipitation of Kv1 potassium channel subunits from brain tissue extracts and were initially discovered in patients with peripheral nerve hyperexcitability (PNH). Subsequently, they were found in patients with PNH plus psychosis, insomnia, and dysautonomia, collectively termed Morvan's syndrome (MoS), and in a limbic encephalopathy (LE) with prominent amnesia and frequent seizures. Most recently, they have been described in patients with pure epilepsies, especially in patients with the novel and distinctive semiology termed faciobrachial dystonic seizures (FBDS). In each of these conditions, there is a close correlation between clinical measures and antibody levels. The VGKC-complex is a group of proteins that are strongly associated in situ and after extraction in mild detergent. Two major targets of the autoantibodies are leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein 2 (CASPR2). The patients with PNH or MoS are most likely to have CASPR2 antibodies, whereas LGI1 antibodies are found characteristically in patients with FBDS and LE. Crucially, each of these conditions has a good response to immunotherapies, often corticosteroids and plasma exchange, although optimal regimes require further study. VGKC-complex antibodies have also been described in neuropathic pain syndromes, chronic epilepsies, a polyradiculopathy in porcine abattoir workers, and some children with status epilepticus. Increasingly, however, the antigenic targets in these patients are not defined and in some cases the antibodies may be secondary rather than the primary cause. Future serologic studies should define all the antigenic components of the VGKC-complex, and further inform mechanisms of antibody pathogenicity and related inflammation. © 2016 Elsevier B.V. All rights reserved.

  14. A potent potassium channel blocker from Mesobuthus eupeus scorpion venom.

    PubMed

    Gao, Bin; Peigneur, Steve; Tytgat, Jan; Zhu, Shunyi

    2010-12-01

    Scorpion venom-derived peptidyl toxins are valuable pharmacological tools for investigating the structure-function relationship of ion channels. Here, we report the purification, sequencing and functional characterization of a new K(+) channel blocker (MeuKTX) from the venom of the scorpion Mesobuthus eupeus. Effects of MeuKTX on ten cloned potassium channels in Xenopus oocytes were evaluated using two-electrode voltage-clamp recordings. MeuKTX is the orthologue of BmKTX (α-KTx3.6), a known Kv1.3 blocker from the scorpion Mesobuthus martensii, and classified as α-KTx3.13. MeuKTX potently blocks rKv1.1, rKv1.2 and hKv1.3 channels with 50% inhibitory concentration (IC(50)) of 203.15 ± 4.06 pM, 8.92 ± 2.3 nM and 171 ± 8.56 pM, respectively, but does not affect rKv1.4, rKv1.5, hKv3.1, rKv4.3, and hERG channels even at 2 μM concentration. At this high concentration, MeuKTX is also active on rKv1.6 and Shaker IR. Our results also demonstrate that MeuKTX and BmKTX have the same channel spectrum and similar pharmacological potency. Analysis of the structure-function relationships of α-KTx3 subfamily toxins allows us to recognize several key sites which may be useful for designing toxins with improved activity on hKv1.3, an attractive target for T-cell mediated autoimmune diseases. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  15. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators

    PubMed Central

    Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.

    2016-01-01

    Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial

  16. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    PubMed

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  18. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Lange, Adam; Giller, Karin; Hornig, Sönke; Martin-Eauclaire, Marie-France; Pongs, Olaf; Becker, Stefan; Baldus, Marc

    2006-04-01

    The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane-similar to the catalytic function of the active site of an enzyme-and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.

  19. Scorpion Toxins Specific for Potassium (K+) Channels: A Historical Overview of Peptide Bioengineering

    PubMed Central

    Bergeron, Zachary L.; Bingham, Jon-Paul

    2012-01-01

    Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+) channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics. PMID:23202307

  20. Kir6.2 Variant E23K Increases ATP-Sensitive K+ Channel Activity and Is Associated With Impaired Insulin Release and Enhanced Insulin Sensitivity in Adults With Normal Glucose Tolerance

    PubMed Central

    Villareal, Dennis T.; Koster, Joseph C.; Robertson, Heather; Akrouh, Alejandro; Miyake, Kazuaki; Bell, Graeme I.; Patterson, Bruce W.; Nichols, Colin G.; Polonsky, Kenneth S.

    2009-01-01

    OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K+ channel (KATP channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope–labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by ∼40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is ∼40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the KATP channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes. PMID:19491206

  1. Remote and reversible inhibition of neurons and circuits by small molecule induced potassium channel stabilization

    PubMed Central

    Auffenberg, Eva; Jurik, Angela; Mattusch, Corinna; Stoffel, Rainer; Genewsky, Andreas; Namendorf, Christian; Schmid, Roland M.; Rammes, Gerhard; Biel, Martin; Uhr, Manfred; Moosmang, Sven; Michalakis, Stylianos; Wotjak, Carsten T.; Thoeringer, Christoph K.

    2016-01-01

    Manipulating the function of neurons and circuits that translate electrical and chemical signals into behavior represents a major challenges in neuroscience. In addition to optogenetic methods using light-activatable channels, pharmacogenetic methods with ligand induced modulation of cell signaling and excitability have been developed. However, they are largely based on ectopic expression of exogenous or chimera proteins. Now, we describe the remote and reversible expression of a Kir2.1 type potassium channel using the chemogenetic technique of small molecule induced protein stabilization. Based on shield1-mediated shedding of a destabilizing domain fused to a protein of interest and inhibition of protein degradation, this principle has been adopted for biomedicine, but not in neuroscience so far. Here, we apply this chemogenetic approach in brain research for the first time in order to control a potassium channel in a remote and reversible manner. We could show that shield1-mediated ectopic Kir2.1 stabilization induces neuronal silencing in vitro and in vivo in the mouse brain. We also validated this novel pharmacogenetic method in different neurobehavioral paradigms.The DD-Kir2.1 may complement the existing portfolio of pharmaco- and optogenetic techniques for specific neuron manipulation, but it may also provide an example for future applications of this principle in neuroscience research. PMID:26757616

  2. Automated Patch-Clamp Methods for the hERG Cardiac Potassium Channel.

    PubMed

    Houtmann, Sylvie; Schombert, Brigitte; Sanson, Camille; Partiseti, Michel; Bohme, G Andrees

    2017-01-01

    The human Ether-a-go-go Related Gene (hERG) product has been identified as a central ion channel underlying both familial forms of elongated QT interval on the electrocardiogram and drug-induced elongation of the same QT segment. Indeed, reduced function of this potassium channel involved in the repolarization of the cardiac action potential can produce a type of life-threatening cardiac ventricular arrhythmias called Torsades de Pointes (TdP). Therefore, hERG inhibitory activity of newly synthetized molecules is a relevant structure-activity metric for compound prioritization and optimization in medicinal chemistry phases of drug discovery. Electrophysiology remains the gold standard for the functional assessment of ion channel pharmacology. The recent years have witnessed automatization and parallelization of the manual patch-clamp technique, allowing higher throughput screening on recombinant hERG channels. However, the multi-well plate format of automatized patch-clamp does not allow visual detection of potential micro-precipitation of poorly soluble compounds. In this chapter we describe bench procedures for the culture and preparation of hERG-expressing CHO cells for recording on an automated patch-clamp workstation. We also show that the sensitivity of the assay can be improved by adding a surfactant to the extracellular medium.

  3. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.

    PubMed

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  4. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel

    NASA Astrophysics Data System (ADS)

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  5. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium.

    PubMed

    Wrighton, David C; Muench, Stephen P; Lippiat, Jonathan D

    2015-09-01

    The Slo3 (KCa 5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Mouse (m) Slo3 (KCa 5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  6. Microelectrode array measurement of potassium ion channel remodeling on the field action potential duration in rapid atrial pacing rabbits model.

    PubMed

    Sun, Juan; Yan, Huang; Wugeti, Najina; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi

    2015-01-01

    Atrial fibrillation (AF) arises from abnormalities in atrial structure and electrical activity. Microelectrode arrays (MEA) is a real-time, nondestructive measurement of the resting and action potential signal, from myocardial cells, to the peripheral circuit of electrophysiological activity. This study examined the field action potential duration (fAPD) of the right atrial appendage (RAA) by MEA in rapid atrial pacing (RAP) in the right atrium of rabbits. In addition, this study also investigated the effect of potassium ion channel blockers on fAPD. 40 New Zealand white rabbits of either sex were randomly divided into 3 groups: 1) the control, 2) potassium ion channel blocker (TEA, 4-Ap and BaCl2), and 3) amiodarone groups. The hearts were quickly removed and right atrial appendage sectioned (slice thickness 500 μm). Each slice was perfused with Tyrode's solution and continuously stimulated for 30 minutes. Sections from the control group were superfused with Tyrode's solution for 10 minutes, while the blocker groups and amiodarone were both treated with their respective compounds for 10 minutes each. The fAPD of RAA and action field action potential morphology were measured using MEA. In non-pace (control) groups, fAPD was 188.33 ± 18.29 ms after Tyrode's solution superfusion, and 173.91 ± 6.83 ms after RAP. In pace/potassium ion channel groups, TEA and BaCl2 superfusion prolonged atrial field action potential (fAPD) (control vs blocker: 176.67 ± 8.66 ms vs 196.11 ± 10.76 ms, 182.22 ± 12.87 ms vs 191.11 ± 13.09 ms with TEA and BaCl2 superfusion, respectively, P < 0.05). 4-AP superfusion significantly prolonged FAPD. In pace/amiodarone groups, 4-Ap superfusion extended fAPD. MEA was a sensitive and stable reporter for the measurement of the tissue action potential in animal heart slices. After superfusing potassium ion channel blockers, fAPD was prolonged. These results suggest that Ito, IKur and IK1 remodel and mediate RAP-induced atrial electrical

  7. The pore-lining region of shaker voltage-gated potassium channels: comparison of beta-barrel and alpha-helix bundle models.

    PubMed Central

    Kerr, I D; Sansom, M S

    1997-01-01

    Although there is a large body of site-directed mutagenesis data that identify the pore-lining sequence of the voltage-gated potassium channel, the structure of this region remains unknown. We have interpreted the available biochemical data as a set of topological and orientational restraints and employed these restraints to produce molecular models of the potassium channel pore region, H5. The H5 sequence has been modeled either as a tetramer of membrane-spanning beta-hairpins, thus producing an eight-stranded beta-barrel, or as a tetramer of incompletely membrane-spanning alpha-helical hairpins, thus producing an eight-staved alpha-helix bundle. In total, restraints-directed modeling has produced 40 different configurations of the beta-barrel model, each configuration comprising an ensemble of 20 structures, and 24 different configurations of the alpha-helix bundle model, each comprising an ensemble of 24 structures. Thus, over 1300 model structures for H5 have been generated. Configurations have been ranked on the basis of their predicted pore properties and on the extent of their agreement with the biochemical data. This ranking is employed to identify particular configurations of H5 that may be explored further as models of the pore-lining region of the voltage-gated potassium channel pore. Images FIGURE 7 FIGURE 12 PMID:9251779

  8. Modulation of A-type potassium channels by a family of calcium sensors.

    PubMed

    An, W F; Bowlby, M R; Betty, M; Cao, J; Ling, H P; Mendoza, G; Hinson, J W; Mattsson, K I; Strassle, B W; Trimmer, J S; Rhodes, K J

    2000-02-03

    In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes. Although pore-forming alpha-subunits of the Kv4, or Shal-related, channel family form A-type currents in heterologous cells, these differ significantly from native A-type currents. Here we describe three Kv channel-interacting proteins (KChIPs) that bind to the cytoplasmic amino termini of Kv4 alpha-subunits. We find that expression of KChIP and Kv4 together reconstitutes several features of native A-type currents by modulating the density, inactivation kinetics and rate of recovery from inactivation of Kv4 channels in heterologous cells. All three KChIPs co-localize and co-immunoprecipitate with brain Kv4 alpha-subunits, and are thus integral components of native Kv4 channel complexes. The KChIPs have four EF-hand-like domains and bind calcium ions. As the activity and density of neuronal A-type currents tightly control responses to excitatory synaptic inputs, these KChIPs may regulate A-type currents, and hence neuronal excitability, in response to changes in intracellular calcium.

  9. A novel crystallization method for visualizing the membrane localization of potassium channels.

    PubMed Central

    Lopatin, A N; Makhina, E N; Nichols, C G

    1998-01-01

    The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel. PMID:9591643

  10. A novel crystallization method for visualizing the membrane localization of potassium channels.

    PubMed

    Lopatin, A N; Makhina, E N; Nichols, C G

    1998-05-01

    The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel.

  11. Potassium channels and prostacyclin contribute to vasorelaxant activities of Tridax procumbens crude aqueous leaf extract in rat superior mesenteric arteries.

    PubMed

    Salahdeen, H M; Adebari, A O; Murtala, B A; Alada, A R A

    2015-03-01

    Previous studies have shown that aqueous extract of the leaf of Tridax procuinbens is capable of lowering blood pressure through its vasodilatory effects. In the present study attempt was made to examine the biological active components of T procuinbens leaf using GC-MS methods. We further investigated the role of K+ channels in the vasorelaxation effects of Tridax procumbens using rat isolated mesenteric artery. The superior mesenteric artery isolated from healthy, young adult Wistar rats (250-300 g) were precontracted with phenylephrine (PE) (10(-7) M) and potassium chloride (KCl) (60 mM) and were treated with Various concentrations of aqueous extract ofT procumbens (0.9.0 mg/ml). The changes in arterial tension were recorded using a force-displacement transducer (Model 7004; Ugo Basil Varese, Italy) coupled to data capsule acquisition system. The results of GG-MS revealed the presence of linoleic acid. The T. procumbens extract (TPE) ranging from 0.5-9.0 mg/mI significantly (p<0.05) reduced the, contraction induced by (PE) and (KCl) in a concentration-dependent manner. The extract also antagonised the calcium-induced vasoconstriction (1(-9) - 10(-5)) in calcium-free with high concentration of potassium as well as. in calcium- and potassium free physiological solutions. The vasorelaxing effect caused by TPE was significantly (p<0.05) attenuated with preincubation of potassium channels blockers (Barium chloride and apamin), NO synthaseinhibitor (L-NAME), prostacyclin inhibitor (indomethacin), atropine; propranolol, and methylene blue while it was not affected by preincubation with glibenclamide and tetra ethyl ammonium, 4-aminopyridine (4-AP) and oxadiazolo quinoxalin (ODQ). The results of this study demonstrate that T procumbens extract causes vasodilatory effects by blocking calcium channels and the vasodilatory effect of the extract may also be due to stimulation of prostacyclin production and opening of small-conductance Ga2+ activated potassium channels. The

  12. [Response of potassium channels to estrogen and progesterone in the uterine smooth muscle cells of adenomyosis in vitro].

    PubMed

    Shi, Jinghua; Jin, Li; Leng, Jinhua; Lang, Jinghe

    2015-11-01

    To investigate the expression of potassium channels and the influence of estrogen and progesterone on the cultured uterine smooth muscle cells (USMC) of adenomyosis in vitro. There were 22 cases of adenomyosis hysterectomy in the adenomyosis group and 12 patients with cervical intraepithelial neoplasia III removal of the uterus in the control group. USMC were separated and cultured in vitro, incubated with different concentrations of estrogen and progesterone. We used reverse transcription-PCR to dectect the expression of large-conductance calcium- and voltage-sensitive potassium channel α subunit (BKCa α) and voltage-gated potassium channel 4.3 (Kv4.3). The mRNA expression of BKCa α and Kv4.3 in the adenomyosis group (4.43±2.05 and 4.52±1.97) were significantly higher than those in the control group (0.83±0.25 and 0.86±0.19, P<0.05). In the control group, Kv4.3 mRNA decreased after treated with 0.1 nmol/L (0.17±0.10) and 1.0 nmol/L (0.13±0.08) estrogen than before (0.55±0.29, P<0.05). In the adenomyosis group, BKCa α mRNA decreased significantly after treated with 10.0 nmol/L estrogen (0.56±0.27 versus 1.01±0.35, P<0.05). 0.1 µmol/L progesterone elevated both BKCa α mRNA (0.44±0.24 versus 0.16±0.09) and Kv4.3 mRNA (1.29±0.51 versus 0.55±0.29) in the control group (all P<0.05); however, there were no significant difference in adenomyosis group of different concentration of progestrone (P>0.05). There is an abnormal expression of potassium channels in the adenomyosis USMC, which is regulated by high concentration of estrogen and might be resistant to progesterone.

  13. Evaluation of potassium permanganate against an experimental subacute infection of Flavobacterium columnare in channel catfish, Icatlurus punctatus

    USDA-ARS?s Scientific Manuscript database

    The efficacy of potassium permanganate (KMnO4) as a prophylactic and therapeutic treatment for subacute infection of Flavobacterium columnare was demonstrated in experimentally infected channel catfish, Ictalurus punctatus. Catfish experimentally infected with F. columnare to mimic a subacute infec...

  14. ATP-dependent potassium channels and mitochondrial permeability transition pores play roles in the cardioprotection of theaflavin in young rat.

    PubMed

    Ma, Huijie; Huang, Xinli; Li, Qian; Guan, Yue; Yuan, Fang; Zhang, Yi

    2011-07-01

    min of reperfusion completely abolished the cardioprotection of TF1 (20 μmol/l). The results indicate that TF1 protects the rat heart against ischemia/reperfusion injury through the opening of K(ATP) channels, particularly on the mitochondrial membrane, and inhibits mPTP opening.

  15. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    PubMed

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  16. Aberrant modulation of a delayed rectifier potassium channel by glutamate in Alzheimer's disease.

    PubMed

    Poulopoulou, Cornelia; Markakis, Ioannis; Davaki, Panagiota; Tsaltas, Eleftheria; Rombos, Antonis; Hatzimanolis, Alexandros; Vassilopoulos, Dimitrios

    2010-02-01

    In Alzheimer's disease (AD), potassium channel abnormalities have been reported in both neural and peripheral tissues. Herein, using whole-cell patch-clamp, we demonstrate an aberrant glutamate-dependent modulation of K(V)1.3 channels in T lymphocytes of AD patients. Although intrinsic K(V)1.3 properties in patients were similar to healthy individuals, glutamate (1-1000 microM) failed to yield the hyperpolarizing shift normally observed in K(V)1.3 steady-state inactivation (-4.4+/-2.7 mV in AD vs. -14.3+/-2.5 mV in controls, 10 microM glutamate), resulting in a 4-fold increase of resting channel activity. Specific agonist and antagonist data indicate that this abnormality is due to dysfunction of cognate group II mGluRs. Given that glutamate is present in plasma and that both mGluRs and K(V)1.3 channels regulate T-lymphocyte responsiveness, our finding may account for the presence of immune-associated alterations in AD. Furthermore, if this aberration reflects a corresponding one in neural tissue, it could provide a potential target in AD pathogenesis.

  17. Potassium channel openers and prostacyclin play a crucial role in mediating the vasorelaxant activity of Gynura procumbens

    PubMed Central

    2013-01-01

    Background Previous studies of Gynura procumbens (G. procumbens) have shown that partially purified fractions of the leaves are capable of lowering the blood pressure of rats by inhibiting angiotensin-converting enzymic activity and causing vasodilatation. The objectives of this study were therefore to further purify the active compounds that exhibited selective effects on blood vessels, determine the mechanism of actions, and to qualitatively analyse the putative compounds present. Methods The butanolic fraction (BU) of the crude ethanolic extract was purified using column chromatography to obtain several sub-fractions of different polarities. The in vitro effects of BU and the sub-fractions on vascular tension were subsequently determined using isolated rat thoracic aortic rings. The most potent sub-fraction (F1) alone was then investigated for its mechanisms of the vasorelaxant activity. In another experiment, thin-layer chromatography was used to qualitatively analyse the active compounds found in F1. Results The BU and the sub-fractions ranging from 10-7 to 10-2 g/ml significantly (p < 0.05) inhibited the sustained tonic contractions induced by phenylephrine and potassium chloride in a concentration-dependent manner with various degree of potency. The most potent sub-fraction (F1) antagonised the calcium-induced vasocontractions (1 x 10-4 – 1 x 10-2 M) in calcium-free with high concentration of potassium as well as in calcium- and potassium-free Krebs-Henseleit solutions. Contractions induced by noradrenaline and caffeine were not affected by F1. The vasorelaxing effect caused by F1 was significantly attenuated with preincubation of potassium channel blockers (glibenclamide and 4-aminopyridine) and prostacyclin inhibitor (indomethacin) while it was not affected by preincubation with tetraethylammonium, l-nitro-arginine methyl esther, propanolol, atropine, oxadiazolo quinoxalin one and methylene blue. The qualitative phytochemical analysis of F1

  18. Coupling between the Voltage-sensing and Pore Domains in a Voltage-gated Potassium Channel

    PubMed Central

    Schow, Eric V.; Freites, J. Alfredo; Nizkorodov, Alex; White, Stephen H.; Tobias, Douglas J.

    2012-01-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence. PMID:22425907

  19. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    PubMed

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  20. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    PubMed

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  1. Ameliorating effects of sulfonylurea drugs on insulin resistance in Otsuka long-evans Tokushima Fatty rats.

    PubMed

    Park, Jeong-Kwon; Kim, Sang-Pyo; Song, Dae-Kyu

    2008-02-01

    OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium (K(ATP)) channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of K(ATP) channels, insulin receptor beta-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that K(ATP)-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on K(ATP) channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects.

  2. Strontium and barium in aqueous solution and a potassium channel binding site

    NASA Astrophysics Data System (ADS)

    Chaudhari, Mangesh I.; Rempe, Susan B.

    2018-06-01

    Ion hydration structure and free energy establish criteria for understanding selective ion binding in potassium (K+) ion channels and may be significant to understanding blocking mechanisms as well. Recently, we investigated the hydration properties of Ba2+, the most potent blocker of K+ channels among the simple metal ions. Here, we use a similar method of combining ab initio molecular dynamics simulations, statistical mechanical theory, and electronic structure calculations to probe the fundamental hydration properties of Sr2+, which does not block bacterial K+ channels. The radial distribution of water around Sr2+ suggests a stable 8-fold geometry in the local hydration environment, similar to Ba2+. While the predicted hydration free energy of -331.8 kcal/mol is comparable with the experimental result of -334 kcal/mol, the value is significantly more favorable than the -305 kcal/mol hydration free energy of Ba2+. When placed in the innermost K+ channel blocking site, the solvation free energies and lowest energy structures of both Sr2+ and Ba2+ are nearly unchanged compared with their respective hydration properties. This result suggests that the block is not attributable to ion trapping due to +2 charge, and differences in blocking behavior arise due to free energies associated with the exchange of water ligands for channel ligands instead of free energies of transfer from water to the binding site.

  3. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    PubMed Central

    Xia, Menghang; Shahane, Sampada; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao, Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-01-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K+) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially lead to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC50 potencies ranging from 0.26 to 22 μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC50 value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo. PMID:21362439

  4. Sodium-dependent potassium channels of a Slack-like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons

    PubMed Central

    Wallén, Peter; Robertson, Brita; Cangiano, Lorenzo; Löw, Peter; Bhattacharjee, Arin; Kaczmarek, Leonard K; Grillner, Sten

    2007-01-01

    The slow afterhyperpolarization (sAHP) following the action potential is the main determinant of spike frequency regulation. The sAHP after single action potentials in neurons of the lamprey locomotor network is largely due to calcium-dependent K+ channels (80%), activated by calcium entering the cell during the spike. The residual (20%) component becomes prominent during high level activity (50% of the sAHP). It is not Ca2+ dependent, has a reversal potential like that of potassium, and is not affected by chloride injection. It is not due to rapid activation of Na+/K+-ATPase. This non-KCa-sAHP is reduced markedly in amplitude when sodium ions are replaced by lithium ions, and is thus sodium dependent. Quinidine also blocks this sAHP component, further indicating an involvement of sodium-dependent potassium channels (KNa). Modulators tested do not influence the KNa-sAHP amplitude. Immunofluorescence labelling with an anti-Slack antibody revealed distinct immunoreactivity of medium-sized and large neurons in the grey matter of the lamprey spinal cord, suggesting the presence of a Slack-like subtype of KNa channel. The results strongly indicate that a KNa potassium current contributes importantly to the sAHP and thereby to neuronal frequency regulation during high level burst activity as during locomotion. This is, to our knowledge, the first demonstration of a functional role for the Slack gene in contributing to the slow AHP. PMID:17884929

  5. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.

    PubMed

    Shang, Lijun; Tucker, Stephen J

    2008-02-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.

  6. Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    PubMed Central

    Fujiwara, Yuichiro; Arrigoni, Cristina; Domigan, Courtney; Ferrara, Giuseppina; Pantoja, Carlos; Thiel, Gerhard; Moroni, Anna; Minor, Daniel L.

    2009-01-01

    Background Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. Methodology/Principal Findings We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. Conclusions/Significance The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features. PMID:19834614

  7. Adenosine triphosphate-sensitive potassium channel blocking agent ameliorates, but the opening agent aggravates, ischemia/reperfusion-induced injury. Heart function studies in nonfibrillating isolated hearts.

    PubMed

    Tosaki, A; Hellegouarch, A

    1994-02-01

    This study was conducted to elucidate the role of the adenosine triphosphate (ATP)-sensitive potassium channel blocking agent glibenclamide and the opener cromakalim in the mechanism of reperfusion-induced injury. Recently, ATP-sensitive potassium channel openers have been proposed to reduce ischemia/reperfusion-induced injury, including arrhythmias and heart function. Thus, one might hypothesize that pharmacologic agents that enhance the loss of potassium ions in the myocardium through ATP-sensitive potassium channels would be arrhythmogenic, and agents that interfere with tissue potassium ion loss would be antiarrhythmic. Isolated "working" guinea pig hearts and phosphorus-31 nuclear magnetic resonance spectroscopy were used to study the recovery of myocardial function and phosphorus compounds after 30, 40 and 50 min of normothermic global ischemia followed by reperfusion in untreated control and glibenclamide- and cromakalim-treated groups. After 30 min of ischemia, 1, 3, 10 and 30 mumol/liter of glibenclamide dose-dependently reduced the incidence of reperfusion-induced ventricular fibrillation (total) from its control value of 92% to 75%, 33% (p < 0.05), 33% (p < 0.05) and 42% (p < 0.05), respectively. The incidence of ventricular tachycardia followed the same pattern. A reduction of arrhythmias was also observed after 40 and 50 min of ischemia followed by reperfusion in the glibenclamide-treated hearts. Cromakalim, at the same concentrations, did not reduce the incidence of reperfusion-induced arrhythmias. During reperfusion, glibenclamide (3 and 10 mumol/liter) improved the recovery of coronary blood flow, aortic flow, myocardial contractility and tissue ATP and creatine phosphate content, but cromakalim failed to ameliorate the recovery of postischemic myocardium compared with that in the drug-free control hearts. The preservation of myocardial potassium ions and phosphorus compounds by glibenclamide can improve the recovery of postischemic function, but

  8. Ras-Association Domain of Sorting Nexin 27 Is Critical for Regulating Expression of GIRK Potassium Channels

    PubMed Central

    Bodhinathan, Karthik; Taura, Jaume J.; Taylor, Natalie M.; Nettleton, Margaret Y.; Ciruela, Francisco; Slesinger, Paul A.

    2013-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels play an important role in regulating neuronal excitability. Sorting nexin 27b (SNX27b), which reduces surface expression of GIRK channels through a PDZ domain interaction, contains a putative Ras-association (RA) domain with unknown function. Deleting the RA domain in SNX27b (SNX27b-ΔRA) prevents the down-regulation of GIRK2c/GIRK3 channels. Similarly, a point mutation (K305A) in the RA domain disrupts regulation of GIRK2c/GIRK3 channels and reduces H-Ras binding in vitro. Finally, the dominant-negative H-Ras (S17N) occludes the SNX27b-dependent decrease in surface expression of GIRK2c/GIRK3 channels. Thus, the presence of a functional RA domain and the interaction with Ras-like G proteins comprise a novel mechanism for modulating SNX27b control of GIRK channel surface expression and cellular excitability. PMID:23536889

  9. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel.

    PubMed

    Minor, D L; Lin, Y F; Mobley, B C; Avelar, A; Jan, Y N; Jan, L Y; Berger, J M

    2000-09-01

    Kv voltage-gated potassium channels share a cytoplasmic assembly domain, T1. Recent mutagenesis of two T1 C-terminal loop residues implicates T1 in channel gating. However, structural alterations of these mutants leave open the question concerning direct involvement of T1 in gating. We find in mammalian Kv1.2 that gating depends critically on residues at complementary T1 surfaces in an unusually polar interface. An isosteric mutation in this interface causes surprisingly little structural alteration while stabilizing the closed channel and increasing the stability of T1 tetramers. Replacing T1 with a tetrameric coiled-coil destabilizes the closed channel. Together, these data suggest that structural changes involving the buried polar T1 surfaces play a key role in the conformational changes leading to channel opening.

  10. [Spinocerebellar ataxias in infancy: pathogenesis of potassium and calcium channels' diseases, clinical features and therapeutical approach].

    PubMed

    Bozzola, E; Savasta, S; Peruzzi, C; Bozzola, M; Bona, G

    2007-04-01

    In infancy, the autosomal dominant inherited ataxias are severe neurological diseases, due to inherited mutations of ion channels. The main forms are: episodic ataxia type 1 (EA1), episodic ataxia type 2 (EA2), spinocerebellar ataxia type 6 (SCA6). EA1 is due to a mutation in KCNA1, the gene encoding human Kv1.1 on chromosome 12p13, which contributes as a subunit to the formation of potassium channels in motor nerve terminals and in many central nervous system neurones. To date, there are fifteen different mutations, which affect potassium channel's properties and lead to phenotypic variability and to different responses to therapy. EA2 can result from mutations in the CACNA1A gene, encoding calcium channels on chromosome 19p13.1 and widely distributed throughout the central nervous system. To date, associated with EA2, in the CACNA1A gene thirty different mutations have been described, resulting in altered or truncated protein products and, as a consequence, in nonfunctional calcium channels. There is phenotypic variability, also inside the same family, without correlation genotype-phenotype. SCA6 is a progressive neurodegenerative disease due to mutations of the CACNA1A gene. CACNA1A is responsible for both EA2 and SCA6. Nevertheless, the pathogenesis of the two diseases is different: SCA6 is associated with small expansion of a CAGn repeat, while EA2 is due to point mutations. Clinically, SCA6 is characterized by a slowly progressive development and by an inverse correlation between the number of repeats and the severity of the disease.

  11. Mutational analysis of ABCC8, KCNJ11, GLUD1, HNF4A and GCK genes in 30 Chinese patients with congenital hyperinsulinism.

    PubMed

    Sang, Yanmei; Xu, Zidi; Liu, Min; Yan, Jie; Wu, Yujun; Zhu, Cheng; Ni, Guichen

    2014-01-01

    We conducted a cohort study to elucidate the molecular spectrum of congenital hyperinsulinism (CHI) in Chinese pediatric patients. Thirty Chinese children with CHI were chosen as research subjects, 16 of whom were responsive to diazoxide and 13 of whom were not (1 patient was not given the drug for medical reasons). All exons of the adenosine triphosphate (ATP)-sensitive potassium channel (KATP channel) genes KCNJ11 and ABCC8, the hepatocyte nuclear factor 4 α (HNF4A) gene, and the Glucokinase (GCK) gene as well as exons 6 and 7 and 10-12 of the glutamate dehydrogenase 1 (GLUD1) gene were amplified from genomic DNA and directly sequenced. Mutations were identified in 14 of 30 patients (47%): 3 in GLUD1 (10%) and 11 in the KATP channel genes (37%). Six patients had paternally derived monoallelic KATP channel mutations predictive of the focal CHI form. We found a novel de novo ABCC8 mutation, p. C1000*, a novel paternally inherited ABCC8 mutation, D1505H, and a dominantly inherited ABCC8 mutation, R1217K. The GLUD1 activating mutation R269H was found in 2 patients: 1 de novo and the other paternally inherited. A de novo S445L mutation was found in 1 patient. No significant HNF4A or GCK mutations were found. CHI has complex genetic onset mechanisms. Paternally inherited monoallelic mutations of ABCC8 and KCNJ11 are likely the main causes of KATP-CHI in Chinese patients. Glutamate dehydrogenase-CHI is the second most common cause of CHI, while HNF4A and GCK are rare types of CHI in Chinese patients.

  12. Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells

    NASA Astrophysics Data System (ADS)

    Xu, Haifei; Bai, Juan; Meng, Jie; Hao, Wei; Xu, Haiyan; Cao, Ji-Min

    2009-07-01

    The advancement in nanotechnology has produced technological and conceptual breakthroughs but the effects nanomaterials have on organisms at the cellular level are poorly understood. Here we report that carboxyl-terminated multi-walled carbon nanotubes (MWCNTs) act as antagonists of three types of potassium channels as assessed by whole-cell patch clamp electrophysiology on undifferentiated pheochromocytoma (PC12) cells. Our results showed that carboxyl-terminated MWCNTs suppress the current densities of Ito, IK and IK1 in a time-dependent and irreversible manner. The suppressions were most distinct 24 h after incubation with MWCNTs. However, MWCNTs did not significantly change the expression levels of reactive oxygen species (ROS) or intracellular free calcium and also did not alter the mitochondrial membrane potential (ΔΨm) in PC12 cells. These results suggest that oxidative stress was not involved in the MWCNTs suppression of Ito, IK and IK1 current densities. Nonetheless, the suppression of potassium currents by MWCNTs will impact on electrical signaling of excitable cells such as neurons and muscles.

  13. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    PubMed

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  14. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2.

    PubMed

    Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo

    2017-03-16

    The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H + -ATPase-energized K + uptake. Moreover, through reversible post-translational modifications it can also function as an open, K + -selective channel, which taps a 'potassium battery', providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.

  15. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2

    NASA Astrophysics Data System (ADS)

    Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo

    2017-03-01

    The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.

  16. Extracellular Potassium Homeostasis: Insights from Hypokalemic Periodic Paralysis

    PubMed Central

    Cheng, Chih-Jen; Kuo, Elizabeth; Huang, Chou-Long

    2014-01-01

    The extracellular potassium makes up only about 2% of the total body potassium store. The majority of the body potassium is distributed in the intracellular space, and of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na+, K+-ATPase and release by inward rectifier K+ channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward rectifier K+ channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings will be reviewed. PMID:23953801

  17. Survival of Swiss-Webster mouse cerebellar granule neurons is promoted by a combination of potassium channel blockers.

    PubMed

    Collins, Anthony; Larson, Maureen K; Pfaff, Jilleen E; Ishmael, Jane E

    2007-06-15

    Cultured cerebellar granule neurons (CGN) are commonly used to assess neurotoxicity, but are routinely maintained in supraphysiological (25 mM) extracellular K(+) concentrations [K(+)](o). We investigated the effect of potassium channel blockade on survival of CGN derived from Swiss-Webster mice in supraphysiological (25 mM) and physiological (5.6 mM) [K(+)](o). CGN were cultured for 5 days in 25 mM K(+), then in 5.6 mM K(+) or 25 mM K(+) (control). Viability, assayed 24 h later by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) reduction and by lactate dehydrogenase (LDH) release, was approximately 50% in 5.6 mM K(+) versus 25 mM K(+) (p<.001). Potassium channel blockers, 2 mM 4-aminopyridine (4-AP), 2 mM tetraethylammonium (TEA) or 1 mM Ba(2+), individually afforded limited protection in 5.6 mM K(+). However, survival in 5.6 mM K(+) with a combination of 4-AP, TEA and Ba(2+) was similar to survival in 25 mM K(+) without blockers (p<.001 versus 5.6 mM K(+) alone). CGN survival in 25 mM K(+) was attenuated 25% by 2 microM nifedipine (p>.001), but nifedipine did not attenuate neuroprotection by K(+) channel blockers. Together, these results suggest that the survival of CGN depends on the K(+) permeability of the membrane rather than the activity of a particular type of K(+) channel, and that the mechanism of neuroprotection by K(+) channel blockers is different from that of elevated [K(+)](o).

  18. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min

    2016-08-15

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I{sub Kr} current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I{sub K1}, a Kir current mediated by Kir2.1 channel and I{sub KACh}, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on themore » current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC{sub 50} value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I{sub KACh} current with an IC{sub 50} value of 3.32 μM but has no significant effects on I{sub K1}. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I{sub Kr} in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression.

  19. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels

    PubMed Central

    Shang, Lijun

    2007-01-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the “helix-bundle crossing”. However, in the inwardly rectifying (Kir) potassium channel family, the role of this “hinge” residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper “hinge” residues are in close contact with the base of the pore α-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the “lower” gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue. PMID:17657484

  20. Emerging psychiatric syndromes associated with antivoltage-gated potassium channel complex antibodies.

    PubMed

    Prüss, Harald; Lennox, Belinda R

    2016-11-01

    Antibodies against the voltage-gated potassium channel (VGKC) were first recognised as having a potential pathogenic role in disorders of the central nervous system in 2001, with VGKC antibodies described in patients with limbic encephalitis, and the subsequent seminal paper describing the clinical phenotype and immunotherapy treatment responsiveness in 13 patients with VGKC antibodies and limbic encephalitis in 2004. These initial case descriptions were of a progressive neuropsychiatric syndrome with abnormalities of mood, sleep and cognition recognised alongside the neurological symptoms of seizures and autonomic instability. The clinical syndromes associated with VGKC complex (VGKCC) antibodies have broadened considerably over the last 15 years, with multiple cases of more restricted 'formes fruste' presentations associated with VGKCC antibodies being described. However, the relevance of antibodies in these cases has remained controversial. The understanding of the pathogenic nature of VGKC antibodies has further advanced since 2010 with the discovery that VGKC antibodies are not usually antibodies against the VGKC subunits themselves, but instead to proteins that are complexed with the potassium channel, in particular leucine-rich, glioma-inactivated protein 1 (LGI1) and contactin-associated protein 2 (Caspr2). Antibodies against these proteins have been associated with particular, although overlapping, clinical phenotypes, each also including neuropsychiatric features. Our aim is to critically review the association between VGKCC, LGI1 and Caspr2 antibodies with isolated psychiatric presentations-with a focus on cognitive impairment, mood disorders and psychosis. We recommend that screening for VGKCC, LGI1 and Caspr2 antibodies be considered for those with neuropsychiatric presentations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Sleep disturbances in voltage-gated potassium channel antibody syndrome.

    PubMed

    Barone, Daniel A; Krieger, Ana C

    2016-05-01

    Voltage-gated potassium channels (VGKCs) are a family of membrane proteins responsible for controlling cell membrane potential. The presence of antibodies (Ab) against neuronal VGKC complexes aids in the diagnosis of idiopathic and paraneoplastic autoimmune neurologic disorders. The diagnosis of VGKC Ab-associated encephalopathy (VCKC Ab syndrome) should be suspected in patients with subacute onset of disorientation, confusion, and memory loss in the presence of seizures or a movement disorder. VGKC Ab syndrome may present with sleep-related symptoms, and the purpose of this communication is to alert sleep and neurology clinicians of this still-under-recognized condition. In this case, we are presenting the VGKC Ab syndrome which improved after treatment with solumedrol. The prompt recognition and treatment of this condition may prevent the morbidity associated with cerebral atrophy and the mortality associated with intractable seizures and electrolyte disturbances. Copyright © 2016. Published by Elsevier B.V.

  2. The KATP channel in migraine pathophysiology: a novel therapeutic target for migraine.

    PubMed

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne; Jansen-Olesen, Inger; Ashina, Messoud

    2017-08-23

    To review the distribution and function of K ATP channels, describe the use of K ATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. K ATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic K ATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that K ATP channel opening may cause headache, possibly due to vascular mechanisms. Whether K ATP channel openers can provoke migraine in migraine sufferers is not known. We suggest that K ATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.

  3. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice.

    PubMed

    Bausch, Anne E; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K; Ruth, Peter; Lukowski, Robert

    2015-07-01

    Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels. © 2015 Bausch et al.; Published by Cold Spring Harbor Laboratory Press.

  4. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice

    PubMed Central

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.

    2015-01-01

    Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels. PMID:26077685

  5. Molecular interactions involved in proton-dependent gating in KcsA potassium channels

    PubMed Central

    Posson, David J.; Thompson, Ameer N.; McCoy, Jason G.

    2013-01-01

    The bacterial potassium channel KcsA is gated open by the binding of protons to amino acids on the intracellular side of the channel. We have identified, via channel mutagenesis and x-ray crystallography, two pH-sensing amino acids and a set of nearby residues involved in molecular interactions that influence gating. We found that the minimal mutation of one histidine (H25) and one glutamate (E118) near the cytoplasmic gate completely abolished pH-dependent gating. Mutation of nearby residues either alone or in pairs altered the channel’s response to pH. In addition, mutations of certain pairs of residues dramatically increased the energy barriers between the closed and open states. We proposed a Monod–Wyman–Changeux model for proton binding and pH-dependent gating in KcsA, where H25 is a “strong” sensor displaying a large shift in pKa between closed and open states, and E118 is a “weak” pH sensor. Modifying model parameters that are involved in either the intrinsic gating equilibrium or the pKa values of the pH-sensing residues was sufficient to capture the effects of all mutations. PMID:24218397

  6. Toxic effects of environmental rare earth elements on delayed outward potassium channels and their mechanisms from a microscopic perspective.

    PubMed

    Wang, Lihong; He, Jingfang; Xia, Ao; Cheng, Mengzhu; Yang, Qing; Du, Chunlei; Wei, Haiyan; Huang, Xiaohua; Zhou, Qing

    2017-08-01

    The wide applications cause a large amount of rare earth elements (REEs) to be released into the environment, and ultimately into the human body through food chain. Toxic effects of REEs on humans have been extensively studied, but their toxic effects and binding targets in cells are not understood. Delayed outward potassium channels (K + channels) are good targets for exogenous substances or clinical drugs. To evaluate cellular toxicities of REEs and clarify toxic mechanisms, the toxicities of REEs on the K + channel and their structural basis were investigated. The results showed that delayed outward potassium channels on the plasma membrane are the targets of REEs acting on living organisms, and the changes in the thermodynamic and kinetic characteristics of the K + channel are the reasons of diseases induced by REEs. Two types of REEs, a light REE La 3+ and a heavy REE Tb 3+ , displayed different intensity of toxicities on the K + channel, in which the toxicity of Tb 3+ was stronger than that of La 3+ . More interestingly, in comparison with that of heavy metal Cd 2+ , the cytotoxicities of the light and heavy REEs showed discriminative differences, and the cytotoxicity of Tb 3+ was higher than that of Cd 2+ , while the cytotoxicity of La 3+ was lower than that of Cd 2+ . These different cytotoxicities of La 3+ , Tb 3+ and Cd 2+ on human resulted from the varying binding abilities of the metals to this channel protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels

    PubMed Central

    Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang

    2012-01-01

    Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778

  8. Conformational dynamics of the inner pore helix of voltage-gated potassium channels

    NASA Astrophysics Data System (ADS)

    Choe, Seungho; Grabe, Michael

    2009-06-01

    Voltage-gated potassium (Kv) channels control the electrical excitability of neurons and muscles. Despite this key role, how these channels open and close or gate is not fully understood. Gating is usually attributed to the bending and straightening of pore-lining helices at glycine and proline residues. In this work we focused on the role of proline in the Pro-Val-Pro (PVP) motif of the inner S6 helix in the Kv1.2 channel. We started by developing a simple hinged-rod model to fully explore the configurational space of bent helices and we related these configurations to the degree of pore opening. We then carried out fully atomistic simulations of the S6 helices and compared these simulations to the hinged-rod model. Both methods suggest that Kv1 channels are not tightly closed when the inner helices are straight, unlike what is seen in the non-PVP containing channels KcsA and KirBac. These results invite the possibility that the S6 helices may be kinked when Kv1 channels are closed. Our simulations indicate that the wild-type helix adopts multiple spatially distinct configurations, which is consistent with its role in adopting a closed state and an open state. The two most dominant configurational basins correspond to a 6 Å movement of the helix tail accompanied by the PVP region undergoing a local α-helix to 310-helix transition. We explored how single point mutations affect the propensity of the S6 helix to adopt particular configurations. Interestingly, mutating the first proline, P405 (P473 in Shaker), to alanine completely removed the bistable nature of the S6 helix possibly explaining why this mutation compromises the channel. Next, we considered four other mutations in the area known to affect channel gating and we saw similarly dramatic changes to the helix's dynamics and range of motion. Our results suggest a possible mechanism of helix pore closure and they suggest differences in the closed state of glycine-only channels, like KcsA, and PVP containing

  9. Lower KV7.5 Potassium Channel Subunit Expression in an Animal Model of Paroxysmal Dystonia.

    PubMed

    Sander, Svenja E; Diwan, Mustansir; Raymond, Roger; Nobrega, José N; Richter, Angelika

    2016-01-01

    Dystonia is a hyperkinetic disabling movement disorder. In the dt(sz) hamster, a model of paroxysmal dystonia, pronounced antidystonic effects of the KV7.2-5 potassium channel opener retigabine and aggravation of dystonia by a selective KV7.2-5 blocker indicated a pathophysiological role of an abnormal expression of KV7 channels. We therefore investigated the expression of KV7 subunits in brains of dystonic hamsters. While KV7.2 and KV7.3 subunits were unaltered, lower KV7.5 mRNA levels became evident in motor areas and in limbic structures of dystonic hamsters. The KV7.2/3 subunit-preferring channel opener N-(6-chloropyridin-3-yl)-3,4- difluorobenzamide (ICA 27243; 10-30 mg/kg i.p.) failed to reduce the severity of dystonia in mutant hamsters, suggesting that the previously observed antidystonic action of retigabine is mediated by the activation of KV7.5 channels. The experiments indicate a functional relevance for KV7.5 channels in paroxysmal dystonia. We suggest that compounds highly selective for subtypes of KV7 channels, i.e. for KV7.5, may provide new therapeutic approaches.

  10. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels.

    PubMed

    Cukras, Catherine A; Jeliazkova, Iana; Nichols, Colin G

    2002-06-01

    All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.

  11. Chronic exposure to KATP channel openers results in attenuated glucose sensing in hypothalamic GT1-7 neurons.

    PubMed

    Haythorne, Elizabeth; Hamilton, D Lee; Findlay, John A; Beall, Craig; McCrimmon, Rory J; Ashford, Michael L J

    2016-12-01

    Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (K ATP ) activity, with K ATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and K ATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished K ATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic K ATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. K ATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains K ATP closure. Single channel recordings indicate that NN414 alters K ATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to K ATP , probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells

    PubMed Central

    Gu, Ning; Vervaeke, Koen; Storm, Johan F

    2007-01-01

    Neuronal potassium (K+) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K+ channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K+ channels (in particular the delayed rectifier potassium current (IDR)) and Na+ channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour. PMID:17303637

  13. Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function.

    PubMed

    Prüss, Harald; Wenzel, Mareike; Eulitz, Dirk; Thomzig, Achim; Karschin, Andreas; Veh, Rüdiger W

    2003-02-20

    Parkinson's disease is the most frequent movement disorder caused by loss of dopaminergic neurons in the midbrain. Intentions to avoid side effects of the conventional therapy should aim to identify additional targets for potential pharmacological intervention. In principle, every step of a signal transduction cascade such as presynaptic transmitter release, type and occupation of postsynaptic receptors, G protein-mediated effector mechanisms, and the alterations of pre- or postsynaptic potentials as determined by the local ion channel composition, have to be considered. Due to their diversity and their widespread but distinct localizations, potassium channels represent interesting candidates for new therapeutic strategies. As a first step, the present report aimed to study in the striatum the cellular and subcellular distribution of the individual members of the Kir2 family, a group of proteins forming inwardly rectifying potassium channels. For this purpose polyclonal monospecific affinity-purified antibodies against the less conserved carboxyterminal sequences from the Kir2.1, Kir2.2, Kir2.3, and Kir2.4 proteins were prepared. All subunits of the Kir2 family were detected on somata and dendrites of most striatal neurons. However, the distribution of two of them was not homogeneous. Striatal patch areas were largely devoid of the Kir2.3 protein, and the Kir2.4 subunit was most prominently expressed on the tonically active, giant cholinergic interneurons of the striatum. These two structures are among the key players in regulating dopaminergic and cholinergic neurotransmission within the striatum, and therefore are of major importance for the output of the basal ganglia. The heterogeneous localization of the Kir2.3 and the Kir2.4 subunits with respect to these strategic structures pinpoints to these channel proteins as promising targets for future pharmacological efforts.

  14. [K+ channels and lung epithelial physiology].

    PubMed

    Bardou, Olivier; Trinh, Nguyen Thu Ngan; Brochiero, Emmanuelle

    2009-04-01

    Transcripts of more than 30 different K(+) channels have been detected in the respiratory epithelium lining airways and alveoli. These channels belong to the 3 main classes of K(+) channels, i.e. i) voltage-dependent or calcium-activated, 6 transmembrane segments (TM), ii) 2-pores 4-TM and iii) inward-rectified 2-TM channels. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is not well understood. Surprisingly, relatively few studies are focused on K(+) channel function in lung epithelial physiology. Nevertheless, several studies have shown that KvLQT1, KCa and K(ATP) K(+) channels play a crucial role in ion and fluid transport, contributing to the control of airway and alveolar surface liquid composition and volume. K(+) channels are involved in other key functions, such as O(2) sensing or the capacity of the respiratory epithelia to repair after injury. This mini-review aims to discuss potential functions of lung K(+) channels.

  15. A Specific Two-pore Domain Potassium Channel Blocker Defines the Structure of the TASK-1 Open Pore*

    PubMed Central

    Streit, Anne K.; Netter, Michael F.; Kempf, Franca; Walecki, Magdalena; Rinné, Susanne; Bollepalli, Murali K.; Preisig-Müller, Regina; Renigunta, Vijay; Daut, Jürgen; Baukrowitz, Thomas; Sansom, Mark S. P.; Stansfeld, Phillip J.; Decher, Niels

    2011-01-01

    Two-pore domain potassium (K2P) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K2P channels. We describe A1899 as a potent and highly selective blocker of the K2P channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K2P open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K2P channels. PMID:21362619

  16. Progesterone inhibits contraction and increases TREK-1 potassium channel expression in late pregnant rat uterus

    PubMed Central

    Yin, Zongzhi; Li, Yun; He, Wenzhu; Li, Dan; Li, Hongyan; Yang, Yuanyuan; Shen, Bing; Wang, Xi; Cao, Yunxia; Khalil, Raouf A.

    2018-01-01

    Objective The aim of this study was to investigate the effect and mechanism by which progesterone regulates uterine contraction in late pregnant rats Results Progesterone caused concentration-dependent relaxation of uterine strips that was enhanced compared with control nontreated uterine strips. Uterine strips incubated with progesterone showed a significant increase in TREK-1 mRNA expression and protein level. TREK-1 inhibitor L-methionine partly reversed uterine relaxation caused by the progesterone, while TREK-1 activator arachidonic acid did not cause significant change in progesterone-induced relaxation. Conclusions Progesterone inhibits uterine contraction and induces uterine relaxation in late pregnancy. The progesterone-induced inhibition of uterine contraction appears to partly involve increased potassium channel TREK-1 expression/activity. Materials and Methods Uterus from late-pregnant rats (gestational day 19) was isolated, and uterine strips were prepared for isometric contraction measurement. Oxytocin-induced contraction was compared in uterine strips pretreated with different concentration of progesterone. TREK-1 potassium channel inhibitor L-methionine and TREK-1 agonist arachidonic acid were used to determine whether the changes caused by progesterone involve changes in TREK-1 activity. The mRNA and protein expression of TREK-1 in uterine tissues were measured using qPCR and Western blot. PMID:29416642

  17. Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats.

    PubMed

    Masuda, Kimiko; Takanari, Hiroki; Morishima, Masaki; Ma, FangFang; Wang, Yan; Takahashi, Naohiko; Ono, Katsushige

    2018-01-13

    Men have shorter rate-corrected QT intervals (QTc) than women, especially at the period of adolescence or later. The aim of this study was to elucidate the long-term effects of testosterone on cardiac excitability parameters including electrocardiogram (ECG) and potassium channel current. Testosterone shortened QT intervals in ECG in castrated male rats, not immediately after, but on day 2 or later. Expression of Kv7.1 (KCNQ1) mRNA was significantly upregulated by testosterone in cardiomyocytes of male and female rats. Short-term application of testosterone was without effect on delayed rectifier potassium channel current (I Ks ), whereas I Ks was significantly increased in cardiomyocytes treated with dihydrotestosterone for 24 h, which was mimicked by isoproterenol (24 h). Gene-selective inhibitors of a transcription factor SP1, mithramycin, abolished the effects of testosterone on Kv7.1. Testosterone increases Kv7.1-I Ks possibly through a pathway related to a transcription factor SP1, suggesting a genomic effect of testosterone as an active factor for cardiac excitability.

  18. The nicorandil-induced vasodilation in humans is inhibited by miconazole.

    PubMed

    Ueda, Keiko; Goto, Chikara; Jitsuiki, Daisuke; Umemura, Takashi; Nishioka, Kenji; Kimura, Masashi; Noma, Kensuke; Nakagawa, Keigo; Oshima, Tetsuya; Yoshizumi, Masao; Chayama, Kazuaki; Higashi, Yukihito

    2005-04-01

    Nicorandil, N-(2-hydroxyethyl)-nicotinamide nitrate, exerts its vasodilatory effects by opening ATP-sensitive potassium (K-ATP) channels and by acting as the exogenous nitric oxide (NO). It is not clear, however, whether the actions of other endothelium-dependent vasodilators, such as NO, endothelium-derived hyperpolarizing factor (EDHF), and prostaglandins, contribute to nicorandil-induced vasodilation in the vasculature in humans. We evaluated forearm blood flow (FBF) response to intraarterial infusion of nicorandil alone and in the presence of glibenclamide, a K-ATP channel inhibitor, N(G)-monomethyl-L-arginine, an NO synthase inhibitor, indomethacin, a cyclooxygenase inhibitor, or miconazol, a cytochrome P-450 inhibitor, in 24 healthy male subjects. FBF was measured using strain-gauge plethysmography. Infusion of nicorandil significantly increased the FBF response in a dose-dependent manner. Intraarterial infusion of glibenclamide attenuated nicorandil-induced vasodilation (160.9 +/- 21.2% versus 90.2 +/- 19.4%, P < 0.01), and miconazole also attenuated the FBF response to nicorandil (160.9 +/- 21.2% versus 66.1 +/- 9.2%, P < 0.001). N-monomethyl-L-arginine or indomethacin did not alter the FBF response to nicorandil. These findings suggest that nicorandil causes vasodilation in forearm circulation in humans, at least in part through a pathway that is dependent on K-ATP channels and cytochrome P-450, but not on endogenous NO and prostaglandins. EDHF may contribute to nicorandil-induced vasodilation in humans.

  19. Desensitization of chemical activation by auxiliary subunits: convergence of molecular determinants critical for augmenting KCNQ1 potassium channels.

    PubMed

    Gao, Zhaobing; Xiong, Qiaojie; Sun, Haiyan; Li, Min

    2008-08-15

    Chemical openers for KCNQ potassium channels are useful probes both for understanding channel gating and for developing therapeutics. The five KCNQ isoforms (KCNQ1 to KCNQ5, or Kv7.1 to Kv7.5) are differentially localized. Therefore, the molecular specificity of chemical openers is an important subject of investigation. Native KCNQ1 normally exists in complex with auxiliary subunits known as KCNE. In cardiac myocytes, the KCNQ1-KCNE1 (IsK or minK) channel is thought to underlie the I(Ks) current, a component critical for membrane repolarization during cardiac action potential. Hence, the molecular and pharmacological differences between KCNQ1 and KCNQ1-KCNE1 channels have been important topics. Zinc pyrithione (ZnPy) is a newly identified KCNQ channel opener, which potently activates KCNQ2, KCNQ4, and KCNQ5. However, the ZnPy effects on cardiac KCNQ1 potassium channels remain largely unknown. Here we show that ZnPy effectively augments the KCNQ1 current, exhibiting an increase in current amplitude, reduction of inactivation, and slowing of both activation and deactivation. Some of these are reminiscent of effects by KCNE1. In addition, neither the heteromultimeric KCNQ1-KCNE1 channels nor native I(Ks) current displayed any sensitivity to ZnPy, indicating that the static occupancy by a KCNE subunit desensitizes the reversible effects by a chemical opener. Site-directed mutagenesis of KCNQ1 reveals that residues critical for the potentiation effects by either ZnPy or KCNE are clustered together in the S6 region overlapping with the critical gating determinants. Thus, the convergence of potentiation effects and molecular determinants critical for both an auxiliary subunit and a chemical opener argue for a mechanistic overlap in causing potentiation.

  20. Glyburide, a K(+)(ATP)channel blocker, improves hypotension and survival in anaphylactic shock induced in Wistar rats sensitized to ovalbumin.

    PubMed

    Dhanasekaran, Subramanian; Nemmar, Abderrahim; Aburawi, Elhadi H; Kazzam, Elsadig E; Abdulle, Abdishakur; Bellou, Moufida; Bellou, Abdelouahab

    2013-11-15

    Allergens can induce anaphylactic shock and death due to serve hypotension. Potassium channel blockers (K(+)(ATP)) such as glyburide (GLY) induce vasoconstriction. The effect of (K(+)(ATP)) channel blockers on anaphylactic shock is poorly understood. Objective of the study was to test the hypothesis that GLY reduces hypotension induced in anaphylactic shock and increases survival. Rats were grouped into: G1-N=Naïve; G2-SC=Sensitized-Control; G3-SG=Sensitized-GLY (glyburide 40 mg/kg); G4-SE=Sensitized-EPI (epinephrine 10 mg/kg). G2 to G4 groups were sensitized with ovalbumin (OVA) and shock was induced by i.v. injection of OVA. Treatments were administered intravenously 5 min later. Mean arterial pressure (MAP), heart rate (HR), and mean survival time (MST) were measured for 60 min following OVA injection and treatments administration. At the end of the experiment, blood withdrawal was performed to measure plasma levels of histamine, leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)) and prostaglandin F(2) (PGF(2)). Additionally blood gas (paO2, paCO2, SaO2) and electrolytes (Na(+), K(+) and Ca (++)) were measured. MAP was normal in G1-N; severe hypotension, negative inotropic and short MST were observed in G2-SC; normalization of MAP, with lesser negative inotropism and increased MST were observed in G3-SG; full recovery was observed in G4-SE. Histamine level was significantly higher in G2-SC; reduced in G3-SG and G4-SE. PGE(2) increased in G3-SG; PGF(2) increased in G2-SC and G3-SG. Na(+) and Ca (++) concentration decreased in sensitized rats but reversed in treated groups, without change in K(+) concentration. In conclusion, our data suggest that administration of GLY reduced hypotension and increases survival time in rat anaphylactic shock.

  1. Diabetes mellitus reduces the function and expression of ATP-dependent K⁺ channels in cardiac mitochondria.

    PubMed

    Fancher, Ibra S; Dick, Gregory M; Hollander, John M

    2013-03-28

    Our goal was to determine the effects of type I diabetes mellitus on the function and expression of ATP-dependent K(+) channels in cardiac mitochondria (mitoKATP), composed of a pore-forming subunit (Kir6.1) and a diazoxide-sensitive sulphonylurea receptor (SUR1). We tested the hypothesis that diabetes reduces Kir6.1 and SUR1 expression as well as diazoxide-induced depolarization of mitochondrial membrane potential (ΔΨm). Male FVB mice were made diabetic for 5weeks with multiple low dose injections of streptozotocin. Cardiac mitochondria were separated into two populations: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). mitoKATP expression was determined via Western blot analysis of Kir6.1 and SUR1 proteins. mitoKATP function was determined by measuring ΔΨm with the potentiometric dye rhodamine 123. Diabetes reduced Kir6.1 and SUR1 expression in IFM by over 40% (p<0.05 for both). Similarly, diabetes reduced Kir6.1 expression in SSM by approximately 40% (p<0.05); however, SUR1 expression was unaffected. Opening mitoKATP with diazoxide (100μM) depolarized control IFM ΔΨm by 80% of the valinomycin maximum; diabetic IFM depolarized only 30% (p<0.05). Diazoxide-induced depolarization was much less in SSM (20-30%) and unaffected by diabetes. Our data indicate that diabetes reduces mitoKATP expression and function in IFM. These changes in mitoKATP may provide an opportunity to understand mechanisms leading to diabetic cardiomyopathy and loss of cardioprotective mechanisms in the diabetic heart. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge

    ERIC Educational Resources Information Center

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  3. Comparative effects of copper sulfate or potassium permanganate on channel catfish concurrently infected with Flavobacterium columnare and Ichthyobodo necator

    USDA-ARS?s Scientific Manuscript database

    An opportunistic study was conducted to determine the effects of two chemical therapeutants on channel catfish (CCF) Ictalurus punctatus concurrently infected Flavobacterium columnare and Ichthyobodo necator. Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were investigated for their abil...

  4. Quantitative autoradiography of the binding sites for ( sup 125 I) iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.

    1991-05-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with ({sup 125}I)iodoglyburide (N-(2-((((cyclohexylamino)carbonyl)amino)sulfonyl)ethyl)-5-{sup 125}I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific ({sup 125}I)iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of ({sup 125}I)iodoglyburide binding indicated a broadmore » distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels.« less

  5. Nitroxyl inhibits overt pain-like behavior in mice: role of cGMP/PKG/ATP-sensitive potassium channel signaling pathway

    PubMed Central

    Staurengo-Ferrari, Larissa; Zarpelon, Ana C.; Longhi-Balbinot, Daniela T.; Marchesi, Mario; Cunha, Thiago M.; Alves-Filho, José C.; Cunha, Fernando Q.; Ferreira, Sergio H.; Casagrande, Rubia; Miranda, Katrina M.; Verri, Waldiceu A.

    2014-01-01

    Background Several lines of evidence have indicated that nitric oxide (NO) plays complex and diverse roles in modulation of pain/analgesia. However, the roles of charged and uncharged congeners of NO are less well understood. In the present study, the antinociceptive effect of the nitroxyl (HNO) donor, Angeli’s salt (Na2N2O3; AS) was investigated in models of overt pain-like behavior. Moreover, whether the antinociceptive effect of nitroxyl was dependent on the activation of cGMP (cyclic guanosine monophosphate)/PKG (protein kinase G)/ATP-sensitive potassium channels was addressed. Methods The antinociceptive effect of AS was evaluated on phenyl-p-benzoquinone (PBQ)- and acetic acid-induced writhings and via the formalin test. In addition, pharmacological treatments targeting guanylate cyclase (ODQ), PKG (KT5923) and ATP-sensitive potassium channel (glybenclamide) were used. Results PBQ and acetic acid induced significant writhing responses over 20 min. The nociceptive response in these models were significantly reduced in a dose-dependent manner by subcutaneous pre-treatment with AS. Furthermore, AS also inhibited both phases of the formalin test. Subsequently, the inhibitory effect of AS in writhing and flinching responses were prevented by ODQ, KT5823 and glybenclamide, although these inhibitors alone did not alter the writhing score. Furthermore, pretreatment with L-cysteine, an HNO scavenger, confirmed that the antinociceptive effect of AS depends on HNO. Conclusion The present study demonstrates the efficacy of a nitroxyl donor and its analgesic mechanisms in overt pain-like behavior by activating the cGMP/PKG/ATP-sensitive potassium channel (K+) signaling pathway. PMID:24948073

  6. Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA

    PubMed Central

    Linder, Tobias; de Groot, Bert L.; Stary-Weinzinger, Anna

    2013-01-01

    The bacterial potassium channel KcsA, which has been crystallized in several conformations, offers an ideal model to investigate activation gating of ion channels. In this study, essential dynamics simulations are applied to obtain insights into the transition pathways and the energy profile of KcsA pore gating. In agreement with previous hypotheses, our simulations reveal a two phasic activation gating process. In the first phase, local structural rearrangements in TM2 are observed leading to an intermediate channel conformation, followed by large structural rearrangements leading to full opening of KcsA. Conformational changes of a highly conserved phenylalanine, F114, at the bundle crossing region are crucial for the transition from a closed to an intermediate state. 3.9 µs umbrella sampling calculations reveal that there are two well-defined energy barriers dividing closed, intermediate, and open channel states. In agreement with mutational studies, the closed state was found to be energetically more favorable compared to the open state. Further, the simulations provide new insights into the dynamical coupling effects of F103 between the activation gate and the selectivity filter. Investigations on individual subunits support cooperativity of subunits during activation gating. PMID:23658510

  7. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio

    PubMed Central

    Tantama, Mathew; Martínez-François, Juan Ramón; Mongeon, Rebecca; Yellen, Gary

    2013-01-01

    The ATP:ADP ratio is a critical parameter of cellular energy status that regulates many metabolic activities. Here we report an optimized genetically-encoded fluorescent biosensor, PercevalHR, that senses the ATP:ADP ratio. PercevalHR is tuned to the range of intracellular ATP:ADP expected in mammalian cells, and it can be used with one- or two-photon microscopy in live samples. We use PercevalHR to visualize activity-dependent changes in ATP:ADP when neurons are exposed to multiple stimuli, demonstrating that it is a sensitive reporter of physiological changes in energy consumption and production. We also use PercevalHR to visualize intracellular ATP:ADP while simultaneously recording currents from ATP-sensitive potassium (KATP) channels in single cells, showing that PercevalHR enables the study of coordinated variation in ATP:ADP and KATP channel open probability in intact cells. With its ability to monitor changes in cellular energetics within seconds, PercevalHR should be a versatile tool for metabolic research. PMID:24096541

  8. Dual-color quantum dot detection of a heterotetrameric potassium channel (hKCa3.1).

    PubMed

    Waschk, Daniel E J; Fabian, Anke; Budde, Thomas; Schwab, Albrecht

    2011-04-01

    Potassium channels play a key role in establishing the cell membrane potential and are expressed ubiquitously. Today, more than 70 mammalian K(+) channel genes are known. The diversity of K(+) channels is further increased by the fact that different K(+) channel family members may assemble to form heterotetramers. We present a method based on fluorescence microscopy to determine the subunit composition of a tetrameric K(+) channel. We generated artificial "heteromers" of the K(+) channel hK(Ca)3.1 by coexpressing two differently tagged hK(Ca)3.1 constructs containing either an extracellular hemagglutinin (HA) or an intracellular V5 epitope. hK(Ca)3.1 channel subunits were detected in the plasma membrane of MDCK-F cells or HEK293 cells by labeling the extra- and intracellular epitopes with differently colored quantum dots (QDs). As previously shown for the extracellular part of hK(Ca)3.1 channels, its intracellular domain can also bind only one QD label at a time. When both channel subunits were coexpressed, 27.5 ± 1.8% and 24.9 ± 2.1% were homotetramers consisting of HA- and V5-tagged subunits, respectively. 47.6 ± 3.2% of the channels were heteromeric and composed of both subunits. The frequency distribution of HA- and V5-tagged homo- and heteromeric hK(Ca)3.1 channels is reminiscent of the binomial distribution (a + b)(2) = a(2) + 2ab + b(2). Along these lines, our findings are consistent with the notion that hK(Ca)3.1 channels are assembled from two homomeric dimers and not randomly from four independent subunits. We anticipate that our technique will be applicable to other heteromeric membrane proteins, too.

  9. Recent Advances in the Pathogenesis and Drug Action in Periodic Paralyses and Related Channelopathies

    PubMed Central

    Tricarico, Domenico; Camerino, Diana Conte

    2011-01-01

    The periodic paralysis (PP) are rare autosomal-dominant disorders associated to mutations in the skeletal muscle sodium, calcium, and potassium channel genes characterized by muscle fiber depolarization with un-excitability, episodes of weakness with variations in serum potassium concentrations. Recent advances in thyrotoxic PP and hypokalemic PP (hypoPP) confirm the involvement of the muscle potassium channels in the pathogenesis of the diseases and their role as target of action for drugs of therapeutic interest. The novelty in the gating pore currents theory help to explain the disease symptoms, and open the possibility to more specifically target the disease. It is now known that the fiber depolarization in the hypoPP is due to an unbalance between the novel identified depolarizing gating pore currents (Igp) carried by protons or Na+ ions flowing through aberrant alternative pathways of the mutant subunits and repolarizing inwardly rectifying potassium channel (Kir) currents which also includes the ATP-sensitive subtype. Abnormal activation of the Igp or deficiency in the Kir channels predispose to fiber depolarization. One pharmacological strategy is based on blocking the Igp without affecting normal channel gating. It remains safe and effective the proposal of targeting the KATP, Kir channels, or BK channels by drugs capable to specifically open at nanomolar concentrations the skeletal muscle subtypes with less side effects. PMID:21687503

  10. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  11. Pharmacological preconditioning by diazoxide downregulates cardiac L-type Ca2+ channels

    PubMed Central

    González, G; Zaldívar, D; Carrillo, ED; Hernández, A; García, MC; Sánchez, JA

    2010-01-01

    BACKGROUND AND PURPOSE Pharmacological preconditioning (PPC) with mitochondrial ATP-sensitive K+ (mitoKATP) channel openers such as diazoxide, leads to cardioprotection against ischaemia. However, effects on Ca2+ homeostasis during PPC, particularly changes in Ca2+ channel activity, are poorly understood. We investigated the effects of PPC on cardiac L-type Ca2+ channels. EXPERIMENTAL APPROACH PPC was induced in isolated hearts and enzymatically dissociated cardiomyocytes from adult rats by preincubation with diazoxide. We measured reactive oxygen species (ROS) production and Ca2+ signals associated with action potentials using fluorescent probes, and L-type currents using a whole-cell patch-clamp technique. Levels of the α1c subunit of L-type channels in the cellular membrane were measured by Western blot. KEY RESULTS PPC was accompanied by a 50% reduction in α1c subunit levels, and by a reversible fall in L-type current amplitude and Ca2+ transients. These effects were prevented by the ROS scavenger N-acetyl-L-cysteine (NAC), or by the mitoKATP channel blocker 5-hydroxydecanoate (5-HD). PPC signficantly reduced infarct size, an effect blocked by NAC and 5-HD. Nifedipine also conferred protection against infarction when applied during the reperfusion period. Downregulation of the α1c subunit and Ca2+ channel function were prevented in part by the protease inhibitor leupeptin. CONCLUSIONS AND IMPLICATIONS PPC downregulated the α1c subunit, possibly through ROS. Downregulation involved increased degradation of the Ca2+ channel, which in turn reduced Ca2+ influx, which may attenuate Ca2+ overload during reperfusion. PMID:20636393

  12. Diverse Roles for Auxiliary Subunits in Phosphorylation-Dependent Regulation of Mammalian Brain Voltage-Gated Potassium Channels

    PubMed Central

    Vacher, Helene; Trimmer, James S.

    2012-01-01

    Voltage-gated ion channels are a diverse family of signaling proteins that mediate rapid electrical signaling events. Among these, voltage-gated potassium or Kv channels are the most diverse, in part due to the large number of principal (or α) subunits and auxiliary subunits that can assemble in different combinations to generate Kv channel complexes with distinct structures and functions. The diversity of Kv channels underlies much of the variability in the active properties between different mammalian central neurons, and the dynamic changes that lead to experience-dependent plasticity in intrinsic excitability. Recent studies have revealed that Kv channel α subunits and auxiliary subunits are extensively phosphorylated, contributing to additional structural and functional diversity. Here we highlight recent studies that show that auxiliary subunits exert some of their profound effects on dendritic Kv4 and axonal Kv1 channels through phosphorylation-dependent mechanisms, either due to phosphorylation on the auxiliary subunit itself, or by influencing the extent and/or impact of α subunit phosphorylation. The complex effects of auxiliary subunits and phosphorylation provide a potent mechanism to generate additional diversity in the structure and function of Kv4 and Kv1 channels, as well as allowing for dynamic reversible regulation of these important ion channels. PMID:21822597

  13. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    PubMed Central

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de la Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-01-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4–S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4–S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules. PMID:25818916

  14. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains.

    PubMed

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de la Peña, Pilar; Tomczak, Adam P; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A

    2015-03-30

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.

  15. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    NASA Astrophysics Data System (ADS)

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de La Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-03-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.

  16. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    PubMed

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  17. Calcium-activated potassium channels as potential early markers of human cervical cancer

    PubMed Central

    Ramírez, Ana; Vera, Eunice; Gamboa-Domínguez, Armando; Lambert, Paul; Gariglio, Patricio; Camacho, Javier

    2018-01-01

    Cervical cancer is a major cause of cancer-associated mortality in women in developing countries. Thus, novel early markers are required. Ion channels have gained great interest as tumor markers, including cervical cancer. The calcium-activated potassium channel KCNMA1 (subunit α-1 from subfamily M) has been associated with different malignancies, including tumors such as breast and ovarian cancer that are influenced by hormones. The KCNMA1 channel blocker iberiotoxin decreases the proliferation of HeLa cervical cancer cells. Nevertheless, KCNMA1 channel expression during cervical carcinogenesis remains elusive. Therefore, KCNMA1 expression was studied in cervical cancer development. FVB transgenic mice expressing the E7-oncogene of high-risk human papilloma virus, and non-transgenic mice were treated with estradiol-releasing pellets during 3 or 6 months to induce cervical lesions. Twenty-four human cervical biopsies from non-cancerous, low- or high-grade intraepithelial lesions, or cervical cancer were also studied. mRNA and protein expression was assessed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively. Cervical dysplasia and carcinoma were observed only in the transgenic mice treated with estradiol for 3 and 6 months, respectively. Estradiol treatment increased KCNMA1 mRNA and protein expression in all groups; however, the highest levels were observed in the transgenic mice with carcinoma. KCNMA1 protein expression in the squamous cells of the transformation zone was observed only in the transgenic mice with cervical dysplasia or cancer. Human biopsies from non-cancerous cervix did not display KCNMA1 protein expression; in contrast, the majority of the tissues with cervical lesions (16/18) displayed KCNMA1 protein expression. The lowest channel immunostaining intensity was observed in biopsies from low-grade dysplasia and the strongest in the carcinoma tissues. These results suggest KCNMA1 channels as

  18. Overexpression of calcium-activated potassium channels underlies cortical dysfunction in a model of PTEN-associated autism.

    PubMed

    Garcia-Junco-Clemente, Pablo; Chow, David K; Tring, Elaine; Lazaro, Maria T; Trachtenberg, Joshua T; Golshani, Peyman

    2013-11-05

    De novo phosphatase and tensin homolog on chromosome ten (PTEN) mutations are a cause of sporadic autism. How single-copy loss of PTEN alters neural function is not understood. Here we report that Pten haploinsufficiency increases the expression of small-conductance calcium-activated potassium channels. The resultant augmentation of this conductance increases the amplitude of the afterspike hyperpolarization, causing a decrease in intrinsic excitability. In vivo, this change in intrinsic excitability reduces evoked firing rates of cortical pyramidal neurons but does not alter receptive field tuning. The decreased in vivo firing rate is not associated with deficits in the dendritic integration of synaptic input or with changes in dendritic complexity. These findings identify calcium-activated potassium channelopathy as a cause of cortical dysfunction in the PTEN model of autism and provide potential molecular therapeutic targets.

  19. The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels.

    PubMed

    Chen, Haijun; Kronengold, Jack; Yan, Yangyang; Gazula, Valeswara-Rao; Brown, Maile R; Ma, Liqun; Ferreira, Gonzalo; Yang, Youshan; Bhattacharjee, Arin; Sigworth, Fred J; Salkoff, Larry; Kaczmarek, Leonard K

    2009-04-29

    Potassium channels activated by intracellular Na(+) ions (K(Na)) play several distinct roles in regulating the firing patterns of neurons, and, at the single channel level, their properties are quite diverse. Two known genes, Slick and Slack, encode K(Na) channels. We have now found that Slick and Slack subunits coassemble to form heteromeric channels that differ from the homomers in their unitary conductance, kinetic behavior, subcellular localization, and response to activation of protein kinase C. Heteromer formation requires the N-terminal domain of Slack-B, one of the alternative splice variants of the Slack channel. This cytoplasmic N-terminal domain of Slack-B also facilitates the localization of heteromeric K(Na) channels to the plasma membrane. Immunocytochemical studies indicate that Slick and Slack-B subunits are coexpressed in many central neurons. Our findings provide a molecular explanation for some of the diversity in reported properties of neuronal K(Na) channels.

  20. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures.

    PubMed

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2016-01-01

    There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes.

  1. Negative inotropic effect of carbachol and interaction between acetylcholine receptor-operated potassium channel (K.ACh channel) and GTP binding protein in mouse isolated atrium--a novel methodological trial.

    PubMed

    Okada, Muneyoshi; Noma, Chihiro; Yamawaki, Hideyuki; Hara, Yukio

    2013-01-01

    Interaction between acetylcholine receptor-operated potassium channel (K.ACh channel) and GTP binding protein was examined by an immunoprecipitation-Western blotting system in mouse isolated atrium. The carbachol-induced negative inotropic action in indomethacin-pretreated mouse atrium was significantly inhibited by a K.ACh channel blocker, tertiapin or atropine. Kir3.1 K.ACh channel (Kir3.1) was immunoprecipitated with a mouse anti-Kir3.1 antibody. Coprecipitating Gβ with Kir3.1, detected by Western blotting, was significantly augmented by carbachol. Atropine, but not tertiapin, significantly inhibited the carbachol-induced coprecipitating Gβ with Kir3.1. The data indicate that immunoprecipitation with Kir3.1 and Western blotting of Gβ system is a useful method for assessing interaction between K.ACh channel and GTP binding protein in mouse atrium.

  2. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice.

    PubMed

    Bausch, Anne E; Ehinger, Rebekka; Straubinger, Julia; Zerfass, Patrick; Nann, Yvette; Lukowski, Robert

    2018-05-31

    The sodium-activated potassium channel Slack (Slo2.2) is widely expressed in central and peripheral neurons where it is supposed to shape firing properties important for neuronal excitability. Slack activity is enhanced by interaction with the Fragile-X-Mental-Retardation-Protein (FMRP) and loss of FMRP leads to decreased sodium-activated potassium currents in medial nucleus of the trapezoid body neurons of the Fmr1-knockout (KO) mouse representing a mouse model of the human Fragile-X-Syndrome (FXS) and autism. Autism is a frequent comorbidity of FXS, but it is unclear whether Slack is involved in autistic or related conditions of FXS in vivo. By applying a wide range of behavioral tests, we compared social and autism-related behaviors in Slack- and FMRP-deficient mice. In our hands, as expected, FMRP-deficiency causes autism-related behavioral changes in nesting and in a marble-burying test. In contrast, Slack-deficient males exhibited specific abnormalities in sociability in direct and indirect social interaction tests. Hence, we show for the first time that a proper Slack channel function is mandatory for normal social behavior in mice. Nevertheless, as deficits in social behaviors seem to occur independently from each other in FMRP and Slack null mutants, we conclude that Slack is not involved in the autistic phenotype of FMRP KO mice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells.

    PubMed

    Zhou, Najing; Huang, Sha; Li, Li; Huang, Dongyang; Yan, Yunli; Du, Xiaona; Zhang, Hailin

    2016-10-01

    Membrane potential shift driven by electrical activity is critical in determining the cell fate of proliferation or differentiation. As such, the ion channels that underlie the membrane electrical activity play an important role in cell proliferation/differentiation. KV7/KCNQ potassium channels are critical in determining the resting membrane potentials in many neuronal cells. However, the role of these channels in cell differentiation is not well studied. In the present study, we used PC12 cells as well as primary cultured rat cortical neurons to study the role and mechanism of KV7/KCNQ in neuronal differentiation. NGF induced PC12 cell differentiation into neuron-like cells with growth of neurites showing typical growth cone-like extensions. The Kv7/KCNQ blocker XE991 promoted NGF-induced neurite outgrowth, whereas Kv7/KCNQ opener retigabine (RTG) inhibited outgrowth. M-type Kv7 channels are likely involved in regulating neurite growth because overexpression of KCNQ2/Q3 inhibited neurite growth whereas suppression of KCNQ2/Q3 with shRNA promoted neurite growth. Membrane depolarization possibly underpins enhanced neurite growth induced by the suppression of Kv7/KCNQ. Additionally, high extracellular K(+) likely induced membrane depolarization and also promoted neurite growth. Finally, T-type Ca(2+) channels may be involved in membrane-depolarization-induced neurite growth. This study provides a new perspective for understanding neuronal differentiation as well as KV7/KCNQ channel function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles

    PubMed Central

    Kim, Dorothy M.; Dikiy, Igor; Upadhyay, Vikrant; Posson, David J.

    2016-01-01

    The process of ion channel gating—opening and closing—involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating. PMID:27432996

  5. Bickerstaff's encephalitis and Miller Fisher syndrome associated with voltage-gated potassium channel and novel anti-neuronal antibodies.

    PubMed

    Tüzün, E; Kürtüncü, M; Lang, B; Içöz, S; Akman-Demir, G; Eraksoy, M; Vincent, A

    2010-10-01

    GQ1b antibody (GQ1b-Ab) is detected in approximately two-thirds of sera of patients with Bickerstaffs encephalitis (BE). Whilst some of the remaining patients have antibodies to other gangliosides, many patients with BE are reported to be seronegative. Voltage-gated potassium channel antibody (VGKC-Ab) at high titer was detected during the diagnostic work-up of one patient with BE. Sera of an additional patient with BE and nine patients with Miller Fisher syndrome (MF) (all GQ1b-Ab positive) were investigated for VGKC-Ab and other anti-neuronal antibodies by radioimmunoprecipitation using 125I-dendrotoxin-VGKC and immunohistochemistry, respectively. Two patients with MF exhibited moderate titer VGKC-Abs. Regardless of positivity for VGKC or GQ1b antibodies, serum IgG of all patients with BE and MF reacted with the molecular layer and Purkinje cells of the cerebellum in a distinctive pattern. Voltage-gated potassium channel antibodies might be involved in some cases of BE or MF. The common staining pattern despite different antibody results suggests that there might be other, as yet unidentified, antibodies associated with BE and MF.

  6. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    PubMed

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager.

    PubMed

    Langille, Megan M; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  8. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age

    PubMed Central

    Oiki, Shigetoshi

    2015-01-01

    The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the ‘frozen’ crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. PMID:25833254

  9. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age.

    PubMed

    Oiki, Shigetoshi

    2015-06-15

    The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  10. Mechanism and Energetics of Charybdotoxin Unbinding from a Potassium Channel from Molecular Dynamics Simulations

    PubMed Central

    Chen, Po-chia; Kuyucak, Serdar

    2009-01-01

    Ion channel-toxin complexes are ideal systems for computational studies of protein-ligand interactions, because, in most cases, the channel axis provides a natural reaction coordinate for unbinding of a ligand and a wealth of physiological data is available to check the computational results. We use a recently determined structure of a potassium channel-charybdotoxin complex in molecular dynamics simulations to investigate the mechanism and energetics of unbinding. Pairs of residues on the channel protein and charybdotoxin that are involved in the binding are identified, and their behavior is traced during umbrella-sampling simulations as charybdotoxin is moved away from the binding site. The potential of mean force for the unbinding of charybdotoxin is constructed from the umbrella sampling simulations using the weighted histogram analysis method, and barriers observed are correlated with specific breaking of interactions and influx of water molecules into the binding site. Charybdotoxin is found to undergo conformational changes as a result of the reaction coordinate choice—a nontrivial decision for larger ligands—which we explore in detail, and for which we propose solutions. Agreement between the calculated and the experimental binding energies is obtained once the energetic consequences of these conformational changes are included in the calculations. PMID:19348743

  11. N-Acetylcysteine-induced vasodilatation is modulated by KATP channels, Na+/K+-ATPase activity and intracellular calcium concentration: An in vitro study.

    PubMed

    Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem

    2017-08-01

    In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Dysfunction of the Heteromeric KV7.3/KV7.5 Potassium Channel is Associated with Autism Spectrum Disorders.

    PubMed

    Gilling, Mette; Rasmussen, Hanne B; Calloe, Kirstine; Sequeira, Ana F; Baretto, Marta; Oliveira, Guiomar; Almeida, Joana; Lauritsen, Marlene B; Ullmann, Reinhard; Boonen, Susanne E; Brondum-Nielsen, Karen; Kalscheuer, Vera M; Tümer, Zeynep; Vicente, Astrid M; Schmitt, Nicole; Tommerup, Niels

    2013-01-01

    Heterozygous mutations in the KCNQ3 gene on chromosome 8q24 encoding the voltage-gated potassium channel KV7.3 subunit have previously been associated with rolandic epilepsy and idiopathic generalized epilepsy (IGE) including benign neonatal convulsions. We identified a de novo t(3;8) (q21;q24) translocation truncating KCNQ3 in a boy with childhood autism. In addition, we identified a c.1720C > T [p.P574S] nucleotide change in three unrelated individuals with childhood autism and no history of convulsions. This nucleotide change was previously reported in patients with rolandic epilepsy or IGE and has now been annotated as a very rare SNP (rs74582884) in dbSNP. The p.P574S KV7.3 variant significantly reduced potassium current amplitude in Xenopus laevis oocytes when co-expressed with KV7.5 but not with KV7.2 or KV7.4. The nucleotide change did not affect trafficking of heteromeric mutant KV7.3/2, KV7.3/4, or KV7.3/5 channels in HEK 293 cells or primary rat hippocampal neurons. Our results suggest that dysfunction of the heteromeric KV7.3/5 channel is implicated in the pathogenesis of some forms of autism spectrum disorders, epilepsy, and possibly other psychiatric disorders and therefore, KCNQ3 and KCNQ5 are suggested as candidate genes for these disorders.

  13. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms

    PubMed Central

    Duménieu, Maël; Oulé, Marie; Kreutz, Michael R.; Lopez-Rojas, Jeffrey

    2017-01-01

    Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology. PMID:28484374

  14. Diabetes impairs the atrial natriuretic peptide relaxant action mediated by potassium channels and prostacyclin in the rabbit renal artery.

    PubMed

    Marrachelli, Vannina G; Centeno, José M; Miranda, Ignacio; Castelló-Ruiz, María; Burguete, María C; Jover-Mengual, Teresa; Salom, Juan B; Torregrosa, Germán; Miranda, Francisco J; Alborch, Enrique

    2012-11-01

    Diabetes is associated with increased prevalence of hypertension, cardiovascular and renal disease. Atrial natriuretic peptide (ANP) plays an important role in cardiovascular pathophysiology and is claimed to have cardioprotective and renoprotective effect in diabetic patients. The working hypothesis was that alloxan-induced diabetes might modify the vascular effects of ANP in isolated rabbit renal arteries and the mechanisms involved in such actions. Plasma ANP levels were higher in diabetic rabbits than in control rabbits. ANP (10(-12)-10(-7)M) induced a relaxation of precontracted renal arteries, which was lower in diabetic than in control rabbits. In arteries from both groups of animals, endothelium removal decreased the ANP-induced relaxation but inhibition of NO-synthesis did not modify ANP-induced relaxations. In KCl-depolarised arteries, relaxation to ANP was almost abolished both in control and diabetic rabbits. Tetraethylammonium (TEA) partly inhibited the relaxation to ANP in control rabbits but did not modify it in diabetic rabbits. Glibenclamide and 4-aminopyridine inhibited the relaxation to ANP, and these inhibitions were lower in diabetic than in control rabbits. Indomethacin potentiated the relaxation to ANP, more in control than in diabetic rabbits. In the presence of ANP the renal artery released thromboxane A(2) and prostacyclin, and the release of prostacyclin resulted decreased in diabetic rabbits. The present results suggest that diabetes produces hyporeactivity of the rabbit renal artery to ANP by mechanisms that at least include the reduced modulation by prostacyclin and a lower participation of ATP-sensitive K(+) channel (K(ATP)), voltage-sensitive K(+) channels (K(V)) and TEA-sensitive K(+) channels (K(Ca)). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Location of the β4 transmembrane helices in the BK potassium channel

    PubMed Central

    Wu, Roland S.; Chudasama, Neelesh; Zakharov, Sergey I.; Doshi, Darshan; Motoike, Howard; Liu, Guoxia; Yao, Yongneng; Niu, Xiaowei; Deng, Shi-Xian; Landry, Donald W.; Karlin, Arthur; Marx, Steven O.

    2009-01-01

    Large-conductance, voltage- and Ca2+-gated potassium (BK) channels control excitability in a number of cell types. BK channels are composed of α subunits, which contain the voltage-sensor domains and the Ca2+- sensor domains, and form the pore, and often one of four types of β subunits, which modulate the channel in a cell-specific manner. β4 is expressed in neurons throughout the brain. Deletion of β4 in mice causes temporal lobe epilepsy. Compared to channels composed of α alone, channels composed of α and β4 activate and deactivate more slowly. We inferred the locations of the two β4 transmembrane (TM) helices, TM1 and TM2, relative to the seven αTM helices, S0-S6, from the extent of disulfide bond formation between cysteines substituted in the extracellular flanks of these TM helices. We found that β4 TM2 is close to α S0 and that β4 TM1 is close to both α S1 and S2. At least at their extracellular ends, TM1 and TM2 are not close to S3 through S6. In six of eight of the most highly crosslinked cysteine pairs, four crosslinks from TM2 to S0 and one each from TM1 to S1 and S2 had small effects on the V50 and on the rates of activation and deactivation. That disulfide crosslinking caused only small functional perturbations is consistent with the proximity of the extracellular ends of TM2 to S0 and of TM1 to S1 and to S2, in both the open and closed states. PMID:19571123

  16. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels.

    PubMed

    Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang

    2012-01-01

    Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.

  17. Hsp40 Chaperones Promote Degradation of the hERG Potassium Channel*

    PubMed Central

    Walker, Valerie E.; Wong, Michael J. H.; Atanasiu, Roxana; Hantouche, Christine; Young, Jason C.; Shrier, Alvin

    2010-01-01

    Loss of function mutations in the hERG (human ether-a-go-go related gene or KCNH2) potassium channel underlie the proarrhythmic cardiac long QT syndrome type 2. Most often this is a consequence of defective trafficking of hERG mutants to the cell surface, with channel retention and degradation at the endoplasmic reticulum. Here, we identify the Hsp40 type 1 chaperones DJA1 (DNAJA1/Hdj2) and DJA2 (DNAJA2) as key modulators of hERG degradation. Overexpression of the DJAs reduces hERG trafficking efficiency, an effect eliminated by the proteasomal inhibitor lactacystin or with DJA mutants lacking their J domains essential for Hsc70/Hsp70 activation. Both DJA1 and DJA2 cause a decrease in the amount of hERG complexed with Hsc70, indicating a preferential degradation of the complex. Similar effects were observed with the E3 ubiquitin ligase CHIP. Both the DJAs and CHIP reduce hERG stability and act differentially on folding intermediates of hERG and the disease-related trafficking mutant G601S. We propose a novel role for the DJA proteins in regulating degradation and suggest that they act at a critical point in secretory pathway quality control. PMID:19940115

  18. EFFECTS OF CHRONIC TREATMENT WITH A LOW DOSE OF NICORANDIL ON THE FUNCTION OF THE RAT AORTA DURING AGEING

    PubMed Central

    Raveaud, Stéphanie; Mezin, Paulette; Lavanchy, Nicole; Starcher, Barry; Mecham, Robert P.; Verdetti, Jean; Faury, Gilles

    2013-01-01

    SUMMARY It is known that ATP-sensitive potassium (KATP) channels regulate the membrane potential of smooth muscle cells and vascular tone. Because their activity is altered during ageing, many pharmacological treatments aimed at improving KATP channel and cardiovascular functions have been evaluated. Nicorandil, a KATP channel opener, nitric oxide (NO) donor and anti-oxidant, induces vasodilation, decreases blood pressure and exhibits cardioprotection in ageing, as well as after ischaemia–reperfusion.In the present study, using tension myography and biochemical and histological techniques, we investigated the effects of chronic (2 months) low-dose nicorandil (0.1 mg/kg per day) treatment on the function of rat aorta during ageing (in 4-, 12- and 24-month old rats).The results showed that chronic nicorandil treatment significantly improves mechanical relaxation and noradrenaline-induced vasoconstriction in aged rats. At all ages, the nicorandil-induced vasodilation was primarily mediated by its NO donor group. Nicorandil treatment resulted in an additional 0.5–1 elastic lamella in the aorta and decreased total protein, collagen and elastin content in the aortic wall at all ages. However, in 4-month-old rats, nicorandil significantly increased the elastin : total protein ratio by 19%.In contrast with results of previous studies that used high doses of nicorandil (i.e. 60 mg/kg per day), low-dose nicorandil treatment in the present study did not lead to a progressive desensitization to nicorandil and may be beneficial in improving arterial function in ageing or cardiovascular diseases. PMID:19473347

  19. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager

    PubMed Central

    Langille, Megan M.; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition. PMID:26019428

  20. Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4.

    PubMed

    Abbott, Geoffrey W

    2016-12-06

    Voltage-gated potassium (Kv) channels comprise pore-forming α subunits and a multiplicity of regulatory proteins, including the cardiac-expressed and cardiac arrhythmia-linked transmembrane KCNE subunits. After recently uncovering novel, N-terminally extended (L) KCNE3 and KCNE4 isoforms and detecting their transcripts in human atrium, reported here are their functional effects on human cardiac Kv channel α subunits expressed in Xenopus laevis oocytes. As previously reported for short isoforms KCNE3S and KCNE4S, KCNE3L inhibited hERG; KCNE4L inhibited Kv1.1; neither form regulated the HCN1 pacemaker channel. Unlike KCNE4S, KCNE4L was a potent inhibitor of Kv4.2 and Kv4.3; co-expression of cytosolic β subunit KChIP2, which regulates Kv4 channels in cardiac myocytes, partially relieved Kv4.3 but not Kv4.2 inhibition. Inhibition of Kv4.2 and Kv4.3 by KCNE3L was weaker, and its inhibition of Kv4.2 abolished by KChIP2. KCNE3L and KCNE4L also exhibited subunit-specific effects on Kv4 channel complex inactivation kinetics, voltage dependence and recovery. Further supporting the potential physiological significance of the robust functional effects of KCNE4L on Kv4 channels, KCNE4L protein was detected in human atrium, where it co-localized with Kv4.3. The findings establish functional effects of novel human cardiac-expressed KCNE isoforms and further contribute to our understanding of the potential mechanisms influencing cardiomyocyte repolarization.

  1. Antibodies to voltage-gated potassium and calcium channels in epilepsy.

    PubMed

    Majoie, H J Marian; de Baets, Mark; Renier, Willy; Lang, Bethan; Vincent, Angela

    2006-10-01

    To determine the prevalence of antibodies to ion channels in patients with long standing epilepsy. Although the CNS is thought to be protected from circulating antibodies by the blood brain barrier, glutamate receptor antibodies have been reported in Rasmussen's encephalitis, glutamic acid decarboxylase (GAD) antibodies have been found in a few patients with epilepsy, and antibodies to voltage-gated potassium channels (VGKC) have been found in a non-paraneoplastic form of limbic encephalitis (with amnesia and seizures) that responds to immunosuppressive therapy. We retrospectively screened sera from female epilepsy patients (n=106) for autoantibodies to VGKC (Kv 1.1, 1.2 or 1.6), voltage-gated calcium channels (VGCC) (P/Q-type), and GAD. All positive results, based on the values of control data [McKnight, K., Jiang, Y., et al. (2005). Serum antibodies in epilepsy and seizure-associated disorders. Neurology 65, 1730-1735], were retested at lower serum concentrations, and results compared with previously published control data. Demographics, medical history, and epilepsy related information was gathered. The studied group consisted predominantly of patients with long standing drug resistant epilepsy. VGKC antibodies were raised (>100 pM) in six patients. VGCC antibodies (>45 pM) were slightly raised in only one patient. GAD antibodies were <3 U/ml in all patients. The clinical features of the patients with VGKC antibodies differed from previously described patients with limbic encephalitis-like syndrome, and were not different with respect to seizure type, age at first seizure, duration of epilepsy, or use of anti-epileptic drugs from the VGKC antibody negative patients. The results demonstrate that antibodies to VGKC are present in 6% of patients with typical long-standing epilepsy, but whether these antibodies are pathogenic or secondary to the primary disease process needs to be determined.

  2. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels

    PubMed Central

    Shipston, Michael J.

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  3. Dynamic redistribution of calcium sensitive potassium channels (hK(Ca)3.1) in migrating cells.

    PubMed

    Schwab, Albrecht; Nechyporuk-Zloy, Volodymyr; Gassner, Birgit; Schulz, Christoph; Kessler, Wolfram; Mally, Sabine; Römer, Michael; Stock, Christian

    2012-02-01

    Calcium-sensitive potassium channels (K(Ca)3.1) are expressed in virtually all migrating cells. Their activity is required for optimal cell migration so that their blockade leads to slowing down. K(Ca)3.1 channels must be inserted into the plasma membrane in order to elicit their physiological function. However, the plasma membrane of migrating cells is subject to rapid recycling by means of endo- and exocytosis. Here, we focussed on the endocytic internalization and the intracellular transport of the human isoform hK(Ca)3.1. A hK(Ca)3.1 channel construct with an HA-tag in the extracellularly located S3-S4 linker was transfected into migrating transformed renal epithelial MDCK-F cells. Channel internalization was visualized and quantified with immunofluorescence and a cell-based ELISA. Movement of hK(Ca)3.1 channel containing vesicles as well as migration of MDCK-F cells were monitored by means of time lapse video microscopy. hK(Ca)3.1 channels are endocytosed during migration. Most of the hK(Ca)3.1 channel containing vesicles are moving at a speed of up to 2 µm/sec in a microtubule-dependent manner towards the front of MDCK-F cells. Our experiments indicate that endocytosis of hK(Ca)3.1 channels is clathrin-dependent since they colocalize with clathrin adaptor proteins and since it is impaired when a C-terminal dileucine motif is mutated. The C-terminal dileucine motif is also important for the subcellular localization of hK(Ca)3.1 channels in migrating cells. Mutated channels are no longer concentrated at the leading edge. We therefore propose that recycling of hK(Ca)3.1 channels contributes to their characteristic subcellular distribution in migrating cells. Copyright © 2011 Wiley Periodicals, Inc.

  4. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa).

    PubMed

    Wang, Shufang; Song, Miaoyu; Guo, Jiaxuan; Huang, Yun; Zhang, Fangfang; Xu, Cheng; Xiao, Yinghui; Zhang, Lusheng

    2018-03-01

    Potassium (K + ), an abundant cation in plant cells, is important in fruit development and plant resistance. However, how cellular K + is directed by potassium channels in fruit development and quality formation of strawberry (Fragaria × ananassa) is not yet fully clear. Here, a two-pore K + (TPK) channel gene in strawberry, FaTPK1, was cloned using reverse transcription-PCR. A green fluorescent protein subcellular localization analysis showed that FaTPK1 localized in the vacuole membrane. A transcription analysis indicated that the mRNA expression level of FaTPK1 increased rapidly and was maintained at a high level in ripened fruit, which was coupled with the fruit's red colour development, suggesting that FaTPK1 is related to fruit quality formation. The down- and up-regulation of the FaTPK1 mRNA expression levels using RNA interference and overexpression, respectively, inhibited and promoted fruit ripening, respectively, as demonstrated by consistent changes in firmness and the contents of soluble sugars, anthocyanin and abscisic acid, as well as the transcript levels of ripening-regulated genes PG1 (polygalacturonase), GAL6 (beta-galactosidase), XYL2 (D-xylulose reductase), SUT1 (sucrose transporter), CHS (chalcone synthase) and CHI (chalcone flavanone isomerase). Additionally, the regulatory changes influenced fruit resistance to Botrytis cinerea. An isothermal calorimetry analysis showed that the Escherichia coli-expressed FaTPK1 recombinant protein could bind K + with a binding constant of 2.1 × 10 -3  m -1 and a dissociation constant of 476 μm. Thus, the strawberry TPK1 is a ubiquitously expressed, tonoplast-localized two-pore potassium channel that plays important roles in fruit ripening and quality formation. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

    PubMed Central

    Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia

    2015-01-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13–14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker’s, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  6. Time-dependent alteration in cromakalim-induced relaxation of corpus cavernosum from streptozocin-induced diabetic rats.

    PubMed

    Ghasemi, Mehdi; Sadeghipour, Hamed; Asadi, Shahrzad; Dehpour, Ahmad Reza

    2007-09-01

    The purpose of the present study was to investigate the relaxant responses to the ATP-sensitive potassium (K(ATP)) channel opener cromakalim in corpus cavernosum strips from 1-, 2-, 4-, 6-, and 8-week streptozocin-induced diabetic rats. Cromakalim (1 nM-0.1 mM) produced concentration-dependent relaxation in phenylephrine (7.5 microM)-precontracted isolated rat corporal strips. Compared with age-matched control animals, a significant enhancement in cromakalim-induced relaxation of corpus cavernosum was observed in 2-week diabetic animals, whereas the relaxant responses to cromakalim were decreased in 6-and 8-week diabetic animals. However, the cromakalim-induced relaxation was not altered in either 1-week or 4-week rat corporal strips in comparison with corresponding age-matched non-diabetic groups. Preincubation with the K(ATP) channel blocker glibenclamide (10 microM) significantly inhibited the cromakalim-induced relaxation in both non-diabetic and diabetic rat corpus cavernosum, but neither the voltage-dependent K(+) channel (K(V)) antagonist 4-aminopyridine (1 mM) nor the calcium-activated K(+) channel (K(Ca)) antagonist charybdotoxin (0.1 microM) had significant effect on cromakalim-induced relaxation in both control and diabetic rat corporal strips. Relaxation responses to the nitric oxide donor sodium nitroprusside (1 nM-0.1 mM) in diabetic rat corpus cavernosum were similar to that of age-matched controls. These data demonstrated that the relaxant responses to cromakalim were altered in diabetic cavernosal strips in a time dependent manner, suggesting that the period of diabetes mellitus may play a key role in the K(ATP) channels function in rat corpus cavernosum.

  7. Actions of bis(7)-tacrine and tacrine on transient potassium current in rat DRG neurons and potassium current mediated by K(V)4.2 expressed in Xenopus oocyte.

    PubMed

    Li, Xiang-Yuan; Zhang, Jian; Dai, Jia-Pei; Liu, Xiang-Ming; Li, Zhi-Wang

    2010-03-08

    Bis(7)-tacrine [bis(7)-tetrahydroaminacrine] is a dimeric AChE inhibitor derived from tacrine with a potential to treat Alzheimer's disease. Actions of bis(7)-tacrine on ligand-gated ion channels and voltage-gated cation channels have been identified on neurons of both central and peripheral nervous systems. In the present study, the effect of bis(7)-tacrine was investigated on the K(V)4.2 encoded potassium currents expressed in Xenopus oocytes and the transient A-type potassium current (I(K(A))) on rat DRG neurons. Bis(7)-tacrine suppressed recombinant Kv4.2 potassium channels in a concentration-dependent manner, with IC(50) value of 0.53+/-0.13 muM. Tacrine also inhibited Kv4.2 channels, but with a much lower potency (IC(50) 74+/-15 muM).The possible mechanisms underlying the inhibition on potassium currents by bis(7)-tacrine/tacrine could be that inactivation of the transient potassium currents was accelerated and recovery of the native or Kv4.2 expressed potassium currents was suppressed by bis(7)-tacrine/tacrine. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures

    PubMed Central

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2017-01-01

    Background There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. Patient Description We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. Conclusion This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes. PMID:29308451

  9. Absence of ion-binding affinity in the putatively inactivated low-[K+] structure of the KcsA potassium channel.

    PubMed

    Boiteux, Céline; Bernèche, Simon

    2011-01-12

    Potassium channels are membrane proteins that selectively conduct K(+) across cellular membranes. The narrowest part of their pore, the selectivity filter, is responsible for distinguishing K(+) from Na(+), and can also act as a gate through a mechanism known as C-type inactivation. It has been proposed that a conformation of the KcsA channel obtained by crystallization in presence of low concentration of K(+) (PDB 1K4D) could correspond to the C-type inactivated state. Here, we show using molecular mechanics simulations that such conformation has little ion-binding affinity and that ions do not contribute to its stability. The simulations suggest that, in this conformation, the selectivity filter is mostly occupied by water molecules. Whether such ion-free state of the KcsA channel is physiologically accessible and representative of the inactivated state of eukaryotic channels remains unclear. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    PubMed Central

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  11. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).

    PubMed

    Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P

    2012-03-01

    Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.

  12. Kir 4.1 inward rectifier potassium channel is upregulated in astrocytes in a murine multiple sclerosis model.

    PubMed

    Mercado, Francisco; Almanza, Angélica; Rubio, Nazario; Soto, Enrique

    2018-06-11

    Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K + inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel

    PubMed Central

    Yazdi, Samira; Stein, Matthias; Elinder, Fredrik; Andersson, Magnus; Lindahl, Erik

    2016-01-01

    Voltage-gated potassium (KV) channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs) induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD), the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA) and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins. PMID:26751683

  14. Fragile X syndrome: mechanistic insights and therapeutic avenues regarding the role of potassium channels.

    PubMed

    Lee, Hye Young; Jan, Lily Yeh

    2012-10-01

    Fragile X syndrome (FXS) is a common form of mental disability and one of the known causes of autism. The mutation responsible for FXS is a large expansion of the trinucleotide CGG repeats that leads to DNA methylation of the fragile X mental retardation gene 1 (FMR1) and transcriptional silencing, resulting in the absence of fragile X mental retardation protein (FMRP), an mRNA binding protein. Although it is widely known that FMRP is critical for metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), which has provided a general theme for developing pharmacological drugs for FXS, specific downstream targets of FMRP may also be of therapeutic value. Since alterations in potassium channel expression level or activity could underlie neuronal network defects in FXS, here we describe recent findings on how these channels might be altered in mouse models of FXS and the possible therapeutic avenues for treating FXS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Interleukin-4 activates large-conductance, calciumactivated potassium (BKCa) channels in human airway smooth muscle cells

    PubMed Central

    Martin, Gilles; O’Connell, Robert J.; Pietrzykowski, Andrzej Z.; Treistman, Steven N.; Ethier, Michael F.; Madison, J. Mark

    2014-01-01

    Large-conductance, calcium-activated potassium (BKCa) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper–2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BKCa activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC). Interleukin-4 (50 ng ml−1), IL-13 (50 ng ml−1) or histamine (10 μm) was added to the bath during the recordings. Immunofluorescence studies with selective antibodies against the α and β1 subunits of BKCa were also performed. Both approaches demonstrated that HBSMC membranes contained large-conductance channels (>200 pS) with both calcium and voltage sensitivity, all of which is characteristic of the BKCa channel. Histamine caused a rapid increase in channel activity, as expected. A new finding was that perfusion with IL-4 stimulated rapid, large increases in BKCa channel activity (77.2 ± 63.3-fold increase, P < 0.05, n = 18). This large potentiation depended on the presence of external calcium. In contrast, IL-13 (50 ng ml−1) had little effect on BKCa channel activity, but inhibited the effect of IL-4. Thus, HBSMC contain functional BKCa channels whose activity is rapidly potentiated by the cytokine, IL-4, but not by IL-13.These findings are consistent with a model in which IL-4 rapidly increases near-membrane calcium concentrations to regulate BKCa activity. PMID:18403443

  16. Dysfunction of the Heteromeric KV7.3/KV7.5 Potassium Channel is Associated with Autism Spectrum Disorders

    PubMed Central

    Gilling, Mette; Rasmussen, Hanne B.; Calloe, Kirstine; Sequeira, Ana F.; Baretto, Marta; Oliveira, Guiomar; Almeida, Joana; Lauritsen, Marlene B.; Ullmann, Reinhard; Boonen, Susanne E.; Brondum-Nielsen, Karen; Kalscheuer, Vera M.; Tümer, Zeynep; Vicente, Astrid M.; Schmitt, Nicole; Tommerup, Niels

    2012-01-01

    Heterozygous mutations in the KCNQ3 gene on chromosome 8q24 encoding the voltage-gated potassium channel KV7.3 subunit have previously been associated with rolandic epilepsy and idiopathic generalized epilepsy (IGE) including benign neonatal convulsions. We identified a de novo t(3;8) (q21;q24) translocation truncating KCNQ3 in a boy with childhood autism. In addition, we identified a c.1720C > T [p.P574S] nucleotide change in three unrelated individuals with childhood autism and no history of convulsions. This nucleotide change was previously reported in patients with rolandic epilepsy or IGE and has now been annotated as a very rare SNP (rs74582884) in dbSNP. The p.P574S KV7.3 variant significantly reduced potassium current amplitude in Xenopus laevis oocytes when co-expressed with KV7.5 but not with KV7.2 or KV7.4. The nucleotide change did not affect trafficking of heteromeric mutant KV7.3/2, KV7.3/4, or KV7.3/5 channels in HEK 293 cells or primary rat hippocampal neurons. Our results suggest that dysfunction of the heteromeric KV7.3/5 channel is implicated in the pathogenesis of some forms of autism spectrum disorders, epilepsy, and possibly other psychiatric disorders and therefore, KCNQ3 and KCNQ5 are suggested as candidate genes for these disorders. PMID:23596459

  17. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.

    2005-04-15

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na{sub v}) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na{sub v} channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons,more » P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na{sub v} currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na{sub v} channel gating, observed clinically in response to ciguatera poisoning.« less

  18. Potassium channels cloned from neuroblastoma cells display slowly inactivating outward currents in Xenopus oocytes.

    PubMed

    Ito, Y; Yokoyama, S; Higashida, H

    1992-05-22

    Messenger RNAs (mRNAs) specific for NGK1 and NGK2 potassium channels were synthesized from complementary DNAs (cDNAs) that had been cloned from mouse neuroblastoma x rat glioma hybrid NG108-15 cells. Outward pottasium currents were evoked by 5 s depolarizing voltage commands in Xenopus oocytes injected with NGK1- or NGK2-specific mRNAs. The NGK1 or NGK2 currents showed different activation and inactivation kinetics, and different pharmacological sensitivities. The threshold potential for activation of the NGK2 current (-14 mV) was more positive than that for the NGK1 (-36 mV). The NGK2 current showed faster inactivation during a 5 s depolarizing pulse than did the NGK1 current. Inactivation was best fit by time constants of 0.37, 1.5 and 19 s for the NGK2 current and 4.4 and 19 s for NGK1. Extracellularly applied tetraethylammonium chloride (TEA) was 1000 times more potent on the NGK2 current than the NGK1 current. Furthermore we examined outward current following co-injection of an equal amount of mRNAs for NGK1 and NGK2. The timecourse of inactivation differed from either alone or from a simple sum of the two individual currents. TEA sensitivity could not be explained by summation of the two homomultimeric channels. These findings suggest that both NGK1 and NGK2 proteins assemble to form heteromultimeric K+ channels in addition to homomultimeric K+ channels. NGK2 channels and the heteromultimeric channels may be responsible for the native transient outward current with slow inactivation in NG108-15 hybrid cells.

  19. Kinetic modeling of ion conduction in KcsA potassium channel.

    PubMed

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-22

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter

  20. Emergence of Critical Behavior in β-Cell Network

    NASA Astrophysics Data System (ADS)

    Westacott, Matthew; Hraha, Thomas; McClatchey, Mason; Pozzoli, Marina; Benninger, Richard

    2014-03-01

    The β-cell is a cell type located in the Islet of Langerhans, a micro-organ of the pancreas which maintains glucose homeostasis through secretion of insulin. An electrophysiological process governing insulin release occurs through initial uptake of blood glucose and generation of ATP which inhibits the ATP sensitive potassium channel (K-ATP) causing membrane depolarization (activation). Neighboring β-cells are electrically coupled through gap junctions which allow passage of cationic molecules, creating a network of coupled electrical oscillators. Cells exhibiting hyperpolzarized (inactive) membrane potential affect behavior of neighboring cells by electrically suppressing their depolarization. Here we observe critical behavior between global active-inactive states by increasing the number of inactive elements with the K-ATP inhibitor Diazoxide and a tunable ATP insensitive transgenic mouse model. We show this behavior occurs due to from cell-cell coupling as mice lacking β-cell gap junctions show no critical behavior. Also, a computational β-cell model was expanded to construct a coupled β-cell network and we show this model replicates the critical behavior seen in-vitro.While electrical activity of single β-cells is well studied these data highlight a newly defined characteristic of their emergent multicellular behavior within the Islet of Langerhans and may elucidate pathophysiology of Diabetes due to mutations in the K-ATP channel.

  1. Estrogens and human papilloma virus oncogenes regulate human ether-à-go-go-1 potassium channel expression.

    PubMed

    Díaz, Lorenza; Ceja-Ochoa, Irais; Restrepo-Angulo, Iván; Larrea, Fernando; Avila-Chávez, Euclides; García-Becerra, Rocío; Borja-Cacho, Elizabeth; Barrera, David; Ahumada, Elías; Gariglio, Patricio; Alvarez-Rios, Elizabeth; Ocadiz-Delgado, Rodolfo; Garcia-Villa, Enrique; Hernández-Gallegos, Elizabeth; Camacho-Arroyo, Ignacio; Morales, Angélica; Ordaz-Rosado, David; García-Latorre, Ethel; Escamilla, Juan; Sánchez-Peña, Luz Carmen; Saqui-Salces, Milena; Gamboa-Dominguez, Armando; Vera, Eunice; Uribe-Ramírez, Marisela; Murbartián, Janet; Ortiz, Cindy Sharon; Rivera-Guevara, Claudia; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2009-04-15

    Ether-à-go-go-1 (Eag1) potassium channels are potential tools for detection and therapy of numerous cancers. Here, we show human Eag1 (hEag1) regulation by cancer-associated factors. We studied hEag1 gene expression and its regulation by estradiol, antiestrogens, and human papillomavirus (HPV) oncogenes (E6/E7). Primary cultures from normal placentas and cervical cancer tissues; tumor cell lines from cervix, choriocarcinoma, keratinocytes, and lung; and normal cell lines from vascular endothelium, keratinocytes, and lung were used. Reverse transcription-PCR (RT-PCR) experiments and Southern blot analysis showed Eag1 expression in all of the cancer cell types, normal trophoblasts, and vascular endothelium, in contrast to normal keratinocytes and lung cells. Estradiol and antiestrogens regulated Eag1 in a cell type-dependent manner. Real-time RT-PCR experiments in HeLa cells showed that Eag1 estrogenic regulation was strongly associated with the expression of estrogen receptor-alpha. Eag1 protein was detected by monoclonal antibodies in normal placenta and placental blood vessels. Patch-clamp recordings in normal trophoblasts treated with estradiol exhibited potassium currents resembling Eag1 channel activity. Eag1 gene expression in keratinocytes depended either on cellular immortalization or the presence of HPV oncogenes. Eag1 protein was found in keratinocytes transfected with E6/E7 HPV oncogenes. Cell proliferation of E6/E7 keratinocytes was decreased by Eag1 antibodies inhibiting channel activity and by the nonspecific Eag1 inhibitors imipramine and astemizole; the latter also increased apoptosis. Our results propose novel oncogenic mechanisms of estrogen/antiestrogen use and HPV infection. We also suggest Eag1 as an early indicator of cell proliferation leading to malignancies and a therapeutic target at early stages of cellular hyperproliferation.

  2. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability

    PubMed Central

    Speca, David J.; Ogata, Genki; Mandikian, Danielle; Bishop, Hannah I.; Wiler, Steve W.; Eum, Kenneth; Wenzel, H. Jürgen; Doisy, Emily T.; Matt, Lucas; Campi, Katharine L.; Golub, Mari S.; Nerbonne, Jeanne M.; Hell, Johannes W.; Trainor, Brian C.; Sack, Jon T.; Schwartzkroin, Philip A.; Trimmer, James S.

    2014-01-01

    The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1−/−) mice lacking this channel. Kv2.1−/− mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1−/− mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1−/− mice appears unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1−/− animals. Field recordings from hippocampal slices of Kv2.1−/− mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1−/− mice, long-term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1−/− mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1−/− mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1−/− mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function. PMID:24494598

  3. Blueberry juice causes potent relaxation of rat aortic rings via the activation of potassium channels and the H₂S pathway.

    PubMed

    Horrigan, Louise A; Holohan, Catherine A; Lawless, Gráinne A; Murtagh, Melissa A; Williams, Carmel T; Webster, Christina M

    2013-02-26

    The objective of this study was to investigate the in vitro effects of blueberry juice on healthy rat aortic rings, and to explore the roles of potassium channels and of the hydrogen sulphide (H(2)S) pathway in mediating the effects of blueberry juice. Firstly, the antioxidant capacity of blueberry juice was compared to other popular juice drinks using the Folin-Ciocalteu and the DPPH assays. Blueberry juice had significantly higher total polyphenol content than any of the other drinks studied (p < 0.01). The effect of blueberry juice on noradrenaline-contracted aortic rings was then observed, and the juice caused significant inhibition of noradrenaline-induced contractions (p < 0.01). Voltage-gated potassium channel (Kv) blockers 4-aminopyridine (1 mM) and 3,4-diaminopyridine (1 mM), as well as the cystathionine γ-lysase (CSE) inhibitor d,l-propargylglycine (2 mM) were then utilised to elucidate the role of Kv channels and the CSE/H(2)S pathway. Kv channel blocker 3,4-diaminopyridine caused significant blockade at 1/100 and 1/50 dilutions of juice (p < 0.01), whilst 4-aminopyridine caused significant blockade of the 1/100 dilution of blueberry juice (p < 0.05). In addition, d,l-propargylglycine potently inhibited the effect of 1/100 and 1/50 dilutions of blueberry juice (p < 0.01). This study indicates that blueberry juice has potent vasorelaxing properties, and thus may be a useful dietary agent for the prevention and treatment of hypertension. This study also provides strong evidence that Kv channels and the CSE/H(2)S pathway may be responsible, at least in part, for mediating the effects of blueberry juice.

  4. Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif.

    PubMed

    Jespersen, Thomas; Rasmussen, Hanne B; Grunnet, Morten; Jensen, Henrik S; Angelo, Kamilla; Dupuis, Delphine S; Vogel, Lotte K; Jorgensen, Nanna K; Klaerke, Dan A; Olesen, Søren-Peter

    2004-09-01

    KCNQ1 potassium channels are expressed in many epithelial tissues as well as in the heart. In epithelia KCNQ1 channels play an important role in salt and water transport and the channel has been reported to be located apically in some cell types and basolaterally in others. Here we show that KCNQ1 channels are located basolaterally when expressed in polarised MDCK cells. The basolateral localisation of KCNQ1 is not affected by co-expression of any of the five KCNE beta-subunits. We characterise two independent basolateral sorting signals present in the N-terminal tail of KCNQ1. Mutation of the tyrosine residue at position 51 resulted in a non-polarized steady-state distribution of the channel. The importance of tyrosine 51 in basolateral localisation was emphasized by the fact that a short peptide comprising this tyrosine was able to redirect the p75 neurotrophin receptor, an otherwise apically located protein, to the basolateral plasma membrane. Furthermore, a di-leucine-like motif at residues 38-40 (LEL) was found to affect the basolateral localisation of KCNQ1. Mutation of these two leucines resulted in a primarily intracellular localisation of the channel.

  5. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1.

    PubMed

    Moreels, Lien; Peigneur, Steve; Galan, Diogo T; De Pauw, Edwin; Béress, Lászlo; Waelkens, Etienne; Pardo, Luis A; Quinton, Loïc; Tytgat, Jan

    2017-09-13

    The human ether-à-go-go channel (hEag1 or K V 10.1) is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel K V 10.1 inhibitor from the sea anemone Anthopleura elegantissima . Purified sea anemone fractions were screened for inhibitory activity on K V 10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on K V 10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1). The toxin inhibits K V 10.1 with an IC 50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other K V and Na V channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified K V 10.1 inhibitor can be used as a tool to further characterize the oncogenic channel K V 10.1 or as a

  6. Kalium: a database of potassium channel toxins from scorpion venom.

    PubMed

    Kuzmenkov, Alexey I; Krylov, Nikolay A; Chugunov, Anton O; Grishin, Eugene V; Vassilevski, Alexander A

    2016-01-01

    Kalium (http://kaliumdb.org/) is a manually curated database that accumulates data on potassium channel toxins purified from scorpion venom (KTx). This database is an open-access resource, and provides easy access to pages of other databases of interest, such as UniProt, PDB, NCBI Taxonomy Browser, and PubMed. General achievements of Kalium are a strict and easy regulation of KTx classification based on the unified nomenclature supported by researchers in the field, removal of peptides with partial sequence and entries supported by transcriptomic information only, classification of β-family toxins, and addition of a novel λ-family. Molecules presented in the database can be processed by the Clustal Omega server using a one-click option. Molecular masses of mature peptides are calculated and available activity data are compiled for all KTx. We believe that Kalium is not only of high interest to professional toxinologists, but also of general utility to the scientific community.Database URL:http://kaliumdb.org/. © The Author(s) 2016. Published by Oxford University Press.

  7. KV1 and KV3 Potassium Channels Identified at Presynaptic Terminals of the Corticostriatal Synapses in Rat

    PubMed Central

    Meneses, David; Vega, Ana V.; Torres-Cruz, Francisco Miguel; Barral, Jaime

    2016-01-01

    In the last years it has been increasingly clear that KV-channel activity modulates neurotransmitter release. The subcellular localization and composition of potassium channels are crucial to understanding its influence on neurotransmitter release. To investigate the role of KV in corticostriatal synapses modulation, we combined extracellular recording of population-spike and pharmacological blockage with specific and nonspecific blockers to identify several families of KV channels. We induced paired-pulse facilitation (PPF) and studied the changes in paired-pulse ratio (PPR) before and after the addition of specific KV blockers to determine whether particular KV subtypes were located pre- or postsynaptically. Initially, the presence of KV channels was tested by exposing brain slices to tetraethylammonium or 4-aminopyridine; in both cases we observed a decrease in PPR that was dose dependent. Further experiments with tityustoxin, margatoxin, hongotoxin, agitoxin, dendrotoxin, and BDS-I toxins all rendered a reduction in PPR. In contrast heteropodatoxin and phrixotoxin had no effect. Our results reveal that corticostriatal presynaptic KV channels have a complex stoichiometry, including heterologous combinations KV1.1, KV1.2, KV1.3, and KV1.6 isoforms, as well as KV3.4, but not KV4 channels. The variety of KV channels offers a wide spectrum of possibilities to regulate neurotransmitter release, providing fine-tuning mechanisms to modulate synaptic strength. PMID:27379187

  8. Hydrogen sulfide: role in ion channel and transporter modulation in the eye

    PubMed Central

    Njie-Mbye, Ya F.; Opere, Catherine A.; Chitnis, Madhura; Ohia, Sunny E.

    2012-01-01

    Hydrogen sulfide (H2S), a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation, and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1) ion channels such as calcium (L-type, T-type, and intracellular stores), potassium (KATP and small conductance channels) and chloride channels, (2) glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed. PMID:22934046

  9. Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.

    PubMed

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-23

    Voltage-dependent KCNH family potassium channel functionality can be reconstructed using non-covalently linked voltage-sensing domain (VSD) and pore modules (split channels). However, the necessity of a covalent continuity for channel function has not been evaluated at other points within the two functionally independent channel modules. We find here that by cutting Kv11.1 (hERG, KCNH2) channels at the different loops linking the transmembrane spans of the channel core, not only channels split at the S4-S5 linker level, but also those split at the intracellular S2-S3 and the extracellular S3-S4 loops, yield fully functional channel proteins. Our data indicate that albeit less markedly, channels split after residue 482 in the S2-S3 linker resemble the uncoupled gating phenotype of those split at the C-terminal end of the VSD S4 transmembrane segment. Channels split after residues 514 and 518 in the S3-S4 linker show gating characteristics similar to those of the continuous wild-type channel. However, breaking the covalent link at this level strongly accelerates the voltage-dependent accessibility of a membrane impermeable methanethiosulfonate reagent to an engineered cysteine at the N-terminal region of the S4 transmembrane helix. Thus, besides that of the S4-S5 linker, structural integrity of the intracellular S2-S3 linker seems to constitute an important factor for proper transduction of VSD rearrangements to opening and closing the cytoplasmic gate. Furthermore, our data suggest that the short and probably rigid characteristics of the extracellular S3-S4 linker are not an essential component of the Kv11.1 voltage sensing machinery.

  10. The amiodarone derivative KB130015 activates hERG1 potassium channels via a novel mechanism

    PubMed Central

    Gessner, Guido; Macianskiene, Regina; Starkus, John G.; Schönherr, Roland; Heinemann, Stefan H.

    2010-01-01

    Human ether à go-go related gene (hERG1) potassium channels underlie the repolarizing IKr current in the heart. Since they are targets of various drugs with cardiac side effects we tested whether the amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) blocks hERG1 channels like its parent compound. Using patch-clamp and two-electrode voltage-clamp techniques we found that KB130015 blocks native and recombinant hERG1 channels at high voltages, but it activates them at low voltages. The activating effect has an apparent EC50 value of 12 μM and is brought about by an about 4-fold acceleration of activation kinetics and a shift in voltage-dependent activation by −16 mV. Channel activation was not use-dependent and was independent of inactivation gating. KB130015 presumably binds to the hERG1 pore from the cytosolic side and functionally competes with hERG1 block by amiodarone, E4031 (N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl] -4-piperidinyl] carbonyl] phenyl] methanesulfonamide dihydrochloride), and sertindole. Vice versa, amiodarone attenuates hERG1 activation by KB130015. Based on synergic channel activation by mallotoxin and KB130015 we conclude that the hERG1 pore contains at least two sites for activators that are functionally coupled among each other and to the cavity-blocker site. KB130015 and amiodarone may serve as lead structures for the identification of hERG1 pore-interacting drugs favoring channel activation vs. block. PMID:20097192

  11. Inhibitory Effects of Glycyrrhetinic Acid on the Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes and HERG Channel

    PubMed Central

    Wu, Delin; Jiang, Linqing; Wu, Hongjin; Wang, Shengqi; Zheng, Sidao; Yang, Jiyuan; Liu, Yuna; Ren, Jianxun; Chen, Xianbing

    2013-01-01

    Background. Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA). However, the mechanism of action remains poorly understood. Aim. The effects of GA on the delayed rectifier potassium current (I K), the rapidly activating (I Kr) and slowly activating (I Ks) components of I K, and the HERG K+ channel expressed in HEK-293 cells were investigated. Materials and Methods. Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to record I K (I Kr, I Ks) and the HERG K+ current. Results. GA (1, 5, and 10 μM) inhibited I K (I Kr, I Ks) and the HERG K+ current in a concentration-dependent manner. Conclusion. GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition of I K (I Kr, I Ks) and HERG K+ channel. PMID:24069049

  12. Voltage-gated potassium channel (K(v) 1) autoantibodies in patients with chagasic gut dysmotility and distribution of K(v) 1 channels in human enteric neuromusculature (autoantibodies in GI dysmotility).

    PubMed

    Hubball, A W; Lang, B; Souza, M A N; Curran, O D; Martin, J E; Knowles, C H

    2012-08-01

    Autoantibodies directed against specific neuronal antigens are found in a significant number of patients with gastrointestinal neuromuscular diseases (GINMDs) secondary to neoplasia. This study examined the presence of antineuronal antibodies in idiopathic GINMD and GINMD secondary to South American Trypanosomiasis. The GI distribution of voltage-gated potassium channels (VGKCs) was also investigated. Seventy-three patients were included in the study with diagnoses of primary achalasia, enteric dysmotility, chronic intestinal pseudo-obstruction, esophageal or colonic dysmotility secondary to Chagas' disease. Sera were screened for specific antibodies to glutamic acid decarboxylase, voltage-gated calcium channels (VGCCs; P/Q subtype), nicotinic acetylcholine receptors (nAChRs; α3 subtype), and voltage-gated potassium channels (VGKCs, K(V) 1 subtype) using validated immunoprecipitation assays. The distribution of six VGKC subunits (K(V) 1.1-1.6), including those known to be antigenic targets of anti-VGKC antibodies was immunohistochemically investigated in all main human GI tract regions. Three patients (14%) with chagasic GI dysmotility were found to have positive anti-VGKC antibody titers. No antibodies were detected in patients with idiopathic GINMD. The VGKCs were found in enteric neurons at every level of the gut in unique yet overlapping distributions. The VGKC expression in GI smooth muscle was found to be limited to the esophagus. A small proportion of patients with GI dysfunction secondary to Chagas' disease have antibodies against VGKCs. The presence of these channels in the human enteric nervous system may have pathological relevance to the growing number of GINMDs with which anti-VGKC antibodies have been associated. © 2012 Blackwell Publishing Ltd.

  13. The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system.

    PubMed

    Coomans, C P; Geerling, J J; van den Berg, S A A; van Diepen, H C; Garcia-Tardón, N; Thomas, A; Schröder-van der Elst, J P; Ouwens, D M; Pijl, H; Rensen, P C N; Havekes, L M; Guigas, B; Romijn, J A

    2013-10-01

    Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro. Male C57Bl/6J mice were fed a run-in high-fat diet for 6 weeks, before receiving topiramate or vehicle mixed in high-fat diet for an additional 6 weeks. Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamp. The extent to which the insulin sensitizing effects of topiramate were mediated through the CNS were determined by concomitant i.c.v. infusion of vehicle or tolbutamide, an inhibitor of ATP-sensitive potassium channels in neurons. The direct effects of topiramate on insulin signalling and glucose uptake were assessed in vivo and in cultured muscle cells. In hyperinsulinaemic-euglycaemic clamp conditions, therapeutic plasma concentrations of topiramate (∼4 μg·mL(-1) ) improved insulin sensitivity (glucose infusion rate + 58%). Using 2-deoxy-D-[(3) H]glucose, we established that topiramate improved the insulin-mediated glucose uptake by heart (+92%), muscle (+116%) and adipose tissue (+586%). Upon i.c.v. tolbutamide, the insulin-sensitizing effect of topiramate was completely abrogated. Topiramate did not directly affect glucose uptake or insulin signalling neither in vivo nor in cultured muscle cells. In conclusion, topiramate stimulates insulin-mediated glucose uptake in vivo through the CNS. These observations illustrate the possibility of pharmacological modulation of peripheral insulin resistance through a target in the CNS. © 2013 The British Pharmacological Society.

  14. Down-state model of the voltage-sensing domain of a potassium channel.

    PubMed

    Schow, Eric V; Freites, J Alfredo; Gogna, Karun; White, Stephen H; Tobias, Douglas J

    2010-06-16

    Voltage-sensing domains (VSDs) of voltage-gated potassium (Kv) channels undergo a series of conformational changes upon membrane depolarization, from a down state when the channel is at rest to an up state, all of which lead to the opening of the channel pore. The crystal structures reported to date reveal the pore in an open state and the VSDs in an up state. To gain insights into the structure of the down state, we used a set of experiment-based restraints to generate a model of the down state of the KvAP VSD using molecular-dynamics simulations of the VSD in a lipid bilayer in excess water. The equilibrated VSD configuration is consistent with the biotin-avidin accessibility and internal salt-bridge data used to generate it, and with additional biotin-avidin accessibility data. In the model, both the S3b and S4 segments are displaced approximately 10 A toward the intracellular side with respect to the up-state configuration, but they do not move as a rigid body. Arginine side chains that carry the majority of the gating charge also make large excursions between the up and down states. In both states, arginines interact with water and participate in salt bridges with acidic residues and lipid phosphate groups. An important feature that emerges from the down-state model is that the N-terminal half of the S4 segment adopts a 3(10)-helical conformation, which appears to be necessary to satisfy a complex salt-bridge network. (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Down-State Model of the Voltage-Sensing Domain of a Potassium Channel

    PubMed Central

    Schow, Eric V.; Freites, J. Alfredo; Gogna, Karun; White, Stephen H.; Tobias, Douglas J.

    2010-01-01

    Abstract Voltage-sensing domains (VSDs) of voltage-gated potassium (Kv) channels undergo a series of conformational changes upon membrane depolarization, from a down state when the channel is at rest to an up state, all of which lead to the opening of the channel pore. The crystal structures reported to date reveal the pore in an open state and the VSDs in an up state. To gain insights into the structure of the down state, we used a set of experiment-based restraints to generate a model of the down state of the KvAP VSD using molecular-dynamics simulations of the VSD in a lipid bilayer in excess water. The equilibrated VSD configuration is consistent with the biotin-avidin accessibility and internal salt-bridge data used to generate it, and with additional biotin-avidin accessibility data. In the model, both the S3b and S4 segments are displaced ∼10 Å toward the intracellular side with respect to the up-state configuration, but they do not move as a rigid body. Arginine side chains that carry the majority of the gating charge also make large excursions between the up and down states. In both states, arginines interact with water and participate in salt bridges with acidic residues and lipid phosphate groups. An important feature that emerges from the down-state model is that the N-terminal half of the S4 segment adopts a 310-helical conformation, which appears to be necessary to satisfy a complex salt-bridge network. PMID:20550898

  16. Hydrogen Sulfide Targets the Cys320/Cys529 Motif in Kv4.2 to Inhibit the Ito Potassium Channels in Cardiomyocytes and Regularizes Fatal Arrhythmia in Myocardial Infarction

    PubMed Central

    Ma, Shan-Feng; Luo, Yan; Ding, Ying-Jiong; Chen, Ying; Pu, Shi-Xin; Wu, Hang-Jing; Wang, Zhong-Feng; Tao, Bei-Bei; Wang, Wen-Wei

    2015-01-01

    Abstract Aims: The mechanisms underlying numerous biological roles of hydrogen sulfide (H2S) remain largely unknown. We have previously reported an inhibitory role of H2S in the L-type calcium channels in cardiomyocytes. This prompts us to examine the mechanisms underlying the potential regulation of H2S on the ion channels. Results: H2S showed a novel inhibitory effect on Ito potassium channels, and this effect was blocked by mutation at the Cys320 and/or Cys529 residues of the Kv4.2 subunit. H2S broke the disulfide bridge between a pair of oxidized cysteine residues; however, it did not modify single cysteine residues. H2S extended action potential duration in epicardial myocytes and regularized fatal arrhythmia in a rat model of myocardial infarction. H2S treatment significantly increased survival by ∼1.4-fold in the critical 2-h time window after myocardial infarction with a protection against ventricular premature beats and fatal arrhythmia. However, H2S did not change the function of other ion channels, including IK1 and INa. Innovation and Conclusion: H2S targets the Cys320/Cys529 motif in Kv4.2 to regulate the Ito potassium channels. H2S also shows a potent regularizing effect against fatal arrhythmia in a rat model of myocardial infarction. The study provides the first piece of evidence for the role of H2S in regulating Ito potassium channels and also the specific motif in an ion channel labile for H2S regulation. Antioxid. Redox Signal. 23, 129–147. PMID:25756524

  17. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors

    PubMed Central

    Song, Zhilin; Levin, Barry E.; Stevens, Wanida

    2014-01-01

    Neurons in the supraoptic nuclei (SON) produce oxytocin and vasopressin and express insulin receptors (InsR) and glucokinase. Since oxytocin is an anorexigenic agent and glucokinase and InsR are hallmarks of cells that function as glucose and/or metabolic sensors, we evaluated the effect of glucose, insulin, and their downstream effector ATP-sensitive potassium (KATP) channels on calcium signaling in SON neurons and on oxytocin and vasopressin release from explants of the rat hypothalamo-neurohypophyseal system. We also evaluated the effect of blocking glucokinase and phosphatidylinositol 3 kinase (PI3K; mediates insulin-induced mobilization of glucose transporter, GLUT4) on responses to glucose and insulin. Glucose and insulin increased intracellular calcium ([Ca2+]i). The responses were glucokinase and PI3K dependent, respectively. Insulin and glucose alone increased vasopressin release (P < 0.002). Oxytocin release was increased by glucose in the presence of insulin. The oxytocin (OT) and vasopressin (VP) responses to insulin+glucose were blocked by the glucokinase inhibitor alloxan (4 mM; P ≤ 0.002) and the PI3K inhibitor wortmannin (50 nM; OT: P = 0.03; VP: P ≤ 0.002). Inactivating KATP channels with 200 nM glibenclamide increased oxytocin and vasopressin release (OT: P < 0.003; VP: P < 0.05). These results suggest that insulin activation of PI3K increases glucokinase-mediated ATP production inducing closure of KATP channels, opening of voltage-sensitive calcium channels, and stimulation of oxytocin and vasopressin release. The findings are consistent with SON oxytocin and vasopressin neurons functioning as glucose and “metabolic” sensors to participate in appetite regulation. PMID:24477542

  18. Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27

    PubMed Central

    Balana, Bartosz; Maslennikov, Innokentiy; Kwiatkowski, Witek; Stern, Kalyn M.; Bahima, Laia; Choe, Senyon; Slesinger, Paul A.

    2011-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels are important gatekeepers of neuronal excitability. The surface expression of neuronal GIRK channels is regulated by the psychostimulant-sensitive sorting nexin 27 (SNX27) protein through a class I (-X-Ser/Thr-X-Φ, where X is any residue and Φ is a hydrophobic amino acid) PDZ-binding interaction. The G protein-insensitive inward rectifier channel (IRK1) contains the same class I PDZ-binding motif but associates with a different synaptic PDZ protein, postsynaptic density protein 95 (PSD95). The mechanism by which SNX27 and PSD95 discriminate these channels was previously unclear. Using high-resolution structures coupled with biochemical and functional analyses, we identified key amino acids upstream of the channel's canonical PDZ-binding motif that associate electrostatically with a unique structural pocket in the SNX27-PDZ domain. Changing specific charged residues in the channel's carboxyl terminus or in the PDZ domain converts the selective association and functional regulation by SNX27. Elucidation of this unique interaction site between ion channels and PDZ-containing proteins could provide a therapeutic target for treating brain diseases. PMID:21422294

  19. The mechanism of gentisic acid-induced relaxation of the guinea pig isolated trachea: the role of potassium channels and vasoactive intestinal peptide receptors.

    PubMed

    Cunha, J F; Campestrini, F D; Calixto, J B; Scremin, A; Paulino, N

    2001-03-01

    We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC(50) values of 18 microM and E(max) of 100% (N = 10) or 20 microM and E(max) of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 +/- 7.0, 43 +/- 3.9 and 78 +/- 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 microM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 microM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 +/- 12%. Glibenclamide (1 or 3 microM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K(+) channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 microM), a selective blocker of the large-conductance Ca(2+)-activated K(+) channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N(G)-nitroarginine (100 microM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 microM, while methylene blue (10 or 30 microM) or ODQ (1 microM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-(P)-Cl-Phe(6),Leu(17

  20. Oestrogen promotes KCNQ1 potassium channel endocytosis and postendocytic trafficking in colonic epithelium.

    PubMed

    Rapetti-Mauss, Raphael; O'Mahony, Fiona; Sepulveda, Francisco V; Urbach, Valerie; Harvey, Brian J

    2013-06-01

    The cAMP-regulated potassium channel KCNQ1:KCNE3 plays an essential role in transepithelial Cl(-) secretion. Recycling of K(+) across the basolateral membrane provides the driving force necessary to maintain apical Cl(-) secretion. The steroid hormone oestrogen (17β-oestradiol; E2), produces a female-specific antisecretory response in rat distal colon through the inhibition of the KCNQ1:KCNE3 channel. It has previously been shown that rapid inhibition of the channel conductance results from E2-induced uncoupling of the KCNE3 regulatory subunit from the KCNQ1 channel pore complex. The purpose of this study was to determine the mechanism required for sustained inhibition of the channel function. We found that E2 plays a role in regulation of KCNQ1 cell membrane abundance by endocytosis. Ussing chamber experiments have shown that E2 inhibits both Cl(-) secretion and KCNQ1 current in a colonic cell line, HT29cl.19A, when cultured as a confluent epithelium. Following E2 treatment, KCNQ1 was retrieved from the plasma membrane by a clathrin-mediated endocytosis, which involved the association between KCNQ1 and the clathrin adaptor, AP-2. Following endocytosis, KCNQ1 was accumulated in early endosomes. Following E2-induced endocytosis, rather than being degraded, KCNQ1 was recycled by a biphasic mechanism involving Rab4 and Rab11. Protein kinase Cδ and AMP-dependent kinase were rapidly phosphorylated in response to E2 on their activating phosphorylation sites, Ser643 and Thr172, respectively (as previously shown). Both kinases are necessary for the E2-induced endocytosis, because E2 failed to induce KCNQ1 internalization following pretreatment with specific inhibitors of both protein kinase Cδ and AMP-dependent kinase. The ubiquitin ligase Nedd4.2 binds KCNQ1 in response to E2 to induce channel internalization. This study has provided the first demonstration of hormonal regulation of KCNQ1 trafficking. In conclusion, we propose that internalization of KCNQ1 is a key

  1. Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin-Q

    PubMed Central

    Yow, Tin T; Pera, Elena; Absalom, Nathan; Heblinski, Marika; Johnston, Graham AR; Hanrahan, Jane R; Chebib, Mary

    2011-01-01

    BACKGROUND G protein-coupled inwardly rectifying potassium (KIR3) channels are important proteins that regulate numerous physiological processes including excitatory responses in the CNS and the control of heart rate. Flavonoids have been shown to have significant health benefits and are a diverse source of compounds for identifying agents with novel mechanisms of action. EXPERIMENTAL APPROACH The flavonoid glycoside, naringin, was evaluated on recombinant human KIR3.1–3.4 and KIR3.1–3.2 expressed in Xenopus oocytes using two-electrode voltage clamp methods. In addition, we evaluated the activity of naringin alone and in the presence of the KIR3 channel blocker tertiapin-Q (0.5 nM, 1 nM and 3 nM) at recombinant KIR3.1–3.4 channels. Site-directed mutagenesis was used to identify amino acids within the M1–M2 loop of the KIR3.1F137S mutant channel important for naringin's activity. KEY RESULTS Naringin (100 µM) had minimal effect on uninjected oocytes but activated KIR3.1–3.4 and KIR3.1–3.2 channels. The activation by naringin of KIR3.1–3.4 channels was inhibited by tertiapin-Q in a competitive manner. An alanine-scan performed on the KIR3.1F137S mutant channel, replacing one by one aromatic amino acids within the M1–M2 loop, identified tyrosines 148 and 150 to be significantly contributing to the affinity of naringin as these mutations reduced the activity of naringin by 20- and 40-fold respectively. CONCLUSIONS AND IMPLICATIONS These results show that naringin is a direct activator of KIR3 channels and that tertiapin-Q shares an overlapping binding site on the KIR3.1–3.4. This is the first example of a ligand that activates KIR3 channels by binding to the extracellular M1–M2 linker of the channel. PMID:21391982

  2. From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel.

    PubMed

    Trezza, Alfonso; Cicaloni, Vittoria; Porciatti, Piera; Langella, Andrea; Fusi, Fabio; Saponara, Simona; Spiga, Ottavia

    2018-01-01

    ATP-sensitive inward rectifier potassium channels (Kir), are a potassium channel family involved in many physiological processes. K ATP dysfunctions are observed in several diseases such as hypoglycaemia, hyperinsulinemia, Prinzmetal angina-like symptoms, cardiovascular diseases. A broader view of the K ATP mechanism is needed in order to operate on their regulation, and in this work we clarify the structure of the Rattus norvegicus ATP-sensitive inward rectifier potassium channel 8 (Kir6.1), which has been obtained through a homology modelling procedure. Due to the medical use of flavonoids, a considerable increase in studies on their influence on human health has recently been observed, therefore our aim is to study, through computational methods, the three-dimensional (3D) conformation together with mechanism of action of Kir6.1 with three flavonoids. Computational analysis by performing molecular dynamics (MD) and docking simulation on rat 3D modelled structure have been completed, in its closed and open conformation state and in complex with Quercetin, 5-Hydroxyflavone and Rutin flavonoids. Our study showed that only Quercetin and 5-Hydroxyflavone were responsible for a significant down-regulation of the Kir6.1 activity, stabilising it in a closed conformation. This hypothesis was supported by in vitro experiments demonstrating that Quercetin and 5-Hydroxyflavone were capable to inhibit K ATP currents of rat tail main artery myocytes recorded by the patch-clamp technique. Combined methodological approaches, such as molecular modelling, docking and MD simulations of Kir6.1 channel, used to elucidate flavonoids intrinsic mechanism of action, are introduced, revealing a new potential druggable protein site.

  3. Beneficial effects of intracoronary nicorandil on microvascular dysfunction after primary percutaneous coronary intervention: demonstration of its superiority to nitroglycerin in a cross-over study.

    PubMed

    Ito, Noritoshi; Nanto, Shinsuke; Doi, Yasuji; Kurozumi, Yuma; Natsukawa, Tomoaki; Shibata, Hiroyuki; Morita, Masaya; Kawata, Atsushi; Tsuruoka, Ayumu; Sawano, Hirotaka; Okada, Ken-ichiro; Sakata, Yasuhiko; Kai, Tatsuro; Hayashi, Toru

    2013-08-01

    In patients undergoing primary percutaneous coronary intervention (PCI) for the treatment of ST-segment elevation myocardial infarction (STEMI), coronary microvascular dysfunction is associated with poor prognosis. Coronary microvascular resistance is predominantly regulated by ATP-sensitive potassium (KATP) channels. The aim of this study was to clarify whether nicorandil, a hybrid KATP channel opener and nitric oxide donor, may be a good candidate for improving microvascular dysfunction even when administered after primary PCI. We compared the beneficial effects of nicorandil and nitroglycerin on microvascular function in 60 consecutive patients with STEMI. After primary PCI, all patients received single intracoronary administrations of nitroglycerin (250 μg) and nicorandil (2 mg) in a randomized order; 30 received nicorandil first, while the other 30 received nitroglycerin first. Microvascular dysfunction was evaluated with the index of microcirculatory resistance (IMR), defined as the distal coronary pressure multiplied by the hyperemic mean transit time. As a first administration, nicorandil decreased IMR significantly more than did nitroglycerin (median [interquartile ranges]: 10.8[5.2-20.7] U vs. 2.1[1.0-6.0] U, p=0.0002).As a second administration, nicorandil further decreased IMR, while nitroglycerin did not (median [interquartile ranges]: 6.0[1.3-12.7] U vs. -1.4[-2.6 to 1.3] U, p<0.0001). The IMR after the second administration was significantly associated with myocardial blush grade, angiographic TIMI frame count after the procedure, and peak creatine kinase level. Intracoronary nicorandil reduced microvascular dysfunction after primary PCI more effectively than did nitroglycerin in patients with STEMI, probably via its KATP channel-opening effect.

  4. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.

    PubMed Central

    Islam, M S; Larsson, O; Nilsson, T; Berggren, P O

    1995-01-01

    In the pancreatic beta-cell, an increase in the cytoplasmic free Ca2+ concentration ([Ca2+]i) by caffeine is believed to indicate mobilization of Ca2+ from intracellular stores, through activation of a ryanodine receptor-like channel. It is not known whether other mechanisms, as well, underlie caffeine-induced changes in [Ca2+]i. We studied the effects of caffeine on [Ca2+]i by using dual-wavelength excitation microfluorimetry in fura-2-loaded beta-cells. In the presence of a non-stimulatory concentration of glucose, caffeine (10-50 mM) consistently increased [Ca2+]i. The effect was completely blocked by omission of extracellular Ca2+ and by blockers of the L-type voltage-gated Ca2+ channel, such as D-600 or nifedipine. Depletion of agonist-sensitive intracellular Ca2+ pools by thapsigargin did not inhibit the stimulatory effect of caffeine on [Ca2+]i. Moreover, this effect of caffeine was not due to an increase in cyclic AMP, since forskolin and 3-isobutyl-1-methylxanthine (IBMX) failed to raise [Ca2+]i in unstimulated beta-cells. In beta-cells, glucose and sulphonylureas increase [Ca2+]i by causing closure of ATP-sensitive K+ channels (KATP channels). Caffeine also caused inhibition of KATP channel activity, as measured in excised inside-out patches. Accordingly, caffeine (> 10 mM) induced insulin release from beta-cells in the presence of a non-stimulatory concentration of glucose (3 mM). Hence, membrane depolarization and opening of voltage-gated L-type Ca2+ channels were the underlying mechanisms whereby the xanthine drug increased [Ca2+]i and induced insulin release. Paradoxically, in glucose-stimulated beta-cells, caffeine (> 10 mM) lowered [Ca2+]i. This effect was due to the fact that caffeine reduced depolarization-induced whole-cell Ca2+ current through the L-type voltage-gated Ca2+ channel in a dose-dependent manner. Lower concentrations of caffeine (2.5-5.0 mM), when added after glucose-stimulated increase in [Ca2+]i, induced fast oscillations in [Ca2

  5. Molecular characterization of voltage-gated potassium channel (Kv) and its importance in functional dynamics in bull spermatozoa.

    PubMed

    Gupta, Rishi Kumar; Swain, Dilip Kumar; Singh, Vijay; Anand, Mukul; Choudhury, Soumen; Yadav, Sarvajeet; Saxena, Atul; Garg, Satish Kumar

    2018-07-01

    Present study was undertaken to characterize the voltage gated potassium channel (K v 1.1) in bull spermatozoa using sixty four ejaculates collected from four Hariana bulls. Functional characterization was undertaken using a selective blocker of Kv channel, 4-Aminopyridine (4-AP) while molecular presence of Kv on bull spermatozoa by immunoblotting and indirect immunofluorescence. Three sets of 100 μL diluted sperm samples namely-negative control (100 μL of sperm dilution medium (SDM) containing 10 × 10 6  cells), vehicle control (99 μL of SDM containing 10 × 10 6  cells, and DMSO- 1  μL) and 4-AP treatment group (99 μL of SDM containing 10 × 10 6  cells, and drug 1 μL 4-AP) were used in the study. Immunoblotting identified a single band of 56 kDa corresponding to Kv1.1 in Hariana bull spermatozoa. Immunolocalization showed the positive immunoreactivity at head, middle piece and principal piece of the spermatozoa for Kv 1.1. Blocking of Kv using 4-AP resulted in significant (p < 0.05) reduction in sperm progressive motility, per cent capacitated spermatozoa (B-pattern) and acrosome reacted (AR-pattern) spermatozoa, while significant (P < 0.05) increase in per cent swollen spermatozoa. Blocking of Kv channels resulted in significantly (P < 0.05) increased percentage of spermatozoa with lower mitochondrial transmembrane potential. Computer assisted semen analysis (CASA) of motion and kinematic parameters in 4-AP treated spermatozoa indicated reduction in sperm motion parameters like LIN, STR, VSL and VAP and higher ALH, VCL, and BCF indicating hyperactivity of spermatozoa. Based on our findings, it may be concluded that voltage-gated potassium channel (Kv) are present on bull spermatozoa and these are associated with functional dynamics of spermatozoa. However, based on our limited study, it is not possible to deduce that how these channels are associated with induction of hyperactivity. Therefore, further studies

  6. Dendritic small conductance calcium-activated potassium channels activated by action potentials suppress EPSPs and gate spike-timing dependent synaptic plasticity.

    PubMed

    Jones, Scott L; To, Minh-Son; Stuart, Greg J

    2017-10-23

    Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction.

  7. Effects of chlorogenic acid on voltage-gated potassium channels of trigeminal ganglion neurons in an inflammatory environment.

    PubMed

    Liu, Fei; Lu, Xiao-Wen; Zhang, Yu-Jiao; Kou, Liang; Song, Ning; Wu, Min-Ke; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-10-01

    Chlorogenic acid (CGA) composed of coffee acid and quinic acid is an effective ingredient of many foods and medicines and widely exhibits biological effects. Recently, it is reported to have analgesic effect. However, little is known about the analgesic mechanism of CGA. In this study, whole-cell patch-clamp recordings were performed on two main subtypes (I K,A and I K,V channels) of voltage-gated potassium (K V ) channels in small-diameter(<30μm) trigemianl ganglion neurons to analyze the effects of CGA in an inflammatory environment created by Prostaglandin E 2 (PGE 2 ). On one hand, the activation and inactivation V 1/2 values of I K,A and I K,V channels showed an elevation towards a depolarizing shift caused by PGE 2 . On the other hand, the activation and inactivation V 1/2 values of the two channels had a reduction towards a hyperpolarizing shift caused by CGA under PGE 2 pretreatment. Our results demonstrated that CGA may exhibited an analgesic effect by promoting K V channels activation and inactivation under inflammatory condition, which provided a novel molecular and ionic mechanism underlying anti-inflammatory pain of CGA. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Preliminary Studies of Acute Cadmium Administration Effects on the Calcium-Activated Potassium (SKCa and BKCa) Channels and Na+/K+-ATPase Activity in Isolated Aortic Rings of Rats.

    PubMed

    Vassallo, Dalton V; Almenara, Camila C P; Broseghini-Filho, Gilson Brás; Teixeira, Ariane Calazans; da Silva, David Chaves F; Angeli, Jhuli K; Padilha, Alessandra S

    2018-06-01

    Cadmium is an environmental pollutant closely linked with cardiovascular diseases that seems to involve endothelium dysfunction and reduced nitric oxide (NO) bioavailability. Knowing that NO causes dilatation through the activation of potassium channels and Na + /K + -ATPase, we aimed to determine whether acute cadmium administration (10 μM) alters the participation of K + channels, voltage-activated calcium channel, and Na + /K + -ATPase activity in vascular function of isolated aortic rings of rats. Cadmium did not modify the acetylcholine-induced relaxation. After L-NAME addition, the relaxation induced by acetylcholine was abolished in presence or absence of cadmium, suggesting that acutely, this metal did not change NO release. However, tetraethylammonium (a nonselective K + channels blocker) reduced acetylcholine-induced relaxation but this effect was lower in the preparations with cadmium, suggesting a decrease of K + channels function in acetylcholine response after cadmium incubation. Apamin (a selective blocker of small Ca 2+ -activated K + channels-SK Ca ), iberiotoxin (a selective blocker of large-conductance Ca 2+ -activated K + channels-BK Ca ), and verapamil (a blocker of calcium channel) reduced the endothelium-dependent relaxation only in the absence of cadmium. Finally, cadmium decreases Na + /K + -ATPase activity. Our results provide evidence that the cadmium acute incubation unaffected the calcium-activated potassium channels (SK Ca and BK Ca ) and voltage-calcium channels on the acetylcholine vasodilatation. In addition, acute cadmium incubation seems to reduce the Na + /K + -ATPase activity.

  9. Quantitative Confocal Microscopy Analysis as a Basis for Search and Study of Potassium Kv1.x Channel Blockers

    NASA Astrophysics Data System (ADS)

    Feofanov, Alexey V.; Kudryashova, Kseniya S.; Nekrasova, Oksana V.; Vassilevski, Alexander A.; Kuzmenkov, Alexey I.; Korolkova, Yuliya V.; Grishin, Eugene V.; Kirpichnikov, Mikhail P.

    Artificial KcsA-Kv1.x (x = 1, 3) receptors were recently designed by transferring the ligand-binding site from human Kv1.x voltage-gated potassium channels into corresponding domain of the bacterial KscA channel. We found that KcsA-Kv1.x receptors expressed in E. coli cells are embedded into cell membrane and bind ligands when the cells are transformed to spheroplasts. We supposed that E. coli spheroplasts with membrane-embedded KcsA-Kv1.x and fluorescently labeled ligand agitoxin-2 (R-AgTx2) can be used as elements of an advanced analytical system for search and study of Kv1-channel blockers. To realize this idea, special procedures were developed for measurement and quantitative treatment of fluorescence signals obtained from spheroplast membrane using confocal laser scanning microscopy (CLSM). The worked out analytical "mix and read" systems supported by quantitative CLSM analysis were demonstrated to be reliable alternative to radioligand and electrophysiology techniques in the search and study of selective Kv1.x channel blockers of high scientific and medical importance.

  10. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  11. Opening of the inward rectifier potassium channel alleviates maladaptive tissue repair following myocardial infarction.

    PubMed

    Liu, Chengfang; Liu, Enli; Luo, Tiane; Zhang, Weifang; He, Rongli

    2016-08-01

    Activation of the inward rectifier potassium current (IK1) channel has been reported to be associated with suppression of ventricular arrhythmias. In this study, we tested the hypothesis that opening of the IK1 channel with zacopride (ZAC) was involved in the modulation of tissue repair after myocardial infarction. Sprague-Dawley rats were subject to coronary artery ligation and ZAC was administered intraperitoneally (15 µg/kg/day) for 28 days. Compared with the ischemia group, treatment with ZAC significantly reduced the ratio of heart/body weight and the cross-sectional area of cardiomyocytes, suggesting less cardiac hypertrophy. ZAC reduced the accumulation of collagen types I and III, accompanied with decrease of collagen area, which were associated with a reduction of collagen deposition in the fibrotic myocardium. Echocardiography showed improved cardiac function, evidenced by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension, and the increased ejection fraction and fractional shortening in ZAC-treated animals (all P < 0.05 vs. ischemia group). In coincidence with these changes, ZAC up-regulated the protein level of the IK1 channel and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and 70-kDa ribosomal protein S6 (p70S6) kinase. Administration of chloroquine alone, an IK1 channel antagonist, had no effect on all the parameters measured, but significantly blocked the beneficial effects of ZAC on cardiac repair. In conclusion, opening of the IK1 channel with ZAC inhibits maladaptive tissue repair and improves cardiac function, potentially mediated by the inhibition of ischemia-activated mTOR-p70S6 signaling pathway via the IK1 channel. So the development of pharmacological agents specifically targeting the activation of the IK1 channel may protect the heart against myocardial ischemia-induced cardiac dysfunction. © The Author 2016. Published by Oxford University Press on behalf of

  12. Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells.

    PubMed

    Takahashi, Izumi; Yoshino, Masami

    2015-10-01

    In this study, we examined the functional coupling between Na(+)-activated potassium (KNa) channels and Na(+) influx through voltage-dependent Na(+) channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability (Po) of KNa channels increased with increasing Na(+) concentration in a bath solution, whereas it decreased by the substitution of Na(+) with an equimolar concentration of Li(+). The Po of KNa channels was also found to be reduced by bath application of a high concentration of TTX (1 μM) and riluzole (100 μM), which inhibits both fast (INaf) and persistent (INaP) Na(+) currents, whereas it was unaffected by a low concentration of TTX (10 nM), which selectively blocks INaf. Bath application of Cd(2+) at a low concentration (50 μM), as an inhibitor of INaP, also decreased the Po of KNa channels. Conversely, bath application of the inorganic Ca(2+)-channel blockers Co(2+) and Ni(2+) at high concentrations (500 μM) had little effect on the Po of KNa channels, although Cd(2+) (500 μM) reduced the Po of KNa channels. Perforated whole cell clamp analysis further indicated the presence of sustained outward currents for which amplitude was dependent on the amount of Na(+) influx. Taken together, these results indicate that KNa channels could be activated by Na(+) influx passing through voltage-dependent persistent Na(+) channels. The functional significance of this coupling mechanism was discussed in relation to the membrane excitability of Kenyon cells and its possible role in the formation of long-term memory. Copyright © 2015 the American Physiological Society.

  13. Leucine-Rich Glioma Inactivated-1 and Voltage-Gated Potassium Channel Autoimmune Encephalitis Associated with Ischemic Stroke: A Case Report

    PubMed Central

    McGinley, Marisa; Morales-Vidal, Sarkis; Ruland, Sean

    2016-01-01

    Autoimmune encephalitis is associated with a wide variety of antibodies and clinical presentations. Voltage-gated potassium channel (VGKC) antibodies are a cause of autoimmune non-paraneoplastic encephalitis characterized by memory impairment, psychiatric symptoms, and seizures. We present a case of VGKC encephalitis likely preceding an ischemic stroke. Reports of autoimmune encephalitis associated with ischemic stroke are rare. Several hypotheses linking these two disease processes are proposed. PMID:27242653

  14. Effects of Potassium Channel Blockers on the Negative Inotropic Responses Induced by Cromakalim and Pinacidil in Guinea Pig Atrium

    DTIC Science & Technology

    1992-01-01

    RD-A2•4 875 EFFECTS OF POTASSIUM CHANNEL BLOCKERS ON THE NEGATIVE 1/1 INOTROPIC RESPONSES INDUCED BY CRONAKALIM RND PINACIDIL IN GUINEA PIG ATRIUM(U...INOTROPICTRSPONSES INDUCED BY CROMAKAUM AND PINACIDILIN GUINEA PIG ATRIUM a AUTHOR WAI-MAN LAU 7 FORMING ORG NAMES/ADDRESSES DEFENCE SCIENCE AND a...and Technology Organisaio Aot Val. Negative Inotropic Responses Victoria. Australia Induced by Cromakalim and Pinacidil in Guinea Pig Atrium Key

  15. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    PubMed Central

    2010-01-01

    Background Lung epithelial Na+ channels (ENaC) are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P < 0.05, n = 12) in mice intratracheally administrated verapamil. KCa3.1 (1-EBIO) and KATP (minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na), K Ca3.1 (1-EBIO), and KATP (minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal. PMID:20507598

  16. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    PubMed

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  17. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels

    PubMed Central

    Castillo, Karen; Contreras, Gustavo F.; Pupo, Amaury; Torres, Yolima P.; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-01-01

    Being activated by depolarizing voltages and increases in cytoplasmic Ca2+, voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  18. Abcc9 is required for the transition to oxidative metabolism in the newborn heart.

    PubMed

    Fahrenbach, John P; Stoller, Douglas; Kim, Gene; Aggarwal, Nitin; Yerokun, Babatunde; Earley, Judy U; Hadhazy, Michele; Shi, Nian-Qing; Makielski, Jonathan C; McNally, Elizabeth M

    2014-07-01

    The newborn heart adapts to postnatal life by shifting from a fetal glycolytic metabolism to a mitochondrial oxidative metabolism. Abcc9, an ATP-binding cassette family member, increases expression concomitant with this metabolic shift. Abcc9 encodes a membrane-associated receptor that partners with a potassium channel to become the major potassium-sensitive ATP channel in the heart. Abcc9 also encodes a smaller protein enriched in the mitochondria. We now deleted exon 5 of Abcc9 to ablate expression of both plasma membrane and mitochondria-associated Abcc9-encoded proteins, and found that the myocardium failed to acquire normal mature metabolism, resulting in neonatal cardiomyopathy. Unlike wild-type neonatal cardiomyocytes, mitochondria from Ex5 cardiomyocytes were unresponsive to the KATP agonist diazoxide, consistent with loss of KATP activity. When exposed to hydrogen peroxide to induce cell stress, Ex5 neonatal cardiomyocytes displayed a rapid collapse of mitochondria membrane potential, distinct from wild-type cardiomyocytes. Ex5 cardiomyocytes had reduced fatty acid oxidation, reduced oxygen consumption and reserve. Morphologically, Ex5 cardiac mitochondria exhibited an immature pattern with reduced cross-sectional area and intermitochondrial contacts. In the absence of Abcc9, the newborn heart fails to transition normally from fetal to mature myocardial metabolism.-Fahrenbach, J. P., Stoller, D., Kim, G., Aggarwal, N., Yerokun, B., Earley, J. U., Hadhazy, M., Shi, N.-Q., Makielski, J. C., McNally, E. M. Abcc9 is required for the transition to oxidative metabolism in the newborn heart. © FASEB.

  19. Recent advances in distal tubular potassium handling

    PubMed Central

    Rodan, Aylin R.; Cheng, Chih-Jen

    2011-01-01

    It is well known that sodium reabsorption and aldosterone play important roles in potassium secretion by the aldosterone-sensitive distal nephron. Sodium- and aldosterone-independent mechanisms also exist. This review focuses on some recent studies that provide novel insights into the sodium- and aldosterone-independent potassium secretion by the aldosterone-sensitive distal nephron. In addition, we discuss a study reporting on the regulation of the mammalian potassium kidney channel ROMK by intracellular and extracellular magnesium, which may be important in the pathogenesis of persistent hypokalemia in patients with concomitant potassium and magnesium deficiency. We also discuss outstanding questions and propose working models for future investigation. PMID:21270092

  20. Movement of Potassium Ions inside KcsA in the High Concentration Regime using a Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Myojeong; Jo, Byeong Chul; Yoon, Hyun Jung; Wu, Sangwook; Thangappan, Jayaraman; Eun, Changsun

    2018-05-01

    The selectivity and conduction specificity of the KcsA channel toward potassium ions is crucial to the activity of this protein and this channel is intricately associated with several osmotic regulation and neuronal signaling processes. Despite multi-ion characteristics, the selective conduction behavior of KcsA is controlled by the size and distance specific electrostatic interaction between the selected residues and the potassium ions. The mechanism describing the movement of potassium ions in the channel and the conformational changes to KcsA that facilitate ion movement were investigated by a molecular dynamics (MD) simulation. In this study, we analyze the movement of potassium ions and water molecules at various time intervals during a 90 ns molecular dynamics simulation in the high potassium ion concentration regime and in the absence of the voltage. Examination of specific (3.6, 17.3, 43.38 and 43.44 ns) simulation periods revealed that key residues in the selectivity filter of KcsA influence the movement of potassium ions in the channel.

  1. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance

    PubMed Central

    Ahmad, Izhar; Mian, Afaq; Maathuis, Frans J. M.

    2016-01-01

    Potassium (K+) is the most important cationic nutrient for all living organisms and has roles in most aspects of plant physiology. To assess the impact of one of the main K+ uptake components, the K+ inward rectifying channel AKT1, we characterized both loss of function and overexpression of OsAKT1 in rice. In many conditions, AKT1 expression correlated with K+ uptake and tissue K+ levels. No salinity-related growth phenotype was observed for either loss or gain of function mutants. However, a correlation between AKT1 expression and root Na+ when the external Na/K ratio was high suggests that there may be a role for AKT1 in Na+ uptake in such conditions. In contrast to findings with Arabidopsis thaliana, we did not detect any change in growth of AKT1 loss of function mutants in the presence of NH4 +. Nevertheless, NH4 +-dependent inhibition was detected during K+ uptake assays in loss of function and wild type plants, depending on pre-growth conditions. The most prominent result of OsAKT1 overexpression was a reduction in sensitivity to osmotic/drought stress in transgenic plants: the data suggest that AKT1 overexpression improved rice osmotic and drought stress tolerance by increasing tissue levels of K+, especially in the root. PMID:26969743

  2. Kcnh1 Voltage-gated Potassium Channels Are Essential for Early Zebrafish Development*

    PubMed Central

    Stengel, Rayk; Rivera-Milla, Eric; Sahoo, Nirakar; Ebert, Christina; Bollig, Frank; Heinemann, Stefan H.; Schönherr, Roland; Englert, Christoph

    2012-01-01

    The Kcnh1 gene encodes a voltage-gated potassium channel highly expressed in neurons and involved in tumor cell proliferation, yet its physiological roles remain unclear. We have used the zebrafish as a model to analyze Kcnh1 function in vitro and in vivo. We found that the kcnh1 gene is duplicated in teleost fish (i.e. kcnh1a and kcnh1b) and that both genes are maternally expressed during early development. In adult zebrafish, kcnh1a and kcnh1b have distinct expression patterns but share expression in brain and testis. Heterologous expression of both genes in Xenopus oocytes revealed a strong conservation of characteristic functional properties between human and fish channels, including a unique sensitivity to intracellular Ca2+/calmodulin and modulation of voltage-dependent gating by extracellular Mg2+. Using a morpholino antisense approach, we demonstrate a strong kcnh1 loss-of-function phenotype in developing zebrafish, characterized by growth retardation, delayed hindbrain formation, and embryonic lethality. This late phenotype was preceded by transcriptional up-regulation of known cell-cycle inhibitors (p21, p27, cdh2) and down-regulation of pro-proliferative factors, including cyclin D1, at 70% epiboly. These results reveal an unanticipated basic activity of kcnh1 that is crucial for early embryonic development and patterning. PMID:22927438

  3. Molecular characterization of genes encoding inward rectifier potassium (Kir) channels in the bed bug (Cimex lectularius).

    PubMed

    Mamidala, Praveen; Mittapelly, Priyanka; Jones, Susan C; Piermarini, Peter M; Mittapalli, Omprakash

    2013-04-01

    The molecular genetics of inward-rectifier potassium (Kir) channels in insects is poorly understood. To date, Kir channel genes have been characterized only from a few representative dipterans (i.e., fruit flies and mosquitoes). The goal of the present study was to characterize Kir channel cDNAs in a hemipteran, the bed bug (Cimex lectularius). Using our previously reported bed bug transcriptome (RNA-seq), we identified two cDNAs that encode putative Kir channels. One was a full-length cDNA that encodes a protein belonging to the insect 'Kir3' clade, which we designate as 'ClKir3'. The other was a partial cDNA that encodes a protein with similarity to both the insect 'Kir1' and 'Kir2' clades, which we designate as 'ClKir1/2'. Quantitative real-time PCR analysis revealed that ClKir1/2 and ClKir3 exhibited peak expression levels in late-instar nymphs and early-instar nymphs, respectively. Furthermore, ClKir3, but not ClKir1/2, showed tissue-specific expression in Malpighian tubules of adult bed bugs. Lastly, using an improved procedure for delivering double-stranded RNA (dsRNA) to male and female bed bugs (via the cervical membrane) we demonstrate rapid and systemic knockdown of ClKir3 transcripts. In conclusion, we demonstrate that the bed bug possesses at least two genes encoding Kir channels, and that RNAi is possible for at least Kir3, thereby offering a potential approach for elucidating the roles of Kir channel genes in bed bug physiology. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus

    PubMed Central

    Bukiya, Anna N.; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-01-01

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. PMID:28213520

  5. Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels.

    PubMed

    Zhang, Yalan; Brown, Maile R; Hyland, Callen; Chen, Yi; Kronengold, Jack; Fleming, Matthew R; Kohn, Andrea B; Moroz, Leonid L; Kaczmarek, Leonard K

    2012-10-31

    Loss of the RNA-binding protein fragile X mental retardation protein (FMRP) represents the most common form of inherited intellectual disability. Studies with heterologous expression systems indicate that FMRP interacts directly with Slack Na(+)-activated K(+) channels (K(Na)), producing an enhancement of channel activity. We have now used Aplysia bag cell (BC) neurons, which regulate reproductive behaviors, to examine the effects of Slack and FMRP on excitability. FMRP and Slack immunoreactivity were colocalized at the periphery of isolated BC neurons, and the two proteins could be reciprocally coimmunoprecipitated. Intracellular injection of FMRP lacking its mRNA binding domain rapidly induced a biphasic outward current, with an early transient tetrodotoxin-sensitive component followed by a slowly activating sustained component. The properties of this current matched that of the native Slack potassium current, which was identified using an siRNA approach. Addition of FMRP to inside-out patches containing native Aplysia Slack channels increased channel opening and, in current-clamp recordings, produced narrowing of action potentials. Suppression of Slack expression did not alter the ability of BC neurons to undergo a characteristic prolonged discharge in response to synaptic stimulation, but prevented recovery from a prolonged inhibitory period that normally follows the discharge. Recovery from the inhibited period was also inhibited by the protein synthesis inhibitor anisomycin. Our studies indicate that, in BC neurons, Slack channels are required for prolonged changes in neuronal excitability that require new protein synthesis, and raise the possibility that channel-FMRP interactions may link changes in neuronal firing to changes in protein translation.

  6. [Isolation and purification of human blood plasma proteins able to form potassium channels in artificial bilayer lipid membrane].

    PubMed

    Venediktova, N I; Kuznetsov, K V; Gritsenko, E N; Gulidova, G P; Mironova, G D

    2012-01-01

    Protein fraction able to induce K(+)-selective transport across bilayer lipid membrane was isolated from human blood plasma with the use of the detergent and proteolytic enzyme-free method developed at our laboratory. After addition of the studied sample to the artificial membrane in the presence of 100 mM KCl, a discrete current change was observed. No channel activity was recorded in the presence of calcium and sodium ions. Channel forming activity of fraction was observed only in the presence of K+. Using a threefold gradient of KCl in the presence of studied proteins the potassium-selective potential balanced by voltage of -29 mV was registered. This value is very close to the theoretical Nernst potential in this case. This means that the examined ion channel is cation-selective. According to data obtained with MS-MALDI-TOF/TOF and database NCBI three protein components were identified in isolated researched sample.

  7. Noradrenaline activates the NO/cGMP/ATP-sensitive K(+) channels pathway to induce peripheral antinociception in rats.

    PubMed

    Romero, Thiago R L; Guzzo, Luciana S; Perez, Andrea C; Klein, André; Duarte, Igor D G

    2012-03-31

    Despite the classical peripheral pronociceptive effect of noradrenaline (NA), recently studies showed the involvement of NA in antinociceptive effect under immune system interaction. In addition, the participation of the NO/cGMP/KATP pathway in the peripheral antinociception has been established by our group as the molecular mechanism of another adrenoceptor agonist xylazine. Thus the aim of this study was to obtain pharmacological evidences for the involvement of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect induced by exogenous noradrenaline. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E(2) (2μg/paw). All drugs were locally administered into the right hind paw of male Wistar rats. NA (5, 20 and 80ng/paw) elicited a local inhibition of hyperalgesia. The non-selective NO synthase inhibitor l-NOarg (12, 18 and 24μg/paw) antagonized the antinociception effect induced by the highest dose of NA. The soluble guanylyl cyclase inhibitor ODQ (25, 50 and 100μg/paw) antagonized the NA-induced effect; and cGMP-phosphodiesterase inhibitor zaprinast (50μg/paw) potentiated the antinociceptive effect of NA low dose (5ng/paw). In addition, the local effect of NA was antagonized by a selective blocker of an ATP-sensitive K(+) channel, glibenclamide (20, 40 and 80μg/paw). On the other hand, the specifically voltage-dependent K(+) channel blocker, tetraethylammonium (30μg/paw), Ca(2+)-activated K(+) channel blockers of small and large conductance types dequalinium (50μg/paw) and paxilline (20μg/paw), respectively, were not able to block local antinociceptive effect of NA. The results provide evidences that NA probably induces peripheral antinociceptive effects by activation of the NO/cGMP/KATP pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides.

    PubMed

    de Wet, Heidi; Proks, Peter

    2015-10-01

    Sulphonylureas stimulate insulin secretion from pancreatic β-cells primarily by closing ATP-sensitive K(+) channels in the β-cell plasma membrane. The mechanism of channel inhibition by these drugs is unusually complex. As direct inhibitors of channel activity, sulphonylureas act only as partial antagonists at therapeutic concentrations. However, they also exert an additional indirect inhibitory effect via modulation of nucleotide-dependent channel gating. In this review, we summarize current knowledge and recent advances in our understanding of the molecular mechanism of action of these drugs. © 2015 Authors; published by Portland Press Limited.

  9. Kv7 potassium channel activation with ICA-105665 reduces photoparoxysmal EEG responses in patients with epilepsy.

    PubMed

    Kasteleijn-Nolst Trenité, Dorotheé G A; Biton, Victor; French, Jacqueline A; Abou-Khalil, Bassel; Rosenfeld, William E; Diventura, Bree; Moore, Elizabeth L; Hetherington, Seth V; Rigdon, Greg C

    2013-08-01

    To assess the effects of ICA-105665, an agonist of neuronal Kv7 potassium channels, on epileptiform EEG discharges, evoked by intermittent photic stimulation (IPS), the so-called photoparoxysmal responses (PPRs) in patients with epilepsy. Male and female patients aged 18-60 years with reproducible PPRs were eligible for enrollment. The study was conducted as a single-blind, single-dose, multiple-cohort study. Four patients were enrolled in each of the first three cohorts. Six patients were enrolled in the fourth cohort and one patient was enrolled in the fifth cohort. PPR responses to 14 IPS frequencies (steps) were used to determine the standard photosensitivity range (SPR) following placebo on day 1 and ICA-105665 on day 2. The SPR was quantified for three eye conditions (eyes closing, eyes closed, and eyes open), and the most sensitive condition was used for assessment of efficacy. A partial response was defined as a reduction in the SPR of at least three units at three separate time points following ICA-105665 compared to the same time points following placebo with no time points with more than three units of increase. Complete suppression was defined by no PPRs in any eye condition at one or more time points. Six individual patients participated in the first three cohorts (100, 200, and 400 mg). Six patients participated in the fourth cohort (500 mg), and one patient participated in the fifth cohort (600 mg). Decreases in SPR occurred in one patient at 100 mg, two patients receiving 400 mg ICA-105665 (complete abolishment of SPR occurred in one patient at 400 mg), and in four of six patients receiving 500 mg. The most common adverse events (AEs) were those related to the nervous system, and dizziness appeared to be the first emerging AE. The single patient in the 600 mg cohort developed a brief generalized seizure within 1 h of dosing, leading to the discontinuation of additional patients at this dose, per the predefined protocol stopping rules. ICA-105665

  10. Evaluation of the therapeutic effect of potassium permanganate at early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus)

    USDA-ARS?s Scientific Manuscript database

    The efficacy of potassium permanganate (KMnO4) against early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus) was evaluated. Fish were experimentally challenged, by waterborne exposure for 2 h to F. columnare after cutaneous abrasion, an...

  11. The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis.

    PubMed

    Ruffin, V A; Gu, X Q; Zhou, D; Douglas, R M; Sun, X; Trouth, C O; Haddad, G G

    2008-01-24

    Slack (Slo 2.2), a member of the Slo potassium channel family, is activated by both voltage and cytosolic factors, such as Na(+) ([Na(+)](i)) and Cl(-) ([Cl(-)](i)). Since the Slo family is known to play a role in hypoxia, and since hypoxia/ischemia is associated with an increase in H(+) and CO(2) intracellularly, we hypothesized that the Slack channel may be affected by changes in intracellular concentrations of CO(2) and H(+). To examine this, we expressed the Slack channel in Xenopus oocytes and the Slo 2.2 protein was allowed to be inserted into the plasma membrane. Inside-out patch recordings were performed to examine the response of Slack to different CO(2) concentrations (0.038%, 5%, 12%) and to different pH levels (6.3, 6.8, 7.3, 7.8, 8.3). In the presence of low [Na(+)](i) (5 mM), the Slack channel open probability decreased when exposed to decreased pH or increased CO(2) in a dose-dependent fashion (from 0.28+/-0.03, n=3, at pH 7.3 to 0.006+/-0.005, n=3, P=0.0004, at pH 6.8; and from 0.65+/-0.17, n=3, at 0.038% CO(2) to 0.22+/-0.07, n=3, P=0.04 at 12% CO(2)). In the presence of high [Na(+)](i) (45 mM), Slack open probability increased (from 0.03+/-0.01 at 5 mM [Na(+)](i), n=3, to 0.11+/-0.01, n=3, P=0.01) even in the presence of decreased pH (6.3). Since Slack activity increases significantly when exposed to increased [Na(+)](i), even in presence of increased H(+), we propose that Slack may play an important role in pathological conditions during which there is an increase in the intracellular concentrations of both acid and Na(+), such as in ischemia/hypoxia.

  12. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

    PubMed

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan

    2011-10-07

    Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.

  13. Voltage-Gated Potassium Channel Antibodies in Slow-Progression Motor Neuron Disease.

    PubMed

    Godani, Massimiliano; Zoccarato, Marco; Beronio, Alessandro; Zuliani, Luigi; Benedetti, Luana; Giometto, Bruno; Del Sette, Massimo; Raggio, Elisa; Baldi, Roberta; Vincent, Angela

    2017-01-01

    The spectrum of autoimmune neurological diseases associated with voltage-gated potassium channel (VGKC)-complex antibodies (Abs) ranges from peripheral nerve disorders to limbic encephalitis. Recently, low titers of VGKC-complex Abs have also been reported in neurodegenerative disorders, but their clinical relevance is unknown. The aim of the study was to explore the prevalence of VGKC-complex Abs in slow-progression motor neuron disease (MND). We compared 11 patients affected by slow-progression MND with 9 patients presenting typical progression illness. Sera were tested for VGKC-complex Abs by radioimmunoassay. The distribution of VGKC-complex Abs was analyzed with the Mann-Whitney U test. The statistical analysis showed a significant difference between the mean values in the study and control groups. A case with long-survival MND harboring VGKC-complex Abs and treated with intravenous immunoglobulins is described. Although VGKC-complex Abs are not likely to be pathogenic, these results could reflect the coexistence of an immunological activation in patients with slow disease progression. © 2016 S. Karger AG, Basel.

  14. Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney.

    PubMed

    Troncoso Brindeiro, Carmen M; Lane, Pascale H; Carmines, Pamela K

    2012-03-01

    Experiments were performed to test the hypothesis that oxidative stress underlies the enhanced tonic dilator impact of inward-rectifier K(+) channels on renal afferent arterioles of rats with streptozotocin-induced diabetes mellitus. Sham and diabetic rats were left untreated or provided Tempol in their drinking water for 26±1 days, after which afferent arteriolar lumen diameter and its responsiveness to K(+) channel blockade were measured using the in vitro blood-perfused juxtamedullary nephron technique. Afferent diameter averaged 19.4±0.8 μm in sham rats and 24.4±0.8 μm in diabetic rats (P<0.05). The decrease in diameter evoked by Ba(2+) (inward-rectifier K(+) channel blocker) was 3 times greater in diabetic rats than in sham rats. Glibenclamide (K(ATP) channel blocker) and tertiapin-Q (Kir1.1/Kir3.x channel blocker) decreased afferent diameter in diabetic rats but had no effect on arterioles from sham rats. Chronic Tempol treatment prevented diabetes mellitus-induced increases in both renal vascular dihydroethidium staining and baseline afferent arteriolar diameter. Moreover, Tempol prevented the exaggeration of afferent arteriolar responses to Ba(2+), tertiapin-Q, and glibenclamide otherwise evident in diabetic rats. Preglomerular microvascular smooth muscle cells expressed mRNA encoding Kir1.1, Kir2.1, and Kir6.1. Neither diabetes mellitus nor Tempol altered Kir1.1, Kir2.1, Kir6.1, or SUR2B protein levels in renal cortical microvessels. To the extent that the effects of Tempol reflect its antioxidant actions, our observations indicate that oxidative stress contributes to the exaggerated impact of Kir1.1, Kir2.1, and K(ATP) channels on afferent arteriolar tone during diabetes mellitus and that this phenomenon involves posttranslational modulation of channel function.

  15. A human intermediate conductance calcium-activated potassium channel

    PubMed Central

    Ishii, Takahiro M.; Silvia, Christopher; Hirschberg, Birgit; Bond, Chris T.; Adelman, John P.; Maylie, James

    1997-01-01

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel. PMID:9326665

  16. Pharmacological enhancement of calcium-activated potassium channel function reduces the effects of repeated stress on fear memory

    PubMed Central

    Atchley, Derek; Hankosky, Emily R.; Gasparotto, Kaylyn; Rosenkranz, J. Amiel

    2012-01-01

    Repeated stress impacts emotion, and can induce mood and anxiety disorders. These disorders are characterized by imbalance of emotional responses. The amygdala is fundamental in expression of emotion, and is hyperactive in many patients with mood or anxiety disorders. Stress also leads to hyperactivity of the amygdala in humans. In rodent studies, repeated stress causes hyperactivity of the amygdala, and increases fear conditioning behavior that is mediated by the basolateral amygdala (BLA). Calcium-activated potassium (KCa) channels regulate BLA neuronal activity, and evidence suggests reduced small conductance KCa (SK) channel function in male rats exposed to repeated stress. Pharmacological enhancement of SK channels reverses the BLA neuronal hyperexcitability caused by repeated stress. However, it is not known if pharmacological targeting of SK channels can repair the effects of repeated stress on amygdala-dependent behaviors. The purpose of this study was to test whether enhancement of SK channel function reverses the effects of repeated restraint on BLA-dependent auditory fear conditioning. We found that repeated restraint stress increased the expression of cued conditioned fear in male rats. However, 1-EBIO (1 or 10 mg/kg) or CyPPA (5 mg/kg) administered 30 minutes prior to testing of fear expression brought conditioned freezing to control levels, with little impact on fear expression in control handled rats. These results demonstrate that enhancement of SK channel function can reduce the abnormalities of BLA-dependent fear memory caused by repeated stress. Furthermore, this indicates that pharmacological targeting of SK channels may provide a novel target for alleviation of psychiatric symptoms associated with amygdala hyperactivity. PMID:22487247

  17. Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor CB1 in rat dorsal root ganglion neurons.

    PubMed

    Binzen, U; Greffrath, W; Hennessy, S; Bausen, M; Saaler-Reinhardt, S; Treede, R-D

    2006-10-13

    Potassium channels contribute to basic neuronal excitability and modulation. Here, we examined expression patterns of the voltage-gated potassium channel Kv1.4, the nociceptive transduction channels TRPV1 and TRPV2 as well as the putative anti-nociceptive cannabinoid receptor CB1 by immunofluorescence double-labelings in sections of rat dorsal root ganglia (DRGs). Kv1.4, TRPV1 and CB1 were each detected in about one third of neurons (35.7+/-0.5%, 29.4+/-1.1% and 36.4+/-0.5%, respectively, mean diameter 19.1+/-0.3 microm). TRPV2 was present in 4.4+/-0.4% of all neurons that were significantly larger in diameter (27.4+/-0.7 microm; P < 0.001). Antibody double-labeling revealed that the majority of Kv1.4-positive neurons co-expressed TRPV1 (73.9+/-1.5%) whereas none expressed TRPV2. The largest overlap was found with CB1 (93.1+/-0.1%). CB1 expression resembled that seen for Kv1.4 since the majority of neurons expressing CB1-protein also expressed TRPV1 (69.4+/-6.5%) but not TRPV2 (0.6+/-0.3%). When CB1-mRNA was detected using in situ hybridizations an additional subset of larger neurons was labeled including 82.4+/-17.7% of the TRPV2 expressing neurons. However, co-localization of Kv1.4 with CB1-mRNA (92%, mean diameter: 18.5 microm) was essentially the same as with CB1-protein. The almost complete overlap of CB1 and Kv1.4 in nociceptive DRG neurons suggests a functional synergistic action between Kv1.4 and CB1. The potassium channel may have two important roles in nociception. As the molecular basis of A-type current it could be involved in the control of repetitive discharges at peripheral terminals and as a downstream signal transduction site of CB1 in the control of presynaptic transmitter release at central terminals.

  18. High grade glioma mimicking voltage gated potassium channel complex associated antibody limbic encephalitis.

    PubMed

    Athauda, Dilan; Delamont, R S; Pablo-Fernandez, E De

    2014-01-01

    Though raised titres of voltage gated potassium channel (VGKC) complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE). This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  19. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun

    2009-06-26

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a rolemore » in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.« less

  20. Zn2+ reduction induces neuronal death with changes in voltage-gated potassium and sodium channel currents.

    PubMed

    Tian, Kun; He, Cong-Cong; Xu, Hui-Nan; Wang, Yu-Xiang; Wang, Hong-Gang; An, Di; Heng, Bin; Pang, Wei; Jiang, Yu-Gang; Liu, Yan-Qiang

    2017-05-01

    In the present study, cultured rat primary neurons were exposed to a medium containing N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a specific cell membrane-permeant Zn 2+ chelator, to establish a model of free Zn 2+ deficiency in neurons. The effects of TPEN-mediated free Zn 2+ ion reduction on neuronal viability and on the performance of voltage-gated sodium channels (VGSCs) and potassium channels (Kvs) were assessed. Free Zn 2+ deficiency 1) markedly reduced the neuronal survival rate, 2) reduced the peak amplitude of I Na , 3) shifted the I Na activation curve towards depolarization, 4) modulated the sensitivity of sodium channel voltage-dependent inactivation to a depolarization voltage, and 5) increased the time course of recovery from sodium channel inactivation. In addition, free Zn 2+ deficiency by TPEN notably enhanced the peak amplitude of transient outward K + currents (I A ) and delayed rectifier K + currents (I K ), as well as caused hyperpolarization and depolarization directional shifts in their steady-state activation curves, respectively. Zn 2+ supplementation reversed the effects induced by TPEN. Our results indicate that free Zn 2+ deficiency causes neuronal damage and alters the dynamic characteristics of VGSC and Kv currents. Thus, neuronal injury caused by free Zn 2+ deficiency may correlate with its modulation of the electrophysiological properties of VGSCs and Kvs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Membrane transporters for nitrogen, phosphate and potassium uptake in plants.

    PubMed

    Chen, Yi-Fang; Wang, Yi; Wu, Wei-Hua

    2008-07-01

    Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explore the genetic potentialities of crops (or plants) for their nutrient utilization efficiency has been an important research task for many years. In fact, a number of evidences have revealed that plants, during their evolution, have developed many morphological, physiological, biochemical and molecular adaptation mechanisms for acquiring nitrate, phosphate and potassium under stress conditions. Recent discoveries of many transporters and channels for nitrate, phosphate and potassium uptake have opened up opportunities to study the molecular regulatory mechanisms for acquisition of these nutrients. This review aims to briefly discuss the genes and gene families for these transporters and channels. In addition, the functions and regulation of some important transporters and channels are particularly emphasized.

  2. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life

    PubMed Central

    Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.

    2013-01-01

    Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663

  3. New Molecular Targets for Antiepileptic Drugs: α2δ, SV2A, and Kv7/KCNQ/M Potassium Channels

    PubMed Central

    Rogawski, Michael A.; Bazil, Carl W.

    2008-01-01

    Many currently prescribed antiepileptic drugs (AEDs) act via voltage-gated sodium channels, through effects on γ-aminobutyric acid–mediated inhibition, or via voltage-gated calcium channels. Some newer AEDs do not act via these traditional mechanisms. The molecular targets for several of these nontraditional AEDs have been defined using cellular electrophysiology and molecular approaches. Here, we describe three of these targets: α2δ, auxiliary subunits of voltage-gated calcium channels through which the gabapentinoids gabapentin and pregabalin exert their anticonvulsant and analgesic actions; SV2A, a ubiquitous synaptic vesicle glycoprotein that may prepare vesicles for fusion and serves as the target for levetiracetam and its analog brivaracetam (which is currently in late-stage clinical development); and Kv7/KCNQ/M potassium channels that mediate the M-current, which acts a brake on repetitive firing and burst generation and serves as the target for the investigational AEDs retigabine and ICA-105665. Functionally, all of the new targets modulate neurotransmitter output at synapses, focusing attention on presynaptic terminals as critical sites of action for AEDs. PMID:18590620

  4. An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria.

    PubMed

    Swale, Daniel R; Engers, Darren W; Bollinger, Sean R; Gross, Aaron; Inocente, Edna Alfaro; Days, Emily; Kanga, Fariba; Johnson, Reed M; Yang, Liu; Bloomquist, Jeffrey R; Hopkins, Corey R; Piermarini, Peter M; Denton, Jerod S

    2016-11-16

    Insecticide resistance is a growing threat to mosquito control programs around the world, thus creating the need to discover novel target sites and target-specific compounds for insecticide development. Emerging evidence suggests that mosquito inward rectifier potassium (Kir) channels represent viable molecular targets for developing insecticides with new mechanisms of action. Here we describe the discovery and characterization of VU041, a submicromolar-affinity inhibitor of Anopheles (An.) gambiae and Aedes (Ae.) aegypti Kir1 channels that incapacitates adult female mosquitoes from representative insecticide-susceptible and -resistant strains of An. gambiae (G3 and Akron, respectively) and Ae. aegypti (Liverpool and Puerto Rico, respectively) following topical application. VU041 is selective for mosquito Kir channels over several mammalian orthologs, with the exception of Kir2.1, and is not lethal to honey bees. Medicinal chemistry was used to develop an analog, termed VU730, which retains activity toward mosquito Kir1 but is not active against Kir2.1 or other mammalian Kir channels. Thus, VU041 and VU730 are promising chemical scaffolds for developing new classes of insecticides to combat insecticide-resistant mosquitoes and the transmission of mosquito-borne diseases, such as Zika virus, without harmful effects on humans and beneficial insects.

  5. Oxidative Modulation of Voltage-Gated Potassium Channels

    PubMed Central

    Sahoo, Nirakar; Hoshi, Toshinori

    2014-01-01

    Abstract Significance: Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases. Recent Advances: Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights. Critical Issues: Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent. Future Directions: High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs. Antioxid. Redox Signal. 21, 933–952. PMID:24040918

  6. Updating In Vivo and In Vitro Phosphorylation and Methylation Sites of Voltage-Gated Kv7.2 Potassium Channels.

    PubMed

    Erdem, Fatma Asli; Salzer, Isabella; Heo, Seok; Chen, Wei-Qiang; Jung, Gangsoo; Lubec, Gert; Boehm, Stefan; Yang, Jae-Won

    2017-10-01

    Voltage-gated Kv7.2 potassium channels regulate neuronal excitability. The gating of these channels is tightly controlled by various mediators and neurotransmitters acting via G protein-coupled receptors; the underlying signaling cascades involve phosphatidylinositol-4,5-bisphosphate (PIP 2 ), Ca 2+ /calmodulin, and phosphorylation. Recent studies found that the PIP 2 sensitivity of Kv7.2 channels is affected by two posttranslational modifications, phosphorylation and methylation, harboured within putative PIP 2 -binding domains. In this study, we updated phosphorylation and methylation sites in Kv7.2 either heterologously expressed in mammalian cells or as GST-fusion proteins exposed to recombinant protein kinases by using LC-MS/MS. In vitro kinase assays revealed that CDK5, protein kinase C (PKC) alpha, PKA, p38 MAPK, CamKIIα, and GSK3β could mediate phosphorylation. Taken together, we provided a comprehensive map of phosphorylation and methylation in Kv7.2 within protein-protein and protein-lipid interaction domains. This may help to interpret the functional roles of individual PTM sites in Kv7.2 channels. All MS data are available via ProteomeXchange with the identifier PXD005567. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Mechanisms of action of voltage-gated sodium channel ligands].

    PubMed

    Tikhonov, D B

    2007-05-01

    The voltage-gated sodium channels play a key role in the generation of action potential in excitable cells. Sodium channels are targeted by a number of modulating ligands. Despite numerous studies, the mechanisms of action of many ligands are still unknown. The main cause of the problem is the absence of the channel structure. Sodium channels belong to the superfamily of P-loop channels that also the data abowt includes potassium and calcium channels and the channels of ionotropic glutamate receptors. Crystallization of several potassium channels has opened a possibility to analyze the structure of other members of the superfamily using the homology modeling approach. The present study summarizes the results of several recent modelling studies of such sodium channel ligands as tetrodotoxin, batrachotoxin and local anesthetics. Comparison of available experimental data with X-ray structures of potassium channels has provided a new level of understanding of the mechanisms of action of sodium channel ligands and has allowed proposing several testable hypotheses.

  8. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu; Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu; Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology tomore » atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal

  9. Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome.

    PubMed

    O'Donnell, Brighid M; Mackie, Timothy D; Subramanya, Arohan R; Brodsky, Jeffrey L

    2017-08-04

    Type II Bartter syndrome is caused by mutations in the renal outer medullary potassium (ROMK) channel, but the molecular mechanisms underlying this disease are poorly defined. To rapidly screen for ROMK function, we developed a yeast expression system and discovered that yeast cells lacking endogenous potassium channels could be rescued by WT ROMK but not by ROMK proteins containing any one of four Bartter mutations. We also found that the mutant proteins were significantly less stable than WT ROMK. However, their degradation was slowed in the presence of a proteasome inhibitor or when yeast cells contained mutations in the CDC48 or SSA1 gene, which is required for endoplasmic reticulum (ER)-associated degradation (ERAD). Consistent with these data, sucrose gradient centrifugation and indirect immunofluorescence microscopy indicated that most ROMK protein was ER-localized. To translate these findings to a more relevant cell type, we measured the stabilities of WT ROMK and the ROMK Bartter mutants in HEK293 cells. As in yeast, the Bartter mutant proteins were less stable than the WT protein, and their degradation was slowed in the presence of a proteasome inhibitor. Finally, we discovered that low-temperature incubation increased the steady-state levels of a Bartter mutant, suggesting that the disease-causing mutation traps the protein in a folding-deficient conformation. These findings indicate that the underlying pathology for at least a subset of patients with type II Bartter syndrome is linked to the ERAD pathway and that future therapeutic strategies should focus on correcting deficiencies in ROMK folding. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    PubMed

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Students' Understanding of External Representations of the Potassium Ion Channel Protein, Part I: Affordances and Limitations of Ribbon Diagrams, Vines, and Hydrophobic/Polar Representations

    ERIC Educational Resources Information Center

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This project focuses on students' understanding of three external representations of the potassium ion channel protein. This is part I of a two-part study, which focuses on the affordances and…

  12. KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain.

    PubMed

    Rhodes, Kenneth J; Carroll, Karen I; Sung, M Amy; Doliveira, Lisa C; Monaghan, Michael M; Burke, Sharon L; Strassle, Brian W; Buchwalder, Lynn; Menegola, Milena; Cao, Jie; An, W Frank; Trimmer, James S

    2004-09-08

    Voltage-gated potassium (Kv) channels from the Kv4, or Shal-related, gene family underlie a major component of the A-type potassium current in mammalian central neurons. We recently identified a family of calcium-binding proteins, termed KChIPs (Kv channel interacting proteins), that bind to the cytoplasmic N termini of Kv4 family alpha subunits and modulate their surface density, inactivation kinetics, and rate of recovery from inactivation (An et al., 2000). Here, we used single and double-label immunohistochemistry, together with circumscribed lesions and coimmunoprecipitation analyses, to examine the regional and subcellular distribution of KChIPs1-4 and Kv4 family alpha subunits in adult rat brain. Immunohistochemical staining using KChIP-specific monoclonal antibodies revealed that the KChIP polypeptides are concentrated in neuronal somata and dendrites where their cellular and subcellular distribution overlaps, in an isoform-specific manner, with that of Kv4.2 and Kv4.3. For example, immunoreactivity for KChIP1 and Kv4.3 is concentrated in the somata and dendrites of hippocampal, striatal, and neocortical interneurons. Immunoreactivity for KChIP2, KChIP4, and Kv4.2 is concentrated in the apical and basal dendrites of hippocampal and neocortical pyramidal cells. Double-label immunofluorescence labeling revealed that throughout the forebrain, KChIP2 and KChIP4 are frequently colocalized with Kv4.2, whereas in cortical, hippocampal, and striatal interneurons, KChIP1 is frequently colocalized with Kv4.3. Coimmunoprecipitation analyses confirmed that all KChIPs coassociate with Kv4 alpha subunits in brain membranes, indicating that KChIPs 1-4 are integral components of native A-type Kv channel complexes and are likely to play a major role as modulators of somatodendritic excitability.

  13. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Akbarian, Reyhaneh; Norouzi-Javidan, Abbas; Nikoui, Vahid; Zolfaghari, Samira; Chamanara, Mohsen; Dehpour, Ahmad-Reza

    2017-07-01

    Gabapentin as an anticonvulsant drug also has beneficial effects in treatment of depression. Previously, we showed that acute administration of gabapentin produced an antidepressant-like effect in the mouse forced swimming test (FST) by a mechanism that involves the inhibition of nitric oxide (NO). Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of gabapentin. Gabapentin at different doses (5-10 mg/kg) and fluoxetine (20 mg/kg) were administrated by intraperitoneal route, 60 and 30 min, respectively, before the test. To clarify the probable involvement of K ATP channels, mice were pretreated with K ATP channel inhibitor or opener. Gabapentin at dose 10 mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20 mg/kg). Co-administration of subeffective dose (1 mg/kg) of glibenclamide (inhibitor of K ATP channels) with gabapentin (3 mg/kg) showed a synergistic antidepressant-like effect. Also, subeffective dose of cromakalim (opener of K ATP channels, 0.1 mg/kg) inhibited the antidepressant-like effect of gabapentin (10 mg/kg). None of the treatments had any impact on the locomotor movement. Our study, for the first time, revealed that antidepressant-like effect of gabapentin in mice is mediated by blocking the K ATP channels.

  14. Short- and long-term inhibition of cardiac inward-rectifier potassium channel current by an antiarrhythmic drug bepridil.

    PubMed

    Ma, Fangfang; Takanari, Hiroki; Masuda, Kimiko; Morishima, Masaki; Ono, Katsushige

    2016-07-01

    Bepridil is an effective antiarrhythmic drug on supraventricular and ventricular arrhythmias, and inhibitor of calmodulin. Recent investigations have been elucidating that bepridil exerts antiarrhythmic effects through its acute and chronic application for patients. The aim of this study was to identify the efficacy and the potential mechanism of bepridil on the inward-rectifier potassium channel in neonatal rat cardiomyocytes in acute- and long-term conditions. Bepridil inhibited inward-rectifier potassium current (I K1) as a short-term effect with IC50 of 17 μM. Bepridil also reduced I K1 of neonatal cardiomyocytes when applied for 24 h in the culture medium with IC50 of 2.7 μM. Both a calmodulin inhibitor (W-7) and an inhibitor of calmodulin-kinase II (KN93) reduced I K1 when applied for 24 h as a long-term effect in the same fashion, suggesting that the long-term application of bepridil inhibits I K1 more potently than that of the short-term application through the inhibition of calmodulin kinase II pathway in cardiomyocytes.

  15. Pore size matters for potassium channel conductance

    PubMed Central

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  16. Confusion, Faciobrachial Dystonic Seizures, and Critical Hyponatremia in a Patient with Voltage-Gated Potassium Channel Encephalitis

    PubMed Central

    2017-01-01

    Autoimmune limbic encephalitis is a rare cause of encephalitic disease. It is associated with various target antigens and is difficult to diagnose, and experience with its treatment is limited. This case report describes a 69-year-old man, who presented with life-threatening hyponatremia and confusion, following several months of gradually worsening faciobrachial dystonic seizures. Faciobrachial dystonic seizures are a well-described feature classically observed in voltage-gated potassium channel autoimmune encephalitis. The presence of chronic hyponatremia without cognitive dysfunction, eventually culminating in an acute episode of encephalopathy and severe hyponatremia, is a pattern of natural history not previously documented in this condition. PMID:28360986

  17. Ion channels in plants.

    PubMed

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  18. Effect of urinary trypsin inhibitor on potassium currents: fetus modulates membrane excitability by production of UTI.

    PubMed

    Takeuchi, Kinya; Fukuda, Atsuo; Kanayama, Naohiro

    2004-01-01

    Amniotic fluid contains a significant level of urinary trypsin inhibitor (UTI). Previously, we reported that UTI inhibits calcium influx of myometrium and it is effective in preventing uterine contraction. This study examined the effects of UTI upon potassium channels, which is important for membrane excitability. Whole-cell patch-clamp recordings were performed in fibroblasts derived from human fetal skin. Potassium currents were recorded and the effects of exogenous UTI and/or cadmium determined. Tetraethylammonium sensitive potassium currents were elicited by step or ramp stimulations at depolarized membrane potentials (over +30 mV). Administration of 1 micro M UTI significantly increased these potassium currents by 16.9%. When calcium channels were blocked by the administration of cadmium, UTI increased the rest of the potassium currents by 4.8%. This indicates that UTI increased calcium-dependent potassium currents by 94.8% but only increased voltage-dependent potassium currents by 4.8%. Urinary trypsin inhibitor is a physiological substance of fetal origin that modulates calcium-dependent and voltage-dependent potassium channels. These data suggest that UTI is capable of regulating the membrane properties of the fetal and myometrial cells in contact with amniotic fluid.

  19. The conserved potassium channel filter can have distinct ion binding profiles: Structural analysis of rubidium, cesium, and barium binding in NaK2K

    PubMed Central

    Lam, Yee Ling; Zeng, Weizhong; Sauer, David Bryant

    2014-01-01

    Potassium channels are highly selective for K+ over the smaller Na+. Intriguingly, they are permeable to larger monovalent cations such as Rb+ and Cs+ but are specifically blocked by the similarly sized Ba2+. In this study, we used structural analysis to determine the binding profiles for these permeant and blocking ions in the selectivity filter of the potassium-selective NaK channel mutant NaK2K and also performed permeation experiments using single-channel recordings. Our data revealed that some ion binding properties of NaK2K are distinct from those of the canonical K+ channels KcsA and MthK. Rb+ bound at sites 1, 3, and 4 in NaK2K, as it does in KcsA. Cs+, however, bound predominantly at sites 1 and 3 in NaK2K, whereas it binds at sites 1, 3, and 4 in KcsA. Moreover, Ba2+ binding in NaK2K was distinct from that which has been observed in KcsA and MthK, even though all of these channels show similar Ba2+ block. In the presence of K+, Ba2+ bound to the NaK2K channel at site 3 in conjunction with a K+ at site 1; this led to a prolonged block of the channel (the external K+-dependent Ba2+ lock-in state). In the absence of K+, however, Ba2+ acts as a permeating blocker. We found that, under these conditions, Ba2+ bound at sites 1 or 0 as well as site 3, allowing it to enter the filter from the intracellular side and exit from the extracellular side. The difference in the Ba2+ binding profile in the presence and absence of K+ thus provides a structural explanation for the short and prolonged Ba2+ block observed in NaK2K. PMID:25024267

  20. The Potassium Channel, Kir3.4 Participates in Angiotensin II-Stimulated Aldosterone Production by a Human Adrenocortical Cell Line

    PubMed Central

    Oki, Kenji; Plonczynski, Maria W.; Lam, Milay Luis; Gomez-Sanchez, Elise P.

    2012-01-01

    Angiotensin II (A-II) regulation of aldosterone secretion is initiated by inducing cell membrane depolarization, thereby increasing intracellular calcium and activating the calcium calmodulin/calmodulin kinase cascade. Mutations in the selectivity filter of the KCNJ5 gene coding for inward rectifying potassium channel (Kir)3.4 has been found in about one third of aldosterone-producing adenomas. These mutations result in loss of selectivity of the inward rectifying current for potassium, which causes membrane depolarization and opening of calcium channels and activation of the calcium calmodulin/calmodulin kinase cascade and results in an increase in aldosterone secretion. In this study we show that A-II and a calcium ionophore down-regulate the expression of KCNJ5 mRNA and protein. Activation of Kir3.4 by naringin inhibits A-II-stimulated membrane voltage and aldosterone secretion. Overexpression of KCNJ5 in the HAC15 cells using a lentivirus resulted in a decrease in membrane voltage, intracellular calcium, expression of steroidogenic acute regulatory protein, 3-β-hydroxysteroid dehydrogenase 3B2, cytochrome P450 11B1 and cytochrome P450 11B2 mRNA, and aldosterone synthesis. In conclusion, A-II appears to stimulate aldosterone secretion by depolarizing the membrane acting in part through the regulation of the expression and activity of Kir3.4. PMID:22798349