Science.gov

Sample records for potassium titanate whiskers

  1. An improved automotive brake lining using fibrous potassium titanate

    NASA Technical Reports Server (NTRS)

    Mansfield, J. A.; Halberstadt, M. L.; Riccitiello, S. R.; Rhee, S. K.

    1976-01-01

    Simultaneous fade reduction and wear improvement of a commercial automotive brake lining were achieved by adding fibrous potassium titanate. The dependence of friction and wear characteristics on quantitative variations in potassium titanate, asbestos, phenolic binder, and organic and inorganic modifiers was evaluated.

  2. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    SciTech Connect

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.

  3. Synthesis of a New Titanate Coupling Agent for the Modification of Calcium Sulfate Whisker in Poly(Vinyl Chloride) Composite

    PubMed Central

    Yuan, Wenjin; Lu, Yunhua; Xu, Shiai

    2016-01-01

    A new titanate coupling agent synthesized from polyethylene glycol (PEG), isooctyl alcohol, and phosphorus pentoxide (P2O5) was used for the modification of calcium sulfate whiskers (CSWs) and the preparation of high-performance CSW/poly(vinyl chloride) (PVC) composites. The titanate coupling agent (sTi) and the modified CSWs (sTi–CSW) were characterized by Fourier transform infrared (FTIR) spectroscopy, and the mechanical, dynamic mechanical, and heat resistant properties and thermostability of sTi–CSW/PVC and CSW/PVC composites were compared. The results show that sTi–CSW/PVC composite with 10 wt. % whisker content has the best performance, and its tensile strength, Young’s modulus, elongation at break, break strength, and impact strength are 67.2 MPa, 1926 MPa, 233%, 51.1 MPa, and 12.75 KJ·m−2, with an increase of 20.9%, 11.5%, 145.3%, 24.6%, and 65.4% compared to that of CSW/PVC composite at the same whisker content. As the whisker content increases, the storage modulus increases, the Vicat softening temperature decreases slightly, and the glass transition temperature increases at first and then decreases. PMID:28773748

  4. Polyethylene/Potassium Titanate Separators For Ni/H2 Cells

    NASA Technical Reports Server (NTRS)

    Scott, William E.

    1995-01-01

    Experimental separators fabricated on paper-making machine. Two-layer, paperlike composite of polyethylene fibers and potassium titanate pigment shows promise for replacing asbestos as separator material in nickel/hydrogen electrochemical cells.

  5. Polyethylene/Potassium Titanate Separators For Ni/H2 Cells

    NASA Technical Reports Server (NTRS)

    Scott, William E.

    1995-01-01

    Experimental separators fabricated on paper-making machine. Two-layer, paperlike composite of polyethylene fibers and potassium titanate pigment shows promise for replacing asbestos as separator material in nickel/hydrogen electrochemical cells.

  6. Evaluation of potassium titanate as a component of alkaline fuel cell matrices

    NASA Technical Reports Server (NTRS)

    Post, R. E.

    1976-01-01

    Various forms of potassium titanate were found to have almost complete resistance to chemical attack in 45 wt % KOH at 150 C (423 K) for up to 9600 hours. Electron microscopy and X-ray diffraction disclosed important differences with respect to fibricity and stability. The octatitanate appeared to possess the best combination of properties. It was concluded that potassium titanate could be produced in a more asbestos-like form. Fiber dispersion is important in matrix manufacture.

  7. Effects of potassium titanate fiber on the wear of automotive brake linings

    NASA Technical Reports Server (NTRS)

    Halberstadt, M. L.; Mansfield, J. A.; Rhee, S. K.

    1977-01-01

    Asbestos reinforcing fiber in an automotive friction material was replaced by an experimental ingredient having better thermal stability, and the effects on wear and friction were studied. A friction materials test machine (SAE J661a) was used to determine friction and wear, under constant energy output conditions, as a function of temperature between 121 and 343 C (250 and 650 F). When potassium titanate fiber replaced one half of the asbestos in a standard commercial lining, with a 40 percent upward adjustment of phenolic resin content, wear above 204 C (400 F) was improved by 40% and friction by 30%. Tests on a full-scale inertial dynamometer supported the findings of the sample dynamometer tests. It was demonstrated that the potassium titanate fiber contributes directly to the improvement in wear and friction.

  8. Titan

    NASA Astrophysics Data System (ADS)

    Müller-Wodarg, Ingo; Griffith, Caitlin A.; Lellouch, Emmanuel; Cravens, Thomas E.

    2014-03-01

    Introduction I. C. F. Müller-Wodarg, C. A. Griffith, E. Lellouch and T. E. Cravens; Prologue 1: the genesis of Cassini-Huygens W.-H. Ip, T. Owen and D. Gautier; Prologue 2: building a space flight instrument: a P.I.'s perspective M. Tomasko; 1. The origin and evolution of Titan G. Tobie, J. I. Lunine, J. Monteux, O. Mousis and F. Nimmo; 2. Titan's surface geology O. Aharonson, A. G. Hayes, P. O. Hayne, R. M. Lopes, A. Lucas and J. T. Perron; 3. Thermal structure of Titan's troposphere and middle atmosphere F. M. Flasar, R. K. Achterberg and P. J. Schinder; 4. The general circulation of Titan's lower and middle atmosphere S. Lebonnois, F. M. Flasar, T. Tokano and C. E. Newman; 5. The composition of Titan's atmosphere B. Bézard, R. V. Yelle and C. A. Nixon; 6. Storms, clouds, and weather C. A. Griffith, S. Rafkin, P. Rannou and C. P. McKay; 7. Chemistry of Titan's atmosphere V. Vuitton, O. Dutuit, M. A. Smith and N. Balucani; 8. Titan's haze R. West, P. Lavvas, C. Anderson and H. Imanaka; 9. Titan's upper atmosphere: thermal structure, dynamics, and energetics R. V. Yelle and I. C. F. Müller-Wodarg; 10. Titan's upper atmosphere/exosphere, escape processes, and rates D. F. Strobel and J. Cui; 11. Titan's ionosphere M. Galand, A. J. Coates, T. E. Cravens and J.-E. Wahlund; 12. Titan's magnetospheric and plasma environment J.-E. Wahlund, R. Modolo, C. Bertucci and A. J. Coates.

  9. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  10. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  11. Titan

    NASA Astrophysics Data System (ADS)

    Owen, T.

    1982-02-01

    Historical data and data from the Voyager spacecraft are reviewed in an attempt to model the atmospheric processes of Saturn moon Titan. Earth based IR astronomy established that Titan has a CH4 atmosphere, Voyager I UV spectrometer readings revealed the presence of nitrogen, and IR readings suggested the existence of hydrocarbons and nitrogenous compounds. A model is proposed in which methane on Titan behaves much like water does on earth and in the same relative abundance. Further modelling is suggested for the formation of methane hydrate on Titan by the accretion of gases after the formation of the moon, and the subsequent heating of the planetary interior by the decay of radioactive elements freed the ice-trapped gases into the atmosphere. It is noted that an alternative explanation of a greenhouse effect having raised the temperature to 150 K is also possible.

  12. Titan!

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.

    2010-05-01

    Cassini-Huygens achieved Saturnian orbit on July 1, 2004. The first order of business was the safe delivery of the Huygens atmospheric probe to Titan that took place on January 14, 2005. Huygens descended under parachute obtaining observations all the way down to a safe landing. It revealed Titan for the first time. Stunning are the similarities between Titan and the Earth. Viewing the lakes and seas, the fluvial terrain, the sand dunes and other features through the hazy, nitrogen atmosphere, brings to mind the geological processes that created analogous features on the Earth. On Titan frozen water plays the geological role of rock; liquid methane takes the role of terrestrial water. The atmospheres of both Earth and Titan are predominately nitrogen gas. Titan's atmosphere contains 1.5% methane and no oxygen. The surface pressure on Titan is 1.5 times the Earth's. There are aerosol layers and clouds that come and go. Now, as Saturn proceeds along its solar orbit, the seasons are changing. The effects upon the transport of methane are starting to be seen. A large lake in the South Polar Region seems to be filling more as winter onsets. Will the size and number of the lakes in the South grow during winter? Will the northern lakes and seas diminish or dry up as northern summer progresses? How will the atmospheric circulation change? Much work remains not only for Cassini but also for future missions. Titan has many different environments to explore. These require more capable instruments and in situ probes. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  13. Titan

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    2004-12-01

    Titan's surface remains enigmatic after the T0 observations, in part because of the large distance of the Cassini spacecraft from Titan (the VIMS effective spatial resolution was no better than the latest ground-based Adaptive Optics observations), the high altitude scattering haze layer, and the surface's potential intrinsic complexity in composition and topography. The Ta observations of late October should have established, at some level, the extent to which Titan's surface is like that of other large icy satellites, or unique in being hydrocarbon-rich. Much of the seemingly self-contradictory nature of Titan's surface can be resolved by recognizing that large variations in composition and geology are likely over very small scales. I will focus on confronting new and traditional models with the data available, and forecast what might be in store as Cassini moves into its period of repeated close flybys of Titan. Ethane liquid, fogs and hazes, shiny polyacetylene deposits, and the role of ammonia in Titan's interior will all be considered in light of the new Cassini data expected this autumn.

  14. Titan

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1999-01-01

    With a launch in December 2001, Space Infrared Telescope Facility (SIRTF) can observe Titan in the interval after Infrared Space Observatory (ISO) but before the onset of observations by Cassini. By virtue of its broad spectral coverage in the thermal infrared, 10-180 micron, its moderately high spectral resolution, approaching lambda/delta lambda=600 over part of this wavelength range, and the very high sensitivity of its helium- cooled detectors, the Infrared Spectrometer (IRS) and MIPS on SIRTF can address several issues raised through earlier observations by the Voyager IRIS experiment and by ISO. These include, for example, a better characterization of the vertical distribution of water in Titan's middle and upper atmospheres and the discovery of new compounds, such as allene or proprionitrile. This talk will address the temperature- and composition-sounding capabilities of SIRTF, particularly in the context of how they will complement Cassini observations and aid in their planning.

  15. Method for manufacturing whisker preforms and composites

    DOEpatents

    Lessing, Paul A.

    1995-01-01

    A process for manufacturing Si.sub.3 N.sub.4 /SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si.sub.3 N.sub.4 at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si.sub.3 N.sub.4 /SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  16. Method for manufacturing whisker preforms and composites

    DOEpatents

    Lessing, P.A.

    1995-11-07

    A process is disclosed for manufacturing Si{sub 3}N{sub 4}/SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si{sub 3}N{sub 4} at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si{sub 3}N{sub 4}/SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  17. Method for manufacturing whisker preforms and composites

    SciTech Connect

    Lessing, P.A.

    1995-11-07

    A process is disclosed for manufacturing Si{sub 3}N{sub 4}/SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si{sub 3}N{sub 4} at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si{sub 3}N{sub 4}/SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  18. Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities.

    PubMed

    Dong, Yanfeng; Wu, Zhong-Shuai; Zheng, Shuanghao; Wang, Xiaohui; Qin, Jieqiong; Wang, Sen; Shi, Xiaoyu; Bao, Xinhe

    2017-05-23

    Sodium and potassium ion batteries hold promise for next-generation energy storage systems due to their rich abundance and low cost, but are facing great challenges in optimum electrode materials for actual applications. Here, ultrathin nanoribbons of sodium titanate (M-NTO, NaTi1.5O8.3) and potassium titanate (M-KTO, K2Ti4O9) were successfully synthesized by a simultaneous oxidation and alkalization process of Ti3C2 MXene. Benefiting from the suitable interlayer spacing (0.90 nm for M-NTO, 0.93 nm for M-KTO), ultrathin thickness (<11 nm), narrow widths of nanoribbons (<60 nm), and open macroporous structures for enhanced ion insertion/extraction kinetics, the resulting M-NTO exhibited a large reversible capacity of 191 mAh g(-1) at 200 mA g(-1) for sodium storage, higher than those of pristine Ti3C2 (178 mAh g(-1)) and commercial TiC derivatives (86 mAh g(-1)). Notably, M-KTO displayed a superior reversible capacity of 151 mAh g(-1) at 50 mA g(-1) and 88 mAh g(-1) at a high rate of 300 mA g(-1) and long-term stable cyclability over 900 times, which outperforms other Ti-based layered materials reported to date. Moreover, this strategy is facile and highly flexible and can be extended for preparing a large number of MXene-derived materials, from the 60+ group of MAX phases, for various applications such as supercapacitors, batteries, and electrocatalysts.

  19. High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ming; Wang, Jin-Feng

    2006-11-01

    The piezoelectric properties of the lithium and cerium modified A-site vacancies sodium-potassium bismuth titanate (NKBT) lead-free piezoceramics are investigated. The piezoelectric activity of NKBT ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature TC, piezoelectric coefficient d33, and mechanical quality factor Qm for the NKBT ceramics modified with 0.10mol% (LiCe) are found to be 660°C, 25pC/N, and 3135, respectively. The Curie temperature gradually decreases from 675to650°C with the increase of (LiCe) modification. The dielectric spectroscopy shows that all the samples possess stable piezoelectric properties, demonstrating that the (LiCe) modified NKBT-based ceramics are the promising candidates for high temperature applications.

  20. Potassium

    MedlinePlus

    ... the potassium you need. However, certain diseases (e.g., kidney disease and gastrointestinal disease with vomiting and ... substitute and to eat potassium-rich foods (e.g., bananas, prunes, raisins, and milk).

  1. Whiskers on the moon

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Bucher, W.; Hodge, P.

    1972-01-01

    The existence of whiskers on lunar soil grains was observed. It is hypothesized that the fibers on these particles are whiskers that grew from clouds of vaporized lunar rock during macro-sized cratering events.

  2. Mullite Whiskers and Mullite-whisker Felt

    NASA Technical Reports Server (NTRS)

    Talmy, Inna G.; Haught, Deborah A.

    1993-01-01

    The Naval Surface Warfare Center has developed processes for the preparation of mullite (3(Al2O3)(dot)2(SiO2)) whiskers and mullite-whisker felt. Three patents on the technology were issued in 1990. The processes are based on chemical reactions between AlF3, Al2O3, and SiO2. The felt is formed in-situ during the processing of shaped powdered precursors. It consists of randomly oriented whiskers which are mutually intergrown forming a rigid structure. The microstructure and properties of the felt and size of the whiskers can be modified by varying the amount of Al2O3 in the starting mixture. Loose mullite whiskers can be used as a reinforcement for polymer-, metal-, and ceramic-matrix composites. The felt can be used as preforms for fabricating composite materials as well as for thermal insulation and high temperature, chemically stable filters for liquids (melts) and gases.

  3. Modeling tin whisker growth.

    SciTech Connect

    Weinberger, Christopher Robert

    2013-08-01

    Tin, lead, and lead-tin solders are the most commonly used solders due to their low melting temperatures. However, due to the toxicity problems, lead must now be removed from solder materials. This has lead to the re-emergence of the issue of tin whisker growth. Tin whiskers are a microelectronic packaging issue because they can lead to shorts if they grow to sufficient length. However, the cause of tin whisker growth is still not well understood and there is lack of robust methods to determine when and if whiskering will be a problem. This report summarizes some of the leading theories on whisker growth and attempts to provide some ideas towards establishing the role microstructure plays in whisker growth.

  4. Box-and-Whisker Plots Applied to Food Chemistry

    ERIC Educational Resources Information Center

    Ferreira, Joao E. V.; Miranda, Ricardo M.; Figueiredo, Antonio F.; Barbosa, Jardel P.; Brasil, Edykarlos M.

    2016-01-01

    Box-and-whisker plots or simply boxplots are powerful graphical representations that give an overview of a data set. In this work five different examples illustrate the applications of boxplots in food chemistry. The examples involve relative sweetness of sugars and sugar alcohols with respect to sucrose, the potassium content of fruits and…

  5. Box-and-Whisker Plots Applied to Food Chemistry

    ERIC Educational Resources Information Center

    Ferreira, Joao E. V.; Miranda, Ricardo M.; Figueiredo, Antonio F.; Barbosa, Jardel P.; Brasil, Edykarlos M.

    2016-01-01

    Box-and-whisker plots or simply boxplots are powerful graphical representations that give an overview of a data set. In this work five different examples illustrate the applications of boxplots in food chemistry. The examples involve relative sweetness of sugars and sugar alcohols with respect to sucrose, the potassium content of fruits and…

  6. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  7. Titan Submarines!

    NASA Astrophysics Data System (ADS)

    Oleson, S. R.; Lorenz, R. D.; Paul, M. V.; Hartwig, J. W.; Walsh, J. M.

    2017-02-01

    A NIAC Phase II submarine concept, dubbed 'Titan Turtle' for Saturn's moon Titan's northern sea, Ligea Mare. A design concept including science and operations is described for this -180°C liquid methane sea.

  8. The Advantages of a Tapered Whisker

    PubMed Central

    Williams, Christopher M.; Kramer, Eric M.

    2010-01-01

    The role of facial vibrissae (whiskers) in the behavior of terrestrial mammals is principally as a supplement or substitute for short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some advantages for tactile perception (as compared to a hypothetical untapered whisker), and that this may explain why the taper has been preserved during the evolution of terrestrial mammals. PMID:20098714

  9. Sensing device with whisker elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2010-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  10. Sensing Device with Whisker Elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2013-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  11. Tin Whisker Testing and Modeling

    DTIC Science & Technology

    2015-11-01

    plating, intermetallics, rare earth elements, high humidity, thermal cycling, corrosion, copper , alloy-42, conformal coating iii Table of Contents 1...majority of the whisker growth after TC on alloy-42 lead terminations and after LTHH on Cu lead terminations. The thin solder over the copper board pad in...2,110 TC cycles. .....................114 Figure 126: SEM images of whiskers on the board pad on a copper lead frame SOT5 part joint with a 1-1

  12. Electron beam induced growth of tin whiskers

    SciTech Connect

    Vasko, A. C.; Karpov, V. G.; Warrell, G. R.; Parsai, E. I.; Shvydka, Diana

    2015-09-28

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.

  13. Flow sensing by pinniped whiskers

    PubMed Central

    Miersch, L.; Hanke, W.; Wieskotten, S.; Hanke, F. D.; Oeffner, J.; Leder, A.; Brede, M.; Witte, M.; Dehnhardt, G.

    2011-01-01

    Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair. PMID:21969689

  14. Process for making whiskers, fibers and flakes of transition metal compounds

    DOEpatents

    Bamberger, Carlos E.

    1992-01-01

    A process for making titanium and chromium nitrides of known morphology by reacting potassium titanate and chromium oxide in the gas phase with NH.sub.3. The products exhibit the same morphology as the starting material.

  15. Process for making whiskers, fibers and flakes of transition metal compounds

    DOEpatents

    Bamberger, C.E.

    1992-06-02

    A process for making titanium and chromium nitrides of known morphology by reacting potassium titanate and chromium oxide in the gas phase with NH[sub 3]. The products exhibit the same morphology as the starting material.

  16. Material factors influencing metallic whisker growth

    NASA Astrophysics Data System (ADS)

    Rodekohr, Chad L.

    Whiskering refers to the formation of slender, long, metallic filaments, much thinner than a human hair, that grow on a metallic thin film surface. They are readily observed for pure and alloyed zinc (Zn), silver (Ag), cadmium (Cd), indium (In), and tin (Sn) surfaces. The longest reported whisker length is 4.5 mm long but most high-aspect ratio whiskers range from 1-500 mum. The focus of this research is upon Sn whiskers. Sn whiskers pose serious reliability problems for the electronics industry and are known to be the source of failure in a wide range of electronic devices, such as nuclear power facilities, heart pacemakers, commercial satellites, aviation radar, telecommunication equipment, and desktop computers. The problem with whiskering has been recently exacerbated by the worldwide shift to lead (Pb) free electronics and the continuing reduction in electrical contact pitches. A thorough understanding of the growth mechanism of Sn whiskers is urgently needed. Currently, there is no universally accepted model that explains the broad range of observations on whiskering. The goals of this research are: (1) to develop a more detailed understanding of the physical mechanisms leading to the initiation and growth of Sn whiskers and (2) to outline reasonable mitigation strategies that could be followed to reduce or eliminate the problem of Sn whiskers. The major contributions of this work are: (1) A reliable method for growing Sn whiskers with predictable incubation times has been developed and tested. (2) A surface oxide is not necessary for whisker growth. (3) Intermetallic compounds (IMC) are not necessary for whisker growth. (4) Smoother, not rougher, substrate surfaces promote whisker growth. (5) Whiskers grow under both compressive and tensile thin film stress states. (6) Whisker growth increases with externally applied compression and tension forces. (7) Sn whiskers are composed of pure Sn except for the expected thin, native Sn oxide on their surface. (8) For

  17. Radial Distance Estimation with Tapered Whisker Sensors.

    PubMed

    Ahn, Sejoon; Kim, DaeEun

    2017-07-19

    Rats use their whiskers as tactile sensors to sense their environment. Active whisking, moving whiskers back and forth continuously, is one of prominent features observed in rodents. They can discriminate different textures or extract features of a nearby object such as size, shape and distance through active whisking. There have been studies to localize objects with artificial whiskers inspired by rat whiskers. The linear whisker model based on beam theory has been used to estimate the radial distance, that is, the distance between the base of the whisker and a target object. In this paper, we investigate deflection angle measurements instead of forces or moments, based on a linear tapered whisker model to see the role of tapered whiskers found in real animals. We analyze how accurately this model estimates the radial distance, and quantify the estimation errors and noise sensitivity. We also compare the linear model simulation and nonlinear numerical solutions. It is shown that the radial distance can be estimated using deflection angles at two different positions on the tapered whisker. We argue that the tapered whisker has an advantage of estimating the radial distance better, as compared to an untapered whisker, and active sensing allows that estimation without the whisker's material property and thickness or the moment at base. In addition, we investigate the potential of passive sensing for tactile localization.

  18. Radial Distance Estimation with Tapered Whisker Sensors

    PubMed Central

    Ahn, Sejoon; Kim, DaeEun

    2017-01-01

    Rats use their whiskers as tactile sensors to sense their environment. Active whisking, moving whiskers back and forth continuously, is one of prominent features observed in rodents. They can discriminate different textures or extract features of a nearby object such as size, shape and distance through active whisking. There have been studies to localize objects with artificial whiskers inspired by rat whiskers. The linear whisker model based on beam theory has been used to estimate the radial distance, that is, the distance between the base of the whisker and a target object. In this paper, we investigate deflection angle measurements instead of forces or moments, based on a linear tapered whisker model to see the role of tapered whiskers found in real animals. We analyze how accurately this model estimates the radial distance, and quantify the estimation errors and noise sensitivity. We also compare the linear model simulation and nonlinear numerical solutions. It is shown that the radial distance can be estimated using deflection angles at two different positions on the tapered whisker. We argue that the tapered whisker has an advantage of estimating the radial distance better, as compared to an untapered whisker, and active sensing allows that estimation without the whisker’s material property and thickness or the moment at base. In addition, we investigate the potential of passive sensing for tactile localization. PMID:28753949

  19. Titan Wetlands

    NASA Image and Video Library

    2013-04-15

    A dense network of small rivers or swampy areas appears to connect some of the seas on Saturn moon Titan, as seen in this comparison of data of the same area from two instruments on NASA Cassini spacecraft.

  20. Ceramic whisker reinforcement of dental resin composites.

    PubMed

    Xu, H H; Martin, T A; Antonucci, J M; Eichmiller, F C

    1999-02-01

    Resin composites currently available are not suitable for use as large stress-bearing posterior restorations involving cusps due to their tendencies toward excessive fracture and wear. The glass fillers in composites provide only limited reinforcement because of the brittleness and low strength of glass. The aim of the present study was to reinforce dental resins with ceramic single-crystalline whiskers of elongated shapes that possess extremely high strength. A novel method was developed that consisted of fusing silicate glass particles onto the surfaces of individual whiskers for a two-fold benefit: (1) to facilitate silanization regardless of whisker composition; and (2) to enhance whisker retention in the matrix by providing rougher whisker surfaces. Silicon nitride whiskers, with an average diameter of 0.4 microm and length of 5 microm, were coated by the fusion of silica particles 0.04 microm in size to the whisker surface at temperatures ranging from 650 degrees C to 1000 degrees C. The coated whiskers were silanized and manually blended with resins by spatulation. Flexural, fracture toughness, and indentation tests were carried out for evaluation of the properties of the whisker-reinforced composites in comparison with conventional composites. A two-fold increase in strength and toughness was achieved in the whisker-reinforced composite, together with a substantially enhanced resistance to contact damage and microcracking. The highest flexural strength (195+/-8 MPa) and fracture toughness (2.1+/-0.3 MPa x m(1/2)) occurred in a composite reinforced with a whisker-silica mixture at whisker:silica mass ratio of 2:1 fused at 800 degrees C. To conclude, the strength, toughness, and contact damage resistance of dental resin composites can be substantially improved by reinforcement with fillers of ceramic whiskers fused with silica glass particles.

  1. NASA Goddard Space Flight Center Tin Whisker (and Other Metal Whisker) Homepage

    NASA Technical Reports Server (NTRS)

    Brusse, Jay; Sampson, Mike; Leidecker, Henning; Kadesch, Jong

    2004-01-01

    This website provides information about tin whiskers and related research. The independent research performed during the past 50+ years is so vast that it is impractical to cover all aspects of tin whiskers in this one resource. Therefore, the absence of information in this website about a particular aspect of tin whiskers should NOT be construed as evidence of absence.

  2. Investigation of Microstructural Factors that Cause Low Fracture Toughness in Silicon Carbide Whisker/Al Alloy Composites

    DTIC Science & Technology

    1988-10-01

    TOUGHNESS IN SILICON CARBIDE WHISKER/Al ALLOY COMPOSITES oSubmittLJ to: Office of Naval Research 800 N. Quincy Street Arlington, VA 22217-5000...September 30, 1988 INVESTIGATION OF MICROSTRUCTURAL FACTORS THAT CAUSE LOW FRACTURE TOUGHNESS IN SILICON CARBIDE WHISKER/Al ALLOY COMPOSITES Submitted...Investigation of Microstructural Factors that Cause Low Fracture Toughness in Silicon Carbide Whisker/Al Alloy Composites .12 PERSONAL AUTHOR(S) F. E. Wawner

  3. Two Titans

    NASA Image and Video Library

    2017-08-11

    These two views of Saturn's moon Titan exemplify how NASA's Cassini spacecraft has revealed the surface of this fascinating world. Cassini carried several instruments to pierce the veil of hydrocarbon haze that enshrouds Titan. The mission's imaging cameras also have several spectral filters sensitive to specific wavelengths of infrared light that are able to make it through the haze to the surface and back into space. These "spectral windows" have enable the imaging cameras to map nearly the entire surface of Titan. In addition to Titan's surface, images from both the imaging cameras and VIMS have provided windows into the moon's ever-changing atmosphere, chronicling the appearance and movement of hazes and clouds over the years. A large, bright and feathery band of summer clouds can be seen arcing across high northern latitudes in the view at right. These views were obtained with the Cassini spacecraft narrow-angle camera on March 21, 2017. Images taken using red, green and blue spectral filters were combined to create the natural-color view at left. The false-color view at right was made by substituting an infrared image (centered at 938 nanometers) for the red color channel. The views were acquired at a distance of approximately 613,000 miles (986,000 kilometers) from Titan. Image scale is about 4 miles (6 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21624

  4. Metal Whiskers: Failure Modes and Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Brusse, Jay A.; Leidecker, Henning

    2007-01-01

    Metal coatings especially tin, zinc and cadmium are unpredictably susceptible to the formation of electrically conductive, crystalline filaments referred to as metal whiskers. The use of such coatings in and around electrical systems presents a risk of electrical shorting. Examples of metal whisker formation are shown with emphasis on optical inspection techniques to improve probability of detection. The failure modes (i.e., electrical shorting behavior) associated with metal whiskers are described. Based on an almost 9- year long study, the benefits of polyurethane conformal coat (namely, Arathane 5750) to protect electrical conductors from whisker-induced short circuit anomalies is discussed.

  5. How do seal whiskers suppress vortex shedding

    NASA Astrophysics Data System (ADS)

    Rinehart, Aidan; Flaherty, Justin; Bunjavick, Joseph; Shyam, Vikram; Zhang, Wei

    2016-11-01

    Certain seal whiskers possess a unique geometry that significantly reduces the vortex-induced vibration; which has attracted great attention to understand how the unique shape re-organizes the wake structure and its potential for passive flow control. The shape of the whiskers can be described as an elliptical cross-section that is lofted along the length of the whisker. Along the entire length of the whisker the ellipse varies in major and minor axis as well as angle of incidence with respect to the axis of the whisker. Of particular interest in this study is to identify what effect the angle of incidence has on the flow structure around the whisker, which has been overlooked in the past. The study will analyze the wake structure behind various scaled-up whisker models using particle image velocimitry (PIV). These whisker models share common geometry dimensions except for the angle of incidence. Flow conditions are created in a water channel and a wind tunnel, covering a wide range of Reynolds number (a few hundreds to thousands), similar to the ambient flow environment of seals and to the targeted aero-propulsion applications. This study will help address knowledge gaps in understanding of how certain geometry features of seal whiskers influence the wake and establish best practices for its application as effective passive flow control strategy.

  6. Structural Characterization of Schladitz Whiskers.

    DTIC Science & Technology

    1982-05-01

    and Eicke, 9 ,14 Lashmore ,16 and Newkirk and Wilsdorf. 1 7 7 I The ultimate tensile strength (UTS) of polycrystalline steel whiskers has been reported...have * Private communication by D. S. Lashmore , L. J. Swartzendruber and L. H. Bennett. 17 a combined with Fe to Fe 3 C. It was calculated that 18 + 2...by Lashmore (1977), and Schladitz (1968) reported values approach- ing 8 GPa. The structural details described in the previous chapter do not fit into

  7. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  8. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-02-19

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  9. Electric field stimulated growth of Zn whiskers

    SciTech Connect

    Niraula, D.; McCulloch, J.; Irving, R.; Karpov, V. G.; Warrell, G. R.; Shvydka, Diana

    2016-07-15

    We have investigated the impact of strong (∼10{sup 4} V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  10. Silicon Whisker and Carbon Nanofiber Composite Anode

    NASA Technical Reports Server (NTRS)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  11. Platelet Composite Coatings for Tin Whisker Mitigation

    NASA Astrophysics Data System (ADS)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-11-01

    Reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results for several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.

  12. Millisecond, micron precision multi-whisker detector.

    PubMed

    Grady, Stephen K; Hoang, Thanh T; Gautam, Shree Hari; Shew, Woodrow L

    2013-01-01

    The neural mechanisms of somatosensory information processing in the rodent vibrissae system are a topic of intense debate and research. Certain hypotheses emphasize the importance of stick-slip whisker motion, high-frequency resonant vibrations, and/or the ability to decode complex textures. Other hypotheses focus on the importance of integrating information from multiple whiskers. Tests of the former require measurements of whisker motion that achieve high spatiotemporal accuracy without altering the mechanical properties of whiskers. Tests of the latter require the ability to monitor the motion of multiple whiskers simultaneously. Here we present a device that achieves both these requirements for two-dimensional whisker motion in the plane perpendicular to the whiskers. Moreover, the system we present is significantly less expensive (<$2.5 k) and simpler to build than alternative devices which achieve similar detection capabilities. Our system is based on two laser diodes and two linear cameras. It attains millisecond temporal precision and micron spatial resolution. We developed automated algorithms for processing the data collected by our device and benchmarked their performance against manual detection by human visual inspection. By this measure, our detection was successful with less than 10 µm deviation between the automated and manual detection, on average. Here, we demonstrate its utility in anesthetized rats by measuring the motion of multiple whiskers in response to an air puff.

  13. Prealloyed catalyst for growing silicon carbide whiskers

    DOEpatents

    Shalek, Peter D.; Katz, Joel D.; Hurley, George F.

    1988-01-01

    A prealloyed metal catalyst is used to grow silicon carbide whiskers, especially in the .beta. form. Pretreating the metal particles to increase the weight percentages of carbon or silicon or both carbon and silicon allows whisker growth to begin immediately upon reaching growth temperature.

  14. Platelet composite coatings for tin whisker mitigation

    SciTech Connect

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results for several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.

  15. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  16. Platelet composite coatings for tin whisker mitigation

    DOE PAGES

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less

  17. Biomechanics: robotic whiskers used to sense features.

    PubMed

    Solomon, Joseph H; Hartmann, Mitra J

    2006-10-05

    Whiskers mimicking those of seals or rats might be useful for underwater tracking or tactile exploration. Several species of terrestrial and marine mammals with whiskers (vibrissae) use them to sense and navigate in their environment--for example, rats use their whiskers to discern the features of objects, and seals rely on theirs to track the hydrodynamic trails of their prey. Here we show that the bending moment--sometimes referred to as torque--at the whisker base can be used to generate three-dimensional spatial representations of the environment, and we use this principle to construct robotic whisker arrays that extract precise information about object shape and fluid flow. Our results will contribute to the development of versatile tactile-sensing systems for robotic applications, and demonstrate the value of hardware models in understanding how sensing mechanisms and movement control strategies are interlocked.

  18. The biological activity of silicon carbide whiskers

    SciTech Connect

    Johnson, N.F.

    1989-01-01

    Size characteristics of SiC whiskers are similar to asbestos and contain potentially carcinogenic long thin fibers. Size distribution suggests that it is highly respirable, with majority of particles having diameters <3.0 [mu]m. Cytotoxic activity of SiC whiskers in cultured cells is [ge] than that of crocidolite asbestos. Inhalation exposures are needed to further delineate the biological activity; while SiC whiskers were as or more cytotoxic than crocidolite, JM Code 100 also displays such activity but results in no increased risk of lung cancer, pulmonary fibrosis or mesothelioma. PRD-166, a coarse continuous glass filament, displays little in vitro biological activity. It is recommended that SiC whiskers be treated as asbestos, and to continue investigating the potential health effects of SiC whiskers, in particular conducting animal experiments with acute and chronic inhalation exposures. 17 refs., 11 tabs., 18 figs.

  19. Continuous synthesis of silicon carbide whiskers

    NASA Astrophysics Data System (ADS)

    Choi, Heon-Jin; Lee, June-Gunn

    1995-04-01

    Experimental synthesis of SiC whiskers coupled with thermodynamic calculations revealed the preferred reaction routes for the efficient synthesis of SiC whiskers. This formed the basis for the design of a continuous reactor, which consists of a boat-train loaded with silica-carbon mixture and iron-coated graphite substrate above it in an alumina-tube reactor. High-quality SiC whiskers have been grown with diameters of 1-3 micron. The yield was about 30% based on the silicon input as SiO2 and output as SiC whiskers. This demonstrates the feasibility of continuous SiC whiskers production without the additional processes of purification and classification.

  20. Behavioral detection of passive whisker stimuli requires somatosensory cortex.

    PubMed

    Miyashita, Toshio; Feldman, Daniel E

    2013-07-01

    Rodent whisker sensation occurs both actively, as whiskers move rhythmically across objects, and in a passive mode in which externally applied deflections are sensed by static, non-moving whiskers. Passive whisker stimuli are robustly encoded in the somatosensory (S1) cortex, and provide a potentially powerful means of studying cortical processing. However, whether S1 contributes to passive sensation is debated. We developed 2 new behavioral tasks to assay passive whisker sensation in freely moving rats: Detection of unilateral whisker deflections and discrimination of right versus left whisker deflections. Stimuli were simple, simultaneous multi-whisker deflections. Local muscimol inactivation of S1 reversibly and robustly abolished sensory performance on these tasks. Thus, S1 is required for the detection and discrimination of simple stimuli by passive whiskers, in addition to its known role in active whisker sensation.

  1. Tapered whiskers are required for active tactile sensation

    PubMed Central

    Hires, Samuel Andrew; Pammer, Lorenz; Svoboda, Karel; Golomb, David

    2013-01-01

    Many mammals forage and burrow in dark constrained spaces. Touch through facial whiskers is important during these activities, but the close quarters makes whisker deployment challenging. The diverse shapes of facial whiskers reflect distinct ecological niches. Rodent whiskers are conical, often with a remarkably linear taper. Here we use theoretical and experimental methods to analyze interactions of mouse whiskers with objects. When pushed into objects, conical whiskers suddenly slip at a critical angle. In contrast, cylindrical whiskers do not slip for biologically plausible movements. Conical whiskers sweep across objects and textures in characteristic sequences of brief sticks and slips, which provide information about the tactile world. In contrast, cylindrical whiskers stick and remain stuck, even when sweeping across fine textures. Thus the conical whisker structure is adaptive for sensor mobility in constrained environments and in feature extraction during active haptic exploration of objects and surfaces. DOI: http://dx.doi.org/10.7554/eLife.01350.001 PMID:24252879

  2. Behavioral Detection of Passive Whisker Stimuli Requires Somatosensory Cortex

    PubMed Central

    Miyashita, Toshio; Feldman, Daniel E.

    2013-01-01

    Rodent whisker sensation occurs both actively, as whiskers move rhythmically across objects, and in a passive mode in which externally applied deflections are sensed by static, non-moving whiskers. Passive whisker stimuli are robustly encoded in the somatosensory (S1) cortex, and provide a potentially powerful means of studying cortical processing. However, whether S1 contributes to passive sensation is debated. We developed 2 new behavioral tasks to assay passive whisker sensation in freely moving rats: Detection of unilateral whisker deflections and discrimination of right versus left whisker deflections. Stimuli were simple, simultaneous multi-whisker deflections. Local muscimol inactivation of S1 reversibly and robustly abolished sensory performance on these tasks. Thus, S1 is required for the detection and discrimination of simple stimuli by passive whiskers, in addition to its known role in active whisker sensation. PMID:22661403

  3. Tin Whiskers: A History of Documented Electrical System Failures

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Brusse, Jay

    2006-01-01

    This viewgraph presentation reviews the history of tin and other metal whiskers, and the damage they have caused equipment. There are pictures of whiskers on various pieces of electronic equipment, and microscopic views of whiskers. There is also a chart with information on the documented failures associated with metal whiskers. There are also examples of on-orbit failures believed to be caused by whiskers.

  4. Titan Kissing

    NASA Image and Video Library

    2006-09-26

    This Cassini radar image shows two lakes "kissing" each other on the surface of Saturn's moon Titan. The image from a flyby on Sept. 23, 2006, covers an area about 60 kilometers (37 miles) wide by 40 kilometers (25 miles) high. This pass was primarily dedicated to the ion and neutral mass spectrometer instrument, so although, the volume of radar data was small, scientists were amazed to see Earth-like lakes. With Titan's colder temperatures and hydrocarbon-rich atmosphere, however, the lakes likely contain a combination of methane and ethane, not water. In this image, near 73 degrees north latitude, 46 degrees west longitude, two lakes are seen, each 20 to 25 kilometers (12 to 16 miles) across. They are joined by a relatively narrow channel. The lake on the right has lighter patches within it, indicating that it may be slowly drying out as the northern summer approaches. http://photojournal.jpl.nasa.gov/catalog/PIA08740

  5. Titan Touchdown

    NASA Image and Video Library

    2017-01-11

    On Jan. 14, 2005, ESA's Huygens probe made its descent to the surface of Saturn's hazy moon, Titan. Carried to Saturn by NASA's Cassini spacecraft, Huygens made the most distant landing ever on another world, and the only landing on a body in the outer solar system. This video uses actual images taken by the probe during its two-and-a-half hour fall under its parachutes. Also include mission animation.

  6. Titan Submarine

    NASA Image and Video Library

    2015-06-15

    What would a submarine to explore the liquid methane seas of Saturn's Moon Titan look like? This video shows one submarine concept that would explore both the shoreline and the depths of this strange world that has methane rain, rivers and seas! The design was developed for the NASA Innovative Advanced Concepts (NIAC) Program, by NASA Glenn's COMPASS Team, and technologists and scientists from the Applied Physics Lab and submarine designers from the Applied Research Lab.

  7. The probabilistic distribution of metal whisker lengths

    NASA Astrophysics Data System (ADS)

    Niraula, D.; Karpov, V. G.

    2015-11-01

    Significant reliability concerns in multiple industries are related to metal whiskers, which are random high aspect ratio filaments growing on metal surfaces and causing shorts in electronic packages. We derive a closed form expression for the probabilistic distribution of metal whisker lengths. Our consideration is based on the electrostatic theory of metal whiskers, according to which whisker growth is interrupted when its tip enters a random local "dead region" of a weak electric field. Here, we use the approximation neglecting the possibility of thermally activated escapes from the "dead regions," which is later justified. We predict a one-parameter distribution with a peak at a length that depends on the metal surface charge density and surface tension. In the intermediate range, it fits well the log-normal distribution used in the experimental studies, although it decays more rapidly in the range of very long whiskers. In addition, our theory quantitatively explains how the typical whisker concentration is much lower than that of surface grains. Finally, it predicts the stop-and-go phenomenon for some of the whiskers growth.

  8. The probabilistic distribution of metal whisker lengths

    SciTech Connect

    Niraula, D. Karpov, V. G.

    2015-11-28

    Significant reliability concerns in multiple industries are related to metal whiskers, which are random high aspect ratio filaments growing on metal surfaces and causing shorts in electronic packages. We derive a closed form expression for the probabilistic distribution of metal whisker lengths. Our consideration is based on the electrostatic theory of metal whiskers, according to which whisker growth is interrupted when its tip enters a random local “dead region” of a weak electric field. Here, we use the approximation neglecting the possibility of thermally activated escapes from the “dead regions,” which is later justified. We predict a one-parameter distribution with a peak at a length that depends on the metal surface charge density and surface tension. In the intermediate range, it fits well the log-normal distribution used in the experimental studies, although it decays more rapidly in the range of very long whiskers. In addition, our theory quantitatively explains how the typical whisker concentration is much lower than that of surface grains. Finally, it predicts the stop-and-go phenomenon for some of the whiskers growth.

  9. Whiskers aid anemotaxis in rats

    PubMed Central

    Yu, Yan S. W.; Graff, Matthew M.; Bresee, Chris S.; Man, Yan B.; Hartmann, Mitra J. Z.

    2016-01-01

    Observation of terrestrial mammals suggests that they can follow the wind (anemotaxis), but the sensory cues underlying this ability have not been studied. We identify a significant contribution to anemotaxis mediated by whiskers (vibrissae), a modality previously studied only in the context of direct tactile contact. Five rats trained on a five-alternative forced-choice airflow localization task exhibited significant performance decrements after vibrissal removal. In contrast, vibrissal removal did not disrupt the performance of control animals trained to localize a light source. The performance decrement of individual rats was related to their airspeed threshold for successful localization: animals that found the task more challenging relied more on the vibrissae for localization cues. Following vibrissal removal, the rats deviated more from the straight-line path to the air source, choosing sources farther from the correct location. Our results indicate that rats can perform anemotaxis and that whiskers greatly facilitate this ability. Because air currents carry information about both odor content and location, these findings are discussed in terms of the adaptive significance of the interaction between sniffing and whisking in rodents. PMID:27574705

  10. Whiskers aid anemotaxis in rats.

    PubMed

    Yu, Yan S W; Graff, Matthew M; Bresee, Chris S; Man, Yan B; Hartmann, Mitra J Z

    2016-08-01

    Observation of terrestrial mammals suggests that they can follow the wind (anemotaxis), but the sensory cues underlying this ability have not been studied. We identify a significant contribution to anemotaxis mediated by whiskers (vibrissae), a modality previously studied only in the context of direct tactile contact. Five rats trained on a five-alternative forced-choice airflow localization task exhibited significant performance decrements after vibrissal removal. In contrast, vibrissal removal did not disrupt the performance of control animals trained to localize a light source. The performance decrement of individual rats was related to their airspeed threshold for successful localization: animals that found the task more challenging relied more on the vibrissae for localization cues. Following vibrissal removal, the rats deviated more from the straight-line path to the air source, choosing sources farther from the correct location. Our results indicate that rats can perform anemotaxis and that whiskers greatly facilitate this ability. Because air currents carry information about both odor content and location, these findings are discussed in terms of the adaptive significance of the interaction between sniffing and whisking in rodents.

  11. Fracture of silicon carbide whisker reinforced aluminum

    NASA Technical Reports Server (NTRS)

    Albritton, J. R.; Goree, J. G.

    1989-01-01

    An attempt is made to apply standard fracture toughness testing procedures, developed for metals, to whisker reinforced metal matrix composites. Test were carried out on compact-tension, center-notched, and edge-notched specimens of silicon carbide whisker reinforced extruded 2124 aluminum plate (10 and twenty volume percent of whiskers), with the loading direction either parallel or perpendicular to the extrusion direction. None of the tests is found to give a valid fracture toughness according to the criteria of the ASTM Standard E-399.

  12. Contact Whiskers for Millimeter Wave Diodes

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  13. Growth process of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers

    SciTech Connect

    Zhu Chengcai; Nai Xueying; Zhu Donghai; Guo Fengqin; Zhang Yongxing; Li Wu

    2013-01-15

    The reactions occurred and growth process in the preparation of copper aluminum borate (Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17}) whiskers based on flux method (Al{sub 2}(SO{sub 4}){sub 3}/CuSO{sub 4}/H{sub 3}BO{sub 3} as raw materials, K{sub 2}SO{sub 4} as flux) were investigated. The thermogravimetric and differential scanning calorimetry analysis (TG-DSC), inductively coupled plasma atomic emission spectrum analysis (ICP-AES) and X-ray diffraction analysis (XRD) results of reactants mixture quenched at various temperatures and phase diagrams of K{sub 2}SO{sub 4}-Al{sub 2}(SO{sub 4}){sub 3} system and B{sub 2}O{sub 3}-Al{sub 2}O{sub 3} system showed that the reaction process proceeds through three steps: the formation and decomposition of two different kinds of potassium aluminum sulfate (K{sub 3}Al(SO{sub 4}){sub 3} and KAl(SO{sub 4}){sub 2}); the formation of aluminum borate (Al{sub 4}B{sub 2}O{sub 9}) and decomposition of copper sulfate (CuSO{sub 4}) and boric acid (H{sub 3}BO{sub 3}); growth and formation of copper aluminum borate (Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17}) whiskers. The scanning electron microscopy (SEM) analysis results indicated that morphology in growth of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers develops through three stages: nanoparticles, fan-shaped whiskers and agminate-needlelike whiskers. - Graphical abstract: The morphology in growth of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers develops through three stages: nanoparticles, fan-shaped whiskers and agminate-needlelike whiskers. Highlights: Black-Right-Pointing-Pointer Reaction process in the preparation of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers was researched systematically. Black-Right-Pointing-Pointer Crystal growth mechanism of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers was proposed by theory and experiments. Black-Right-Pointing-Pointer Properties of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} were analyzed by instruments, such as TG-DSC, ICP-AES, XRD and SEM.

  14. Cellulose whisker/epoxy resin nanocomposites.

    PubMed

    Tang, Liming; Weder, Christoph

    2010-04-01

    New nanocomposites composed of cellulose nanofibers or "whiskers" and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of approximately 10 and approximately 84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185-192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtures and subsequent curing. The whisker content was systematically varied between 4 and 24% v/v. Electron microscopy studies suggest that the whiskers are evenly dispersed within the epoxy matrix. Dynamic mechanical thermoanalysis revealed that the glass transition temperature (T(g)) of the materials was not significantly influenced by the incorporation of the cellulose filler. Between room temperature and 150 degrees C, i.e., below T(g), the tensile storage moduli (E') of the nanocomposites increased modestly, for example from 1.6 GPa for the neat polymer to 4.9 and 3.6 GPa for nanocomposites comprising 16% v/v tunicate or cotton whiskers. The relative reinforcement was more significant at 185 degrees C (i.e., above T(g)), where E' was increased from approximately 16 MPa (neat polymer) to approximately 1.6 GPa (tunicate) or approximately 215 MPa (cotton). The mechanical properties of the new materials are well-described by the percolation model and are the result of the formation of a percolating whisker network in which stress transfer is facilitated by strong interactions between the whiskers.

  15. Space Shuttle Program Tin Whisker Mitigation

    NASA Technical Reports Server (NTRS)

    Nishimi, Keith

    2007-01-01

    The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.

  16. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  17. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  18. Methods for fast, reliable growth of Sn whiskers

    NASA Astrophysics Data System (ADS)

    Bozack, M. J.; Snipes, S. K.; Flowers, G. N.

    2016-10-01

    We report several methods to reliably grow dense fields of high-aspect ratio tin whiskers for research purposes in a period of days to weeks. The techniques offer marked improvements over previous means to grow whiskers, which have struggled against the highly variable incubation period of tin whiskers and slow growth rate. Control of the film stress is the key to fast-growing whiskers, owing to the fact that whisker incubation and growth are fundamentally a stress-relief phenomenon. The ability to grow high-density fields of whiskers (103-106/cm2) in a reasonable period of time (days, weeks) has accelerated progress in whisker growth and aided in development of whisker mitigation strategies.

  19. Understanding the movements of metal whiskers

    NASA Astrophysics Data System (ADS)

    Karpov, V. G.

    2015-06-01

    Metal whiskers often grow across leads of electric equipment causing short circuits and raising significant reliability issues. Their nature remains a mystery after several decades of research. It was observed that metal whiskers exhibit large amplitude movements under gentle air flow or, according to some testimonies, without obvious stimuli. Understanding the physics behind that movements would give additional insights into the nature of metal whiskers. Here, we quantitatively analyze possible mechanisms of the observed movements: (1) minute air currents; (2) Brownian motion due to random bombardments with the air molecules; (3) mechanically caused movements, such as (a) transmitted external vibrations, and (b) torque exerted due to material propagation along curved whiskers (the garden hose instability); (4) time dependent electric fields due to diffusion of ions; and (5) non-equilibrium electric fields making it possible for some whiskers to move. For all these mechanisms, we provide numerical estimates. Our conclusion is that the observed movements are likely due to the air currents or electric recharging caused by external light or similar factors.

  20. Dark and Light Titan

    NASA Image and Video Library

    2010-09-08

    NASA Cassini spacecraft examines Titan dark and light seasonal hemispheric dichotomy as it images the moon with a filter sensitive to near-infrared light. This image also shows Titan north polar hood.

  1. Lakes on Titan

    NASA Image and Video Library

    2006-07-24

    The Cassini spacecraft, using its radar system, has discovered very strong evidence for hydrocarbon lakes on Titan. Dark patches, which resemble terrestrial lakes, seem to be sprinkled all over the high latitudes surrounding Titan north pole

  2. Titan Haze is Falling

    NASA Image and Video Library

    2011-05-05

    The change in Titan haze layer is illustrated in this figure, derived from data obtained by NASA Cassini spacecraft. The picture of Titan in panel a was taken on May 3, 2006, panel b was taken on April 2, 2010.

  3. Titanic: A Statistical Exploration.

    ERIC Educational Resources Information Center

    Takis, Sandra L.

    1999-01-01

    Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)

  4. Inside Titan Author Concept

    NASA Image and Video Library

    2012-06-28

    This artist concept shows a possible scenario for the internal structure of Titan, as suggested by data from NASA Cassini spacecraft. Scientists have been trying to determine what is under Titan organic-rich atmosphere and icy crust.

  5. Titanic: A Statistical Exploration.

    ERIC Educational Resources Information Center

    Takis, Sandra L.

    1999-01-01

    Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)

  6. Titan Haze

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie M.; West, Robert; Lavvas, Panayotis

    2011-01-01

    The Titan haze exerts a dominating influence on surface visibility and atmospheric radiative heating at optical and near-infrared wavelengths and our desire to understand surface composition and atmospheric dynamics provides a strong motivation to study the properties of the haze. Prior to the Cassini/Huygens missions the haze was known to be global in extent, with a hemispheric contrast asymmetry, with a complicated structure in the polar vortex region poleward of about 55 deg latitude, and with a distinct layer near 370 km altitude outside of the polar vortex at the time of the Voyager 2 flyby. The haze particles measured by the Pioneer and Voyager spacecraft were both highly polarizing and strongly forward scattering, a combination that seems to require an aggregation of small (several tens of nm radius) primary particles. These same properties were seen in the Cassini orbiter and Huygens Probe data. The most extensive set of optical measurements were made inside the atmosphere by the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens Probe. At the probe location as determined by the DISR measurements the average haze particle contained about 3000 primary particles whose radius is about 40 nm. Three distinct vertical regions were seen in the DISR data with differing particle properties. Refractive indices of the particles in the main haze layer resemble those reported by Khare et al. between O.3S and about 0.7 micron but are more absorbing than the Khare et al. results between 0.7 micron and the long-wavelength limit of the DISR spectra at 1.6 micron. These and other results are described by Tomasko et al., and a broader summary of results was given by Tomasko and West,. New data continue to stream in from the Cassini spacecraft. New data analyses and new laboratory and model results continue to move the field forward. Titan's 'detached' haze layer suffered a dramatic drop in altitude near equinox in 2009 with implications for the circulation

  7. The Climate of Titan

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan L.; Lora, Juan M.

    2016-06-01

    Over the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (˜90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface

  8. Does Titan have oceans?

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    1994-04-01

    Titan is one of the few worlds in the solar system whose essential nature remains hidden. Satellite data from Voyager are examined. Remote sensing investigations from Earth are explored. Possible models of Titan's surface are reviewed. A closer look at Titan would provide useful information. The data to be gathered by the planetary mission Cassini is discussed.

  9. Ceramic composites reinforced with modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1990-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  10. NASA GSFC Tin Whisker Homepage http://nepp.nasa.gov/whisker

    NASA Technical Reports Server (NTRS)

    Shaw, Harry

    2000-01-01

    The NASA GSFC Tin Whisker Homepage provides general information and GSFC Code 562 experimentation results regarding the well known phenomenon of tin whisker formation from pure tin plated substrates. The objective of this www site is to provide a central repository for information pertaining to this phenomenon and to provide status of the GSFC experiments to understand the behavior of tin whiskers in space environments. The Tin Whisker www site is produced by Code 562. This www site does not provide information pertaining to patented or proprietary information. All of the information contained in this www site is at the level of that produced by industry and university researchers and is published at international conferences.

  11. NASA GSFC Tin Whisker Homepage http://nepp.nasa.gov/whisker

    NASA Technical Reports Server (NTRS)

    Shaw, Harry

    2000-01-01

    The NASA GSFC Tin Whisker Homepage provides general information and GSFC Code 562 experimentation results regarding the well known phenomenon of tin whisker formation from pure tin plated substrates. The objective of this www site is to provide a central repository for information pertaining to this phenomenon and to provide status of the GSFC experiments to understand the behavior of tin whiskers in space environments. The Tin Whisker www site is produced by Code 562. This www site does not provide information pertaining to patented or proprietary information. All of the information contained in this www site is at the level of that produced by industry and university researchers and is published at international conferences.

  12. Intensive Titan exploration begins

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2005-01-01

    The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.

  13. Interior of Titan

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    1992-01-01

    General principles of Titan formation and evolution are addressed. Attention is focused on the volatile reservoir (defined as all constituents more volatile than water) of Titan's interior. Volatile poor models, in which Titan is like Granymede or Callisto with a thin (observed) volatile veneer are discussed and discarded. Volatile rich models in which the present Titan consists of a methane clathrate shell overlying a deep water ammonia ocean and solid ammonia hydrate are discussed. Titan has a central core of rock which is about one half of the total mass, and a superficial hydrocarbon 'ocean' stored in subsurface caverns and pore space.

  14. Intensive Titan exploration begins.

    PubMed

    Mahaffy, Paul R

    2005-05-13

    The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.

  15. Whisker encoding of mechanical events during active tactile exploration

    PubMed Central

    Boubenec, Yves; Shulz, Daniel E.; Debrégeas, Georges

    2012-01-01

    Rats use their whiskers to extract a wealth of information about their immediate environment, such as the shape, position or texture of an object. The information is conveyed to mechanoreceptors located within the whisker follicle in the form of a sequence of whisker deflections induced by the whisker/object contact interaction. How the whiskers filter and shape the mechanical information and effectively participate in the coding of tactile features remains an open question to date. In the present article, a biomechanical model was developed that provides predictions of the whisker dynamics during active tactile exploration, amenable to quantitative experimental comparison. This model is based on a decomposition of the whisker profile into a slow, quasi-static sequence and rapid resonant small-scale vibrations. It was applied to the typical situation of a rat actively whisking across a solid object. Having derived the quasi-static sequence of whisker deformation, the resonant properties of the whisker were analyzed, taking into account the boundary conditions imposed by the whisker/surface contact. We then focused on two elementary mechanical events that are expected to trigger significant neural responses, namely (1) the whisker/object first contact and (2) the whisker detachment from the object. Both events were found to trigger a deflection wave propagating upward to the mystacial pad at constant velocity of ≈3–5 m/s. This yielded a characteristic mechanical signature at the whisker base, in the form of a large peak of negative curvature occurring ≈4 ms after the event has been triggered. The dependence in amplitude and lag of this mechanical signal with the main contextual parameters (such as radial or angular distance) was investigated. The model was validated experimentally by comparing its predictions to high-speed video recordings of shock-induced whisker deflections performed on anesthetized rats. The consequences of these results on possible tactile

  16. Potassium test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003484.htm Potassium test To use the sharing features on this ... enable JavaScript. This test measures the amount of potassium in the fluid portion (serum) of the blood. ...

  17. Growth of hollow nickel fluoride whiskers

    SciTech Connect

    Petrov, S. V.; Orekhov, Yu. F.; Fedorov, P. P.

    2009-07-15

    Hollow nickel fluoride whiskers have been obtained by condensation from the vapor phase onto a platinum substrate in a flow of hydrogen fluoride. Crystals up to 5 mm in length have a square cross section with a 300 {+-} 30-{mu}m side. The wall thickness is 85 {+-} 20 {mu}m.

  18. Biopolymer nanocomposite films reinforced with nanocellulose whiskers

    Treesearch

    Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...

  19. PIV Analysis of Wake Induced by Real Harbor Seal Whiskers

    NASA Astrophysics Data System (ADS)

    Bunjevac, Joseph; Rinehart, Aidan; Flaherty, Justin; Zhang, Wei

    2016-11-01

    Harbor Seals are able to accurately detect minute disturbances in the ambient flow using their whiskers, which is attributed to the exceptional capability of the whiskers to suppress vortex-induced vibrations in the wake. To explore potential applications for designing smart devices, such as high-sensitivity underwater flow sensors and drag reduction components, research has studied the role of key parameters of the whisker morphology on wake structure. Due to the inherent variation in size and angle of incidence along the length of whiskers, it is not well understood how a real seal whisker changes wake structure, in particular the vortex shedding behavior. This work aims to understand the flow around a single real seal whisker using Particle Image Velocimetry at low Reynolds numbers (i.e. a few hundred) in a water channel. Variations in flow structure are inspected between several different real whiskers and whisker models. The results will provide insights of the effects of the natural geometry of the harbor seal whiskers on wake flow compared to idealized whisker-like models.

  20. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias Claudius

    Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of most PZT compositions under certain conditions. Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of

  1. Future Exploration of Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Titan Decadal Panel Collaboration

    2001-11-01

    Titan promises to be the Mars of the Outer Solar System - the focus of not only the broadest range of investigations in planetary science but also the focus of public attention. The reasons for exploring Titan are threefold: 1. Titan and Astrobiology : Titan ranks with Mars and Europa as a prime body for astrobiological study due to its abundant organics. Like Europa, it may well have a liquid water interior. 2. Titan - A world in its own right. Titan deserves study even only to put other satellites (its remarkably smaller Saturnian siblings, and its same-sized but volatile-poor Jovian counterparts) in context. The added dimension of an atmosphere makes Titan's origin and evolution particularly interesting. 3. Titan - an environmental laboratory for Earth. Titan will be an unrivalled place to investigate meteorological, oceanographical and other processes. Many of these (e.g. wave generation by wind) are only empirically parameterized - the very different physical parameters of the Titan environment will bring new insights to these phenomena. While Cassini-Huygens will dramatically boost our knowledge of Titan, it will likely only whet our appetite for more. The potential for prebiotic materials at various locations (in particular where liquid water has interacted with photochemical deposits) and the need to monitor Titan's meteorology favor future missions that may exploit Titan's unique thick-atmosphere, low-gravity environment - a mobile platform like an airship or helicopter, able to explore on global scales, but access the surface for in-situ chemical analysis and probe the interior by electromagnetic and seismic means. Such missions have dramatic potential to capture the public's imagination, on both sides of the Atlantic.

  2. Potassium physiology.

    PubMed

    Thier, S O

    1986-04-25

    Potassium is the most abundant exchangeable cation in the body. It exists predominantly in the intracellular fluid at concentrations of 140 to 150 meq/liter and in the extracellular fluid at concentrations of 3.5 to 5 meq/liter. The maintenance of the serum potassium concentration is a complex bodily function and results from the balance between intake, excretion, and distribution between intracellular and extracellular space. Ingested potassium is virtually completely absorbed from and minimally excreted through the intestine under nonpathologic circumstances. Renal excretion of potassium, which is the major chronic protective mechanism against abnormalities in potassium balance, depends on filtration, reabsorption, and a highly regulated distal nephron secretory process. Factors regulating potassium secretion include prior potassium intake, intracellular potassium, delivery of sodium chloride and poorly reabsorbable anions to the distal nephron, the urine flow rate, hormones such as aldosterone and beta-catecholamines, and the integrity of the renal tubular cell. The maintenance of distribution between the inside and outside of cells depends on the integrity of the cell membrane and its pumps, osmolality, pH, and the hormones insulin, aldosterone, beta 2-catecholamines, alpha-catecholamines, and prostaglandins. Both distribution across cell membranes and/or renal excretion of potassium may be altered by pharmacologic agents such as diuretics, alpha- and beta-catechol antagonists and agonists, depolarizing agents, and digitalis. Problems with hypokalemia and hyperkalemia can be analyzed on the basis of potassium physiology and pharmacology; proper treatment depends on an accurate analysis.

  3. Properties of Doped GaSb Whiskers at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Khytruk, Igor; Druzhinin, Anatoly; Ostrovskii, Igor; Khoverko, Yuriy; Liakh-Kaguy, Natalia; Rogacki, Krzysztof

    2017-02-01

    Temperature dependencies of GaSb whiskers' resistance doped with Te to concentration of 1.7 × 1018 cm-3 were measured in temperature range 1.5-300 K. At 4.2 K temperature, a sharp drop in the whisker resistance was found. The observed effect is likely connected with the contribution of two processes such as the electron localization in the whiskers and transition in superconducting state at temperature below 4.2 K. The whisker magnetoconductance is considered in the framework of weak antilocalization (WAL) model and connected with subsurface layers of the whiskers. The Shubnikov-de Haas (SdH) oscillatory effect is observed in high-quality n-type GaSb whiskers with tellurium doping concentration near the metal-insulator transition (MIT) for both longitudinal and transverse magnetoresistance.

  4. Properties of Doped GaSb Whiskers at Low Temperatures.

    PubMed

    Khytruk, Igor; Druzhinin, Anatoly; Ostrovskii, Igor; Khoverko, Yuriy; Liakh-Kaguy, Natalia; Rogacki, Krzysztof

    2017-12-01

    Temperature dependencies of GaSb whiskers' resistance doped with Te to concentration of 1.7 × 10(18) cm(-3) were measured in temperature range 1.5-300 K. At 4.2 K temperature, a sharp drop in the whisker resistance was found. The observed effect is likely connected with the contribution of two processes such as the electron localization in the whiskers and transition in superconducting state at temperature below 4.2 K. The whisker magnetoconductance is considered in the framework of weak antilocalization (WAL) model and connected with subsurface layers of the whiskers. The Shubnikov-de Haas (SdH) oscillatory effect is observed in high-quality n-type GaSb whiskers with tellurium doping concentration near the metal-insulator transition (MIT) for both longitudinal and transverse magnetoresistance.

  5. Further development and application of polycrystalline metal whiskers

    NASA Technical Reports Server (NTRS)

    Schladitz, H. J.

    1979-01-01

    High strength metal whiskers have a larger versatile field of application than monocrystalline whiskers. Although polycrystalline metal whiskers can be used for composites, preferably by extrusion in thermoplastics or by infiltration of resins or metals into whisker networks, the chief application at present may be the production and various use of whisker networks. Such networks can be produced up to high degrees of porosity and besides high mechanical strength, they have high inside surfaces and high electric conductivity. There are for instance, applications concerning construction of electrodes for batteries and fuel cells, catalysts and also new heat-exchanger material, capable of preparing fuel oil and gasoline in order to assist a high-efficiency combustion. The technical application of polycrystalline metal whiskers require their modification as well as the construction of a pilot production unit.

  6. [Deactivation of titania whiskers used for purification of drinking water].

    PubMed

    Wen, Gao-fei; Yang, Zhu-hong; Li, Wei; Feng, Xin; Lu, Xiao-hua

    2007-09-01

    The reason of deactivation of titania whiskers used for deep purification of drinking water and the corresponding regeneration methods were presented. AFM, XRD and ICP were carried out to characterize the titanium dioxide. The experimental results suggest that the main reason of deactivation of titania whiskers is the deposition of calcium carbonate on the catalyst surface. The surface of titania whiskers is covered by the insoluble carbonates generated from carbon dioxide produced during the degradation of organics and metal ions such as calcium in the tap water, and the activity of the titania whiskers decreases gradually till deactivation. After washing by 1 mol/L hydrochloric acid for four hours, the photocatalytic activity of the titania whiskers can achieve 95 percent of that before deactivation. The photocatalytic activity of the titania whiskers which regenerated for many times keeps steady.

  7. A MRI-COMPATIBLE SYSTEM FOR WHISKER STIMULATION

    PubMed Central

    Li, Limin; Weiss, Craig; Talk, Andrew C.; Disterhoft, John F.; Wyrwicz, Alice M.

    2013-01-01

    We describe here a system for whisker stimulation designed for functional studies in high-field magnetic resonance imaging (MRI) environments. This system, which incorporates real-time optical monitoring of the vibration stimulus, can generate well-controlled and reproducible whisker deflections with amplitudes up to 2 mm and frequencies up to 75 Hz, suitable for functional magnetic resonance imaging (fMRI) studies of animals. Whiskers on either or both sides of the head can be stimulated selectively during fMRI experiments without removing the subject from the magnet. With a user-friendly graphical interface of a computer, a user can conveniently control both the whisker vibration and gating of the MR imager, and synchronize the stimulation with the fMRI acquisition to ensure precise timing of the stimulus presentation. This whisker stimulation system should facilitate a wide variety of fMRI investigations of the neural systems mediating sensory information from the whiskers. PMID:22322316

  8. EVALUATION OF LOCAL STRAIN EVOLUTION FROM METALLIC WHISKER FORMATION

    SciTech Connect

    Hoffman, E.; Lam, P.

    2011-05-11

    Evolution of local strain on electrodeposited tin films upon aging has been monitored by digital image correlation (DIC) for the first time. Maps of principal strains adjacent to whisker locations were constructed via comparing pre- and post-growth scanning electron microscopy (SEM) images. Results showed that the magnitude of the strain gradient plays an important role in whisker growth. DIC visualized the dynamic growth process in which the alteration of strain field has been identified to cause growth of subsequent whiskers.

  9. Pressureless sintering of whiskered-toughened ceramic composites

    DOEpatents

    Tiegs, Terry N.

    1994-01-01

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  10. Pressureless sintering of whisker-toughened ceramic composites

    DOEpatents

    Tiegs, T.N.

    1993-05-04

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  11. Pressureless sintering of whisker-toughened ceramic composites

    DOEpatents

    Tiegs, Terry N.

    1993-01-01

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  12. Future Titan Missions

    NASA Astrophysics Data System (ADS)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.

    2012-04-01

    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  13. Effects of cellulose whiskers on properties of soy protein thermoplastics.

    PubMed

    Wang, Yixiang; Cao, Xiaodong; Zhang, Lina

    2006-07-14

    Environmentally-friendly SPI/cellulose whisker composites were successfully prepared using a colloidal suspension of cellulose whiskers, to reinforce soy protein isolate (SPI) plastics. The cellulose whiskers, having an average length of 1.2 microm and diameter of 90 nm, respectively, were prepared from cotton linter pulp by hydrolyzing with sulfuric acid aqueous solution. The effects of the whisker content on the morphology and properties of the glycerol-plasticized SPI composites were investigated by scanning electron microscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, ultraviolet-visible spectroscopy, water-resistivity testing and tensile testing. The results indicated that, with the addition of 0 to 30 wt.-% of cellulose whiskers, strong interactions occurred both between the whiskers and between the filler and the SPI matrix, reinforcing the composites and preserving their biodegradability. Both the tensile strength and Young's modulus of the SPI/cellulose whisker composites increased from 5.8 to 8.1 MPa and from 44.7 to 133.2 MPa, respectively, at a relative humidity of 43%, following an increase of the whisker content from 0 to 30 wt.-%. Furthermore, the incorporation of the cellulose whiskers into the SPI matrix led to an improvement in the water resistance for the SPI-based composites.

  14. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    DOEpatents

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

  15. Plastic deformation of alumina reinforced with SiC whiskers

    SciTech Connect

    DeArellano-Lopez, A.R.; Dominguez-Rodriguez, A.; Goretta, K.C.; Routbort, J.L.

    1993-06-01

    Addition of small amounts of stiff reinforcement (SiC whiskers) to a polycrystalline AL{sub 2}O{sub 3} matrix partially inhibits grain boundary sliding because of an increase in threshold stress. When the concentration of whiskers is high enough, a pure diffusional mechanism takes over the control of plastic deformation of the composites. For higher whisker loadings, the materials creep properties depend on a microstructural feature different from the nominal grain size. A tentative correlation of this effective microstructural parameter with the spacing between the whiskers was established through a model.

  16. Nucleation and growth of tin whiskers

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Vianco, Paul T.; Zhang, Bei; Li, James C. M.

    2011-06-01

    Pure tin film of one micron thick was evaporated onto a silicon substrate with chromium and nickel underlayers. The tinned silicon disk was bent by applying a dead load at the center and supported below around the edge to apply biaxial compressive stresses to the tin layer. After 180 C vacuum annealing for 1,2,4,6, and 8 weeks, tin whiskers/hillocks grew. A quantitative method revealed that the overall growth rate decreased with time with a tendency for saturation. A review of the literature showed in general, tin whisker growth has a nucleation period, a growth period and a period of saturation, very similar to recrystallization or phase transformation. In fact we found our data fit Avrami equation very well. This equation shows that the nucleation period was the first week.

  17. Production of silicon carbide whiskers using a seeding component to determine shape and size of whiskers

    SciTech Connect

    Qi, D.; Coyle, R.T.; Tait, R.D.; Orth, R.J.

    1993-06-22

    A process for making silicon carbide whiskers is described which comprises heating in a substantially nonoxidized atmosphere a mixture of (1) a particulate form of carbon, (2) a silicon component selected from the group consisting of silica, hydrated silica and a source of silica, (3) a boron component, and (4) a seeding component comprising (a) an element selected from the group consisting of the rare earths, Group IA, Group IB, Group VB, Group VIB, Group VIIB, and Group VIII of the Periodic Table of Elements, or (b) a compound containing said element at temperatures sufficient to induce a reaction between carbon and silica in said mixture to form silicon carbide whiskers and controlling a size and shape of silicon carbide whiskers produced by the process by selecting a particulate size of the seeding component.

  18. Whisker Formation in Porosity in Al Alloys

    NASA Astrophysics Data System (ADS)

    Griffiths, William David; Elsayed, Ahmed; El-Sayed, Mahmoud Ahmed

    2016-12-01

    An examination of the fracture surfaces of tensile test bars from Al alloy castings held in the liquid state for up to 20 minutes revealed porosity which in some cases contained whisker-like features. Energy-dispersive X-ray analysis in a SEM suggested that these might be oxide whiskers forming in an oxide-related pore or double oxide film defect. Such entrainment defects (also known as bifilms) may entrap a small amount of the local atmosphere when they form and become incorporated into the liquid metal. This atmosphere may be predominantly air, which then subsequently reacts with the surrounding melt, firstly by reaction with oxygen and secondly by reaction with nitrogen. A CFD model of the heat distribution associated with the reactions between the interior atmosphere of a double oxide film defect and the surrounding liquid alloy suggested that highly localized increases in temperature, up to about 2000 K to 5000 K (1727 °C to 4727 °C), could occur, over a scale of a few hundred micrometers. Such localized increases in temperature might lead to the evaporation or disassociation of oxide within the pore, followed by condensation, to form the whisker structures observed. Hydrogen might also be expected to diffuse into the bifilm and may play a role in the chemical reactions associated with the development of the bifilm.

  19. Creep of whisker-reinforced ceramics

    SciTech Connect

    Routbort, J.L; Goretta, K.C. ); Dominguez-Rodriguez, A.; de Arellano-Lopez, A.R. )

    1991-01-01

    The results of high-temperature creep of various ceramic composites will be reviewed. In particular, creep results for Al{sub 2}O{sub 3} and Si{sub 3}N{sub 4} matrices reinforced with SiC whiskers will be emphasized. For a given temperature, stress and grain size, the creep rate of the Al{sub 2}O{sub 3} composite is usually lower than that of the ceramic matrix. In general, creep at low stresses occurs by grain boundary sliding accommodated by diffusion, whereas higher stresses lead to damage accumulation processes which are manifested by triple point cavitation and cracking. The quasi-steady-state creep rates depend on grain size, whisker concentration, and the amount of glass phase present between the boundary of the whisker and the matrix. Unless all of the parameters are known, including the fabrication and loading histories, comparisons between various studies that used samples prepared in different ways are difficult. 44 refs., 7 figs., 2 tabs.

  20. Tethys Before Titan

    NASA Image and Video Library

    2010-08-30

    Terrain on Saturn moon Tethys, defined with craters, is shown in front of the hazy atmosphere of the larger moon Titan in this image from NASA Cassini spacecraft. This view looks toward the Saturn-facing sides of Titan and Tethys.

  1. Mountains of Titan

    NASA Image and Video Library

    2012-12-14

    This map of Saturn moon Titan identifies the locations of mountains named by the International Astronomical Union. By convention, mountains on Titan are named for mountains from Middle-earth, the fictional setting in fantasy novels by J.R.R. Tolkien.

  2. Night Side of Titan

    NASA Image and Video Library

    1999-02-23

    NASA Voyager 2 obtained this wide-angle image of the night side of Titan on Aug. 25, 1979. This is a view of Titan extended atmosphere. the bright orangish ring being caused by the atmosphere scattering of the incident sunlight.

  3. Titan's Exotic Weather

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    2006-09-01

    Images of Titan, taken during the joint NASA and European Space Agency Cassini-Huygens mission, invoke a feeling of familiarity: washes wind downhill to damp lakebeds; massive cumuli form and quickly dissipate, suggestive of rain; and dark oval regions resemble lakes. These features arise from Titan's unique similarity with Earth: both cycle liquid between their surfaces and atmospheres, but in Titan's cool atmosphere it is methane that exists as a gas, liquid, and ice. While Titan enticingly resembles Earth, its atmosphere is 10 times thicker, so that its radiative time constant near the surface exceeds a Titan year, and prohibits large thermal gradients and seasonal surface temperature variations exceeding 3K. Titan also lacks oceans - central to Earth's climate - and instead stores much of its condensible in its atmosphere. As a result, Titan's weather differs remarkably from Earth's. Evidence for this difference appears in the location of Titan's large clouds, which frequent a narrow band at 40S latitude and a region within 30 latitude of the S. Pole. Ground-based and Cassini observations, combined with thermodynamic considerations, indicate that we are seeing large convective cloud systems. Detailed cloud models and general circulation models further suggest that these are severe rain storms, which will migrate with the change in season. Outside these migrating "gypsy" cloud bands, the atmosphere appears to be calm, humid and thus frequented by thin stratiform clouds. An intriguingly alien environment is predicted. Yet, the combined effects of Titan's patchy wet surface, atmospheric tides, possible ice volcanoes, and detailed seasonal variations remain unclear as we have witnessed only one season so far. This talk will review observations of Titan's lower atmosphere and modeling efforts to explain the observations, and explore the questions that still elude us.

  4. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers

    Treesearch

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Daniel J. Yelle; Gisela Buschle-Diller

    2011-01-01

    Nanoreinforced hydrogels with a unique network structure were prepared from wood cellulose whiskers coated with chemically modified wood hemicelluloses. The hemicelluloses were modified with 2-hydroxyethylmethacrylate prior to adsorption onto the cellulose whiskers in aqueous medium. Synthesis of the hydrogels was accomplished by in situ radical polymerization of the...

  5. Microstructural Observations on High Strength Polycrystalline Iron Whiskers.

    DTIC Science & Technology

    1978-08-01

    found that the whiskers consisted of a unique and complex microdispersion of iron oxides, iron carbide, and atomic carbon which bond the very small alpha ... iron crystallites into a non-porous microstructure of high integrity. The mixing of strong covalent bonding with metallic bonding is proposed to explain the exceptionally high tensile strength of the whiskers. (Author)

  6. Optical Microscopy Techniques to Inspect for Metallic Whiskers

    NASA Technical Reports Server (NTRS)

    Brusse, Jay A.

    2006-01-01

    Metal surface finishes of tin, zinc and cadmium are often applied to electronic components, mechanical hardware and other structures. These finishes sometimes unpredictably may form metal whiskers over periods that can take from hours to months or even many years. The metal whiskers are crystalline structures commonly having uniform cross sectional area along their entire length. Typical whisker dimensions are nominally on the order of only a few microns (um) across while their lengths can extend from a few microns to several millimeters. Metal whiskers pose a reliability hazard to electronic systems primarily as an electrical shorting hazard. The extremely narrow dimensions of metal whiskers can make observation with optical techniques very challenging. The videos herein were compiled to demonstrate the complexities associated with optical microscope inspection of electronic and mechanical components and assemblies for the presence or absence of metal whiskers. The importance of magnification, light source and angle of illumination play critical roles in being able to detect metal whiskers when present. Furthermore, it is demonstrated how improper techniques can easily obscure detection. It is hoped that these videos will improve the probability of detecting metal whiskers with optical inspection techniques.

  7. Biological effects of inhaled magnesium sulphate whiskers in rats.

    PubMed Central

    Hori, H; Kasai, T; Haratake, J; Ishimatsu, S; Oyabu, T; Yamato, H; Higashi, T; Tanaka, I

    1994-01-01

    Male Wistar rats were exposed to two types of magnesium sulphate whiskers by inhalation for six hours a day, five days a week, for four weeks (sub-chronic study), or for one year (chronic study) to clarify the biological effects of the whiskers. There were few whiskers detected in the rat lungs even at one day after the exposure, suggesting that they are dissolved and eliminated rapidly from the lungs. To measure the clearance rate of the whiskers from the lungs, an intratracheal instillation was performed in golden hamsters. The half life of the whiskers in the lung was determined as 17.6 minutes by temporally measuring the magnesium concentration up to 80 minutes after the instillation. A histopathological examination indicated a frequent occurrence of adenoma and carcinoma in the year after chronic exposure, but it was not significantly different between exposed and control rats. Images Figure 2 Figure 4 Figure 5 PMID:8044250

  8. Strengthening of phosphate ceramic foam by silicon carbide whiskers

    NASA Technical Reports Server (NTRS)

    Schetanov, B. V.; Prilepskiy, V. N.; Lapidovskaya, L. A.; Chernyak, A. I.; Romanovich, I. V.

    1987-01-01

    The influence of additions of SiC whiskers on the elastic modulus and flexural strength of phosphate ceramic foam is assessed. It is shown that the incorporation into the material composition of even small amounts (2.4 vol%) of SiC whiskers enhances the impact toughness and heat resistance of the ceramic foam. A 12.3 vol% of SiC whiskers leads to a more than threefold increase of the flexural strength. Strengthening of the phosphate ceramic foam is due to the fact that the whiskers hinder the propagation of matrix crack by increasing the work of matrix fracture. The whiskers reinforce only that volume of material which is occupied by solid matter, whereas they do not reinforce the pores.

  9. Strengthening of phosphate ceramic foam by silicon carbide whiskers

    NASA Technical Reports Server (NTRS)

    Schetanov, B. V.; Prilepskiy, V. N.; Lapidovskaya, L. A.; Chernyak, A. I.; Romanovich, I. V.

    1987-01-01

    The influence of additions of SiC whiskers on the elastic modulus and flexural strength of phosphate ceramic foam is assessed. It is shown that the incorporation into the material composition of even small amounts (2.4 vol%) of SiC whiskers enhances the impact toughness and heat resistance of the ceramic foam. A 12.3 vol% of SiC whiskers leads to a more than threefold increase of the flexural strength. Strengthening of the phosphate ceramic foam is due to the fact that the whiskers hinder the propagation of matrix crack by increasing the work of matrix fracture. The whiskers reinforce only that volume of material which is occupied by solid matter, whereas they do not reinforce the pores.

  10. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on

  11. ISO Spectroscopy of Titan

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Salama, A.; Lellouch, E.; Encrenaz, Th.; Schulz, B.; Feuchtgruber, H.; Gautier, D.; Ott, S.; de Graauw, Th.; Kessler, M. F.

    2000-11-01

    In the spectroscopic mode, Titan was observed by ISO in 1997 by SWS/Grating, PHT-S and CAM/CVF. The combination of these data provides Titan's spectrum from 5 to 17 and from 2.5 to 5 μm with resolving powers ranging from 40 (CAM/CVF) to 2000 (SWS). The analysis of the spectra provides information on (a) Titan's atmospheric structure (temperature and composition) and (b) Titan's surface (through the emission observed in the 2.9-micron window). In this paper we concentrate on the 7 to 9 and 2.5 to 5 micron regions. A temperature profile for Titan's disk is inferred from the analysis of the 7.7 μm CH4 band. The CH3D abundance is estimated to be 7.5 (+4.0-3.7) × 10-6, for a D/H ratio of 9.5 (+9.5-1.0) × 10-5. The 2.9 methane ``window'' on Titan is observed in its full shape for the first time. It shows two peaks at 2.7 and 2.8 μm, and an absorption feature at 2.75 μm, which may be the spectral signature of a surface component on Titan.

  12. Not So Titanic

    NASA Image and Video Library

    2015-07-13

    Titan may be a "large" moon -- its name even implies it! -- but it is still dwarfed by its parent planet, Saturn. As it turns out, this is perfectly normal. Although Titan (3200 miles or 5150 kilometers across) is the second-largest moon in the solar system, Saturn is still much bigger, with a diameter almost 23 times larger than Titan's. This disparity between planet and moon is the norm in the solar system. Earth's diameter is "only" 3.7 times our moon's diameter, making our natural satellite something of an oddity. (Another exception to the rule: dwarf planet Pluto's diameter is just under two times that of its moon.) So the question isn't why is Titan so small (relatively speaking), but why is Earth's moon so big? This view looks toward the anti-Saturn hemisphere of Titan. North on Titan is up. The image was taken with the Cassini spacecraft wide-angle camera on April 18, 2015 using a near-infrared spectral filter with a passband centered at 752 nanometers. The view was acquired at a distance of approximately 930,000 miles (1.5 million kilometers) from Titan. Image scale is 56 miles (90 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18326

  13. Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation.

    PubMed

    Stüttgen, Maik C; Kullmann, Stephanie; Schwarz, Cornelius

    2008-10-01

    Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation. Rats use their mobile set of whiskers to actively explore their environment. Parameters that play a role to generate movement dynamics of the whisker shaft within the follicle, thus activating primary afferents, are manifold: among them are mechanical properties of the whiskers (curvature, elasticity and taper), active movements (head, body, and whiskers), and finally, object characteristics (surface, geometry, position, and orientation). Hence the whisker system is confronted with forces along all three axes in space. Movements along the two latitudinal axes of the whisker (horizontal and vertical) have been well studied. Here we focus on movement along the whisker's longitudinal axis that has been neglected so far. We employed ramp-and-hold movements that pushed the whisker shaft toward the skin and quantified the resulting activity in trigeminal first-order afferents in anesthetized rats. Virtually all recorded neurons were highly sensitive to longitudinal movement. Neurons could be perfectly segregated into two groups according to their modulation by stimulus amplitude and velocity, respectively. This classification regimen correlated perfectly with the presence or absence of slowly adapting responses in longitudinal stimulation but agreed with classification derived from latitudinal stimulation only if the whisker was engaged in its optimal direction and set point. We conclude that longitudinal stimulation is an extremely effective means to activate the tactile pathway and thus is highly likely to play an important role in tactile coding on the ascending somatosensory pathway. In addition, compared with latitudinal stimulation, it provides a reliable and easy to use method to classify trigeminal first-order afferents.

  14. Tectonic features on Titan

    NASA Astrophysics Data System (ADS)

    Cook, C.; Barnes, J.

    2011-10-01

    This research is based on the exploration of tectonic patterns on Titan from a global perspective. Several moons in the outer solar system display known stress fields driven or modified by global forces which affect patterns of tectonism. Patterns such as these are seen in Europa's tidal forces, Enceladus' tiger strips, and Ganymede's global expansion. Given its proximity to Saturn, as well as its eccentric orbit, tectonic features and global stresses may be present on Titan as well. Titan displays visible tectonic structures, such as mountain chains along its equator (Radebaugh et al. 2007), as well as the unexplored Virgae.

  15. Titan's organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  16. Titan's organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  17. Potassium Iodide

    MedlinePlus

    ... radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. ... only take potassium iodide if there is a nuclear radiation emergency and public officials tell you that you ...

  18. Silicon carbide whiskers: Characterization and aerodynamic behaviors

    SciTech Connect

    Cheng, Y.S.; Smith, S.M.; Johnson, N.F.; Powell, Q.H.

    1995-10-01

    Silicon carbide (SiC) whiskers are fiberlike materials with a wide range of industrial applications. Industrial hygiene samplings of the material are taken to monitor and control possible exposures to workers. This study characterizes an SiC whisker in detail, including its width-length distribution, aspect ratio, particle density, and aerodynamic size distribution. The SiC whiskers were aerosolized, and samples from a filter, cascade impactor, and aerosol centrifuge were taken. The diameter-length distribution of SiC fibers determined by electron microscopy from filter samples was found to follow the bivariate lognormal distribution. The aerodynamic size of a fiber aerosol depends not only on the particle dimension and density but also on the orientation of its axis with respect to flow. The results show that the aerodynamic size distribution obtained from the impactor was consistent with the predicted value, assuming the long axis of the fiber was parallel to the flow toward the collection substrate. On the other hand, the aerodynamic size in the aerosol centrifuge was consistent with results for a perpendicular orientation. A larger aerodynamic size (20--25%) was obtained in the case of impactor data as compared with centrifuge data. The respirable fraction estimated from the cascade impactor data was 65%, consistent with the estimate from bivariate analysis (67%) but smaller than the estimated fraction from the aerosol centrifuge (76%). The results show that the data obtained with the bivariate analysis of fiber dimensions had good correlation with the cascade impactor data, and this approach can be used to predict the aerodynamic size distribution and the size-selective fractions for fiber aerosols from filter samples.

  19. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  20. Before Hazy Titan

    NASA Image and Video Library

    2010-04-12

    Saturn moon Dione passes in front of the larger moon Titan, as seen from NASA Cassini spacecraft. This image is part of a mutual event sequence in which one moon passes close to or in front of another.

  1. Titan Kraken Mare

    NASA Image and Video Library

    2011-11-28

    NASA Cassini spacecraft looks toward Saturn largest moon, Titan, and spies the huge Kraken Mare in the moon north. Kraken Mare, a large sea of liquid hydrocarbons, is visible as a dark area near the top of the image.

  2. Equatorial Titan Clouds

    NASA Image and Video Library

    2011-03-17

    NASA Cassini spacecraft chronicles the change of seasons as it captures clouds concentrated near the equator of Saturn largest moon, Titan. Methane clouds in the troposphere, the lowest part of the atmosphere, appear white here.

  3. Titan Two Halves

    NASA Image and Video Library

    2010-05-13

    Two different seasons on Titan in different hemispheres can be seen in this image. The moon northern half appears slightly darker than the southern half in this view taken in visible blue light by NASA Cassini spacecraft.

  4. Raising the Titanic.

    ERIC Educational Resources Information Center

    Baker, Romona

    1990-01-01

    Described is an activity in which groups of students investigate engineering principles by writing a feasibility study to raise the luxury liner, Titanic. The problem statement and directions, and suggestions for problem solutions are included. (CW)

  5. Mapping Titan Cloud Coverage

    NASA Image and Video Library

    2010-09-21

    This graphic, constructed from data obtained by NASA Cassini spacecraft, shows the percentage of cloud coverage across the surface of Saturn moon Titan. The color scale from black to yellow signifies no cloud coverage to complete cloud coverage.

  6. Raising the Titanic.

    ERIC Educational Resources Information Center

    Baker, Romona

    1990-01-01

    Described is an activity in which groups of students investigate engineering principles by writing a feasibility study to raise the luxury liner, Titanic. The problem statement and directions, and suggestions for problem solutions are included. (CW)

  7. The greenhouse of Titan.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Analysis of non-gray radiative equilibrium and gray convective equilibrium on Titan suggests that a massive molecular-hydrogen greenhouse effect may be responsible for the disagreement between the observed IR temperatures and the equilibrium temperature of an atmosphereless Titan. Calculations of convection indicate a probable minimum optical depth of 14 which corresponds to a molecular hydrogen shell of substantial thickness with total pressures of about 0.1 bar. It is suggested that there is an equilibrium between outgassing and blow-off on the one hand and accretion from the protons trapped in a hypothetical Saturnian magnetic field on the other, in the present atmosphere of Titan. It is believed that an outgassing equivalent to the volatilization of a few kilometers of subsurface ice is required to maintain the present blow-off rate without compensation for all geological time. The presence of an extensive hydrogen corona around Titan is postulated, with surface temperatures up to 200 K.

  8. Titan's magnetospheric interaction

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Gurnett, D. A.; Scudder, J. D.; Hartle, R. E.

    1984-01-01

    Voyager 1 encounter data are used to theoretically examine the interaction of Titan with the solar wind, the Saturn magnetosheath and the Saturn magnetosphere. The spacecraft data comprised magnetometer, plasma wave, radio signal and charged particle measurements. Attention is given to the Alfven (1.9) and Mach (0.57) numbers detected in the Saturn magnetosheath, along with a fast hydrodynamic Mach number of 0.55. Incident plasma interacted with the Titan atmosphere and produced a magnetosphere through mass capture and field-line draping. The tail region was loaded with N(+) and N2(+)/H2CN(+) ions instead of the strong H(+) signals typical of other regions. The magnetotail featured four lobes, and the Titan atmosphere was calculated to lose 10 to the 24th ions/sec. Finally, the Titan internal rotationally aligned magnetic field has an estimated strength of 7 x 10 to the 20th gauss/cu cm.

  9. Titan and Tethys

    NASA Image and Video Library

    2010-12-20

    NASA Cassini spacecraft watches a pair of Saturn moons, showing the hazy orb of giant Titan beyond smaller Tethys. In the foreground of the image, Ithaca Chasma can be seen running roughly north-south on Tethys.

  10. Space Art "Titan"

    NASA Image and Video Library

    2006-09-13

    Artist Daniel Zeller used the breathtaking imagery from the Cassini spacecraft as a departure point to interpret the intricate surface of Saturn’s moon Titan in this peice titled "Titan". Cassini entered Saturn's orbit in July of 2004 after a seven-year voyage. It then began a four-year mission that includes more than 70 orbits around the ringed planet and its moons. Ink on Paper, 17x21. 2006. Copyrighted: For more information contact Curator, NASA Art Program.

  11. Clash of the Titans

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2010-01-01

    WebQuests and the 5E learning cycle are titans of the science classroom. These popular inquiry-based strategies are most often used as separate entities, but the author has discovered that using a combined WebQuest and 5E learning cycle format taps into the inherent power and potential of both strategies. In the lesson, "Clash of the Titans,"…

  12. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  13. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  14. Titan - Some new results

    NASA Astrophysics Data System (ADS)

    Owen, T.; Gautier, D.

    New analyses of Voyager spectra of Titan have led to improvements in the determination of abundances of minor constituents as a function of latitude and altitude. Ground-based microwave observations have extended the Voyager results for HCN, and have demonstrated that CO is mysteriously deficient in the stratosphere. The origin of the CH4, CO, and N2 in Titan's atmosphere is still unresolved. Both primordial and evolutionary sources are compatible with the available evidence.

  15. Clash of the Titans

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2010-01-01

    WebQuests and the 5E learning cycle are titans of the science classroom. These popular inquiry-based strategies are most often used as separate entities, but the author has discovered that using a combined WebQuest and 5E learning cycle format taps into the inherent power and potential of both strategies. In the lesson, "Clash of the Titans,"…

  16. Automated tracking of whiskers in videos of head fixed rodents.

    PubMed

    Clack, Nathan G; O'Connor, Daniel H; Huber, Daniel; Petreanu, Leopoldo; Hires, Andrew; Peron, Simon; Svoboda, Karel; Myers, Eugene W

    2012-01-01

    We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (>500 Hz) of head-fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a 640 px×352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at the sensory follicle that most underlie haptic perception.

  17. Low-temperature magnetoresistance of GaSb whiskers

    NASA Astrophysics Data System (ADS)

    Druzhinin, A.; Ostrovskii, I.; Khoverko, Yu.; Liakh-Kaguy, N.

    2017-06-01

    Transverse and longitudinal magnetoresistancies in n-type GaSb whiskers with different doping concentration (Te) in the vicinity to the metal-insulator transition (MIT) from metal side of the transition were studied in the temperature range 1.5-60 K and magnetic field 0-14 T. Shubnikov-de Haas oscillations in GaSb whiskers at low temperatures were revealed in magnetic field range 2-12 T. The oscillation period 0.025T-1 was found at various doping concentration in GaSb whiskers. The effective mass of electrons mc = 0.041m0 and Dingle temperature of about 7.5 K were found in GaSb whiskers with impurity concentration in the vicinity to MIT. The presence of negative magnetoresistance in GaSb whiskers with the impurity concentration in the nearest approximation to MIT with resistivity ρ300 K = 0.0053 Ω cm was observed and associated with weak localization. Besides for the whiskers a resistance minimum was observed at temperature about 16 K that is connected with Kondo effect. Magnetoresistance studies of n-type conductivity for GaSb whiskers revealed the crossover from weak localization to antilocalization in the temperature range of 1.4-4.2 K and magnetic fields below 1 T.

  18. Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements

    PubMed Central

    Bosman, Laurens W. J.; Houweling, Arthur R.; Owens, Cullen B.; Tanke, Nouk; Shevchouk, Olesya T.; Rahmati, Negah; Teunissen, Wouter H. T.; Ju, Chiheng; Gong, Wei; Koekkoek, Sebastiaan K. E.; De Zeeuw, Chris I.

    2011-01-01

    The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception. PMID:22065951

  19. Automated Tracking of Whiskers in Videos of Head Fixed Rodents

    PubMed Central

    Clack, Nathan G.; O'Connor, Daniel H.; Huber, Daniel; Petreanu, Leopoldo; Hires, Andrew; Peron, Simon; Svoboda, Karel; Myers, Eugene W.

    2012-01-01

    We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (>500 Hz) of head-fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a 640 px×352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at the sensory follicle that most underlie haptic perception. PMID:22792058

  20. Synthesis and characterization of SiC whiskers

    SciTech Connect

    Wang, L.; Wada, H. ); Allard, L.F. )

    1992-01-01

    SiC whiskers were synthesized by the carbothermal reduction of silica with an addition of halide (3NaF{center dot}AlF{sub 3} or NaF) as an auxiliary bath. The whiskers were {beta} phase (3C) and grew in the (111) direction. Three distinctive morphologies were observed: (1) Type A: thin and straight; (2) Type B: thick and bamboo-like; and (3) Type C: thick, straight, and smooth. Type A whiskers contained a high density of basal plane (111) stacking faults along their entire length, whereas Type B whiskers showed periodic changes between stacking faults and well-defined single crystals. Type C whiskers showed stacking faults on the other {l brace}111{r brace} planes instead of on the basal (111) plane. Silica formed molten fluorosilicate with halide and SiC grew via a vapor-solid reaction mechanism through gaseous SiO. These reactions can be expressed as (SiO{sub 2})+C(s)=SiO(g)+CO(g) and SiO(g)+3CO(g)=SiC(s)+2CO{sub 2}(g). The effects of processing parameters on the morphology and size of the whiskers were examined and the relationship between the morphological development of the whiskers and the stacking fault energy was determined.

  1. Dunelands of Titan

    NASA Image and Video Library

    2015-11-02

    Saturn's frigid moon Titan has some characteristics that are oddly similar to Earth, but still slightly alien. It has clouds, rain and lakes (made of methane and ethane), a solid surface (made of water ice), and vast dune fields (filled with hydrocarbon sands). The dark, H-shaped area seen here contains two of the dune-filled regions, Fensal (in the north) and Aztlan (to the south). Cassini's cameras have frequently monitored the surface of Titan (3200 miles or 5150 kilometers across) to look for changes in its features over the course of the mission. Any changes would help scientists better understand different phenomena like winds and dune formation on this strangely earth-like moon. For a closer view of Fensal-Aztlan, see PIA07732 . This view looks toward the leading side of Titan. North on Titan is up. The image was taken with the Cassini spacecraft narrow-angle camera on July 25, 2015 using a spectral filter sensitive to wavelengths of near-infrared light centered at 938 nanometers. The view was obtained at a distance of approximately 450,000 miles (730,000 kilometers) from Titan and at a Sun-Titan-spacecraft, or phase, angle of 32 degrees. Image scale is 3 miles (4 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18341

  2. Is Titan Partially Differentiated?

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Pappalardo, R. T.; Stevenson, D. J.

    2009-12-01

    The recent measurement of the gravity coefficients from the Radio Doppler data of the Cassini spacecraft has improved our knowledge of the interior structure of Titan (Rappaport et al. 2008 AGU, P21A-1343). The measured gravity field of Titan is dominated by near hydrostatic quadrupole components. We have used the measured gravitational coefficients, thermal models and the hydrostatic equilibrium theory to derive Titan's interior structure. The axial moment of inertia gives us an indication of the degree of the interior differentiation. The inferred axial moment of inertia, calculated using the quadrupole gravitational coefficients and the Radau-Darwin approximation, indicates that Titan is partially differentiated. If Titan is partially differentiated then the interior must avoid melting of the ice during its evolution. This suggests a relatively late formation of Titan to avoid the presence of short-lived radioisotopes (Al-26). This also suggests the onset of convection after accretion to efficiently remove the heat from the interior. The outer layer is likely composed mainly of water in solid phase. Thermal modeling indicates that water could be present also in liquid phase forming a subsurface ocean between an outer ice I shell and a high pressure ice layer. Acknowledgments: This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  3. Titan's surface and atmosphere

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  4. The Titan Space Launch System

    NASA Astrophysics Data System (ADS)

    Keeley, J. T.

    1981-04-01

    The Titan III Space Launch Vehicle (SLV) System providing reliable fast response booster capability is discussed. Early Titans, including Titans I and II and the Gemini launch vehicle are described, and the elements of the Titan III, including the upper stages, payload fairings, and launch facilities are presented. The liquid boost module for STS performance augmentation and the Titan 34D SLV System are also discussed. The Titan III SLV System demonstrates excellent versatility while maintaining a high reliability record during thirteen years of operational flights, and provides optional use of solid thrust augmentation and launch sites on both Coasts.

  5. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  6. Graphite whiskers in CV3 meteorites.

    PubMed

    Fries, Marc; Steele, Andrew

    2008-04-04

    Graphite whiskers (GWs), an allotrope of carbon that has been proposed to occur in space, have been discovered in three CV-type carbonaceous chondrites via Raman imaging and electron microscopy. The GWs are associated with high-temperature calcium-aluminum inclusion (CAI) rims and interiors, with the rim of a dark inclusion, and within an inclusion inside an unusual chondrule that bears mineralogy and texture indicative of high-temperature processing. Current understanding of CAI formation places their condensation, and that of associated GWs, relatively close to the Sun and early in the condensation sequence of protoplanetary disk materials. If this is the case, then it is a possibility that GWs are expelled from any young solar system early in its history, thus populating interstellar space with diffuse GWs. Graphite whiskers have been postulated to play a role in the near-infrared (near-IR) dimming of type Ia supernovae, as well as in the thermalization of both the cosmic IR and microwave background and in galactic center dimming between 3 and 9 micrometers. Our observations, along with the further possibility that GWs could be manufactured during supernovae, suggest that GWs may have substantial effects in observational astronomy.

  7. Witnessing Springtime on Titan

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Have you ever wondered what springtime is like on Saturns largest moon, Titan? A team of researchers has analyzed a decade of data from the Cassini spacecraft to determine how Titans gradual progression through seasons has affected its temperatures.Observing the Saturn SystemThough Titan orbits Saturn once every ~16 days, it is Saturns ~30-year march around the Sun that sets Titans seasons: each traditional season on Titan spans roughly 7.5 years. Thus, when the Cassini spacecraft first arrived at Saturn in 2004 to study the giant planet and its ring system and moons, Titans northern hemisphere was in early winter. A decade later, the season in the northern hemisphere had advanced to late spring.A team scientists led by Donald Jennings (Goddard Space Flight Center) has now used data from the Composite Infrared Spectrometer (CIRS) on board Cassini to analyze the evolution of Titans surface temperature between 2004 and 2014.Changing of SeasonsSurface brightness temperatures (with errors) on Titan are shown in blue for five time periods between 2004 and 2014. The location of maximum temperature migrates from 19S to 16N over the decade. Two climate models are also shown in green (high thermal inertia) and red (low thermal inertia). [Jennings et al. 2016]CIRS uses the decreased opacity of Titans atmosphere at 19 m to detect infrared emission from Titans surface at this wavelength. From this data, Jennings and collaborators determine Titans surface temperature for five time intervals between 2004 and 2014. They bin the data into 10 latitude bins that span from the south pole (90S) to the north pole (90N).The authors find that the maximum temperature on the moon stays stable over the ten-year period at 94 K, or a chilly -240F). But as time passes, the latitude with the warmest temperature shifts from 19S to 16N, marking the transition from early winter to late spring. Over the decade of monitoring, the surface temperature near the south pole decreased by ~2 K, and that

  8. Adsorption Behavior of Pb(II) Onto Potassium Polytitanate Nanofibres.

    PubMed

    Shahid, Mohammad; Tiling, Leonard D; El Saliby, Ibrahim; McDonagh, Andrew; Kim, Jong-Beom; Kim, Jong-Ho; Shon, Ho Kyong

    2016-02-01

    Potassium polytitanate nanofibres prepared by a hydrothermal method were investigated for their possible application in removing toxic metals from aqueous solution. Particular attention was paid to employing the titanate as a novel effective adsorbent for the removal of Pb(II). Batch adsorption experiments demonstrated that the adsorption was influenced by various conditions such as solution pH, adsorbent dosage and initial Pb(II) concentration. The results showed that the adsorption rate was faster in the first 5 min and equilibrium was achieved after 180 min. The maximum amount of adsorption was detected at pH 5. Potassium titanate showed much higher adsorption capacity compared to P25. The kinetic studies indicated that the adsorption of Pb(II) onto titanate best fit the pseudo-second-order kinetic model. FTIR spectra revealed that the hydroxyl groups in titanate were responsible for Pb(II) adsorption. The principal mechanism of the adsorption of Pb(II) in the present study is attributed to both ion exchange and oxygen bonding. The adsorption-desorption results demonstrated that the titanate could be readily regenerated after adsorption. Therefore, the present titanate exhibits great potential for the removal of Pb(II) from wastewater.

  9. Mullite-whisker reinforced molybdenum disilicide composites

    NASA Astrophysics Data System (ADS)

    McFayden, Andre Anthony

    Molybdenum disilicide (MoSisb2) is a potential high temperature structural material. The use of such materials may raise the operating temperatures of heat engines and therefore their efficiencies, leading to fuel savings. Molybdenum disilicide has good oxidation resistance to 1650sp°C and high temperature strength to about 1000sp°C. This work was an attempt to improve the poor room temperature toughness and high temperature creep resistance of this material. Mullite was used as a reinforcement in the form of whiskers. Whiskers may increase the toughness of a matrix by extrinsic mechanisms, while mullite has intrinsically high creep resistance. Mechanical property predictions were made for the proposed composite material. The toughening mechanisms examined were crack bridging, pullout, crack deflection and microcracking. For the bridging model alone, a doubling of the fracture toughness was expected for a 40 percent mullite whisker volume. The creep models examined were the isostress, isostrain, shear-lag and self-consistent scheme. The shear-lag model predicted a factor of five decrease in the creep rate compared to pure MoSisb2. Composites of MoSisb2 containing 0, 20 and 40 volume percent of mullite were fabricated by means of a powder processing route. This involved mixing powders of the component materials, followed by hot-pressing and hot isostatic pressing to form a composite body. Both equi-axed particles and elongated whiskers of mullite were used. The mullite whisker size, powder mixing time, and glass content of the initial MoSisb2 powder were also varied. The resulting materials were subjected to mechanical testing. At room temperature, indentation testing was used to determine the toughness and modulus of the composites. Indented beams were subjected to four-point bending until failure to determine the toughness. The maximum fracture toughness measured was 1.7 MPasurdm, compared to 1.6 MPasurdm for the matrix, with very little variation with

  10. Electromagnetic properties of ice-coated iron whiskers

    NASA Astrophysics Data System (ADS)

    Jazbi, B.; Hoyle, F.; Wickramasinghe, N. C.

    1990-12-01

    In their recent papers, Hoyle and Wickramasinghe (1988, 1989) and Hoyle et al. (1990) argued that iron whiskers condensing in supernovae could be expelled from entire galaxies to become dispersed over cosmological distance scales and to generate a cosmic microwave background by thermalizing optical and NIR radiation from stellar sources. In this paper, the effect of H2O-ice mantles on infinitely long cylindrical metallic whiskers is investigated using the rigorous Kerker-Matijevic (1961) formulae. It is shown that ice coating does not significantly alter the cosmologically relevant properties of uncoated metallic whiskers.

  11. Pressureless sintering of whiskered-toughened ceramic composites

    DOEpatents

    Tiegs, T.N.

    1994-12-27

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method. 6 figures.

  12. A Nonlinear Viscous Model for Sn-Whisker Growth

    NASA Astrophysics Data System (ADS)

    Yang, Fuqian

    2016-12-01

    Based on the mechanism of the grain boundary fluid flow, a nonlinear viscous model for the growth of Sn-whiskers is proposed. This model consists of two units, one with a stress exponent of one and one with a stress exponent of n -1. By letting one of the constants be zero in the model, the constitutive relationship reduces to a linear flow relation or a power-law relation, representing the flow behavior of various metals. Closed-form solutions for the growth behavior of a whisker are derived, which can be used to predict the whisker growth and the stress evolution.

  13. Atomizing apparatus for making polymer and metal powders and whiskers

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  14. Peering Through Titan Haze

    NASA Image and Video Library

    2015-12-04

    This composite image shows an infrared view of Saturn's moon Titan from NASA's Cassini spacecraft, acquired during the mission's "T-114" flyby on Nov. 13, 2015. The spacecraft's visual and infrared mapping spectrometer (VIMS) instrument made these observations, in which blue represents wavelengths centered at 1.3 microns, green represents 2.0 microns, and red represents 5.0 microns. A view at visible wavelengths (centered around 0.5 microns) would show only Titan's hazy atmosphere (as in PIA14909). The near-infrared wavelengths in this image allow Cassini's vision to penetrate the haze and reveal the moon's surface. During this Titan flyby, the spacecraft's closest-approach altitude was 6,200 miles (10,000 kilometers), which is considerably higher than those of typical flybys, which are around 750 miles (1,200 kilometers). The high flyby allowed VIMS to gather moderate-resolution views over wide areas (typically at a few kilometers per pixel). The view looks toward terrain that is mostly on the Saturn-facing hemisphere of Titan. The scene features the parallel, dark, dune-filled regions named Fensal (to the north) and Aztlan (to the south), which form the shape of a sideways letter "H." Several places on the image show the surface at higher resolution than elsewhere. These areas, called subframes, show more detail because they were acquired near closest approach. They have finer resolution, but cover smaller areas than data obtained when Cassini was farther away from Titan. Near the limb at left, above center, is the best VIMS view so far of Titan's largest confirmed impact crater, Menrva (first seen by the RADAR instrument in PIA07365). Similarly detailed subframes show eastern Xanadu, the basin Hotei Regio, and channels within bright terrains east of Xanadu. (For Titan maps with named features see http://planetarynames.wr.usgs.gov/Page/TITAN/target.) Due to the changing Saturnian seasons, in this late northern spring view, the illumination is significantly

  15. Titan: Callisto With Weather?

    NASA Astrophysics Data System (ADS)

    Moore, J. M.; Pappalardo, R. T.

    2008-12-01

    Instead of being endogenically active, Titan's interior may be cold and dead. Those landforms on Titan that are unambiguously identifiable can all be explained by exogenic processes (aeolian, fluvial, impact cratering, and mass wasting). At the scale of available imaging data, the surface is dominated by vast dune ergs and by fluvial erosion, transportation, and deposition. The sparse distribution of recognizable impact craters (themselves exogenic) is consistent with the presence of aeolian and fluvial activity sufficient to cover and or erode smaller craters, leaving only large ones. Previous suggestions of endogenically produced landforms have been, without exception, inconclusively identified. Features suggested to be cryovolcanic flows may be debris flows and other mass movements, facilitated by hydrocarbon-fluidized unconsolidated materials. Ganesa Macula has been suggested as a putative cryovolcanic dome, but it may simply be an impact structure that contains radar-dark dune or mass-wasted materials. Mountains, which are heavily modified by fluvial and mass wasting processes, could have formed as the scarps of large impact features and/or by slow contraction due to global cooling and freezing of an internal ammonia-water ocean, rather than by endogenically powered orogeny. A cold and inactive interior is consistent with an internal ammonia-water ocean, which has a peritectic temperature of 173K, easily obtained in Titan by radioactive decay alone in the absence of tidal heating. Titan's orbital eccentricity should have damped if its interior is warm and dissipative; instead, its high eccentricity can be ancient if the interior is assumed to be cold and non-dissipative. Indeed, it has been suggested that Titan may be non-hydrostatic, consistent with a thick ice shell and a cold and rigid interior. We suggest that the satellite most akin to Titan may be Callisto. Like Callisto, which may have formed relatively slowly in the outer circumjovian accretion disk

  16. Silicate interactions with ammonia-water fluids on early Titan

    NASA Technical Reports Server (NTRS)

    Engel, Steffi; Lunine, Jonathan I.

    1994-01-01

    Plausible models of the early history of Titan suggest that ammonia and water were present in liquid form at the surface. We show here by thermodynamic modeling that such an ocean could have reacted with silicates to put substantial quantities of sodium and potassium into solution. Following the formation of an ice crust by cooling, mantle ammonia-water fluids enriched in potassium would have been brought to the surface through the cryogenic equivalent of volcanism. Later impacts would have released the Ar-40 produced by decay of the K-40 into the atmosphere. The abundance of atmospheric Ar-40, measurable by the Huygens probe gas chromatograph mass spectrometer, may be dominated by this source and hence gives a proxy indication of the volume of ammonia-water resurfacing on Titan over geologic time.

  17. Silicate interactions with ammonia-water fluids on early Titan

    NASA Astrophysics Data System (ADS)

    Engel, S.; Lunine, J. I.

    1994-02-01

    Plausible models of the early history of Titan suggest that ammonia and water were present in liquid form at the surface. We show here by thermodynamic modeling that such an ocean could have reacted with silicates to put substantial quantities of sodium and potassium into solution. Following the formation of an ice crust by cooling, mantle ammonia-water fluids enriched in potassium would have been brought to the surface through the cryogenic equivalent of volcanism. Later impacts would have released the Ar-40 produced by decay of the K-40 into the atmosphere. The abundance of atmospheric Ar-40, measurable by the Huygens probe gas chromatograph mass spectrometer, may be dominated by this source and hence gives a proxy indication of the volume of ammonia-water resurfacing on Titan over geologic time.

  18. Silicate interactions with ammonia-water fluids on early Titan

    NASA Technical Reports Server (NTRS)

    Engel, Steffi; Lunine, Jonathan I.

    1994-01-01

    Plausible models of the early history of Titan suggest that ammonia and water were present in liquid form at the surface. We show here by thermodynamic modeling that such an ocean could have reacted with silicates to put substantial quantities of sodium and potassium into solution. Following the formation of an ice crust by cooling, mantle ammonia-water fluids enriched in potassium would have been brought to the surface through the cryogenic equivalent of volcanism. Later impacts would have released the Ar-40 produced by decay of the K-40 into the atmosphere. The abundance of atmospheric Ar-40, measurable by the Huygens probe gas chromatograph mass spectrometer, may be dominated by this source and hence gives a proxy indication of the volume of ammonia-water resurfacing on Titan over geologic time.

  19. Aluminum nitride-silicon carbide whisker composites: Processing, properties, and microstructural stability

    SciTech Connect

    Cross, M.T.

    1990-01-01

    Aluminum nitride -- silicon carbide whisker composites with up to 20 vol % whiskers were fabricated by pressureless sintering (1750{degree}--1800{degree}C) and by hot-pressing (1700{degree}--1800{degree}C). Silicon carbide whiskers were found to degrade depending on the type of protective powder bed used during sintering. Whiskers were found to degraded in high oxygen containing samples by reaction with sintering additives. Whisker degradation was also due to the formation of silicon carbide -- aluminum nitride solid solution. No whisker degradation was observed in hot-pressed samples. For these samples Young's modulus and fracture toughness were measured. A 33% increase in the fracture toughness was measured by the indentation technique for a 20 vol % whisker composite. Operative toughening mechanisms were investigated using scanning electron microscopy. Crack deflection and whisker bridging were the dominant mechanisms. It was also shown that load transfer from matrix to whiskers can be a contributing factor to toughening. 88 refs., 34 figs., 11 tabs.

  20. Investigation of Thermo-Mechanical Effects in Silicon Carbide Whisker/Al Alloy Composites

    DTIC Science & Technology

    1990-06-01

    reinforced aluminum composite material. This material is composed of typically 15-20 volume percent whiskers in various aluminum alloy matrices and has...dominate failure in the present composite systems of interest (i.e. SiC/ 2124 and 2 SiC/6061). These particles, identified through X-ray analysis as AI2...pure aluminum matrix, at least up to a tempera- ture of 400 0C. At temperatures higher than this it appears as if precipitation strengthening offers

  1. Titan's atmosphere and climate

    NASA Astrophysics Data System (ADS)

    Hörst, S. M.

    2017-03-01

    Titan is the only moon with a substantial atmosphere, the only other thick N2 atmosphere besides Earth's, the site of extraordinarily complex atmospheric chemistry that far surpasses any other solar system atmosphere, and the only other solar system body with stable liquid currently on its surface. The connection between Titan's surface and atmosphere is also unique in our solar system; atmospheric chemistry produces materials that are deposited on the surface and subsequently altered by surface-atmosphere interactions such as aeolian and fluvial processes resulting in the formation of extensive dune fields and expansive lakes and seas. Titan's atmosphere is favorable for organic haze formation, which combined with the presence of some oxygen-bearing molecules indicates that Titan's atmosphere may produce molecules of prebiotic interest. The combination of organics and liquid, in the form of water in a subsurface ocean and methane/ethane in the surface lakes and seas, means that Titan may be the ideal place in the solar system to test ideas about habitability, prebiotic chemistry, and the ubiquity and diversity of life in the universe. The Cassini-Huygens mission to the Saturn system has provided a wealth of new information allowing for study of Titan as a complex system. Here I review our current understanding of Titan's atmosphere and climate forged from the powerful combination of Earth-based observations, remote sensing and in situ spacecraft measurements, laboratory experiments, and models. I conclude with some of our remaining unanswered questions as the incredible era of exploration with Cassini-Huygens comes to an end.

  2. Titan Extraterrestrial Land of Lakes

    NASA Image and Video Library

    2013-12-12

    A colorized flyover of Titan's hydrocarbon seas and lakes. Data was collected by the Cassini spacecraft radar instrument between 2004 and 2013 during several flybys of Titan. Heights of features are exaggerated 10 times.

  3. Titan Saturn System Mission Instrumentation

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J.; Reh, K.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.; Matson, D.

    2012-10-01

    The Titan Saturn System Mission (TSSM), another future mission proposed for Titan's exploration, includes an orbiter and two in situ elements: a hot-air balloon and a lake lander. The instrumentation of those two elements will be presented.

  4. Map of Titan - April 2011

    NASA Image and Video Library

    2011-10-26

    This global digital map of Saturn moon Titan was created using images taken by NASA Cassini spacecraft imaging science subsystem ISS. Because of the scattering of light by Titan dense atmosphere, no topographic shading is visible here.

  5. Mimas...and Titan Beyond

    NASA Image and Video Library

    2006-01-03

    Titan, Saturn largest moon and Mimas in the foreground are seen together in this view from Cassini. Titan gravity is weaker than Earth, so the moon atmosphere is quite extended -- a quality hinted at in this view

  6. Layers of Titan Artist Concept

    NASA Image and Video Library

    2014-03-15

    This artist concept shows a possible model of Titan internal structure that incorporates data from NASA Cassini spacecraft. A model of Cassini is shown making a targeted flyby over Titan cloudtops; Saturn and Enceladus appear at upper right.

  7. Can Whiskers Grow on Bulk Lead-Free Solder?

    NASA Astrophysics Data System (ADS)

    Nychka, John A.; Li, Yan; Yang, Fuqian; Chen, Rong

    2008-01-01

    Many possible mechanisms for whisker growth exist, each possible in various scenarios investigated in the literature. This contribution addresses the importance of residual mechanical stress in a solder alloy for providing some of the energy necessary to drive possible whisker growth. We investigate the indentations made on bulk lead-free solder (Sn3.5Ag) to introduce various levels of residual energy associated with localized residual stresses. We confirm that localized residual stresses, in the absence of a thin-film geometry, significant oxide thickness, and interdiffusional stresses from intermetallic Cu-Sn compounds, do not result in the formation of whiskers in bulk Sn3.5Ag. Thus, the combination of stresses associated with thin films (either thermal misfit, plating, or chemical) and the oxidation of Sn at the surface is likely required for continuous whisker growth.

  8. Potassium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium cyanide is included in

  9. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  10. Hypsometry of Titan

    USGS Publications Warehouse

    Lorenz, Ralph D.; Turtle, Elizabeth P.; Stiles, Bryan; Le Gall, Alice; Hayes, Alexander; Aharonson, Oded; Wood, Charles A.; Stofan, Ellen; Kirk, Randy

    2011-01-01

    Cassini RADAR topography data are used to evaluate Titan's hypsometric profile, and to make comparisons with other planetary bodies. Titan's hypsogram is unimodal and strikingly narrow compared with the terrestrial planets. To investigate topographic extremes, a novel variant on the classic hypsogram is introduced, with a logarithmic abscissa to highlight mountainous terrain. In such a plot, the top of the terrestrial hypsogram is quite distinct from those of Mars and Venus due to the 'glacial buzz-saw' that clips terrestrial topography above the snowline. In contrast to the positive skew seen in other hypsograms, with a long tail of positive relief due to mountains, there is an indication (weak, given the limited data for Titan so far) that the Titan hypsogram appears slightly negatively skewed, suggesting a significant population of unfilled depressions. Limited data permit only a simplistic comparison of Titan topography with other icy satellites but we find that the standard deviation of terrain height (albeit at different scales) is similar to those of Ganymede and Europa.

  11. Titan Polar Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  12. Potassium in diet

    MedlinePlus

    ... the diet; Hypokalemia - potassium in the diet; Chronic kidney disease - potassium in diet; Kidney failure - potassium in diet ... are also excellent sources of potassium. People with kidney problems, especially those on dialysis, should not eat ...

  13. Deformation behavior of titanate nanotubes subjected to high pressure

    NASA Astrophysics Data System (ADS)

    Ojeda-Galván, H. J.; Rodríguez, A. G.; Santos-López, I. A.; Mendoza-Cruz, R.; Yacamán, M. J.; Handy, B. E.

    2017-01-01

    Nano-sized titania (anatase) and sodium and potassium titanate nanotubes were studied via in situ Raman spectroscopy at hydrostatic pressures up to 6 GPa. Analysis by scanning electron microscopy shows a uniform dispersion of sodium and potassium cations in the nanotubes. The effect of the pressure was observed by significant shifts in the Raman band structure of nano-sized anatase crystals and nanotube titanate. In nano-particulate anatase, the phonon frequencies (143, 395, 517, and 639 cm-1) increase linearly with pressure. In contrast, the upward frequency shifts in the sodium titanate nanotubes (NaTNT) and potassium-modified nanotubes (NaTNT+K) occur in a stepwise fashion. These stepwise changes occur in the nanotube samples between 2 and 4 GPa (ambient pressure phonon bands in NaTNT at 274, 444, 650, and 906 cm-1) and between 4.5 and 5.5 GPa, (phonons 273 cm-1 and 436 cm-1 in NaTNT+K at an ambient pressure). Post-pressure high-resolution transmission electron microscopy analysis shows evidence of nanotube distortions and a 5% contraction in the interlaminar spacing of both NaTNT and NaTNT+K.

  14. Passive Wake Detection Using Seal Whisker-Inspired Sensing

    DTIC Science & Technology

    2015-02-01

    119 20 3-14 (a) A Solidworks simulation of the strain induced on the flexure as the whisker deflects. (b) Close-up of the flexure...168 B-4 The twisted elliptical cylinder, as generated in Solidworks . . . . . . . 169 B-5 C l,v contours...blocks of machinable wax bolted together. A CNC tool path for the whisker geometry was created in MasterCAM from Solidworks and then routed out. (b) The

  15. Barrel cortex and whisker-mediated behaviors.

    PubMed

    Brecht, Michael

    2007-08-01

    Neural networks of the rodent barrel cortex are particularly tractable for developing a quantitative understanding of response transformations in a cortical column. A column in barrel cortex consists of approximately 10 compartments. Two thalamic input pathways, a sensory lemniscal one and sensorimotor paralemniscal one, are transformed to approximately 7 population outputs, each with distinct spatiotemporal response characteristics. Granular and supragranular layers are sites of segregated processing in lemniscal and paralemniscal pathways, whereas infragranular layers are sites of intracolumnar, lemniscal/paralemniscal integration. Individual thalamocortical connections are relatively weak, and a considerable fraction of thalamocortical afferents contributes to each sensory response. Intracortically, relatively few but strong synaptic connections contribute to sensory responses, and responses are rapidly terminated by inhibition. Overall cortical population activity is very low. Whiskers mediate a wide range of behaviors and many natural tactile behaviors occur very rapidly. Vibrissal object recognition can be size invariant and motion invariant and is based on the tactile 'Gestaltwahrnehmung' of shape.

  16. Tin Whisker Growth and Mitigation with a Nanocrysytalline Nickel Coating

    NASA Astrophysics Data System (ADS)

    Janiuk, Szymon

    Tin whiskers are a problem in the electronics industry since the EU banned the use of lead in Pb-Sn solders as part of the Restriction of Hazardous Substances (RoHS). The biggest concern with Sn whiskers is their ability to short-circuit electronics. High reliability applications such as the aerospace, defense, healthcare, and automotive industries are at most risk. This project explores Sn whisker mitigation and prevention with the use of nanocrystalline nickel coating over Sn surfaces. Sn was plated onto a pure Cu substrate using electroplating. A high temperature and high humidity condition, at 85°C and 85% RH, was effective at growing whiskers. A nNi coating was plated over Sn/Cu coupons. After subjecting the nNi/ Sn/Cu samples through 85°C/85% RH testing conditions, no whiskers were observed penetrating the surface. These results make nNi a viable material to use as a coating to prevent the growth of Sn whiskers in electronic assemblies.

  17. The tides of Titan.

    PubMed

    Iess, Luciano; Jacobson, Robert A; Ducci, Marco; Stevenson, David J; Lunine, Jonathan I; Armstrong, John W; Asmar, Sami W; Racioppa, Paolo; Rappaport, Nicole J; Tortora, Paolo

    2012-07-27

    We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.

  18. Titan Despeckled Montage

    NASA Image and Video Library

    2015-02-12

    This montage of Cassini Synthetic Aperture Radar (SAR) images of the surface of Titan shows four examples of how a newly developed technique for handling noise results in clearer, easier to interpret views. The top row of images was produced in the manner used since the mission arrived in the Saturn system a decade ago; the row at bottom was produced using the new technique. The three leftmost image pairs show bays and spits of land in Ligea Mare, one of Titan's large hydrocarbon seas. The rightmost pair shows a valley network along Jingpo Lacus, one of Titan's larger northern lakes. North is toward the left in these images. Each thumbnail represents an area 70 miles (112 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA19053

  19. Titan's hydrogen torus

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1981-01-01

    A model of Titan's hydrogen torus, capable of describing its time evolution under the influence of the gravitational fields of both the satellite and the planet, is presented. Estimated lifetimes for hydrogen atoms near Titan's orbit of the order of 10 to the 7th s, based on recent Pioneer 11 measurements, suggest that the torus completely encircles Saturn and is angularly unsymmetric, having an enhanced gas density near the satellite. New model calculations confirm this and provide an explanation for the torus detected by the Copernicus satellite and the UV instrument of Pioneer 11. Agreement between calculated and observed Lyman alpha intensities suggests a hydrogen escape flux between 1 x 10 to the 9th/sq cm-s and 3 x 10 to the 9th/sq cm-s should be operative at Titan. This produces a torus containing some 10 to the 34th hydrogen atoms.

  20. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  1. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  2. Titanic Weather Forecasting

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New Detailed VLT Images of Saturn's Largest Moon Optimizing space missions Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan. Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface. Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO) [1] in combination with ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO

  3. Investigation of Microstructural Factors that Cause Low Fracture Toughness in Silicon Carbide Whisker/Al Alloy Composites.

    DTIC Science & Technology

    1986-08-15

    extrusion methods developed at ARCO Silag have greatly improved whisker distribution throughout the matrix. In Figure 4, note the distribution and orientation...being used in this investigation). The composites of altered chemistry were proposed by ARCO 4. N Silag . However, only a limited amount of material, less...observed at fiber ends and running through grains adjacent to whiskers (Figure 11). Dislocation density measurements have not been made, but intense

  4. Northern Summer on Titan

    NASA Image and Video Library

    2017-06-14

    NASA's Cassini spacecraft sees bright methane clouds drifting in the summer skies of Saturn's moon Titan, along with dark hydrocarbon lakes and seas clustered around the north pole. Compared to earlier in Cassini's mission, most of the surface in the moon's northern high latitudes is now illuminated by the sun. The image was taken with the Cassini spacecraft narrow-angle camera on June 9, 2017, using a spectral filter that preferentially admits wavelengths of near-infrared light centered at 938 nanometers. Cassini obtained the view at a distance of about 315,000 miles (507,000 kilometers) from Titan. https://photojournal.jpl.nasa.gov/catalog/PIA21615

  5. Radar reflectivity of Titan

    NASA Astrophysics Data System (ADS)

    Muhleman, D. O.; Grossman, A. W.; Butler, B. J.; Slade, M. A.

    1990-05-01

    The low dielectric constant of the liquid hydrocarbon and ethane-methane surface mixture of Titan has as a direct consequence a set of unique microwave-reflection properties which were sought out at 3.5-cm wavelength, using a 70-m transmitting antenna in conjunction with the VLA as a receiving instrument. The statistically significant echoes obtained indicate that Titan is not covered with a deep global ocean of ethane. A global ocean as shallow as about 200 m would have exhibited reflectivities smaller by an order of magnitude, and below the experiment's detection limit.

  6. Flying by Titan

    NASA Technical Reports Server (NTRS)

    Pelletier, Frederic J.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Ionasescu, Rodica; Jacobson, Robert A.; Jones, Jeremy B.; Parcher, Daniel W.; Roth, Duane C.; Thompson, Paul F.; hide

    2008-01-01

    The Cassini spacecraft encounters the massive Titan about once every month. These encounters are essential to the mission as Titan is the only satellite of Saturn that can provide enough gravity assist to shape the orbit tour and allow outstanding science for many years. From a navigation point of view, these encounters provide many challenges, in particular those that fly close enough to the surface for the atmospheric drag to perturb the orbit. This paper discusses the dynamics models developed to successfully navigate Cassini and determine its trajectory. This includes the moon's gravity pull with its second degree zonal harmonics J2, the attitude thrust control perturbations and the acceleration of drag.

  7. Flying by Titan

    NASA Technical Reports Server (NTRS)

    Pelletier, Frederic J.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Ionasescu, Rodica; Jacobson, Robert A.; Jones, Jeremy B.; Parcher, Daniel W.; Roth, Duane C.; Thompson, Paul F.; Vaughan, Andrew T.

    2008-01-01

    The Cassini spacecraft encounters the massive Titan about once every month. These encounters are essential to the mission as Titan is the only satellite of Saturn that can provide enough gravity assist to shape the orbit tour and allow outstanding science for many years. From a navigation point of view, these encounters provide many challenges, in particular those that fly close enough to the surface for the atmospheric drag to perturb the orbit. This paper discusses the dynamics models developed to successfully navigate Cassini and determine its trajectory. This includes the moon's gravity pull with its second degree zonal harmonics J2, the attitude thrust control perturbations and the acceleration of drag.

  8. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not

  9. Structure, function, and cortical representation of the rat submandibular whisker trident.

    PubMed

    Thé, Lydia; Wallace, Michael L; Chen, Christopher H; Chorev, Edith; Brecht, Michael

    2013-03-13

    Although the neurobiology of rodent facial whiskers has been studied intensively, little is known about sensing in other vibrissae. Here we describe the under-investigated submandibular "whisker trident" on the rat's chin. In this three-whisker array, a unique unpaired midline whisker is laterally flanked by two slightly shorter whiskers. All three whiskers point to the ground and are curved backwards. Unlike other whiskers, the trident is not located on an exposed body part. Trident vibrissae are not whisked and do not touch anything over long stretches of time. However, trident whiskers engage in sustained ground contact during head-down running while the animal is exploring or foraging. In biomechanical experiments, trident whiskers follow caudal ground movement more smoothly than facial whiskers. Remarkably, deflection angles decrease with increasing ground velocity. We identified one putative trident barrel in the left somatosensory cortex and two barrels in the right somatosensory cortex. The elongated putative trident-midline barrel is the longest and largest whisker barrel, suggesting that the midline trident whisker is of great functional significance. Cortical postsynaptic air-puff responses in the trident representation show much less temporal precision than facial whisker responses. Trident whiskers do not provide as much high-resolution information about object contacts as facial whiskers. Instead, our observations suggest an idiothetic function: their biomechanics allow trident whiskers to derive continuous measurements about ego motion from ground contacts. The midline position offers unique advantages in sensing heading direction in a laterally symmetric manner. The changes in trident deflection angle with velocity suggest that trident whiskers might function as a tactile speedometer.

  10. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice

    PubMed Central

    Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H

    2015-01-01

    Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. PMID:25476605

  11. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice.

    PubMed

    Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H

    2015-02-01

    Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons.

  12. Titan Mystery Clouds

    NASA Image and Video Library

    2016-12-21

    This comparison of two views from NASA's Cassini spacecraft, taken fairly close together in time, illustrates a peculiar mystery: Why would clouds on Saturn's moon Titan be visible in some images, but not in others? In the top view, a near-infrared image from Cassini's imaging cameras, the skies above Saturn's moon Titan look relatively cloud free. But in the bottom view, at longer infrared wavelengths, Cassini sees a large field of bright clouds. Even though these views were taken at different wavelengths, researchers would expect at least a hint of the clouds to show up in the upper image. Thus they have been trying to understand what's behind the difference. As northern summer approaches on Titan, atmospheric models have predicted that clouds will become more common at high northern latitudes, similar to what was observed at high southern latitudes during Titan's late southern summer in 2004. Cassini's Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) teams have been observing Titan to document changes in weather patterns as the seasons change, and there is particular interest in following the onset of clouds in the north polar region where Titan's lakes and seas are concentrated. Cassini's "T120" and "T121" flybys of Titan, on June 7 and July 25, 2016, respectively, provided views of high northern latitudes over extended time periods -- more than 24 hours during both flybys. Intriguingly, the ISS and VIMS observations appear strikingly different from each other. In the ISS observations (monochrome image at top), surface features are easily identifiable and only a few small, isolated clouds were detected. In contrast, the VIMS observations (color image at bottom) suggest widespread cloud cover during both flybys. The observations were made over the same time period, so differences in illumination geometry or changes in the clouds themselves are unlikely to be the cause for the apparent discrepancy: VIMS shows persistent

  13. Mapping Potassium

    NASA Image and Video Library

    2015-04-16

    During the first year of NASA MESSENGER orbital mission, the spacecraft GRS instrument measured the elemental composition of Mercury surface materials. mong the most important discoveries from the GRS was the observation of higher abundances of the moderately volatile elements potassium, sodium, and chlorine than expected from previous scientific models and theories. Particularly high concentrations of these elements were observed at high northern latitudes, as illustrated in this potassium abundance map, which provides a view of the surface centered at 60° N latitude and 120° E longitude. This map was the first elemental map ever made of Mercury's surface and is to-date the only map to report absolute elemental concentrations, in comparison to element ratios. Prior to MESSENGER's arrival at Mercury, scientists expected that the planet would be depleted in moderately volatile elements, as is the case for our Moon. The unexpectedly high abundances observed with the GRS have forced a reevaluation of our understanding of the formation and evolution of Mercury. In addition, the K map provided the first evidence for distinct geochemical terranes on Mercury, as the high-potassium region was later found to also be distinct in its low Mg/Si, Ca/Si, S/Si, and high Na/Si and Cl/Si abundances. Instrument: Gamma-Ray Spectrometer (GRS) http://photojournal.jpl.nasa.gov/catalog/PIA19414

  14. A novel biomimetic whisker technology based on fiber Bragg grating and its application

    NASA Astrophysics Data System (ADS)

    Zhao, Chenlu; Jiang, Qi; Li, Yibin

    2017-09-01

    The paper describes a novel, biomimetic whisker-based sensing technology following the basic design of the facial whiskers of animals such as rats and mice. The sensor consists of a 3× 2 whisker array on each side of a robot. In experiments with the artificial whiskers, the motor drives rotating whiskers, and the center wavelength of a fiber Bragg grating pasted on the whisker will shift when the whisker touches an obstacle. The distance will be obtained by processing the wavelength shift data with algorithms. Then the shape recognition can be realized by postprocessing the distance data. The experimental results prove that the whisker array is capable of accurately gathering the distance and shape information of an object.

  15. Above Titan South

    NASA Image and Video Library

    2012-09-17

    Titan south polar vortex seems to float above the moon south pole in this Cassini spacecraft view. The vortex, which is a mass of gas swirling around the south pole high in the moon atmosphere, can be seen in the lower right of this view.

  16. Nitrogen loss from Titan

    NASA Astrophysics Data System (ADS)

    Shematovich, V. I.; Johnson, R. E.; Michael, M.; Luhmann, J. G.

    2003-08-01

    Dissociation and dissociative ionization of molecular nitrogen by solar UV radiation and by photoelectrons and sputtering by the magnetospheric ions and pickup ions are the main sources of translationally excited (hot) nitrogen atoms and molecules in the upper atmosphere of Titan. As Titan does not posses an intrinsic magnetic field, Saturn's magnetospheric ions can penetrate Titan's exobase and sputter atoms and molecules from it. The sputtering of nitrogen from Titan's upper atmosphere by the corotating nitrogen ions and by photodissociation was addressed earlier [Lammer and Bauer, 1993; Shematovich et al., 2001]. Here penetration of slowed and deflected magnetospheric N+ and carbon-containing pickup ions is described using a Monte Carlo model. The interaction of these ions with the atmospheric neutrals leads to the production of fast neutrals that collide with other atmospheric neutrals producing heating and ejection of atoms and molecules. Results from Brecht et al. [2000] are used to estimate the net flux and energy spectra of the magnetospheric and pickup ions onto the exobase. Sputtering is primarily responsible for any ejected molecular nitrogen, and, for the ion fluxes used, we show that the total sputtering contribution is comparable to or larger than the dissociation contribution giving a total loss rate of ~3.6 × 1025 nitrogen neutrals per second.

  17. Radar reflectivity of titan.

    PubMed

    Muhleman, D O; Grossman, A W; Butler, B J; Slade, M A

    1990-05-25

    The present understanding of the atmosphere and surface conditions on Saturn's largest moon, Titan, including the stability of methane, and an application of thermodynamics leads to a strong prediction of liquid hydrocarbons in an ethane-methane mixture on the surface. Such a surface would have nearly unique microwave reflection properties due to the low dielectric constant. Attempts were made to obtain reflections at a wavelength of 3.5 centimeters by means of a 70-meter antenna in California as the transmitter and the Very Large Array in New Mexico as the receiving instrument. Statistically significant echoes were obtained that show Titan is not covered with a deep, global ocean of ethane, as previously thought. The experiment yielded radar cross sections normalized by the Titan disk of 0.38 +/- 0.15, 0.78 +/- 0.15, and 0.25 +/- 0.15 on three consecutive nights during which the sub-Earth longitude on Titan moved 50 degrees. The result for the combined data for the entire experiment is 0.35 +/- 0.08. The cross sections are very high, most consistent with those of the Galilean satellites; no evidence of the putative liquid ethane was seen in the reflection data. A global ocean as shallow as about 200 meters would have exhibited reflectivities smaller by an order of magnitude, and below the detection limit of the experiment. The measured emissivity at similar wavelengths of about 0.9 is somewhat inconsistent with the high reflectivity.

  18. The lakes of Titan.

    PubMed

    Stofan, E R; Elachi, C; Lunine, J I; Lorenz, R D; Stiles, B; Mitchell, K L; Ostro, S; Soderblom, L; Wood, C; Zebker, H; Wall, S; Janssen, M; Kirk, R; Lopes, R; Paganelli, F; Radebaugh, J; Wye, L; Anderson, Y; Allison, M; Boehmer, R; Callahan, P; Encrenaz, P; Flamini, E; Francescetti, G; Gim, Y; Hamilton, G; Hensley, S; Johnson, W T K; Kelleher, K; Muhleman, D; Paillou, P; Picardi, G; Posa, F; Roth, L; Seu, R; Shaffer, S; Vetrella, S; West, R

    2007-01-04

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70 degrees north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table.

  19. The lakes of Titan

    USGS Publications Warehouse

    Stofan, E.R.; Elachi, C.; Lunine, J.I.; Lorenz, R.D.; Stiles, B.; Mitchell, K.L.; Ostro, S.; Soderblom, L.; Wood, C.; Zebker, H.; Wall, S.; Janssen, M.; Kirk, R.; Lopes, R.; Paganelli, F.; Radebaugh, J.; Wye, L.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Paillou, P.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Vetrella, S.; West, R.

    2007-01-01

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70?? north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table. ??2007 Nature Publishing Group.

  20. The atmosphere of Titan.

    PubMed

    Owen, T

    1982-01-01

    The discovery that Titan had an atmosphere was made by the identification of methane in the satellite's spectrum in 1944. But the abundance of this gas and the identification of other major constituents required the 1980 encounter by the Voyager 1 spacecraft. in the intervening years, traces of C2H2, C2H4, C2H6 and CH3D had been posited to interpret emission bands in Titan's IR spectrum. The Voyager infrared Spectrometer confirmed that these gases were present and added seven more. The atmosphere is now known to be composed primarily of molecular nitrogen. But the derived mean molecular weight suggests the presence of a significant amount of some heavier gas, most probably argon. It is shown that this argon must be primordial, and that one can understand the evolution of Titan's atmosphere in terms of degassing of a mixed hydrate dominated by CH4, N2 and 36Ar. This model satisfactorily explains the absence of neon and makes no special requirements on the satellite's surface temperature. The organic chemistry taking place on Titan today invites comparison with chemical evolution on the primitive Earth prior to the origin of life.

  1. Southern Canyons of Titan

    NASA Image and Video Library

    2009-06-10

    Complex and unique canyon systems appear to have been intricately carved into older terrain by the ample flow of liquid methane rivers on Saturn moon Titan, as seen in this radar image taken by NASA Cassini spacecraft on May 21, 2009.

  2. Highlighting Titan's Hazes

    NASA Image and Video Library

    2017-08-11

    NASA's Cassini spacecraft looks toward the night side of Saturn's moon Titan in a view that highlights the extended, hazy nature of the moon's atmosphere. During its long mission at Saturn, Cassini has frequently observed Titan at viewing angles like this, where the atmosphere is backlit by the Sun, in order to make visible the structure of the hazes. Titan's high-altitude haze layer appears blue here, whereas the main atmospheric haze is orange. The difference in color could be due to particle sizes in the haze. The blue haze likely consists of smaller particles than the orange haze. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The image was taken with the Cassini spacecraft narrow-angle camera on May 29, 2017. The view was acquired at a distance of approximately 1.2 million miles (2 million kilometers) from Titan. Image scale is 5 miles (9 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21625

  3. On Titan's obliquity

    NASA Astrophysics Data System (ADS)

    Boué, Gwenaël; Rambaux, Nicolas; Richard, Andy

    2017-06-01

    The Cassini-Huygens mission brings us many valuable information about Saturn's moon Titan, but some of them seem to be incompatible. Measurements of the gravity field coefficients J2 and C22 suggest that its shape is hydrostatic and observations of its rotation state show that it is likely to be in a Cassini state with an obliquity of 0.32 deg.Titan cannot be fully rigid otherwise its equilibrium obliquity would only be one third of the observed value. This agrees with several hints indicating that it possesses a global underneath ocean surrounded by a thin ice shell. But, thus far three layer models are unable to explain Titan's large obliquity assuming both an hydrostatic shape and the absence of significant resonant amplifications. Nevertheless, these models neglect the rotation of the ocean which might play a significant role in the dynamics of Titan's spin pole.Here we revisit the rotation dynamics of a three layered body with a subsurface ocean using a suitable non-canonical Hamiltonian formalism. The system has 7 degrees of freedom, six of which being equally shared by the rigid interior and the shell, and the last one being due to the rotation of the ocean. We show that this model is able to reconcile the three observations listed above.

  4. Titan Lingering Clouds

    NASA Image and Video Library

    2009-06-03

    Lots of clouds are visible in this infrared image of Saturn's moon Titan. These clouds form and move much like those on Earth, but in a much slower, more lingering fashion, new results from NASA's Cassini spacecraft show. Scientists have monitored Titan's atmosphere for three-and-a-half years, between July 2004 and December 2007, and observed more than 200 clouds. The way these clouds are distributed around Titan matches scientists' global circulation models. The only exception is timing—clouds are still noticeable in the southern hemisphere while fall is approaching. Three false-color images make up this mosaic and show the clouds at 40 to 50 degrees mid-latitude. The images were taken by Cassini's visual and infrared mapping spectrometer during a close flyby of Titan on Sept. 7, 2006, known as T17. For a similar view see PIA12005. Each image is a color composite, with red shown at the 2-micron wavelength, green at 1.6 microns, and blue at 2.8 microns. An infrared color mosaic is also used as a background (red at 5 microns, green at 2 microns and blue at 1.3 microns). The characteristic elongated mid-latitude clouds, which are easily visible in bright bluish tones are still active even late into 2006-2007. According to climate models, these clouds should have faded out since 2005. http://photojournal.jpl.nasa.gov/catalog/PIA12004

  5. Sinking with the Titanic

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2015-03-01

    In the Titanic movie, when the rear part of the ship is about to sink, Jack Dawson (Leonardo DiCaprio) says to Rose DeWitt Bukater (Kate Winslet) to get ready to swim, because the sinking body will suck them into the abysses. Is this sucking phenomenon really happening? And, if so, why?

  6. Titan Temperature Lag Maps

    NASA Image and Video Library

    2016-02-18

    This sequence of maps shows varying surface temperatures on Saturn moon Titan at two-year intervals, from 2004 to 2016. The measurements were made by the Composite Infrared Spectrometer CIRS instrument on NASA Cassini spacecraft. The maps show thermal infrared radiation (heat) coming from Titan's surface at a wavelength of 19 microns, a spectral window at which the moon's otherwise opaque atmosphere is mostly transparent. Temperatures have been averaged around the globe from east to west (longitudinally) to emphasize the seasonal variation across latitudes (from north to south). Black regions in the maps are areas for which there was no data. Titan's surface temperature changes slowly over the course of the Saturn system's long seasons, which each last seven and a half years. As on Earth, the amount of sunlight received at each latitude varies as the sun's illumination moves northward or southward over the course of the 30-year-long Saturnian year. When Cassini arrived at Saturn in 2004, Titan's southern hemisphere was in late summer and was therefore the warmest region. Shortly after the 2009 equinox, in 2010, temperatures were symmetrical across the northern and southern hemispheres, mimicking the distribution observed by Voyager 1 in 1980 (one Titan year earlier). Temperatures subsequently cooled in the south and rose in the north, as southern winter approached. While the overall trend in the temperature shift is clearly evident in these maps, there is narrow banding in several places that is an artifact of making the observations through Titan's atmosphere. The moon's dense, hazy envelope adds noise to the difficult measurement. Although it moves in latitude, the maximum measured temperature on Titan remains around -292 degrees Fahrenheit (-179.6 degrees Celsius, 93.6 Kelvin), with a minimum temperature at the winter pole only 6 degrees Fahrenheit (3.5 degrees Celsius or Kelvin) colder. This is a much smaller contrast than exists between Earth's warmest and

  7. Effects of Conformal Coat on Tin Whisker Growth

    NASA Technical Reports Server (NTRS)

    Kadesch, Jong S.; Leidecker, Henning; Day, John H. (Technical Monitor)

    2000-01-01

    A whisker from a tin plated part was blamed for the loss of a commercial spacecraft in 1998. Although pure tin finishes are prohibited by NASA, tin plated parts, such as hybrids, relays and commercial off the shelf (COTS) parts, are something discovered to have been installed in NASA spacecraft. Invariably, the assumption is that a conformal coat will prevent the growth of, or short circuits caused by, tin whiskers. This study measures the effect a Uralane coating has on the initiation and growth of tin whiskers, on the ability of this coating to prevent a tin whisker from emerging from the coating, and on the ability to prevent shorting. A sample of fourteen brass substrates (1 inch by 4 inches by 1/16 inch) were plated by two separate processes: half of the specimens were 'bright' tin plated directly over the brass substrate and half received a copper flash over the brass substrate prior to 'bright' tin plating. Each specimen was coated on one half of the substrate with three bi-directional sprays of Uralane 5750 to a nominal thickness of 25 to 75 micrometers (1 to 3 mils). Several specimens of both types, Cu and non-Cu flashed, were placed in an oven maintained at 50 C as others' work suggests that this is the optimal temperature for whisker formation. The remaining specimens were maintained at room ambient conditions. The surfaces of each specimen have been regularly inspected using both optical (15 to 400x power) and Scanning Electronic Microscopy (SEM). Many types of growths, including needle-like whiskers, first appeared approximately three months after plating on the non-conformally coated sides of all specimens. At four months, 4 to 5 times more growth sites were observed on the coated side; however, the density of growth sites on the non-conformally coated side has since increased rapidly, and now, at one year, is about the same for both sides. The density of growth sites is estimated at 90/sq mm with 30 percent of the sites growing whiskers (needle

  8. The Magnetic Behaviour of the :111:-ORIENTED Iron Whisker.

    NASA Astrophysics Data System (ADS)

    Hanham, Scott Douglas

    The magnetic behaviour of {111}-oriented iron whiskers is studied as a function of magnetic field applied along the whisker length and as a function of temperature. Based on ac susceptibility measurements and observed Bitter patterns in low applied fields, a domain structure is proposed for this orientation of whisker. This is compared with observations made of {100} and the rare {110}-oriented iron whiskers. The technique of growing iron whiskers is described. Theories of whisker growth are discussed. The role of carbon in iron whisker growth and its detection in small concentrations is considered. The approach to saturation in the {111} direction for an iron whisker with its long axis in that direction is studied by ac susceptibility measurements. The data at room temperature is analyzed to give the magnetization, intrinsic susceptibility, and demagnetizing field at each of 15 cross-sections along the length for applied fields from 10 to (TURN) 1000 oe. It is concluded that mean field anisotropy theory does not account for the results. The approach to saturation in the {111} direction may represent the behaviour of the 3-state Potts model. The magnetic response of a {111}-oriented iron whisker is measured up to and through the Curie temperature. The anisotropy constant is found from the response in the range of fields between that necessary to bring the magnetization in the central cross-section of the whisker to M(,s)/SQRT.(3(' )and that to reach M(,s). We extract an anisotropy field H(,k) proportional to K(,1)/M(,s) and analyze its dependence on M(,s) and on temperature. The results indicate that K(,1)/M(,s) (TURN) M(,s)('n) with n = 3.11 (+OR-) 0.05 for the temperature range 0.0005 < (T(,c) - T)/T(,c) < 0.002 with n increasing at lower temperatures. To our knowledge this is the first observation of the power law behaviour of the anisotropy in a cubic ferromagnet just below the Curie temperature. At lower temperatures the analysis is complicated by the field

  9. Fabrication of SiC whiskers and composites

    SciTech Connect

    Hurley, G.F.; Shalek, P.D.; Gac, F.D.; Petrovic, J.J.

    1984-01-01

    The Los Alamos Structural Ceramics Program is a multi-faceted program with an overall objective of producing superior strength and fracture toughness in ceramic bodies for load bearing applications. One phase of the program is pursuing the development of silicon carbide whiskers which are used to prepare ceramic matrix composites. The purpose of this work is to investigate strengthening and toughening mechanisms in ceramic composites. In the following we describe some elements of the whisker development program in which we are endeavoring better to characterize the whisker growth process in order to scale up its production potential. We have used these whiskers in the preparation of four types of ceramic matrix representative of a range of materials. The nature and reasons for choosing these materials are described. Composites have been prepared by dry-blending followed by hot pressing which yields high density bodies. In addition we are beginning an investigation of wet processing (slip casting) to produce a silicon-silicon carbide body which will be reaction sintered in nitrogen. Composites of glass-, hot pressed silicon nitride -, and molybdenum disilicide - silicon carbide whiskers have been tested in flexure to determine strength and fracture toughness. Results have been promising, with substantial toughening exhibited in all systems, and strengthening in the glass and MoSi/sub 2/ composites. The reaction bonded silicon nitride is not yet to the testing stage.

  10. Interlayer tunneling spectroscopy of mixed-phase BSCCO superconducting whiskers

    NASA Astrophysics Data System (ADS)

    Kizilaslan, O.; Truccato, M.; Simsek, Y.; Aksan, M. A.; Koval, Y.; Müller, P.

    2016-06-01

    In this work, we present a study on the interlayer tunneling spectroscopy (ITS) of mixed-phase BiSrCaCuO (BSCCO) superconducting whiskers. The tunneling experiments were carried out on the artificial cross-whisker (twist angle of 90°) junctions. A multiple superconducting energy gap in the cross-whisker junctions was observed, which is attributed to the presence of different doping levels of two Bi2Sr2CaCu2O8+δ phases (Bi-2212), rather than two different phases, in the BSCCO whiskers, namely Bi2Sr2CaCu2O8+δ and Bi2Sr2Ca2Cu3O8+δ (Bi-2212 and Bi-2223). The temperature dependence of the energy gaps was discussed in the framework of the BCS T-dependence. On the other hand, the carrier concentration of the cross-whisker junction was changed by the carrier injection process. The effects of the carrier injection on the critical current, I c, and the ITS of intrinsic Josephson junctions were investigated in details.

  11. Thermal cycling of silicon carbide whisker/aluminum alloy composite

    SciTech Connect

    Patterson, W.G.

    1988-01-01

    There are many aspects of the mechanical behavior of whisker reinforced alloys that are not well understood. The effects of thermal fatigue, for example, have been extensively studied for continuous-fiber composites but not for whisker composites. A model was developed here for thermal-fatigue damage in whisker-reinforced metal-matrix composites, taking into account both metallurgical transformations and thermal-stress damage. Also, thermal-cycling tests were performed on 2124-T6 aluminum alloy reinforced with a 15% volume fraction of SiC whiskers. The microstructure and mechanical properties of the composite were evaluate before and thermal cycling. Unlike metal-matrix composites with continuous fibers, the only thermal-stress damage sustained by SiC{sub w}/Al were changes in dimensions as large as 7.4%. There were no indications of matrix or fiber cracking, void formation, interfacial debonding, or concentrated plastic flow. Thermal-stress deformation appears to have been balanced by recovery and recrystallization. The effects of thermal cycling on composite strength were determined to be primarily due to overaging of matrix precipitates. The whiskers accelerated overaging, and may have increased the extent to which overaging could occur.

  12. Plastic deformation mechanisms in SiC-whisker-reinforced alumina

    SciTech Connect

    Arellano-Lopez, A.R. de; Dominguez-Rodriguez, A. )

    1993-06-01

    SiC-whisker-reinforced Al[sub 2]O[sub 3] samples (SiC[sub w]/Al[sub 2]O[sub 3]), obtained from three different manufacturers, containing 0-30 vol% SiC have been crept under compression at 1,400 C in flowing argon. Compressive creep tests and microstructural observations have been used to characterize the plastic deformation mechanisms. The presence of whiskers decreased the creep rate by reducing grain-boundary sliding. Damage formation was increased, however, because the whiskers acted as stress concentration sites. For specimens with whisker loadings greater than 15%, the absolute creep rate was not strongly dependent on whisker concentration, and the formation of cavitation damage was negligible below a critical stress that depended on the fabrication procedure of the specimen. This creep regime was characterized by a stress exponent of approximately 1, in which deformation occurred primarily by diffusional flow. For the materials with less SiC, the deformation occurred primarily by grain boundary sliding.

  13. Squeezing and Stretching Titan Author Concept

    NASA Image and Video Library

    2012-06-28

    This artist concept shows tides on Titan raised by Saturn gravity, as detected by NASA Cassini spacecraft. Saturn gravitational pull on Titan, its largest moon, varies as Titan orbits along an elliptical path around the planet every 16 days.

  14. Titanates and Titanate-Metal Compounds in Biological Contexts

    PubMed Central

    Chen, Yen-Wei; Drury, Jeanie L.; Chung, Whasun Oh; Hobbs, David T.; Wataha, John C.

    2015-01-01

    Metal ions are notorious environmental contaminants, some causing toxicity at exquisitely low (ppm-level) concentrations. Yet, the redox properties of metal ions make them attractive candidates for bio-therapeutics. Titanates are insoluble particulate compounds of titanium and oxygen with crystalline surfaces that bind metal ions; these compounds offer a means to scavenge metal ions in environmental contexts or deliver them in therapeutic contexts while limiting systemic exposure and toxicity. In either application, the toxicological properties of titanates are crucial. To date, the accurate measurement of the in vitro toxicity of titanates has been complicated by their particulate nature, which interferes with many assays that are optical density (OD)-dependent, and at present, little to no in vivo titanate toxicity data exist. Compatibility data garnered thus far for native titanates in vitro are inconsistent and lacking in mechanistic understanding. These data suggest that native titanates have little toxicity toward several oral and skin bacteria species, but do suppress mammalian cell metabolism in a cells-pecific manner. Titanate compounds bind several types of metal ions, including some common environmental toxins, and enhance delivery to bacteria or cells. Substantial work remains to address the practical applicability of titanates. Nevertheless, titanates have promise to serve as novel vehicles for metal-based therapeutics or as a new class of metal scavengers for environmental applications. PMID:26430701

  15. Dark Spots on Titan

    NASA Image and Video Library

    2005-05-02

    This recent image of Titan reveals more complex patterns of bright and dark regions on the surface, including a small, dark, circular feature, completely surrounded by brighter material. During the two most recent flybys of Titan, on March 31 and April 16, 2005, Cassini captured a number of images of the hemisphere of Titan that faces Saturn. The image at the left is taken from a mosaic of images obtained in March 2005 (see PIA06222) and shows the location of the more recently acquired image at the right. The new image shows intriguing details in the bright and dark patterns near an 80-kilometer-wide (50-mile) crater seen first by Cassini's synthetic aperture radar experiment during a Titan flyby in February 2005 (see PIA07368) and subsequently seen by the imaging science subsystem cameras as a dark spot (center of the image at the left). Interestingly, a smaller, roughly 20-kilometer-wide (12-mile), dark and circular feature can be seen within an irregularly-shaped, brighter ring, and is similar to the larger dark spot associated with the radar crater. However, the imaging cameras see only brightness variations, and without topographic information, the identity of this feature as an impact crater cannot be conclusively determined from this image. The visual infrared mapping spectrometer, which is sensitive to longer wavelengths where Titan's atmospheric haze is less obscuring -- observed this area simultaneously with the imaging cameras, so those data, and perhaps future observations by Cassini's radar, may help to answer the question of this feature's origin. The new image at the right consists of five images that have been added together and enhanced to bring out surface detail and to reduce noise, although some camera artifacts remain. These images were taken with the Cassini spacecraft narrow-angle camera using a filter sensitive to wavelengths of infrared light centered at 938 nanometers -- considered to be the imaging science subsystem's best spectral filter

  16. Titan's global geologic processes

    NASA Astrophysics Data System (ADS)

    Malaska, Michael; Lopes, Rosaly M. C.; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Williams, David A.; Solomonidou, Anezina; Janssen, Michael A.; Le Gall, Alice; Soderblom, Jason M.; Neish, Catherine; Turtle, Elizabeth P.; Cassini RADAR Team

    2016-10-01

    We have mapped the Cassini SAR imaged areas of Saturn's moon Titan in order to determine the geological properties that modify the surface [1]. We used the SAR dataset for mapping, but incorporated data from radiometry, VIMS, ISS, and SARTopo for terrain unit determination. This work extends our analyses of the mid-latitude/equatorial Afekan Crater region [2] and in the southern and northern polar regions [3]. We placed Titan terrains into six broad terrain classes: craters, mountain/hummocky, labyrinth, plains, dunes, and lakes. We also extended the fluvial mapping done by Burr et al. [4], and defined areas as potential cryovolcanic features [5]. We found that hummocky/mountainous and labyrinth areas are the oldest units on Titan, and that lakes and dunes are among the youngest. Plains units are the largest unit in terms of surface area, followed by the dunes unit. Radiometry data suggest that most of Titan's surface is covered in high-emissivity materials, consistent with organic materials, with only minor exposures of low-emissivity materials that are consistent with water ice, primarily in the mountain and hummocky areas and crater rims and ejecta [6, 7]. From examination of terrain orientation, we find that landscape evolution in the mid-latitude and equatorial regions is driven by aeolian processes, while polar landscapes are shaped by fluvial, lacrustine, and possibly dissolution or volatilization processes involving cycling organic materials [3, 8]. Although important in deciphering Titan's terrain evolution, impact processes play a very minor role in the modification of Titan's landscape [9]. We find no evidence for large-scale aqueous cryovolcanic deposits.References: [1] Lopes, R.M.C. et al. (2010) Icarus, 205, 540-558. [2] Malaska, M.J. et al. (2016) Icarus, 270, 130-161. [3] Birch et al., in revision. [4] Burr et al. (2013) GSA Bulletin 125, 299-321. [5] Lopes et al. JGR: Planets, 118, 1-20. [6] Janssen et al., (2009) Icarus, 200, 222-239. [7] Janssen

  17. Upstream of Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; André, N.; Bertucci, C. L.; Garnier, P.; Jackman, C. M.; Németh, Z.; Rymer, A. M.; Sergis, N.; Szego, K.; Coates, A. J.; Crary, F. J.

    The formation of Titan's induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan's plasma interaction to identify important upstream parameters and review the physics of Saturn's magnetosphere near Titan's orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn's magnetosheath. Statistical work on Titan's upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.

  18. Upstream of Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; André, N.; Bertucci, C. L.; Garnier, P.; Jackman, C. M.; Németh, Z.; Rymer, A. M.; Sergis, N.; Szego, K.; Coates, A. J.; Crary, F. J.

    2011-12-01

    The formation of Titan's induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan's plasma interaction to identify important upstream parameters and review the physics of Saturn's magnetosphere near Titan's orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn's magnetosheath. Statistical work on Titan's upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.

  19. Rapid plasticity follows whisker pairing in barrel cortex of the awake rat.

    PubMed

    Sellien, Heike; Ebner, Ford F

    2007-02-01

    Synaptic plasticity can be induced easily throughout life in the rodent somatic sensory cortex. Trimming all but two whiskers on one side of an adult rat's face, called 'whisker pairing', causes the active (intact) whiskers to develop a stronger drive on cortical cells in their respective barrel columns, while inactive (trimmed) whisker efficacy is down-regulated. To date, this type of activity-dependent plasticity has been induced by trimming all but two whiskers, letting the rats explore their environment from 1 day to 1 month, after which cortical responses were analyzed physiologically under anesthesia. Such studies have enhanced our understanding of cortical plasticity, but the anesthesia complicates the examination of changes that occur in the first few hours after whisker trimming. Here we assayed the short-term changes that occur in alert, active animals over a period of hours after whisker trimming. The magnitude of barrel cortex evoked responses was measured in response to stimulation of the cut and paired whiskers of rats under several conditions: (a) whisking in air (control), (b) active whisking of an object by the rat, and (c) epochs of passive whisker stimulation to identify the onset of whisker pairing plasticity changes in cortex. The main difference between whisking in air without contact and passive whisker stimulation is that the former condition induces an increased response to stimulation of inactive cut whiskers, while the latter condition increases the responses to the stimulated whiskers. The results support the conclusion that whisker pairing plasticity in barrel cortex occurs within 4 h after whisker trimming in an awake, alert animal.

  20. The Veils of Titan

    NASA Image and Video Library

    2004-05-06

    The veils of Saturn's most mysterious moon have begun to lift in Cassini's eagerly awaited first glimpse of the surface of Titan, a world where scientists believe organic matter rains from hazy skies and seas of liquid hydrocarbons dot a frigid surface. Surface features previously observed only from Earth-based telescopes are now visible in images of Titan taken in mid-April by Cassini through one of the narrow angle camera's spectral filters specifically designed to penetrate the thick atmosphere. The image scale is 230 kilometers (143 miles) per pixel, and it rivals the best Earth-based images. The two images displayed here show Titan from a vantage point 17 degrees below its equator, yielding a view from 50 degrees north latitude all the way to its south pole. The image on the left was taken four days after the image on the right. Titan rotated 90 degrees in that time. The two images combined cover a region extending halfway around the moon. The observed brightness variations suggest a diverse surface, with variations in average reflectivity on scales of a couple hundred kilometers. The images were taken through a narrow filter centered at 938 nanometers, a spectral region in which the only obstacle to light is the carbon-based, organic haze. Despite the rather long 38-second exposure times, there is no noticeable smear due to spacecraft motion. The images have been magnified 10 times and enhanced in contrast to bring out details. No further processing to remove the effects of the overlying atmosphere has been performed. The superimposed grid over the images illustrates the orientation of Titan -- north is up and rotated 25 degrees to the left -- as well as the geographical regions of the satellite that are illuminated and visible. The yellow curve marks the position of the boundary between day and night on Titan. The enhanced image contrast makes the region within 20 degrees of this day and night division darker than usual. The Sun illuminates Titan from the

  1. Tin Whisker Electrical Short Circuit Characteristics Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Bayliss, Jon A.; Ludwib, Lawrence L.; Zapata, Maria C.

    2007-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB).

  2. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    NASA Astrophysics Data System (ADS)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  3. Titanic exploration with GIS

    USGS Publications Warehouse

    Kerski, J.J.

    2004-01-01

    To help teachers and students investigate one of the world's most famous historical events using the geographic perspective and GIS tools and methods, the U.S. Geological Survey (USGS) created a set of educational lessons based on the RMS Titanic's April 1912 sailing. With these lessons, student researchers can learn about latitude and longitude, map projections, ocean currents, databases, maps, and images through the analysis of the route, warnings, sinking, rescue, and eventual discovery of the submerged ocean liner in 1985. They can also consider the human and physical aspects of the maiden voyage in the North Atlantic Ocean at a variety of scales, from global to regional to local. Likewise, their investigations can reveal how the sinking of the Titanic affected future shipping routes.

  4. Ethane ocean on Titan

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.

    1983-01-01

    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  5. Titan's Eccentricity Tides

    NASA Astrophysics Data System (ADS)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2011-12-01

    The large eccentricity (e=0.03) of Titan's orbit causes significant variations in the tidal field from Saturn and induces periodic stresses in the satellite body at the orbital period (about 16 days). Peak-to-peak variations of the tidal field (from pericenter to apocenter) are about 18% (6e). If Titan hosts a liquid layer (such as an internal ocean), the gravity field would exhibit significant periodic variations. The response of the body to fast variations of the external, perturbing field is controlled by the Love numbers, defined for each spherical harmonic as the ratio between the perturbed and perturbing potential. For Titan the largest effect is by far on the quadrupole field, and the corresponding Love number is indicated by k2 (assumed to be identical for all degree 2 harmonics). Models of Titan's interior generally envisage a core made up of silicates, surrounded by a layer of high pressure ice, possibly a liquid water or water-ammonia ocean, and an ice-I outer shell, with variations associated with the dehydration state of the core or the presence of mixed rock-ice layers. Previous analysis of Titan's tidal response [1] shows that k2 depends crucially on the presence or absence of an internal ocean. k2 was found to vary from about 0.03 for a purely rocky interior to 0.48 for a rigid rocky core surrounded by an ocean and a thin (20 km) ice shell. A large k2 entails changes in the satellite's quadrupole coefficients by a few percent, enough to be detected by accurate range rate measurements of the Cassini spacecraft. So far, of the many Cassini's flybys of Titan, six were used for gravity measurements. During gravity flybys the spacecraft is tracked from the antennas of NASA's Deep Space Network using microwave links at X- and Ka-band frequencies. A state-of-the-art instrumentation enables range rate measurements accurate to 10-50 micron/s at integration times of 60 s. The first four flybys provided the static gravity field and the moment of inertia factor

  6. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  7. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  8. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  9. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  10. Coordinated Stem and NanoSIMS Analysis of Enstatite Whiskers in Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, Scott; Keller, L. P.

    2009-01-01

    Enstatite whiskers (less than 10 micrometer length, less than 200 nanometer width) occur in chondritic-porous interplanetary dust particles (CP IDPs), an Antarctic micrometeorite and a comet 81P/Wild-2 sample. The whiskers are typically elongated along the [100] axis and contain axial screw dislocations, while those in terrestrial rocks and meteorites are elongated along [001]. The unique crystal morphologies and microstructures are consistent with the enstatite whiskers condensing above approximately 1300 K in a low-pressure nebular or circumstellar gas. To constrain the site of enstatite whisker formation, we carried out coordinated mineralogical, chemical and oxygen isotope measurements on enstatite whiskers in a CP IDP.

  11. Muscular Basis of Whisker Torsion in Mice and Rats.

    PubMed

    Haidarliu, Sebastian; Bagdasarian, Knarik; Shinde, Namrata; Ahissar, Ehud

    2017-09-01

    Whisking mammals move their whiskers in the rostrocaudal and dorsoventral directions with simultaneous rolling about their long axes (torsion). Whereas muscular control of the first two types of whisker movement was already established, the anatomic muscular substrate of the whisker torsion remains unclear. Specifically, it was not clear whether torsion is induced by asymmetrical operation of known muscles or by other largely unknown muscles. Here, we report that mystacial pads of newborn and adult rats and mice contain oblique intrinsic muscles (OMs) that connect diagonally adjacent vibrissa follicles. Each of the OMs is supplied by a cluster of motor end plates. In rows A and B, OMs connect the ventral part of the rostral follicle with the dorsal part of the caudal follicle. In rows C-E, in contrast, OMs connect the dorsal part of the rostral follicle to the ventral part of the caudal follicle. This inverse architecture is consistent with previous behavioral observations [Knutsen et al.: Neuron 59 (2008) 35-42]. In newborn mice, torsion occurred in irregular single twitches. In adult anesthetized rats, microelectrode mediated electrical stimulation of an individual OM that is coupled with two adjacent whiskers was sufficient to induce a unidirectional torsion of both whiskers. Torsional movement was associated with protracting movement, indicating that in the vibrissal system, like in the ocular system, torsional movement is mechanically coupled to horizontal and vertical movements. This study shows that torsional whisker rotation is mediated by specific OMs whose morphology and attachment sites determine rotation direction and mechanical coupling, and motor innervation determines rotation dynamics. Anat Rec, 300:1643-1653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Encoding of whisker input by cerebellar Purkinje cells

    PubMed Central

    Bosman, Laurens W J; Koekkoek, Sebastiaan K E; Shapiro, Joël; Rijken, Bianca F M; Zandstra, Froukje; van der Ende, Barry; Owens, Cullen B; Potters, Jan-Willem; de Gruijl, Jornt R; Ruigrok, Tom J H; De Zeeuw, Chris I

    2010-01-01

    The cerebellar cortex is crucial for sensorimotor integration. Sensorimotor inputs converge on cerebellar Purkinje cells via two afferent pathways: the climbing fibre pathway triggering complex spikes, and the mossy fibre–parallel fibre pathway, modulating the simple spike activities of Purkinje cells. We used, for the first time, the mouse whisker system as a model system to study the encoding of somatosensory input by Purkinje cells. We show that most Purkinje cells in ipsilateral crus 1 and crus 2 of awake mice respond to whisker stimulation with complex spike and/or simple spike responses. Single-whisker stimulation in anaesthetised mice revealed that the receptive fields of complex spike and simple spike responses were strikingly different. Complex spike responses, which proved to be sensitive to the amplitude, speed and direction of whisker movement, were evoked by only one or a few whiskers. Simple spike responses, which were not affected by the direction of movement, could be evoked by many individual whiskers. The receptive fields of Purkinje cells were largely intermingled, and we suggest that this facilitates the rapid integration of sensory inputs from different sources. Furthermore, we describe that individual Purkinje cells, at least under anaesthesia, may be bound in two functional ensembles based on the receptive fields and the synchrony of the complex spike and simple spike responses. The ‘complex spike ensembles’ were oriented in the sagittal plane, following the anatomical organization of the climbing fibres, while the ‘simple spike ensembles’ were oriented in the transversal plane, as are the beams of parallel fibres. PMID:20724365

  13. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  14. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  15. The albedo of Titan

    NASA Technical Reports Server (NTRS)

    Lockwood, G. W.; Lutz, B. L.; Thompson, D. T.; Bus, E. S.

    1986-01-01

    Photometric observations of Titan since 1972 show a cyclical variation of about 10 percent. A minimum value of brightness and albedo apparently occurred in 1984. Spectrophotometric observations, made annualy since 1980 at 8 A resolution, 3295-8880 A, were used to derive the value p-asterisk = 0.156 + or - 0.010 for the integrated geometric albedo in 1984. Variations of the equivalent widths of spectral features were not seen.

  16. A Titanic Labyrinth

    NASA Image and Video Library

    2016-07-29

    This synthetic-aperture radar image was obtained by NASA's Cassini spacecraft during its T-120 pass over Titan's southern latitudes on June 7, 2016. The image is centered near 47 degrees south, 153 degrees west. It covers an area of 87 by 75 miles (140 by 120 kilometers) and has a resolution of about 1,300 feet (400 meters). Radar illuminates the scene from the left at a 35-degree incidence angle. The features seen here are an excellent example of "labyrinth terrain." Labyrinth terrains on Titan are thought to be higher areas that have been cut apart by rivers of methane, eroded or dissolved as they were either lifted up or left standing above as the region around them lowered. (Other examples of labyrinth terrain can be seen in PIA10219.) In this image, several obvious valley systems have developed, draining liquids from methane rainfall toward the southeast (at top). Several of these systems are near parallel (running from upper left to lower right), suggesting that either the geological structure of the surface or the local topographic gradient (the general slope across the area) may be influencing their direction. Also presented here is an annotated version of the image, along with an aerial photograph of a region in southern Java known as Gunung Kidul that resembles this Titan labyrinth. This region is limestone that has been dissolved and eroded by water, creating a system of canyons called polygonal karst. Like on Titan, the canyons show a trend from upper left to lower right, in this case controlled by faults or joints. (Java photo from Haryono and Day, Journal of Cave and Karst Studies 66 (2004) 62-69, courtesy of Eko Haryono.) http://photojournal.jpl.nasa.gov/catalog/PIA20708

  17. Gravity Science at Titan

    NASA Astrophysics Data System (ADS)

    Iess, Luciano; Rappaport, Nicole J.; Jacobson, Robert A.; Racioppa, Paolo; Stevenson, David J.; Tortora, Paolo; Armstrong, John W.; Asmar, Sami W.

    2010-05-01

    Doppler data from four Cassini flybys have provided a determination of the degree 3, order 3 gravity field of Titan. Thanks to the good quality of the data and the favourable geometry of the encounters, the unconstrained estimation of the harmonic coefficients has shown that Radau-Darwin equation can be used to infer the moment of inertia of the satellite. We present the results of the data analysis and outline their implications for the interior structure.

  18. Changes on Titan's surface

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Lopes, R. M. C.; Coustenis, A.; Malaska, M. J.; Sotin, C.; Rodriguez, S.; Janssen, M. A.; Drossart, P.; Lawrence, K. J.; Matsoukas, C. K.; Hirtzig, M.; Le Mouelic, S.; Jaumann, R.; Brown, R. H.; Bratsolis, E.

    2015-12-01

    Cassini's Visual and Infrared Mapping Spectrometer (VIMS) and the Titan Radar Mapper have investigated Titan's surface since 2004, unveiling a complex, dynamic and Earth-like surface. Understanding the distribution and interplay of geologic processes is important for constraining models of its interior, surface-atmospheric interactions, and climate evolution. We focus on understanding the origin of the major geomorphological units identified by Lopes et al. (2010, 2015) [1,2], Malaska et al. (2015) [3] and regions we studied in Solomonidou et al. (2014; 2015) [4,5]. Here, we investigate the nature of: Undifferentiated Plains, Hummocky/Mountainous terrains, candidate cryovolcanic sites, Labyrinth, and Dunes in terms of surface albedo behavior and spectral evolution with time to identify possible changes. Using a radiative transfer code, we find that temporal variations of surface albedo occur for some areas. Tui Regio and Sotra Patera, both candidate cryovolcanic regions, change with time, becoming darker and brighter respectively in surface albedo. In contrast, we find that the Undifferentiated Plains and the suggested evaporitic areas [6] in the equatorial regions do not present any significant changes. We are able to report the differences and similarities among the various regions and provide constraints on their chemical composition and specific processes of origin. Our results support the hypothesis that both endogenic and exogenic processes have played important roles in shaping Titan's geologic evolution. Such a variety of geologic processes and their relationship to the methane cycle make Titan important for astrobiology and habitability studies and particularly significant in solar system studies. [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Lopes, R.M.C., et al.: JGR, 118, 416-435, 2013; [3] Malaska, M., et al : Icarus, submitted, 2015;[4] Solomonidou et al.: JGR, 119, 1729-1747, 2014; [5] Solomonidou, A., et al.: In press, 2015; [6] Barnes

  19. Landscape Evolution of Titan

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  20. Titan's gravity: An update

    NASA Astrophysics Data System (ADS)

    Durante, D.; Iess, L.; Racioppa, P.; Armstrong, J. W.; Lunine, J. I.; Stevenson, D. J.; Tortora, P.

    2016-12-01

    Since its arrival at Saturn in 2004, Cassini performed nine flybys devoted to the determination of Titan's gravity field and its tidal variations. The last gravity flyby of the mission (T122) took place on Aug. 10, 2016. We will present an updated gravity solution, based on all available data. These include also an additional flyby (T110, March 2015, primarily devoted to the imaging Titan's north polar lakes) carried out with the low gain antenna. This flyby was particularly valuable because closest approach occurred at high latitude (75°N), over an area not previously sampled. Published gravity results (Iess et al., 2012) indicated that Titan is subject to large eccentricity tides in response to Saturn's time varying forcing field. The magnitude of the response quadrupole field, controlled by the Love number k2, was used to infer the existence of an internal ocean. The new gravity field determination provides a better estimate of k2, to a level of a few percent. In addition to a full 3x3 field, the new solution includes also higher degree and order harmonic coefficients (such as J4) and offers an improved map of gravity anomalies. The updated geoid and its associated uncertainty could be used to refine the gravity-altimetry correlative analysis and for improved interpretation of radar altimetric data.

  1. On Titan's Xanadu region

    NASA Astrophysics Data System (ADS)

    Brown, Robert H.; Barnes, Jason W.; Melosh, H. Jay

    2011-08-01

    A large, circular marking ˜1800 km across is seen in near-infrared images of Titan. The feature is centered at 10°S, 120°W on Titan, encompasses much of Titan's western Xanadu region, and has an off-center, quasi-circular, inner margin about 700 km across, with lobate outer margins extending 200-500 km from the inner margin. On the feature's southern flank is Tui Regio, an area that has very high reflectivity at 5 μm, and is hypothesized to exhibit geologically recent cryovolcanic flows (Barnes, J.W. et al. [2006]. Geophys. Res. Lett. 33), similar to flows seen in Hotei Regio, a cryovolcanic area whose morphology may be controlled by pre-existing, crustal fractures resulting from an ancient impact (Soderblom, L.A. et al. [2009]. Icarus, 204). The spectral reflectivity of the large, circular feature is quite different than that of its surroundings, making it compositionally distinct, and radar measurements of its topography, brightness temperature and volume scattering also suggest that the feature is quite distinct from its surroundings. These and several other lines of evidence, in addition to the feature's morphology, suggest that it may occupy the site of an ancient impact.

  2. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1978-01-01

    Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter.

  3. Whisker-reinforced ceramic composites for heat engine components

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.

    1988-01-01

    Much work was undertaken to develop techniques of incorporating SiC whiskers into either a Si3N4 or SiC matrix. The result was the fabrication of ceramic composites with ever-increasing fracture toughness and strength. To complement this research effort, the fracture behavior of whisker-reinforced ceramics is studied so as to develop methodologies for the analysis of structural components fabricated from this toughened material. The results, outlined herein, focus on the following areas: the use of micromechanics to predict thermoelastic properties, theoretical aspects of fracture behavior, and reliability analysis.

  4. The effect of whisker movement on radial distance estimation: a case study in comparative robotics

    PubMed Central

    Evans, Mathew H.; Fox, Charles W.; Lepora, Nathan F.; Pearson, Martin J.; Sullivan, J. Charles; Prescott, Tony J.

    2013-01-01

    Whisker movement has been shown to be under active control in certain specialist animals such as rats and mice. Though this whisker movement is well characterized, the role and effect of this movement on subsequent sensing is poorly understood. One method for investigating this phenomena is to generate artificial whisker deflections with robotic hardware under different movement conditions. A limitation of this approach is that assumptions must be made in the design of any artificial whisker actuators, which will impose certain restrictions on the whisker-object interaction. In this paper we present three robotic whisker platforms, each with different mechanical whisker properties and actuation mechanisms. A feature-based classifier is used to simultaneously discriminate radial distance to contact and contact speed for the first time. We show that whisker-object contact speed predictably affects deflection magnitudes, invariant of whisker material or whisker movement trajectory. We propose that rodent whisker control allows the animal to improve sensing accuracy by regulating contact speed induced touch-to-touch variability. PMID:23293601

  5. Effects of modifying agents on surface modifications of magnesium oxide whiskers

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Liu, Bei; Yang, Jinjun; Jia, Junping; You, Chen; Chen, Minfang

    2016-12-01

    In this work, the MgO whiskers have been treated by several modifying agents including the mixture of DL-malic acid oligo-L-lactide (g), aluminate coupling agent (Al) and stearic acid (Sa). The morphologies, covering quantity, compositions and components of the whiskers before and after the modifications were investigated by SEM, TG, XRD and FT-IR, respectively. Comparisons have been made on the morphologies of modified whiskers by different modifiers tailoring. The results show that the MgO whiskers treated by stearic acid have superior performance to the others, especially in terms of uniform dispersion. In contrast, both the mixture of DL-malic acid oligo-L-lactide and aluminate coupling agent have the negative effects on whiskers' dispersibility. FT-IR reveals that the chemical bonds were formed between the whiskers and each modifying agent and the XRD testing demonstrate that the crystal structures of the modified whiskers were well maintained without significant change.

  6. A trial on the quantitative risk assessment of man-made mineral fibers by the rat intraperitoneal administration assay using the JFM standard fibrous samples.

    PubMed

    Adachi, S; Kawamura, K; Takemoto, K

    2001-04-01

    We tried to evaluate the carcinogenic risk of man-made mineral fiber based on the mesothelioma incidence in female F344 rats after intraperitoneal administration. Rats (female F344/ Nslc, 5-week-old, n=330) were observed for 2 years after the intraperitoneal administration of 5 to 20 mg of 9 types of the JFM (Japan Fibrous Material Research Association) standard fiber samples (glass wool, rock wool, micro fiber glass, three types of refractory fiber, potassium titanate whisker, silicon carbide whisker, titanium oxide whisker), wollastonite (natural fiber) and UICC chrysotile B. All rats administered 10 mg of silicon carbide whisker had developed peritoneal mesothelioma within a year. The cumulative incidence of peritoneal mesothelioma at the end of the experiment was 85% for 10 mg UICC chrysotile B, 77% for 10 mg of potassium titanate whisker, 70% for 5 mg of silicon carbide whisker, 20% for 5 mg of potassium titanate whisker, 20% for 20 mg of refractory fiber 2 and 10% for 20 mg of refractory fiber 1. Carcinogenicity was estimated 2.4 times for silicon carbide whisker and 0.23 for potassium titanate whisker in comparison with UICC chrysotile B. It has been well documented from several experimental studies that man-made fibers are safer than asbestos because of the different durability in the lung. Present results consistently suggest that man-made fibers with high durability have similar or higher risk as carcinogen than asbestos.

  7. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly; Malaska, Michael; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Solomonidou, Anezina; Radebaugh, Jani

    2015-04-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global

  8. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.; Malaska, M. J.; Schoenfeld, A.; Birch, S. P.; Hayes, A. G., Jr.

    2014-12-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global

  9. Fundamental studies of tin whiskering in microelectronics finishes

    NASA Astrophysics Data System (ADS)

    Pinol, Lesly Agnes

    Common electronics materials, such as tin, copper, steel, and brass, are ambient reactive under common use conditions, and as such are prone to corrosion. During the early 1940s, reports of failures due to electrical shorting of components caused by 'whisker' (i.e., filamentary surface protrusion) growth on many surface types---including the aforementioned metals---began to emerge. Lead alloying of tin (3--10% by weight, typically in the eutectic proportion) eliminated whiskering risk for decades, until the July 2006 adoption of the Restriction of Hazardous Substances (RoHS) directive was issued by the European Union. This directive, which has since been adopted by California and parts of China, severely restricted the use of lead (<1000 ppm) in all electrical and electronics equipment being placed on the EU market, imposing the need for developing reliable new "lead-free" alternatives to SnPb. In spite of the abundance of modern-day anecdotes chronicling whisker-related failures in satellites, nuclear power stations, missiles, pacemakers, and spacecraft navigation equipment, pure tin finishes are still increasingly being employed today, and the root cause(s) of tin whiskering remains elusive. This work describes a series of structured experiments exploring the fundamental relationships between the incidence of tin whiskering (as dependent variable) and numerous independent variables. These variables included deposition method (electroplating, electroless plating, template-based electrochemical synthesis, and various physical vapor deposition techniques, including resistive evaporation, electron beam evaporation, and sputtering), the inclusion of microparticles and organic contamination, the effects of sample geometry, and nanostructuring. Key findings pertain to correlations between sample geometry and whisker propensity, and also to the stress evolution across a series of 4"-diameter silicon wafers of varying thicknesses with respect to the degree of post

  10. Titan after Cassini Huygens

    NASA Astrophysics Data System (ADS)

    Beauchamp, P. M.; Lunine, J.; Lebreton, J.; Coustenis, A.; Matson, D.; Reh, K.; Erd, C.

    2008-12-01

    In 2005, the Huygens Probe gave us a snapshot of a world tantalizingly like our own, yet frozen in its evolution on the threshold of life. The descent under parachute, like that of Huygens in 2005, is happening again, but this time in the Saturn-cast twilight of winter in Titan's northern reaches. With a pop, the parachute is released, and then a muffled splash signals the beginning of the first floating exploration of an extraterrestrial sea-this one not of water but of liquid hydrocarbons. Meanwhile, thousands of miles away, a hot air balloon, a "montgolfiere," cruises 6 miles above sunnier terrain, imaging vistas of dunes, river channels, mountains and valleys carved in water ice, and probing the subsurface for vast quantities of "missing" methane and ethane that might be hidden within a porous icy crust. Balloon and floater return their data to a Titan Orbiter equipped to strip away Titan's mysteries with imaging, radar profiling, and atmospheric sampling, much more powerful and more complete than Cassini was capable of. This spacecraft, preparing to enter a circular orbit around Saturn's cloud-shrouded giant moon, has just completed a series of flybys of Enceladus, a tiny but active world with plumes that blow water and organics from the interior into space. Specialized instruments on the orbiter were able to analyze these plumes directly during the flybys. Titan and Enceladus could hardly seem more different, and yet they are linked by their origin in the Saturn system, by a magnetosphere that sweeps up mass and delivers energy, and by the possibility that one or both worlds harbor life. It is the goal of the NASA/ESA Titan Saturn System Mission (TSSM) to explore and investigate these exotic and inviting worlds, to understand their natures and assess the possibilities of habitability in this system so distant from our home world. Orbiting, landing, and ballooning at Titan represent a new and exciting approach to planetary exploration. The TSSM mission

  11. Role of whiskers in sensorimotor development of C57BL/6 mice

    PubMed Central

    Arakawa, Hiroyuki; Erzurumlu, Reha S.

    2015-01-01

    The mystacial vibrissae (whiskers) of nocturnal rodents play a major role in their sensorimotor behaviors. Relatively little information exists on the role of whiskers during early development. We characterized the contribution of whiskers to sensorimotor development in postnatal C57BL/6 mice. A comparison between intact and whisker-clipped mice in a battery of behavioral tests from postnatal day (P) 4 to 17 revealed that both male and female pups develop reflexive motor behavior even when the whiskers are clipped. Daily whisker trimming from P3 onwards results in diminished weight gain by P17, and impairment in whisker sensorimotor coordination behaviors, such as cliff avoidance and littermate huddling from P4 through P17, while facilitation of righting reflex at P4 and grasp response at P12. Since active whisker palpation does not start until 2 weeks of age, passive whisker touch during early neonatal stage must play a role in regulating these behaviors. Around the onset of exploratory behaviors (P12) neonatal whisker-clipped pups also display persistent searching movements when they encounter cage walls as a compensatory mechanism of sensorimotor development. Spontaneous whisker motion (whisking) is distinct from respiratory fluttering of whiskers. It is a symmetrical vibration of whiskers at a rate of approximately ∼8 Hz, and begins around P10. Oriented, bundled movements of whiskers at higher frequencies of ∼12 Hz during scanning object surfaces, i.e., palpation whisking, emerges at P14. The establishment of locomotive body coordination before eyes open accompanies palpation whisking, indicating an important role in the guidance of exploratory motor behaviors. PMID:25823761

  12. Role of whiskers in sensorimotor development of C57BL/6 mice.

    PubMed

    Arakawa, Hiroyuki; Erzurumlu, Reha S

    2015-01-01

    The mystacial vibrissae (whiskers) of nocturnal rodents play a major role in their sensorimotor behaviors. Relatively little information exists on the role of whiskers during early development. We characterized the contribution of whiskers to sensorimotor development in postnatal C57BL/6 mice. A comparison between intact and whisker-clipped mice in a battery of behavioral tests from postnatal day (P) 4-17 revealed that both male and female pups develop reflexive motor behavior even when the whiskers are clipped. Daily whisker trimming from P3 onwards results in diminished weight gain by P17, and impairment in whisker sensorimotor coordination behaviors, such as cliff avoidance and littermate huddling from P4 to P17, while facilitation of righting reflex at P4 and grasp response at P12. Since active whisker palpation does not start until 2 weeks of age, passive whisker touch during early neonatal stage must play a role in regulating these behaviors. Around the onset of exploratory behaviors (P12) neonatal whisker-clipped pups also display persistent searching movements when they encounter cage walls as a compensatory mechanism of sensorimotor development. Spontaneous whisker motion (whisking) is distinct from respiratory fluttering of whiskers. It is a symmetrical vibration of whiskers at a rate of approximately ∼8 Hz and begins around P10. Oriented, bundled movements of whiskers at higher frequencies of ∼12 Hz during scanning object surfaces, i.e., palpation whisking, emerges at P14. The establishment of locomotive body coordination before eyes open accompanies palpation whisking, indicating an important role in the guidance of exploratory motor behaviors.

  13. Effect of thermal cycling on whisker-reinforced dental resin composites.

    PubMed

    Xu, Hockin H K; Eichmiller, Frederick C; Smith, Douglas T; Schumacher, Gary E; Giuseppetti, Anthony A; Antonucci, Joseph M

    2002-09-01

    The mechanical properties of dental resin composites need to be improved in order to extend their use to high stress-bearing applications such as crown and bridge restorations. Recent studies used single crystal ceramic whiskers to reinforce dental composites. The aim of this study was to investigate the effects of thermal cycling on whisker-reinforced composites. It was hypothesized that the whisker composites would not show a reduction in mechanical properties or the breakdown of whisker-resin interface after thermal cycling. Silicon carbide whiskers were mixed with silica particles, thermally fused, then silanized and incorporated into resin to make flexural specimens. The filler mass fraction ranged from 0% to 70%. The specimens were thermal cycled in 5 degrees C and 60 degrees C water baths, and then fractured in three-point bending to measure strength. Nano-indentation was used to measure modulus and hardness. No significant loss in composite strength, modulus and hardness was found after 10(5) thermal cycles (family confidence coefficient=0.95; Tukey's multiple comparison test). The strength of whisker composite increased with filler level up to 60%, then plateaued when filler level was further increased to 70%; the modulus and hardness increased monotonically with filler level. The strength and modulus of whisker composite at 70% filler level were significantly higher than the non-whisker controls both before and after thermal cycling. SEM revealed no separation at the whisker-matrix interfaces, and observed resin remnants on the pulled-out whiskers, indicating strong whisker-resin bonding even after 10(5) thermal cycles. In conclusion, novel dental resin composites containing silica-fused whiskers possessed superior strength and modulus compared to non-whisker composites both before and after thermal cycling. The whisker-resin bonding appeared to be resistant to thermal cycling in water, so that no loss in composite strength or stiffness occurred after

  14. Understanding and predicting metallic whisker growth and its effects on reliability : LDRD final report.

    SciTech Connect

    Michael, Joseph Richard; Grant, Richard P.; Rodriguez, Mark Andrew; Pillars, Jamin; Susan, Donald Francis; McKenzie, Bonnie Beth; Yelton, William Graham

    2012-01-01

    Tin (Sn) whiskers are conductive Sn filaments that grow from Sn-plated surfaces, such as surface finishes on electronic packages. The phenomenon of Sn whiskering has become a concern in recent years due to requirements for lead (Pb)-free soldering and surface finishes in commercial electronics. Pure Sn finishes are more prone to whisker growth than their Sn-Pb counterparts and high profile failures due to whisker formation (causing short circuits) in space applications have been documented. At Sandia, Sn whiskers are of interest due to increased use of Pb-free commercial off-the-shelf (COTS) parts and possible future requirements for Pb-free solders and surface finishes in high-reliability microelectronics. Lead-free solders and surface finishes are currently being used or considered for several Sandia applications. Despite the long history of Sn whisker research and the recently renewed interest in this topic, a comprehensive understanding of whisker growth remains elusive. This report describes recent research on characterization of Sn whiskers with the aim of understanding the underlying whisker growth mechanism(s). The report is divided into four sections and an Appendix. In Section 1, the Sn plating process is summarized. Specifically, the Sn plating parameters that were successful in producing samples with whiskers will be reviewed. In Section 2, the scanning electron microscopy (SEM) of Sn whiskers and time-lapse SEM studies of whisker growth will be discussed. This discussion includes the characterization of straight as well as kinked whiskers. In Section 3, a detailed discussion is given of SEM/EBSD (electron backscatter diffraction) techniques developed to determine the crystallography of Sn whiskers. In Section 4, these SEM/EBSD methods are employed to determine the crystallography of Sn whiskers, with a statistically significant number of whiskers analyzed. This is the largest study of Sn whisker crystallography ever reported. This section includes a

  15. Synthesis of nanosized sodium titanates

    DOEpatents

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  16. Flyover of Sotra Facula, Titan

    NASA Image and Video Library

    2010-12-14

    This frame from a movie is based on data from NASA Cassini spacecraft and shows a flyover of an area of Saturn moon Titan known as Sotra Facula. Scientists believe Sotra is the best case for an ice volcano, or cryovolcano, region on Titan.

  17. Titan Beyond Cassini—Huygens

    NASA Astrophysics Data System (ADS)

    Dougherty, Michele K.; Coustenis, Athena; Lorenz, Ralph D.

    This chapter reviews the unanswered science questions which remain after the Cassini-Huygens nominal tour as well as the many new questions which has arisen following new discoveries which have been made. Further missions to the Titan system which have been studied are described, in particular that of the most recent study, the Titan Saturn System Mission.

  18. Method of making in-situ whisker reinforced glass ceramic

    DOEpatents

    Brown, Jesse J.; Hirschfeld, Deidre A.; Lee, K. H.

    1993-02-16

    A heat processing procedure is used to create reinforcing whiskers of TiO.sub.2 in glass-ceramic materials in the LAS and MAS family. The heat processing procedure has particular application in creating TiO.sub.2 in-situ in a modified .beta.-eucryptite system.

  19. Improved whisker pointing technique for micron-size diode contact

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Green, G.

    1982-01-01

    Pointed phosphor-bronze whiskers are commonly used to contact micron-size Schottky barrier diodes. A process is presented which allows pointing such wire and achieving the desired cone angle and tip diameter without the use of highly undesirable chemical reagents.

  20. Growth of Si whiskers by MBE: Mechanism and peculiarities

    NASA Astrophysics Data System (ADS)

    Zakharov, N.; Werner, P.; Sokolov, L.; Gösele, U.

    2007-03-01

    We analyzed the stress-driven mechanism of MBE Si whisker growth. It is shown that the driving force for MBE whisker growth is determined by the relaxation of elastic energy stored in the overgrown layer Ls due to gold intrusion. In this case the supersaturation is determined by the interplay between elastic stresses and surface energy. The latter is considerably decreased due to decoration of the Si surface by gold resulting in formation of thin liquid Si/Au eutectic layer. This suggests that in our case the Si supersaturation is not an independent growth parameter as it is in the chemical vapor deposition growth method. Instead it is determined by stress in the overgrown Si layer. This approach allows us to explain quite well the growth kinetic and the relationship between the radius and the length of the whiskers. The whisker growth in our case can be considered as a stress relaxation mechanism, where the stress relaxation occurs due to transition from the two-dimensional system to the three-dimensional one.

  1. Electrical behavior of carbon whisker reinforced elastomer matrix composites

    SciTech Connect

    Chellappa, V.; Chiou, Z.W.; Jang, B.Z.

    1994-12-31

    The electrical and mechanical properties of carbon whisker reinforced thermoplastic elastomer composites were investigated. The reinforcement whisker was made by a catalytic chemical vapor deposition (CCVD) process and the polymer matrix was from a thermoplastic elastomer (TPE, a butadiene-styrene block co-polymer). The electrical resistivity ({rho}) of the CCVD carbon whisker-elastomer composites can be varied by uniaxial deformation (10{sup 1}-10{sup 8}{Omega}-cm) and by changing the temperature (10{sup 1}-10{sup 5}{Omega}-cm). The temperature-resistivity studies indicate, that the resistivity of these composites depend on the physical property of the elastomer. The {rho} vs 1/T curves exhibit two distinct slopes intersected at the T{sub g} of the elastomer (-50{degrees}C). Further uniaxial deformation studies at room temperature (20{degrees}C) demonstrated that the resistivity increased exponentially with the deformation. The dependence of resistivity (or conductivity) of the composites with respect to deformation and temperature was explained on the basis of electron tunnelling induced conduction. CCVD carbon whiskers can be used as a reinforcement (filler) for the elastomer and can also make them electrically conductive.

  2. Improved whisker pointing technique for micron-size diode contact

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Green, G.

    1982-01-01

    Pointed phosphor-bronze whiskers are commonly used to contact micron-size Schottky barrier diodes. A process is presented which allows pointing such wire and achieving the desired cone angle and tip diameter without the use of highly undesirable chemical reagents.

  3. Dental resin composites containing silica-fused whiskers--effects of whisker-to-silica ratio on fracture toughness and indentation properties.

    PubMed

    Xu, Hockin H K; Quinn, Janet B; Smith, Douglas T; Antonucci, Joseph M; Schumacher, Gary E; Eichmiller, Frederick C

    2002-02-01

    Dental resin composites need to be strengthened in order to improve their performance in large stress-bearing applications such as crowns and multiple-unit restorations. Recently, silica-fused ceramic whiskers were used to reinforce dental composites, and the whisker-to-silica ratio was found to be a key microstructural parameter that determined the composite strength. The aim of this study was to further investigate the effects of whisker-to-silica ratio on the fracture toughness, elastic modulus, hardness and brittleness of the composite. Silica particles and silicon carbide whiskers were mixed at whisker:silica mass ratios of 0:1, 1:5. 1:2, 1:1, 2:1, 5:1, and 1:0. Each mixture was thermally fused, silanized and combined with a dental resin at a filler mass percentage of 60%. Fracture toughness was measured with a single-edge notched beam method. Elastic modulus and hardness were measured with a nano-indentation system. Whisker:silica ratio had significant effects on composite properties. The composite toughness (mean+/-SD; n = 9) at whisker:silica = 2:1 was (2.47+/-0.28) MPa m(1/2), significantly higher than (1.02+/-0.23) at whisker:silica = 0:1, (1.13+/-0.19) of a prosthetic composite control, and (0.95+/-0.11) of an inlay/onlay composite control (Tukey's at family confidence coefficient = 0.95). Elastic modulus increased monotonically and hardness plateaued with increasing the whisker:silica ratio. Increasing the whisker:silica ratio also decreased the composite brittleness, which became about 1/3 of that of the inlay:onlay control. Electron microscopy revealed relatively flat fracture surfaces for the controls, but much rougher ones for the whisker composites, with fracture steps and whisker pullout contributing to toughness. The whiskers appeared to be well-bonded with the matrix, probably due to the fused silica producing rough whisker surfaces. Reinforcement with silica-fused whiskers resulted in novel dental composites that possessed fracture toughness

  4. Titan's atmosphere from DISR

    NASA Astrophysics Data System (ADS)

    West, Robert

    This abstract distills information about Titan's atmosphere described in detail in a paper by M. G. Tomasko, L. Doose, S. Engel, L. E. Dafoe, R. West, M. Lemmon, E. Karkoschka and C. See, ‘A model of Titan's aerosols based on measurements made inside the atmosphere', Planetary and Space Sciences, in press, 2008. The Descent Imager Spectral Radiometer (DISR) observed Titan's sky and surface during the descent of the Huygens Probe in January, 2005. Measurements were made over the altitude range 160 Km to the surface near latitude -10 degrees. The DISR instrument package included several components to measure the radiation state as a function of altitude. These include upward and downward-looking visible and near-infrared spectrometers covering the wavelength range 450 to 1600 nm, an ultraviolet photometer, a solar aureole camera with polarizers, and a sun sensor. Measurements were made at a variety of azimuthal angles relative to the sun azimuth. Due to unanticipated behavior of the probe (reverse spin and high-amplitude, chaotic tip and tilt) the retrieval process has required more effort than was planned and the total science return is less than expected. Nevertheless the data yielded unsurpassed and unique information which constrain the optical and physical properties of the photochemical haze aerosols and condensate particles. The principal findings are (1) between 80 Km and 160 Km the photochemical haze is well mixed with the gas with a scale height of about 65 Km, (2) between 80 Km and the surface the particle optical depth is a linear function of altitude with a break in slope near 30 Km altitude, (3) optical properties of the haze do not depend much on altitude above 80 Km although more recent work by Tomasko and colleagues suggest a gradient in the stratosphere; below 80 Km there are changes in optical behavior which suggest that condensation plays a role, (4) the data confirm previous results which proposed a particle structure of aggregates of small

  5. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  6. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  7. Acetylene on Titan

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; McCord, Thomas B.; Combe, Jean-Philippe; Rodriguez, Sebastien; Cornet, Thomas; Le Mouélic, Stéphane; Clark, Roger Nelson; Maltagliati, Luca; Chevrier, Vincent

    2016-10-01

    Saturn's moon Titan possesses a thick atmosphere that is mainly composed of N2 (98%), CH4 (2 % overall, but 4.9% close to the surface) and less than 1% of minor species, mostly hydrocarbons [1]. A dissociation of N2 and CH4 forms complex hydrocarbons in the atmsophere and acetylene (C2H2) and ethane (C2H6) are produced most abundently. Since years, C2H2 has been speculated to exist on the surface of Titan based on its high production rate in the stratosphere predicted by photochemical models [2,3] and from its detection as trace gas sublimated/evaporated from the surface after the landing of the Huygens probe by the Gas Chromatograph Mass Spectrometer (GCMS) [1]. Here we show evidence of acetylene (C2H2) on the surface of Titan by detecting absorption bands at 1.55 µm and 4.93 µm using Cassini Visual and Infrared Mapping Spectrometer (VIMS) [4] at equatorial areas of eastern Shangri-La, and Fensal-Aztlan/Quivira.An anti-correlation of absorption band strength with albedo indicates greater concentrations of C2H2 in the dark terrains, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.References:[1]Niemann et al., Nature 438, 779-784 (2005).[2]Lavvas et al., Planetary and Space Science 56, 67 - 99 (2008).[3]Lavvas et al., Planetary and Space Science 56, 27 - 66 (2008).[4] Brown et al., The Cassini-Huygens Mission 111-168 (Springer, 2004).

  8. Titan Airship Surveyor

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the

  9. Titan Science Return Quantification

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.; Lincoln, William

    2014-01-01

    Each proposal for a NASA mission concept includes a Science Traceability Matrix (STM), intended to show that what is being proposed would contribute to satisfying one or more of the agency's top-level science goals. But the information traditionally provided cannot be used directly to quantitatively compare anticipated science return. We added numerical elements to NASA's STM and developed a software tool to process the data. We then applied this methodology to evaluate a group of competing concepts for a proposed mission to Saturn's moon, Titan.

  10. Titan Science Return Quantification

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.; Lincoln, William

    2014-01-01

    Each proposal for a NASA mission concept includes a Science Traceability Matrix (STM), intended to show that what is being proposed would contribute to satisfying one or more of the agency's top-level science goals. But the information traditionally provided cannot be used directly to quantitatively compare anticipated science return. We added numerical elements to NASA's STM and developed a software tool to process the data. We then applied this methodology to evaluate a group of competing concepts for a proposed mission to Saturn's moon, Titan.

  11. The Tides of Titan

    NASA Astrophysics Data System (ADS)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2012-12-01

    Titan has long been thought to host a subsurface water ocean. A liquid water or water-ammonia layer underneath the outer icy shell was invoked to explain the Voyager and Cassini observations of abundant methane (an easily dissociated species) in the atmosphere of the satellite. Given the paucity of surface hydrocarbon reservoirs, the atmospheric methane must be supplied by the interior, and an ocean can both provide a large storage volume and facilitate the outgassing from the deeper layers of the satellite to the surface. Huygens probe observations of a Schumann-like resonance point to the presence of an electrically conductive layer at a depth of 50-100 km, which has been interpreted to be the top of an ammonia-doped ocean [1]. Cassini gravity observations provide stronger evidence of the existence of such subsurface ocean. By combining precise measurements of the spacecraft range rate during six flybys, suitably distributed along Titan's orbit (three near pericenter, two near apocenter one near quadrature), we have been able to determine the k2 Love number to be k2 = 0.589±0.150 and k2 = 0.637±0.224 in two independent so-lutions (quoted uncertainties are 2-sigma) [2]. Such a large value indicates that Titan is highly deformable over time scales of days, as one would expect if a global ocean were hidden beneath the outer icy shell. The inclusion of time-variable gravity in the solution provided also a more reliable estimate of the static field, including an updated long-wavelength geoid. We discuss the methods adopted in our solutions and some implications of our results for the interior structure of Titan, and outline the expected improvements from the additional gravity flybys before the end of mission in 2017. [1] C. Beghin, C. Sotin, M. Hamelin, Comptes Rendue Geoscience, 342, 425 (2010). [2] L. Iess, R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, J.W. Armstrong, S.W. Asmar, P. Racioppa, N.J. Rappaport, P. Tortora, Science, 337, 457 (2012).

  12. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].

    PubMed

    Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping

    2012-05-01

    Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.

  13. Mitigation and Verification Methods for Sn Whisker Growth in Pb-Free Automotive Electronics

    NASA Astrophysics Data System (ADS)

    Hong, Won Sik; Oh, Chul Min; Kim, Do Seop

    2013-02-01

    This work describes mitigation methods against Sn whisker growth in Pb-free automotive electronics using a conformal coating technique, with an additional focus on determining an effective whisker assessment method. We suggest effective whisker growth conditions that involve temperature cycling and two types of storage conditions (high-temperature/humidity storage and ambient storage), and analyze whisker growth mechanisms. In determining an efficient mitigation method against whisker growth, surface finish and conformal coating have been validated as effective means. In our experiments, the surface finish of components comprised Ni/Sn, Ni/SnBi, and Ni/Pd. The effects of acrylic silicone, and rubber coating of components were compared with uncoated performance under high-temperature/humidity storage conditions. An effective whisker assessment method during temperature cycling and under various storage conditions (high temperature/humidity and ambient) is indicated for evaluating whisker growth. Although components were finished with Ni/Pd, we found that whiskers were generated at solder joints and that conformal coating is a useful mitigation method in this regard. Although whiskers penetrated most conformal coating materials (acrylic, silicone, and rubber) after 3500 h of high-temperature/humidity storage, the whisker length was markedly reduced due to the conformal coatings, with silicone providing superior mitigation over acrylic and rubber.

  14. Study of the cortical representation of whisker frequency selectivity using voltage-sensitive dye optical imaging

    PubMed Central

    Tsytsarev, Vassiliy; Pumbo, Elena; Tang, Qinggong; Chen, Chao-Wei; Kalchenko, Vyacheslav; Chen, Yu

    2016-01-01

    ABSTRACT The facial whiskers of rodents act as a high-resolution tactile apparatus that allow the animal to detect the finest details of its environment. Previously it was shown that whisker-sensitive neurons in the somatosensory cortex show frequency selectivity to small amplitude stimuli, An intravital voltage-sensitive dye optical imaging (VSDi) method in combination with the different frequency whisker stimulation was used in order to visualize neural activity in the mice somatosensory cortex in response to the stimulation of a single whisker by different frequencies. Using the intravital voltage-sensitive dye optical imaging (VSDi) method in combination with the different frequency whisker stimulation we visualized neural activity in the mice somatosensory cortex in response to the stimulation of a single whisker by different frequencies. We found that whisker stimuli with different frequencies led to different optical signals in the barrel field. Our results provide evidence that different neurons of the barrel cortex have different frequency preferences. This supports prior research that whisker deflections cause responses in cortical neurons within the barrel field according to the frequency of the stimulation. Many studies of the whisker frequency selectivity were performed using unit recording but to map spatial organization, imaging methods are essential. In the work described in the present paper, we take a serious step toward detailed functional mapping of the somatosensory cortex using VSDi. To our knowledge, this is the first demonstration of whisker frequency sensitivity and selectivity of barrel cortex neurons with optical imaging methods. PMID:28243518

  15. Alkali Silicate Glass Coatings for Mitigating the Risks of Tin Whiskers

    NASA Astrophysics Data System (ADS)

    Hillman, Dave; Wilcoxon, Ross; Lower, Nate; Grossman, Dan

    2015-12-01

    Alkali silicate glass (ASG) coatings were investigated as a possible method for inhibiting tin whisker initiation and growth. The aqueous-based ASG formulations used in this study were deposited with equipment and conditions that are typical of those used to apply conventional conformal coatings. Processes for controlling ASG coating properties were developed, and a number of ASG-based coating combinations were applied to test components with pure tin surfaces. Coatings were applied both in a laboratory environment at Rockwell Collins and in a manufacturing environment at Plasma Ruggedized Solutions. Testing in elevated humidity/temperature environments and subsequent inspection of the test articles identified coating combinations that inhibited tin whisker growth as well as other material combinations that actually accelerated tin whisker growth. None of the coatings evaluated in this study, including conventional acrylic and Parylene conformal coatings, completely prevented the formation of tin whiskers. Two of the coatings were particularly effective at reducing the risks of whisker growth, albeit through different mechanisms. Parylene conformal coating almost, but not completely, eliminated whisker formation, and only a few tin whiskers were found on these surfaces during the study. A composite of ASG and alumina nanoparticles inhibited whisker formation to a lesser degree than Parylene, but did disrupt whisker growth mechanisms so as to inhibit the formation of long, and more dangerous, tin whiskers. Additional testing also demonstrated that the conformal coatings had relatively little effect on the dielectric loss of a stripline test structure operating at frequencies over 30 GHz.

  16. Infrared thermal imaging of rat somatosensory cortex with whisker stimulation.

    PubMed

    Suzuki, Takashi; Ooi, Yasuhiro; Seki, Junji

    2012-04-01

    The present study aims to validate the applicability of infrared (IR) thermal imaging for the study of brain function through experiments on the rat barrel cortex. Regional changes in neural activity within the brain produce alterations in local thermal equilibrium via increases in metabolic activity and blood flow. We studied the relationship between temperature change and neural activity in anesthetized rats using IR imaging to visualize stimulus-induced changes in the somatosensory cortex of the brain. Sensory stimulation of the vibrissae (whiskers) was given for 10 s using an oscillating whisker vibrator (5-mm deflection at 10, 5, and 1 Hz). The brain temperature in the observational region continued to increase significantly with whisker stimulation. The mean peak recorded temperature changes were 0.048 ± 0.028, 0.054 ± 0.036, and 0.097 ± 0.015°C at 10, 5, and 1 Hz, respectively. We also observed that the temperature increase occurred in a focal spot, radiating to encompass a larger region within the contralateral barrel cortex region during single-whisker stimulation. Whisker stimulation also produced ipsilateral cortex temperature increases, which were localized in the same region as the pial arterioles. Temperature increase in the barrel cortex was also observed in rats treated with a calcium channel blocker (nimodipine), which acts to suppress the hemodynamic response to neural activity. Thus the location and area of temperature increase were found to change in accordance with the region of neural activation. These results indicate that IR thermal imaging is viable as a functional quantitative neuroimaging technique.

  17. A mechanistic study on the synthesis of β-Sialon whiskers from coal fly ash

    SciTech Connect

    Zhao, H.; Wang, P.Y.; Yu, J.L.; Zhang, J.

    2015-05-15

    Graphical abstract: The appearance of bead-like whiskers indicated that the growth mechanism of the β-Sialon whiskers was different from the conventional one, in which a chain of droplets were formed and then consumed to participate in the formation of the whiskers. - Highlights: • β-Sialon whiskers were synthesized using waste fly ash by carbothemal reduction reaction under nitrogen atmosphere. • Rod-like β-Sialon whiskers with a diameter of 100–500 nm were formed. • Bead-like whiskers as intermediate morphology of the growing β-Sialon whiskers were found with increasing sintering time. • The growth mechanism of β-Sialon whiskers was different from the conventional VLS mechanism. • A chain of droplets were formed and participated in the formation of the whiskers. - Abstract: β-Sialon whiskers were produced at 1420 °C through carbothemal reduction reaction under nitrogen atmosphere using fly ash from coal-fired power plants. The effects of sintering time on the phase formation and morphology of the products were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) techniques. Rod-like β-Sialon whiskers with the diameter of 100–500 nm were successfully formed. With increasing sintering time, bead-like morphology during the growth process of the whiskers was found, and growth mechanism of β-Sialon whiskers was also discussed in detail. The growth mechanism proposed in this study was different from the conventional vapor–liquid–solid (VLS) mechanism.

  18. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles

    PubMed Central

    Ikeda, Ryo

    2016-01-01

    Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers. PMID:27927797

  19. Hydrothermal synthesis of sodium bismuth titanate and titanate nanofibers

    NASA Astrophysics Data System (ADS)

    Kundu, Animesh

    A hydrothermal processing method was developed for the synthesis of sodium bismuth titanate powders and thin films from suitable precursors at 150°C. Oxide precursors were best suited for preparing pure phase materials. The sodium bismuth titanate powders consisted of cube shaped crystals. A modified solution-reprecitation model involving partial dissolution of the precursors was proposed to explain the growth of these particles. The thin films were prepared on strontium titanate (100) substrate. A sample holder was specially designed and fabricated to secure the substrates in the reaction vessel. The result was a relatively smooth film of thickness ≤550 nm. The films were essentially single crystalline and had strong epitaxial relationship with the substrate. Titanate nanofibers (NaxH yTinO2n+1° zH2O) were known to form under similar hydrothermal conditions as sodium bismuth titanate powders. Detail research revealed that the pure hydroxide and oxide precursors tend to form sodium bismuth titanate powders or thin films. Titanate nanofibers were the predominant product when any other ions or organics were present in the precursor. Much faster reaction kinetics for the formation of nanofibers was observed when certain organic compounds were added deliberately with the precursors. Accordingly, a hydrothermal process was developed for converting the precursors to titanate nanofibers in a significantly shorter time than reported in the literature. A thin film consisting of vertically aligned nanofibers was prepared on titanium substrate at 150°C in as little as 30 minutes. Complete conversion of starting precursors to free standing nanofibers was achieved in ˜8 hours at 150°C. The as-prepared nanofibers were some form of sodium titanate. They were converted to hydrogen titanate by ion exchange. Differential Scanning calorimetric experiments were performed to understand the thermal evolution of the fibers. The hydrogen titanate fibers underwent structural

  20. Titan: A Place with Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Titan is the largest moon of the planet Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen and has a pressure one and a half times larger than sea level pressure on Earth. In these respects Titan's atmosphere is the closest twin to Earth's. Methane is found in Titan's atmosphere and results in the formation of a organic smog layer in the atmosphere via chemistry that is similar to the current theories for the origin of life on Earth. Unfortunately, Titan is much too cold for water to be liquid and life is therefore unlikely, earth-like life that is. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's. However the organic smog layer produces an anti-greenhouse effect that cuts the greenhouse warming in half. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane or maybe just lakes. When the NASA/ESA mission to the Saturn System, Cassini/Huygens reaches Saturn in a few years it will launch a probe that to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  1. Touchdown on Titan

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Europe's Huygens probe is on target for a Dec. 25 separation from the Cassini Saturn orbiter that has carried it like a baby for more than seven years. The probe will spend three weeks coasting to a plunge into Titan's thick atmosphere on the morning of Jan. 14. If all goes as planned, the 349-kg. Huygens will spend more than 2 hr. descending by parachute to the mysterious surface of the planet-sized moon, and hopefully devote yet more time to broadcasting data after it lands. Before the day is over, Huygens is programmed to beam about 30 megabytes of data - including some 1,100 images-back to Earth through Cassini, a trip that will take some 75 min. to complete over the 1- billion-km. distance that separates the two planets. Within that data should be answers to questions that date back to 1655, when Dutch astronomer Christiaan Huygens found the moon with a homemade telescope and named it for the family of giants the ancient Greeks believed once ruled the earth. In the Solar System, there is no other world like Titan, with a nitrogen and methane atmospheric and a cold, hidden surface darker than Earth under the full Moon.

  2. CO2 on Titan

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Maguire, W. C.; Hanel, R. A.; Kunde, V. G.; Jennings, D. E.; Yung, Y. L.; Aikin, A. C.

    1983-01-01

    A sharp stratospheric emission feature at 667/cm in the Voyager infrared spectra of Titan is associated with the nu2 Q branch of CO2. A coupling of photochemical and radiative-transfer theory yields an average mole fraction above the 110 mbar level of (1.5 + 1.5 or - 0.8) x 10 to the -9th, with most of the uncertainty being due to imprecise knowledge of the vertical distribution. CO2 is found to be in a steady state, with its abundance being regulated principally by the 72 K cold trap near the tropopause and secondarily by the rate at which water-bearing meteoritic material enters the top of the atmosphere. An influx of water about 0.4 times that at the top of the terrestrial atmosphere is consistent with a combination of the observed CO2 abundance and a steady-state CO mole fraction of 0.00011; the thoeretical value for CO is close to the value observed by Lutz et al. (1983), although there are large margins for error in both numbers. If steady-state conditions for CO prevail, little information is available regarding the evolution of Titan's atmosphere.

  3. The Geology of Titan

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    Titan, the largest and most complex satellite in the solar system exhibits an organic dominated surface chemistry and shares surface features with other large icy satellites as well as the terrestrial planets. It is subject to tidal stresses, and its surface appears to have been modified tectonically. Cassini's global observations at infrared and radar wavelengths as well as local investigations by the instruments on the Huygens probe has revealed that Titan has the largest known abundance of organic material in the solar system apart from Earth, and that its active hydrological cycle is analogous to that of Earth, but with methane replacing water. The surface of Titan exhibits morphological features of different sizes and origins created by geological processes that span the entire dynamic range of aeolian, fluvial and tectonic activities, with likely evidence that cryovolcanism might exists where liquid water, perhaps in concert with ammonia, methane and carbon dioxide, makes its way to the surface from the interior [e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Extended dune fields, lakes, mountainous terrain, dendritic erosion patterns and erosional remnants indicate dynamic surface processes. Valleys, small-scale gullies and rounded cobbles require erosion by extended energetic flow of liquids. There is strong evidence that liquid hydrocarbons are ponded on the surface in lakes, predominantly, but not exclusively, at high northern latitudes. A variety of features including extensive flows and caldera-like constructs are interpreted to be cryovolcanic in origin. Chains and isolated blocks of rugged terrain rising from smoother areas are best described as mountains and might be related to tectonic processes. Impact craters form on all solid bodies in the solar system, and have been detected on Titan. But very few have been observed so they must be rapidly destroyed or buried by other geologic processes The morphologies of the impact

  4. Touchdown on Titan

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Europe's Huygens probe is on target for a Dec. 25 separation from the Cassini Saturn orbiter that has carried it like a baby for more than seven years. The probe will spend three weeks coasting to a plunge into Titan's thick atmosphere on the morning of Jan. 14. If all goes as planned, the 349-kg. Huygens will spend more than 2 hr. descending by parachute to the mysterious surface of the planet-sized moon, and hopefully devote yet more time to broadcasting data after it lands. Before the day is over, Huygens is programmed to beam about 30 megabytes of data - including some 1,100 images-back to Earth through Cassini, a trip that will take some 75 min. to complete over the 1- billion-km. distance that separates the two planets. Within that data should be answers to questions that date back to 1655, when Dutch astronomer Christiaan Huygens found the moon with a homemade telescope and named it for the family of giants the ancient Greeks believed once ruled the earth. In the Solar System, there is no other world like Titan, with a nitrogen and methane atmospheric and a cold, hidden surface darker than Earth under the full Moon.

  5. Thermoelectricity in strontium titanate

    NASA Astrophysics Data System (ADS)

    Scullin, Matthew Leo

    This dissertation treats the synthesis, experimental characterization, thermoelectric properties, potential applications of, and theoretical basis for strontium titanate thermoelectric materials. It is found that doubly-doped strontium titanate, Sr1-xLaxTiO3-d is an efficient n-type thermoelectric material, yielding a dimensionless thermoelectric figure of merit zT higher than other oxides and among the highest of any thermoelectric material in general. The improvement in thermoelectric efficiency of this material over other oxides is attributed in large part to the oxygen vacancy, which increases the electronic effective mass m* and in turn thermopower, increases electrical conductivity through donating electrons, and decreases lattice thermal conductivity. Through proper selection of La and oxygen vacancy doping, m* can be tuned in the material in the range of 2-20 me and thermal conductivity reduced by over a factor of three compared to stoichiometric SrTiO3. The potential applications of thin-film thermoelectrics in energy conversion are explored. In addition, the remarkable oxygen reduction of SrTiO3 single-crystal substrates is reported as resulting from pulsed laser deposition growth of oxide thin-films on their surfaces.

  6. Titan atmospheric probe

    NASA Astrophysics Data System (ADS)

    Swenson, B. L.

    1984-08-01

    Increased scientific interest in the structure and composition of Titan's atmosphere, clouds and surface have led to the study of mission options to the Saturnian system with the main goal of placing a probe into the atmosphere of the satellite. Two probe concepts have been studied by NASA: the first concept, a slightly modified Galileo probe capable of withstanding approximately 50 earth G during atmospheric entry heating and deceleration, would consist of a blunted 53 degree, 136-cm-diameter half-angle cone with a hemispherical afterbody, and a descent module containing scientific instruments and a parachute; the second concept, a system designed to provide in situ atmospheric measurements of Titan's organic haze layer, would consist of a probe using a 165-cm deployable graphite fabric decelerator, a 50-cm-diameter cylindrical descent module containing five instruments and a 2.5 m-diameter parachute and a 50-cm-radius spherical nose cap. Although the modified Galileo probe is feasible, its scientific drawback includes its inability to obtain in situ measurements above approximately 100 km.

  7. Boron implanted strontium titanate

    NASA Astrophysics Data System (ADS)

    Cooper, C. J. M.

    Single crystals of strontium titanate implanted with boron were found to have highly conductive surface layers. The effects of varying dose from 10 to the 16th power to 10 to the 17th power ions/sq cm, implantation voltage from 50 to 175 keV and annealing conditions on the room temperature surface resistance and Hall mobility are presented. Variation of the implantation voltage did not have a major effect on the sheet resistances obtained by boron implantation of strontium titanate, while dose and annealing conditions have major effects. Doses of 5 x 10 to the 16th power ions/sq cm required annealing on the order of one hour at 500 K for maximum reduction of the room temperature resistance in the implanted layer. Samples implanted with a dose of 1 x 10 to the 17th power ions/sq cm required slightly higher temperatures (approximately 575 K) to obtain a minimum resistance at room temperature. Long term (several weeks) room temperature annealing was found to occur in high dose samples. After one to two months at room temperature followed by an anneal to 575 K, the surface resistances were found to be lower than those produced by the annealing of a freshly implanted sample to 575 K.

  8. Titan's Gravitational Field

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Anderson, J. D.

    2013-12-01

    Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.

  9. Titan's Emergence from Winter

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  10. Stability of ice/rock mixtures with application to a partially differentiated Titan

    NASA Astrophysics Data System (ADS)

    O'Rourke, Joseph G.; Stevenson, David J.

    2014-01-01

    Titan's moment of inertia, calculated assuming hydrostatic equilibrium from gravity field data obtained during the Cassini-Huygens mission, implies an internal mass distribution that may be incompatible with complete differentiation. This suggests that Titan may have a mixed ice/rock core, possibly consistent with slow accretion in a gas-starved disk, which may initially spare Titan from widespread ice melting and subsequent differentiation. A partially differentiated Titan, however, must still efficiently remove radiogenic heat over geologic time. We argue that compositional heterogeneity in the major saturnian satellites indicates that Titan formed from planetesimals with disparate densities. The resulting compositional anomalies would quickly redistribute to form a vertical density gradient that would oppose thermal convection. We use elements of the theory of double-diffusive convection to create a parameterized model for the thermal evolution of ice/rock mixtures with a stabilizing compositional gradient. To account for large uncertainties in material properties and accretionary processes, we perform simulations for a wide range of initial conditions. Ultimately, for realistic density gradients, double-diffusive convection in the ice/rock interior can delay, but not prevent, ice melting and differentiation, even if a substantial fraction of potassium is leached from the rock component. Consequently, Titan is not partially differentiated.

  11. Namibian Analogs To Titan Dunes

    NASA Astrophysics Data System (ADS)

    Wall, Stephen D.; Lopes, R.; Kirk, R.; Stofan, E.; Farr, T.; Van der Ploeg, P.; Lorenz, R.; Radebaugh, J.

    2009-09-01

    Titan's equatorial dunes, observed in Cassini SAR, have been described as longitudinal, similar to longitudinal dunes in the Namib sand sea in southern Africa. Their "Y” junctions and the way they divert around topography are used as evidence of equatorial wind flow direction. In two instances of such diversion they exhibit overlying or crosshatched patterns in two distinct directions that have been interpreted as a transition to transverse dunes. Here we describe field observations of the Namibian dunes and these comparisons, we present images of the dunes from terrestrial SAR missions, and we discuss implications to both the Titan dunes and the wind regime that created them. Selected portions of the Namibian dunes resemble Titan's dunes in peak-to-peak distance and length. They are morphologically similar to Titan, and specific superficial analogs are common, but they also differ. For example, when Titan dunes encounter topography they either terminate abruptly, "climb” the upslope, or divert around; only the latter behavior is seen in remote sensing images of Namibia. Namib linear dunes do transition to transverse as they divert, but at considerably smaller wavelength, while at Titan the wavelengths are of the same scale. Crosshatching of similar-wavelength dunes does occur in Namibia, but not near obstacles. Many additional aeolian features that are seen at Namibia such as star dunes, serpentine ridges and scours have not been detected on Titan, although they might be below the Cassini SAR's 300-m resolution. These similarities and differences allow us to explore mechanisms of Titan dune formation, in some cases giving us clues as to what larger scale evidence to look for in SAR images. Viewed at similar resolution, they provide interesting comparisons with the Titan dunes, both in likeness and differences. A part of this work was carried out at JPL under contract with NASA.

  12. Mapping products of Titan's surface

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason; Brown, Robert H.; Lebreton, Jean-Pierre

    2009-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  13. Huygens provides insights about Titan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2005-01-01

    Huygens provides insights about Titan Following the Huygens probe's successful 14 January soft landing on Titan, Saturn's largest moon, scientists at a 21 January European Space Agency (ESA) news briefing announced that the moon has Earth-like meteorology and geology, and that there is evidence for liquid methane. Martin Tomasko, principal investigator for the Huygens Descent Imager-Spectral Radiometer, said, ``Geological evidence for precipitation, erosion, mechanical abrasion and other fluvial activity says that the physical processes shaping Titan are much the same as those shaping Earth.''

  14. Mapping Methane in Titan's Atmosphere near Titan's Surface

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Soderblom, Jason; Barnes, Jason

    2016-06-01

    Titan's atmospheric methane may be coupled to sources and sinks on its surface. In order to map methane concentrations in layers just above Titan's surface, we use data sets in which locations on Titan are imaged from a variety of viewing angles (and within a short time span). We also use a radiative transfer code based on the Markov Chain method of Esposito and House (1978, AJ 219, 1058) to accommodate spherical atmospheric geometries. We report on (a) selected Cassini/VIMS flybys that image terrain on Titan from different angles, (b) the expected vertical resolution of methane maps near the surface from these flybys and (c) preliminary results: 3D methane and haze distributions and surface albedos.

  15. Chitosan whiskers from shrimp shells incorporated into dimethacrylate-based dental resin sealant.

    PubMed

    Mahapoka, Ekamon; Arirachakaran, Pratanporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana; Poolthong, Suchit

    2012-01-01

    A resin-based sealant containing chitosan whiskers was developed for use as a pit and fissure sealer. Chitosan whiskers were synthesized and then characterized using Fourier transform infrared spectrometry and transmission electron microscopy. The whiskers were next incorporated into dimethacrylate monomer at various ratios by weight and subsequently analyzed for their antimicrobial and physical properties. The dimethacrylate-based sealant containing chitosan whiskers had a greater antimicrobial activity than control sealant and they were comparable with antimicrobial commercial resin sealants. The inclusion of the whiskers did not reduce the curing depth or degree of double bond conversion and the reduction in hardness was minimal. In conclusion, a resin-based sealant containing chitosan whiskers can be considered an effective antimicrobial pit and fissure sealant.

  16. A radial map of multi-whisker correlation selectivity in the rat barrel cortex.

    PubMed

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E; Bourdieu, Laurent; Léger, Jean-François

    2016-11-21

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel-septal borders, forming rings of multi-whisker synchrony-preferring cells.

  17. A radial map of multi-whisker correlation selectivity in the rat barrel cortex

    PubMed Central

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E.; Bourdieu, Laurent; Léger, Jean- François

    2016-01-01

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel–septal borders, forming rings of multi-whisker synchrony-preferring cells. PMID:27869114

  18. The mathematical whisker: A review of numerical models of the rat׳s vibrissa biomechanics.

    PubMed

    Lucianna, Facundo Adrián; Albarracín, Ana Lía; Vrech, Sonia Mariel; Farfán, Fernando Daniel; Felice, Carmelo José

    2016-07-05

    The vibrissal system of the rat refers to specialized hairs the animal uses for tactile sensory perception. Rats actively move their whiskers in a characteristic way called "whisking". Interaction with the environment produces elastic deformation of the whiskers, generating mechanical signals in the whisker-follicle complex. Advances in our understanding of the vibrissal complex biomechanics is of interest not only for the biological research field, but also for biomimetic approaches. The recent development of whisker numerical models has contributed to comprehending its sophisticated movements and its interactions with the follicle. The great diversity of behavioral patterns and complexities of the whisker-follicle ensemble encouraged the creation of many different biomechanical models. This review analyzes most of the whisker biomechanical models that have been developed so far. This review was written so as to render it accessible to readers coming from different research areas.

  19. Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning

    NASA Astrophysics Data System (ADS)

    Junkasem, Jirawut; Rujiravanit, Ratana; Supaphol, Pitt

    2006-09-01

    The present contribution reports, for the first time, the successful fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite nanofibres by electrospinning. The α-chitin whiskers were prepared from α-chitin flakes from shrimp shells by acid hydrolysis. The as-prepared chitin whiskers exhibited lengths in the range 231-969 nm and widths in the range 12-65 nm, with the average length and width being about 549 and 31 nm, respectively. Successful incorporation of the chitin whiskers within the as-spun PVA/chitin whisker nanocomposite nanofibres was verified by infrared spectroscopic and thermogravimetric methods. The incorporation of chitin whiskers within the as-spun nanocomposite fibre mats increased the Young's modulus by about 4-8 times over that of the neat as-spun PVA fibre mat.

  20. Growth of platelike and branched single-crystalline Si 3N 4 whiskers

    NASA Astrophysics Data System (ADS)

    Yang, Weiyou; Xie, Zhipeng; Li, Jingjing; Miao, Hezhuo; Zhang, Ligong; An, Linan

    2004-10-01

    In this communication, we report for the first time the growth of platelike and branched Si 3N 4 whiskers via catalyst-assisted pyrolysis of polymeric precursors. The as-prepared whiskers are single crystalline with a uniform thickness and width. The thickness and width of the Si 3N 4 whiskers range from 200 to 300 nm and 800 to 1200 nm, respectively. The platelike α-Si 3N 4 whiskers grew along [010] direction, while the branches grew along [001] direction. A growth mechanism based on solid-liquid-gas-solid reaction/crystallization is proposed. The formation of platelike whiskers instead of cylindrical whiskers is attributed to an anisotropic growth at an early nucleation/growth stage.

  1. Study of metal whiskers growth and mitigation technique using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Gullapalli, Vikranth

    For years, the alloy of choice for electroplating electronic components has been tin-lead (Sn-Pb) alloy. However, the legislation established in Europe on July 1, 2006, required significant lead (Pb) content reductions from electronic hardware due to its toxic nature. A popular alternative for coating electronic components is pure tin (Sn). However, pure tin has the tendency to spontaneously grow electrically conductive Sn whisker during storage. Sn whisker is usually a pure single crystal tin with filament or hair-like structures grown directly from the electroplated surfaces. Sn whisker is highly conductive, and can cause short circuits in electronic components, which is a very significant reliability problem. The damages caused by Sn whisker growth are reported in very critical applications such as aircraft, spacecraft, satellites, and military weapons systems. They are also naturally very strong and are believed to grow from compressive stresses developed in the Sn coating during deposition or over time. The new directive, even though environmentally friendly, has placed all lead-free electronic devices at risk because of whisker growth in pure tin. Additionally, interest has occurred about studying the nature of other metal whiskers such as zinc (Zn) whiskers and comparing their behavior to that of Sn whiskers. Zn whiskers can be found in flooring of data centers which can get inside electronic systems during equipment reorganization and movement and can also cause systems failure. Even though the topic of metal whiskers as reliability failure has been around for several decades to date, there is no successful method that can eliminate their growth. This thesis will give further insights towards the nature and behavior of Sn and Zn whiskers growth, and recommend a novel manufacturing technique that has potential to mitigate metal whiskers growth and extend life of many electronic devices.

  2. Contributions of Stress and Oxidation on the Formation of Whiskers in Pb-free Solders

    DTIC Science & Technology

    2016-01-29

    FINAL REPORT Contributions of Stress and Oxidation on the Formation of Whiskers in Pb‐free Solders SERDP Project WP-1754 JANUARY 2016...TITLE AND SUBTITLE Contributions of Stress and Oxidation on the Formation of 5a. CONTRACT NUMBER Whiskers in Pb‐free Solders: FINAL REPORT 5b...topic of this study . An interim report* summarized initial observations as to the role of stress and oxide formation on whisker growth. From the

  3. Silicon carbide whisker composites. (Latest citations from Engineered Materials abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the manufacture and applications of silicon carbide whisker reinforced composites. Citations discuss the preparation of whiskers and the processing of composites containing the whiskers. Applications include aerospace engines, automotive components, engine components, and surgical implants. Physical properties such as bending strength, crack propagation, creep, fracture toughness, and stress strain curves are covered. Ceramic matrix, metal matrix, and carbon-carbon composites are examined. (Contains a minimum of 248 citations and includes a subject term index and title list.)

  4. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair.

    PubMed

    Xu, Hockin H K; Smith, Douglas T; Simon, Carl G

    2004-08-01

    Self-hardening calcium phosphate cement (CPC) sets to form hydroxyapatite with high osteoconductivity, but its brittleness and low strength limit its use to only non-stress bearing locations. Previous studies developed bioactive composites containing hydroxyapatite fillers in Bis-GMA-based composites for bone repair applications, and they possessed higher strength values. However, these strengths were still lower than the strength of cortical bone. The aim of this study was to develop strong and bioactive composites by combining CPC fillers with nano-silica-fused whiskers in a resin matrix, and to characterize the mechanical properties and cell response. Silica particles were fused to silicon carbide whiskers to roughen the whisker surfaces for enhanced retention in the matrix. Mass ratios of whisker:CPC of 1:2, 1:1 and 2:1 were incorporated into a Bis-GMA-based resin and hardened by two-part chemical curing. Composite with only CPC fillers without whiskers served as a control. The specimens were tested using three-point flexure and nano-indentation. Composites with whisker:CPC ratios of 2:1 and 1:1 had flexural strengths (mean+/-SD; n=9) of (164+/-14) MPa and (139+/-22) MPa, respectively, nearly 3 times higher than (54+/-5) MPa of the control containing only CPC fillers (p<0.05). The strength of the new whisker-CPC composites was 3 times higher than the strength achieved in previous studies for conventional bioactive composites containing hydroxyapatite particles in Bis-GMA-based resins. The mechanical properties of the CPC-whisker composites nearly matched those of cortical bone and trabecular bone. Osteoblast-like cell adhesion, proliferation and viability were equivalent on the non-whisker control containing only CPC fillers, on the whisker composite at whisker:CPC of 1:1, and on the tissue culture polystyrene control, suggesting that the new CPC-whisker composite was non-cytotoxic.

  5. An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.

    2008-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This model can be used to improve existing risk simulation models FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  6. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry

    2009-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  7. Global Topographic Map of Titan

    NASA Image and Video Library

    2013-05-15

    Using data from NASA Cassini spacecraft, scientists have created the first global topographic map of Saturn moon Titan, giving researchers a 3-D tool for learning more about one of the most Earthlike and interesting worlds in the solar system.

  8. Seasonal Changes in Titan's Meteorology

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  9. Ices in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie

    2010-01-01

    Analyses of Cassini CIRS far-infrared limb spectra of Titan at 15N, 15S, and 58S reveal a broad emission feature between 70 and 270/cm, restricted to altitudes between 60 and 100 km. This emission feature is chemically different from Titan's photochemical aerosol, which has an emission feature peak around 145 cm-1. The shape of the observed broad emission feature resembles a mixture of the solid component of the two most abundant nitrites in Titan's stratosphere, that of HCN and HC3N. Following the saturation vapor pressure vertical profiles of HCN and HC3N, the 60 to 100 km altitude range corresponds closely to the vertical location where these nitriles are expected to condense out and form small, suspended ice particles. This is the first time ices in Titan's stratosphere have been identified at latitudes south of 50N. Results and physical implications will be discussed.

  10. Titan's greenhouse and antigreenhouse effects

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  11. The Story Titan Dunes Tell

    NASA Image and Video Library

    2009-06-10

    An intricate, fingerprint-like pattern of dunes is seen in this dramatic radar image of Saturn moon Titan captured by NASA Cassini spacecraft on May 21, 2009 from an altitude of 965 kilometers about 600 miles.

  12. Titan Northern Lakes: Salt Flats?

    NASA Image and Video Library

    2013-10-23

    This false-color mosaic, made from infrared data collected by NASA Cassini spacecraft, reveals the differences in the composition of surface materials around hydrocarbon lakes at Titan, Saturn largest moon.

  13. Planetary science: Huygens rediscovers Titan

    NASA Astrophysics Data System (ADS)

    Owen, Tobias

    2005-12-01

    The first analyses of data sent by the Huygens probe from Saturn's largest moon Titan are flooding in. They paint a picture of a `Peter Pan' world - potentially like Earth, but with its development frozen at an early stage.

  14. Titan Subsurface Reservoirs Artist Concept

    NASA Image and Video Library

    2014-09-03

    Scientists modeled how methane rainfall runoff would interact with the porous, icy crust of Saturn moon Titan and found that a subsurface methane aquifer might have its composition changed over time due to the formation of materials called clathrates.

  15. The Titan graphics supercomputer architecture

    SciTech Connect

    Diede, T.; Hagenmaier, C.F.; Miranker, G.S.; Rubinstein, J.J.; Worley, W.S. Jr. )

    1988-09-01

    Leading-edge hardware and software technologies now make possible a new class of system - the graphics supercomputer. Titan architecture provides a substantial fraction of supercomputer performance plus integrated high-quality graphics.

  16. Seasonal Changes in Titan's Meteorology

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  17. Simulating Titan-Like Smog

    NASA Image and Video Library

    2013-04-03

    In a laboratory experiment at NASA Jet Propulsion Laboratory, Pasadena, Calif., scientists simulate the atmosphere of Saturn moon Titan. In this picture, molecules of dicyanoacetylene are seen on a special film on a sapphire window.

  18. Different Looks for Titan Lakes

    NASA Image and Video Library

    2013-01-08

    Lakes on Saturn moon Titan reflect radio waves in varying ways in this image from NASA Cassini spacecraft. If a lake is fully liquid, it looks dark, but if it is only partially liquid, it looks brighter.

  19. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    NASA Astrophysics Data System (ADS)

    Zhu, Donghai; Nai, Xueying; Lan, Shengjie; Bian, Shaoju; Liu, Xin; Li, Wu

    2016-12-01

    In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Sisbnd Osbnd Mg) were formed by the reaction between Sisbnd OC2H5 or Sisbnd OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  20. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice

    PubMed Central

    Park, Sunmee; Bandi, Akhil; Lee, Christian R; Margolis, David J

    2016-01-01

    We discovered that optical stimulation of the mystacial pad in Emx1-Cre;Ai27D transgenic mice induces whisker movements due to activation of ChR2 expressed in muscles controlling retraction and protraction. Using high-speed videography in anesthetized mice, we characterize the amplitude of whisker protractions evoked by varying the intensity, duration, and frequency of optogenetic stimulation. Recordings from primary somatosensory cortex (S1) in anesthetized mice indicated that optogenetic whisker pad stimulation evokes robust yet longer latency responses than mechanical whisker stimulation. In head-fixed mice trained to report optogenetic whisker pad stimulation, psychometric curves showed similar dependence on stimulus duration as evoked whisker movements and S1 activity. Furthermore, optogenetic stimulation of S1 in expert mice was sufficient to substitute for peripheral stimulation. We conclude that whisker protractions evoked by optogenetic activation of whisker pad muscles results in cortical activity and sensory perception, consistent with the coding of evoked whisker movements by reafferent sensory input. DOI: http://dx.doi.org/10.7554/eLife.14140.001 PMID:27269285

  1. Whisker growth on Sn thin film accelerated under gamma-ray induced electric field

    NASA Astrophysics Data System (ADS)

    Killefer, Morgan; Borra, Vamsi; Al-Bayati, Ahmed; Georgiev, Daniel G.; Karpov, Victor G.; Ishmael Parsai, E.; Shvydka, Diana

    2017-10-01

    We report on the growth of tin metal whiskers significantly accelerated under non-destructive gamma-ray irradiation. Sn thin film, evaporated on glass substrate, was subjected to a total of 60 h of irradiation. The irradiated samples demonstrated enhanced whisker development, in both densities and lengths, resulting in an acceleration factor of  ∼50. We attribute the observed enhancement to gamma-ray induced electrostatic fields, affecting whisker kinetics. These fields are due to the substrate charging under gamma-rays. We propose that gamma-ray irradiation can be a much needed tool for accelerated testing of whisker propensity.

  2. The application and research status of tin whisker formation in electric usage

    NASA Astrophysics Data System (ADS)

    Zhao, Heng; Liu, Qing-bin; Lan, Yuan-pei; Wang, Hua; Yao, Da-wei

    2017-05-01

    `Hair Like' crystalline structure grows from most pure tin or zinc finishes. Usually, the diameter of tin whisker is up to 10 mm and the length of tin whisker is typically 1 µm. In detail, the questions for tin whisker formation are classified into 6 categories: 1. Residual stress with in the tin plating; 2. Intermetallic Formation; 3. Externally Applied Compressive Stress; 4. Bending and Stretching; 5. Scratches and Nicks; 6. Coefficient of Thermal Expansion Mismatches. The result shows that, whisker formation could causes electrical short circuit (High current of whisker melting), debris contamination (Sensitive Optical and Micro Electrical Mechanical System) and metal vapor (Vaporize Damage). Thus, it is suggested that environmental tests and standards (Whisker Shape, Temperature, Pressure, Moisture, Thermal Cycling, and Electrical Field) are required for suppressing whisker formation. Nowadays, the new standards committee of Europe Union acts RoHS (Restriction of certain Hazardous Substances) and WEEE (Waste Electrical and Electronic Equipment) to restrict Pb usage. Thus, new compounds adding to alloys to suppress whiskers are required in electronic application area. In summary, the tin whisker formation is largely influenced by compositions and precipitations.

  3. Responses in the rat thalamus to whisker movements produced by motor nerve stimulation

    PubMed Central

    Brown, A. W. S.; Waite, Phil M. E.

    1974-01-01

    1. The effect of electrical stimulation of the motor nerve supplying the whiskers on the activity of single cells in the vibrissal region of the ventrobasal complex of the thalamus has been studied in rats under urethane anaesthesia. 2. The stimulation caused protraction of the ipsilateral whiskers. 60% of the cells which fired to mechanical movements of the whiskers were found to respond to this electrical stimulus with 1-2 impulses at short latency (average 7·7 msec), provided the stimulus was sufficient to move the whiskers. 3. When the moving whiskers hit a barrier, 92% of the cells responded to the stimulus. The most effective position of the barrier was in front of the whiskers, although other positions often produced a response as well. Static displacement of the whiskers, particularly in the forward direction, could abolish the response or increase its latency. 4. The following-frequencies for these cells were 5-10 stimuli/sec. Combinations of electrical stimuli with mechanical ramp movements of the whiskers showed that similar recovery times followed both types of stimuli. 5. These results are compared with those reported from studies in the afferent nerve fibres after electrical stimulation of the motor nerve and also with responses in the thalamus following mechanical movements of the whiskers. The possible importance of the latency of these sensory responses is considered. PMID:4840852

  4. Life on Titan

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr

    Volcanoes engender life on heavenly bodies; they are pacemakers of life. All planets during their period of formation pass through volcanism hence - all planets and their satellites pass through the life. Tracks of life If we want to find tracks of life - most promising places are places with volcanic activity, current or past. In the case of just-in-time volcanic activity we have 100% probability to find a life. Therefore the most perspective “search for life” are Enceladus, Io and comets, further would be Venus, Jupiter’s satellites, Saturn’s satellites and first of all - Titan. Titan has atmosphere. It might be result of high volcanic activity - from one side, from other side atmosphere is a necessary condition development life from procaryota to eucaryota. Existence of a planet means that all its elements after hydrogen formed just there inside a planet. The forming of the elements leads to the formation of mineral and organic substances and further to the organic life. Development of the life depends upon many factors, e.g. the distance from star/s. The intensity of the processes of the element formation is inversely to the distance from the star. Therefore we may suppose that the intensity of the life in Mercury was very high. Hence we may detect tracks of life in Mercury, particularly near volcanoes. The distance from the star is only one parameter and now Titan looks very active - mainly due to interior reason. Its atmosphere compounds are analogous to comet tail compounds. Their collation may lead to interesting result as progress occurs at one of them. Volcanic activity is as a source of life origin as well a reason for a death of life. It depends upon the thickness of planet crust. In the case of small thickness of a crust the probability is high that volcanoes may destroy a life on a planet - like Noachian deluge. Destroying of the life under volcano influences doesn’t lead to full dead. As result we would have periodic Noachian deluge or

  5. Chemistry in Titan

    NASA Astrophysics Data System (ADS)

    Plessis, S.; Carrasco, N.; Pernot, P.

    2009-04-01

    Modelling the chemical composition of Titan's ionosphere is a very challenging issue. Latest works perform either inversion of CASSINI's INMS mass spectra (neutral[1] or ion[2]), or design coupled ion-neutral chemistry models[3]. Coupling ionic and neutral chemistry has been reported to be an essential feature of accurate modelling[3]. Electron Dissociative Recombination (EDR), where free electrons recombine with positive ions to produce neutral species, is a key component of ion-neutral coupling. There is a major difficulty in EDR modelling: for heavy ions, the distribution of neutral products is incompletely characterized by experiments. For instance, for some hydrocarbon ions only the carbon repartition is measured, leaving the hydrogen repartition and thus the exact neutral species identity unknown[4]. This precludes reliable deterministic modelling of this process and of ion-neutral coupling. We propose a novel stochastic description of the EDR chemical reactions which enables efficient representation and simulation of the partial experimental knowledge. The description of products distribution in multi-pathways reactions is based on branching ratios, which should sum to unity. The keystone of our approach is the design of a probability density function accounting for all available informations and physical constrains. This is done by Dirichlet modelling which enables one to sample random variables whose sum is constant[5]. The specifics of EDR partial uncertainty call for a hierarchiral Dirichlet representation, which generalizes our previous work[5]. We present results on the importance of ion-neutral coupling based on our stochastic model. C repartition H repartition (measured) (unknown ) → C4H2 + 3H2 + H .. -→ C4 . → C4H2 + 7H → C3H8. + CH C4H+9 + e- -→ C3 + C .. → C3H3 + CH2 + 2H2 → C2H6 + C2H2 + H .. -→ C2 + C2 . → 2C2H2 + 2H2 + H (1) References [1] J. Cui, R.V. Yelle, V. Vuitton, J.H. Waite Jr., W.T. Kasprzak

  6. Titan's South Polar Cloud

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; West, R. A.; Lavvas, P.; Del Genio, A. D.; Barbara, J. M.; Roy, M.; Turtle, E. P.

    2014-04-01

    Cassini/ISS cameras detected a newly formed large cloud in the south polar region of Titan on 2012-178 (June 27). Images of this cloud in the continuum filters at 889 nm (MT3) and 935 nm (CB3) clearly reveal different characteristics relative to the'detached haze' layer that extends over all south latitudes. Figure 1 shows I/F at 889 nm, where the cloud patch is observed beyond the latitude -77º and with values of the SZA higher than 90º. In this work, we analyze different MT3/CB3 images taken by ISS cameras, in order to characterize the optical properties of this cloud as well as its altitude. We first analyze images in the MT3 filter at different angles of observation in order to have some constraints on the altitude of the cloud, and subsequently the cloud optical properties are estimated by using radiative transfer simulations.

  7. The thermosphere of Titan

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.; Yung, Y. L.

    1984-01-01

    The vertical structure of Titan's thermosphere is calculated down to the mesopause as a function of local time based on Voyager 1 occultation data. The thermal time scales that characterize the diurnal behavior of the thermosphere are discussed, the input model atmosphere used to calculate the temperature profile is presented, and the dominant heating and cooling mechanisms in the thermosphere are examined. The temperature profiles obtained by integrating the heat transfer equation with and without electron heating are presented and discussed. The implications that derived exospheric temperatures have for the neutral hydrogen torus are investigated. The diurnal exospheric temperature is unlikely to exceed 225 K, averages between 187 and 197 K, and has a variational amplitude of 28 K or less. The vertical extent of the hydrogen cloud is too large to be explained in terms of simple thermal escape of hydrogen from the exosphere.

  8. Seasonal variations on Titan

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Bampasidis, G.; Vinatier, S.; Achterberg, R.; Lavvas, P.; Nixon, C.; Jennings, D.; Teanby, N.; Flasar, F. M.; Carlson, R.; Orton, G.; Romani, P.; Guandique, E. A.

    2012-09-01

    Eight years after Cassini's Saturn orbit insertion, we look at the evolution of the thermal and chemical composition of Titan's atmosphere by combining Cassini CIRS recordings and the related ground- and space- based observations The fulfillment of one Titanian year of observations provides us for the first time with the opportunity to evaluate the relative role of different physical processes in the long term evolution of this complex environment. By comparing V1 (1980), ISO (1997) and Cassini (2010) we find that a reversal of composition near the equator from automnal equinox to vernal equinox (1996 min -2009 max, half a year), as well as some differences in polar enhancement at the same era as Voyager.

  9. Titan's Surface #2

    NASA Image and Video Library

    2005-11-30

    Images recorded by the European Space Agency's Huygens probe descent imager/spectral radiometer between 4 and 0.3 miles (7 and 0.5 kilometers) were assembled to produce this panoramic mosaic. The probe ground track is indicated as points in white. North is up. The ridge near the centre is cut by a dozen darker lanes or channels. The landing site is marked with an "X" near the continuation of one of the channels. The Huygens probe was delivered to Saturn's moon Titan by the Cassini spacecraft, which is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. NASA supplied two instruments on the probe, the descent imager/spectral radiometer and the gas chromatograph mass spectrometer. http://photojournal.jpl.nasa.gov/catalog/PIA06439

  10. Optimized Photorefractive Barium Titanate

    DTIC Science & Technology

    1992-03-11

    potassium dihydrogen phosphate (KDP), 6 and barium sodium niobate Ba2 NaNbsO%1 ,7 were examined. Unfortu- nately, the high optical intensities required for...Phys. Lett., 15, 210 (1969) 14. J. J. Amodei. D. L. Staebler. and A. W. Stephens, "Holographic Storage in Doped Barium Sodium Niobate ". Appl. Phys...equipped with precise computer control of the pulling and rotation system. The cylindrical furnace was found to be susceptible to cracking due to

  11. From Titan's chemistry and exobiology to Titan's astrobiology

    NASA Astrophysics Data System (ADS)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These

  12. Silicon carbide whisker reinforced composites and method for making same

    DOEpatents

    Wei, G.C.

    1984-02-09

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties, especially increased fracture toughness. In the formation of these ceramic composites, the single-crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al/sub 2/O/sub 3/, mullite, or B/sub 4/C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600 to 1950/sup 0/C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m/sup 1/2/ which represents as much as a two-fold increase over that of the matrix material.

  13. Protective coating for alumina-silicon carbide whisker composites

    DOEpatents

    Tiegs, Terry N.

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  14. Crystalline instability of Bi-2212 superconducting whiskers near room temperature

    NASA Astrophysics Data System (ADS)

    Cagliero, Stefano; Agostino, Angelo; Khan, Mohammad Mizanur Rahman; Truccato, Marco; Orsini, Francesco; Marinone, Massimo; Poletti, Giulio; Lascialfari, Alessandro

    2009-05-01

    We report new evidences for the thermodynamic instability of whisker crystals in the Bi-Sr-Ca-Cu-O (BSCCO) system. Annealing treatments at 90°C have been performed on two sets of samples, which were monitored by means of X-Rays Diffraction (XRD) and Atomic Force Microscopy (AFM) measurements, respectively. Two main crystalline domains of Bi2Sr2CuCa2O8+ x (Bi-2212) were identified in the samples by the XRD data, which underwent an evident crystalline segregation after about 60 hours. Very fast dynamics of the surface modifications was also described by the AFM monitoring. Two typologies of surface structures formed after about 3 annealing hours: continuous arrays of dome shaped bodies were observed along the edges of the whiskers, while in the central regions a dense texture of flat bodies was found. These modifications are described in terms of the formation of simple oxide clusters involving a degradation of the internal layers.

  15. The vortex glass to liquid transition in Bi2212 whisker

    NASA Astrophysics Data System (ADS)

    Zheng, P.; Zhou, Y. Q.; Chen, Z. J.; Luo, S.; Wang, W. H.; He, Y. S.; Duo, J.

    1999-05-01

    Through scaling the dc I- V isotherms of Bi2212 whisker in magnetic field H‖ c, the vortex glass-liquid transition is found in Bi2212 whisker whereas it does not appear in Bi2212 crystal slab [R. Behr, J. Kotzler, G. Nakielski, M. Baumann, M. Kaufmann, J. Kowalewski, Physica C 235 (1994) 2669]. The critical exponents are ν=0.5, z=4.0. We found that the critical exponents are influenced by the planar defects of the sample. The result was compared to those of single crystals and films [Behr et al., 1994; H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, S. Yoshida, K. Kajimura, Phys. Rev. B 50 (17) (1994) 12959].

  16. 'Where' and 'what' in the whisker sensorimotor system.

    PubMed

    Diamond, Mathew E; von Heimendahl, Moritz; Knutsen, Per Magne; Kleinfeld, David; Ahissar, Ehud

    2008-08-01

    In the visual system of primates, different neuronal pathways are specialized for processing information about the spatial coordinates of objects and their identity - that is, 'where' and 'what'. By contrast, rats and other nocturnal animals build up a neuronal representation of 'where' and 'what' by seeking out and palpating objects with their whiskers. We present recent evidence about how the brain constructs a representation of the surrounding world through whisker-mediated sense of touch. While considerable knowledge exists about the representation of the physical properties of stimuli - like texture, shape and position - we know little about how the brain represents their meaning. Future research may elucidate this and show how the transformation of one representation to another is achieved.

  17. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  18. Low Potassium (Hypokalemia)

    MedlinePlus

    ... can be life-threatening and requires urgent medical attention. Low potassium (hypokalemia) has many causes. The most common cause is excessive potassium loss in urine due to prescription medications that increase urination. Also ...

  19. Precision mass measurements at TITAN with radioactive ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Macdonald, T. D.; Andreoiu, C.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mané, E.; Pearson, M. R.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2013-12-01

    Measurements of the atomic mass further our understanding in many disciplines from metrology to physics beyond the standard model. The accuracy and precision of Penning trap mass spectrometry have been well demonstrated at TITAN, including measurements of neutron-rich calcium and potassium isotopes to investigate three-body forces in nuclear structure and within the island of inversion to study the mechanism of shell quenching and deformation. By charge breeding ions, TITAN has enhanced the precision of the measurement technique. The precision achieved in the measurement of the superallowed β-emitter 74Rb in the 8+ charge state rivaled earlier measurements with singly charged ions in a fraction of the time. By breeding 78Rb to the same charge state, the ground state could be easily distinguished from the isomer. Further developments led to threshold charge breeding, which permitted capturing and measuring isobarically and elementally pure ion samples in the Penning trap. This was demonstrated via the Q-value determination of 71Ge. An overview of the TITAN facility and recent results are presented herein.

  20. Behavioral study of whisker-mediated vibration sensation in rats.

    PubMed

    Adibi, Mehdi; Diamond, Mathew E; Arabzadeh, Ehsan

    2012-01-17

    Rats use their vibrissal sensory system to collect information about the nearby environment. They can accurately and rapidly identify object location, shape, and surface texture. Which features of whisker motion does the sensory system extract to construct sensations? We addressed this question by training rats to make discriminations between sinusoidal vibrations simultaneously presented to the left and right whiskers. One set of rats learned to reliably identify which of two vibrations had higher frequency (f(1) vs. f(2)) when amplitudes were equal. Another set of rats learned to reliably identify which of two vibrations had higher amplitude (A(1) vs. A(2)) when frequencies were equal. Although these results indicate that both elemental features contribute to the rats' sensation, a further test found that the capacity to discriminate A and f was reduced to chance when the difference in one feature was counterbalanced by the difference in the other feature: Rats could not discriminate amplitude or frequency whenever A(1)f(1) = A(2)f(2). Thus, vibrations were sensed as the product Af rather than as separable elemental features, A and f. The product Af is proportional to a physical entity, the mean speed. Analysis of performance revealed that rats extracted more information about differences in Af than predicted by the sum of the information in elemental differences. These behavioral experiments support the predictions of earlier physiological studies by demonstrating that rats are "blind" to the elemental features present in a sinusoidal whisker vibration; instead, they perceive a composite feature, the speed of whisker motion.

  1. Behavioral study of whisker-mediated vibration sensation in rats

    PubMed Central

    Adibi, Mehdi; Diamond, Mathew E.; Arabzadeh, Ehsan

    2012-01-01

    Rats use their vibrissal sensory system to collect information about the nearby environment. They can accurately and rapidly identify object location, shape, and surface texture. Which features of whisker motion does the sensory system extract to construct sensations? We addressed this question by training rats to make discriminations between sinusoidal vibrations simultaneously presented to the left and right whiskers. One set of rats learned to reliably identify which of two vibrations had higher frequency (f1 vs. f2) when amplitudes were equal. Another set of rats learned to reliably identify which of two vibrations had higher amplitude (A1 vs. A2) when frequencies were equal. Although these results indicate that both elemental features contribute to the rats’ sensation, a further test found that the capacity to discriminate A and f was reduced to chance when the difference in one feature was counterbalanced by the difference in the other feature: Rats could not discriminate amplitude or frequency whenever A1f1 = A2f2. Thus, vibrations were sensed as the product Af rather than as separable elemental features, A and f. The product Af is proportional to a physical entity, the mean speed. Analysis of performance revealed that rats extracted more information about differences in Af than predicted by the sum of the information in elemental differences. These behavioral experiments support the predictions of earlier physiological studies by demonstrating that rats are “blind” to the elemental features present in a sinusoidal whisker vibration; instead, they perceive a composite feature, the speed of whisker motion. PMID:22219358

  2. Titan's Geology as Viewed by the Cassini Titan Radar Mapper

    NASA Astrophysics Data System (ADS)

    Lopes, R. M.; Stofan, E. R.; Wood, C.; Robshaw, L.; Mitchell, K. L.; Radebaugh, J.; Lorenz, R.; Lunine, J.; Wall, S. D.; Kirk, R.; Cassini RADAR Team

    2007-05-01

    Cassini's Titan Radar Mapper has imaged the surface of Titan on 8 flybys to date, collecting Synthetic Aperture Radar (SAR) data at spatial resolution ranging from about 300 m to about 2 km. These radar images reveal that Titan's surface has been modified by both endogenic (volcanism, tectonism) and exogenic (impact cratering, erosion) processes, with no process dominating in an obvious way. Although less than 15 % of the surface of Titan has been imaged to date using SAR, the acquired swaths are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. Cryovolcanic units have been identified in SAR images mostly at mid-latitudes (40-60 N), these include the construct Ganesa Macula, several calderas with associated flows, and large cryovolcanic flows. Flybys over high northern latitudes have shown lacustrine features, the distribution of these features is consistent with colder temperatures and more precipitation at high latitudes. Some of the depressions filled by the lakes may be volcanic calderas, but a thermokarstic origin is also possible (Mitchell et al., Lunar Planet Sci. Conf. XXXVIII, 2007). Ridges and mountains that are interpreted to be of tectonic origin have been seen mostly at low latitudes (Radebaugh et al., Lunar Planet Sci. Conf. XXXVIII, 2007), while drainage channels appear common at all latitudes (Lorenz et al., Plan. Space Sci., submitted). Fields of dunes (Titan's "sand seas") are mostly equatorial, but a few isolated patches of dunes extend as far north as ~60 degrees. The distribution and orientation of dunes is as expected from Titan's winds (Lorenz et al., 2006, Science 312; Radebaugh et al., Icarus, submitted). Erosion by fluvial processes is likely to have occurred on a global scale. The small number of definitive impact craters suggests that these geologic processes are erasing or burying the majority of impacts. Future data will allow us to further

  3. The Formation of Graphite Whiskers in the Primitive Solar Nebula

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Kimura, Yuki; Lucas, Christopher; Ferguson, Frank; Johnson, Natasha M.

    2010-01-01

    It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from proto stellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems from the abundant H2, CO, and N2 reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H2, CO, and N2 at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.

  4. Bioinspired active whisker sensor for robotic vibrissal tactile sensing

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Ling, Shih-Fu

    2014-12-01

    A whisker transducer (WT) inspired by rat’s vibrissal tactile perception is proposed based on a transduction matrix model characterizing the electro-mechanical transduction process in both forward and backward directions. It is capable of acting as an actuator to sweep the whisker and simultaneously as a sensor to sense the force, motion, and mechanical impedance at whisker tip. Its validity is confirmed by numerical simulation using a finite element model. A prototype is then fabricated and its transduction matrix is determined by parameter identification. The calibrated WT can accurately sense mechanical impedance which is directly related to stiffness, mass and damping. Subsequent vibrissal tactile sensing of sandpaper texture reveals that the real part of mechanical impedance sensed by WT is correlated with sandpaper roughness. Texture discrimination is successfully achieved by inputting the real part to a k-means clustering algorithm. The mechanical impedance sensing ability as well as other features of the WT such as simultaneous-actuation-and-sensing makes it a good solution to robotic tactile sensing.

  5. Movement Initiation Signals in Mouse Whisker Motor Cortex.

    PubMed

    Sreenivasan, Varun; Esmaeili, Vahid; Kiritani, Taro; Galan, Katia; Crochet, Sylvain; Petersen, Carl C H

    2016-12-21

    Frontal cortex plays a central role in the control of voluntary movements, which are typically guided by sensory input. Here, we investigate the function of mouse whisker primary motor cortex (wM1), a frontal region defined by dense innervation from whisker primary somatosensory cortex (wS1). Optogenetic stimulation of wM1 evokes rhythmic whisker protraction (whisking), whereas optogenetic inactivation of wM1 suppresses initiation of whisking. Whole-cell membrane potential recordings and silicon probe recordings of action potentials reveal layer-specific neuronal activity in wM1 at movement initiation, and encoding of fast and slow parameters of movements during whisking. Interestingly, optogenetic inactivation of wS1 caused hyperpolarization and reduced firing in wM1, together with reduced whisking. Optogenetic stimulation of wS1 drove activity in wM1 with complex dynamics, as well as evoking long-latency, wM1-dependent whisking. Our results advance understanding of a well-defined frontal region and point to an important role for sensory input in controlling motor cortex. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The Formation of Graphite Whiskers in the Primitive Solar Nebula

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Kimura, Yuki; Lucas, Christopher; Ferguson, Frank; Johnson, Natasha M.

    2010-01-01

    It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from proto stellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems from the abundant H2, CO, and N2 reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H2, CO, and N2 at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.

  7. Neural coding in barrel cortex during whisker-guided locomotion

    PubMed Central

    Sofroniew, Nicholas James; Vlasov, Yurii A; Hires, Samuel Andrew; Freeman, Jeremy; Svoboda, Karel

    2015-01-01

    Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits. DOI: http://dx.doi.org/10.7554/eLife.12559.001 PMID:26701910

  8. Cellular organization of cortical barrel columns is whisker-specific.

    PubMed

    Meyer, Hanno S; Egger, Robert; Guest, Jason M; Foerster, Rita; Reissl, Stefan; Oberlaender, Marcel

    2013-11-19

    The cellular organization of the cortex is of fundamental importance for elucidating the structural principles that underlie its functions. It has been suggested that reconstructing the structure and synaptic wiring of the elementary functional building block of mammalian cortices, the cortical column, might suffice to reverse engineer and simulate the functions of entire cortices. In the vibrissal area of rodent somatosensory cortex, whisker-related "barrel" columns have been referred to as potential cytoarchitectonic equivalents of functional cortical columns. Here, we investigated the structural stereotypy of cortical barrel columns by measuring the 3D neuronal composition of the entire vibrissal area in rat somatosensory cortex and thalamus. We found that the number of neurons per cortical barrel column and thalamic "barreloid" varied substantially within individual animals, increasing by ∼2.5-fold from dorsal to ventral whiskers. As a result, the ratio between whisker-specific thalamic and cortical neurons was remarkably constant. Thus, we hypothesize that the cellular architecture of sensory cortices reflects the degree of similarity in sensory input and not columnar and/or cortical uniformity principles.

  9. Potassium: more beneficial effects.

    PubMed

    He, F J; MacGregor, G A

    2003-10-01

    Over 70 years ago, potassium was found to have a natriuretic effect and was used in patients with heart failure. However, it took many years for its role in the control of blood pressure to be recognized. Recently, epidemiological and clinical studies in man and experimental studies in animals have shown that increasing potassium intake towers blood pressure and that communities with a high potassium intake tend to have lower population blood pressures. Several studies have shown an interaction between salt intake and potassium intake. However, the recent DASH-Sodium (Dietary Approaches to Stop Hypertension) study demonstrates an additive effect of a low salt and high potassium diet on blood pressure. Increasing potassium intake may have other beneficial effects, for example, reducing the risk of stroke and preventing the development of renal disease independent of its effect on blood pressure. A high potassium intake reduces calcium excretion and could play an important role in the management of hypercalciuria and kidney stone formation, as well as bone demineralization. Potassium intake may also play an important role in carbohydrate intolerance. A reduced serum potassium increases the risk of lethal ventricular arrhythmias in those at risk, i.e. patients with ischemic heart disease, heart failure or left ventricular hypertrophy, and increasing potassium intake may prevent this. In this article, we address the evidence for the important role of potassium intake in regulating blood pressure and other beneficial effects of potassium which may be independent of and additional to its effect on blood pressure.

  10. Magnetospheric particle precipitation at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie; Esposito, Larry; Crary, Frank; Wahlund, Jan-Erik

    2017-04-01

    Although solar XUV radiation is known to be the main source of ionization in Titan's upper atmosphere around 1100 km of altitude, magnetospheric particle precipitation can also account for about 10% of the ionization process. Magnetospheric particle precipitation is expected to be the most intense on the nightside of the satelllite and when Titan's orbital position around Saturn is the closest to Noon Saturn Local Time (SLT). In addition, on several occasion throughout the Cassini mission, Titan has been observed while in the magnetosheath. We are reporting here Ultraviolet (UV) observations of Titan airglow enhancements correlated to these magnetospheric changing conditions occurring while the spacecraft, and thus Titan, are known to have crossed Saturn's magnetopause and have been exposed to the magnetosheath environnment. Using Cassini-Ultraviolet Imaging Spectrograph (UVIS) observations of Titan around 12PM SLT as our primary set of data, we present evidence of Titan's upper atmosphere response to a fluctuating magnetospheric environment. Pattern recognition software based on 2D UVIS detector images has been used to retrieve observations of interest, looking for airglow enhancement of a factor of 2. A 2D UVIS detector image, created for each UVIS observation of Titan, displays the spatial dimension of the UVIS slit on the x-axis and the time on the y-axis. In addition, data from the T32 flyby and from April 17, 2005 from in-situ Cassini instruments are used. Correlations with data from simultaneous observations of in-situ Cassini instruments (CAPS, RPWS and MIMI) has been possible on few occasions and events such as electron burst and reconnections can be associated with unusual behaviors of the Titan airglow. CAPS in-situ measurements acquired during the T32 flyby are consistent with an electron burst observed at the spacecraft as the cause of the UV emission. Moreover, on April 17, 2005 the UVIS observation displays feature similar to what could be aTitan

  11. Whisker stimulation metabolically activates thalamus following cortical transplantation but not following cortical ablation.

    PubMed

    Ciricillo, S P; Hill, M P; Gonzalez, M F; Smalley, S; Morton, M T; Sharp, F R

    1994-04-01

    Local cerebral glucose utilization was assessed during whisker stimulation by 2-deoxyglucose autoradiography. Whisker stimulation increased local cerebral glucose utilization in brainstem, thalamus and whisker sensory cortex in normal rats. Whereas whisker stimulation increased glucose metabolism in brainstem, whisker stimulation failed to increase glucose metabolism in thalamus of rats that had whisker sensory cortex ablated 5 h to five weeks previously. The failure of whisker stimulation to activate thalamus after cortical ablations was probably not due to decreased cortical input to thalamus because whisker stimulation activated thalamus after large cortical tetrodotoxin injections. Failure of whisker stimulation to activate thalamus at early times (5 h and one day) after cortical ablations was not due to thalamic neuronal death, since it takes days to weeks for axotomized thalamic neurons to die. The failure of whisker stimulation to activate thalamus at early times after cortical ablations was likely due to the failure of trigeminal brainstem neurons that project to thalamus to activate axotomized thalamic neurons. This might occur because of synaptic retraction, glial stripping or inhibition of trigeminal brainstem synapses onto thalamic neurons. The thalamic neuronal death that occurs over the days and weeks following cortical ablations was associated with thalamic hypometabolism. This is consistent with the idea that the thalamic neurons die because of the absence of a cortically derived trophic factor, since the excitotoxic thalamic cell death that occurs following cortical kainate injections is associated with thalamic hypermetabolism. The glucose metabolism of parts of the host thalamus was higher and the glucose metabolism in surrounding nuclei lower than the normal side of thalamus in rats that sat quietly and had fetal cortex transplants placed into cavities in whisker sensory cortex five to 16 weeks previously. Whisker stimulation in these subjects

  12. Dental composite resins containing silica-fused ceramic single-crystalline whiskers with various filler levels.

    PubMed

    Xu, H H

    1999-07-01

    Currently available direct-filling composite resins are susceptible to fracture and hence are not recommended for use in large stress-bearing posterior restorations involving cusps. The glass fillers in composites provide only limited reinforcement because of the brittleness and low strength of glass. The aim of the present study was to use ceramic single-crystalline whiskers as fillers to reinforce composites, and to investigate the effect of whisker filler level on composite properties. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whiskers, thereby improving retention in the matrix. The composite flexural strength, elastic modulus, hardness, and degree of polymerization conversion were measured as a function of whisker filler mass fraction, which ranged from 0% to 70%. Selected composites were polished simulating clinical procedures, and the surface roughness was measured with profilometry. The whisker composite with a filler mass fraction of 55% had a flexural strength (mean +/- SD; n = 6) of 196+/-10 MPa, significantly higher than 83+/-14 MPa of a microfill and 120+/-16 MPa of a hybrid composite control (family confidence coefficient = 0.95; Tukey's multiple comparison). The composite modulus and hardness increased monotonically with filler level. The flexural strength first increased, then plateaued with increasing filler level. The degree of conversion decreased with increasing filler level. The whisker composite had a polished surface roughness similar to that of a conventional hybrid composite (p>0.1; Student's t). To conclude, ceramic whisker reinforcement can significantly improve the mechanical properties of composite resins; the whisker filler level plays a key role in determining composite properties; and the reinforcement mechanisms appear to be crack pinning by whiskers and friction from whisker pullout resisting crack propagation.

  13. Mapping of Titan: Results from the first Titan radar passes

    USGS Publications Warehouse

    Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.

  14. Planetary science: Titan's lost seas found

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe

    2007-01-01

    When the Cassini spacecraft found no methane ocean swathing Saturn's moon Titan, it was a blow to proponents of an Earth-like world. The discovery of northern lakes on Titan gives them reason for cheer.

  15. Outline of an Ancient Sea on Titan

    NASA Image and Video Library

    2012-10-16

    This image from NASA Cassini spacecraft shows an ancient southern sea that used to sprawl out near the south pole of Saturn moon Titan. Within this basin is the largest present-day lake in Titan southern hemisphere, Ontario Lacus.

  16. Planetary science: Stormy origins of Titan's dunes

    NASA Astrophysics Data System (ADS)

    Newman, Claire

    2015-05-01

    Titan's equatorial dunes seem to move in the opposite direction to the prevailing easterly winds. Infrequent methane storms at Titan's low latitudes may briefly couple surface winds to fast westerlies above, dominating the net movement of sand.

  17. Derangements of potassium.

    PubMed

    Medford-Davis, Laura; Rafique, Zubaid

    2014-05-01

    Changes in potassium elimination, primarily due to the renal and GI systems, and shifting potassium between the intracellular and extracellular spaces cause potassium derangement. Symptoms are vague, but can be cardiac, musculoskeletal, or gastrointestinal. There are no absolute guidelines for when to treat, but it is generally recommended when the patient is symptomatic or has ECG changes. Treatment of hyperkalemia includes cardiac membrane stabilization with IV calcium, insulin and beta-antagonists to push potassium intracellularly, and dialysis. Neither sodium bicarbonate nor kayexelate are recommended. Treatment of symptomatic hypokalemia consists of PO or IV repletion with potassium chloride and magnesium sulfate.

  18. Models of a partially hydrated Titan interior with clathrate crust

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Castillo-Rogez, J.

    2012-04-01

    We present an updated model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan's history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consisted of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the liquid water ocean. The crust of Titan was assumed to be pure water ice I. The model was consistent with the moment of inertia of Titan, but neglected the presence of large amounts of methane in the upper crust invoked to explain methane's persistence at present and through geologic time (Tobie et al. 2006). We have updated our model with such a feature. We have also improved our modeling with a better physical model for the dehydration of antigorite and other hydrated minerals. In particular our modeling now simulates heat advection resulting from water circulation (e.g., Seipold and Schilling 2003), rather than the purely conductive heat transfer regime assumed in the first version of our model. The modeling proceeds as in Castillo-Rogez and Lunine (2010), with the thermal conductivity of the methane clathrate crust rather than that of ice I. The former is several times lower than that of the latter, and the two have rather different temperature dependences (English and Tse, 2009). The crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, with the insulating methane clathrate crust, there must be a liquid water ocean beneath the methane clathrate

  19. Potassium Secondary Batteries.

    PubMed

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  20. Titan Global Map - June 2015

    NASA Image and Video Library

    2015-10-09

    This global digital map of Saturn's moon Titan was created using images taken by NASA's Cassini spacecraft's imaging science subsystem (ISS). The map was produced in June 2015 using data collected through Cassini's flyby on April 7, 2014, known as "T100." The images were taken using a filter centered at 938 nanometers, allowing researchers to examine variations in albedo (or inherent brightness) across the surface of Titan. Because of the scattering of light by Titan's dense atmosphere, no topographic shading is visible in these images. The map is an equidistant projection and has a scale of 2.5 miles (4 kilometers) per pixel. Actual resolution varies greatly across the map, with the best coverage (close to the map scale) along the equator near the center of the map at 180 degrees west longitude. The lowest resolution coverage can be seen in the northern mid-latitudes on the sub-Saturn hemisphere. Mapping coverage in the northern polar region has greatly improved since the previous version of this map in 2011 (see PIA14908). Large dark areas, now known to be liquid-hydrocarbon-filled lakes and seas, have since been documented at high latitudes. Titan's north pole was not well illuminated early in Cassini's mission, because it was winter in the northern hemisphere when the spacecraft arrived at Saturn. Cassini has been better able to observe northern latitudes in more recent years due to seasonal changes in solar illumination. This map is an update to the previous versions released in April 2011 and February 2009 (see PIA11149). Data from the past four years (the most recent data in the map is from April 2014) has completely filled in missing data in the north polar region and replaces the earlier imagery of the Xanadu region with higher quality data. A data gap of about 3 to 5 percent of Titan's surface still remains, located in the northern mid-latitudes on the sub-Saturn hemisphere of Titan. The uniform gray area in the northern hemisphere indicates a gap in the

  1. Investigation of crystal growth in zero gravity environment and investigation of metallic whiskers

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lal, R. B.; Walter, H. U.; Castle, J. G., Jr.

    1972-01-01

    Theoretical and experimental work reported relates to the effects of near-zero gravity on growths of crystals and metallic whiskers during Skylab and Apollo flight experiments. Studies on growth and characterization of candidate materials for flight experiments cover indium-bismuth compounds, bismuth single crystals, gallium arsenide films and single crystals, and cadmium whiskers.

  2. Whisker row deprivation affects the flow of sensory information through rat barrel cortex.

    PubMed

    Jacob, Vincent; Mitani, Akinori; Toyoizumi, Taro; Fox, Kevin

    2017-01-01

    Whisker trimming causes substantial reorganization of neuronal response properties in barrel cortex. However, little is known about experience-dependent rerouting of sensory processing following sensory deprivation. To address this, we performed in vivo intracellular recordings from layers 2/3 (L2/3), layer 4 (L4), layer 5 regular-spiking (L5RS), and L5 intrinsically bursting (L5IB) neurons and measured their multiwhisker receptive field at the level of spiking activity, membrane potential, and synaptic conductance before and after sensory deprivation. We used Chernoff information to quantify the "sensory information" contained in the firing patterns of cells in response to spared and deprived whisker stimulation. In the control condition, information for flanking-row and same-row whiskers decreased in the order L4, L2/3, L5IB, L5RS. However, after whisker-row deprivation, spared flanking-row whisker information was reordered to L4, L5RS, L5IB, L2/3. Sensory information from the trimmed whiskers was reduced and delayed in L2/3 and L5IB neurons, whereas sensory information from spared whiskers was increased and advanced in L4 and L5RS neurons. Sensory information from spared whiskers was increased in L5IB neurons without a latency change. L5RS cells exhibited the largest changes in sensory information content through an atypical plasticity combining a significant decrease in spontaneous activity and an increase in a short-latency excitatory conductance.

  3. Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality

    PubMed Central

    Sofroniew, Nicholas J.; Cohen, Jeremy D.; Lee, Albert K.

    2014-01-01

    During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation. PMID:25031397

  4. Catalytic epitaxy of ZnO whiskers via the vapor-crystal mechanism

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Butashin, A. V.; Kanevsky, V. M.; Babaev, V. A.; Ismailov, A. M.

    2017-05-01

    A model of oriented growth of (0001) ZnO whiskers on sapphire substrates via the vapor-crystal mechanism using the catalytic properties of gold islands is proposed. The morphological transition from the primary pyramidal ZnO structures to hexagonal ZnO whiskers is described in terms of the minimization of the free energy density of three-dimensional heteroepitaxial islands.

  5. Eliminating Whisker Growth by Indium Addition in Electroplated Sn on Copper Substrate

    NASA Astrophysics Data System (ADS)

    Das Mahapatra, S.; Majumdar, B. S.; Dutta, I.; Bhassyvasantha, S.

    2017-07-01

    Whisker growth from Sn coatings is a reliability concern in electronic packages, until recently mitigated by Pb addition. Recently, it was demonstrated that doping with In dramatically reduces whisker growth in 1 μm thick Sn. Here, we present the results of In-doping on whisker growth from 3 μm and 6 μm thick Sn-films and explore the reasons behind this mitigation, and compare the results with a baseline sample of pure Sn and a control sample of tri-layer Sn-In-Sn, all subjected to identical thermal treatments. It is shown that In addition completely stops whisker growth from electroplated Sn. The impact of In addition on the film microstructure and the role of the surface oxide coating are investigated. Previous work had shown that while In addition reduces grain boundary diffusivity, it does not fully account for the observed dramatic reduction of whisker growth. In this work, it is shown by Auger electron spectroscopy and x-ray photoelectron spectroscopy that In is incorporated in the surface-oxide. Since whisker-growth is contingent on the presence of a tenacious surface-oxide, this suggests that the alteration of the oxide properties may be responsible for the observed reduction in whisker growth. Finite element modeling is utilized to demonstrate that a reduction of the elastic modulus of the surface oxide would reduce the driving force of Sn whisker growth, thus proffering a rationale for the effect of In incorporation.

  6. Eliminating Whisker Growth by Indium Addition in Electroplated Sn on Copper Substrate

    NASA Astrophysics Data System (ADS)

    Das Mahapatra, S.; Majumdar, B. S.; Dutta, I.; Bhassyvasantha, S.

    2016-12-01

    Whisker growth from Sn coatings is a reliability concern in electronic packages, until recently mitigated by Pb addition. Recently, it was demonstrated that doping with In dramatically reduces whisker growth in 1 μm thick Sn. Here, we present the results of In-doping on whisker growth from 3 μm and 6 μm thick Sn-films and explore the reasons behind this mitigation, and compare the results with a baseline sample of pure Sn and a control sample of tri-layer Sn-In-Sn, all subjected to identical thermal treatments. It is shown that In addition completely stops whisker growth from electroplated Sn. The impact of In addition on the film microstructure and the role of the surface oxide coating are investigated. Previous work had shown that while In addition reduces grain boundary diffusivity, it does not fully account for the observed dramatic reduction of whisker growth. In this work, it is shown by Auger electron spectroscopy and x-ray photoelectron spectroscopy that In is incorporated in the surface-oxide. Since whisker-growth is contingent on the presence of a tenacious surface-oxide, this suggests that the alteration of the oxide properties may be responsible for the observed reduction in whisker growth. Finite element modeling is utilized to demonstrate that a reduction of the elastic modulus of the surface oxide would reduce the driving force of Sn whisker growth, thus proffering a rationale for the effect of In incorporation.

  7. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  8. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  9. Titan South Polar Cloud Burst

    NASA Image and Video Library

    2009-06-03

    This infrared image of Saturn's moon Titan shows a large burst of clouds in the moon's south polar region. These clouds form and move much like those on Earth, but in a much slower, more lingering fashion, new results from NASA's Cassini Spacecraft show. This image is a color composite, with red shown at a 5-micron wavelength, green at 2.7 microns, and blue at 2 microns. An infrared color mosaic is also used as a background image (red at 5 microns, green at 2 microns, blue at 1.3 microns). The images were taken by Cassini's visual and infrared mapping spectrometer during a flyby of Titan on March 26, 2007, known as T27. For a similar view see PIA12004. Titan's southern hemisphere still shows a very active meteorology (the cloud appears in white-reddish tones) even in 2007. According to climate models, these clouds should have faded out since 2005. Scientists have monitored Titan's atmosphere for three-and-a-half years, between July 2004 and December 2007, and observed more than 200 clouds. The way these clouds are distributed around Titan matches scientists' global circulation models. The only exception is timing—clouds are still noticeable in the southern hemisphere while fall is approaching. http://photojournal.jpl.nasa.gov/catalog/PIA12005

  10. Structure of Titan's evaporites

    NASA Astrophysics Data System (ADS)

    Cordier, D.; Cornet, T.; Barnes, J. W.; MacKenzie, S. M.; Le Bahers, T.; Nna-Mvondo, D.; Rannou, P.; Ferreira, A. G.

    2016-05-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties - chemical composition, thickness, stratification - are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier, D., Barnes, J.W., Ferreira, A.G. [2013b]. Icarus 226(2),1431-1437), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as ;PC-SAFT;, has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model predicts the existence of chemically trimodal ;bathtub rings; which is consistent with what it is observed at the south polar lake Ontario Lacus. This work also provides plausible explanations to the lack of evaporites in the south polar region and to the high radar reflectivity of dry lakebeds.

  11. Large Particle Titanate Sorbents

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  12. View from Titan's Surface

    NASA Image and Video Library

    2005-11-30

    Images from the European Space Agency's Huygens probe descent imager/spectral radiometer side-looking imager and from the medium resolution imager, acquired after landing, were merged to produce this image. The horizon's position implies a pitch of the imager/spectral radiometer, nose-upward, by 1 to 2 degrees with no measurable roll. "Stones" in the foreground are 4 to 6 inches (10 to 15 centimeters) in size, presumably made of water ice, and these lie on a darker, finer-grained substrate. A region with a relatively low number of rocks lies between clusters of rocks in the foreground and the background and matches the general orientation of channel-like features in the panorama of PIA06439). The scene evokes the possibility of a dry lakebed. The Huygens probe was delivered to Saturn's moon Titan by the Cassini spacecraft, which is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. NASA supplied two instruments on the probe, the descent imager/spectral radiometer and the gas chromatograph mass spectrometer. http://photojournal.jpl.nasa.gov/catalog/PIA06440

  13. Wetting of microstructured alumina fabricated by epitaxial growth of Al4B2O9 whiskers

    NASA Astrophysics Data System (ADS)

    Wang, Yifeng; Feng, Jicai; Chen, Zhe; Song, Xiaoguo; Cao, Jian

    2015-12-01

    Topographical microstructures were fabricated on alumina by epitaxial growth of Al4B2O9 whiskers in air. The products were characterized via scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The whiskers were found to grow along the [0 0 1] crystallographic direction, and the lattice mismatch between Al2O3 and Al4B2O9 was determined to be 0.03%. The wetting of the Al4B2O9-whisker-coated surfaces by Ag-36.7Cu-8.0Ti at.% alloy was studied. The time needed to reach the equilibrium stage reduced as the temperature increased, and the final contact angle for liquid alloy on the rough surface was 27° at 880 °C. The wetting dynamics of the whiskers coated surfaces was investigated. After wetting, a whisker-interconnected region was formed between alumina and the alloy.

  14. Failure and behavior in water of hydroxyapatite whisker-reinforced bis-GMA-based resin composites.

    PubMed

    Zhang, Hongquan; Darvell, Brian W

    2012-06-01

    Failure mode under Hertzian indentation and the behavior on immersion in water of bis-GMA-based composites with HA whiskers or nanoscopic HA powder as filler were evaluated. Failure load decreased with increase in filler loading, but the decrease was smaller for whiskers, which showed a different failure mode both macroscopically and microscopically. Particle-filled composites failed mainly by radial cracking and cone cracking, with some plastic deformation at low filler loading, with fracture into irregular segments. For whisker-filled materials, crack propagation was inhibited by the well-dispersed whiskers by the usual toughening mechanisms; cone cracking was the dominant failure mode, at higher loads than for the powder, and fracture was incomplete. The filler reduced both water-uptake and elution of soluble materials, as expected, but both were lower for the whisker-filled material. Such composites might form the basis of viable materials for dental load-bearing restorations and other applications.

  15. The biological activity of silicon carbide whiskers. First annual report, September 1988--December 1989

    SciTech Connect

    Johnson, N.F.

    1989-12-31

    Size characteristics of SiC whiskers are similar to asbestos and contain potentially carcinogenic long thin fibers. Size distribution suggests that it is highly respirable, with majority of particles having diameters <3.0 {mu}m. Cytotoxic activity of SiC whiskers in cultured cells is {ge} than that of crocidolite asbestos. Inhalation exposures are needed to further delineate the biological activity; while SiC whiskers were as or more cytotoxic than crocidolite, JM Code 100 also displays such activity but results in no increased risk of lung cancer, pulmonary fibrosis or mesothelioma. PRD-166, a coarse continuous glass filament, displays little in vitro biological activity. It is recommended that SiC whiskers be treated as asbestos, and to continue investigating the potential health effects of SiC whiskers, in particular conducting animal experiments with acute and chronic inhalation exposures. 17 refs., 11 tabs., 18 figs.

  16. Contributions of stress and oxidation on the formation of whiskers in Pb-free solders

    SciTech Connect

    Duncan, A. J.; Hoffman, E. N.

    2016-01-01

    Understanding the environmental factors influencing formation of tin whiskers on electrodeposited lead free, tin coatings over copper (or copper containing) substrates is the topic of this study . An interim report* summarized initial observations as to the role of stress and oxide formation on whisker growth. From the initial results, two main areas were chosen to be the focus of additional research: the demonstration of effects of elastic stress state in the nucleation of whiskers and the confirmation of the effect of oxygen content in the formation of whiskers. Different levels of elastic stress were induced with the incorporation of a custom designed fixture that loaded the sample in a four-point bending configuration and were maintained in an environmental chamber under conditions deemed favorable for whisker growth. The effects of oxygen content were studied by aging substrates in gas vials of varying absolute pressure and different oxygen partial pressure.

  17. Titan II secondary payload capability

    NASA Astrophysics Data System (ADS)

    Butts, Aubrey J.; Nance, Milo; Odle, Roger C.

    Small satellite programs are often faced with the prospect of flying as a secondary payload because of size or funding considerations. This paper discusses a concept for flying such payloads on flights already scheduled on the Titan II SLV program over the next decade. The Titan II has the capability of inserting over 4200 lbs into LEO and larger payloads on ballistic trajectories from which higher orbits can be achieved when kick motors are used. Orbit changes are possible depending on the specific altitudes and payloads involved. Of the existing 13 remaining missions currently scheduled to fly on the Titan II SLV, excess performance is available on several missions that could be used to insert secondary payloads of up to 3000 lbs into their final orbit. This paper outlines an approach that would implement a secondary payload mission and allow small satellites to schedule a launch at a predetermined date through the year 2000.

  18. Titan ocean: Ethane, methane, nitrogen

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Detection of the atmosphere of Saturn's satellite Titan by the Voyager I spacecraft indicated an abundance of only 3 mol % methane (CH4). Recently J.I. Lunine, D.J. Stevenson, and Y.L. Yung calculated that 3 mol % methane is sufficiently low to preclude the stable coexistence of liquid methane on Titan's surface, which has a temperature of 94 K (Science, 222, 1229, 1983). Instead, Lunine et al. suggest that Titan's atmospheric methane may have broken down by a catalyzed photochemical reaction to ethane (C2H6). The resulting ocean would consist of a mixture of C2H6 and CH4 in the proportion of 3 to 1.

  19. Charged particles in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Tripathi, Sachchida

    2010-05-01

    Charged particles in Titan's ionosphere Marykutty Michael1, Sachchida Nand Tripathi1,2,3, Pratima Arya1 1Indian Institute of Technology Kanpur 2Oak Ridge Associated Universities 3NASA Goddard Space Flight Center Observations by two instruments onboard the Cassini spacecraft, Ion Neutral Mass Spectrometer (INMS) and CAssini Plasma Spectrometer (CAPS), revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units at altitudes of 950 - 1400 km in the atmosphere of Titan (Waite et al., 2007; Crary et al., 2009). Though these particles were believed to be molecules, they are most likely aerosols formed by the clumping of smaller molecules (Waite et al., 2009). These particles were estimated to have a density of 10-3 kg m-3 and a size of up to 256 nm. The existence of very heavy ions has also been observed by the CAPS components with a mass by charge ratio of up to 10000 (Coates et al., 2007, 2009; Sittler et al., 2009). The goal of this paper is to find out whether the so called heavy ions (or charged particles) are generated by the charge transfer of ions and electrons to the particles. The charging of these particles has been studied by using the charge balance equations that include positive ions, negative ions, electrons, neutral and charged particles. Information on the most abundant ion clusters are obtained from Vuitton et al., (2009) and Wilson and Atreya, (2004). Mass by charge ratio thus calculated will be compared with those observed by Coates et al. (2007). References: Coates AJ, et al., Discovery of heavy negative ions in Titan's ionosphere, Geophys. Res. Lett., 34:L22103, 2007. Coates AJ, et al., Heavy negative ions in titan's ionosphere: altitude and latitude dependence. Planet. Space Sci., doi:10.1016/j.pss.2009.05.009, 2009. Crary F.J., et al., Heavy ions, temperatures and winds in titan's ionosphere: Combined cassini caps and inms observations. Planet. Space Sci., doi:10.1016/j.pss.2009.09.006, 2009

  20. The induced magnetosphere of Titan

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Acuna, M. H.; Behannon, K. W.; Neubauer, F. M.

    1982-01-01

    No evidence was found for an intrinsic magnetic field, nor for the development of a bow shock wave, as the corotating Saturnian magnetoplasma convected past Titan during the Voyager 1 close encounter of November 12, 1980. The observation of a well-developed, induced bipolar magnetic tail is evidence, however, of a strong electrodynamic interaction. Three thin, current-carrying regions were crossed which correspond to the inbound and outbound tail magnetopause and an imbedded tail neutral sheet. The interaction is unique among those observed to date in the solar system, in that it is intermediate with respect to sonic and Alfvenic Mach numbers by comparison with Titan in the solar wind and Io in the Jovian magnetosphere. The draping of the Saturnian magnetic field around the ionosphere of Titan is suggested by results of the analysis of magnetic field data.

  1. The Mechanical Variables Underlying Object Localization along the Axis of the Whisker

    PubMed Central

    Pammer, Lorenz; O’Connor, Daniel H.; Hires, S. Andrew; Clack, Nathan G.; Huber, Daniel; Myers, Eugene W.; Svoboda, Karel

    2013-01-01

    Rodents move their whiskers to locate objects in space. Here we used psychophysical methods to show that head-fixed mice can localize objects along the axis of a single whisker, the radial dimension, with one-millimeter precision. High-speed videography allowed us to estimate the forces and bending moments at the base of the whisker, which underlie radial distance measurement. Mice judged radial object location based on multiple touches. Both the number of touches (1–17) and the forces exerted by the pole on the whisker (up to 573 µN; typical peak amplitude, 100 µN) varied greatly across trials. We manipulated the bending moment and lateral force pressing the whisker against the sides of the follicle and the axial force pushing the whisker into the follicle by varying the compliance of the object during behavior. The behavioral responses suggest that mice use multiple variables (bending moment, axial force, lateral force) to extract radial object localization. Characterization of whisker mechanics revealed that whisker bending stiffness decreases gradually with distance from the face over five orders of magnitude. As a result, the relative amplitudes of different stress variables change dramatically with radial object distance. Our data suggest that mice use distance-dependent whisker mechanics to estimate radial object location using an algorithm that does not rely on precise control of whisking, is robust to variability in whisker forces, and is independent of object compliance and object movement. More generally, our data imply that mice can measure the amplitudes of forces in the sensory follicles for tactile sensation. PMID:23595731

  2. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    PubMed Central

    Smith, Jared B.; Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC) and in the primary somatosensory (SI) and secondary somatosensory (SII) cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial agranular (AGm) and lateral agranular (AGl) cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker MI is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor-output region located more medially in AGm proper. PMID:23372545

  3. Effect of whisker surface treatments and processing conditions on the SiC/Al sub 2 O sub 3 interface

    SciTech Connect

    Alexander, K.B.; Angelini, P.; Becher, P.F.

    1990-01-01

    Various electron microscopy techniques have been used to evaluate the microstructural and interfacial characteristics of silicon carbide whisker-reinforced alumina composites. The effects of subjecting whiskers to oxidizing and reducing treatments prior to composite fabrication were examined. Whisker/matrix interfaces in which carbon coatings were applied to whiskers prior to specimen fabrication were also examined. Physical and thermodynamic arguments can be used to explain why it is difficult to greatly modify the physical nature of the whisker/matrix interface. 7 refs., 7 figs.

  4. Will Titan lose its veil?

    NASA Astrophysics Data System (ADS)

    Dimitrov, V.

    2007-08-01

    Methane CH4 is the only highly reactive and short-lived background component in Titan's atmosphere, so its overall reserve predetermines both features and duration of atmospheric chemical activity. Titan's global chemical activity is considered in terms of methane cycle. One cycle is defined as a period T0=7.0.1014s of complete photochemical destruction of methane's observable atmospheric content CH04 = 2.33.1017 kg. Cycle duration T0, number of the past NP =200±20, future NF =500±50 and total Nmax=NP+NF =700±70 cycles are the main quantitative indices of the global chemical activity [2]. The fact that the period T0 is much less than Titan's lifetime TT =1.42*1017s implies that the current content CH04 is continuously replenishing by methane global circulation. There are two sources of this replenishment, i.e. the outgassing of primordial methane reserve trapped in Titan's interior as the clathrate, and the (sub)ground liquidphase reduction of non-saturated final products of the atmospheric photochemical process. Internal reserve provides the dominant portion (>95%) of general recycling, while reducing reconversion is the minor constituent of the global balance. Yet, there is the problem of the availability of the off-the-shelf trapped methane. Overall admissible stock of the trapped methane depends on its internal allocation and falls in the range (CH4)max1,2=(15.3÷33.3).1020 kg, while continuous atmospheric activity during the whole Titan's life TSun 5.0.1017s needs only (CH4)crit=(CH04 ).Nmax = .(CH4)max 1.65.1020 kg. In turn, this bulk (CH4)crit depends on the clathrate cage-filling efficiency (molecular packing index) {kg CH4/kg clathrate} and can be provided if equals respectively to [1] crit1= (TSun/T0).[(CH4)0/[(CH4)max1] = 5.45.10-3 crit2= (TSun/T0).[(CH4)0/[(CH4)max2] = 2.51.10-3 Thus, the interrelation of overall trapped stock (CH4)max and crucial -values assigns the critical value (CH4)crit that in turn predetermines the very fate of Titan's veil

  5. Data on electrical properties of nickel modified potassium polytitanates compacted powders.

    PubMed

    Goffman, V G; Gorokhovsky, A V; Gorshkov, N V; Fedorov, F S; Tretychenko, E V; Sevrugin, A V

    2015-09-01

    Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni(2+) ions and/or decorated by nickel oxides NiO x . This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH.

  6. Data on electrical properties of nickel modified potassium polytitanates compacted powders

    PubMed Central

    Goffman, V.G.; Gorokhovsky, A.V.; Gorshkov, N.V.; Fedorov, F.S.; Tretychenko, E.V.; Sevrugin, A.V.

    2015-01-01

    Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni2+ ions and/or decorated by nickel oxides NiOx. This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH. PMID:26217788

  7. Titan's chemical complexity

    NASA Astrophysics Data System (ADS)

    Vuitton, Veronique

    2012-04-01

    We review here our current knowledge of Titan's gas phase chemistry. We base our discussion on photochemical models as well as on laboratory experiments. We identify the lower mass positive [1,2] and negative [3] ions detected in the upper atmosphere and we show that their formation is a direct consequence of the presence of heavy neutrals. We demonstrate that the observed densities of CO, CO2 and H2O can be explained by a combination of exogenous O, and OH/H2O input [4]. We argue that benzene [5] and ammonia [6] are created in the upper atmosphere through complex chemical processes involving both neutral and ion chemistry. These species diffuse downward where they are at the origin of heavier aromatics and amines, respectively. Finally, we discuss the impact on hydrocarbon densities of recent theoretical calculations of the rate constants of association reactions [7]. [1] V. Vuitton, R. V. Yelle and V. G. Anicich, Astrophys. J., 647, L175 (2006). [2] V. Vuitton, R. V. Yelle and M. J. McEwan, Icarus, 191, 722 (2007). [3] V. Vuitton, P. Lavvas, R. V. Yelle, M. Galand, A. Wellbrock, G. R. Lewis, A. J. Coates and J.-E. Wahlund, Planet. Space Sci., 57, 1558 (2009). [4] S. M. Hörst, V. Vuitton, and R. V. Yelle, J. Geophys. Res., 113, E10006 (2008). [5] V. Vuitton, R. V. Yelle and J. Cui, J. Geophys. Res., 113, E05007 (2008). [6] R. V. Yelle, V. Vuitton, P. Lavvas, S. J. Klippenstein, M. A. Smith, S. M. Hörst and J. Cui, Faraday Discuss., 147, 31 (2010). [7] V. Vuitton, R. V. Yelle, S. J. Klippenstein and P. Lavvas, Astrophys. J., in press.

  8. An analysis of the wear behavior of SiC whisker reinforced alumina from 25 to 1200 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1991-01-01

    A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.

  9. An analysis of the wear behavior of SiC whisker-reinforced alumina from 25 to 1200 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1993-01-01

    A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.

  10. MBE Growth of GaAs Whiskers on Si Nanowires

    NASA Astrophysics Data System (ADS)

    Maxwell Andrews, Aaron; Klang, Pavel; Detz, Hermann; Lugstein, Alois; Schramböck, Matthias; Steinmair, Mathias; Hyun, Youn-Joo; Bertagnolli, Emmerich; Müller, Thomas; Unterrainer, Karl; Schrenk, Werner; Strasser, Gottfried

    2010-01-01

    We present the growth of GaAs nanowhiskers by molecular beam epitaxy on Si (111) nanowires grown by low-pressure chemical vapor deposition. The whiskers grow in the wurtzite phase, along the [0001] direction, on the {112} facets of the Si nanowire, forming a star-like six-fold radial symmetry. The photoluminescence shows a 30 meV blue shift with respect to bulk GaAs, additionally a GaAs/AlAs core-shell heterostructure shows increased luminescence.

  11. MBE Growth of GaAs Whiskers on Si Nanowires

    SciTech Connect

    Maxwell Andrews, Aaron

    2010-01-04

    We present the growth of GaAs nanowhiskers by molecular beam epitaxy on Si (111) nanowires grown by low-pressure chemical vapor deposition. The whiskers grow in the wurtzite phase, along the [0001] direction, on the {l_brace}112{r_brace} facets of the Si nanowire, forming a star-like six-fold radial symmetry. The photoluminescence shows a 30 meV blue shift with respect to bulk GaAs, additionally a GaAs/AlAs core-shell heterostructure shows increased luminescence.

  12. Whiskers, cones and pyramids created in sputtering by ion bombardment

    NASA Technical Reports Server (NTRS)

    Wehner, G. K.

    1979-01-01

    A thorough study of the role which foreign atoms play in cone formation during sputtering of metals revealed many experimental facts. Two types of cone formation were distinquished, deposit cones and seed cones. Twenty-six combinations of metals for seed cone formation were tested. The sputtering yield variations with composition for combinations which form seed cones were measured. It was demonstrated that whisker growth becomes a common occurrence when low melting point material is sputter deposited on a hot nonsputtered high melting point electrode.

  13. Titan's methane cycle in the Titan WRF general circulation model

    NASA Astrophysics Data System (ADS)

    Newman, C. E.; Lian, Y.; Richardson, M. I.; Lee, C.; Toigo, A. D.

    2012-04-01

    Observations of methane clouds, surface lakes and precipitation (or evidence of past precipitation) on Titan allow us to assemble information about the seasonal evolution of Titan’s methane cycle, as well as Titan’s lower atmosphere and near-surface environment in general. Using the TitanWRF general circulation model [Newman et al., 2011] we attempt to reproduce some of these observations by simulating Titan’s atmospheric circulation and methane cycle, assuming limited surface methane and using a simple large-scale cloud scheme both with and without latent heating effects included. We have performed both ‘current’ and ‘reversed perihelion’ simulations, i.e. using the current solar forcing (perihelion in southern summer) and its exact opposite (perihelion in northern summer, as occurred at some time in the past), to test the hypothesis that the timing of perihelion explains the asymmetry in surface methane distribution currently observed. We look at the net transport and latitudinal distribution of surface methane as the simulations tend toward steady state after >100 Titan years. Initially, as the equatorial regions lose and the high latitudes gain significant methane each Titan year, our results are highly sensitive to initial conditions. However, as the simulations tend toward steady state and specifically as the tropics dry out, the ‘current’ and ‘reversed perihelion’ results increasingly tend toward ‘mirror images’ of each other. With the decreased significance of tropical moisture sources, the methane balance becomes dominated by pole-to-pole exchange (inter-polar competition for methane) with the simulations tending toward final states with significantly more high latitude surface methane in the hemisphere with the longer, cooler summer (i.e., in the northern hemisphere for current solar forcing, in line with the asymmetry observed). References: Newman, C. E., et al.: "Stratospheric superrotation in the TitanWRF model". Icarus, Vol

  14. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  15. Titan Colorful South Polar Vortex

    NASA Image and Video Library

    2012-07-10

    This true color image captured by NASAS Cassini spacecraft before a distant flyby of Saturn moon Titan on June 27, 2012, shows a south polar vortex, or a mass of fluid-like clouds and haze swirling around the pole in the atmosphere of the moon.

  16. The organic aerosols of Titan

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Callcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.; Nagy, B.

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan tholin prepared by continuous D.C. discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from x-ray to microwave frequencies. Values of n (⋍1.65) and k (⋍0.004 to 0.08) in the visible are consistent with deductions made by ground-based and spaceborne observations of Titan. Many infrared absorption features are present in k(λ), including the 4.6 μm nitrile band. Molecular analysis of the volatile component of this tholin was performed by sequential and non-sequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycyclic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition, acid hydrolysis produces a racemic mixture of biological and non-biological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  17. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Calcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1986-01-01

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan prepared by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from X-ray to microwave frequencies. Values of n (approx. 1.65) and k (approx. 0.004 to 0.08) in the visible are consistent with deductions made by groundbased and spaceborne observations of Titan. Many infrared absorption features are present in k(lambda), including the 4.6 micrometer nitrile band. Molecular analysis of the volatile components of this tholin was performed by sequential and nonsequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycylic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition,acid hydrolysis produces a racemic mixture of biological and nonbiological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  18. The dynamics of Titan's troposphere.

    PubMed

    Tokano, Tetsuya

    2009-02-28

    While the Voyager mission could essentially not reveal the dynamics of Titan's troposphere, useful information was obtained by the Cassini spacecraft and, particularly, by the Huygens probe that landed on Titan's surface; this information can be interpreted by means of numerical models of atmospheric circulation. The meridional circulation is likely to consist of a large Hadley circulation asymmetric about the equator, but is susceptible to disruption by turbulence in clouds. The zonal wind in the troposphere is comparable to or even weaker than that in the terrestrial troposphere and contains zones of easterlies, much in contrast to the super-rotating stratosphere. Unique to Titan is the transition from a geostrophic to cyclostrophic wind balance in the upper troposphere. While Earth-like storm systems associated with baroclinic instability are absent, Saturn's gravitational tide introduces a planetary wave of wavenumber 2 and a periodical variation in the wind direction in the troposphere. Unlike on Earth, the wind over the equatorial surface is westerly. The seasonal reversal in the Hadley circulation sense and zonal wind direction is predicted to have a substantial influence on the formation of dunes as well as variation of Titan's rotation rate and length of day.

  19. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Calcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1986-01-01

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan prepared by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from X-ray to microwave frequencies. Values of n (approx. 1.65) and k (approx. 0.004 to 0.08) in the visible are consistent with deductions made by groundbased and spaceborne observations of Titan. Many infrared absorption features are present in k(lambda), including the 4.6 micrometer nitrile band. Molecular analysis of the volatile components of this tholin was performed by sequential and nonsequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycylic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition,acid hydrolysis produces a racemic mixture of biological and nonbiological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  20. Titan Aeromony and Climate Workshop

    NASA Astrophysics Data System (ADS)

    Bézard, Bruno; Lavvas, Panayotis; Rannou, Pascal; Sotin, Christophe; Strobel, Darrell; West, Robert A.; Yelle, Roger

    2016-06-01

    The observations of the Cassini spacecraft since 2004 revealed that Titan, the largest moon of Saturn, has an active climate cycle with a cloud cover related to the large scale atmospheric circulation, lakes of methane and hyrdrocarbons with variable depth, a dried fluvial system witnessing a past wetter climate, dunes, and deep changes in the weather and atmospheric structure as Titan went through the North Spring equinox. Moreover, the upper atmosphere is now considered the cradle of complex chemistry leading to aerosol formation, as well as the manifestation place of atmospheric waves. However, as the Cassini mission comes to its end, many fundamental questions remain unresolved... The objective of the workshop is to bring together international experts from different fields of Titan's research in order to have an overview of the current understanding, and to determine the remaining salient scientific issues and the actions that could be implemented to address them. PhD students and post-doc researchers are welcomed to present their studies. This conference aims to be a brainstorming event leaving abundant time for discussion during oral and poster presentations. Main Topics: - Atmospheric seasonal cycles and coupling with dynamics. - Composition and photochemistry of the atmosphere. - Formation and evolution of aerosols and their role in the atmosphere. - Spectroscopy, optical properties, and radiative transfer modeling of the atmosphere. - Surface composition, liquid reservoirs and interaction with atmosphere. - Evolution of the atmosphere. - Titan after Cassini, open questions and the path forward.

  1. Titan: Putting it all Together

    NASA Image and Video Library

    2011-08-01

    Three of Titan major surface features-dunes, craters and the enigmatic Xanadu-appear in this radar image from NASA Cassini spacecraft. The hazy bright area at the left that extends to the lower center of the image marks the northwest edge of Xanadu.

  2. Organic chemistry in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  3. Organic chemistry in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  4. A Last Look at Titan

    NASA Image and Video Library

    2017-09-15

    As it glanced around the Saturn system one final time, NASA's Cassini spacecraft captured this view of the planet's giant moon Titan. Interest in mysterious Titan was a major motivating factor to return to Saturn with Cassini-Huygens following the Voyager mission flybys of the early 1980s. Cassini and its Huygens probe, supplied by European Space Agency, revealed the moon to be every bit as fascinating as scientists had hoped. These views were obtained by Cassini's narrow-angle camera on Sept. 13, 2017. They are among the last images Cassini sent back to Earth. This natural color view, made from images taken using red, green and blue spectral filters, shows Titan much as Voyager saw it -- a mostly featureless golden orb, swathed in a dense atmospheric haze. An enhanced-color view (Figure 1) adds to this color a separate view taken using a spectral filter (centered at 938 nanometers) that can partially see through the haze. The views were acquired at a distance of 481,000 miles (774,000 kilometers) from Titan. The image scale is about 3 miles (5 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21890

  5. Intrinsic Signal Imaging of Deprivation-Induced Contraction of Whisker Representations in Rat Somatosensory Cortex

    PubMed Central

    Drew, Patrick J.

    2009-01-01

    In classical sensory cortical map plasticity, the representation of deprived or underused inputs contracts within cortical sensory maps, whereas spared inputs expand. Expansion of spared inputs occurs preferentially into nearby cortical columns representing temporally correlated spared inputs, suggesting that expansion involves correlation-based learning rules at cross-columnar synapses. It is unknown whether deprived representations contract in a similar anisotropic manner, which would implicate similar learning rules and sites of plasticity. We briefly deprived D-row whiskers in 20-day-old rats, so that each deprived whisker had deprived (D-row) and spared (C- and E-row) neighbors. Intrinsic signal optical imaging revealed that D-row deprivation weakened and contracted the functional representation of deprived D-row whiskers in L2/3 of somatosensory (S1) cortex. Spared whisker representations did not strengthen or expand, indicating that D-row deprivation selectively engages the depression component of map plasticity. Contraction of deprived whisker representations was spatially uniform, with equal withdrawal from spared and deprived neighbors. Single-unit electrophysiological recordings confirmed these results, and showed substantial weakening of responses to deprived whiskers in layer 2/3 of S1, and modest weakening in L4. The observed isotropic contraction of deprived whisker representations during D-row deprivation is consistent with plasticity at intracolumnar, rather than cross-columnar, synapses. PMID:18515797

  6. Precision rodent whisker stimulator with integrated servo-locked control and displacement measurement

    PubMed Central

    Walker, Jennifer L.; Monjaraz-Fuentes, Fernanda; Pedrow, Christi R.; Rector, David M.

    2010-01-01

    We developed a high speed voice coil based whisker stimulator that delivers precise deflections of a single whisker or group of whiskers in a repeatable manner. The device is miniature, quiet, and inexpensive to build. Multiple stimulators fit together for independent stimulation of four or more whiskers. The system can be used with animals under anesthesia as well as awake animals with head-restraint, and does not require trimming the whiskers. The system can deliver 1–2 mm deflections in 2 ms resulting in velocities up to 900 mm/s to attain a wide range of evoked responses. Since auditory artifacts can influence behavioral studies using whisker stimulation, we tested potential effects of auditory noise by recording somatosensory evoked potentials (SEP) with varying auditory click levels, and with/without 80 dBa background white noise. We found that auditory clicks as low as 40 dBa significantly influence the SEP. With background white noise, auditory clicks as low as 50 dBa were still detected in components of the SEP. For behavioral studies where animals must learn to respond to whisker stimulation, these sounds must be minimized. Together, the stimulator and data system can be used for psychometric vigilance tasks, mapping of the barrel cortex and other electrophysiological paradigms. PMID:21167200

  7. Representation of egomotion in rat's trident and E-row whisker cortices.

    PubMed

    Chorev, Edith; Preston-Ferrer, Patricia; Brecht, Michael

    2016-10-01

    The whisker trident, a three-whisker array on the rat's chin, has been implicated in egomotion sensing and might function as a tactile speedometer. Here we study the cortical representation of trident whiskers and E-row whiskers in barrel cortex. Neurons identified in trident cortex of anesthetized animals showed sustained velocity-sensitive responses to ground motion. In freely moving animals, about two-thirds of the units in the trident and E-row whisker cortices were tuned to locomotion speed, a larger fraction of speed-tuned cells than in the somatosensory dysgranular zone. Similarly, more units were tuned to acceleration and showed sensitivity to turning in trident and E-row whisker cortices than in the dysgranular zone. Microstimulation in locomoting animals evoked small but significant speed changes, and such changes were larger in the trident and E-row whisker representations than in the dysgranular zone. Thus, activity in trident and E-row cortices represents egomotion information and influences locomotion behavior.

  8. Structure of a single whisker representation in layer 2 of mouse somatosensory cortex.

    PubMed

    Clancy, Kelly B; Schnepel, Philipp; Rao, Antara T; Feldman, Daniel E

    2015-03-04

    Layer (L)2 is a major output of primary sensory cortex that exhibits very sparse spiking, but the structure of sensory representation in L2 is not well understood. We combined two-photon calcium imaging with deflection of many whiskers to map whisker receptive fields, characterize sparse coding, and quantitatively define the point representation in L2 of mouse somatosensory cortex. Neurons within a column-sized imaging field showed surprisingly heterogeneous, salt-and-pepper tuning to many different whiskers. Single whisker deflection elicited low-probability spikes in highly distributed, shifting neural ensembles spanning multiple cortical columns. Whisker-evoked response probability correlated strongly with spontaneous firing rate, but weakly with tuning properties, indicating a spectrum of inherent responsiveness across pyramidal cells. L2 neurons projecting to motor and secondary somatosensory cortex differed in whisker tuning and responsiveness, and carried different amounts of information about columnar whisker deflection. From these data, we derive a quantitative, fine-scale picture of the distributed point representation in L2.

  9. Morphology of AlN whiskers grown by reacting N2 gas and Al vapor

    NASA Astrophysics Data System (ADS)

    Matsumoto, M.; Saitou, H.; Takeuchi, Y.; Harada, S.; Tagawa, M.; Ujihara, T.

    2017-06-01

    We have investigated the morphology of AlN whiskers on a polycrystalline AlN substrate by using Fe-Al alloy melts under the different synthesis conditions. Formation density of the AlN whiskers increases and the diameter of the whisker decreases with increasing Al content of the Fe-Al alloy melt. Most of the AlN whiskers were zigzag shape with the hexagonal cross section. The longitudinal direction was the [0001] direction. The facet with the zigzag shape was the {1 1 bar 01} or {1 1 bar 0 1 bar } pyramidal plane and the period of the zigzag facet was almost constant. The average diameter of the whiskers and the period of the zigzag facet decrease with increasing Al content. At the initial stage of the whisker formation, the island of AlN formed on the AlN substrate and the pyramidal facet grows via step-flow growth. From the observation, we discussed the possible mechanism for the formation of the zigzag-shape AlN whiskers.

  10. Creep behavior in SiC whisker-reinforced alumina composite

    SciTech Connect

    Lin, H.T.; Becher, P.F.

    1994-10-01

    Grain boundary sliding (often accompanied by cavitation) is a major contributor to compressive and tensile creep deformation in fine-grained aluminas, both with and without whisker-reinforcement. Studies indicate that the creep response of alumina composites reinforced with SiC whiskers can be tailored by controlling the composite microstructure and composition. The addition of SiC whiskers (< 30 vol%) significantly increases the creep resistance of fine-grained (1--2 {mu}m) alumina in air at temperatures of 1,200 and 1,300 C. However, at higher whisker contents (30 and 50 vol%), the creep resistance is degraded due to enhanced surface oxidation reactions accompanied by extensive creep cavitation. Densification aids (i.e., Y{sub 2}O{sub 3}), which facilitate silica glass formation and thus liquid phase densification of the composites, can also result in degradation of creep resistance. On the other hand, increasing the matrix grain size or decreasing the whisker aspect ratio (increased whisker number density) results in raising the creep resistance of the composites. These observations not only explain the variability in the creep response of various SiC whisker-reinforced alumina composites but also indicate factors that can be used to enhance the elevated temperature performance.

  11. Microstructure and fracture in SiC whisker reinforced 2124 aluminum composite

    NASA Technical Reports Server (NTRS)

    Nieh, T. G.; Raninen, R. A.; Chellman, D. J.

    1985-01-01

    The microstructures of extruded and hot-rolled 2124 Al-15 percent (by weight) SiC whisker composites have been investigated, experimentally. Among the specific factors studied were: the strength of the whisker-matrix interfaces; (2) the presence of oxides; (3) the presence of defective whiskers; (4) and the presence of distribution of intermetallic compounds, impurities in the SiC(w) powder, and microstructural inhomogeneities. Modifications in the microstructure of the SiC/AL composites due to hot rolling and extrusion are illustrated in a series of microphotographs. It was found that hot rolling along the axis of extrusion was associated with some types of whisker damage, while the whiskers still retain their original orientation. Hot-rolling perpendicular to the axis of extrusion, however, tended to rotate the whiskers and produced a nearly isotropic material. Whisker free zones were virtually eliminated or reduced in size by hot rolling. In situ Auger fractography of the composite showed that the interfacial bonding between the SiC and the Al matrix was good and that Al2O2 had no significant influence on the fracture mechanics of the composite.

  12. The Surface Composition of Titan

    NASA Astrophysics Data System (ADS)

    Clark, Roger Nelson; Pearson, N.; Brown, R. H.; Cruikshank, D. P.; Barnes, J.; Jaumann, R.; Soderblom, L.; Griffith, C.; Rannou, P.; Rodriguez, S.; Le Mouelic, S.; Lunine, J.; Sotin, C.; Baines, K. H.; Buratti, B. J.; Nicholson, P. D.; Nelson, R. M.; Stephan, K.

    2012-10-01

    Mapping the surface composition of Titan with the Cassini Visual and Infrared Mapping Spectrometer (VIMS) requires knowledge of the atmospheric absorption in the windows through which VIMS can observe the surface as well as the spectral properties of candidate materials. Recent atmospheric models are refining that knowledge. Titan's surface, in the VIMS spectral range, is seen in only a few spectral windows, near 0.94, 1.1, 1.3, 1.6, 2.0, 2.68-2.78, and 4.9-5.1 microns. Atmospheric models fail to fit the the observed spectra on the long wavelength side of the 2-micron window without invoking surface absorption at 2.1 microns. This new knowledge, along with the spectral shapes of the 2.68-2.78-micron, and 5-micron windows provide powerful constraints on Titan's surface composition. Water ice is incompatible with the observed 2.78/2.68 micron I/F ratio but likely exists below the surface. Many organic compounds have absorptions that are not seen in spectral windows of Titan, eliminating them as possible major components at the surface, including many polycyclic aromatic hydrocarbons (PAH). We find that some ring compounds and compounds with single N-H bonds have a close match to Titan's overall spectrum and can explain the relative intensities observed in the spectral windows, including the 2.68 and 2.78-micron double window, the low 3-5 micron reflectance, and increased absorption near 2.1-microns. Glycine is the only NH2 compound we have found that is also compatible. Combinations of coronene (C24H12), phenanthene (C14H12), pentacene (C22H14), indole (C8H7N), uracil (C4H4N2O2), and glycine (NH2CH2C00H) match the overall spectral structure of Titan spectra. We are searching for additional compounds that are also compatible. Indole, cytosine, and uracil, have 1.5-micron bands that are similar to the feature observed in Huygens DISR spectra of Titan's surface. These compounds, if present, can also help explain the pyrolysis results from the Huygens probe.

  13. Titan at the Edge: Global Simulations of Titan's Plasma Interaction near Saturn's Magnetopause

    NASA Astrophysics Data System (ADS)

    Snowden, D. S.; Winglee, R.; Kidder, A.

    2011-12-01

    We analyze how the dynamics of Saturn's dayside magnetosphere affect Titan's plasma interaction with a three-dimensional multifluid/multiscale model of Titan embedded in a global model of Saturn's magnetosphere. The characteristics of Titan's environment at 09:00 Saturn local time (SLT) were studied for three cases: a stationary magnetopause, an inward moving magnetopause, and an outward moving magnetopause. The results show that the plasma and magnetic field upstream of Titan vary on short and long time scales. Rotating cold, interchange fingers cause rapid changes in the plasma velocity, density, and composition, while gradual changes are due to the relatively slow compression and expansion of Saturn's magnetopause. We find that Titan can enter the boundary layer on the inside of the magnetopause, which is characterized by shearing flows and a mix of magnetospheric and magnetosheath plasma. The irregular flows in the boundary layer strongly modify Titan's induced magnetosphere. We also examine how Titan's induced magnetosphere and ion tail are affected when Titan crosses Saturn's magnetopause at 13.6 Saturn local time (SLT). During the simulation Titan crosses Saturn's magnetopause twice, exiting and reentering the magnetosphere. Inside Saturn's magnetosheath, Titan's connection to Saturn's magnetic field lines is removed by slow ionospheric convection in ˜1.8 hours and, after Titan crosses back into the magnetosphere, Titan's connection to magnetosheath field lines is removed through ionospheric convection in ˜50 minutes. We also use the two simulations to investigate how Titan may affect the dynamics of Saturn's magnetopause and find that Titan's ion tail may be able to prevent the magnetopause from moving inward and crossing Titan when Titan is in the pre-noon sector. The results of the simulations are compared to data from Cassini's TA and T32 flybys and to the observed variability at Titan's orbital radius.

  14. TiTaN Reconsidered

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2008-12-01

    Strongly positive TiO2, Ta, and Nb (TiTaN) anomalies (1) in a Samoan ankaramite from Ofu Island have been attributed to the presence of refractory yet titanian eclogite in the mantle source. From chemical compositions, however, the anomalies could instead result from concentration of phenocrysts in magmas produced by mixing between a highly differentiated alkalic basalt and a crystal sludge carrying abundant olivine, clinopyroxene and especially titanomagnetite phenocrysts, the latter producing much of the TiTaN anomalies, and behaving much like rutile in eclogite. This is consistent with petrography. The distinctive effects of addition of each mineral are well illustrated on major-oxide variation diagrams. Separation of these minerals from liquids (to concentrate in ankaramites and dunite-wehrlite-pyroxenite cumulates) beginning at about 0.15 GPa in the mantle produces residual felsic differentiates (hawaiites, mugearites) with low TiTan anomalies (<1), exemplified by samples dredged elsewhere in Samoa from Savai'i (2). The Ofu samples have a low EMII signature (high 3He/4He), whereas the Savai'i samples have a high EMII signature (low 3He/4He), the extremes at Samoa. This gives a coincidental positive correlation at Samoa overall between TiTan anomalies and 3He/4He, TiTan anomalies being accentuated at the two places by the contrasting effects of phenocryst addition and subtraction during differentiation. High 3He/4He beneath several eastern Samoan volcanoes appears to be an attribute of near-FOZO mantle sources with minimal EM2 signature. (1) Jackson, M., et al., 2008. G-Cubed 9: doi:1029/2007GC001876 (2) Jackson, M., et al., 2007, Nature 448: 684-687, doi:10.1038/nature060488

  15. Cryovolcanism and activity on Titan

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe

    2010-04-01

    The Cassini spacecraft has been observing the Saturn system for almost 6 years. After more than 60 Titan flybys, several observations suggest that cryovolcanism has been operating in a geologically recent past. First, the lifetime of methane in Titan's atmosphere is on the order of 10 Myrs. Even though lakes, potentially filled with liquid hydrocarbons, have been identified on Titan's north and south poles (Stofan et al., Nature 2007, Brown et al., Nature, 2008), they do not constitute a large enough reservoir able to replenish the atmosphere over 100s of Myrs (Lorenz et al., PSS, 2008). Second the presence of 40Ar, which is a product of the decay of 40K, associated to the small amount of 36Ar suggests exchange between the interior and the surface. Third, the isotopic ratio of 13C/12C in CH4 and 15N/14N in N2 suggest that nitrogen has escaped and was present very early in Titan's atmosphere whereas Carbon was recently released in the atmosphere. Fourth, radar and optical observations by the Visual and Infrared Mapping Spectrometer (VIMS) of the Titan's surface have revealed features resembling volcanic constructs and volcanic flows such as the large areas of Tui region and Hotei region at the southern edge of Xanadu. Another construct, much smaller in size, has been observed by both radar and the VIMS (LeCorre et al., PSS, 2009). Finally, both the radar and the VIMS have detected mountains which are related to geological activity in the lithosphere. This paper addresses several processes related to cryovolcanism and activity including convection processes in the ice crust, melting of ice and formation of cryovolcanic magmas, and cooling of cryovolcanic flows. It also describes relationships between the convection processes and the formation of mountains. Finally, it discusses the observations suggesting present day activity. Acknowledgments: This work has been carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract with NASA.

  16. Titan's Spectacular Volte-Face

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    2013-10-01

    Like Earth, Titan sports lakes, storms and rainfall. These features derive from a methane cycle, reminiscent of Earth's hydrological cycle; methane exists as an ice, liquid and gas and transfers between the surface and atmosphere, according to the seasonal weather. Titan's seasons contrast Earth’s. Imagine a summer trip to 70 latitude, where hurricane-sized storms burst forth out of a clear sky every few months for about 15 years. Then they vanish for another 15 years. Envision a trip to the winter polar region. Here the sky is perhaps clear except that the high haze, which filters sunlight like a translucent globe, is somewhat thicker than it is in the summer. Imperceptibly, you are blocking the diffuse organic matter, which is slowly settling out of the hazy orb, and accumulating on the polar surface. These effects are a few of the many that derive from Titan’s circulation and its seasonal changes during the satellite's 29.5 Earth year orbit about the Sun. In particular, and as indicated in recent observations, Titan's circulation flip-flopped. Before equinox in 2009, on average, air rose in the southern polar region and downwelled in the northern polar region. Now the reverse appears to be happening. Here we discuss the observations ranging from the surface to ~500 km altitude that reveal the symphony of responses of Titan's surface and atmosphere to this dramatic shift. In addition we discuss the syntheses of these effects, from theoretical efforts involving microphysical models, local cloud models and general circulation models, with the question of why Titan's seasonal changes are so much more spectacular compared to those of Earth.

  17. Nitrogen compounds in Titan's stratosphere

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Cirs Investigation Team

    Titan's atmosphere is essentially composed of molecular nitrogen (N2). The chemistry between the two mother molecules (N2 and CH4) leads to the formation of a certain number of nitriles observed in Titan's stratosphere as early as at the time of the Voyager 1 encounter in 1980. In the spectra taken by the Infrared Radiometer Interferometer Spectrometer (IRIS) the signatures of HCN, HC3N, C2N2 and C4N2 (in solid form) were found and reported. Subsequent observations from the ground better described the vertical profiles of these constituents and allowed for the detection of CH3CN (acetonitrile) in the mm range [3,4]. Recent data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys (October 2004 - June 2006) give a handle on the temporal and latitudinal variations of these constituents. The nadir spectra characterize various regions on Titan from 85°S to 75°N with a variety of emission angles. We study the emission observed in the mid-infrared CIRS detector arrays (covering roughly the 600-1500 cm-1 spectral range with apodized resolutions of 2.54 or 0.53 cm-1 ). The composite spectrum shows several molecular signatures of nitriles. Information is retrieved on the meridional variations of the trace constituents and tied to predictions by dynamical-photochemical models [1,2,5]. The nitriles show a significant enhancement at high northern latitudes albeit not as marked as at the time of the Voyager encounter. We will give a review of our current understanding of the minor nitrile chemistry on Titan. References : [1] Coustenis et al., 2006. Icarus, in press. [2] Flasar et al., 2005. Science 308, 975. [3] Marten, A., et al., 2002, Icarus, 158, 532-544. [4] Marten, A. & Moreno, R., 2003. 35th Annual DPS Meeting, Monterey, Ca, BAAS, 35, 952. [5] Teanby et al., 2006. Icarus, 181, 243-255.

  18. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a

  19. Growth, Characterization, and Elastic Properties of Bismuth Based High Temperature Superconducting Whiskers.

    NASA Astrophysics Data System (ADS)

    Marone, Matthew John

    Whiskers of bismuth based high temperature superconductors have been grown by two different techniques. Splat quenched glass, and disks of sintered material have been used. Good quality single crystals have been obtained from both techniques. Electron diffraction shows the structure to be rm Bi_2Sr_2CaCu_2O_{x} for whiskers grown by both techniques. Transport and SQUID magnetometer measurements indicate that the transition temperature for whiskers grown from the sintered material is between rm T_{c}~ 75 K and rm T_{c} ~ 90 K. Whiskers grown from the glass have shown transition temperatures near 107 K indicating the presence of rm Bi_2Sr_2Ca _2Cu_3O_{x}. Young's modulus has been measured using a device that applies uniaxial stress and simultaneously measures the elongation (strain) of the whisker. Whiskers with rm T_{c}~ 75 K grown from sintered disks have displayed anomalous elastic properties. Above 270 K, the stress-strain response is hysteretic. Young's modulus is soft, with Y ~ 20 GPa at 270 K and decreases sharply with increasing temperature. Below 270 K, hysteretic behavior is not observed and Y does not vary as quickly with temperature. This suggests that a structural phase transition may occur (ferroelastic). Other whiskers grown from sintered disks show a stiffer Young's modulus with Y ~ 80 GPa. No hysteresis is observed in the stress-strain response of these whiskers nor is Y strongly temperature dependent. Whiskers grown from a glass also show a stiff Young's modulus of Y ~ 80 GPa without hysteresis. Again, very little temperature dependence is observed.

  20. Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    PubMed Central

    Mitchinson, Ben; Prescott, Tony J.

    2013-01-01

    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention. PMID:24086120

  1. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering

    SciTech Connect

    Feng, Pei; Wei, Pingpin; Li, Pengjian; Gao, Chengde; Shuai, Cijun; Peng, Shuping

    2014-11-15

    Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m{sup 1/2}) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability.

  2. Mechanism and Prevention of Spontaneous Tin Whisker Growth

    SciTech Connect

    Tu, King-Ning; Suh, Jong-ook; Wu, Albert Tzu-Chia; Tamura,Nobumichi; Tung, Chih-Hang

    2005-05-05

    Spontaneous Sn whisker growth on Cu leadframe finished withPb-free solder is a serious reliability problem in electrical andelectronic devices. Recently, Fortune magazine had an article to describethe urgency of the problem. The spontaneous growth is an irreversibleprocess, in which there are two atomic fluxes driven by two kinds ofdriving force. There are a flux of Cu atoms and a flux of Sn atoms. TheCu atoms diffuse from the leadframe into the solder finish driven bychemical potential gradient to form intermetallic compound of Cu6Sn5 inthe grain boundaries of the solder, and the growth of the compound atroom temperature generates a compressive stress in the solder. To relievethe stress, a flux of Snatoms driven by the stress gradient diffuses awayto grow a spontaneous Sn whisker which is stress-free. The typicalindustry solution is to inserta diffusion barrier of Ni between the Cuand solder to prevent the diffusion of Cu into the solder. It isinsufficient, because we have to uncouplethe irreversible processes andstop both the fluxes of Cu and Sn. A solution is presentedhere.

  3. Tin Whisker Electrical Short Circuit Characteristics. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Lawrence L.; Wright, Maria C.

    2009-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  4. The cerebellum linearly encodes whisker position during voluntary movement

    PubMed Central

    Chen, Susu; Augustine, George J; Chadderton, Paul

    2016-01-01

    Active whisking is an important model sensorimotor behavior, but the function of the cerebellum in the rodent whisker system is unknown. We have made patch clamp recordings from Purkinje cells in vivo to identify whether cerebellar output encodes kinematic features of whisking including the phase and set point. We show that Purkinje cell spiking activity changes strongly during whisking bouts. On average, the changes in simple spike rate coincide with or slightly precede movement, indicating that the synaptic drive responsible for these changes is predominantly of efferent (motor) rather than re-afferent (sensory) origin. Remarkably, on-going changes in simple spike rate provide an accurate linear read-out of whisker set point. Thus, despite receiving several hundred thousand discrete synaptic inputs across a non-linear dendritic tree, Purkinje cells integrate parallel fiber input to generate precise information about whisking kinematics through linear changes in firing rate. DOI: http://dx.doi.org/10.7554/eLife.10509.001 PMID:26780828

  5. Penicillin V Potassium Oral

    MedlinePlus

    Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, scarlet fever, and ear, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken every 6 hours (four ...

  6. Potassium food supplement

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Huber, C. S.; Rambaut, C.; Heidelbaugh, N. D.

    1973-01-01

    Potassium gluconate is considered best supplementary source for potassium. Gluconate consistently received highest taste rating and was indistinguishable from nonsupplemented samples. No unfavorable side effects were found during use, and none are reported in literature. Gluconate is normal intermediary metabolite that is readily adsorbed and produces no evidence of gastrointestinal ulcerations.

  7. Silicon carbide whisker composites. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the manufacture and applications of silicon carbide whisker reinforced composites. Citations discuss the preparation of whiskers and the processing of composites containing the whiskers. Applications include aerospace engines, automotive components, engine components, and surgical implants. Physical properties such as bending strength, crack propagation, creep, fracture toughness, and stress strain curves are covered. Ceramic matrix, metal matrix, and carbon-carbon composites are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Elevated temperature mechanical behavior of monolithic and SiC whisker-reinforced silicon nitrides

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Choi, Sung R.; Sanders, William A.; Fox, Dennis S.

    1991-01-01

    The mechanical behavior of a 30 volume percent SiC whisker reinforced silicon nitride and a similar monolithic silicon nitride were measured at several temperatures. Measurements included strength, fracture toughness, crack growth resistance, dynamic fatigue susceptibility, post oxidation strength, and creep rate. Strength controlling defects were determined with fractographic analysis. The addition of SiC whiskers to silicon nitride did not substantially improve the strength, fracture toughness, or crack growth resistance. However, the fatigue resistance, post oxidation strength, and creep resistance were diminished by the whisker addition.

  9. Suppressing tin whisker growth in lead-free solders and platings

    DOEpatents

    Hoffman, Elizabeth N; Lam, Poh-Sang

    2014-04-29

    A process of irradiation Sn containing Pb-free solder to mitigate whisker formation and growth thereon is provided. The use of gamma radiation such as cobalt-60 has been applied to a substrate of Sn on copper has been found to change the morphology of the crystalline whisker growth to a more truncated hillock pattern. The change in morphology greatly reduces the tendency of whiskers to contribute to electrical short-circuits being used as a Pb-free solder system on a copper substrate.

  10. Simulating Titan's Atmosphere Using the TitanWRF and Titan MITgcm General Circulation Models

    NASA Astrophysics Data System (ADS)

    Newman, C. E.; Lian, Y.; Lee, C.; Richardson, M. I.

    2011-12-01

    We have developed two 3D Titan general circulation models (GCMs): TitanWRF, based on NCAR's WRF model [Newman et al., 2011], and a Titan version of the MITgcm [Adcroft et al., 2004]. We will present and compare the stratospheric superrotation and tropospheric methane cycle produced using these GCMs, and compare results with observations. Original TitanWRF simulations were unable to produce significant stratospheric superrotation, however we later found that simulations performed without any explicitly imposed sub-grid-scale horizontal diffusion were able to reproduce far greater latitudinal temperature gradients and superrotation (see Figure), similar in many respects to that observed [e.g., Flasar et al., 2005; Achterberg et al., 2011]. Diagnostics show that equatorial superrotation is generated during episodic angular momentum 'transfer events' during model spin-up, and maintained by similar (yet shorter) events once the model has reached steady state. We suggest that these transfer events are produced by barotropic waves, generated at low latitudes then propagating poleward through a critical layer, thus accelerating low latitudes while decelerating the mid-to-high latitude jet in the late fall through early spring hemisphere. We will present these and more recent results from the Titan MITgcm, examining the waves and mechanisms driving superrotation in both models, and discussing the importance of both implicit and explicit horizontal diffusion on model stability and superrotation. We have also used both GCMs to examine Titan's tropospheric methane cycle: parameterizing surface evaporation of methane according to boundary layer humidity, wind speed and atmospheric stability; using a simple parameterization of cloud formation and precipitation; including latent heat effects; and allowing surface regions to be depleted of methane if evaporation exceeds precipitation over time. We will present and compare simulations of cloud locations and timings with those

  11. Potassium and Health123

    PubMed Central

    Weaver, Connie M.

    2013-01-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints. PMID:23674806

  12. Potassium and health.

    PubMed

    Weaver, Connie M

    2013-05-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints.

  13. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal.

    PubMed

    Hartmann, Mitra J; Johnson, Nicholas J; Towal, R Blythe; Assad, Christopher

    2003-07-23

    We investigated the natural resonance properties and damping characteristics of rat macrovibrissae (whiskers). Isolated whiskers rigidly fixed at the base showed first-mode resonance peaks between 27 and 260 Hz, principally depending on whisker length. These experimentally measured resonant frequencies were matched using a theoretical model of the whisker as a conical cantilever beam, with Young's modulus as the only free parameter. The best estimate for Young's modulus was approximately 3-4 GPa. Results of both vibration and impulse experiments showed that the whiskers are strongly damped, with damping ratios between 0.11 and 0.17. In the behaving animal, whiskers that deflected past an object were observed to resonate but were damped significantly more than isolated whiskers. The time course of damping varied depending on the individual whisker and the phase of the whisking cycle, which suggests that the rat may modulate biomechanical parameters that affect damping. No resonances were observed for whiskers that did not contact the object or during free whisking in air. Finally, whiskers on the same side of the face were sometimes observed to move in opposite directions over the full duration of a whisk. We discuss the potential roles of resonance during natural exploratory behavior and specifically suggest that resonant oscillations may be important in the rat's tactile detection of object boundaries.

  14. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J.; Johnson, Nicholas J.; Towal, R. Blythe; Assad, Christopher

    2003-01-01

    We investigated the natural resonance properties and damping characteristics of rat macrovibrissae (whiskers). Isolated whiskers rigidly fixed at the base showed first-mode resonance peaks between 27 and 260 Hz, principally depending on whisker length. These experimentally measured resonant frequencies were matched using a theoretical model of the whisker as a conical cantilever beam, with Young's modulus as the only free parameter. The best estimate for Young's modulus was approximately 3-4 GPa. Results of both vibration and impulse experiments showed that the whiskers are strongly damped, with damping ratios between 0.11 and 0.17. In the behaving animal, whiskers that deflected past an object were observed to resonate but were damped significantly more than isolated whiskers. The time course of damping varied depending on the individual whisker and the phase of the whisking cycle, which suggests that the rat may modulate biomechanical parameters that affect damping. No resonances were observed for whiskers that did not contact the object or during free whisking in air. Finally, whiskers on the same side of the face were sometimes observed to move in opposite directions over the full duration of a whisk. We discuss the potential roles of resonance during natural exploratory behavior and specifically suggest that resonant oscillations may be important in the rat's tactile detection of object boundaries.

  15. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite.

    PubMed

    Fang, Zhou; Feng, Qingling

    2014-02-01

    To improve the mechanical properties of porous hydroxyapatite/poly(L-lactic acid) (HA/PLLA) composites, HA whiskers with high crystallinity and high aspect ratio were synthesized. HA whiskers were modified with γ-aminopropyltriethoxysilane (APTES) to improve the interface between HA whiskers and PLLA. The composite scaffold consists of a porous PLLA matrix with HA whiskers distributed homogeneously. The morphology and the distributions of pore sizes of PLLA scaffold was not influenced by introducing HA whiskers, while the mechanical properties were improved. Both the compressive strength and compressive modulus were increased with the weight ratio of APTES-modified HA whiskers up to 30 wt.%, but only up to 15 wt.% for non-modified HA whiskers. With more than 15 wt.% HA whiskers, the mechanical properties of HA/PLLA scaffold were better improved with APTES-modified HA whiskers than non-modified. The HA whisker/PLLA scaffold with high porosity and improved mechanical properties is attractive in the application of tissue engineering.

  16. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  17. Photochemically driven collapse of Titan's atmosphere.

    PubMed

    Lorenz, R D; McKay, C P; Lunine, J I

    1997-01-31

    Saturn's giant moon Titan has a thick (1.5 bar) nitrogen atmosphere, which has a temperature structure that is controlled by the absorption of solar and thermal radiation by methane, hydrogen, and organic aerosols into which methane is irreversibly converted by photolysis. Previous studies of Titan's climate evolution have been done with the assumption that the methane abundance was maintained against photolytic depletion throughout Titan's history, either by continuous supply from the interior or by buffering by a surface or near surface reservoir. Radiative-convective and radiative-saturated equilibrium models of Titan's atmosphere show that methane depletion may have allowed Titan's atmosphere to cool so that nitrogen, its main constituent, condenses onto the surface, collapsing Titan into a Triton-like frozen state with a thin atmosphere.

  18. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  19. Amino acidis derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  20. Amino acidis derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  1. Application of electron backscatter diffraction for crystallographic characterization of tin whiskers.

    PubMed

    Michael, Joseph R; McKenzie, Bonnie B; Susan, Donald F

    2012-08-01

    Understanding the growth of whiskers or high aspect ratio features on substrates can be aided when the crystallography of the feature is known. This study has evaluated three methods that utilize electron backscatter diffraction (EBSD) for the determination of the crystallographic growth direction of an individual whisker. EBSD has traditionally been a technique applied to planar, polished samples, and thus the use of EBSD for out-of-surface features is somewhat more difficult and requires additional steps. One of the methods requires the whiskers to be removed from the substrate resulting in the loss of valuable physical growth relationships between the whisker and the substrate. The other two techniques do not suffer this disadvantage and provide the physical growth information as well as the crystallographic growth directions. The final choice of method depends on the information required. The accuracy and the advantages and disadvantages of each method are discussed.

  2. Beta 2-adrenergic receptors are colocalized and coregulated with whisker barrels in rat somatosensory cortex

    SciTech Connect

    Vos, P.; Kaufmann, D.; Hand, P.J.; Wolfe, B.B. )

    1990-07-01

    Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-adrenergic receptors, but not beta 1-adrenergic receptors colocalize with whisker barrels in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array.

  3. Preparation of integrated multifunction Pb3B10O16[OH]4 whisker by solvothermal method

    NASA Astrophysics Data System (ADS)

    Sun, Qing; Zhang, Quan-Ping; Zheng, Jian; Zhou, Dong; Li, Yin-Tao; Zhou, Yuan-Lin

    2016-03-01

    Elaborate design of multifunction materials is of great scientific and technological significance; but it is a great challenge. Here, a lead borate is successfully prepared via a facile solvothermal method. The results of XRD, SEM and TEM show the product is a kind of whiskers with uniform structure and high length-diameter ratio, which is represented as Pb3B10O16[OH]4. The whisker is capable of attenuating both γ-rays and neutrons and shows a little difference with that of the equal molar mass of Pb and B in mixture. In addition, the whisker displays good photoluminescence properties, especially for luminescent intensity. These significant results indicate an integrated multifunction whisker that will stimulate new application research.

  4. Electrical and mechanical properties in CaF{sub 2}/SiC-whisker composites

    SciTech Connect

    Ishida, Atsumu; Miyayama, Masaru; Yanagida, Hiroaki

    1994-12-31

    Electrical and mechanical properties in ceramic composites were investigated in order to examine fracture prediction techniques and fatigue detection in ceramics. Composites were fabricated with calcium fluoride as the insulating matrix and silicon carbide whiskers as the conducting additive. Electrical conduction paths were formed by adding more than 3 vol% of silicon carbide whiskers. Additions of silicon carbide whiskers did not improve the fracture strength, especially of the composites with a conduction path. By applying a bending load to the composites, the electrical resistance increased up to fracture. When the load was applied repeatedly below the fracture limit, a gradual increase of electrical resistance was observed before fracture. These results suggested the possibility of predicting fracture and detecting fatigue in ceramic composites. A pull out behavior of silicon carbide whiskers which disconnect the conduction paths of the composites was confirmed from scanning electron microscopy observation.

  5. The magnetic memory of Titan's ionized atmosphere.

    PubMed

    Bertucci, C; Achilleos, N; Dougherty, M K; Modolo, R; Coates, A J; Szego, K; Masters, A; Ma, Y; Neubauer, F M; Garnier, P; Wahlund, J-E; Young, D T

    2008-09-12

    After 3 years and 31 close flybys of Titan by the Cassini Orbiter, Titan was finally observed in the shocked solar wind, outside of Saturn's magnetosphere. These observations revealed that Titan's flow-induced magnetosphere was populated by "fossil" fields originating from Saturn, to which the satellite was exposed before its excursion through the magnetopause. In addition, strong magnetic shear observed at the edge of Titan's induced magnetosphere suggests that reconnection may have been involved in the replacement of the fossil fields by the interplanetary magnetic field.

  6. Pluto's implications for a Snowball Titan

    NASA Astrophysics Data System (ADS)

    Wong, Michael L.; Yung, Yuk L.; Randall Gladstone, G.

    2015-01-01

    The current Cassini-Huygens Mission to the Saturn system provides compelling evidence that the present state of Titan's dense atmosphere is unsustainable over the age of the Solar System. Instead, for most of its existence, Titan's atmosphere might have been in a Snowball state, characterized by a colder surface and a smaller amount of atmospheric CH4, similar to that of Pluto or Triton. We run a 1-D chemical transport model and show that the rates of organic synthesis on a Snowball Titan are significantly slower than those on present-day Titan. The primary method of methane destruction-photosensitized dissociation in the stratosphere-is greatly dampened on Snowball Titan. The downward flux of higher-order molecules through the troposphere is dominated not by hydrocarbons such as ethane, as is the case on Titan today, but by nitriles. This result presents a testable observation that could confirm the Snowball Titan hypothesis. Because Pluto's atmosphere is similar to Titan's in composition, it serves as a basis for comparison. Future observations of Pluto by the New Horizons Mission will inform photochemical models of Pluto's atmosphere and can help us understand the photochemical nature of paleo-Titan's atmosphere.

  7. Titan In Situ Exploration Concepts at JPL

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Hall, Jeffery L.; Jones, Jack; Reh, Kim

    2008-01-01

    This slide presentation reviews concepts for exploring Titan via balloon vehicles. The presentation includes information about the baseline options, the deployment scenario, and the balloon technology development.

  8. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; hide

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  9. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Callcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1984-01-01

    The optical properties and chemical composition of thiolin, an organic solid synthesized by high-energy-electron irradiation in a plasma discharge (Sagan et al., 1984) to simulate the high-altitude aerosols of Titan, are investigated experimentally using monochromators, ellipsometers, and spectrometers (on thin films deposited by continuous dc discharge) and sequential and nonsequential pyrolytic gas chromatography/mass spectrometry (of the volatile component), respectively. The results are presented in tables and graphs and characterized. The real and imaginary elements of the complex refractive index in the visible are estimated as 1.65 and 0.004-0.08, respectively, in agreement with observations of Titan, and the IR absorption features include the nitrile band at 4.6 microns. The molecules identified in the volatile part of thiolin include complex species considered important in theoretical models of the origin of life on earth.

  10. Titan's geoid and hydrology: implications for Titan's geological evolution

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013

  11. Potassium targets from KI

    NASA Astrophysics Data System (ADS)

    Sletten, G.

    1982-09-01

    Targets of potassium iodide (KI) on thin carbon backings have been prepared. Potassium isotopes are supplied as chlorides, and the chlorine is, in certain experiments, an unwanted contaminant. Target peeparation involves conversion of KCl to KI and subsequent vacuum evaporation of the iodide. Targets of both 39K and 41K in the thickness range of 60 to 100 μg/cm 2 of potassium have been prepared. These targets contain less than 0.5 μg/cm 2 of chlorine impurity and are stable in α-beams of 25 MeV.

  12. Aeronomy of Saturn and Titan

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.

    1978-01-01

    The Saturn system presents exciting and unique objects for planetary aeronomy. The photochemistry of H2 and He leads to the formation of an ionosphere. Methane photolysis results in the formation of spectroscopically detectable amounts of C2H6 and C2H2 and in the case of Titan, C2H4. Density profiles of C2H6, C2H2, and PH3 should be indicative of the strength of atmospheric mixing processes.

  13. Cassini Imaging Results at Titan

    NASA Technical Reports Server (NTRS)

    McEwen, A.; Turtle, E.; Perry J.; Fussner, S.; Porco, C.; West, R.; Johnson, T.; Collins, G.; DelGenio, T.; Barbara, J.

    2005-01-01

    The Cassini Imaging Science Subsystem (ISS) images show striking albedo markings on the surface of Titan. In equatorial regions the albedo patterns have high contrast and exhibit prominent lineaments and linear/angular boundaries suggestive of tectonic influences or fracturing of brittle surficial materials. There are intriguing dark curving lines near the south pole. Here we present several working hypotheses to explain these patterns. We also briefly summarize atmospheric science results.

  14. Cassini's Final Titan Radar Swath

    NASA Image and Video Library

    2017-08-11

    During its final targeted flyby of Titan on April 22, 2017, Cassini's radar mapper got the mission's last close look at the moon's surface. On this 127th targeted pass by Titan (unintuitively named "T-126"), the radar was used to take two images of the surface, shown at left and right. Both images are about 200 miles (300 kilometers) in width, from top to bottom. Objects appear bright when they are tilted toward the spacecraft or have rough surfaces; smooth areas appear dark. At left are the same bright, hilly terrains and darker plains that Cassini imaged during its first radar pass of Titan, in 2004. Scientists do not see obvious evidence of changes in this terrain over the 13 years since the original observation. At right, the radar looked once more for Titan's mysterious "magic island" (PIA20021) in a portion of one of the large hydrocarbon seas, Ligeia Mare. No "island" feature was observed during this pass. Scientists continue to work on what the transient feature might have been, with waves and bubbles being two possibilities. In between the two parts of its imaging observation, the radar instrument switched to altimetry mode, in order to make a first-ever (and last-ever) measurement of the depths of some of the lakes that dot the north polar region. For the measurements, the spacecraft pointed its antenna straight down at the surface and the radar measured the time delay between echoes from the lakes' surface and bottom. A graph is available at https://photojournal.jpl.nasa.gov/catalog/PIA21626

  15. The Xanadu Annex on Titan

    NASA Image and Video Library

    2016-09-07

    This synthetic-aperture radar (SAR) image was obtained by NASA's Cassini spacecraft on July 25, 2016, during its "T-121" pass over Titan's southern latitudes. The image shows an area nicknamed the "Xanadu annex" by members of the Cassini radar team, earlier in the mission. This area had not been imaged by until now, but measurements of its brightness temperature from Cassini's microwave radiometer were quite similar to that of the large region on Titan named Xanadu (see PIA20713), which lies just to the north. Cassini's radiometer is essentially a very sensitive thermometer, and brightness temperature is a measure of the intensity of microwave radiation received from a feature by the instrument. Radar team members predicted at the time that, if this area were ever imaged, it would be similar in appearance to Xanadu. That earlier hunch appears to have been borne out, as features in this scene bear a strong similarity to the mountainous terrains Cassini's radar has imaged in Xanadu. Xanadu -- and now perhaps its annex -- remains something of a mystery. First imaged in 1994 by the Hubble Space Telescope (just three years before Cassini's launch from Earth), Xanadu was the first surface feature to be recognized on Titan. Once thought to be a raised plateau, the region is now understood to be slightly tilted, but not higher than, the darker surrounding regions. It blocks the formation of sand dunes, which otherwise extend all the way around Titan at its equator. The area shown here is illuminated by the radar from the bottom at a 30-degree incidence angle. It measures about 155 by 310 miles (250 by 500 kilometers) and is centered at about 30 degrees south latitude, 60 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA20712

  16. Synthesis and characterization of whisker crystals of iron-based superconductor

    NASA Astrophysics Data System (ADS)

    Li, Jun; Yuan, Jie; Wang, Hua-Bing; Yamaura, Kazunari

    2013-03-01

    Single-crystal superconducting whiskers of Ca10(Pt4As8) (Fe1.8Pt0.2As2)5 were grown in a Ta capsule in an evacuated quartz tube by a flux method [J. Li, et al. J. Am. Chem. Soc. 134, 4068 -4071 (2012)]. This technique can be potentially useful for growth of other whiskers containing toxic elements, although the growth mechanism is not understood well. The Ca10(Pt4As8) (Fe1.8Pt0.2As2)5 whiskers were confirmed to have excellent crystallinity with Tc of 33 K, μ0Hc 2 of 52.8 T, and Jc of 6.0 × 105 A/cm2 (at 26 K). The Tc value is comparable with that of the bulk material. Since cuprate high-Tc superconducting whiskers are fragile ceramics, the present intermetallic superconducting whiskers with high-Tc have better opportunities for device applications. In addition, we studied the Ca10(Pt4As8) (Fe2-xPtxAs2)5 superconducting whiskers consisting of several grains. With current tunneling across the grain boundaries, current-voltage characteristics show the behavior of Josephson tunnel junction effect with pronounced hysteresis. In this talk, we review the growth of the superconducting whiskers and shows progress of studies of the Josephson junction using the whiskers. This research was supported in part by the Funding Program for World-Leading Innovative R and D on Science and Technology (FIRST Program) in Japan.

  17. Cloud Bands Streak Across Titan

    NASA Image and Video Library

    2017-05-09

    NASA's Cassini spacecraft captured this view of bands of bright, feathery methane clouds drifting across Saturn's moon Titan on May 7, 2017. The view was obtained during a distant (non-targeted) flyby, during which Cassini passed 303,000 miles (488,000 kilometers) above the moon's surface. Although Cassini will have no further close, targeted flybys of Titan, the spacecraft continues to observe the giant moon and its atmosphere from a distance. The dark regions at top are Titan's hydrocarbon lakes and seas. The image was taken on May 7, 2017, at a distance of 316,000 miles (508,000 kilometers). The view is an orthographic projection centered on 57 degrees north latitude, 48 degrees west longitude. An orthographic view is most like the view seen by a distant observer. Image scale is about 2 miles (3 kilometers) per pixel. The Cassini mission is a cooperative project of NASA, ESA (the European Space Agen https://photojournal.jpl.nasa.gov/catalog/PIA21450

  18. Novel, whisker-dependent texture discrimination task for mice.

    PubMed

    Wu, Hsia-Pai Patrick; Ioffe, Julie C; Iverson, Michaela M; Boon, Jacqueline M; Dyck, Richard H

    2013-01-15

    Many mammals use their mystacial vibrissae to palpate objects in their environment and encode information such as size, shape and texture. We have developed a novel method to assess the sensitivity with which mice can discriminate textures using their mystacial vibrissae. Our texture discrimination task can be performed within 3 days, requiring approximately 1 h of handling time, per subject, over the entire testing period. No appetitive or aversive training is required. We have demonstrated that this novel texture discrimination task is dependent on intact mystacial vibrissae and can be performed by both young (2-month old) and older (6-month old) C57BL/6 mice. The parameters of the task can be adjusted to assess the sensitivity of mice using a gradient of textures with different roughness. We have developed a novel, efficient method to assess whisker-mediated texture discrimination in mice.

  19. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels.

    PubMed

    Huang, Yao; Yao, Mengyu; Zheng, Xing; Liang, Xichao; Su, Xiaojuan; Zhang, Yu; Lu, Ang; Zhang, Lina

    2015-11-09

    Novel nanocomposite hydrogels composed of polyelectrolytes alginate and chitin whiskers with biocompatibility were successfully fabricated based on the pH-induced charge shifting behavior of chitin whiskers. The chitin whiskers with mean length and width of 300 and 20 nm were uniformly dispersed in negatively charged sodium alginate aqueous solution, leading to the formation of the homogeneous nanocomposite hydrogels. The experimental results indicated that their mechanical properties were significantly improved compared to alginate hydrogel and the swelling trends were inhibited as a result of the strong electrostatic interactions between the chitin whiskers and alginate. The nanocomposite hydrogels exhibited certain crystallinity and hierarchical structure with nanoscale chitin whiskers, similar to the structure of the native extracellular matrix. Moreover, the nanocomposite hydrogels were successfully applied as bone scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs and scanning electronic microscope (SEM) images revealed that the addition of chitin whiskers into the nanocomposite hydrogels markedly promoted the cell adhesion and proliferation of the osteoblast cells. The biocompatible nanocomposite hydrogels have potential application in bone tissue engineering.

  20. Influence of Indium Addition on Whisker Mitigation in Electroplated Tin Coatings on Copper Substrates

    NASA Astrophysics Data System (ADS)

    Meinshausen, L.; Bhassyvasantha, S.; Majumdar, B. S.; Dutta, I.

    2016-01-01

    Among many factors that influence whisker nucleation and growth in electroplated tin, it is now well established that small additions of Pb leads to whisker mitigation. To date, a good non-toxic elemental alternative to Pb that would mitigate whiskers remains elusive. In this work, a 50-100 nm In electroplated layer was incorporated into a 1- μm-thick electroplated Sn on a pure Cu substrate. In order to permit diffusion of In into Sn, heat treatments (HTs) between 125°C and 160°C were performed. The diffusion profile of In was altered by varying the dwell times of the HT and by utilizing two variants of In layer deposition, namely, (1) electroplating In at the top of the Sn plating, and (2) by sandwiching the In plating between two Sn layers, each approximately 500 nm thick. Appropriate control samples of pure Sn were utilized to permit valid data on the influence of In on whisker mitigation. Indium additions reduced whisker growth by at least two orders of magnitude following the 160°C treatment, independent of the location of the In layer. X-ray microanalysis of a focused ion beam cross section of the sandwich plating confirmed that In had indeed diffused into the Sn through the 160°C HT and was a likely reason for the mitigation of Sn whiskers.

  1. Investigation of Whisker Growth from Alkaline Non-cyanide Zinc Electrodeposits

    NASA Astrophysics Data System (ADS)

    Wu, L.; Ashworth, M. A.; Wilcox, G. D.

    2017-02-01

    Electroplated zinc finishes have been widely used in the packaging of electronic products for many years as a result of their excellent corrosion resistance and relatively low cost. However, the spontaneous formation of whiskers on zinc electroplated components, which are capable of resulting in electrical shorting or other damaging effects, can be highly problematic for the reliability of long-life electrical and electronic equipment. This work investigated the mechanism for whisker growth from zinc electrodeposited mild steel substrates. The incubation time for whisker growth from the surface of nodules on the surface of the electrodeposit was considerably reduced compared with that from the planar deposit surface. Recrystallisation of the as-deposited columnar structure was observed at the whisker root. This result is consistent with some recent whisker growth models based on recrystallisation. There was no evidence of iron-zinc (Fe-Zn) intermetallic formation at the iron/zinc (Fe/Zn) interface or within the zinc coating beneath the whiskers.

  2. Prenatal Ethanol Exposure and Whisker Clipping Disrupt Ultrasonic Vocalizations and Play Behavior in Adolescent Rats

    PubMed Central

    Waddell, Jaylyn; Yang, Tianqi; Ho, Eric; Wellmann, Kristen A.; Mooney, Sandra M.

    2016-01-01

    Prenatal ethanol exposure can result in social deficits in humans and animals, including altered social interaction and poor communication. Rats exposed to ethanol prenatally show reduced play fighting, and a combination of prenatal ethanol exposure and neonatal whisker clipping further reduces play fighting compared with ethanol exposure alone. In this study, we explored whether expression of hedonic ultrasonic vocalizations (USVs) correlated with the number of playful attacks by ethanol-exposed rats, rats subjected to postnatal sensory deprivation by whisker clipping or both compared to control animals. In normally developing rats, hedonic USVs precede such interactions and correlate with the number of play interactions exhibited in dyads. Pregnant Long-Evans rats were fed an ethanol-containing liquid diet or a control diet. After birth, male and female pups from each litter were randomly assigned to the whisker-clipped or non-whisker-clipped condition. Animals underwent a social interaction test with a normally developing play partner during early or late-adolescence. USVs were recorded during play. Prenatal ethanol exposure reduced both play and hedonic USVs in early adolescence compared to control rats and persistently reduced social play. Interestingly, ethanol exposure, whisker clipping and the combination abolished the significant correlation between hedonic USVs and social play detected in control rats in early adolescence. This relationship remained disrupted in late adolescence only in rats subjected to both prenatal ethanol and whisker clipping. Thus, both insults more persistently disrupted the relationship between social communication and social play. PMID:27690116

  3. Mechanical characterization of SiC whisker-reinforced MoSi/sub 2/

    SciTech Connect

    Carter, D.H.; Gibbs, W.S.; Petrovic, J.J.

    1988-01-01

    The mechanical characteristics of an intermetallic matrix with two different reinforcements were studied. The matrix material was MoSi/sub 2/, with either Los Alamos VLS SiC whiskers or Huber VS SiC whiskers. The purpose of the reinforcement was to provide toughening at ambient temperature and strengthening at elevated temperatures. The VLS whiskers greatly improved the yield strength of the matrix at 1200/degree/C, and also increased the room temperature fracture toughness of the matrix. The VS whiskers were added because they are much smaller in length and diameter, and therefore decreased the mean free path between whiskers, at the same volume fraction. The VS whiskers improved the toughness of the matrix at ambient temperature, and increased the yield strength of MoSi/sub 2/ at 1400/degree/C by 470%. The high strength of this new composite places this material in the realm of attractive engineering materials for high-temperature applications. 11 refs., 6 refs., 1 tab.

  4. An amplitude modulation/demodulation scheme for whisker-based texture perception.

    PubMed

    Boubenec, Yves; Claverie, Laure Nayelie; Shulz, Daniel E; Debrégeas, Georges

    2014-08-13

    Whisking rodents can discriminate finely textured objects using their vibrissae. The biomechanical and neural processes underlying such sensory tasks remain elusive. Here we combine the use of model micropatterned substrates and high-resolution videography of rats' whiskers during tactile exploration to study how texture information is mechanically encoded in the whisker motion. A biomechanical modeling of the whisker is developed, which yields quantitative predictions of the spectral and temporal characteristics of the observed whisker kinetics, for any given topography. These texture-induced whisker vibrations are then replayed via a multiwhisker stimulator while recording neuronal responses in the barrel field of the primary somatosensory cortex (S1bf). These results provide a comprehensive description of the transduction process at play during fine texture sensing in rats. They suggest that the sensory system operates through a vibratory amplitude modulation/demodulation scheme. Fine textural properties are encoded in the time-varying envelope of the whisker-resonant vibrations. This quantity is then recovered by neural demodulation, as it effectively drives the spiking-rate signal of a large fraction of S1 cortical neurons. This encoding/decoding scheme is shown to be robust against variations in exploratory conditions, such as the scanning speed or pad-to-substrate distance, thus allowing for reliable tactile discrimination in realistic conditions. Copyright © 2014 the authors 0270-6474/14/3410832-12$15.00/0.

  5. Whisker Contact Detection of Rodents Based on Slow and Fast Mechanical Inputs

    PubMed Central

    Claverie, Laure N.; Boubenec, Yves; Debrégeas, Georges; Prevost, Alexis M.; Wandersman, Elie

    2017-01-01

    Rodents use their whiskers to locate nearby objects with an extreme precision. To perform such tasks, they need to detect whisker/object contacts with a high temporal accuracy. This contact detection is conveyed by classes of mechanoreceptors whose neural activity is sensitive to either slow or fast time varying mechanical stresses acting at the base of the whiskers. We developed a biomimetic approach to separate and characterize slow quasi-static and fast vibrational stress signals acting on a whisker base in realistic exploratory phases, using experiments on both real and artificial whiskers. Both slow and fast mechanical inputs are successfully captured using a mechanical model of the whisker. We present and discuss consequences of the whisking process in purely mechanical terms and hypothesize that free whisking in air sets a mechanical threshold for contact detection. The time resolution and robustness of the contact detection strategies based on either slow or fast stress signals are determined. Contact detection based on the vibrational signal is faster and more robust to exploratory conditions than the slow quasi-static component, although both slow/fast components allow localizing the object. PMID:28119582

  6. A truncated conical beam model for analysis of the vibration of rat whiskers.

    PubMed

    Yan, Wenyi; Kan, Qianhua; Kergrene, Kenan; Kang, Guozheng; Feng, Xi-Qiao; Rajan, Ramesh

    2013-08-09

    A truncated conical beam model is developed to study the vibration behaviour of a rat whisker. Translational and rotational springs are introduced to better represent the constraint conditions at the base of the whiskers in a living rat. Dimensional analysis shows that the natural frequency of a truncated conical beam with generic spring constraints at its ends is inversely proportional to the square root of the mass density. Under all the combinations of the classical free, pinned, sliding or fixed boundary conditions of a truncated conical beam, it is proved that the natural frequency can be expressed as f = α(rb/L(2))E/ρ and the frequency coefficient α only depends on the ratio of the radii at the two ends of the beam. The natural frequencies of a representative rat whisker are predicted for two typical situations: freely whisking in air and the tip touching an object. Our numerical results show that there exists a window where the natural frequencies of a rat whisker are very sensitive to the change of the rotational constraint at the base. This finding is also confirmed by the numerical results of 18 whiskers with their data available from literature. It can be concluded that the natural frequencies of a rat whisker can be adjusted within a wide range through manipulating the constraints of the follicle on the rat base by a behaving animal.

  7. Wear and mechanical properties of nano-silica-fused whisker composites.

    PubMed

    Xu, H H K; Quinn, J B; Giuseppetti, A A

    2004-12-01

    Resin composites must be improved if they are to overcome the high failure rates in large stress-bearing posterior restorations. This study aimed to improve wear resistance via nano-silica-fused whiskers. It was hypothesized that nano-silica-fused whiskers would significantly improve composite mechanical properties and wear resistance. Nano-silicas were fused onto whiskers and incorporated into a resin at mass fractions of 0%-74%. Fracture toughness (mean +/- SD; n = 6) was 2.92 +/- 0.14 MPa.m(1/2) for whisker composite with 74% fillers, higher than 1.13 +/- 0.19 MPa.m(1/2) for a prosthetic control, and 0.95 +/- 0.11 MPa.m(1/2) for an inlay/onlay control (Tukey's at 0.95). A whisker composite with 74% fillers had a wear depth of 77.7 +/- 6.9 mum, less than 118.0 +/- 23.8 microm of an inlay/onlay control, and 172.5 +/- 15.4 microm of a prosthetic control (p < 0.05). Linear correlations were established between wear and hardness, modulus, strength, and toughness, with R = 0.95-0.97. Novel nano-silica-fused whisker composites possessed high toughness and wear resistance with smooth worn surfaces, and may be useful in large stress-bearing restorations.

  8. Microstructure and growth model for rice-hull-derived SiC whiskers

    NASA Technical Reports Server (NTRS)

    Nutt, Steven R.

    1988-01-01

    The microstructure of silicon carbide whiskers grown from rice hulls has been studied using methods of high-resolution analytical electron microscopy. Small, partially crystalline inclusions (about 10 nm) containing calcium, manganese, and oxygen are concentrated in whisker core regions, while peripheral regions are generally inclusion free. The distinct microphase distribution is evidence of a two-stage growth process in which the core region grows first, followed by normal growth toward whisker sides. Partial dislocations extend radially from the core region to the surface and tend to be paired in V-shaped configurations. Whisker surfaces exhibit microroughness due to a tendency to develop small facets on close-packed planes. The microstructural data obtained from TEM observations are used as a basis for discussion of the mechanisms involved in whisker growth, and a model of the growth process is proposed. The model includes a two-dimensional growth mechanism involving vapor, liquid, and solid phases, although it is significantly different from the classical vapor-liquid-solid (VLS) process of whisker growth.

  9. Microstructure and growth model for rice-hull-derived SiC whiskers

    NASA Technical Reports Server (NTRS)

    Nutt, Steven R.

    1988-01-01

    The microstructure of silicon carbide whiskers grown from rice hulls has been studied using methods of high-resolution analytical electron microscopy. Small, partially crystalline inclusions (about 10 nm) containing calcium, manganese, and oxygen are concentrated in whisker core regions, while peripheral regions are generally inclusion free. The distinct microphase distribution is evidence of a two-stage growth process in which the core region grows first, followed by normal growth toward whisker sides. Partial dislocations extend radially from the core region to the surface and tend to be paired in V-shaped configurations. Whisker surfaces exhibit microroughness due to a tendency to develop small facets on close-packed planes. The microstructural data obtained from TEM observations are used as a basis for discussion of the mechanisms involved in whisker growth, and a model of the growth process is proposed. The model includes a two-dimensional growth mechanism involving vapor, liquid, and solid phases, although it is significantly different from the classical vapor-liquid-solid (VLS) process of whisker growth.

  10. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films.

    PubMed

    Takei, Kuniharu; Yu, Zhibin; Zheng, Maxwell; Ota, Hiroki; Takahashi, Toshitake; Javey, Ali

    2014-02-04

    Mammalian whiskers present an important class of tactile sensors that complement the functionalities of skin for detecting wind with high sensitivity and navigation around local obstacles. Here, we report electronic whiskers based on highly tunable composite films of carbon nanotubes and silver nanoparticles that are patterned on high-aspect-ratio elastic fibers. The nanotubes form a conductive network matrix with excellent bendability, and nanoparticle loading enhances the conductivity and endows the composite with high strain sensitivity. The resistivity of the composites is highly sensitive to strain with a pressure sensitivity of up to ∼8%/Pa for the whiskers, which is >10× higher than all previously reported capacitive or resistive pressure sensors. It is notable that the resistivity and sensitivity of the composite films can be readily modulated by a few orders of magnitude by changing the composition ratio of the components, thereby allowing for exploration of whisker sensors with excellent performance. Systems consisting of whisker arrays are fabricated, and as a proof of concept, real-time two- and three-dimensional gas-flow mapping is demonstrated. The ultrahigh sensitivity and ease of fabrication of the demonstrated whiskers may enable a wide range of applications in advanced robotics and human-machine interfacing.

  11. Contributions Of Stress And Oxidation On The Formation Of Whiskers In Pb-Free Solders

    SciTech Connect

    Duncan, A. J.; Hoffman, E. N.

    2014-03-25

    This report summarizes the research activities of WP-1754. The study focusses on the environmental factors influencing formation of lead free whiskers on electrodeposited tin coatings over copper (or copper containing) substrates. Much of the initial results are summarized in an interim report. From the initial results, two main areas were chosen to be the focus of additional research: the demonstration of effects of elastic stress state in the nucleation of whiskers and the confirmation of the effect of oxygen/nitrogen ratio in the formation of whiskers. Different levels of elastic stress were induced with the incorporation of a custom designed fixture that loaded the substrates in a four-point bending configuration and were maintained in an environmental chamber under conditions deemed favorable for whisker growth. The results show that induced elastic stress slightly increased the concentration of nucleation sites of whiskers. The effects of oxygen content were studied by aging substrates in gas vials of varying absolute pressure and different oxygen/nitrogen ratios. The concentration of whiskers were measured and appear to be sensitive to absolute pressure but are not sensitive to oxygen content (as previously observed).

  12. Fused Traditional and Geometric Morphometrics Demonstrate Pinniped Whisker Diversity

    PubMed Central

    Ginter, Carly C.; DeWitt, Thomas J.; Fish, Frank E.; Marshall, Christopher D.

    2012-01-01

    Vibrissae (whiskers) are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length) were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics) was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC), which results in

  13. Potassium carbonate poisoning

    MedlinePlus

    ... is a white powder used to make soap, glass, and other items. This article discusses poisoning from ... Potassium carbonate is found in: Glass Some dishwasher soaps Some ... that is used in fertilizers) Some home permanent-wave solutions ...

  14. Low potassium level

    MedlinePlus

    ... laxative, which can cause diarrhea Chronic kidney disease Diuretic medicines (water pills), used to treat heart failure ... potassium through a vein (IV). If you need diuretics, your provider may: Switch you to a form ...

  15. Synthesis, Structure and Properties of BN Nanotubes, BN/SiC and CBN/SiC Micro/Nano-Whiskers

    DTIC Science & Technology

    2003-12-01

    Synthesis, Structure and Properties of BN Nanotubes, BN/SiC and CBN/SiC Micro / Nano -Whiskers 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d...Synthesis, Structure and Properties of BN Nanotubes, BN/SiC and CBN/SiC Micro / Nano -Whiskers CRDF COOPERATIVE GRANTS PROGRAM: FINAL PROJECT...SiC and CBN/SiC micro - nano -whiskers. In the result variety of BN nanostructures have been synthesized by carbothermal technique and characterized

  16. Watching Summer Clouds on Titan

    NASA Image and Video Library

    2016-11-04

    NASA's Cassini spacecraft watched clouds of methane moving across the far northern regions of Saturn's largest moon, Titan, on Oct. 29 and 30, 2016. Several sets of clouds develop, move over the surface and fade during the course of this movie sequence, which spans 11 hours, with one frame taken every 20 minutes. Most prominent are long cloud streaks that lie between 49 and 55 degrees north latitude. While the general region of cloud activity is persistent over the course of the observation, individual streaks appear to develop then fade. These clouds are measured to move at a speed of about 14 to 22 miles per hour (7 to 10 meters per second). There are also some small clouds over the region of small lakes farther north, including a bright cloud between Neagh Lacus and Punga Mare, which fade over the course of the movie. This small grouping of clouds is moving at a speed of about 0.7 to 1.4 miles per hour (1 to 2 meters per second). Time-lapse movies like this allow scientists to observe the dynamics of clouds as they develop, move over the surface and fade. A time-lapse movie can also help to distinguish between noise in images (for example from cosmic rays hitting the detector) and faint clouds or fog. In 2016, Cassini has intermittently observed clouds across the northern mid-latitudes of Titan, as well as within the north polar region -- an area known to contain numerous methane/ethane lakes and seas see PIA19657 and PIA17655. However, most of this year's observations designed for cloud monitoring have been short snapshots taken days, or weeks, apart. This observation provides Cassini's best opportunity in 2016 to study short-term cloud dynamics. Models of Titan's climate have predicted more cloud activity during early northern summer than what Cassini has observed so far, suggesting that the current understanding of the giant moon's changing seasons is incomplete. The mission will continue monitoring Titan's weather around the 2017 summer solstice in Titan

  17. Selective recognition of 4-nitrophenol from aqueous solution by molecularly imprinted polymers with functionalized tetratitanate whisker composites as support.

    PubMed

    Guan, Wei; Pan, Jianming; Wang, Xue; Hu, Wei; Xu, Longcheng; Zou, Xiaohua; Li, Chunxiang

    2011-06-01

    Three kinds of molecularly imprinted polymers (MIPs) were obtained with surface molecular imprinting technique on functionalized potassium tetratitanate whisker (F-PTW). The results of adsorption experiments indicated that MIP prepared using PTW modified with N-(2-aminoethyl)-3-(trimethoxysilyl)propylamine (AAPTS) (F-PTW A) as support [MIP(1)] was superior to the other two polymers, then MIP(1) was selected to analyze the 4-nitrophenol (4-NP) adsorption process from aqueous solution in this study. AAPTS offered hydrophilic exterior that allowed to self-assemble with the template 4-NP through intermolecular interaction rather than based on the interactions between the functional monomers and template. Equilibrium adsorption data were analyzed by the Langmuir and Freundlich isotherm models at various temperatures. Kinetic properties were successfully investigated by pseudo-first-order model, pseudo-second-order model, intraparticle diffusion equation, initial adsorption rate, half-adsorption time. A diffusion-controlled process as the essential adsorption rate-controlling step was also proposed. The performance of such imprinted polymer was further demonstrated by high-performance liquid chromatography, and the results showed that the selectivity of MIP(1) exhibited higher affinity for template 4-NP over competitive phenolic compounds than that of non-imprinted polymer NIP(1). MIP(1) could be reused four times without significant loss in the adsorption capacity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  19. Dunes on Titan from the Cassini Mission

    NASA Astrophysics Data System (ADS)

    Radebaugh, J.

    2014-04-01

    Among the many varied landscapes of Titan revealed by the Cassini spacecraft are tens of thousands of sand dunes. These features encompass the equator in vast sand seas and are some of the geologically youngest landforms, perhaps forming and moving currently, under Titan's active winds. Dunes provide information about wind direction and magnitude and reveal climate conditions now and in the past.

  20. Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Mokhtar; Khairy, M.; Eid, Salah

    2016-02-01

    Titanate-SWCNT; synthesized via exploiting the interaction between TiO2 anatase with oxygen functionalized SWCNT, supported Ag nanoparticles and Ag/titanate are characterized using XRD, TEM-EDX-SAED, N2 adsorption, Photoluminescence, Raman and FTIR spectroscopy. These samples are tested for methanol electrooxidation via using cyclic voltammetry (CV) and impedance measurements. It is shown that Ag/titanate nanotubes exhibited superior electrocatalytic performance for methanol oxidation (4.2 mA cm-2) than titanate-SWCNT, Ag/titanate-SWCNT and titanate. This study reveals the existence of a strong metal-support interaction in Ag/titanate as explored via formation of Ti-O-Ag bond at 896 cm-1 and increasing surface area and pore volume (103 m2 g-1, 0.21 cm3 g-1) compared to Ag/titanate-SWCNT (71 m2 g-1, 0.175 cm3 g-1) that suffers perturbation and defects following incorporation of SWCNT and Ag. Embedding Ag preferably in SWCNT rather than titanate in Ag/titanate-SWCNT disturbs the electron transfer compared to Ag/titanate. Charge transfer resistance depicted from Nyquist impedance plots is found in the order of titanate > Ag/titanate-SWCNT > titanate-SWCNT > Ag/titanate. Accordingly, Ag/titanate indicates a slower current degradation over time compared to rest of catalysts. Conductivity measurements indicate that it follows the order Ag/titanate > Ag/titanate-SWCNT > titanate > titanate-SWCNT declaring that SWCNT affects seriously the conductivity of Ag(titanate) due to perturbations caused in titanate and sinking of electrons committed by Ago through SWCNT.