Bravery, Christopher A; Carmen, Jessica; Fong, Timothy; Oprea, Wanda; Hoogendoorn, Karin H; Woda, Juliana; Burger, Scott R; Rowley, Jon A; Bonyhadi, Mark L; Van't Hof, Wouter
2013-01-01
The evaluation of potency plays a key role in defining the quality of cellular therapy products (CTPs). Potency can be defined as a quantitative measure of relevant biologic function based on the attributes that are linked to relevant biologic properties. To achieve an adequate assessment of CTP potency, appropriate in vitro or in vivo laboratory assays and properly controlled clinical data need to be created. The primary objective of a potency assay is to provide a mechanism by which the manufacturing process and the final product for batch release are scrutinized for quality, consistency and stability. A potency assay also provides the basis for comparability assessment after process changes, such as scale-up, site transfer and new starting materials (e.g., a new donor). Potency assays should be in place for early clinical development, and validated assays are required for pivotal clinical trials. Potency is based on the individual characteristics of each individual CTP, and the adequacy of potency assays will be evaluated on a case-by-case basis by regulatory agencies. We provide an overview of the expectations and challenges in development of potency assays specific for CTPs; several real-life experiences from the cellular therapy industry are presented as illustrations. The key observation and message is that aggressive early investment in a solid potency evaluation strategy can greatly enhance eventual CTP deployment because it can mitigate the risk of costly product failure in late-stage development. Copyright © 2013. Published by Elsevier Inc.
Schofield, T
2002-01-01
Early in its development, the potency of Merck's recombinant hepatitis B vaccine, RECOMBIVAX HB, was monitored using an assay performed in mice. A specification was determined to be the lowest potency which induced acceptable response in clinical trials. As a post-licensing commitment, Merck was asked to replace its mouse potency assay with an in vitro procedure for product release in the US market. Early studies with a commercial enzyme immunoassay (EIA) yielded highly variable results. That assay, combined with a sample pretreatment step, proved more dependable and predictive of potency in the mouse assay. Based on measurements made on manufactured materials, combined with experiments contrived to yield a wide range of reactivity in the two assays, concordance was established between the EIA and the mouse potency assay. This concordance was used to calibrate a specification for the in vitro assay that is predictive of a satisfactory response in vivo. Data from clinical trials established a correspondence between human immunogenicity and these potency markers.
Ogawa, Yasushi; Fawaz, Farah; Reyes, Candice; Lai, Julie; Pungor, Erno
2007-01-01
Parameter settings of a parallel line analysis procedure were defined by applying statistical analysis procedures to the absorbance data from a cell-based potency bioassay for a recombinant adenovirus, Adenovirus 5 Fibroblast Growth Factor-4 (Ad5FGF-4). The parallel line analysis was performed with a commercially available software, PLA 1.2. The software performs Dixon outlier test on replicates of the absorbance data, performs linear regression analysis to define linear region of the absorbance data, and tests parallelism between the linear regions of standard and sample. Width of Fiducial limit, expressed as a percent of the measured potency, was developed as a criterion for rejection of the assay data and to significantly improve the reliability of the assay results. With the linear range-finding criteria of the software set to a minimum of 5 consecutive dilutions and best statistical outcome, and in combination with the Fiducial limit width acceptance criterion of <135%, 13% of the assay results were rejected. With these criteria applied, the assay was found to be linear over the range of 0.25 to 4 relative potency units, defined as the potency of the sample normalized to the potency of Ad5FGF-4 standard containing 6 x 10(6) adenovirus particles/mL. The overall precision of the assay was estimated to be 52%. Without the application of Fiducial limit width criterion, the assay results were not linear over the range, and an overall precision of 76% was calculated from the data. An absolute unit of potency for the assay was defined by using the parallel line analysis procedure as the amount of Ad5FGF-4 that results in an absorbance value that is 121% of the average absorbance readings of the wells containing cells not infected with the adenovirus.
Development of a surrogate angiogenic potency assay for clinical-grade stem cell production.
Lehman, Nicholas; Cutrone, Rochelle; Raber, Amy; Perry, Robert; Van't Hof, Wouter; Deans, Robert; Ting, Anthony E; Woda, Juliana
2012-09-01
Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.
Development and validation of a rapid, aldehyde dehydrogenase bright-based cord blood potency assay.
Shoulars, Kevin; Noldner, Pamela; Troy, Jesse D; Cheatham, Lynn; Parrish, Amanda; Page, Kristin; Gentry, Tracy; Balber, Andrew E; Kurtzberg, Joanne
2016-05-12
Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDH(br)]), along with viable CD45(+) or CD34(+) cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDH(br), CD34(+), and CFU content of 3908 segments over a 5-year period. ALDH(br) (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34(+) (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDH(br) content of the CBU. These results suggest that the ALDH(br) segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation. © 2016 by The American Society of Hematology.
Development and validation of a rapid, aldehyde dehydrogenase bright–based cord blood potency assay
Noldner, Pamela; Troy, Jesse D.; Cheatham, Lynn; Parrish, Amanda; Page, Kristin; Gentry, Tracy; Balber, Andrew E.; Kurtzberg, Joanne
2016-01-01
Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDHbr]), along with viable CD45+ or CD34+ cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDHbr, CD34+, and CFU content of 3908 segments over a 5-year period. ALDHbr (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34+ (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDHbr content of the CBU. These results suggest that the ALDHbr segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation. PMID:26968535
Potency assay design for adjuvanted recombinant proteins as malaria vaccines.
Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce
2006-05-15
Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.
Li, Changgui; Xu, Kangwei; Hashem, Anwar; Shao, Ming; Liu, Shuzhen; Zou, Yong; Gao, Qiang; Zhang, Yongchao; Yuan, Liyong; Xu, Miao; Li, Xuguang; Wang, Junzhi
2015-01-01
The outbreak of human infections of a novel avian influenza virus A (H7N9) prompted the development of the vaccines against this virus. Like all types of influenza vaccines, H7N9 vaccine must be tested for its potency prior to being used in humans. However, the unavailability of international reference reagents for the potency determination of H7N9 vaccines substantially hinders the progress in vaccine development. To facilitate clinical development, we enlisted 5 participants in a collaborative study to develop critical reagents used in Single Radial Immunodiffusion (SRID), the currently acceptable assay for potency determination of influenza vaccine. Specifically, the hemagglutinin (HA) content of one vaccine bulk for influenza A (H7N9), herein designated as Primary Liquid Standard (PLS), was determined by SDS-PAGE. In addition, the freeze-dried antigen references derived from PLS were prepared to enhance the stability for long term storage. The final HA content of lyophilized antigen references were calibrated against PLS by SRID assay in a collaborative study. Importantly, application of these national reference standards to potency analyses greatly facilitated the development of H7N9 vaccines in China. PMID:25970793
Critical elements in the development of cell therapy potency assays for ischemic conditions.
Porat, Yael; Abraham, Eytan; Karnieli, Ohad; Nahum, Sagi; Woda, Juliana; Zylberberg, Claudia
2015-07-01
A successful potency assay for a cell therapy product (CTP) used in the treatment of ischemic conditions should quantitatively measure relevant biological properties that predict therapeutic activity. This is especially challenging because of numerous degrees of complexity stemming from factors that include a multifactorial complex mechanism of action, cell source, inherent cell characteristics, culture method, administration mode and the in vivo conditions to which the cells are exposed. The expected biological function of a CTP encompasses complex interactions that range from a biochemical, metabolic or immunological activity to structural replacement of damaged tissue or organ. Therefore, the requirements for full characterization of the active substance with respect to biological function could be taxing. Moreover, the specific mechanism of action is often difficult to pinpoint to a specific molecular entity; rather, it is more dependent on the functionality of the cellular components acting in a in a multifactorial fashion. In the case of ischemic conditions, the cell therapy mechanism of action can vary from angiogenesis, vasculogenesis and arteriogenesis that may activate different pathways and clinical outcomes. The CTP cellular attributes with relation to the suggested mechanism of action can be used for the development of quantitative and reproducible analytical potency assays. CTPs selected and released on the basis of such potency assays should have the highest probability of providing meaningful clinical benefit for patients. This White Paper will discuss and give examples for key elements in the development of a potency assay for treatment of ischemic disorders treated by the use of CTPs. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Potency control of modified live viral vaccines for veterinary use.
Terpstra, C; Kroese, A H
1996-04-01
This paper reviews various aspects of efficacy, and methods for assaying the potency of modified live viral vaccines. The pros and cons of parametric versus non-parametric methods for analysis of potency assays are discussed and critical levels of protection, as determined by the target(s) of vaccination, are exemplified. Recommendations are presented for designing potency assays on master virus seeds and vaccine batches.
Potency control of modified live viral vaccines for veterinary use.
Terpstra, C; Kroese, A H
1996-01-01
This paper reviews various aspects of efficacy, and methods for assaying the potency of modified live viral vaccines. The pros and cons of parametric versus non-parametric methods for analysis of potency assays are discussed and critical levels of protection, as determined by the target(s) of vaccination, are exemplified. Recommendations are presented for designing potency assays on master virus seeds and vaccine batches.
Nakajima, Nao; Kawanishi, Michiko; Imamura, Saiki; Hirano, Fumiya; Uchiyama, Mariko; Yamamoto, Kinya; Nagai, Hidetaka; Futami, Kunihiko; Katagiri, Takayuki; Maita, Masashi; Kijima, Mayumi
2014-05-01
Lactococcicosis is an infection caused by the bacterium Lactococcus garvieae and creates serious economic damage to cultured marine and fresh water fish industries. The use of the assay currently applied to evaluate the potency of the lactococcicosis vaccine is contingent upon meeting specific parameters after statistical analysis of the percent survival of the vaccinated yellowtail or greater amberjack fish after challenge with a virulent strain of L. garvieae. We found that measuring the serological response with a quantitative agglutinating antibody against the L. garvieae antigen (phenotype KG+) was an effective method of monitoring the potency of lactococcicosis vaccines. Vaccinated fish had significantly higher antibody titers than control fish when the L. garvieae Lg2-S strain was used as an antigen. Furthermore, the titer of the KG + agglutinating antibody was correlated with vaccine potency, and the cut-off titer was determined by comparing the data with those from the challenge test. An advantage of the proposed serology-based potency assay is that it will contribute to reduced numbers of animal deaths during vaccine potency evaluations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Progress in applying the Three Rs to the potency testing of Botulinum toxin type A.
Straughan, Donald
2006-06-01
Botulinum toxin type A (BTA) is being increasingly used for a range of therapeutic purposes and also for cosmetic reasons. For many years, the potency of BTA has been measured by using an LD50 assay in mice. This assay is a cause for concern due to its unpleasant nature and extreme severity, and the requirement for high numbers of mice to be used. Alternatives to this potency assay are presently reviewed with particular reference to the work at the National Institute for Biological Standards and Control (NIBSC), and to recent work by the UK manufacturer of the substance. An in vivo local paralysis assay with considerably less severity has been developed and is in use at the NIBSC. Alternative, ex vivo functional assays in use include the measurement of BTA-induced paralysis of neurally-stimulated rodent diaphragm or rat intercostal muscle. The latter method has the advantage of allowing more preparations to be derived from one animal. However, these ex vivo methods have not yet been fully validated and accepted by regulatory agencies as potency assays. Endopeptidase assays, although not measuring muscle paralysis directly, may provide a very useful consistency test for batch release and may replace the routine use of the LD50 test for that purpose. These assays measure the cleavage of the SNAP-25 protein (the final stage of BTA action), and have been validated for batch release by the National Control Laboratory (NIBSC), and are in regular use there. ELISA assays, used alongside the endopeptidase assay, also provide useful confirmatory information on the amounts of functional (and non-functional) BTA present. The UK manufacturer is further validating its endopeptidase assay, an ex vivo muscle assay and an ELISA. It is anticipated that their work will lead to a change in the product license, hopefully within the next two years, and will form a critical milestone towards the end of the LD50 potency test.
Jeske, Walter P; Hoppensteadt, Debra; Gray, Angel; Walenga, Jeanine M; Cunanan, Josephine; Myers, Lauren; Fareed, Jawed; Bayol, Alain; Rigal, Hélène; Viskov, Christian
2011-10-01
Lower low-molecular-weight heparins are being developed to improve on the safety and efficacy of antithrombotic therapy. Semuloparin and bemiparin are two depolymerized heparins produced by distinct manufacturing processes. The objective of this investigation was to determine whether a common standard could be used to define their potency. Activities were compared using typical clinical coagulation assays and pharmacological assays required for potency assessment. The activity of semuloparin and bemiparin was comparable in FXa-based assays (anti-FXa, Heptest). However, bemiparin produced a stronger effect in the aPTT, ACT and anti-thrombin assays. Assessment of the parallelism of the concentration-response curves indicated that bemiparin and semuloparin are not equivalent in terms of anti-FIIa activity. Bemiparin had a stronger inhibitory effect on thrombin induced platelet aggregation, and a stronger interaction with HIT antibodies. These data demonstrate that depolymerized heparins can exhibit a range of biologic activities making them unique agents. Pharmacopoeial parameters such as anti-IIa and anti-Xa potency and molecular weight are insufficient to characterize such agents. Copyright © 2011 Elsevier Ltd. All rights reserved.
Prediction of skin sensitization potency using machine learning approaches.
Zang, Qingda; Paris, Michael; Lehmann, David M; Bell, Shannon; Kleinstreuer, Nicole; Allen, David; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Strickland, Judy
2017-07-01
The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Skrlin, Ana; Kosor Krnic, Ela; Gosak, Darko; Prester, Berislav; Mrsa, Vladimir; Vuletic, Marko; Runac, Domagoj
2010-11-02
In vivo and in vitro potency assays have always been a critical tool for confirmation of protein activity. However, due to their complexity and time consuming procedures, it remains a challenge to find an alternative analytical approach that would enable their replacement with no impact on the quality of provided information. The goal of this research was to determine if a correlation between liquid chromatography assays and in vitro biological assay could be established for filgrastim (recombinant human granulocyte-colony stimulating factor, rhG-CSF) samples containing various amounts of related impurities. For that purpose, relevant filgrastim related impurities were purified to homogeneity and characterized by liquid chromatography and mass spectrometry. A significant correlation (R(2)>0.90) between the two types of assays was revealed. Potency of oxidized filgrastim was determined to be approximately 25% of filgrastim stated potency (1 x 10(8)IU/mg of protein). Formyl-methionine filgrastim had potency of 89% of the filgrastim stated potency, while filgrastim dimer had 67% of filgrastim stated potency. A mathematical model for the estimation of biological activity of filgrastim samples from chromatography data was established and a significant correlation between experimental potency values and potency values estimated by the mathematical model was obtained (R(2)=0.92). Based on these results a conclusion was made that reversed phase high performance liquid chromatography could be used as an alternative for the in vitro biological assay for potency assessment of filgrastim samples. Such an alternative model would enable substitution of a complex and time consuming biological assay with a robust and precise instrumental method in many practical cases. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Testing of veterinary clostridial vaccines: from mouse to microtitre plate.
Redhead, K; Wood, K; Jackson, K
2012-01-01
Vaccines to protect against clostridial diseases are among the most common veterinary biologicals. Each batch of these materials is subjected to a variety of toxicity and antigenicity tests. The potency of the final vaccine is then assessed by Toxin Neutralisation Test (TNT). All of these tests use mice and have lethal endpoints. Development of alternatives for potency testing was based on ELISAs able to measure antibody levels to the specific toxins relative to a standard serum with a defined unitage. These alternative assays were shown to correlate with the relevant TNTs and have been accepted by European Regulatory Authorities as batch release potency tests. Recently we have developed in vitro cell line alternatives for the toxicity and antigenicity tests for Cl. septicum using the VERO cell line. With this cell line it has been possible to develop in vitro assays which, when compared with the in vivo tests, gave correlations of 87% to 100%. Having shown proof of principle, similar cell line assays have been developed for Cl. novyi and Cl. perfringens types C and D.
Gross, S; Janssen, S W J; de Vries, B; Terao, E; Daas, A; Buchheit, K-H
2009-10-01
The European Pharmacopoeia (Ph. Eur.) monograph Human tetanus immunoglobulin (0398) gives a clear outline of the in vivo assay to be performed to determine the potency of human tetanus immunoglobulins during their development. Furthermore, it states that an in vitro method shall be validated for the batch potency estimation. Since no further guidance is given on the in vitro assay, every control laboratory concerned is free to design and validate an in-house method. At the moment there is no agreed in vitro method available. The aim of this study was to validate and compare 2 alternative in vitro assays, i.e. an enzyme-linked immunoassay (EIA) and a toxoid inhibition assay (TIA), through an international collaborative study, in view of their eventual inclusion into the Ph. Eur.. The study was run in the framework of the Biological Standardisation Programme (BSP), under the aegis of the European Commission and the Council of Europe. The collaborative study reported here involved 21 laboratories (public and industry) from 15 countries. Initially, 3 samples with low, medium and high potencies were tested by EIA and TIA. Results showed good reproducibility and repeatability of the 2 in vitro methods. The correlation of the data with the in vivo potency assigned by the manufacturers however appeared initially poor for high potency samples. Thorough re-examination of the data showed that the in vivo potencies assigned by the manufacturers had to be corrected: one for potency loss at the time of in vitro testing and one because of a reporting error. After these corrections the values obtained by in vivo and in vitro methods were in close agreement. A supplementary collaborative work was carried out to validate the 2 methods for immunoglobulin products with high potencies. Eight laboratories (public and industry) took part in this additional study to test 3 samples with medium and high potencies by EIA and TIA. Results confirmed that the 2 alternative methods are comparable in terms of assay repeatability, precision and reproducibility. In all laboratories, both methods discriminated between the low, medium and high potency samples. Analysis of the data collected in this study showed a good correlation between EIA and TIA potency estimates as well as a close agreement between values obtained by in vitro and in vivo methods. The study demonstrated that EIA and TIA are suitable quality control methods for polyclonal human tetanus immunoglobulin, which can be standardised in a quality control laboratory using a quality assurance system. Consequently, the Ph. Eur. Group of Experts 6B on Human Blood and Blood products decided in April 2009 to include both methods as examples in the Ph. Eur. monograph 0398 on Human Tetanus immunoglobulin.
Förster resonance energy transfer competitive displacement assay for human soluble epoxide hydrolase
Lee, Kin Sing Stephen; Morisseau, Christophe; Yang, Jun; Wang, Peng; Hwang, Sung Hee; Hammock, Bruce D.
2013-01-01
The soluble epoxide hydrolase (sEH), responsible for the hydrolysis of various fatty acid epoxides to their corresponding 1,2-diols, is becoming an attractive pharmaceutical target. These fatty acid epoxides, particularly epoxyeicosatrienoic acids (EETs), play an important role in human homeostatic and inflammation processes. Therefore, inhibition of human sEH, which stabilizes EETs in vivo, brings several beneficial effects to human health. Although there are several catalytic assays available to determine the potency of sEH inhibitors, measuring the in vitro inhibition constant (Ki) for these inhibitors using catalytic assay is laborious. In addition, koff, which has been recently suggested to correlate better with the in vivo potency of inhibitors, has never been measured for sEH inhibitors. To better measure the potency of sEH inhibitors, a reporting ligand, 1-(adamantan-1-yl)-3-(1-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetyl) piperidin-4-yl)urea (ACPU), was designed and synthesized. With ACPU, we have developed a Förster resonance energy transfer (FRET)-based competitive displacement assay using intrinsic tryptophan fluorescence from sEH. In addition, the resulting assay allows us to measure the Ki values of very potent compounds to the picomolar level and to obtain relative koff values of the inhibitors. This assay provides additional data to evaluate the potency of sEH inhibitors. PMID:23219719
Dodt, J; Hubbard, A R; Wicks, S J; Gray, E; Neugebauer, B; Charton, E; Silvester, G
2015-07-01
A workshop organized by the European Medicines Agency and the European Directorate for the Quality of Medicines and HealthCare was held in London, UK on November 28-29, 2013, to provide an overview of the current knowledge of the characterization of new factor VIII (FVIII) and factor IX (FIX) concentrates with respect to potency assays and testing of postinfusion material. The objective was to set the basis for regulatory authorities' discussion on the most appropriate potency assay for the individual products, and European Pharmacopoeia (Ph. Eur.) discussion on whether to propose revision of the Ph. Eur. monographs with respect to potency assays in the light of information on new FVIII and FIX concentrates. The workshop showed that for all products valid assays vs. the international concentrate standards were obtained and potency could be expressed in International Units. The Ph. Eur. chromogenic potency assay gave valid assay results which correlate with in vivo functionality of rFVIII products. For some modified rFVIII products and all modified rFIX products, one-stage clotting assay methods result in different potencies depending on the activated partial thromboplastin time reagent. As a consequence, monitoring of patients' postinfusion levels is challenging but it was pointed out that manufacturers are responsible for providing the users with appropriate information for use and laboratory testing of their product. Strategies to avoid misleading determination of patents' plasma levels, e.g. information on suitable assays, laboratory standards or correction factors were discussed. © 2015 John Wiley & Sons Ltd.
Huber, Alexander; France, Richard M; Riccalton-Banks, Lisa; McLaren, Jane; Cox, Helen; Quirk, Robin A; Shakesheff, Kevin M; Thompson, David; Panjwani, Naveed; Shipley, Sarah; Pickett, Andy
2008-05-01
Therapeutic botulinum neurotoxin type A preparations have found an increasing number of clinical uses for a large variety of neuromuscular disorders and dermatological conditions. The accurate determination of potency in the clinical application of botulinum toxins is critical to ensuring clinical efficacy and safety, and is currently achieved by using a lethal dose (LD50) assay in mice. Ethical concerns and operational constraints associated with this assay have prompted the development of alternative assay systems that could potentially lead to its replacement. As one such alternative, we describe the development and evaluation of a novel ex vivo assay (the Intercostal Neuromuscular Junction [NMJ] Assay), which uses substantially fewer animals and addresses ethical concerns associated with the LD50 assay. The assay records the decay of force from electrically-stimulated muscle tissue sections in response to the toxin, and thus combines the important mechanisms of receptor binding, translocation, and the enzymatic action of the toxin molecule. Toxin application leads to a time-related and dose-related reduction in contractile force. A regression model describing the relationship between the applied dose and force decay was determined statistically, and was successfully tested as able to correctly predict the potency of an unknown sample. The tissue sections used were found to be highly reproducible, as determined through the innervation pattern and the localisation of NMJs in situ. Furthermore, the efficacy of the assay protocol to successfully deliver the test sample to the cellular target sites, was critically assessed by using molecular tracer molecules.
Dressler, Dirk; Mander, Gerd; Fink, Klaus
2012-01-01
The biological potency of botulinum toxin (BT) drugs is determined by a standardised LD50 assay. However, the potency labelling varies vary amongst different BT drugs. One reason for this may be differences in the LD50 assays applied. When five unexpired batches of onabotulinumtoxinA (Botox(®)) and incobotulinumtoxinA (Xeomin(®)) are compared in the Xeomin(®) batch release assay, the potency variability of both BT drugs fell within the range allowed by the European Pharmacopoiea. Statistical analyses failed to detect differences in the potency labelling of both products. Although the existence of a conversion ratio has been questioned recently, our experimental data are in line with previous clinical experience showing that Botox(®) and Xeomin(®) can be compared using a 1:1 conversion ratio. Identical potency labelling allows easy exchange of both BT drugs in a therapeutic setting, and direct comparison of efficacy, adverse effects and costs.
Biological and chemical analysis of the toxic potency of pesticides in rainwater.
Hamers, T; Smit, M G; Murk, A J; Koeman, J H
2001-11-01
A newly developed method for measuring the integrated esterase inhibiting potency of rainwater samples was applied in practice, and the results are compared to the toxic potency calculated from concentrations of 31 organophosphate (OP) and carbamate pesticides, out of a total of 66 chemically analyzed pesticides. In addition, the general toxic potency of the rainwater samples was evaluated in a microtiter luminescence assay with Vibrio fischeri bacteria. Rainwater samples were collected over four consecutive 14-day periods in both open and wet-only samplers. The esterase inhibiting potency of the open rainwater samples (expressed as ng dichlorvos-equivalents/l) corresponded well with the chemical analyses of the rainwater samples collected by both types of samplers (r = 0.83-0.86). By far, the highest esterase inhibiting potency was found in a sample collected in an area with intense horticultural activities in June, and was attributed to high concentrations of dichlorvos, mevinphos, pirimiphos-methyl and methiocarb. The esterase inhibiting potency of this sample was equivalent to a dichlorvos concentration of 1380 ng/l in the rainwater, which is almost 2000 times higher than the maximum permissible concentration (MPC) of dichlorvos set for surface water in Netherlands. Maximum individual concentrations of dichlorvos and pirimiphos-methyl even exceeded the EC50 for Daphnia, suggesting that pesticides in rainwater pose a risk for aquatic organisms. Not all responses of the luminescence-assay for general toxicity could be explained by the analyzed pesticide concentrations. The bio-assays enable a direct assessment the toxic potency of all individual compounds present in the complex mixture of rainwater pollutants, even if they are unknown or present at concentrations below the detection limit. Therefore, they are valuable tools for prescreening and hazard characterization purposes.
Schmeisser, Falko; Jing, Xianghong; Joshi, Manju; Vasudevan, Anupama; Soto, Jackeline; Li, Xing; Choudhary, Anil; Baichoo, Noel; Resnick, Josephine; Ye, Zhiping; McCormick, William; Weir, Jerry P
2016-03-01
The potency of inactivated influenza vaccines is determined using a single-radial immunodiffusion (SRID) assay and requires standardized reagents consisting of a Reference Antigen and an influenza strain-specific antiserum. Timely availability of reagents is a critical step in influenza vaccine production, and the need for backup approaches for reagent preparation is an important component of pandemic preparedness. When novel H7N9 viruses emerged in China in 2013, candidate inactivated H7N9 influenza vaccines were developed for evaluation in clinical trials, and reagents were needed to measure vaccine potency. We previously described an alternative approach for generating strain-specific potency antisera, utilizing modified vaccinia virus Ankara vectors to produce influenza hemagglutinin (HA)-containing virus-like particles (VLPs) for immunization. Vector-produced HA antigen is not dependent upon the success of the traditional bromelain-digestion and HA purification. Antiserum for H7N9 vaccines, produced after immunization of sheep with preparations of bromelain-HA (br-HA), was not optimal for the SRID assay, and the supply of antiserum was limited. However, antiserum obtained from sheep boosted with VLPs containing H7 HA greatly improved the ring quality in the SRID assay. Importantly, this antiserum worked well with both egg- and cell-derived antigen and was distributed to vaccine manufacturers. Utilizing a previously developed approach for preparing vaccine potency antiserum, we have addressed a major bottleneck encountered in preparation of H7N9 vaccine reagents. The combination of br-HA and mammalian VLPs for sequential immunization represents the first use of an alternative approach for producing an influenza vaccine potency antiserum. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
Galipeau, Jacques; Krampera, Mauro; Barrett, John; Dazzi, Francesco; Deans, Robert J; DeBruijn, Joost; Dominici, Massimo; Fibbe, Willem E; Gee, Adrian P; Gimble, Jeffery M; Hematti, Peiman; Koh, Mickey B C; LeBlanc, Katarina; Martin, Ivan; McNiece, Ian K; Mendicino, Michael; Oh, Steve; Ortiz, Luis; Phinney, Donald G; Planat, Valerie; Shi, Yufang; Stroncek, David F; Viswanathan, Sowmya; Weiss, Daniel J; Sensebe, Luc
2016-02-01
Mesenchymal stromal cells (MSCs) as a pharmaceutical for ailments characterized by pathogenic autoimmune, alloimmune and inflammatory processes now cover the spectrum of early- to late-phase clinical trials in both industry and academic sponsored studies. There is a broad consensus that despite different tissue sourcing and varied culture expansion protocols, human MSC-like cell products likely share fundamental mechanisms of action mediating their anti-inflammatory and tissue repair functionalities. Identification of functional markers of potency and reduction to practice of standardized, easily deployable methods of measurements of such would benefit the field. This would satisfy both mechanistic research as well as development of release potency assays to meet Regulatory Authority requirements for conduct of advanced clinical studies and their eventual registration. In response to this unmet need, the International Society for Cellular Therapy (ISCT) addressed the issue at an international workshop in May 2015 as part of the 21st ISCT annual meeting in Las Vegas. The scope of the workshop was focused on discussing potency assays germane to immunomodulation by MSC-like products in clinical indications targeting immune disorders. We here provide consensus perspective arising from this forum. We propose that focused analysis of selected MSC markers robustly deployed by in vitro licensing and metricized with a matrix of assays should be responsive to requirements from Regulatory Authorities. Workshop participants identified three preferred analytic methods that could inform a matrix assay approach: quantitative RNA analysis of selected gene products; flow cytometry analysis of functionally relevant surface markers and protein-based assay of secretome. We also advocate that potency assays acceptable to the Regulatory Authorities be rendered publicly accessible in an "open-access" manner, such as through publication or database collection. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Albert, R E
1983-01-01
Mammalian cell mutagenesis, transformation and skin tumorigenesis assays show similar results in comparing the potencies of diesel, coke oven, roofing tar and cigarette smoke particulates. These assay results are reasonably consistent with the comparative carcinogenic potencies of coke oven and roofing tar emissions as determined by epidemiological studies. The bacterial mutagenesis assay tends to show disproportionately high potencies, particularly with diesel particulates. Results to date encourage the approach to the assessment for carcinogenic risks from diesel emissions based on the use of epidemiological data on cancer induced by coke oven emissions, roofing tar particulates and cigarette smoke with the comparative potencies of these materials determined by in vivo and in vitro bioassays. PMID:6186481
In vitro vaccine potency testing: a proposal for reducing animal use for requalification testing.
Brown, K; Stokes, W
2012-01-01
This paper proposes a program under which the use of animals for requalification of in vitro potency tests could be eliminated. Standard References (USDA/CVB nomenclature) would be developed, characterized, stored and monitored by selected reference laboratories worldwide. These laboratories would employ scientists skilled in protein and glycoprotein chemistry and equipped with state-of-the-art instruments for required analyses. After Standard References are established, the reference laboratories would provide them to the animal health industry as "gold standards". Companies would then establish and validate a correlation between the Standard Reference and the company Master Reference (USDA/CVB nomenclature) using an internal in vitro assay. After this correlation is established, the company could use the Standard References for qualifying, monitoring and requalifying company Master References without the use of animals. Such a program would eliminate the need for animals for requalification of Master References and the need for each company to develop and validate a battery of Master Reference Monitoring assays. It would also provide advantages in terms of reduced costs and reduced time for requalification testing. As such it would provide a strong incentive for companies to develop and use in vitro assays for potency testing.
Islet Assessment for Transplantation
Papas, Klearchos K.; Suszynski, Thomas M.; Colton, Clark. K.
2010-01-01
Purpose of review There is a critical need for meaningful viability and potency assays that characterize islet preparations for release prior to clinical islet cell transplantation (ICT). Development, testing, and validation of such assays have been the subject of intense investigation for the past decade. These efforts are reviewed, highlighting the most recent results while focusing on the most promising assays. Recent Findings Assays based on membrane integrity do not reflect true viability when applied to either intact islets or dispersed islet cells. Assays requiring disaggregation of intact islets into individual cells for assessment introduce additional problems of cell damage and loss. Assays evaluating mitochondrial function, specifically mitochondrial membrane potential, bioenergetic status, and cellular oxygen consumption rate (OCR), especially when conducted with intact islets, appear most promising in evaluating their quality prior to ICT. Prospective, quantitative assays based on measurements of OCR with intact islets have been developed, validated and their results correlated with transplant outcomes in the diabetic nude mouse bioassay. Conclusion More sensitive and reliable islet viability and potency tests have been recently developed and tested. Those evaluating mitochondrial function are most promising, correlate with transplant outcomes in mice, and are currently being evaluated in the clinical setting. PMID:19812494
Singh, Rajinder; Sran, Arvinder; Carroll, David C; Huang, Jianing; Tsvetkov, Lyuben; Zhou, Xiulan; Sheung, Julie; McLaughlin, John; Issakani, Sarkiz D; Payan, Donald G; Shaw, Simon J
2015-11-15
Structure-activity relationships have been developed around 5-bromo-8-toluylsulfonamidoquinoline 1 a hit compound in an assay for the interaction of the E3 ligase Skp2 with Cks1, part of the SCF ligase complex. Disruption of this protein-protein interaction results in higher levels of CDK inhibitor p27, which can act as a tumor suppressor. The results of the SAR developed highlight the relationship between the sulfonamide and quinoline nitrogen, while also suggesting that an aryl substituent at the 5-position of the quinoline ring contributes to the potency in the interaction assay. Compounds showing potency in the interaction assay result in greater levels of p27 and have been shown to inhibit cell growth of two p27 sensitive tumor cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Wentland, Mark P.; Raza, Shaan; Yingtong Gao
2004-01-01
An appropriate assay to determine the inhibition potency of carboxypeptidase A (CPA) in 96-well format to illustrate how high throughput screening is used in modern drug discovery to identify bioactive molecules is developed. Efforts in developing a colorimetric 96-well plate assay for determination of the K(sub i) for inhibition of CPA by…
Ferguson, Morag; Heath, Alan
2004-12-01
Yellow fever vaccines are routinely assayed by plaque assay. However, the results of these assays are then converted into mouse LD(50) using correlations/conversion factors which, in many cases, were established many years ago. The minimum required potency in WHO Recommendations is 10(3) LD(50)/dose. Thirteen participants from 8 countries participated in a collaborative study whose aim was to assess the suitability of two candidate preparations to serve as an International Standard for yellow fever vaccine. In addition, the study investigated the relationship between the mouse LD(50) test and plaque forming units with a view to updating the WHO recommendations. Plaque assays were more reproducible than mouse assays, as expected. Differences in sensitivities of plaque assays were observed between laboratories but these differences appear to be consistent within a laboratory for all samples and the expression of potency relative to the candidate standard vaccine improved the reproducibility of assays between laboratories. However, the use of potencies had little effect on the between laboratory variability in mouse LD(50) assays. There appears to be a consistent relationship between overall mean LD(50) and plaques titre for all study preparations other than sample E. The slope of the correlation curve is >1 and it would appear that 10(3) LD(50) is approximately equivalent to 10(4) plaque forming units (PFU), based on the overall means of all laboratory results. The First International Standard for yellow fever vaccine, NIBSC Code 99/616, has been established as the First International Standard for yellow fever vaccine by the Expert Committee of Biological Standards of the World Health Organisation. The International Standard has been arbitrarily assigned a potency of 10(4.5) International Units (IU) per ampoule. Manufacturers and National Control Laboratories are including the First International Standard for yellow fever vaccine in routine assays so that the minimum potency in IU of vaccines released for use and which meet the current minimum potency of 10(3) LD(50) in mouse assays, can be determined. These data will be analysed before a review of the WHO requirements, including the minimum potency per dose, is undertaken.
Plattner, Sabine; Erb, Robert; Chervet, Jean-Pierre; Oberacher, Herbert
2014-01-01
In this proof-of-principle study, the applicability of electrospray ionization-mass spectrometry (ESI-MS) to characterize the reducing potencies of natural antioxidants is demonstrated. The ESI source represents a controlled-current electrochemical cell. The interfacial potential at the emitter electrode will be at or near the electrochemical potential of those reactions that sufficiently supply all the required current for the ESI circuit. Indicator molecules prone to oxidation in ESI such as amodiaquine were used to visualize the impact of reducing compounds on the interfacial potential. The extent of inhibition of the oxidation of the indicator molecule was found to be dependent on the kind and amount of antioxidant added. Concentration-inhibition curves were constructed and used to compare reducing potencies and to rank antioxidants. This ranking was found to be dependent on the electrode material-indicator molecule combination applied. For fast and automated characterization of the reducing potencies of electrochemically active molecules, a flow-injection system was combined with ESI-MS. Liquid chromatography was used to process complex biological samples, such as red and white wine. Due to their high content of different polyphenols, red wine fractions were found to exhibit higher reducing potencies than the corresponding white wine fractions. Furthermore, for 14 important natural antioxidants, the results obtained with the controlled-current EC-ESI-MS assay were compared to those obtained with chemical antioxidant assays. Irrespectively of the kind of assay used to test the reducing potency, gallic acid, quercetin, and epicatechin were found to be potent reductants. Other antioxidants performed well in one particular assay only. This observation suggests that different kinds of redox and antioxidant chemistry were assessed with each of the assays applied. Therefore, several assays should be used to comprehensively study antioxidants and their reducing potencies.
Development of a thyroperoxidase inhibition assay for high ...
High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluorescent peroxidase substrate, Amplex UltraRed (AUR, LifeTechnologies), were employed in an endpoint assay for comparison to the existing kinetic guaiacol (GUA) oxidation assay. Following optimization of assay metrics including Z’, dynamic range, and activity using methimazole (MMI), the assay was tested with a 21-chemical training set. The potency of MMI-induced TPO inhibition was greater with AUR compared to GUA. The dynamic range and Z’ score with MMI were as follows: 127-fold and 0.62 for the GUA assay, 18-fold and 0.86 for the 96-well AUR assay, and 11.5-fold and 0.93 for the 384-well AUR assay. The 384-well AUR assay drastically reduced animal use, requiring one-tenth of the rat thyroid microsomal protein needed for the GUA 96-well format assay. Fourteen chemicals inhibited TPO, with a relative potency ranking of MMI > ethylene thiourea > 6-propylthiouracil > 2,2’,4,4’-tetrahydroxy-benzophenone > 2-mercaptobenzothiazole > 3-amino-1,2,4-triazole > genistein > 4-propoxyphenol > sulfamethazine > daidzein > 4-nonylphenol > triclosan > iopanoic acid > resorcinol. These data demonstrate the capacity of this assay to detect diverse TPO inhibitors. Seven chemicals acted as negati
Methods for the Quality Control of Inactivated Poliovirus Vaccines.
Wilton, Thomas
2016-01-01
Inactivated poliovirus vaccine (IPV) plays an instrumental role in the Global Poliovirus Eradication Initiative (GPEI). The quality of IPV is controlled by assessment of the potency of vaccine batches. The potency of IPV can be assessed by both in vivo and in vitro methods. In vitro potency assessment is based upon the assessment of the quantity of the D-Antigen (D-Ag) units in an IPV. The D-Ag unit is used as a measure of potency as it is largely expressed on native infectious virions and is the protective immunogen. The most commonly used in vitro test is the indirect ELISA which is used to ensure consistency throughout production.A range of in vivo assays have been developed in monkeys, chicks, guinea pigs, mice, and rats to assess the potency of IPV. All are based on assessment of the neutralizing antibody titer within the sera of the respective animal model. The rat potency test has become the favored in vivo potency test as it shows minimal variation between laboratories and the antibody patterns of rats and humans are similar. With the development of transgenic mice expressing the human poliovirus receptor, immunization-challenge tests have been developed to assess the potency of IPVs. This chapter describes in detail the methodology of these three laboratory tests to assess the quality of IPVs.
Saxena, K; Lalezari, S; Oldenburg, J; Tseneklidou-Stoeter, D; Beckmann, H; Yoon, M; Maas Enriquez, M
2016-09-01
BAY 81-8973 (Kovaltry(®) ) is a full-length, unmodified recombinant human factor VIII (FVIII) with the same amino acid sequence as sucrose-formulated recombinant FVIII and is produced using additional advanced manufacturing technologies. To demonstrate efficacy and safety of BAY 81-8973 for treatment of bleeds and as prophylaxis based on two different potency assignments. In LEOPOLD I (ClinicalTrials.gov identifier, NCT01029340), males aged 12-65 years with severe haemophilia A and ≥150 exposure days received BAY 81-8973 20-50 IU kg(-1) two or three times per week for 12 months. Potency was based on chromogenic substrate assay per European Pharmacopoeia and label adjusted to mimic one-stage assay potency. Patients were randomized for potency sequence and crossed over potency groups after 6 months, followed by an optional 12-month extension. Primary efficacy endpoint was annualized bleeding rate (ABR). Patients also received BAY 81-8973 during major surgeries. Sixty-two patients received BAY 81-8973 prophylaxis and were included in the analysis. Median ABR was 1.0 (quartile 1, 0; quartile 3, 5.1) without clinically relevant differences between potency periods. Median ABR was similar for twice-weekly vs. three times-weekly dosing (1.0 vs. 2.0). Haemostasis was maintained during 12 major surgeries. Treatment-related adverse event (AE) incidence was ≤7% overall; no patient developed inhibitors. One patient with risk factors for cardiovascular disease developed a myocardial infarction. BAY 81-8973 was efficacious in preventing and treating bleeding episodes, irrespective of the potency assignment method, with few treatment-related AEs. Caution should be used when treating older patients with cardiovascular risk factors. © 2016 Bayer. Haemophilia Published by John Wiley & Sons Ltd.
Recombinant to modified factor VIII and factor IX - chromogenic and one-stage assays issues.
Kitchen, S; Kershaw, G; Tiefenbacher, S
2016-07-01
The recent development of modified recombinant factor VIII (FVIII) and factor IX (FIX) therapeutic products with extended half-lives will create challenges for the haemostasis laboratory in obtaining recovery estimates of these products in clinical samples using existing assays. The new long-acting therapeutic concentrates contain molecular modifications of Fc fusion, site-specific of polyethylene glycol or albumin fusion. The optimum methods for monitoring each new product will need to be assessed individually and laboratories should select an assay which gives similar results to the assay used to assign potency to the product in question. For some extended half-life FVIII and FIX products some one stage assays are entirely unsuitable for monitoring purposes. For most products and assay reagents studied so far, and reviewed in this manuscript, chromogenic FVIII or FIX assays can be safely used with conventional plasma standards. If one stage assays are used then they should be performed using carefully selected reagents/methods which have been shown to recover activity close to the labelled potency for the specific product being monitored. © 2016 John Wiley & Sons Ltd.
In vitro estrogen receptor assays are valuable screening tools for identifying environmental samples and chemicals that display estrogenic activity. However, in vitro potency cannot necessarily be extrapolated to estimates of in vivo potency because in vitro assays are currently...
An epidermal equivalent assay for identification and ranking potency of contact sensitizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Susan, E-mail: S.Gibbs@VUMC.nl; Corsini, Emanuela; Spiekstra, Sander W.
2013-10-15
The purpose of this study was to explore the possibility of combining the epidermal equivalent (EE) potency assay with the assay which assesses release of interleukin-18 (IL-18) to provide a single test for identification and classification of skin sensitizing chemicals, including chemicals of low water solubility or stability. A protocol was developed using different 3D-epidermal models including in house VUMC model, epiCS® (previously EST1000™), MatTek EpiDerm™ and SkinEthic™ RHE and also the impact of different vehicles (acetone:olive oil 4:1, 1% DMSO, ethanol, water) was investigated. Following topical exposure for 24 h to 17 contact allergens and 13 non-sensitizers a robustmore » increase in IL-18 release was observed only after exposure to contact allergens. A putative prediction model is proposed from data obtained from two laboratories yielding 95% accuracy. Correlating the in vitro EE sensitizer potency data, which assesses the chemical concentration which results in 50% cytotoxicity (EE-EC{sub 50}) with human and animal data showed a superior correlation with human DSA{sub 05} (μg/cm{sup 2}) data (Spearman r = 0.8500; P value (two-tailed) = 0.0061) compared to LLNA data (Spearman r = 0.5968; P value (two-tailed) = 0.0542). DSA{sub 05} = induction dose per skin area that produces a positive response in 5% of the tested population Also a good correlation was observed for release of IL-18 (SI-2) into culture supernatants with human DSA{sub 05} data (Spearman r = 0.8333; P value (two-tailed) = 0.0154). This easily transferable human in vitro assay appears to be very promising, but additional testing of a larger chemical set with the different EE models is required to fully evaluate the utility of this assay and to establish a definitive prediction model. - Highlights: • A potential epidermal equivalent assay to label and classify sensitizers • Il-18 release distinguishes sensitizers from non sensitizers • IL-18 release can rank sensitizer potency • EC50 (chemical concentration causing 50% decrease in cell viability) ranks potency • In vitro: human DSA{sub 05} correlation is better than in vitro: LLNA correlation.« less
In vitro immunotherapy potency assays using real-time cell analysis
Cerignoli, Fabio; Abassi, Yama A.; Lamarche, Brandon J.; Guenther, Garret; Santa Ana, David; Guimet, Diana; Zhang, Wen; Zhang, Jing
2018-01-01
A growing understanding of the molecular interactions between immune effector cells and target tumor cells, coupled with refined gene therapy approaches, are giving rise to novel cancer immunotherapeutics with remarkable efficacy in the clinic against both solid and liquid tumors. While immunotherapy holds tremendous promise for treatment of certain cancers, significant challenges remain in the clinical translation to many other types of cancers and also in minimizing adverse effects. Therefore, there is an urgent need for functional potency assays, in vitro and in vivo, that could model the complex interaction of immune cells with tumor cells and can be used to rapidly test the efficacy of different immunotherapy approaches, whether it is small molecule, biologics, cell therapies or combinations thereof. Herein we report the development of an xCELLigence real-time cytolytic in vitro potency assay that uses cellular impedance to continuously monitor the viability of target tumor cells while they are being subjected to different types of treatments. Specialized microtiter plates containing integrated gold microelectrodes enable the number, size, and surface attachment strength of adherent target tumor cells to be selectively monitored within a heterogeneous mixture that includes effector cells, antibodies, small molecules, etc. Through surface-tethering approach, the killing of liquid cancers can also be monitored. Using NK92 effector cells as example, results from RTCA potency assay are very well correlated with end point data from image-based assays as well as flow cytometry. Several effector cells, i.e., PBMC, NK, CAR-T were tested and validated as well as biological molecules such as Bi-specific T cell Engagers (BiTEs) targeting the EpCAM protein expressed on tumor cells and blocking antibodies against the immune checkpoint inhibitor PD-1. Using the specifically designed xCELLigence immunotherapy software, quantitative parameters such as KT50 (the amount of time it takes to kill 50% of the target tumor cells) and % cytolysis are calculated and used for comparing the relative efficacy of different reagents. In summary, our results demonstrate the xCELLigence platform to be well suited for potency assays, providing quantitative assessment with high reproducibility and a greatly simplified work flow. PMID:29499048
Kitchen, S; Katterle, Y; Beckmann, H; Maas Enriquez, M
2016-06-01
Essentials Discrepancies can exist in factor VIII activity measured by the one-stage or chromogenic assays. LEOPOLD trial data were used to assess clinical impact of BAY 81-8973 potency assignment assay. Efficacy was not affected by the assay used for potency assignment and dosing of BAY 81-8973. Either assay may be used to measure factor VIII activity after BAY 81-8973 infusion. Background Product-specific discrepancies have been reported for factor VIII (FVIII) activity determined with one-stage or chromogenic assays. Objective To assess the clinical impact of potency assignment of BAY 81-8973, a full-length, unmodified, recombinant human FVIII, by use of the chromogenic assay or chromogenic assay adjusted to mimic results obtained with the one-stage assay Patients/methods Patients aged 12-65 years with severe hemophilia A received BAY 81-8973 in LEOPOLD I (20-50 IU kg(-1) two or three times weekly [investigator decision]) and LEOPOLD II (randomized to 20-30 IU kg(-1) twice weekly, 30-40 IU kg(-1) three times weekly, or on-demand treatment). Both trials included two 6-month crossover periods in which potency labeling was determined with the chromogenic substrate assay as per the European Pharmacopoeia (CS/EP) or the chromogenic substrate assay adjusted to mimic results obtained with the one-stage assay (CS/ADJ). The annualized bleeding rate (ABR) and FVIII incremental recovery were assessed by the use of pooled data. Results The analysis was perfomed on 121 patients. Median (quartile [Q] 1; Q3) ABRs during the CS/EP and CS/ADJ periods were 1.98 (0; 5.92) and 1.98 (0; 7.34), respectively. The mean incremental recovery was > 2 IU dL(-1) per IU kg(-1) in both periods with the use of either assay for postinfusion FVIII measurements. The median (Q1; Q3) chromogenic/one-stage assay recovery ratio was 1.054 (0.892; 1.150) for the CS/EP period when a plasma standard was used for calibration. Conclusions No impact on the ABR was observed with chromogenic-based as compared with one-stage assay-based potency and dosing. Either assay may be used to determine FVIII plasma activity after infusion of BAY 81-8973 without the need for a product-specific standard. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Opportunities and strategies to further reduce animal use for Leptospira vaccine potency testing.
Walker, A; Srinivas, G B
2013-09-01
Hamsters are routinely infected with virulent Leptospira for two purposes in the regulation of biologics: the performance of Codified potency tests and maintenance of challenge culture for the Codified potency tests. Options for reducing animal use in these processes were explored in a plenary lecture at the "International Workshop on Alternative Methods for Leptospira Vaccine Potency Testing: State of the Science and the Way Forward" held at the Center for Veterinary Biologics in September 2012. The use of validated in vitro potency assays such as those developed by the U.S. Department of Agriculture for Leptospira (L.) canicola, Leptospira grippotyphosa, Leptospira pomona, and Leptospira icterohaemorrhagiae rather than the Codified hamster vaccination-challenge assay was encouraged. Alternatives such as reduced animal numbers in the hamster vaccination-challenge testing were considered for problematic situations. Specifically, the merits of sharing challenge controls, reducing group sizes, and eliminating animals for concurrent challenge dose titration were assessed. Options for maintaining virulent, stable cultures without serial passage through hamsters or with decreased hamster use were also discussed. The maintenance of virulent Leptospira without the use of live animals is especially difficult since a reliable means to maintain virulence after multiple in vitro passages has not yet been identified. Published by Elsevier Ltd.
Discovery of a novel general anesthetic chemotype using high-throughput screening.
McKinstry-Wu, Andrew R; Bu, Weiming; Rai, Ganesha; Lea, Wendy A; Weiser, Brian P; Liang, David F; Simeonov, Anton; Jadhav, Ajit; Maloney, David J; Eckenhoff, Roderic G
2015-02-01
The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-aminoanthracene-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. From an initial chemical library of more than 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-aminoanthracene binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based on a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. The authors demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype.
Brelsford, Jill B; Plieskatt, Jordan L; Yakovleva, Anna; Jariwala, Amar; Keegan, Brian P; Peng, Jin; Xia, Pengjun; Li, Guangzhao; Campbell, Doreen; Periago, Maria Victoria; Correa-Oliveira, Rodrigo; Bottazzi, Maria Elena; Hotez, Peter J; Diemert, David; Bethony, Jeffrey M
2017-02-01
A new generation of vaccines for the neglected tropical diseases (NTDs) have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus), so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2-8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines.
77 FR 11536 - Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... Categorization of Chemicals Causing Allergic Contact Dermatitis: Availability of Federal Agency Responses AGENCY... lymph node assay (LLNA) for potency categorization of chemicals causing allergic contact dermatitis (ACD... Local Lymph Node Assay for Potency Categorization of Chemicals Causing Allergic Contact Dermatitis in...
The botulinum toxin LD50 potency assay - another chapter, another mystery.
Pickett, Andy
2012-09-01
Observers of the potency assay used for botulinum toxin were greeted last year with the news that one company had an alternative, non-animal alternative in place. But all was not as it seemed from the press release, and over a year later, information is still lacking.
Das, Pronay; Babbar, Palak; Malhotra, Nipun; Sharma, Manmohan; Jachak, Gorakhnath R; Gonnade, Rajesh G; Shanmugam, Dhanasekaran; Harlos, Karl; Yogavel, Manickam; Sharma, Amit; Reddy, D Srinivasa
2018-05-21
The dependence of drug potency on diastereomeric configurations is a key facet. Using a novel general divergent synthetic route for a three-chiral centre anti-malarial natural product cladosporin, we built its complete library of stereoisomers (cladologs) and assessed their inhibitory potential using parasite-, enzyme- and structure-based assays. We show that potency is manifest via tetrahyropyran ring conformations that are housed in the ribose binding pocket of parasite lysyl tRNA synthetase (KRS). Strikingly, drug potency between top and worst enantiomers varied 500-fold, and structures of KRS-cladolog complexes reveal that alterations at C3 and C10 are detrimental to drug potency where changes at C3 are sensed by rotameric flipping of Glutamate332. Given that scores of anti-malarial and anti-infective drugs contain chiral centers, this work provides a new foundation for focusing on inhibitor stereochemistry as a facet of anti-microbial drug development.
Potency Determination of Antidandruff Shampoos in Nystatin International Unit Equivalents
Anusha Hewage, D. B. G.; Pathirana, W.; Pinnawela, Amara
2008-01-01
A convenient standard microbiological potency determination test for the antidandruff shampoos was developed by adopting the pharmacopoeial microbiological assay procedure of the drug nystatin. A standard curve was drawn consisting of the inhibition zone diameters vs. logarithm of nystatin concentrations in international units using the fungus Saccharomyces cerevisiae (yeast) strain National Collection of Type Culture (NCTC) 1071606 as the test organism. From the standard curve the yeast inhibitory potencies of the shampoos in nystatin international unit equivalents were determined from the respective inhibition zones of the test samples of the shampoos. Under test conditions four shampoo samples showed remarkable fungal inhibitory potencies of 10227, 10731, 12396 and 18211 nystatin international unit equivalents/ml while two shampoo samples had extremely feeble inhibitory potencies 4.07 and 4.37 nystatin international unit equivalents/ml although the latter two products claimed antifungal activity. The potency determination method could be applied to any antidandruff shampoo with any one or a combination of active ingredients. PMID:21394271
International collaborative studies on potency assays of diphtheria and tetanus toxoids.
Van Ramshorst, J D; Sundaresan, T K; Outschoorn, A S
1972-01-01
Collaborative studies showed that relative potency assays for a particular type of diphtheria toxoid (adsorbed) and for tetanus toxoid (plain and adsorbed) gave very similar results, whether the assays were carried out by toxin challenge or by antitoxin titration after immunization of experimental animals with graded doses of toxoid. The same numerical results were obtained with a scoring system as with a system based on survivals only. Although skin tests were used on a very limited scale in these studies, it seems likely that they could replace lethal tests for the diphtheria challenge assays.For both tetanus and diphtheria, the adsorbed toxoid gave a higher relative potency when combined with other antigens than as a single toxoid. Both mice and guinea-pigs were used for the lethal challenge test of adsorbed tetanus toxoid. For the single tetanus toxoid the results were the same, but for the combined toxoid (DPT vaccine) the mouse assay results were about twice those of guinea-pig assays.
International collaborative studies on potency assays of diphtheria and tetanus toxoids
van Ramshorst, J. D.; Sundaresan, T. K.; Outschoorn, A. S.
1972-01-01
Collaborative studies showed that relative potency assays for a particular type of diphtheria toxoid (adsorbed) and for tetanus toxoid (plain and adsorbed) gave very similar results, whether the assays were carried out by toxin challenge or by antitoxin titration after immunization of experimental animals with graded doses of toxoid. The same numerical results were obtained with a scoring system as with a system based on survivals only. Although skin tests were used on a very limited scale in these studies, it seems likely that they could replace lethal tests for the diphtheria challenge assays. For both tetanus and diphtheria, the adsorbed toxoid gave a higher relative potency when combined with other antigens than as a single toxoid. Both mice and guinea-pigs were used for the lethal challenge test of adsorbed tetanus toxoid. For the single tetanus toxoid the results were the same, but for the combined toxoid (DPT vaccine) the mouse assay results were about twice those of guinea-pig assays. PMID:4537488
Ho, C L; Li, C H
1985-03-01
Three synthetic analogs of human beta-endorphin (beta h-EP) (I, [Gln8, Gly31]-beta h-EP-Gly-Gly-NH2; II, [Arg9,12,24,28,29]-beta h-EP and III, [Cys11,26, Phe27, Gly31]-beta h-EP), which have been shown to possess potent inhibiting activity to beta h-EP-induced analgesia, were assayed in rat vas deferens and guinea pig ileum bioassay systems. In the rat vas deferens assay, relative potencies of these analogs were beta h-EP, 100; I, 30; II, 40; III, 1, whereas in the guinea pig ileum assay: beta h-EP, 100; I, 184; II, 81; III, 163. From previous studies on their analgesia potency in mice and opiate receptor-binding activity in rat brain membranes, their activity in rat vas deferens correlates well with the analgesic potency and the activity from guinea pig ileum assay shows good correlations with that from the opiate receptor-binding assay.
Zaghi, Danny; Maibach, Howard I
2009-01-01
The human maximization test (HMT) is a method to evaluate potency in humans, while the local lymph node assay (LLNA) is a test method that allows for the measuring of the allergic potency of a substance in a rodent. It has been proposed that an EC3 value (the value obtained by the LLNA test, ie, the concentration of an allergen leading to a 3-fold increase of baseline proliferation rate) would be a reliable indicator for a compound's allergic potency in humans. This paper compares the correlation between the EC3 value of a compound and its allergic occurrence in the general population with the correlation between the HMT of the compound and its allergic occurrence in the general population, to determine the relationship to potency. The correlation values when outliers were removed from the sample were -0.56 and -0.71 for LLNA and HMT, respectively, suggesting that there is a possible 20% error margin in LLNA's ability to predict potency. The data also suggest that other factors (such as exposure) could play up to a 30% role in the determination of allergic occurrence in the general population. The potency assays might be made more clinically relevant for predicting allergic frequencies by including a frequency factor and other factors in its dermatotoxicological interpretation.
Takeyoshi, Masahiro; Noda, Shuji; Yamazaki, Shunsuke; Kakishima, Hiroshi; Yamasaki, Kanji; Kimber, Ian
2004-01-01
Allergic contact dermatitis is a serious health problem. There is a need to identify and characterize skin sensitization hazards, particularly with respect to relative potency, so that accurate risk assessments can be developed. For these purposes the murine local lymph node assay (LLNA) was developed. Here, we have investigated further a modi fi cation of this assay, non-radioisotopic LLNA, which in place of tritiated thymidine to measure lymph node cell proliferation employs incorporation of 5-bromo-2'-deoxyuridine. Using this method we have examined the skin sensitizing activity of eugenol, a known human contact allergen, and its dimers 2,2'-dihydroxyl-3,3'-dimethoxy-5,5'-diallyl-biphenyl (DHEA) and 4,5'-diallyl-2'-hydroxy-2,3'-dimethoxy phenyl ether (DHEB). Activity in the guinea pig maximization test (GPMT) also measured. On the basis of GPMT assays, eugenol was classified as a mild skin sensitizer, DHEA as a weak skin sensitizer and DHEB as an extreme skin sensitizer. In the non-radioisotopic LLNA all chemicals were found to give positive responses insofar as each was able to provoke a stimulation index (SI) of >or=3 at one or more test concentrations. The relative skin sensitizing potency of these chemicals was evaluated in the non-radioisotopic LLNA by derivation of an ec(3) value (the concentration of chemical required to provoke an SI of 3). The ec(3) values calculated were 25.1% for eugenol, >30% for DHEA and 2.3% for DHEB. Collectively these data suggest that assessments of relative potency deriving from non-radioisotopic LLNA responses correlate well with evaluations based on GPMT results. These investigations provide support for the proposal that the non-radioisotopic LLNA may serve as an effective alternative to the GPMT where there is a need to avoid the use of radioisotopes. Copyright 2004 John Wiley & Sons, Ltd.
Brevenal is a natural inhibitor of brevetoxin action in sodium channel receptor binding assays.
Bourdelais, Andrea J; Campbell, Susan; Jacocks, Henry; Naar, Jerome; Wright, Jeffery L C; Carsi, Jigani; Baden, Daniel G
2004-08-01
1. Florida red tides produce profound neurotoxicity that is evidenced by massive fish kills, neurotoxic shellfish poisoning, and respiratory distress. Red tides vary in potency, potency that is not totally governed by toxin concentration. The purpose of the study was to understand the variable potency of red tides by evaluating the potential for other natural pharmacological agents which could modulate or otherwise reduce the potency of these lethal environmental events. 2. A synaptosome binding preparation with 3-fold higher specific brevetoxin binding was developed to detect small changes in toxin binding in the presence of potential antagonists. Rodent brain labeled in vitro with tritiated brevetoxin shows high specific binding in the cerebellum as evidenced by autoradiography. Synaptosome binding assays employing cerebellum-derived synaptosomes illustrate 3-fold increased specific binding. 3. A new polyether natural product from Florida's red tide dinoflagellate Karenia brevis, has been isolated and characterized. Brevenal, as the nontoxic natural product is known, competes with tritiated brevetoxin for site 5 associated with the voltage-sensitive sodium channel (VSSC). Brevenal displacement of specific brevetoxin binding is purely competitive in nature. 4. Brevenal, obtained from either laboratory cultures or field collections during a red tide, protects fish from the neurotoxic effects of brevetoxin exposure. 5. Brevenal may serve as a model compound for the development of therapeutics to prevent or reverse intoxication in red tide exposures.
Assessment of the skin sensitising potency of the lower alkyl methacrylate esters.
Kimber, Ian; Pemberton, Mark A
2014-10-01
There is continued interest in, and imperatives for, the classification of contact allergens according to their relative skin sensitising potency. However, achieving that end can prove problematic, not least when there is an apparent lack of concordance between experimental assessments of potency and the prevalence allergic contact dermatitis as judged by clinical experience. For the purpose of exploring this issue, and illustrating the important considerations that are required to reach sound judgements about potency categorisation, the lower alkyl methacrylate esters (LAM) have been employed here as a case study. Although the sensitising potential of methyl methacrylate (MMA) has been reviewed previously, there is available new information that is relevant for assessment of skin sensitising potency. Moreover, for the purposes of this article, analyses have been extended to include also other LAM for which relevant data are available: ethyl methacrylate (EMA), n-butyl methacrylate (nBMA), isobutyl methacrylate (iBMA), and 2-ethylhexyl methacrylate (EHMA). In addressing the skin sensitising activity of these chemicals and in drawing conclusions regarding relative potency, a number of sources of information has been considered, including estimates of potency derived from local lymph node assay (LLNA) data, the results of guinea pig assays, and data derived from in silico methods and from recently developed in vitro approaches. Moreover, clinical experience of skin sensitisation of humans by LAM has also been evaluated. The conclusion drawn is that MMA and other LAM are contact allergens, but that none of these chemicals has any more than weak skin sensitising potency. We have also explored here the possible bases for this modest sensitising activity. Finally, the nature of exposure to LAM has been reviewed briefly and on the basis of that information, together with an understanding of skin sensitising potency, a risk assessment has been prepared. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Verma, Swati; Soto, Jackeline; Vasudevan, Anupama; Schmeisser, Falko; Alvarado-Facundo, Esmeralda; Wang, Wei; Weiss, Carol D.
2017-01-01
Co-circulation of two antigenically and genetically distinct lineages of influenza B virus, represented by prototype viruses B/Victoria/2/1987 and B/Yamagata/16/1988, has led to the development of quadrivalent influenza vaccines that contain two influenza B antigens. The inclusion of two influenza B antigens presents challenges for the production and regulation of inactivated quadrivalent vaccines, including the potential for cross-reactivity of the reagents used in identity and potency assays because of the relative close relatedness of the hemagglutinin (HA) from the two virus lineages. Monoclonal antibodies (mAbs) specific for the two lineages of influenza B HA were generated and characterized and used to set-up simple identity tests that distinguish the influenza B antigens in inactivated trivalent and quadrivalent vaccines. The lineage-specific mAbs bound well to the HA of influenza B strains included in influenza vaccines over a period of more than 10 years, suggesting that identity tests using such lineage-specific mAbs would not necessarily have to be updated with every influenza B vaccine strain change. These lineage-specific mAbs were also used in an antibody capture ELISA format to quantify HA in vaccine samples, including monovalent, trivalent, and quadrivalent vaccine samples from various manufacturers. The results demonstrated correlation with HA values determined by the traditional single radial immunodiffusion (SRID) assay. Further, the antibody-capture ELISA was able to distinguish heat-stressed vaccine from unstressed vaccine, and was similar to the SRID in quantifying the resultant loss of potency. These mAb reagents should be useful for further development of antibody-based alternative influenza B identity and potency assays. PMID:28423025
Verma, Swati; Soto, Jackeline; Vasudevan, Anupama; Schmeisser, Falko; Alvarado-Facundo, Esmeralda; Wang, Wei; Weiss, Carol D; Weir, Jerry P
2017-01-01
Co-circulation of two antigenically and genetically distinct lineages of influenza B virus, represented by prototype viruses B/Victoria/2/1987 and B/Yamagata/16/1988, has led to the development of quadrivalent influenza vaccines that contain two influenza B antigens. The inclusion of two influenza B antigens presents challenges for the production and regulation of inactivated quadrivalent vaccines, including the potential for cross-reactivity of the reagents used in identity and potency assays because of the relative close relatedness of the hemagglutinin (HA) from the two virus lineages. Monoclonal antibodies (mAbs) specific for the two lineages of influenza B HA were generated and characterized and used to set-up simple identity tests that distinguish the influenza B antigens in inactivated trivalent and quadrivalent vaccines. The lineage-specific mAbs bound well to the HA of influenza B strains included in influenza vaccines over a period of more than 10 years, suggesting that identity tests using such lineage-specific mAbs would not necessarily have to be updated with every influenza B vaccine strain change. These lineage-specific mAbs were also used in an antibody capture ELISA format to quantify HA in vaccine samples, including monovalent, trivalent, and quadrivalent vaccine samples from various manufacturers. The results demonstrated correlation with HA values determined by the traditional single radial immunodiffusion (SRID) assay. Further, the antibody-capture ELISA was able to distinguish heat-stressed vaccine from unstressed vaccine, and was similar to the SRID in quantifying the resultant loss of potency. These mAb reagents should be useful for further development of antibody-based alternative influenza B identity and potency assays.
Discovery of a Novel General Anesthetic Chemotype Using High-throughput Screening
McKinstry-Wu, Andrew R.; Bu, Weiming; Rai, Ganesha; Lea, Wendy A.; Weiser, Brian P.; Liang, David F.; Simeonov, Anton; Jadhav, Ajit; Maloney, David J.; Eckenhoff, Roderic G.
2014-01-01
Background The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Methods Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene (1-AMA) and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-AMA-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A-receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. Results From an initial chemical library of over 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-AMA binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based upon a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. Conclusions We demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype. PMID:25603205
Roberts, David W; Api, Anne Marie
2018-07-01
Prediction of skin sensitisation potential and potency by non-animal methods is the target of many active research programmes. Although the aim is to predict sensitisation potential and potency in humans, data from the murine local lymph node assay (LLNA) constitute much the largest source of quantitative data on in vivo skin sensitisation. The LLNA has been the preferred in vivo method for identification of skin sensitising chemicals and as such is potentially valuable as a benchmark for assessment of non-animal approaches. However, in common with all predictive test methods, the LLNA is subject to false positives and false negatives with an overall level of accuracy said variously to be approximately 80% or 90%. It is also necessary to consider the extent to which, for true positives, LLNA potency correlates with human potency. In this paper LLNA potency and human potency are compared so as to express quantitatively the correlation between them, and reasons for non-agreement between LLNA and human potency are analysed. This leads to a better definition of the applicability domain of the LLNA, within which LLNA data can be used confidently to predict human potency and as a benchmark to assess the performance of non-animal approaches. Copyright © 2018. Published by Elsevier Inc.
Brelsford, Jill B.; Plieskatt, Jordan L.; Yakovleva, Anna; Jariwala, Amar; Keegan, Brian P.; Peng, Jin; Xia, Pengjun; Li, Guangzhao; Campbell, Doreen; Periago, Maria Victoria; Correa-Oliveira, Rodrigo; Bottazzi, Maria Elena; Hotez, Peter J.
2017-01-01
A new generation of vaccines for the neglected tropical diseases (NTDs) have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus), so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2–8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines. PMID:28192438
Conformationally selective biophysical assay for influenza vaccine potency determination.
Wen, Yingxia; Han, Liqun; Palladino, Giuseppe; Ferrari, Annette; Xie, Yuhong; Carfi, Andrea; Dormitzer, Philip R; Settembre, Ethan C
2015-10-05
Influenza vaccines are the primary intervention for reducing the substantial health burden from pandemic and seasonal influenza. Hemagglutinin (HA) is the most important influenza vaccine antigen. Subunit and split influenza vaccines are formulated, released for clinical use, and tested for stability based on an in vitro potency assay, single-radial immunodiffusion (SRID), which selectively detects HA that is immunologically active (capable of eliciting neutralizing or hemagglutination inhibiting antibodies in an immunized subject). The time consuming generation of strain-specific sheep antisera and calibrated antigen standards for SRID can delay vaccine release. The limitation in generating SRID reagents was evident during the early days of the 2009 pandemic, prompting efforts to develop more practical, alternative, quantitative assays for immunologically active HA. Here we demonstrate that, under native conditions, trypsin selectively digests HA produced from egg or mammalian cell in monovalent vaccines that is altered by stress conditions such as reduced pH, elevated temperature, or deamidation, leaving native, pre-fusion HA, intact. Subsequent reverse-phase high pressure liquid chromatography (RP-HPLC) can separate trypsin-resistant HA from the digested HA. Integration of the resulting RP-HPLC peak yields HA quantities that match well the values obtained by SRID. Therefore, trypsin digestion, to pre-select immunologically active HA, followed by quantification by RP-HPLC is a promising alternative in vitro potency assay for influenza vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ho, Mei M; Kairo, Satnam K; Corbel, Michael J
2006-01-01
Tuberculin purified protein derivative (PPD) currently can only be standardised by delayed hypersensitivity skin reactions in sensitised guinea pigs. An in vitro dot blot immunoassay was developed for both identity and confirmation of potency estimation of PPD. Polyclonal antibodies (mainly IgG) were generated and immunoreacted with human, bovine and, to lesser extent, avian PPD preparations. Combining size exclusion chromatography (FPLC-SEC) and dot blot immunoassay, the results showed that PPD preparations were mixtures of very heterogeneous tuberculoproteins ranging in size from very large aggregates to very small degraded molecules. All individual fractions of PPD separated by size were immunoreactive, although those of the largest molecular sizes appeared the most immunoreactive in this in vitro dot blot immunoassay. This method is very sensitive and specific to tuberculoproteins and can be an in vitro alternative for the in vivo intradermal skin assay which uses guinea pigs for identity of PPD preparations. Although the capacity of PPD to elicit cell-mediated immune responses on intradermal testing has to be confirmed by in vivo assay, the dot blot immunoassay offers a rapid, sensitive and animal-free alternative to in vivo testing for confirming the identity of PPD preparations with appropriate potencies. This alternative assay would be particularly useful for national regulatory laboratories for confirming the data of manufacturers and thus reducing the use of animals.
The US EPA ToxCast program aims to develop methods for mechanistically-based chemical prioritization using a suite of high throughput, in vitro assays that probe relevant biological pathways, and coupling them with statistical and machine learning methods that produce predictive ...
G-protein based ELISA as a potency test for rabies vaccines.
Chabaud-Riou, Martine; Moreno, Nadège; Guinchard, Fabien; Nicolai, Marie Claire; Niogret-Siohan, Elisabeth; Sève, Nicolas; Manin, Catherine; Guinet-Morlot, Françoise; Riou, Patrice
2017-03-01
The NIH test is currently used to assess the potency of rabies vaccine, a key criterion for vaccine release. This test is based on mice immunization followed by intracerebral viral challenge. As part of global efforts to reduce animal experimentation and in the framework of the development of Sanofi Pasteur next generation, highly-purified vaccine, produced without any material of human or animal origin, we developed an ELISA as an alternative to the NIH test. This ELISA is based on monoclonal antibodies recognizing specifically the native form of the viral G-protein, the major antigen that induces neutralizing antibody response to rabies virus. We show here that our ELISA is able to distinguish between potent and different types of sub-potent vaccine lots. Satisfactory agreement was observed between the ELISA and the NIH test in the determination of the vaccine titer and their capacity to discern conform from non-conform batches. Our ELISA meets the criteria for a stability-indicating assay and has been successfully used to develop the new generation of rabies vaccine candidates. After an EPAA international pre-collaborative study, this ELISA was selected as the assay of choice for the EDQM collaborative study aimed at replacing the rabies vaccine NIH in vivo potency test. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
[Potency testing of anti-lymphocyte Globulins: In vitro alternatives for the monkey skin-graft assay
Conrad, Christoph; Kabelitz, Dieter; Schäffner, Gabriele
1998-01-01
Antilymphocyte globulins (ALG) are immunosuppressive agents of animal origin currently used in clinical transplantation medicine and for the treatment of severe aplastic anemia. The potency of each batch is tested in vivo using primates as hosts for allogeneic skin transplantation. The test is done with a maximum of three animals, one as a control and two after the treatment with ALG. The two in vitro methods in use are a cytotoxic assay and the rosette inhibition assay. These methods are evaluated with the microscope. Besides wellfare aspects these methods require a lot of experience, are subjective, difficult to validate and the information about the biological potency of the sera is questionable. The aim of our study is a better biological characterisation as a prerequisite to subsequently define an in vitro alternative for the potency test in monkeys. Using a competition assay with monoclonal antibodies we can identify several specificities directed against functional molecules on T cells (e.g., CD2, CD3, CD5, CD28), B Cells (CD19), macrophages and natural killer cells (CD16) and nonlineage specificities such as CD18, CD25, CD29, CD95. This method could describe a part of the biological potency and control homogeneity of batches. The cytotoxic capacity of ALG either with or without complement as well as DNA-fragmentation characteristic for apoptosis can be analysed by flowcytometry using propidiumiodide- (PI) incorporation. Immunoprecipitation of cell-lysate with ALG
Gorka, Alexander P.; Alumasa, John N.; Sherlach, Katy S.; Jacobs, Lauren M.; Nickley, Katherine B.; Brower, Jonathan P.; de Dios, Angel C.
2013-01-01
We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365–374, 2013). PMID:23114783
Gorka, Alexander P; Alumasa, John N; Sherlach, Katy S; Jacobs, Lauren M; Nickley, Katherine B; Brower, Jonathan P; de Dios, Angel C; Roepe, Paul D
2013-01-01
We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).
Comparison of bioluminescent kinase assays using substrate depletion and product formation.
Tanega, Cordelle; Shen, Min; Mott, Bryan T; Thomas, Craig J; MacArthur, Ryan; Inglese, James; Auld, Douglas S
2009-12-01
Assays for ATPases have been enabled for high-throughput screening (HTS) by employing firefly luciferase to detect the remaining ATP in the assay. However, for any enzyme assay, measurement of product formation is a more sensitive assay design. Recently, technologies that allow detection of the ADP product from ATPase reactions have been described using fluorescent methods of detection. We describe here the characterization of a bioluminescent assay that employs firefly luciferase in a coupled-enzyme assay format to enable detection of ADP levels from ATPase assays (ADP-Glo, Promega Corp.). We determined the performance of the ADP-Glo assay in 1,536-well microtiter plates using the protein kinase Clk4 and a 1,352 member kinase focused combinatorial library. The ADP-Glo assay was compared to the Clk4 assay performed using a bioluminescence ATP-depletion format (Kinase-Glo, Promega Corp). We performed this analysis using quantitative HTS (qHTS) where we determined potency values for all library members and identified approximately 300 compounds with potencies ranging from as low as 50 nM to >10 microM, yielding a robust dataset for the comparison. Both assay formats showed high performance (Z'-factors approximately 0.9) and showed a similar potency distribution for the actives. We conclude that the bioluminescence ADP detection assay system is a viable generic alternative to the widely used ATP-depletion assay for ATPases and discuss the advantages and disadvantages of both approaches.
Replacing antibodies with modified DNA aptamers in vaccine potency assays.
Trausch, Jeremiah J; Shank-Retzlaff, Mary; Verch, Thorsten
2017-10-04
Vaccine in vitro potency assays are vital regulatory tests that are used to confirm the presence and concentration of an antigen of interest in a form that directly or indirectly relates to protective activity in patients. Current assays come in many forms, but they almost exclusively use antibody reagents for selective detection of the target antigen. Antibodies provide specific recognition of vaccine antigens but also exhibit drawbacks such as stability limitations, cost, and lot-to-lot variation, which can make it challenging to maintain the reagent throughout the lifetime of the vaccine. We explored replacing antibodies with aptamers. Aptamers are macromolecules, such as nucleic acids, which can bind to their targets with high specificity and affinity, similar to that of antibodies. Some of the advantages of using aptamers over antibodies is that aptamers can be more stable, smaller, less expensive to produce, synthesized in vitro, and logistically easier to supply throughout the multi-decade lifespan of a commercial vaccine. We created modified DNA aptamers against the common vaccine carrier protein, CRM 197 . Several aptamers were discovered and one was chosen for further characterization. The binding kinetics of the aptamer revealed an off-rate 16-fold slower than anti-CRM 197 antibodies used for comparison. The aptamers were more sensitive than available antibodies in some assay formats and comparable in others. The aptamer epitope was mapped to the receptor-binding domain of CRM 197 , a site adjacent to a known antibody binding site. These data address some key aspects for a path forward in replacing antibodies with aptamers for use as critical reagents in vaccine assays. We further highlight the possibility of using nucleic acid reagents to develop next generation potency assays. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sonnenburg, Anna; Schreiner, Maximilian; Stahlmann, Ralf
2015-12-01
Parabens, methylisothiazolinone (MI) and its derivative methylchloroisothiazolinone (MCI), are commonly used as preservatives in personal care products. They can cause hypersensitivity reactions of the human skin. We have tested a set of nine parabens, MI alone and in combination with MCI in the loose-fit coculture-based sensitization assay (LCSA). The coculture of primary human keratinocytes and allogenic dendritic cell-related cells (DC-rc) in this assay emulates the in vivo situation of the human skin. Sensitization potency of the test substances was assessed by flow cytometric analysis of the DC-rc maturation marker CD86. Determination of the concentration required to cause a half-maximal increase in CD86-expression (EC50sens) allowed a quantitative evaluation. The cytotoxicity of test substances as indicator for irritative potency was measured by 7-AAD (7-amino-actinomycin D) staining. Parabens exhibited weak (methyl-, ethyl-, propyl- and isopropylparaben) or strong (butyl-, isobutyl-, pentyl- and benzylparaben) effects, whereas phenylparaben was found to be a moderate sensitizer. Sensitization potencies of parabens correlated with side chain length. Due to a pronounced cytotoxicity, we could not estimate an EC50sens value for MI, whereas MI/MCI was classified as sensitizer and also showed cytotoxic effects. Parabens showed no (methyl- and ethylparaben) or weak irritative potencies (propyl-, isopropyl-, butyl-, isobutyl-, phenyl- and benzylparaben), only pentylparaben was rated to be irritative. Overall, we were able to demonstrate and compare the sensitizing potencies of parabens in this in vitro test. Furthermore, we showed an irritative potency for most of the preservatives. The data further support the usefulness of the LCSA for comparison of the sensitizing potencies of xenobiotics.
Yang, Bin; Hird, Alexander W; Russell, Daniel John; Fauber, Benjamin P; Dakin, Les A; Zheng, Xiaolan; Su, Qibin; Godin, Robert; Brassil, Patrick; Devereaux, Erik; Janetka, James W
2012-07-15
Cell-based subset screening of compounds using a Gli transcription factor reporter cell assay and shh stimulated cell differentiation assay identified a series of bisamide compounds as hedgehog pathway inhibitors with good potency. Using a ligand-based optimization strategy, heteroaryl groups were utilized as conformationally restricted amide isosteres replacing one of the amides which significantly increased their potency against SMO and the hedgehog pathway while decreasing activity against p38α kinase. We report herein the identification of advanced lead compounds such as imidazole 11c and 11f encompassing good p38α selectivity, low nanomolar potency in both cell assays, excellent physiochemical properties and in vivo pharmacokinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Can biochemistry drive drug discovery beyond simple potency measurements?
Chène, Patrick
2012-04-01
Among the fields of expertise required to develop drugs successfully, biochemistry holds a key position in drug discovery at the interface between chemistry, structural biology and cell biology. However, taking the example of protein kinases, it appears that biochemical assays are mostly used in the pharmaceutical industry to measure compound potency and/or selectivity. This limited use of biochemistry is surprising, given that detailed biochemical analyses are commonly used in academia to unravel molecular recognition processes. In this article, I show that biochemistry can provide invaluable information on the dynamics and energetics of compound-target interactions that cannot be obtained on the basis of potency measurements and structural data. Therefore, an extensive use of biochemistry in drug discovery could facilitate the identification and/or development of new drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Smith, Todd G.; Ellison, James A.; Ma, Xiaoyue; Kuzmina, Natalia; Carson, William C.; Rupprecht, Charles E.
2015-01-01
Vaccine potency testing is necessary to evaluate the immunogenicity of inactivated rabies virus (RABV) vaccine preparations before human or veterinary application. Currently, the NIH test is recommended by the WHO expert committee to evaluate RABV vaccine potency. However, numerous disadvantages are inherent concerning cost, number of animals and biosafety requirements. As such, several in vitro methods have been proposed for the evaluation of vaccines based on RABV glycoprotein (G) quality and quantity, which is expected to correlate with vaccine potency. In this study an antigen-capture electrochemiluminescent (ECL) assay was developed utilizing anti-RABV G monoclonal antibodies (MAb) to quantify RABV G. One MAb 2-21-14 was specific for a conformational epitope so that only immunogenic, natively-folded G was captured in the assay. A second MAb (62-80-6) that binds a linear epitope or MAb 2-21-14 was used for detection of RABV G. Vaccine efficacy was also assessed in vivo using pre-exposure vaccination of mice. Purified native RABV G induced a RABV neutralizing antibody (rVNA) response with a geometric mean titer of 4.2 IU/ml and protected 100% of immunized mice against RABV challenge, while an experimental vaccine with a lower quality and quantity of G induced a rVNA titer <0.05 IU/ml and protected <50% of immunized mice. These preliminary results support the hypothesis that in vivo immunogenicity may be predicted from the in vitro measurement of RABV G using an ECL assay. Based upon these results, the ECL assay may have utility in replacement of the NIH test. PMID:23742991
Francisco, Fabiane Lacerda; Saviano, Alessandro Morais; Pinto, Terezinha de Jesus Andreoli; Lourenço, Felipe Rebello
2014-08-01
Microbiological assays have been used to evaluate antimicrobial activity since the discovery of the first antibiotics. Despite their limitations, microbiological assays are widely employed to determine antibiotic potency of pharmaceutical dosage forms, since they provide a measure of biological activity. The aim of this work is to develop, optimize and validate a rapid colorimetric microplate bioassay for the potency of neomycin in pharmaceutical drug products. Factorial and response surface methodologies were used in the development and optimization of the choice of microorganism, culture medium composition, amount of inoculum, triphenyltetrazolium chloride (TTC) concentration and neomycin concentration. The optimized bioassay method was validated by the assessment of linearity (range 3.0 to 5.0μg/mL, r=0.998 and 0.994 for standard and sample curves, respectively), precision (relative standard deviation (RSD) of 2.8% and 4.0 for repeatability and intermediate precision, respectively), accuracy (mean recovery=100.2%) and robustness. Statistical analysis showed equivalency between agar diffusion microbiological assay and rapid colorimetric microplate bioassay. In addition, microplate bioassay had advantages concerning the sensitivity of response, time of incubation, and amount of culture medium and solutions required. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Gillian E., E-mail: gmann017@uottawa.ca; Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3; Farmahin, Reza, E-mail: mfarm070@uottawa.ca
2012-09-15
Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was usedmore » to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R{sup 2} ≥ 0.87, p < 0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. -- Highlights: ► PCB embryolethality in birds can be predicted from a species' AHR1 genotype. ► The reporter gene assay is useful for predicting species sensitivity to PCBs. ► The relative potency of PCBs does not appear to differ between AHR1 genotypes. ► Contamination of PCB 105 and PCB 118 did not affect their relative potency values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Gillian E., E-mail: gmann017@uottawa.ca; Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3; Mundy, Lukas J., E-mail: lukas.mundy@ec.gc.ca
2013-01-01
Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, inmore » combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of toxicity than CYP1A4/5 mRNA expression.« less
Takeyoshi, Masahiro; Iida, Kenji; Shiraishi, Keiji; Hoshuyama, Satsuki
2005-01-01
The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA. Copyright 2005 John Wiley & Sons, Ltd.
Gross, S; Janssen, S W J; de Vries, B; Terao, E; Daas, A; Buchheit, K-H
2010-07-01
An international collaborative study to validate 2 alternative in vitro methods for the potency testing of human tetanus immunoglobulin products was organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM). The study, run in the framework of the Biological Standardisation Programme (BSP) under the aegis of the European Commission and the Council of Europe, involved 21 official medicines control and industry laboratories from 15 countries. Both methods, an enzyme-linked immunoassay (EIA) and a toxoid inhibition assay (TIA), showed good reproducibility, repeatability and precision. EIA and TIA discriminated between low, medium and high potency samples. Potency estimates correlated well and both values were in close agreement with those obtained by in vivo methods. Moreover, these alternative methods allowed to resolve discrepant results between laboratories that were due to product potency loss and reporting errors. The study demonstrated that EIA and TIA are suitable quality control methods for tetanus immunoglobulin, which can be standardised in a control laboratory using a quality assurance system. Consequently, the Group of Experts on Human Blood and Blood Products of the European Pharmacopoeia revised the monograph on human tetanus immunoglobulins to include both the methods as compendial alternatives to the in vivo mouse challenge assay. 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Yao, Chunhe; Carlisi, Cristina; Li, Yuning; Chen, Da; Ding, Jianfu; Feng, Yong-Lai
2016-01-01
Increasing use of single-walled carbon nanotubes (SWCNTs) necessitates a novel method for hazard risk assessment. In this work, we investigated the interaction of several types of commercial SWCNTs with single-stranded (ss) and double-stranded (ds) DNA oligonucleotides (20-mer and 20 bp). Based on the results achieved, we proposed a novel assay that employed the DNA interaction potency to assess the hazard risk of SWCNTs. It was found that SWCNTs in different sizes or different batches of the same product number of SWCNTs showed dramatically different potency of interaction with DNAs. In addition, the same SWCNTs also exerted strikingly different interaction potency with ss- versus ds- DNAs. The interaction rates of SWCNTs with DNAs were investigated, which could be utilized as the indicator of potential hazard for acute exposure. Compared to solid SWCNTs, the SWCNTs dispersed in liquid medium (2% sodium cholate solution) exhibited dramatically different interaction potency with DNAs. This indicates that the exposure medium may greatly influence the subsequent toxicity and hazard risk produced by SWCNTs. Based on the findings of dose-dependences and time-dependences from the interactions between SWCNTs and DNAs, a new chemistry based assay for hazard risk assessment of nanomaterials including SWCNTs has been presented. PMID:27936089
Yao, Chunhe; Carlisi, Cristina; Li, Yuning; Chen, Da; Ding, Jianfu; Feng, Yong-Lai
2016-01-01
Increasing use of single-walled carbon nanotubes (SWCNTs) necessitates a novel method for hazard risk assessment. In this work, we investigated the interaction of several types of commercial SWCNTs with single-stranded (ss) and double-stranded (ds) DNA oligonucleotides (20-mer and 20 bp). Based on the results achieved, we proposed a novel assay that employed the DNA interaction potency to assess the hazard risk of SWCNTs. It was found that SWCNTs in different sizes or different batches of the same product number of SWCNTs showed dramatically different potency of interaction with DNAs. In addition, the same SWCNTs also exerted strikingly different interaction potency with ss- versus ds- DNAs. The interaction rates of SWCNTs with DNAs were investigated, which could be utilized as the indicator of potential hazard for acute exposure. Compared to solid SWCNTs, the SWCNTs dispersed in liquid medium (2% sodium cholate solution) exhibited dramatically different interaction potency with DNAs. This indicates that the exposure medium may greatly influence the subsequent toxicity and hazard risk produced by SWCNTs. Based on the findings of dose-dependences and time-dependences from the interactions between SWCNTs and DNAs, a new chemistry based assay for hazard risk assessment of nanomaterials including SWCNTs has been presented.
Kutschenko, Anna; Reinert, Marie-Christine; Krez, Nadja; Liebetanz, David; Rummel, Andreas
2017-03-01
The highly potent Botulinum neurotoxins (BoNT) are successful drugs to treat neuromuscular disorders. Efforts are being made to further reduce the injected BoNT dose and to lengthen the interval between treatments. Detailed knowledge of the BoNT structure-activity relationship (SAR) allows combining the best features of the different BoNT serotypes. Of all seven BoNT serotypes A-G, BoNT/A displays the highest potency despite low neuronal binding affinity, while BoNT/B exhibits much higher affinity. Recently, a new BoNT/AB hybrid (AABB) was constructed comprising the catalytic and translocation domain of BoNT/A and the 50kDa cell binding domain of BoNT/B. Here, we compared BoNT/A wild-type (AAAA) and AABB with regard to ex vivo potency and in vivo potency, efficacy and duration of action using the mouse phrenic nerve hemidiaphragm assay and the murine running wheel assay, respectively. The ex vivo potency of AABB was found to be 8.4-fold higher than that of AAAA. For the latter, two and 5 pg each of AAAA and AABB, respectively, were bilaterally injected into the calf muscles and mouse running wheel performance was automatically monitored during the following weeks to determine potency, efficacy and duration. Mice displayed a dose-dependent impairment of running performance. AABB showed potency, efficacy and duration equal to AAAA demonstrating successful exchange of the cell binding domain. AABB might combine the higher potency and longer duration of BoNT/A with the target specificity for the autonomic nervous system of BoNT/B. AABB might therefore constitute an improved treatment option for acetylcholine-mediated autonomic disorders such as hypersalivation or hyperhidrosis. Copyright © 2016 Elsevier B.V. All rights reserved.
McKim, James M.; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa
2016-01-01
Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose–response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimension-ality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals’ potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced "false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. PMID:26046447
Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Itagaki, Hiroshi
2015-04-01
To date, there has been no well-established local lymph node assay (LLNA) that includes an elicitation phase. Therefore, we developed a modified local lymph node assay with an elicitation phase (LLNA:DAE) to discriminate true skin sensitizers from chemicals that gave borderline positive results and previously reported this assay. To develop the LLNA:DAE method as a useful stand-alone testing method, we investigated the complete procedure for the LLNA:DAE method using hexyl cinnamic aldehyde (HCA), isoeugenol, and 2,4-dinitrochlorobenzene (DNCB) as test compounds. We defined the LLNA:DAE procedure as follows: in the dose-finding test, four concentrations of chemical applied to dorsum of the right ear on days 1, 2, and 3 and dorsum of both ears on day 10. Ear thickness and skin irritation score were measured on days 1, 3, 5, 10, and 12. Local lymph nodes were excised and weighed on day 12. The test dose for the primary LLNA:DAE study was selected as the dose that gave the highest left ear lymph node weight in the dose-finding study, or the lowest dose that produced a left ear lymph node of over 4 mg. This procedure was validated using nine different chemicals. Furthermore, qualitative relationship was observed between the degree of elicitation response in the left ear lymph node and the skin sensitizing potency of 32 chemicals tested in this study and the previous study. These results indicated that LLNA:DAE method was as first LLNA method that was able to evaluate the skin sensitizing potential and potency in elicitation response.
Luechtefeld, Thomas; Maertens, Alexandra; McKim, James M; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa
2015-11-01
Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose-response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimensionality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals' potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced " false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. Copyright © 2015 John Wiley & Sons, Ltd.
Wakley, Alexa A; Wiley, Jenny L; Craft, Rebecca M
2015-01-01
The purpose of this study was to determine whether sex differences in the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol (THC) are due to activational effects of gonadal hormones. Rats were sham-gonadectomized (sham-GDX) or gonadectomized (GDX). GDX females received no hormone replacement (GDX+0), estradiol (GDX+E2), progesterone (GDX+P4), or both (GDX+E2/P4). GDX male rats received no hormone (GDX+0) or testosterone (GDX+T). Two weeks later, antinociceptive potency of THC was determined (pre-chronic test) on the warm water tail withdrawal and paw pressure assays. Vehicle or a sex-specific THC dose (females, 5.7 mg/kg, males, 9.9 mg/kg) was administered twice-daily for 9 days, then the THC dose-effect curves were re-determined (post-chronic test). On the pre-chronic test (both assays), THC was more potent in sham-GDX females than males, and gonadectomy did not alter this sex difference. In GDX females, P4 significantly decreased THC’s antinociceptive potency, whereas E2 had no effect. In GDX males, T did not alter THC’s antinociceptive potency. After chronic THC treatment, THC’s antinociceptive potency was decreased more in sham-GDX females than males, on the tail withdrawal test; this sex difference in tolerance was not altered in GDX or hormone-treated groups. These results suggest that greater antinociceptive tolerance in females, which occurred despite females receiving 40% less THC than males, is not due to activational effects of gonadal hormones. PMID:25863271
Roberts, David W; Api, Anne Marie; Aptula, Aynur O
2016-10-01
The Local Lymph Node Assay (LLNA) is the most common in vivo regulatory toxicology test for skin sensitisation, quantifying potency as the EC3, the concentration of chemical giving a threefold increase in thymidine uptake in the local lymph node. Existing LLNA data can, along with clinical data, provide useful comparator information on the potency of sensitisers. Understanding of the biological variability of data from LLNA studies is important for those developing non-animal based risk assessment approaches for skin allergy. Here an existing set of 94 EC3 values for 12 chemicals, all tested at least three times in the same vehicle have been analysed by calculating standard deviations (SD) for logEC3 values. The SDs range from 0.08 to 0.22. The overall SD for the 94 logEC3 values is 0.147. Thus the 95% confidence limits (2xSD) for LLNA EC3 values are within a factor of 2, comparable to those for physico-chemical measurements such as partition coefficients and solubility. The residual SDs of Quantitative Mechanistic Models (QMMs) based on physical organic chemistry parameters are similar to the overall SD of the LLNA, indicating that QMMs of this type are unlikely to be bettered for predictive accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.
Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N
2014-01-01
Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations. Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303
Beta-Endorphin: dissociation of receptor binding activity from analgesic potency.
Li, C H; Tseng, L F; Ferrara, P; Yamashiro, D
1980-04-01
Biological activities of synthetic camel beta-endorphin and human beta-endorphin (beta h-EP) have been measured by the radioreceptor binding assay, using [Tyr27-3H]-beta h-EP as the primary ligand and by the tail-flick test for analgesic potency. Four synthetic analogs of beta h-EP, namely [Gly31]-beta h-EP-Gly-NH2, [Gly31]-beta h-EP-Gly-Gly-NH2, [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2, and [CH3(CH2)4NH231]-beta h-EP, have also been assayed by the same procedures. Results indicate a clear dissociation of radioreceptor binding activity from analgesic potency.
Beta-Endorphin: dissociation of receptor binding activity from analgesic potency.
Li, C H; Tseng, L F; Ferrara, P; Yamashiro, D
1980-01-01
Biological activities of synthetic camel beta-endorphin and human beta-endorphin (beta h-EP) have been measured by the radioreceptor binding assay, using [Tyr27-3H]-beta h-EP as the primary ligand and by the tail-flick test for analgesic potency. Four synthetic analogs of beta h-EP, namely [Gly31]-beta h-EP-Gly-NH2, [Gly31]-beta h-EP-Gly-Gly-NH2, [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2, and [CH3(CH2)4NH231]-beta h-EP, have also been assayed by the same procedures. Results indicate a clear dissociation of radioreceptor binding activity from analgesic potency. PMID:6246537
Saccharomyces cerevisiae as a platform for assessing sphingolipid lipid kinase inhibitors
Agah, Sayeh; Mendelson, Anna J.; Eletu, Oluwafunmilayo T.; Barkey-Bircann, Peter; Gesualdi, James
2018-01-01
Successful medicinal chemistry campaigns to discover and optimize sphingosine kinase inhibitors require a robust assay for screening chemical libraries and for determining rank order potencies. Existing assays for these enzymes are laborious, expensive and/or low throughput. The toxicity of excessive levels of phosphorylated sphingoid bases for the budding yeast, Saccharomyces cerevisiae, affords an assay wherein inhibitors added to the culture media rescue growth in a dose-dependent fashion. Herein, we describe our adaptation of a simple, inexpensive, and high throughput assay for assessing inhibitors of sphingosine kinase types 1 and 2 as well as ceramide kinase and for testing enzymatic activity of sphingosine kinase type 2 mutants. The assay was validated using recombinant enzymes and generally agrees with the rank order of potencies of existing inhibitors. PMID:29672528
Roberts, David W; Schultz, Terry W; Api, Anne Marie
2016-10-01
The Local Lymph Node Assay (LLNA) is the gold standard regulatory toxicology test for skin sensitisation along with the guinea pig maximisation test (GPMT). Compared with the GPMT, LLNA uses fewer animals, it is quantitative, and it gives a numerical prediction of potency. However several concerns have been raised with this assay, mainly related to false positives and false negatives. Over the years, many authors, including the developers of the assay, have presented cases where there have been discrepancies between the GMPT and LLNA results. Several theories have been put forward for these discrepancies, the main one being the "over-sensitivity" of the GPMT. This paper analyses the data from a systematic study, published in three papers from 2008 to 2011, covering several classes of chemicals, in particular unsaturated fatty acids, sugar surfactants and ethoxylated alcohols, with many cases of chemicals testing positive in the LLNA being negative in the GPMT. Based on consideration of reaction chemistry and structural alerts, it is concluded that these discrepancies are not LLNA false positives, but can be rationalised in terms of the different protocols of the assays. Copyright © 2016 Elsevier Inc. All rights reserved.
Eichelberger, Schafer L; Sultana, Ishrat; Gao, Jin; Getie-Kebtie, Melkamu; Alterman, Michail; Eichelberger, Maryna C
2013-11-01
Influenza vaccines are effective in protecting against illness and death caused by this seasonal pathogen. The potency of influenza vaccines is measured by single radial immunodiffusion (SRID) assay that quantifies antigenic forms of hemagglutinin (HA). Hydrostatic pressure results in loss of binding of influenza virus to red blood cells, but it is not known whether this infers loss of potency. Our goal was to determine the impact of pressure on HA antigenic structure. Viruses included in the 2010-2011 trivalent influenza vaccine were subjected to increasing number of cycles at 35,000 psi in a barocycler, and the impact of this treatment measured by determining hemagglutination units (HAU) and potency. Potency was assessed by SRID and immunogenicity in mice. After 25 cycles of pressure, the potency measured by SRID assay was below the limit of quantification for the H1N1 and B viruses used in our study, while the H3N2 component retained some potency that was lost after 50 pressure cycles. Pressure treatment also resulted in loss of HAU, but this did not strictly correlate with the potency value. Curiously, loss of potency was abrogated when influenza A, but not B, antigens were exposed to pressure in chicken egg allantoic fluid. Protection against pressure appeared to be mediated by specific interactions because addition of bovine serum albumin did not have the same effect. Our results show that pressure-induced loss of potency is strain dependent and suggests that pressure treatment may be useful for identifying vaccine formulations that improve HA stability. Published 2013. This article is U.S. Government work and in the public domain in the USA.
Betts, Catherine J; Dearman, Rebecca J; Heylings, Jon R; Kimber, Ian; Basketter, David A
2006-09-01
There is compelling evidence that contact allergens differ substantially (by 4 or 5 orders of magnitude) with respect to their inherent skin-sensitizing potency. Relative potency can now be measured effectively using the mouse local lymph node assay (LLNA) and such data form the basis of risk assessment and risk management strategies. Such determinations also facilitate distinctions being drawn between the prevalence of skin sensitization to a particular contact allergen and inherent potency. The distinction is important because chemicals that are implicated as common causes of contact allergy are not necessarily potent sensitizers. One example is provided by nickel that is undoubtedly a common cause of allergic contact dermatitis, but is a comparatively weak sensitizer in predictive tests. In an attempt to explore other examples of contact allergens where there may exist a discrepancy between prevalence and potency, we describe here analyses conducted with methyl methacrylate (MMA). Results of LLNA studies have been interpreted in the context of historical clinical data on occupational allergic contact dermatitis associated with exposure to MMA.
The International Standard for Oxytetracycline
Humphrey, J. H.; Lightbown, J. W.; Mussett, M. V.; Perry, W. L. M.
1955-01-01
The first attempt to set up an international standard for oxytetracycline, using oxytetracycline hydrochloride, failed because of difficulties in obtaining a preparation whose moisture content was uniform after distribution into ampoules. A preparation of dihydrate of oxytetracycline base was obtained instead, and was compared in an international collaborative assay with a sample of oxytetracycline hydrochloride, which was the current working standard of Chas. Pfizer & Co., Inc., USA. The results of the collaborative assay showed that the potency of the dihydrate was uniform, and that it was a suitable preparation for use as the International Standard. Evidence was obtained, however, that the reference preparation at the time of examination was less potent than had been originally supposed, and that it was hydrated. The potency of the proposed international standard was recalculated after allowance for water in the reference preparation, and the resulting biological potency agreed well with that to be expected on the basis of the physicochemical properties of the preparation. It was agreed, therefore, that the recalculated values should be used, and the preparation of oxytetracycline base dihydrate used in the collaborative assay is established as the International Standard for Oxytetracycline with a potency of 900 International Units per mg. PMID:13284563
Reproducibility of the anti-Factor Xa and anti-Factor IIa assays applied to enoxaparin solution.
Martinez, Céline; Savadogo, Adama; Agut, Christophe; Anger, Pascal
2013-01-01
Enoxaparin is a widely used subcutaneously administered antithrombotic agent comprising a complex mixture of glycosaminoglycan chains. Owing to this complexity, its antithrombotic potency cannot be defined by physicochemical methods and is therefore evaluated using an enzymatic assay of anti-Xa and anti-IIa activity. Maintaining consistent anti-Xa activity in the final medicinal product allows physicians to ensure administration of the appropriate dosage to their patients. Bioassays are usually complex and display poorer reproducibility than physicochemical tests such as HPLC assays. Here, we describe the implementation of a common robotic platform and standard release potency testing procedures for enoxaparin sodium injection (Lovenox, Sanofi, Paris, France) products at seven quality control sites within Sanofi. Qualification and analytical procedures, as well as data handling, were optimized and harmonized to improve assay reproducibility. An inter-laboratory study was performed in routine-release conditions. The coefficients of variation for repeatability and reproducibility in assessments of anti-Xa activity were 1.0% and 1.2%, respectively. The tolerance interval in reproducibility precision conditions, expressed as percentage potency, was 96.8-103.2% of the drug product target of 10,000 IU/ml, comparing favorably with the United States of America Pharmacopeia specification (90-110%). The maximum difference between assays in two different laboratories is expected to be 4.1%. The reproducibility characteristics of anti-IIa activity assessments were found to be similar. These results demonstrate the effectiveness of the standardization process established and allow for further improvements to quality control in Lovenox manufacture. This process guarantees closeness between actual and target potencies, as exemplified by the results of release assays obtained during a three-year period. Copyright © 2013 Elsevier B.V. All rights reserved.
Yan, Li; Hu, Rui; Tu, Song; Cheng, Wen-Jun; Zheng, Qiong; Wang, Jun-Wen; Kan, Wu-Sheng; Ren, Yi-Jun
2015-01-01
TNFα played a dominant role in the development and progression of rheumatoid arthritis (RA). Clinical trials proved the efficacies of anti-TNFα agents for curing RA. However, most researchers were concentrating on their abilities of neutralizing TNFα, the potencies of different anti-TNFα agents varied a lot due to the antibody-dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC). For better understanding and differentiating the potentiality of various candidate anti-TNF reagents at the stage of new drug research and development, present study established a cell model expressing the transmembrane TNFα for usage in in vitro ADCC or CDC assay, meanwhile, the assay protocol described here could provide guidelines for screening macromolecular antibody drugs. A stable cell subline bearing transmembrane TNFα was first established by conventional transfection method, the expression of transmembrane TNFα was approved by flow cytometer, and the performance of the stable subline in ADCC and CDC assay was evaluated, using human peripheral blood mononuclear cells as effector cells, and Adalimumab as the anti-TNFα reagent. The stable cell subline demonstrated high level of surface expression of transmembrane TNFα, and Adalimumab exerted both ADCC and CDC effects on this cell model. In conclusion, the stable cell line we established in present research could be used in ADCC or CDC assay for screening antibody drugs, which would provide in-depth understanding of the potencies of candidate antibody drugs in addition to the traditional TNFα neutralizing assay.
USDA regulatory guidelines and practices for veterinary Leptospira vaccine potency testing.
Srinivas, G B; Walker, A; Rippke, B
2013-09-01
Batch-release potency testing of leptospiral vaccines licensed by the United States Department of Agriculture (USDA) historically was conducted through animal vaccination-challenge models. The hamster vaccination-challenge assay was Codified in 1974 for bacterins containing Leptospira pomona, Leptospira icterohaemorrhagiae, and Leptospira canicola, and in 1975 for bacterins containing Leptospira grippotyphosa. In brief, 10 hamsters are vaccinated with a specified dilution of bacterin. After a holding period, the vaccinated hamsters, as well as nonvaccinated controls, are challenged with virulent Leptospira and observed for mortality. Eighty percent of vaccinated hamsters must survive in the face of a valid challenge. The high cost of the Codified tests, in terms of monetary expense and animal welfare, prompted the Center for Veterinary Biologics (CVB) to develop ELISA alternatives for them. Potency tests for other serogroups, such as Leptospira hardjo-bovis, that do not have Codified requirements for potency testing continue to be examined on a case-by-case basis. Published by Elsevier Ltd.
The local lymph node assay and the assessment of relative potency: status of validation.
Basketter, David A; Gerberick, Frank; Kimber, Ian
2007-08-01
For the prediction of skin sensitization potential, the local lymph node assay (LLNA) is a fully validated alternative to guinea-pig tests. More recently, information from LLNA dose-response analyses has been used to assess the relative potency of skin sensitizing chemicals. These data are then deployed for risk assessment and risk management. In this commentary, the utility and validity of these relative potency measurements are reviewed. It is concluded that the LLNA does provide a valuable assessment of relative sensitizing potency in the form of the estimated concentration of a chemical required to produce a threefold stimulation of draining lymph node cell proliferation compared with concurrent controls (EC3 value) and that all reasonable validation requirements have been addressed successfully. EC3 measurements are reproducible in both intra- and interlaboratory evaluations and are stable over time. It has been shown also, by several independent groups, that EC3 values correlate closely with data on relative human skin sensitization potency. Consequently, the recommendation made here is that LLNA EC3 measurements should now be regarded as a validated method for the determination of the relative potency of skin sensitizing chemicals, a conclusion that has already been reached by a number of independent expert groups.
An Integrated View of Air Mutagenicity
The mutagenic potency of ambient air particulate material (PM) in the Salmonella mutagenicity assay (revertants/mg PM) varies only ~1 order of magnitude worldwide; however, the mutagenic potency of the air itself (revertants/m3 of air) varies ~5 orders of magnitude (IARC Monograp...
Korimbocus, Jehanara; Dehay, Nicolas; Tordo, Noël; Cano, François; Morgeaux, Sylvie
2016-06-14
In case of a bite by a rabies infected animal, the World Health Organisation recommends a prophylactic treatment including the administration of Human Rabies Immunoglobulins (HRIGs) or highly purified F(ab')2 fragments produced from Equine Rabies Immunoglobulin (F(ab')2 - ERIGs). According to international regulation, quality control of F(ab')2 - ERIGs lots requires potency testing by the in vivo Mouse Neutralisation Test (MNT) prior marketing. However, the strategy of the 3Rs (Reduce, Refine, Replace) for animal testing required by the European Directive encourages the replacement of the in vivo potency test by an in vitro assay. In this context, a competitive ELISA method (c-ELISA) has been developed by the Agence Nationale de Sécurité du Médicament et des Produits de Santé where F(ab')2 - ERIGs are in competition with a monoclonal antibody recognizing the trimeric native form of the rabies glycoprotein. After a full validation study, the c-ELISA has been applied to commercial batches of F(ab')2 - ERIGs. A correlation study with the MNT demonstrated a similarity between the two methods (r=0.751). Moreover, the c-ELISA method which does not need any species specific reagent has been applied to HRIGs potency testing as an alternative method to Rapid Fluorescent Focus Inhibition Test (RFFIT), thus avoiding the handling of live rabies virus in BSL3 containment. In conclusion, the c-ELISA has shown its potential to replace MNT and possibly RFFIT for the quantification of rabies immunoglobulin. After optimisation it may be used for the quantification of rabies immunoglobulin in any animal species, notably for rabies immunogenicity assay in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maxwell, Gavin; Aeby, Pierre; Ashikaga, Takao; Bessou-Touya, Sandrine; Diembeck, Walter; Gerberick, Frank; Kern, Petra; Marrec-Fairley, Monique; Ovigne, Jean-Marc; Sakaguchi, Hitoshi; Schroeder, Klaus; Tailhardat, Magali; Teissier, Silvia; Winkler, Petra
2011-01-01
Allergic contact dermatitis is a delayed-type hypersensitivity reaction induced by small reactive chemicals (haptens). Currently, the sensitising potential and potency of new chemicals is usually characterised using data generated via animal studies, such as the local lymph node assay (LLNA). There are, however, increasing public and political concerns regarding the use of animals for the testing of new chemicals. Consequently, the development of in vitro, in chemico or in silico models for predicting the sensitising potential and/or potency of new chemicals is receiving widespread interest. The Colipa Skin Tolerance task force currently collaborates with and/or funds several academic research groups to expand our understanding of the molecular and cellular events occurring during the acquisition of skin sensitisation. Knowledge gained from this research is being used to support the development and evaluation of novel alternative approaches for the identification and characterisation of skin sensitizing chemicals. At present three non-animal test methods (Direct Peptide Reactivity Assay (DPRA), Myeloid U937 Skin Sensitisation Test (MUSST) and human Cell Line Activation Test (hCLAT)) have been evaluated in Colipa interlaboratory ring trials for their potential to predict skin sensitisation potential and were recently submitted to ECVAM for formal pre-validation. Data from all three test methods will now be used to support the study and development of testing strategy approaches for skin sensitiser potency prediction. This publication represents the current viewpoint of the cosmetics industry on the feasibility of replacing the need for animal test data for informing skin sensitisation risk assessment decisions.
Takeyoshi, Masahiro; Iida, Kenji; Suzuki, Keiko; Yamazaki, Shunsuke
2008-05-01
Allergic contact dermatitis is the serious unwanted effect arising from the use of consumer products such as cosmetics. Isoeugenol is a fragrance chemical with spicy, carnation-like scent, is used in many kinds of cosmetics and is a well-known moderate human sensitizer. It was previously reported that the dimerization of eugenol yielded two types of dimer possessing different sensitization potencies. This study reports the differences in skin sensitization potencies for isoeugenol and two types of dimer, beta-O-4-dilignol and dehydrodiisoeugenol (DIEG), as evaluated by the non-radioisotopic local lymph node assay (non-RI LLNA) and guinea pig maximization test. In the guinea pig maximization test, isoeugenol, beta-O-4-dilignol and DIEG were classified as extreme, weak and moderate sensitizers, respectively. As for the results of non-RI LLNA, the EC3 for isoeugenol, beta-O-4-dilignol and DIEG were calculated as 12.7%, >30% and 9.4%, respectively. The two types of isoeugenol dimer showed different sensitizing activities similar to the case for eugenol dimers. A reduction of sensitization potency achieved by dimerization may lead to developing safer cosmetic ingredients. Isoeugenol dimers are not currently used for fragrance chemicals. However, the dimerization of isoeugenol may yield a promising candidate as a cosmetic ingredient with low sensitization risk. The data may also provide useful information for the structure-activity relationship (SAR) in skin sensitization. Copyright (c) 2007 John Wiley & Sons, Ltd.
Turkett, Jeremy A; Bicker, Kevin L
2017-04-10
Growing prevalence of antibiotic resistant bacterial infections necessitates novel antimicrobials, which could be rapidly identified from combinatorial libraries. We report the use of the peptoid library agar diffusion (PLAD) assay to screen peptoid libraries against the ESKAPE pathogens, including the optimization of assay conditions for each pathogen. Work presented here focuses on the tailoring of combinatorial peptoid library design through a detailed study of how peptoid lipophilicity relates to antibacterial potency and mammalian cell toxicity. The information gleaned from this optimization was then applied using the aforementioned screening method to examine the relative potency of peptoid libraries against Staphylococcus aureus, Acinetobacter baumannii, and Enterococcus faecalis prior to and following functionalization with long alkyl tails. The data indicate that overall peptoid hydrophobicity and not simply alkyl tail length is strongly correlated with mammalian cell toxicity. Furthermore, this work demonstrates the utility of the PLAD assay in rapidly evaluating the effect of molecular property changes in similar libraries.
Keogh, John P; Kunta, Jeevan R
2006-04-01
Regulatory interest is increasing for drug transporters generally and P-glycoprotein (Pgp) in particular, primarily in the area of drug-drug interactions. To aid in both identifying and discharging the potential liabilities associated with drug-transporter interactions, the pharmaceutical industry has a growing requirement for routine and robust non-clinical assays. An assay was designed, optimised and validated to determine the in vitro inhibitory potency of new chemical entities (NCEs) towards human Pgp-mediated transport. [3H]-Digoxin was established as a suitable probe substrate by investigating its characteristics in the in vitro system (MDCKII-MDR1 cells grown in 24-multiwell inserts). The inhibitory potencies (apparent IC50) of known Pgp inhibitors astemizole, GF120918, ketoconazole, itraconazole, quinidine, verapamil and quinine were determined over at least a 1000-fold concentration range. Validation was carried out using manual and automatic techniques. [3H]-Digoxin was found to be stable and have good mass balance in the system. In contrast to [A-->B] transport, [3H]-digoxin [B-->A] transport rates were readily measured with good reproducibility. There was no evidence of saturation of transport up to 10 microM digoxin and 30 nM digoxin was selected for routine assay use, reflecting clinical therapeutic concentrations. IC50 values ranged over approximately 100-fold with excellent reproducibility. Results from manual and automated versions were in close agreement. This method is suitable for routine use to assess the in vitro inhibitory potency of NCEs on Pgp-mediated digoxin transport. Comparison of IC50 values against clinical interaction profiles for the probe inhibitors indicated the in vitro assay is predictive of clinical digoxin-drug interactions mediated via Pgp.
Guan, Qingdong; Li, Yun; Shpiruk, Tanner; Bhagwat, Swaroop; Wall, Donna A
2018-05-01
Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs. Clinical-grade bone marrow-derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed. MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ-licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation. A flow cytometry-based assay of MSCs post-IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
The local lymph node assay in 2014.
Basketter, David A; Gerberick, G Frank; Kimber, Ian
2014-01-01
Toxicology endeavors to predict the potential of materials to cause adverse health (and environmental) effects and to assess the risk(s) associated with exposure. For skin sensitizers, the local lymph node assay was the first method to be fully and independently validated, as well as the first to offer an objective end point with a quantitative measure of sensitizing potency (in addition to hazard identification). Fifteen years later, it serves as the primary standard for the development of in vitro/in chemico/in silico alternatives.
A demonstration of the uncertainty in predicting the estrogenic ...
In vitro estrogen receptor assays are valuable screening tools for identifying environmental samples and chemicals that display estrogenic activity. However, in vitro potency cannot necessarily be extrapolated to estimates of in vivo potency because in vitro assays are currently unable to fully account for adsorption, distribution, metabolism, and excretion. To explore this issue, we calculated relative potency factors (RPF) for several chemicals and mixtures in the T47D-KBluc estrogen receptor transactivation assay. The in vitro RPF values were then used to predict rat uterotrophic assay responses following oral administration of individual chemicals and mixtures. 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), benzyl-butyl phthalate (BBP), bisphenol-A (BPA), bisphenol-AF (BPAF), bisphenol-C (BPC), bisphenol-S (BPS), and methoxychlor (MET) were tested individually, while BPS+MET, BPAF+MET, and BPAF+BPC+BPS+EE2+MET were tested as equipotent mixtures. In vivo ED50 values for BPA, BPAF, and BPC were accurately predicted using in vitro data; however, E2 was less potent than predicted, BBP was a false positive, and BPS and MET were 76.6 and 368.3-fold more active in vivo than predicted from the in vitro potency assessment, respectively. Further, mixture ED50 values were more accurately predicted by the dose addition model using individual chemical in vivo uterotrophic data (0.7-1.5-fold difference from observed) than in vitro data (1.4-86.8-fold). Overall,
Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W
2017-04-13
Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High-throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W
2017-06-01
Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Parreiras, P M; Sirota, L A; Wagner, L D; Menzies, S L; Arciniega, J L
2009-07-16
Complexities of lethal challenge models have prompted the investigation of immunogenicity assays as potency tests of anthrax vaccines. An ELISA and a lethal toxin neutralization assay (TNA) were used to measure antibody response to Protective Antigen (PA) in mice immunized once with either a commercial or a recombinant PA (rPA) vaccine formulated in-house. Even though ELISA and TNA results showed correlation, ELISA results may not be able to accurately predict TNA results in this single immunization model.
Kamelia, Lenny; Louisse, Jochem; de Haan, Laura; Rietjens, Ivonne M C M; Boogaard, Peter J
2017-10-01
Prenatal developmental toxicity (PDT) as observed with some petroleum substances (PS) has been associated with the presence of 3-7 ring polycyclic aromatic hydrocarbons (PAHs). In the present study, the applicability of ES-D3 cell differentiation assay of the EST to evaluate in vitro embryotoxicity potencies of PS and gas-to-liquid (GTL) products as compared to their in vivo potencies was investigated. DMSO-extracts of a range of PS, containing different amounts of PAHs, and GTL-products, which are devoid of PAHs, were tested in the ES-D3 cell proliferation and differentiation assays of the EST. The results show that PS inhibited the differentiation of ES-D3 cells into cardiomyocytes in a concentration-dependent manner at non-cytotoxic concentrations, and that their potency was proportional to their PAH content. In contrast, as expected, GTL-products did not inhibit ES-D3 cell viability or differentiation at all. The in vitro PDT potencies were compared to published in vivo PDT studies, and a good correlation was found between in vitro and in vivo results (R 2 =0.97). To conclude, our results support the hypothesis that PAHs are the primary inducers of the PDT in PS. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The LLNA: A Brief Review of Recent Advances and Limitations
Anderson, Stacey E.; Siegel, Paul D.; Meade, B. J.
2011-01-01
Allergic contact dermatitis is the second most commonly reported occupational illness, accounting for 10% to 15% of all occupational diseases. This highlights the importance of developing rapid and sensitive methods for hazard identification of chemical sensitizers. The murine local lymph node assay (LLNA) was developed and validated for the identification of low molecular weight sensitizing chemicals. It provides several benefits over other tests for sensitization because it provides a quantitative endpoint, dose-responsive data, and allows for prediction of potency. However, there are also several concerns with this assay including: levels of false positive responses, variability due to vehicle, and predictivity. This report serves as a concise review which briefly summarizes the progress, advances and limitations of the assay over the last decade. PMID:21747867
Potency assays for therapeutic live whole cell cancer vaccines.
Petricciani, John; Egan, William; Vicari, Giuseppe; Furesz, John; Schild, Geoffrey
2007-04-01
Therapeutic cancer vaccines are under development with the goal of enhancing the body's immune response to cancer cells sufficient to arrest cancer cell growth. Among the various approaches being used are those based on whole tumor cells. Developing a suitable measure of the potency of such vaccines presents a significant challenge because neither cellular associated markers nor in vivo biological responses that are correlated with efficacy have been identified; nevertheless, manufacturers and regulatory agencies will need to develop methods to evaluate these products. At this moment, the challenge for manufacturers who are developing whole cell vaccines is to demonstrate batch-to-batch consistency for the vaccine used in clinical studies and to show that comparable vaccine batches have the same capacity to achieve an acceptable level of biological activity that may be related to efficacy. This is particularly challenging in that animal models to test that activity do not exist and direct serological or immunological correlates of clinical protection are not available because protection has not yet been established in clinical trials. In the absence of well-defined biological markers and tests for manufacturing consistency, manufacturers and regulators will need to rely heavily on a highly reproducible manufacturing process--the consistency of the process therefore becomes critical. In developing regulatory approaches to whole cell cancer vaccines, the experience from the field of infectious disease vaccines should be examined for general guidance. A framework that draws heavily on the field of infectious disease vaccines is presented and suggests that at this point in the development of this new class of products, it is reasonable to develop data on quantitative antigen expression as a measure of potency with the expectation that when clinical efficacy has been established it will confirm the appropriateness of this approach. But because this will not be known until the end of a pivotal trial, a bioassay should be considered and run in parallel. Several examples of bioassays are presented along with their advantages and disadvantages. The final selection of a potency assay for use in lot release of a commercializable therapeutic whole cell vaccine ultimately will depend on the totality of the data available at the time of approval by regulatory agencies. Based on information currently available, it is likely that quantitative antigen expression or a bioassay could be used to measure potency. If both are determined to be acceptable, the use of quantitative antigen expression could be considered for routine lot release, while the bioassay could be reserved for use as one of the elements in establishing comparability when manufacturing changes are being considered after approval.
Gorka, Alexander P; Jacobs, Lauren M; Roepe, Paul D
2013-09-18
Drug combination therapy is the frontline of malaria treatment. There is an ever-accelerating need for new, efficacious combination therapies active against drug resistant malaria. Proven drugs already in the treatment pipeline, such as the quinolines, are important components of current combination therapy and also present an attractive test bank for rapid development of new concepts. The efficacy of several drug combinations versus chloroquine-sensitive and chloroquine-resistant strains was measured using both cytostatic and cytocidal potency assays. These screens identify quinoline and non-quinoline pairs that exhibit synergy, additivity, or antagonism using the fixed-ratio isobologram method and find tafenoquine - methylene blue combination to be the most synergistic. Also, interestingly, for selected pairs, additivity, synergy, or antagonism defined by quantifying IC50 (cytostatic potency) does not necessarily predict similar behaviour when potency is defined by LD50 (cytocidal potency). These data further support an evolving new model for quinoline anti-malarials, wherein haem and haemozoin are the principle target for cytostatic activity, but may not be the only target relevant for cytocidal activity.
In vitro and in vivo potency of insulin analogues designed for clinical use.
Vølund, A; Brange, J; Drejer, K; Jensen, I; Markussen, J; Ribel, U; Sørensen, A R; Schlichtkrull, J
1991-11-01
Analogues of human insulin designed to have improved absorption properties after subcutaneous injection have been prepared by recombinant DNA technology. Five rapidly absorbed analogues, being predominantly in mono- or di-meric states in the pharmaceutical preparation, and a hexameric analogue with very low solubility at neutral pH and slow absorption, were studied. Receptor binding assays with HEP-G2 cells showed overall agreement with mouse free adipocyte assays. Two analogues, B28Asp and A21Gly + B27Arg + B30Thr-NH2, had nearly the same molar in vitro potency as human insulin. Another two showed increased adipocyte potency and receptor binding, B10Asp 194% and 333% and A8His + B4His + B10Glu + B27His 575% and 511%, while B9Asp + B27Glu showed 29% and 18% and the B25Asp analogue only 0.12% and 0.05% potency. Bioassays in mice or rabbits of the analogues except B25Asp showed that they had the same in vivo potency as human insulin 1.00 IU = 6.00 nmol. Thus the variation had the same in vivo potency as human insulin 1.00 IU = 6.00 nmol. Thus the variation in in vivo potency reflects the differences in receptor binding affinity. Relative to human insulin a low concentration is sufficient for a high affinity analogue to produce a given receptor complex formation and metabolic response. In conclusion, human insulin and analogues with markedly different in vitro potencies were equipotent in terms of hypoglycaemic effect. This is in agreement with the concept that elimination of insulin from blood and its subsequent degradation is mediated by insulin receptors.
Otitis-Prone Children Produce Functional Antibodies to Pneumolysin and Pneumococcal Polysaccharides
Wiertsema, Selma P.; Corscadden, Karli J.; Mateus, Tulia; Mullaney, Gemma L.; Zhang, Guicheng; Richmond, Peter C.; Thornton, Ruth B.
2016-01-01
ABSTRACT The pneumococcus is a major otitis media (OM) pathogen, but data are conflicting regarding whether otitis-prone children have impaired humoral immunity to pneumococcal antigens. We and others have shown that otitis-prone and healthy children have similar antibody titers to pneumococcal proteins and polysaccharides (vaccine and nonvaccine types); however, the quality of antibodies from otitis-prone children has not been investigated. Antibody function, rather than titer, is considered to be a better correlate of protection from pneumococcal disease. Therefore, we compared the capacities of antibodies from otitis-prone (cases) and healthy (controls) children to neutralize pneumolysin, the pneumococcal toxin currently in development as a vaccine antigen, and to opsonize pneumococcal vaccine and nonvaccine serotypes. A pneumolysin neutralization assay was conducted on cholesterol-depleted complement-inactivated sera from 165 cases and 61 controls. A multiplex opsonophagocytosis assay (MOPA) was conducted on sera from 20 cases and 20 controls. Neutralizing and opsonizing titers were calculated with antigen-specific IgG titers to determine antibody potency for pneumolysin, pneumococcal conjugate vaccine (PCV) polysaccharides, and non-PCV polysaccharides. There was no significant difference in antibody potencies between cases and controls for the antigens tested. Antipneumolysin neutralizing titers increased with the number of episodes of acute OM, but antibody potency did not. Pneumolysin antibody potency was lower in children colonized with pneumococci than in noncarriers, and this was significant for the otitis-prone group (P < 0.05). The production of functional antipneumococcal antibodies in otitis-prone children demonstrates that they respond to the current PCV and are likely to respond to pneumolysin-based vaccines as effectively as healthy children. PMID:28031178
Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing
2017-02-15
In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of the mouse jumping test for estimating antagonistic potencies of morphine antagonists.
Cowan, A
1976-03-01
The potencies of 19 reference morphine antagonists have been compared in a modified version of the mouse jumping test. Mice were each implanted subcutaneously with one 75 mg pellet of morphine. Antagonist challenge took place 72 h later and the incidence of repetitive vertical-jumping was monitored over 1 h. A high Pearson correlation coefficient (r = 0.997) was found between quantitative assays based on the total number of jumps per mouse and quantal assays based on mice jumping at least 6 times. A comparison of relative potencies obtained with the mouse test and with non-withdrawn morphine-dependent monkeys gave a Spearman rank order coefficient of 0.91 while a similar comparison with values obtained with the guinea-pig isolated ileum preparation also gave a high correlation coefficient (r= 0.92). Whereas it is difficult to assess the antagonistic component of buprenorphine and cyclorphan with the ileum preparation, both compounds can be satisfactorily assayed in the mouse jumping test. The reported antagonistic properties of ketocyclazocine and profadol could not be confirmed in the mouse model.
Accounting Artifacts in High-Throughput Toxicity Assays.
Hsieh, Jui-Hua
2016-01-01
Compound activity identification is the primary goal in high-throughput screening (HTS) assays. However, assay artifacts including both systematic (e.g., compound auto-fluorescence) and nonsystematic (e.g., noise) complicate activity interpretation. In addition, other than the traditional potency parameter, half-maximal effect concentration (EC50), additional activity parameters (e.g., point-of-departure, POD) could be derived from HTS data for activity profiling. A data analysis pipeline has been developed to handle the artifacts and to provide compound activity characterization with either binary or continuous metrics. This chapter outlines the steps in the pipeline using Tox21 glucocorticoid receptor (GR) β-lactamase assays, including the formats to identify either agonists or antagonists, as well as the counter-screen assays for identifying artifacts as examples. The steps can be applied to other lower-throughput assays with concentration-response data.
Parreño, Viviana; Romera, S Alejandra; Makek, Lucia; Rodriguez, Daniela; Malacari, Darío; Maidana, Silvina; Compaired, Diego; Combessies, Gustavo; Vena, María Marta; Garaicoechea, Lorena; Wigdorovitz, Andrés; Marangunich, Laura; Fernandez, Fernando
2010-10-01
Two ELISAs to quantify antibodies to BoHV-1 in the sera of cattle and immunized guinea pigs were developed and validated using ISO/IEC 17025 standards. The cut-off value of the assay was established at 20% positivity of a high positive control for screening of cattle. Using this threshold, the assay properly classified the OIE bovine reference sera EU1, EU2 and EU3. For vaccine potency testing, a cut-off of 40% was selected for both species. The reliability of the assays, given by their diagnostic sensitivity and specificity, using the threshold of 40% was 89.7% and 100%, respectively, for bovines and 94.9% and 100% for guinea pigs, respectively. There was almost perfect agreement between the ELISA and virus neutralization results. In addition, after vaccination, there was a good correlation between the neutralizing and ELISA antibody titers of the serum from the same bovine or guinea pig, sampled at 60 and 30 days post-vaccination, respectively (R(bovine)=0.88, R(guinea pig)=0.92; p<0.0001). A similar correlation was observed when analyzing the mean antibody titers of groups of vaccinated animals (R(bovine)=0.95 and R(guinea pig)=0.97; p<0.0001), indicating the relevance of the ELISAs for batch to batch vaccine potency testing in the target species and in the laboratory animal model. The intermediate precision of the assays expressed as the relative coefficient of variation (CV) of the positive control assayed over a 3-year period in the same laboratory was 22.2% for bovines and 23.1% for guinea pigs. The reproducibility of both techniques obtained in inter-laboratory assays was CV=12.4% for bovines and CV approximately 0 for guinea pigs, which met the requirements of the OIE (CV<30%). The validated ELISAs represent important methods for vaccine potency testing and for controlling BoHV-1 infections. Copyright (c) 2010 Elsevier B.V. All rights reserved.
The noninvasive mouse ear swelling assay. II. Testing the contact sensitizing potency of fragrances.
Thorne, P S; Hawk, C; Kaliszewski, S D; Guiney, P D
1991-11-01
The noninvasive mouse ear swelling assay (MESA) for contact allergy testing was evaluated using fragrance components and complex fragrance mixtures. The test materials represented weak sensitizers and nonsensitizers. Two versions of the MESA were investigated. Both were noninvasive and utilized only topical abdominal dosing and ear challenge with single applications in BALB/cBy mice. The vit A MESA differed from the regular MESA only in that mice were maintained on a diet with 17-fold higher levels of vitamin A (vit A) acetate beginning 3 weeks prior to induction. Sensitization reactions were determined by measuring the mean increase in ear swelling over baseline at 24, 48 and 72 hr postexposure. Irritation dose-response curves facilitated choosing a high nonirritating challenge dose. Sensitization dose-response curves were developed for cinnamaldehyde (CINN) and a complex fragrance mixture, F-16. From these curves, the SD50 was determined. This value represents the dose which sensitized half the animals and serves to rank the potency of compounds for allergic contact dermatitis and to compare values among different assays. The SD50 for CINN was 21.6% while the SD50vit A for F-16 was 26.6%. The other fragrance, isoeugenol (ISOE), and fragrance mixtures, F-07 and F-22, were also found to be weak sensitizers in the MESA and vit A MESA. The results in the MESA for CINN and ISOE were in the range observed with guinea pig test protocols but showed that the MESA was more sensitive than human test protocols. Two of the fragrance mixtures tested in the MESA gave comparable results in the Buehler guinea pig assay. However, the third (F-22) was negative in the Buehler assay and the MESA, but positive in the vit A MESA. The results of this work with weak sensitizers and the companion study (Thorne et al., 1991) with potent sensitizers at low doses illustrate that the noninvasive MESA is as sensitive as many standard guinea pig assays. In addition, it is easier and much less expensive to perform. The vit A MESA has the sensitivity and predictive power needed to test compounds and mixtures for contact sensitizing potency.
Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.
2010-10-01
Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.
Assessment of pyrrolizidine alkaloid-induced toxicity in an in vitro screening model.
Li, Yan Hong; Kan, Winnie Lai Ting; Li, Na; Lin, Ge
2013-11-25
Pyrrolizidine alkaloids (PAs) are a group of heterocyclic phytotoxins present in a wide range of plants. The consumption of PA-containing medicinal herbs or PA-contaminated foodstuffs has long been reported to cause human hepatotoxicity. However, the degrees of hepatotoxicity of different PAs are unknown, which makes it difficult to determine a universal threshold of toxic dose of individual PAs for safe regulation of PA-containing natural products. The aim of the present study is to develop a simple and convenient in vitro model to assess the hepatotoxicity of different PAs. Six common cytotoxicity assays were used to evaluate the hepatotoxicity of different PAs in human hepatocellular carcinoma HepG2 cells. The combination of MTT and bromodeoxyuridine incorporation (BrdU) assays demonstrated to be a suitable method to evaluate the toxic potencies of various PAs in HepG2 cells, and the results indicated that otonecine-type PA (clivorine: IC₂₀=0.013 ± 0.004 mM (MTT), 0.066 ± 0.031 mM (BrdU)) exhibited significantly higher cytotoxic and anti-proliferative effects than retronecine-type PA (retrorsine: IC₂₀=0.27 ± 0.07 mM (MTT), 0.19 ± 0.03 mM (BrdU)). While as expected, the known less toxic platyphylline-type PA (platyphylline: IC₂₀=0.85 ± 0.11 mM (MTT), 1.01 ± 0.40 mM (BrdU)) exhibited significantly less toxicity. The different cytotoxic and anti-proliferative potencies of various PAs in the same retronecine-type could also be discriminated by using the combined MTT and BrdU assays. In addition, the developed assays were further utilized to test alkaloid extract of Gynura segetum, a senecionine and seneciphylline-containing herb, the overall cytotoxicity of two PAs in the extract was comparable to that of these two PAs tested individually. Using the developed in vitro model, the cytotoxicity of different PAs and the extract of a PA-containing herb were investigated in parallel in one system, and their different hepatotoxic potencies were determined and directly compared for the first time. The results suggested that the developed model has a great potential to be applied for the quick screening of the toxicity of PAs and PA-containing natural products. © 2013 Elsevier Ireland Ltd. All rights reserved.
Shi, Wei; Wei, Si; Hu, Xin-xin; Hu, Guan-jiu; Chen, Cu-lan; Wang, Xin-ru; Giesy, John P.; Yu, Hong-xia
2013-01-01
Some synthetic chemicals, which have been shown to disrupt thyroid hormone (TH) function, have been detected in surface waters and people have the potential to be exposed through water-drinking. Here, the presence of thyroid-active chemicals and their toxic potential in drinking water sources in Yangtze River Delta were investigated by use of instrumental analysis combined with cell-based reporter gene assay. A novel approach was developed to use Monte Carlo simulation, for evaluation of the potential risks of measured concentrations of TH agonists and antagonists and to determine the major contributors to observed thyroid receptor (TR) antagonist potency. None of the extracts exhibited TR agonist potency, while 12 of 14 water samples exhibited TR antagonistic potency. The most probable observed antagonist equivalents ranged from 1.4 to 5.6 µg di-n-butyl phthalate (DNBP)/L, which posed potential risk in water sources. Based on Monte Carlo simulation related mass balance analysis, DNBP accounted for 64.4% for the entire observed antagonist toxic unit in water sources, while diisobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP) and di-2-ethylhexyl phthalate (DEHP) also contributed. The most probable observed equivalent and most probable relative potency (REP) derived from Monte Carlo simulation is useful for potency comparison and responsible chemicals screening. PMID:24204563
Stalder, J; Costanzo, A; Daas, A; Rautmann, G; Buchheit, K-H
2010-04-01
A reference standard calibrated in International Units (IU) is needed for the in vitro potency assay of hepatitis A vaccines prepared by formalin-inactivation of purified hepatitis A virus grown in cell cultures. Thus, a project was launched by the European Directorate for the Quality of Medicines & HealthCare (EDQM) to establish one or more non-adsorbed inactivated hepatitis A vaccine reference preparation(s) as working standard(s), calibrated against the 1st International Standard (IS), for the in vitro potency assay (ELISA) of all vaccines present on the European market. Four non-adsorbed liquid preparations of formalin-inactivated hepatitis A antigen with a known antigen content were obtained from 3 manufacturers as candidate Biological Reference Preparations (BRPs). Thirteen laboratories participated in the collaborative study. They were asked to use an in vitro ELISA method adapted from a commercially available kit for the detection of antibodies to hepatitis A virus. In-house validated assays were to be run in parallel, where available. Some participants also included commercially available hepatitis A vaccines in the assays, after appropriate desorption. During the collaborative study, several participants using the standard method were faced with problems with some of the most recent lots of the test kits. Due to these problems, the standard method did not perform satisfactorily and a high number of assays were invalid, whereas the in-house methods appeared to perform better. Despite this, the overall mean results of the valid assays using both methods were in agreement. Nonetheless, it was decided to base the assignment of the potency values on the in-house methods only. The results showed that all candidate BRPs were suitable for the intended purpose. However, based on availability of the material and on the results of end-product testing, 2 candidate reference preparations, Samples C and D, were selected. Both were from the same batch but filled on different days; no statistically significant difference in potency was observed. They were thus combined in 1 single batch. The candidate preparation (Sample C/D) was adopted at the June 2009 session of the European Pharmacopoeia (Ph. Eur.) Commission as the Ph. Eur. BRP batch 1 for hepatitis A vaccine (inactivated, non-adsorbed), with an assigned potency of 12 IU/ml for in vitro antigen content assays. Accelerated degradation studies have been initiated. The preliminary data show that the BRP is stable at the recommended storage temperature (< -50 degrees C). The BRP will be monitored at regular intervals throughout its lifetime.
Nickerson, Beverly; Harrington, Brent; Li, Fasheng; Guo, Michele Xuemei
2017-11-30
Drug product assay is one of several tests required for new drug products to ensure the quality of the product at release and throughout the life cycle of the product. Drug product assay testing is typically performed by preparing a composite sample of multiple dosage units to obtain an assay value representative of the batch. In some cases replicate composite samples may be prepared and the reportable assay value is the average value of all the replicates. In previously published work by Harrington et al. (2014) [5], a sample preparation composite and replicate strategy for assay was developed to provide a systematic approach which accounts for variability due to the analytical method and dosage form with a standard error of the potency assay criteria based on compendia and regulatory requirements. In this work, this sample preparation composite and replicate strategy for assay is applied to several case studies to demonstrate the utility of this approach and its application at various stages of pharmaceutical drug product development. Copyright © 2017 Elsevier B.V. All rights reserved.
The murine local lymph node assay: regulatory and potency considerations under REACH.
McGarry, Helen F
2007-09-05
From June 2007, new chemicals legislation on the registration, evaluation, authorization and restriction of chemicals (REACH) will come into force across the European Union. This will require the submission of data on human health effects of chemicals, including chemical safety assessments which will require measurements of potency. For skin sensitization hazard identification, REACH states that the first-choice in vivo assay is the local lymph node assay (LLNA). This test has also been the UK competent authority's preferred test for skin sensitization since 2002, and has now replaced guinea pig tests in dossiers submitted to it under the Notification of New Substances Regulations. Advantages of the LLNA over guinea pig tests include improvements in animal welfare, a more scientific approach to hazard identification, and the inclusion of a dose-response element in the endpoint, which enables an estimation of potency. However, notifiers to the UK competent authority have sometimes been reluctant to use the assay because of concerns over false-positive reactions. Across Europe, these concerns have been heightened in the lead-up to the introduction of REACH, since the use of in vivo alternatives to the LLNA will require scientific justification. This review will address some of these concerns from a regulatory perspective.
Dozier, Samantha; Brown, Jeffrey; Currie, Alistair
2011-11-29
In recent years, technologically advanced high-throughput techniques have been developed that replace, reduce or refine animal use in vaccine quality control tests. Following validation, these tests are slowly being accepted for use by international regulatory authorities. Because regulatory acceptance itself has not guaranteed that approved humane methods are adopted by manufacturers, various organizations have sought to foster the preferential use of validated non-animal methods by interfacing with industry and regulatory authorities. After noticing this gap between regulation and uptake by industry, we began developing a paradigm that seeks to narrow the gap and quicken implementation of new replacement, refinement or reduction guidance. A systematic analysis of our experience in promoting the transparent implementation of validated non-animal vaccine potency assays has led to the refinement of our paradigmatic process, presented here, by which interested parties can assess the local regulatory acceptance of methods that reduce animal use and integrate them into quality control testing protocols, or ensure the elimination of peripheral barriers to their use, particularly for potency and other tests carried out on production batches.
Quantitative relationship between the local lymph node assay and human skin sensitization assays.
Schneider, K; Akkan, Z
2004-06-01
The local lymph node assay (LLNA) is a new test method which allows for the quantitative assessment of sensitizing potency in the mouse. Here, we investigate the quantitative correlation between results from the LLNA and two human sensitization tests--specifically, human repeat insult patch tests (HRIPTs) and human maximization tests (HMTs). Data for 57 substances were evaluated, of which 46 showed skin sensitizing properties in human tests, whereas 11 yielded negative results in humans. For better comparability data from mouse and human tests were transformed to applied doses per skin area, which ranged over four orders of magnitude for the substances considered. Regression analysis for the 46 human sensitizing substances revealed a significant positive correlation between the LLNA and human tests. The correlation was better between LLNA and HRIPT data (n=23; r=0.77) than between LLNA and HMT data (n=38; r=0.65). The observed scattering of data points is related to various uncertainties, in part associated with insufficiencies of data from older HMT studies. Predominantly negative results in the LLNA for another 11 substances which showed no skin sensitizing activity in human maximization tests further corroborate the correspondence between LLNA and human tests. Based on this analysis, the LLNA can be considered a reliable basis for relative potency assessments for skin sensitizers. Proposals are made for the regulatory exploitation of the LLNA: four potency groups can be established, and assignment of substances to these groups according to the outcome of the LLNA can be used to characterize skin sensitizing potency in substance-specific assessments. Moreover, based on these potency groups, a more adequate consideration of sensitizing substances in preparations becomes possible. It is proposed to replace the current single concentration limit for skin sensitizers in preparations, which leads to an all or nothing classification of a preparation as sensitizing to skin ("R43") in the European Union, by differentiated concentration limits derived from the limits for the four potency groups.
Estimating skin sensitization potency from a single dose LLNA.
Roberts, David W
2015-04-01
Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990 s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA. Copyright © 2015 Elsevier Inc. All rights reserved.
2014-01-01
Background Due to the recent European legislations posing a ban of animal tests for safety assessment within the cosmetic industry, development of in vitro alternatives for assessment of skin sensitization is highly prioritized. To date, proposed in vitro assays are mainly based on single biomarkers, which so far have not been able to classify and stratify chemicals into subgroups, related to risk or potency. Methods Recently, we presented the Genomic Allergen Rapid Detection (GARD) assay for assessment of chemical sensitizers. In this paper, we show how the genome wide readout of GARD can be expanded and used to identify differentially regulated pathways relating to individual chemical sensitizers. In this study, we investigated the mechanisms of action of a range of skin sensitizers through pathway identification, pathway classification and transcription factor analysis and related this to the reactive mechanisms and potency of the sensitizing agents. Results By transcriptional profiling of chemically stimulated MUTZ-3 cells, 33 canonical pathways intimately involved in sensitization to chemical substances were identified. The results showed that metabolic processes, cell cycling and oxidative stress responses are the key events activated during skin sensitization, and that these functions are engaged differently depending on the reactivity mechanisms of the sensitizing agent. Furthermore, the results indicate that the chemical reactivity groups seem to gradually engage more pathways and more molecules in each pathway with increasing sensitizing potency of the chemical used for stimulation. Also, a switch in gene regulation from up to down regulation, with increasing potency, was seen both in genes involved in metabolic functions and cell cycling. These observed pathway patterns were clearly reflected in the regulatory elements identified to drive these processes, where 33 regulatory elements have been proposed for further analysis. Conclusions This study demonstrates that functional analysis of biomarkers identified from our genomics study of human MUTZ-3 cells can be used to assess sensitizing potency of chemicals in vitro, by the identification of key cellular events, such as metabolic and cell cycling pathways. PMID:24517095
Suzuki, G; Nakamura, M; Michinaka, C; Tue, N M; Handa, H; Takigami, H
2017-10-01
In vitro reporter gene assays detecting dioxin-like compounds have been developed and validated since the middle 1990's, and applied to the determination of dioxin-like activities in various samples for their risk management. Data on characterizing the potency of individual brominated dioxins and their activity in mixture with chlorinated dioxins are still limited on the cell-based assay. This study characterized the dioxin-like activities of the 32 brominated dioxins, such as polybrominated dibenzo-p-dioxins, polybrominated dibenzofurans (PBDFs), coplanar polybrominated biphenyls, mixed halogenated dibenzo-p-dioxins and dibenzofurans (PXDFs), as a sole component or in a mixture by DR-CALUX (dioxin-responsive chemically activated luciferase expression) using the rat hepatoma H4IIE cell line and XDS-CALUX (xenobiotic detection systems-chemically activated luciferase expression) assays using the mouse hepatoma H1L6.1 cell line. The 2,3,7,8-TCDD-relative potencies (REPs) of most of the brominated dioxins were within a factor of 10 of the WHO toxicity equivalency factor (WHO-TEF) for the chlorinated analogues. The REPs of a few PXDFs were an order of magnitude higher than the corresponding WHO-TEFs, indicating their toxicological importance. Results with reconstituted mixtures suggest that the activity of brominated and chlorinated dioxins in both CALUX assays was dose-additive. Thus, obtained results indicated the applicability of the CALUX assays as screening tools of brominated dioxins together with their chlorinated analogues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Torii, Yasushi; Goto, Yoshitaka; Nakahira, Shinji; Ginnaga, Akihiro
2014-11-01
The biological activity of botulinum toxin type A has been evaluated using the mouse intraperitoneal (ip) LD50 test. This method requires a large number of mice to precisely determine toxin activity, and, as such, poses problems with regard to animal welfare. We previously developed a compound muscle action potential (CMAP) assay using rats as an alternative method to the mouse ip LD50 test. In this study, to evaluate this quantitative method of measuring toxin activity using CMAP, we assessed the parameters necessary for quantitative tests according to ICH Q2 (R1). This assay could be used to evaluate the activity of the toxin, even when inactive toxin was mixed with the sample. To reduce the number of animals needed, this assay was set to measure two samples per animal. Linearity was detected over a range of 0.1-12.8 U/mL, and the measurement range was set at 0.4-6.4 U/mL. The results for accuracy and precision showed low variability. The body weight was selected as a variable factor, but it showed no effect on the CMAP amplitude. In this study, potency tests using the rat CMAP assay of botulinum toxin type A demonstrated that it met the criteria for a quantitative analysis method. Copyright © 2014 Elsevier Ltd. All rights reserved.
A new ELISA for determination of potency in snake antivenoms.
Rial, A; Morais, V; Rossi, S; Massaldi, H
2006-09-15
A competitive ELISA for potency determination of bothropic equine antivenom was developed and compared to the conventional in vivo ED(50) assay, with the aim of partially substituting the in vivo assay in the monitoring of antivenom immunoglobulin levels. On this purpose, blood samples were taken at different times during and after the immunization protocol of the lot of horses used for production of snake antivenom at the Instituto de Higiene, Uruguay. Both the competitive ELISA and the ED(50) assay were performed on those samples. In addition, a group of five commercial pepsin-digested antivenoms were tested by both methods. A significant (P<0.001) correlation (Pearson's r=0.957) was found between the ELISA titres and the corresponding ED(50) values, indicating that the in vitro test can estimate the neutralizing antibody capacity of the sera as well as the in vivo assay. By means of this new ELISA, it was found that the immunized animals maintained good venom antibody titres, in the order of 20-50% of the maximum achieved, even 10 month after the end of the immunization schedule. The main advantage of our ELISA design is its ability to correctly estimate the neutralization capacity of crude hyperimmune plasma and antivenom sera independently of their antibody composition in terms of whole IgG or F(ab')(2) fragment.
Prezoto, B C; Tanaka-Azevedo, A M; Marcelino, J R; Tashima, A K; Nishiduka, E S; Kapronezai, J; Mota, J O; Rocha, M M T; Serino-Silva, C; Oguiura, N
2018-06-15
The assessment of the capacity of antivenoms to neutralize the lethal activity of snake venoms still relies on traditional rodent in vivo lethality assay. ED 50 and LD 50 assays require large quantities of venoms and antivenoms, and besides leading to animal suffering. Therefore, in vitro tests should be introduced for assessing antivenom neutralizing capacity in intermediary steps of antivenom production. This task is facilitated when one key lethal toxin is identified. A good example is crotoxin, a β-neurotoxin phospholipase A 2 -like toxin that presents anticoagulant activity in vitro and is responsible for the lethality of venoms of Crotalus durissus snakes. By using rotational thromboelastometry, we reported recently one sensitive coagulation assay for assessing relative potency of the anti-bothropic serum in neutralizing procoagulant activity of Bothrops jararaca venom upon recalcified factor-XII-deficient chicken plasma samples (CPS). In this study, we stablished conditions for determining relative potency of four batches of the anti-crotalic serum (ACS) (antagonist) in inactivating crotoxin anticoagulant activity in CPS (target) simultaneously treated with one classical activator of coagulation (agonists). The correlation coefficient (r) between values related the ACS potency in inactivating both in vitro crotoxin anticoagulant activity and the in vivo lethality of whole venom (ED 50 ) was 0.94 (p value < 0.05). In conclusion, slowness in spontaneous thrombin/fibrin generation even after recalcification elicit time lapse sufficient for elaboration of one dose-response curve to pro- or anti-coagulant agonists in CPS. We propose this methodology as an alternative and sensitive assay for assessing antivenom neutralizing ability in plasma of immunized horses as well as for in-process quality control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ricin detection: tracking active toxin.
Bozza, William P; Tolleson, William H; Rivera Rosado, Leslie A; Zhang, Baolin
2015-01-01
Ricin is a plant toxin with high bioterrorism potential due to its natural abundance and potency in inducing cell death. Early detection of the active toxin is essential for developing appropriate countermeasures. Here we review concepts for designing ricin detection methods, including mechanism of action of the toxin, advantages and disadvantages of current detection assays, and perspectives on the future development of rapid and reliable methods for detecting ricin in environmental samples. Published by Elsevier Inc.
EDQM biological reference preparation for rabies vaccine (inactivated) for veterinary use.
Daas, A; Bruckner, L; Milne, C
2015-01-01
Rabies is a deadly zoonotic disease. Control of rabies in animals by vaccination is an important strategy to protect humans from infection and control the spread of the disease. Requirements for the quality control of rabies vaccines (inactivated) for veterinary use include an in vivo quantitative potency determination as outlined in the Ph. Eur. monograph 0451. Performance of this assay requires a reference preparation calibrated in International Units (IU). A European Pharmacopeia (Ph. Eur.) Biological Reference Preparation (BRP) for rabies vaccines (inactivated) for veterinary use, calibrated in IU, has been established for this purpose. Due to the dwindling stocks of the current batch (batch 4) of Ph. Eur. BRP for rabies vaccines (inactivated) for veterinary use, a collaborative study was run as part of the EDQM Biological Standardisation Programme to establish BRP batch 5. Ten laboratories, including Official Medicines Control Laboratories and manufacturers, participated. The candidate BRP5 was assayed against the 6(th) International Standard for rabies vaccine using the in vivo vaccination-challenge assay (monograph 0451) to assign a potency value. The candidate was also compared to BRP batch 4 to establish continuity. Taking into account the results from the comparisons a potency of 10 IU/vial was assigned and in March 2015 the Ph. Eur. Commission adopted the material as Ph. Eur. BRP for rabies vaccines (inactivated) for veterinary use batch 5. In addition to the in vivo assay 3 laboratories tested the candidate material using their in-house in vitro assays for information.
Liu, Qingsong; Kirubakaran, Sivapriya; Hur, Wooyoung; Niepel, Mario; Westover, Kenneth; Thoreen, Carson C; Wang, Jinhua; Ni, Jing; Patricelli, Matthew P; Vogel, Kurt; Riddle, Steve; Waller, David L; Traynor, Ryan; Sanda, Takaomi; Zhao, Zheng; Kang, Seong A; Zhao, Jean; Look, A Thomas; Sorger, Peter K; Sabatini, David M; Gray, Nathanael S
2012-03-23
An intensive recent effort to develop ATP-competitive mTOR inhibitors has resulted in several potent and selective molecules such as Torin1, PP242, KU63794, and WYE354. These inhibitors are being widely used as pharmacological probes of mTOR-dependent biology. To determine the potency and specificity of these agents, we have undertaken a systematic kinome-wide effort to profile their selectivity and potency using chemical proteomics and assays for enzymatic activity, protein binding, and disruption of cellular signaling. Enzymatic and cellular assays revealed that all four compounds are potent inhibitors of mTORC1 and mTORC2, with Torin1 exhibiting ∼20-fold greater potency for inhibition of Thr-389 phosphorylation on S6 kinases (EC(50) = 2 nM) relative to other inhibitors. In vitro biochemical profiling at 10 μM revealed binding of PP242 to numerous kinases, although WYE354 and KU63794 bound only to p38 kinases and PI3K isoforms and Torin1 to ataxia telangiectasia mutated, ATM and Rad3-related protein, and DNA-PK. Analysis of these protein targets in cellular assays did not reveal any off-target activities for Torin1, WYE354, and KU63794 at concentrations below 1 μM but did show that PP242 efficiently inhibited the RET receptor (EC(50), 42 nM) and JAK1/2/3 kinases (EC(50), 780 nM). In addition, Torin1 displayed unusually slow kinetics for inhibition of the mTORC1/2 complex, a property likely to contribute to the pharmacology of this inhibitor. Our results demonstrated that, with the exception of PP242, available ATP-competitive compounds are highly selective mTOR inhibitors when applied to cells at concentrations below 1 μM and that the compounds may represent a starting point for medicinal chemistry efforts aimed at developing inhibitors of other PI3K kinase-related kinases.
Otitis-Prone Children Produce Functional Antibodies to Pneumolysin and Pneumococcal Polysaccharides.
Kirkham, Lea-Ann S; Wiertsema, Selma P; Corscadden, Karli J; Mateus, Tulia; Mullaney, Gemma L; Zhang, Guicheng; Richmond, Peter C; Thornton, Ruth B
2017-03-01
The pneumococcus is a major otitis media (OM) pathogen, but data are conflicting regarding whether otitis-prone children have impaired humoral immunity to pneumococcal antigens. We and others have shown that otitis-prone and healthy children have similar antibody titers to pneumococcal proteins and polysaccharides (vaccine and nonvaccine types); however, the quality of antibodies from otitis-prone children has not been investigated. Antibody function, rather than titer, is considered to be a better correlate of protection from pneumococcal disease. Therefore, we compared the capacities of antibodies from otitis-prone (cases) and healthy (controls) children to neutralize pneumolysin, the pneumococcal toxin currently in development as a vaccine antigen, and to opsonize pneumococcal vaccine and nonvaccine serotypes. A pneumolysin neutralization assay was conducted on cholesterol-depleted complement-inactivated sera from 165 cases and 61 controls. A multiplex opsonophagocytosis assay (MOPA) was conducted on sera from 20 cases and 20 controls. Neutralizing and opsonizing titers were calculated with antigen-specific IgG titers to determine antibody potency for pneumolysin, pneumococcal conjugate vaccine (PCV) polysaccharides, and non-PCV polysaccharides. There was no significant difference in antibody potencies between cases and controls for the antigens tested. Antipneumolysin neutralizing titers increased with the number of episodes of acute OM, but antibody potency did not. Pneumolysin antibody potency was lower in children colonized with pneumococci than in noncarriers, and this was significant for the otitis-prone group ( P < 0.05). The production of functional antipneumococcal antibodies in otitis-prone children demonstrates that they respond to the current PCV and are likely to respond to pneumolysin-based vaccines as effectively as healthy children. Copyright © 2017 Kirkham et al.
Tong, Fan; Islam, Rafique M.; Carlier, Paul R.; Ma, Ming; Ekström, Fredrik; Bloomquist, Jeffrey R.
2013-01-01
Conventional insecticides targeting acetylcholinesterase (AChE) typically show high mammalian toxicities and because there is resistance to these compounds in many insect species, alternatives to established AChE inhibitors used for pest control are needed. Here we used a fluorescence method to monitor interactions between various AChE inhibitors and the AChE peripheral anionic site, which is a novel target for new insecticides acting on this enzyme. The assay uses thioflavin-T as a probe, which binds to the peripheral anionic site of AChE and yields an increase in fluorescent signal. Three types of AChE inhibitors were studied: catalytic site inhibitors (carbamate insecticides, edrophonium, and benzylpiperidine), peripheral site inhibitors (tubocurarine, ethidium bromide, and propidium iodide), and bivalent inhibitors (donepezil, BW284C51, and a series of bis(n)-tacrines). All were screened on murine AChE to compare and contrast changes of peripheral site conformation in the TFT assay with catalytic inhibition. All the inhibitors reduced thioflavin-T fluorescence in a concentration-dependent manner with potencies (IC50) ranging from 8 nM for bis(6)-tacrine to 159 μM for benzylpiperidine. Potencies in the fluorescence assay were correlated well with their potencies for enzyme inhibition (R2 = 0.884). Efficacies for reducing thioflavin-T fluorescence ranged from 23–36% for catalytic site inhibitors and tubocurarine to near 100% for ethidium bromide and propidium iodide. Maximal efficacies could be reconciled with known mechanisms of interaction of the inhibitors with AChE. When extended to pest species, we anticipate these findings will assist in the discovery and development of novel, selective bivalent insecticides acting on AChE. PMID:24003261
The mutagenic potency of ambient air PM in the Salmonella mutagenicity assay (rev/mg PM) varies only ~1 order of magnitude worldwide; however, the mutagenic potency of the air itself (rev/m3 of air) varies ~5 orders of magnitude (IARC Monograph Vol 109, 2016). Thus, the componen...
Establishment of hepatitis A vaccine (inactivated, non-adsorbed) BRP batches 2 and 3.
Morgeaux, S; Manniam, I; Variot, P; Buchheit, K H; Daas, A; Wierer, M; Costanzo, A
2015-01-01
The current hepatitis A vaccine (HAV), inactivated, non-adsorbed, European Pharmacopoeia (Ph. Eur.) Biological Reference Preparation (BRP) is used for the in vitro potency assay of HAV as prescribed by the Ph. Eur. general chapter 2.7.14 Assay of hepatitis A vaccine. This reference preparation was calibrated in 2008 through an international collaborative study and was assigned a potency of 12 IU/mL. During use of this BRP it appeared to be inapplicable in certain cases due to a low nominal antigen content. Consequently, the European Directorate for the Quality of Medicines and HealthCare (EDQM) established replacement batches for this BRP, calibrated against the 1(st) WHO International Standard (IS) for HAV (inactivated), using the standard in vitro ELISA (enzyme-linked immunosorbent assay) method validated previously. The results of the study showed that the candidate BRPs were suitable for the intended purpose, and following completion of the study, they were adopted in November 2014 by the Ph. Eur. Commission as HAV (inactivated, non-adsorbed) BRP batches 2 and 3, with an assigned potency of 1350 IU/mL, for in vitro antigen content determination by ELISA. As the amount of material in each vial largely exceeds the amount required for the performance of a single assay, the BRPs are to be aliquoted by users as single-use aliquots and refrozen below -50 °C prior to their use as reference preparations.
Zheng, Suqing; Santosh Laxmi, Y R; David, Emilie; Dinkova-Kostova, Albena T; Shiavoni, Katherine H; Ren, Yanqing; Zheng, Ying; Trevino, Isaac; Bumeister, Ronald; Ojima, Iwao; Wigley, W Christian; Bliska, James B; Mierke, Dale F; Honda, Tadashi
2012-05-24
Novel monocyclic cyanoenones examined to date display unique features regarding chemical reactivity as Michael acceptors and biological potency. Remarkably, in some biological assays, the simple structure is more potent than pentacyclic triterpenoids (e.g., CDDO and bardoxolone methyl) and tricycles (e.g., TBE-31). Among monocyclic cyanoenones, 1 is a highly reactive Michael acceptor with thiol nucleophiles. Furthermore, an important feature of 1 is that its Michael addition is reversible. For the inhibition of NO production, 1 shows the highest potency. Notably, its potency is about three times higher than CDDO, whose methyl ester (bardoxolone methyl) is presently in phase III clinical trials. For the induction of NQO1, 1 also demonstrated the highest potency. These results suggest that the reactivity of these Michael acceptors is closely related to their biological potency. Interestingly, in LPS-stimulated macrophages, 1 causes apoptosis and inhibits secretion of TNF-α and IL-1β with potencies that are higher than those of bardoxolone methyl and TBE-31.
Pharmacological characterization of a fluorescent uptake assay for the noradrenaline transporter.
Haunsø, Anders; Buchanan, Dawn
2007-04-01
The noradrenaline transporter (NET) is a Na(+)/Cl(-) dependent monoamine transporter that mediates rapid clearance of noradrenaline from the synaptic cleft, thereby terminating neuronal signaling. NET is an important target for drug development and is known to be modulated by many psychoactive compounds, including psychostimulants and antidepressants. Here, the authors describe the development and pharmacological characterization of a nonhomogeneous fluorescent NET uptake assay using the compound 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP(+)). Data presented show that the pharmacology of both the classic radiolabeled (3)H-noradrenaline- and ASP(+)-based uptake assays are comparable, with an excellent correlation between potency obtained for known modulators of NET (r = 0.95, p < 0.0001). Furthermore, the fluorescent uptake assay is highly reproducible and has sufficiently large Z' values to be amenable for high-throughput screening (HTS). The advantage of this assay is compatibility with both 96- and 384-well formats and lack of radioactivity usage. Thus, the authors conclude that the assay is an inexpensive, viable approach for the identification and pharmacological profiling of small-molecule modulators of the monoamine transporter NET and may be amenable for HTS.
Soncin, Sabrina; Lo Cicero, Viviana; Astori, Giuseppe; Soldati, Gianni; Gola, Mauro; Sürder, Daniel; Moccetti, Tiziano
2009-09-08
Main scope of the EU and FDA regulations is to establish a classification criterion for advanced therapy medicinal products (ATMP). Regulations require that ATMPs must be prepared under good manufacturing practice (GMP). We have validated a commercial system for the determination of bacterial endotoxins in compliance with EU Pharmacopoeia 2.6.14, the sterility testing in compliance with EU Pharmacopoeia 2.6.1 and a potency assay in an ATMP constituted of mononucleated cells used in cardiac regeneration. For the potency assay, cells were placed in the upper part of a modified Boyden chamber containing Endocult Basal Medium with supplements and transmigrated cells were scored. The invasion index was expressed as the ratio between the numbers of invading cells relative to cell migration through a control insert membrane. For endotoxins, we used a commercially available system based on the kinetic chromogenic LAL-test. Validation of sterility was performed by direct inoculation of TSB and FTM media with the cell product following Eu Ph 2.6.1 guideline. The calculated MVD and endotoxin limit were 780x and 39 EU/ml respectively. The 1:10 and 1:100 dilutions were selected for the validation. For sterility, all the FTM cultures were positive after 3 days. For TSB cultures, Mycetes and B. subtilis were positive after 5 and 3 days respectively. The detection limit was 1-10 colonies. A total of four invasion assay were performed: the calculated invasion index was 28.89 +/- 16.82% (mean +/- SD). We have validated a strategy for endotoxin, sterility and potency testing in an ATMP used in cardiac regeneration. Unlike pharmaceutical products, many stem-cell-based products may originate in hospitals where personnel are unfamiliar with the applicable regulations. As new ATMPs are developed, the regulatory framework is likely to evolve. Meanwhile, existing regulations provide an appropriate structure for ensuring the safety and efficacy of the next generation of ATMPs. Personnel must be adequately trained on relevant methods and their application to stem-cell-based products.
Schmitt, Martin L; Ladwein, Kathrin I; Carlino, Luca; Schulz-Fincke, Johannes; Willmann, Dominica; Metzger, Eric; Schilcher, Pierre; Imhof, Axel; Schüle, Roland; Sippl, Wolfgang; Jung, Manfred
2014-07-01
Posttranslational modifications of histone tails are very important for epigenetic gene regulation. The lysine-specific demethylase LSD1 (KDM1A/AOF2) demethylates in vitro predominantly mono- and dimethylated lysine 4 on histone 3 (H3K4) and is a promising target for drug discovery. We report a heterogeneous antibody-based assay, using dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) for the detection of LSD1 activity. We used a biotinylated histone 3 peptide (amino acids 1-21) with monomethylated lysine 4 (H3K4me) as the substrate for the detection of LSD1 activity with antibody-mediated quantitation of the demethylated product. We have successfully used the assay to measure the potency of reference inhibitors. The advantage of the heterogeneous format is shown with cumarin-based LSD1 inhibitor candidates that we have identified using virtual screening. They had shown good potency in an established LSD1 screening assay. The new heterogeneous assay identified them as false positives, which was verified using mass spectrometry. © 2014 Society for Laboratory Automation and Screening.
Popa-Burke, Ioana G; Issakova, Olga; Arroway, James D; Bernasconi, Paul; Chen, Min; Coudurier, Louis; Galasinski, Scott; Jadhav, Ajit P; Janzen, William P; Lagasca, Dennis; Liu, Darren; Lewis, Roderic S; Mohney, Robert P; Sepetov, Nikolai; Sparkman, Darren A; Hodge, C Nicholas
2004-12-15
As part of an overall systems approach to generating highly accurate screening data across large numbers of compounds and biological targets, we have developed and implemented streamlined methods for purifying and quantitating compounds at various stages of the screening process, coupled with automated "traditional" storage methods (DMSO, -20 degrees C). Specifically, all of the compounds in our druglike library are purified by LC/MS/UV and are then controlled for identity and concentration in their respective DMSO stock solutions by chemiluminescent nitrogen detection (CLND)/evaporative light scattering detection (ELSD) and MS/UV. In addition, the compound-buffer solutions used in the various biological assays are quantitated by LC/UV/CLND to determine the concentration of compound actually present during screening. Our results show that LC/UV/CLND/ELSD/MS is a widely applicable method that can be used to purify, quantitate, and identify most small organic molecules from compound libraries. The LC/UV/CLND technique is a simple and sensitive method that can be easily and cost-effectively employed to rapidly determine the concentrations of even small amounts of any N-containing compound in aqueous solution. We present data to establish error limits for concentration determination that are well within the overall variability of the screening process. This study demonstrates that there is a significant difference between the predicted amount of soluble compound from stock DMSO solutions following dilution into assay buffer and the actual amount present in assay buffer solutions, even at the low concentrations employed for the assays. We also demonstrate that knowledge of the concentrations of compounds to which the biological target is exposed is critical for accurate potency determinations. Accurate potency values are in turn particularly important for drug discovery, for understanding structure-activity relationships, and for building useful empirical models of protein-ligand interactions. Our new understanding of relative solubility demonstrates that most, if not all, decisions that are made in early discovery are based upon missing or inaccurate information. Finally, we demonstrate that careful control of compound handling and concentration, coupled with accurate assay methods, allows the use of both positive and negative data in analyzing screening data sets for structure-activity relationships that determine potency and selectivity.
Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans
2010-01-01
N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375
Hsu, M C; Hsu, P W
1992-01-01
A reversed-phase column liquid chromatographic method was developed for the assay of amoxicillin and its preparations. The linear calibration range was 0.2 to 2.0 mg/ml (r = 0.9998), and recoveries were generally greater than 99%. The high-performance liquid chromatographic assay results were compared with those obtained from a microbiological assay of bulk drug substance and capsule, injection, and granule formulations containing amoxicillin and degraded amoxicillin. At the 99% confidence level, no significant intermethod differences were noted for the paired results. Commercial formulations were also analyzed, and the results obtained by the proposed method closely agreed with those found by the microbiological method. The results indicated that the proposed method is a suitable substitute for the microbiological method for assays and stability studies of amoxicillin preparations. PMID:1416827
Karri, Venkatanaidu; Kumar, Vikas; Ramos, David; Oliveira, Eliandre; Schuhmacher, Marta
2018-07-01
Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC 10 -IC 30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.
Lu, Senlin; Duffin, Rodger; Poland, Craig; Daly, Paul; Murphy, Fiona; Drost, Ellen; Macnee, William; Stone, Vicki; Donaldson, Ken
2009-02-01
There has been concern regarding risks from inhalation exposure to nanoparticles (NPs). The large number of particles requiring testing means that alternative approaches to animal testing are needed. We set out to determine whether short-term in vitro assays that assess intrinsic oxidative stress potential and membrane-damaging potency of a panel of metal oxide NPs can be used to predict their inflammogenic potency. For a panel of metal oxide NPs, we investigated intrinsic free radical generation, oxidative activity in an extracellular environment, cytotoxicity to lung epithelial cells, hemolysis, and inflammation potency in rat lungs. All exposures were carried out at equal surface area doses. Only nickel oxide (NiO) and alumina 2 caused significant lung inflammation when instilled into rat lungs at equal surface area, suggesting that these two had extra surface reactivity. We observed significant free radical generation with 4 of 13 metal oxides, only one of which was inflammogenic. Only 3 of 13 were significantly hemolytic, two of which were inflammogenic. Potency in generating free radicals in vitro did not predict inflammation, whereas alumina 2 had no free radical activity but was inflammogenic. The hemolysis assay was correct in predicting the proinflammatory potential of 12 of 13 of the particles examined. Using a battery of simple in vitro tests, it is possible to predict the inflammogenicity of metal oxide NPs, although some false-positive results are likely. More research using a larger panel is needed to confirm the efficacy and generality of this approach for metal oxide NPs.
Skin sensitisation, vehicle effects and the local lymph node assay.
Basketter, D A; Gerberick, G F; Kimber, I
2001-06-01
Accurate risk assessment in allergic contact dermatitis is dependent on the successful prospective identification of chemicals which possess the ability to behave as skin sensitisers, followed by appropriate measurement of the relative ability to cause sensitisation; their potency. Tools for hazard identification have been available for many years; more recently, a novel approach to the quantitative assessment of potency--the derivation of EC3 values in the local lymph node assay (LLNA)--has been described. It must be recognised, however, that these evaluations of chemical sensitisers also may be affected by the vehicle matrix in which skin exposure occurs. In this article, our knowledge of this area is reviewed and potential mechanisms through which vehicle effects may occur are detailed. Using the LLNA as an example, it is demonstrated that the vehicle may have little impact on the accuracy of basic hazard identification; the data also therefore support the view that testing ingredients in specific product formulations is not warranted for hazard identification purposes. However, the effect on potency estimations is of greater significance. Although not all chemical allergens are affected similarly, for certain substances a greater than 10-fold vehicle-dependent change in potency is observed. Such data are vital for accurate risk assessment. Unfortunately, it does not at present appear possible to predict notionally the effect of the vehicle matrix on skin sensitising potency without recourse to direct testing, for example by estimation of LLNA EC3 data, which provides a valuable tool for this purpose.
Graphical method for comparative statistical study of vaccine potency tests.
Pay, T W; Hingley, P J
1984-03-01
Producers and consumers are interested in some of the intrinsic characteristics of vaccine potency assays for the comparative evaluation of suitable experimental design. A graphical method is developed which represents the precision of test results, the sensitivity of such results to changes in dosage, and the relevance of the results in the way they reflect the protection afforded in the host species. The graphs can be constructed from Producer's scores and Consumer's scores on each of the scales of test score, antigen dose and probability of protection against disease. A method for calculating these scores is suggested and illustrated for single and multiple component vaccines, for tests which do or do not employ a standard reference preparation, and for tests which employ quantitative or quantal systems of scoring.
Arylimidamide-Azole Combinations Against Leishmaniasis
2015-09-01
potency of posaconazole in an amastigote macrophage assay2, the only azole to demonstrate activity in vitro against CL species, showed variable activity ...ranging from no activity observed against L. panamensis and L. guyanensis to modest activity against L. tropica to potent activity against L. major...species, and the potency is variable; while posaconazole is active against Old World CL species such as L. major and L. tropica it is not active
Alcohol's Effects on Lipid Bilayer Properties
Ingólfsson, Helgi I.; Andersen, Olaf S.
2011-01-01
Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475
Momentum has been growing in Toxicology to assess the utility of high-throughput screening (HTS) assays in the determination of chemical testing priorities. However, in vitro potencies determined in these assays do not consider in vivo bioavailability, clearance or exposure estim...
Johnson, George E.; Battaion, Hannah L.; Slob, Wout; Gollapudi, B.
2017-01-01
There is growing interest in quantitative analysis of in vivo genetic toxicity dose‐response data, and use of point‐of‐departure (PoD) metrics such as the benchmark dose (BMD) for human health risk assessment (HHRA). Currently, multiple transgenic rodent (TGR) assay variants, employing different rodent strains and reporter transgenes, are used for the assessment of chemically‐induced genotoxic effects in vivo. However, regulatory issues arise when different PoD values (e.g., lower BMD confidence intervals or BMDLs) are obtained for the same compound across different TGR assay variants. This study therefore employed the BMD approach to examine the ability of different TGR variants to yield comparable genotoxic potency estimates. Review of over 2000 dose‐response datasets identified suitably‐matched dose‐response data for three compounds (ethyl methanesulfonate or EMS, N‐ethyl‐N‐nitrosourea or ENU, and dimethylnitrosamine or DMN) across four commonly‐used murine TGR variants (Muta™Mouse lacZ, Muta™Mouse cII, gpt delta and BigBlue® lacI). Dose‐response analyses provided no conclusive evidence that TGR variant choice significantly influences the derived genotoxic potency estimate. This conclusion was reliant upon taking into account the importance of comparing BMD confidence intervals as opposed to directly comparing PoD values (e.g., comparing BMDLs). Comparisons with earlier works suggested that with respect to potency determination, tissue choice is potentially more important than choice of TGR assay variant. Scoring multiple tissues selected on the basis of supporting toxicokinetic information is therefore recommended. Finally, we used typical within‐group variances to estimate preliminary endpoint‐specific benchmark response (BMR) values across several TGR variants/tissues. We discuss why such values are required for routine use of genetic toxicity PoDs for HHRA. Environ. Mol. Mutagen. 58:632–643, 2017. © 2017 Her Majesty the Queen in Right of Canada. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:28945287
Konduru, Krishnamurthy; Virata-Theimer, Maria Luisa; Yu, Mei-ying W; Kaplan, Gerardo G
2008-01-01
Background Hepatitis A virus (HAV), the causative agent of acute hepatitis in humans, is an atypical Picornaviridae that grows poorly in cell culture. HAV titrations are laborious and time-consuming because the virus in general does not cause cytopathic effect and is detected by immunochemical or molecular probes. Simple HAV titration assays could be developed using currently available viral construct containing selectable markers. Results We developed an antibiotic resistance titration assay (ARTA) based on the infection of human hepatoma cells with a wild type HAV construct containing a blasticidin (Bsd) resistance gene. Human hepatoma cells infected with the HAV-Bsd construct survived selection with 2 μg/ml of blasticidin whereas uninfected cells died within a few days. At 8 days postinfection, the color of the pH indicator phenol red in cell culture media correlated with the presence of HAV-Bsd-infected blasticidin-resistant cells: an orange-to-yellow color indicated the presence of growing cells whereas a pink-to-purple color indicated that the cells were dead. HAV-Bsd titers were determined by an endpoint dilution assay based on the color of the cell culture medium scoring orange-to-yellow wells as positive and pink-to-purple wells as negative for HAV. As a proof-of-concept, we used the ARTA to evaluate the HAV neutralization potency of two commercially available human immune globulin (IG) preparations and a WHO International Standard for anti-HAV. The three IG preparations contained comparable levels of anti-HAV antibodies that neutralized approximately 1.5 log of HAV-Bsd. Similar neutralization results were obtained in the absence of blasticidin by an endpoint dilution ELISA at 2 weeks postinfection. Conclusion The ARTA is a simple and rapid method to determine HAV titers without using HAV-specific probes. We determined the HAV neutralization potency of human IG preparations in 8 days by ARTA compared to the 14 days required by the endpoint dilution ELISA. The ARTA reduced the labour, time, and cost of HAV titrations making it suitable for high throughput screening of sera and antivirals, determination of anti-HAV antibodies in human immune globulin preparations, and research applications that involve the routine evaluation of HAV titers. PMID:19094229
ICECAP: an integrated, general-purpose, automation-assisted IC50/EC50 assay platform.
Li, Ming; Chou, Judy; King, Kristopher W; Jing, Jing; Wei, Dong; Yang, Liyu
2015-02-01
IC50 and EC50 values are commonly used to evaluate drug potency. Mass spectrometry (MS)-centric bioanalytical and biomarker labs are now conducting IC50/EC50 assays, which, if done manually, are tedious and error-prone. Existing bioanalytical sample preparation automation systems cannot meet IC50/EC50 assay throughput demand. A general-purpose, automation-assisted IC50/EC50 assay platform was developed to automate the calculations of spiking solutions and the matrix solutions preparation scheme, the actual spiking and matrix solutions preparations, as well as the flexible sample extraction procedures after incubation. In addition, the platform also automates the data extraction, nonlinear regression curve fitting, computation of IC50/EC50 values, graphing, and reporting. The automation-assisted IC50/EC50 assay platform can process the whole class of assays of varying assay conditions. In each run, the system can handle up to 32 compounds and up to 10 concentration levels per compound, and it greatly improves IC50/EC50 assay experimental productivity and data processing efficiency. © 2014 Society for Laboratory Automation and Screening.
Song, J; Doucette, C; Hanniford, D; Hunady, K; Wang, N; Sherf, B; Harrington, J J; Brunden, K R; Stricker-Krongrad, A
2005-06-01
Target-based high-throughput screening (HTS) plays an integral role in drug discovery. The implementation of HTS assays generally requires high expression levels of the target protein, and this is typically accomplished using recombinant cDNA methodologies. However, the isolated gene sequences to many drug targets have intellectual property claims that restrict the ability to implement drug discovery programs. The present study describes the pharmacological characterization of the human histamine H3 receptor that was expressed using random activation of gene expression (RAGE), a technology that over-expresses proteins by up-regulating endogenous genes rather than introducing cDNA expression vectors into the cell. Saturation binding analysis using [125I]iodoproxyfan and RAGE-H3 membranes revealed a single class of binding sites with a K(D) value of 0.77 nM and a B(max) equal to 756 fmol/mg of protein. Competition binding studies showed that the rank order of potency for H3 agonists was N(alpha)-methylhistamine approximately (R)-alpha- methylhistamine > histamine and that the rank order of potency for H3 antagonists was clobenpropit > iodophenpropit > thioperamide. The same rank order of potency for H3 agonists and antagonists was observed in the functional assays as in the binding assays. The Fluorometic Imaging Plate Reader assays in RAGE-H3 cells gave high Z' values for agonist and antagonist screening, respectively. These results reveal that the human H3 receptor expressed with the RAGE technology is pharmacologically comparable to that expressed through recombinant methods. Moreover, the level of expression of the H3 receptor in the RAGE-H3 cells is suitable for HTS and secondary assays.
Zhang, Yin-Feng; Ren, Xiao-Min; Li, Yuan-Yuan; Yao, Xiao-Fang; Li, Chuan-Hai; Qin, Zhan-Fen; Guo, Liang-Hong
2018-06-01
The wide use of the alternatives to bisphenol A (BPA) has raised concerns about their potential toxicities. Considering the disrupting activity of BPA on thyroid hormone (TH) signaling, we investigated whether bisphenol S (BPS) and bisphenol F (BPF), two leading alternatives, could interfere with TH signaling pathway using a series of assays in vitro and in vivo. In the fluorescence competitive binding assay, we found BPS and BPF, like BPA, bound to TH receptors (TRα and TRβ), with the binding potencies an order of magnitude lower than BPA (BPA > BPF > BPS). Molecular docking data also show their binding potencies to TRs. In the coactivator recruitment assay, BPS and BPF recruited coactivator to TRβ but not TRα, with weaker potencies than BPA. Correspondingly, agonistic actions of the three bisphenols in the absence or presence of T3 were observed in the TR-mediated reporter gene transcription assay. Also, all the three bisphenols induced TH-dependent GH3 cell proliferation, whereas BPA and BPF inhibited T3 induction in the presence of T3. As for in vivo assay, the three bisphenols like T3 induced TH-response gene transcription in Pelophylax nigromaculatus tadpoles, but in the presence of T3 altered T3-induced gene transcription in a biphasic concentration-response manner. These results for the first time demonstrate that BPS and BPF, like BPA, have potential to interfere with TH signaling pathway, i.e., they generally activate TH signaling in the absence of T3, but in the presence of TH, display agonistic or/and antagonistic actions under certain condition. Our study highlights the potential risks of BPS and BPF as BPA alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Buist, H E; Devito, S; Goldbohm, R A; Stierum, R H; Venhorst, J; Kroese, E D
2015-04-01
Carbon capture and storage (CCS) technologies are considered vital and economic elements for achieving global CO2 reduction targets, and is currently introduced worldwide (for more information on CCS, consult for example the websites of the International Energy Agency (http://www.iea.org/topics/ccs/) and the Global CCS Institute (http://www.globalccsinstitute.com/)). One prominent CCS technology, the amine-based post-combustion process, may generate nitrosamines and their related nitramines as by-products, the former well known for their potential mutagenic and carcinogenic properties. In order to efficiently assess the carcinogenic potency of any of these by-products this paper reviews and discusses novel prediction approaches consuming less time, money and animals than the traditionally applied 2-year rodent assay. For this, available animal carcinogenicity studies with N-nitroso compounds and nitramines have been used to derive carcinogenic potency values, that were subsequently used to assess the predictive performance of alternative prediction approaches for these chemicals. Promising cancer prediction models are the QSARs developed by the Helguera group, in vitro transformation assays, and the in vivo initiation-promotion, and transgenic animal assays. All these models, however, have not been adequately explored for this purpose, as the number of N-nitroso compounds investigated is yet too limited, and therefore further testing with relevant N-nitroso compounds is needed. Copyright © 2015. Published by Elsevier Inc.
Manning, Gillian E; Farmahin, Reza; Crump, Doug; Jones, Stephanie P; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W
2012-09-15
Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was used to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R(2)≥0.87, p<0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. Copyright © 2012 Elsevier Inc. All rights reserved.
The second international standard for polymyxin B.
Lightbown, J W; Thomas, A H; Grab, B; Outschoorn, A S
1973-01-01
Since supplies of the first International Standard for Polymyxin B were exhausted, it was replaced by a second international standard the potency of which was estimated from the results of a collaborative assay carried out by 5 laboratories in 4 countries. The wide variations in the results probably resulted from difficulties experienced in handling the first international standard. The potency finally agreed upon by the collaborating laboratories, on the basis of the overall mean values obtained after rejection of the most discrepant assays, was 8 403 IU/mg. That value was accepted by the WHO Expert Committee on Biological Standardization (1970), which consequently defined the International Unit of polymyxin B as the activity contained in 0.000119 mg of the second international standard.
The second international standard for polymyxin B*
Lightbown, J. W.; Thomas, A. H.; Grab, B.; Outschoorn, A. S.
1973-01-01
Since supplies of the first International Standard for Polymyxin B were exhausted, it was replaced by a second international standard the potency of which was estimated from the results of a collaborative assay carried out by 5 laboratories in 4 countries. The wide variations in the results probably resulted from difficulties experienced in handling the first international standard. The potency finally agreed upon by the collaborating laboratories, on the basis of the overall mean values obtained after rejection of the most discrepant assays, was 8 403 IU/mg. That value was accepted by the WHO Expert Committee on Biological Standardization (1970), which consequently defined the International Unit of polymyxin B as the activity contained in 0.000119 mg of the second international standard. PMID:4350877
Larenas-Linnemann, Désirée; Esch, Robert; Plunkett, Greg; Brown, Shannon; Maddox, Daniel; Barnes, Charles; Constable, Derek
2011-11-01
Sublingual immunotherapy (SLIT) has become established in Europe, and its efficacy is being evaluated in the United States. The doses used for SLIT in Europe today are difficult to evaluate, because each manufacturer expresses the potency of its extracts differently. To compare in vitro European SLIT maintenance solutions against US licensed standardized allergenic extract concentrates and to determine the monthly SLIT doses delivered expressed in bioequivalent allergy units ([B]AU). We studied Dermatophagoides pteronyssinus, timothy grass pollen, cat (hair) and short ragweed pollen allergen extracts. The SLIT maintenance solutions of 4 leading European manufacturers and standardized concentrate extracts of 3 US manufacturers were analyzed with the following assays: protein content, relative potency (immunoglobulin E [IgE]-binding enzyme-linked immunosorbent assay [ELISA] inhibition) and major allergen content. The relative monthly allergen dose in (B)AU was calculated for each recommended SLIT schedule. Relative potency was approximately 10 times higher for US concentrate standardized extracts-which are meant to be diluted-than for European SLIT maintenance solutions of D pteronyssinus and timothy grass pollen. For cat (hair) and short ragweed pollen, the difference was less. Measurements of relative potency and major allergen content correlated well. In our assays, European mite extracts contain a very low quantity of Der p 2 compared with US mites. Recommended SLIT doses in Europe vary widely among the manufacturers, but are consistently lower (Eur1) or higher (Eur4) over all four allergens tested. SLIT efficacy probably depends on additional factors apart from the exact dose. SLIT dose finding studies should be done for each product. Copyright © 2011 American College of Allergy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukamoto, Ikuko, E-mail: tukamoto@med.kagawa-u.ac.jp; Sakakibara, Norikazu; Maruyama, Tokumi
Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positivemore » control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.« less
Feng, Wei; Zheng, Jing; Dong, Yao; Li, Xueshu; Lehmler, Hans-Joachim; Pessah, Isaac N.
2017-01-01
Nondioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine-sensitive Ca2+ channels (RyRs) and this activation has been associated with neurotoxicity in exposed animals. RyR-active congeners follow a distinct structure–activity relationship and a quantitative structure–activity relationship (QSAR) predicts that a large number of PCBs likely activate the receptor, which requires validation. Additionally, previous structural based conclusions have been established using receptor ligand binding assays but the impact of varying PCB structures on ion channel gating behavior is not understood. We used [3H]Ryanodine ([3H]Ry) binding to assess the RyR-activity of 14 previously untested PCB congeners evaluating the predictability of the QSAR. Congeners determined to display widely varying potency were then assayed with single channel voltage clamp analysis to assess direct influences on channel gating kinetics. The RyR-activity of individual PCBs assessed in in vitro assays followed the general pattern predicted by the QSAR but binding and lipid bilayer experiments demonstrated higher potency than predicted. Of the 49 congeners tested to date, tetra-ortho PCB 202 was found to be the most potent RyR-active congener increasing channel open probability at 200 pM. Shifting meta-substitutions to the para-position resulted in a > 100-fold reduction in potency as seen with PCB 197. Non-ortho PCB 11 was found to lack activity at the receptor supporting a minimum mono-ortho substitution for PCB RyR activity. These findings expand and support previous SAR assessments; where out of the 49 congeners tested to date 42 activate the receptor demonstrating that the RyR is a sensitive and common target of PCBs. PMID:27655348
The Third International Standard for Corticotrophin
Bangham, D. R.; Mussett, M. V.; Stack-Dunne, M. P.
1962-01-01
At its meeting in September 1957, the WHO Expert Committee on Biological Standardization agreed with the recommendation of the International Conference on Corticotrophin, held in July 1957, that a new international standard for corticotrophin should be set up, since the Second International Standard was made from crude material and was unsuitable for the assay of the purer preparations of corticotrophin now in general clinical use. In this paper, the authors describe the steps taken to establish the Third International Standard for Corticotrophin, from the preparation and international collaborative assay of the new material to the choice of the ”subcutaneous assay” for deriving the potency. The clinical and pharmacological implications of this choice are discussed. Since the preparation, characterization and exact quantitative assay of standards for corticotrophin are so difficult, several batches of approximately 3500 ampoules were prepared in a similar way from the same material to serve as an international Working Standard. Samples from two batches were included in the collaborative assay and found to have the same potency as the Third Standard. Sufficient ampoules of the Working Standard are available for use as national and laboratory standards. PMID:13966359
Palmer, Jessica A; Smith, Alan M; Egnash, Laura A; Colwell, Michael R; Donley, Elizabeth L R; Kirchner, Fred R; Burrier, Robert E
2017-10-01
The relative developmental toxicity potency of a series of retinoid analogues was evaluated using a human induced pluripotent stem (iPS) cell assay that measures changes in the biomarkers ornithine and cystine. Analogue potency was predicted, based on the assay endpoint of the ornithine/cystine (o/c) ratio, to be all-trans-retinoic acid>TTNPB>13-cis-retinoic acid≈9-cis-retinoic acid>acitretin>etretinate>retinol. These rankings correlate with in vivo data and demonstrate successful application of the assay to rank a series of related toxic and non-toxic compounds. The retinoic acid receptor α (RARα)-selective antagonist Ro 41-5253 inhibited the cystine perturbation caused by all-trans-retinoic acid, TTNPB, 13-cis-retinoic acid, 9-cis-retinoic acid, and acitretin. Ornithine was altered independent of RARα in all retinoids except acitretin. These results suggest a role for an RARα-mediated mechanism in retinoid-induced developmental toxicity through altered cystine metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Yadirgi, G; Stickings, P; Rajagopal, S; Liu, Y; Sesardic, D
2017-12-01
Botulinum toxin type A is a causative agent of human botulism. Due to high toxicity and ease of production it is classified by the Centres for Disease Control and Prevention as a category A bioterrorism agent. The same serotype, BoNT/A, is also the most widely used in pharmaceutical preparations for treatment of a diverse range of neuromuscular disorders. Traditionally, animals are used to confirm the presence and activity of toxin and to establish neutralizing capabilities of countermeasures in toxin neutralization tests. Cell based assays for BoNT/A have been reported as the most viable alternative to animal models, since they are capable of reflecting all key steps (binding, translocation, internalization and cleavage of intracellular substrate) involved in toxin activity. In this paper we report preliminary development of a simple immunochemical method for specifically detecting BoNT/A cleaved intracellular substrate, SNAP-25, in cell lysates of neurons derived from mouse embryonic stem cells. The assay offers sensitivity of better than 0.1LD50/ml (3fM) which is not matched by other functional assays, including the mouse bioassay, and provides serotype specificity for quantitative detection of BoNT/A and anti-BoNT/A antitoxin. Subject to formal validation, the method described here could potentially be used as a substitute for the mouse bioassay to measure potency and consistency of therapeutic products. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Harling, John D.; Deakin, Angela M.; Campos, Sébastien; Grimley, Rachel; Chaudry, Laiq; Nye, Catherine; Polyakova, Oxana; Bessant, Christina M.; Barton, Nick; Somers, Don; Barrett, John; Graves, Rebecca H.; Hanns, Laura; Kerr, William J.; Solari, Roberto
2013-01-01
IL-2-inducible tyrosine kinase (Itk) plays a key role in antigen receptor signaling in T cells and is considered an important target for anti-inflammatory drug discovery. In order to generate inhibitors with the necessary potency and selectivity, a compound that targeted cysteine 442 in the ATP binding pocket and with an envisaged irreversible mode of action was designed. We incorporated a high degree of molecular recognition and specific design features making the compound suitable for inhaled delivery. This study confirms the irreversible covalent binding of the inhibitor to the kinase by x-ray crystallography and enzymology while demonstrating potency, selectivity, and prolonged duration of action in in vitro biological assays. The biosynthetic turnover of the kinase was also examined as a critical factor when designing irreversible inhibitors for extended duration of action. The exemplified Itk inhibitor demonstrated inhibition of both TH1 and TH2 cytokines, was additive with fluticasone propionate, and inhibited cytokine release from human lung fragments. Finally, we describe an in vivo pharmacodynamic assay that allows rapid preclinical development without animal efficacy models. PMID:23935099
New cytotoxic benzosuberene analogs. Synthesis, molecular modeling and biological evaluation.
Chen, Zecheng; Maderna, Andreas; Sukuru, Sai Chetan K; Wagenaar, Melissa; O'Donnell, Christopher J; Lam, My-Hanh; Musto, Sylvia; Loganzo, Frank
2013-12-15
In this Letter we describe the synthesis and biological evaluation of new benzosuberene analogs with structural modifications on the B-ring. The focus was initially to probe the chemical space around the B-ring C-8 position. This position was readily available for derivatization chemistry using our recently developed new synthesis for this compound class. Furthermore, we describe two new B-ring analogs, one containing a diene and the other a cyclic ether group. Both new analogs show excellent potencies in tumor cell proliferation assays. In addition, we describe molecular modeling studies that provide a binding rationale for reference compound 8 in the colchicine binding site using the known colchicine crystal structure. We also examine whether the cell based potency data obtained with selected new analogs are supported by modeling results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yi, Shou-Pu; Kong, Qing-Hong; Li, Yu-Lei; Pan, Chen-Ling; Yu, Jie; Cui, Ben-Qiang; Wang, Ying-Fei; Wang, Guan-Lin; Zhou, Pei-Lan; Wang, Li-Li; Gong, Ze-Hui; Su, Rui-Bin; Shen, Yue-Hai; Yu, Gang; Chang, Kwen-Jen
2017-07-01
Opioid analgesics remain the first choice for the treatment of moderate to severe pain, but they are also notorious for their respiratory depression and addictive effects. This study focused on the pharmacology of a novel opioid receptor mixed agonist DPI-125 and attempted to elucidate the relationship between the δ-, μ- and κ-receptor potency ratio and respiratory depression and abuse liability. Five diarylmethylpiperazine compounds (DPI-125, DPI-3290, DPI-130, KUST202 and KUST13T02) were selected for this study. PKA fluorescence redistribution assays in CHO cells individually expressing δ-, μ- or κ-receptors were used to measure the agonist potency. The respiratory safety profiles were estimated in rats by the ratio of ED 50 (pCO 2 increase)/ED 50 (antinociception). The abuse liability of DPI-125 was evaluated with a self-administration model in rhesus monkeys. The observed agonist potencies of DPI-125 for δ-, μ- and κ-opioid receptors were 4.29±0.36, 11.10±3.04, and 16.57±4.14 nmol/L, respectively. The other four compounds were also mixed agonists with varying potencies. DPI-125 exhibited a high respiratory safety profile, clearly related to its high δ-receptor potency. The ratio of the EC 50 potencies for the μ- and δ-receptors was found to be positively correlated with the respiratory safety ratio. DPI-125 has similar potencies for μ- and κ-receptors, which is likely the reason for its reduced abuse potential. Our results demonstrate that the opioid receptor mixed agonist DPI-125 is safer and less addictive than traditional μ-agonist analgesics. These findings suggest that the development of δ>μ∼κ opioid receptor mixed agonists is feasible, and such compounds could represent a promising class of potent analgesics with wider therapeutic windows.
Non-animal sensitization testing: state-of-the-art.
Vandebriel, Rob J; van Loveren, Henk
2010-05-01
Predictive tests to identify the sensitizing properties of chemicals are carried out using animals. In the European Union timelines for phasing out many standard animal tests were established for cosmetics. Following this policy, the new European Chemicals Legislation (REACH) favors alternative methods, if validated and appropriate. In this review the authors aim to provide a state-of-the art overview of alternative methods (in silico, in chemico, and in vitro) to identify contact and respiratory sensitizing capacity and in some occasions give a measure of potency. The past few years have seen major advances in QSAR (quantitative structure-activity relationship) models where especially mechanism-based models have great potential, peptide reactivity assays where multiple parameters can be measured simultaneously, providing a more complete reactivity profile, and cell-based assays. Several cell-based assays are in development, not only using different cell types, but also several specifically developed assays such as three-dimenionally (3D)-reconstituted skin models, an antioxidant response reporter assay, determination of signaling pathways, and gene profiling. Some of these assays show relatively high sensitivity and specificity for a large number of sensitizers and should enter validation (or are indeed entering this process). Integrating multiple assays in a decision tree or integrated testing system is a next step, but has yet to be developed. Adequate risk assessment, however, is likely to require significantly more time and efforts.
Structure-activity relationship of ortho- and meta-phenol based LFA-1 ICAM inhibitors.
Lin, Edward Yin-Shiang; Guckian, Kevin M; Silvian, Laura; Chin, Donovan; Boriack-Sjodin, P Ann; van Vlijmen, Herman; Friedman, Jessica E; Scott, Daniel M
2008-10-01
LFA-1 ICAM inhibitors based on ortho- and meta-phenol templates were designed and synthesized by Mitsunobu chemistry. The selection of targets was guided by X-ray co-crystal data, and led to compounds which showed an up to 30-fold increase in potency over reference compound 1 in the LFA-1/ICAM1-Ig assay. The most active compound exploited a new hydrogen bond to the I-domain and exhibited subnanomolar potency.
Patlewicz, Grace Y; Basketter, David A; Pease, Camilla K Smith; Wilson, Karen; Wright, Zoe M; Roberts, David W; Bernard, Guillaume; Arnau, Elena Giménez; Lepoittevin, Jean-Pierre
2004-02-01
Fragrance substances represent a very diverse group of chemicals; a proportion of them are associated with the ability to cause allergic reactions in the skin. Efforts to find substitute materials are hindered by the need to undertake animal testing for determining both skin sensitization hazard and potency. One strategy to avoid such testing is through an understanding of the relationships between chemical structure and skin sensitization, so-called structure-activity relationships. In recent work, we evaluated 2 groups of fragrance chemicals -- saturated aldehydes and alpha,beta-unsaturated aldehydes. Simple quantitative structure-activity relationship (QSAR) models relating the EC3 values [derived from the local lymph node assay (LLNA)] to physicochemical properties were developed for both sets of aldehydes. In the current study, we evaluated an additional group of carbonyl-containing compounds to test the predictive power of the developed QSARs and to extend their scope. The QSAR models were used to predict EC3 values of 10 newly selected compounds. Local lymph node assay data generated for these compounds demonstrated that the original QSARs were fairly accurate, but still required improvement. Development of these QSAR models has provided us with a better understanding of the potential mechanisms of action for aldehydes, and hence how to avoid or limit allergy. Knowledge generated from this work is being incorporated into new/improved rules for sensitization in the expert toxicity prediction system, deductive estimation of risk from existing knowledge (DEREK).
The local lymph node assay and skin sensitization testing.
Kimber, Ian; Dearman, Rebecca J
2010-01-01
The mouse local lymph node assay (LLNA) is a method for the identification and characterization of skin sensitization hazards. In this context the method can be used both to identify contact allergens, and also determine the relative skin sensitizing potency as a basis for derivation of effective risk assessments.The assay is based on measurement of proliferative responses by draining lymph node cells induced following topical exposure of mice to test chemicals. Such responses are known to be causally and quantitatively associated with the acquisition of skin sensitization and therefore provide a relevant marker for characterization of contact allergic potential.The LLNA has been the subject of exhaustive evaluation and validation exercises and has been assigned Organization for Economic Cooperation and Development (OECD) test guideline 429. Herein we describe the conduct and interpretation of the LLNA.
Banks, Matthew L; Folk, John E; Rice, Kenner C; Negus, S Stevens
2010-12-01
Mu-opioid receptor agonists such as fentanyl are effective analgesics, but their clinical use is limited by untoward effects. Adjunct medications may improve the effectiveness and/or safety of opioid analgesics. This study compared interactions between fentanyl and either the noncompetitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist ketamine or the delta-opioid receptor agonist SNC162 [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-phenyl)methyl]-N,N-diethylbenzamide] in two behavioral assays in rhesus monkeys. An assay of thermal nociception evaluated tail-withdrawal latencies from water heated to 50 and 54°C. An assay of schedule-controlled responding evaluated response rates maintained under a fixed-ratio 30 schedule of food presentation. Effects of each drug alone and of three mixtures of ketamine+fentanyl (22:1, 65:1, 195:1 ketamine/fentanyl) or SNC162+fentanyl (59:1, 176:1, 528:1 SNC162/fentanyl) were evaluated in each assay. All drugs and mixtures dose-dependently decreased rates of food-maintained responding, and drug proportions in the mixtures were based on relative potencies in this assay. Ketamine and SNC162 were inactive in the assay of thermal antinociception, but fentanyl and all mixtures produced dose-dependent antinociception. Drug interactions were evaluated using dose-addition and dose-ratio analysis. Dose-addition analysis revealed that interactions for all ketamine/fentanyl mixtures were additive in both assays. SNC162/fentanyl interactions were usually additive, but one mixture (176:1) produced synergistic antinociception at 50°C. Dose-ratio analysis indicated that ketamine failed to improve the relative potency of fentanyl to produce antinociception vs. rate suppression, whereas two SNC162/fentanyl mixtures (59:1 and 176:1) increased the relative potency of fentanyl to produce antinociception. These results suggest that delta agonists may produce more selective enhancement than ketamine of mu agonist-induced antinociception. Copyright © 2010 Elsevier Inc. All rights reserved.
Synthesis and Agonistic Activity at the GPR35 of 5,6-Dihydroxyindole-2-carboxylic Acid Analogues
2012-01-01
5,6-Dihydroxyindole-2-carboxylic acid (DHICA), an intermediate of melanin synthesis and an eumelanin building block, was recently discovered to be a GPR35 agonist with moderate potency. Here, we report the synthesis and pharmacological characterization of a series of DHICA analogues against GPR35 using both label-free dynamic mass redistribution and Tango β-arrestin translocation assays. This led to identification of novel GPR35 agonists with improved potency and/or having biased agonism. PMID:24900508
De Los Angeles, Alejandro; Ferrari, Francesco; Xi, Ruibin; Fujiwara, Yuko; Benvenisty, Nissim; Deng, Hongkui; Hochedlinger, Konrad; Jaenisch, Rudolf; Lee, Soohyun; Leitch, Harry G; Lensch, M William; Lujan, Ernesto; Pei, Duanqing; Rossant, Janet; Wernig, Marius; Park, Peter J; Daley, George Q
2015-09-24
Stem cells self-renew and generate specialized progeny through differentiation, but vary in the range of cells and tissues they generate, a property called developmental potency. Pluripotent stem cells produce all cells of an organism, while multipotent or unipotent stem cells regenerate only specific lineages or tissues. Defining stem-cell potency relies upon functional assays and diagnostic transcriptional, epigenetic and metabolic states. Here we describe functional and molecular hallmarks of pluripotent stem cells, propose a checklist for their evaluation, and illustrate how forensic genomics can validate their provenance.
2016-01-01
Reduced susceptibility to antimicrobials in Gram-negative bacteria may result from multiple resistance mechanisms, including increased efflux pump activity or reduced porin protein expression. Up-regulation of the efflux pump system is closely associated with multidrug resistance (MDR). To help investigate the role of efflux pumps on compound accumulation, a fluorescence-based assay was developed using fluorescent derivatives of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that inhibits an intracellular target, dihydrofolate reductase (DHFR). Novel fluorescent TMP probes inhibited eDHFR activity with comparable potency to TMP, but did not kill or inhibit growth of wild type Escherichia coli. However, bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure cellular accumulation of the TMP probe using either fluorescence spectroscopy or flow cytometry, with validation by LC-MS/MS. This fluorescence assay may provide a simple method to assess efflux pump activity with standard laboratory equipment. PMID:27737551
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gai; Nash, Peter J.; Johnson, Britney
The 2014 Ebola outbreak in West Africa, the largest outbreak on record, highlighted the need for novel approaches to therapeutics targeting Ebola virus (EBOV). Within the EBOV replication complex, the interaction between polymerase cofactor, viral protein 35 (VP35), and nucleoprotein (NP) is critical for viral RNA synthesis. We recently identified a peptide at the N-terminus of VP35 (termed NPBP) that is sufficient for interaction with NP and suppresses EBOV replication, suggesting that the NPBP binding pocket can serve as a potential drug target. Here we describe the development and validation of a sensitive high-throughput screen (HTS) using a fluorescence polarizationmore » assay. Initial hits from this HTS include the FDA-approved compound tolcapone, whose potency against EBOV infection was validated in a nonfluorescent secondary assay. High conservation of the NP–VP35 interface among filoviruses suggests that this assay has the capacity to identify pan-filoviral inhibitors for development as antivirals.« less
Good, M; Clegg, T A; Costello, E; More, S J
2011-11-01
In national bovine tuberculosis (BTB) control programmes, testing is generally conducted using a single source of bovine purified protein derivative (PPD) tuberculin. Alternative tuberculin sources should be identified as part of a broad risk management strategy as problems of supply or quality cannot be discounted. This study was conducted to compare the impact of different potencies of a single bovine PPD tuberculin on the field performance of the single intradermal comparative tuberculin test (SICTT) and single intradermal test (SIT). Three trial potencies of bovine PPD tuberculin, as assayed in naturally infected bovines, namely, low (1192IU/dose), normal (6184IU/dose) and high (12,554IU/dose) were used. Three SICTTs (using) were conducted on 2102 animals. Test results were compared based on reactor-status and changes in skin-thickness at the bovine tuberculin injection site. There was a significant difference in the number of reactors detected using the high and low potency tuberculins. In the SICTT, high and low potency tuberculin detected 40% more and 50% fewer reactors, respectively, than normal potency tuberculin. Furthermore, use of the low potency tuberculin in the SICTT failed to detect 20% of 35 animals with visible lesions, and in the SIT 11% of the visible lesion animals would have been classified as negative. Tuberculin potency is critical to the performance of both the SICTT and SIT. Tuberculin of different potencies will affect reactor disclosure rates, confounding between-year or between-country comparisons. Independent checks of tuberculin potency are an important aspect of quality control in national BTB control programmes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Deuis, Jennifer R.; Dekan, Zoltan; Inserra, Marco C.; Lee, Tzong-Hsien; Aguilar, Marie-Isabel; Craik, David J.; Lewis, Richard J.; Alewood, Paul F.; Mobli, Mehdi; Schroeder, Christina I.; Henriques, Sónia Troeira; Vetter, Irina
2016-01-01
The μO-conotoxins MrVIA, MrVIB, and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well described target for the treatment of pain; however, little is known about the residues or structural elements that define this activity. In this study, we determined the three-dimensional structure of MfVIA, examined its membrane binding properties, performed alanine-scanning mutagenesis, and identified residues important for its activity at human NaV1.8. A second round of mutations resulted in (E5K,E8K)MfVIA, a double mutant with greater positive surface charge and greater affinity for lipid membranes compared with MfVIA. This analogue had increased potency at NaV1.8 and was analgesic in the mouse formalin assay. PMID:27026701
Positive allosteric modulators of the human sweet taste receptor enhance sweet taste
Servant, Guy; Tachdjian, Catherine; Tang, Xiao-Qing; Werner, Sara; Zhang, Feng; Li, Xiaodong; Kamdar, Poonit; Petrovic, Goran; Ditschun, Tanya; Java, Antoniette; Brust, Paul; Brune, Nicole; DuBois, Grant E.; Zoller, Mark; Karanewsky, Donald S.
2010-01-01
To identify molecules that could enhance sweetness perception, we undertook the screening of a compound library using a cell-based assay for the human sweet taste receptor and a panel of selected sweeteners. In one of these screens we found a hit, SE-1, which significantly enhanced the activity of sucralose in the assay. At 50 μM, SE-1 increased the sucralose potency by >20-fold. On the other hand, SE-1 exhibited little or no agonist activity on its own. SE-1 effects were strikingly selective for sucralose. Other popular sweeteners such as aspartame, cyclamate, and saccharin were not enhanced by SE-1 whereas sucrose and neotame potency were increased only by 1.3- to 2.5-fold at 50 μM. Further assay-guided chemical optimization of the initial hit SE-1 led to the discovery of SE-2 and SE-3, selective enhancers of sucralose and sucrose, respectively. SE-2 (50 μM) and SE-3 (200 μM) increased sucralose and sucrose potencies in the assay by 24- and 4.7-fold, respectively. In human taste tests, 100 μM of SE-1 and SE-2 allowed for a reduction of 50% to >80% in the concentration of sucralose, respectively, while maintaining the sweetness intensity, and 100 μM SE-3 allowed for a reduction of 33% in the concentration of sucrose while maintaining the sweetness intensity. These enhancers did not exhibit any sweetness when tasted on their own. Positive allosteric modulators of the human sweet taste receptor could help reduce the caloric content in food and beverages while maintaining the desired taste. PMID:20173092
Takenouchi, Osamu; Fukui, Shiho; Okamoto, Kenji; Kurotani, Satoru; Imai, Noriyasu; Fujishiro, Miyuki; Kyotani, Daiki; Kato, Yoshinao; Kasahara, Toshihiko; Fujita, Masaharu; Toyoda, Akemi; Sekiya, Daisuke; Watanabe, Shinichi; Seto, Hirokazu; Hirota, Morihiko; Ashikaga, Takao; Miyazawa, Masaaki
2015-11-01
To develop a testing strategy incorporating the human cell line activation test (h-CLAT), direct peptide reactivity assay (DPRA) and DEREK, we created an expanded data set of 139 chemicals (102 sensitizers and 37 non-sensitizers) by combining the existing data set of 101 chemicals through the collaborative projects of Japan Cosmetic Industry Association. Of the additional 38 chemicals, 15 chemicals with relatively low water solubility (log Kow > 3.5) were selected to clarify the limitation of testing strategies regarding the lipophilic chemicals. Predictivities of the h-CLAT, DPRA and DEREK, and the combinations thereof were evaluated by comparison to results of the local lymph node assay. When evaluating 139 chemicals using combinations of three methods based on integrated testing strategy (ITS) concept (ITS-based test battery) and a sequential testing strategy (STS) weighing the predictive performance of the h-CLAT and DPRA, overall similar predictivities were found as before on the 101 chemical data set. An analysis of false negative chemicals suggested a major limitation of our strategies was the testing of low water-soluble chemicals. When excluded the negative results for chemicals with log Kow > 3.5, the sensitivity and accuracy of ITS improved to 97% (91 of 94 chemicals) and 89% (114 of 128). Likewise, the sensitivity and accuracy of STS to 98% (92 of 94) and 85% (111 of 129). Moreover, the ITS and STS also showed good correlation with local lymph node assay on three potency classifications, yielding accuracies of 74% (ITS) and 73% (STS). Thus, the inclusion of log Kow in analysis could give both strategies a higher predictive performance. Copyright © 2015 John Wiley & Sons, Ltd.
Mukherjee, Abhisek; Syeb, Kathleen; Concannon, John; Callegari, Keri; Soto, Claudio; Glicksman, Marcie A
2015-01-01
Currently there is no effective treatment available for major neurodegenerative disorders associated to protein misfolding, including Alzheimer's and Parkinson's disease. One of most promising therapeutic approaches under development focuses on inhibiting the misfolding and aggregation pathway. However, it is likely that by the time clinical symptoms appear, there is a large accumulation of misfolded aggregates and a very substantial damage to the brain. Thus, it seems that at the clinical stage of the disease it is necessary also to develop strategies aiming to prevent the neuronal damage produced by already formed misfolded aggregates. Chronic activation of calcineurin (CaN), a type IIB phosphatase, has been implicated as a pivotal molecule connecting synaptic loss and neuronal damage to protein misfolding. The fact that the crystal structure of CaN is also well established makes it an ideal target for drug discovery. CaN activity assays for High Throughput Screening (HTS) reported so far are based on absorbance. In this article we report the development of a fluorescent quenching based CaN activity assay suitable for robotic screening of large chemical libraries to find novel inhibitors. The assay yielded a Z score of 0.84 with coefficient of variance ≤ 15%. Our results also show that this assay can be used to identify CaN inhibitors with a wide range of potencies.
McClintock, Maria K.; Kaznessis, Yiannis N.; Hackel, Benjamin J.
2016-01-01
Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13±3- and 18±4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. PMID:26191783
McClintock, Maria K; Kaznessis, Yiannis N; Hackel, Benjamin J
2016-02-01
Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. © 2015 Wiley Periodicals, Inc.
Perrey, David A; Decker, Ann M; Zhang, Yanan
2018-03-21
Orexins are hypothalamic neuropeptides playing important roles in many functions including the motivation of addictive behaviors. Blockade of the orexin-1 receptor has been suggested as a potential strategy for the treatment of drug addiction. We have previously reported OX 1 receptor antagonists based on the tetrahydroisoquinoline scaffold with excellent OX 1 potency and selectivity; however, these compounds had high lipophilicity (clogP > 5) and low to moderate solubility. In an effort to improve their properties, we have designed and synthesized a series of analogues where the 7-position substituents known to favor OX 1 potency and selectivity were retained, and groups of different nature were introduced at the 1-position where substitution was generally tolerated as demonstrated in previous studies. Compound 44 with lower lipophilicity (clogP = 3.07) displayed excellent OX 1 potency ( K e = 5.7 nM) and selectivity (>1,760-fold over OX 2 ) in calcium mobilization assays. In preliminary ADME studies, 44 showed excellent kinetic solubility (>200 μM), good CNS permeability ( P app = 14.7 × 10 -6 cm/sec in MDCK assay), and low drug efflux (efflux ratio = 3.3).
Yamano, Tetsuo; Shimizu, Mitsuru
2009-04-01
p-Phenylenediamine (PPD)-related chemicals have been used as antioxidants in rubber products, and many cases of contact dermatitis caused by these chemicals have been reported. The aim of this study was to investigate relative sensitizing potency and cross-reactivity among PPD derivatives. Five PPD derivatives, p-aminodiphenylamine (PADPA), N,N'-diphenyl-p-phenylenediamine (DPPD), N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (DMBPPD), N-(1-methylheptyl)-N'-phenyl-p-phenylenediamine (MHPPD), and the core chemical PPD were evaluated for their sensitizing potency and cross-reactivity using the non-radioactive murine local lymph node assay (LLNA) and the guinea-pig maximization test (GPMT). PPD and all the derivatives were identified as primary sensitizers in both tests. The order of potency in the LLNA was as follows: IPPD and PADPA > PPD > DMBPPD and MHPPD > DPPD. In the GPMT, all six groups of animals sensitized with one of these chemicals cross-reacted to four other derivatives. Specifically, the five groups that have a common basic PADPA structure, that is PADPA, DPPD, IPPD, DMBPPD, and MHPPD, all reacted to each other at almost the same scores, while none of them reacted to PPD. The cross-reactivity profile found in the study was to some extent different from that in previous human data, where distinction between cross-reaction and concomitant primary sensitization is not always clear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goebel, Carsten, E-mail: goebel.c.1@pg.com; Troutman, John; Hennen, Jenny
The strong sensitizing potencies of the most important primary intermediates of oxidative hair dyes, p-phenylenediamine (PPD) and p-toluylenediamine (PTD, i.e. 2-methyl-PPD) are well established. They are considered as the key sensitizers in hair dye allergic contact dermatitis. While modification of their molecular structure is expected to alter their sensitizing properties, it may also impair their color performance. With introduction of a methoxymethyl side chain we found the primary intermediate 2-methoxymethyl-p-phenylenediamine (ME-PPD) with excellent hair coloring performance but significantly reduced sensitizing properties compared to PPD and PTD: In vitro, ME-PPD showed an attenuated innate immune response when analyzed for its proteinmore » reactivity and dendritic cell activation potential. In vivo, the effective concentration of ME-PPD necessary to induce an immune response 3-fold above vehicle control (EC3 value) in the local lymph node assay (LLNA) was 4.3%, indicating a moderate skin sensitizing potency compared to values of 0.1 and 0.17% for PPD and PTD, respectively. Finally, assessing the skin sensitizing potency of ME-PPD under consumer hair dye usage conditions through a quantitative risk assessment (QRA) indicated an allergy induction risk negligible compared to PPD or PTD. - Highlights: • Methoxymethyl side chain in p-phenylenediamine reduces its strong skin sensitizing properties. • Reduced protein reactivity and dendritic cell activation. • Reduced skin sensitizing potency in local lymph node assay (LLNA). • Negligible allergy induction risk under hair dye usage conditions.« less
Ha, Soojin; Ahn, Il Young; Kim, Da-Eun; Lee, Jong Kwon; Sohn, Soojung; Jung, Mi-Sook; Heo, Yong; Omori, Takashi; Bae, SeungJin; Lim, Kyung-Min
2017-04-01
Recently UN GHS has introduced the sub-categorization of skin sensitizers for which ECt (concentration estimated to induce stimulation index above threshold) of the murine local lymph node assay (LLNA) is used as criteria. Non-radioisotopic variants of LLNA, LLNA: DA, LLNA: BrdU-ELISA, LNCC and LLNA: BrdU-FCM were developed yet their utilities for potency sub-categorization are not established. Here we assessed the agreement of LLNA variants with LLNA or human data in potency sub-categorization for 22 reference substances of OECD TG429. Concordance of sub-categorization with LLNA was highest for LLNA: BrdU-FCM(91%, κ = 0.833, weighted kappa) followed by LLNA: BrdU-ELISA (82%, κ = 0.744) and LLNA: DA (73%, κ = 0.656) whereas LNCC only showed a modest association (64%, κ = 0.441). With human data, LLNA agreed best (77%) followed by LLNA: DA and LLNA: BrdU-FCM(73%), LLNA: BrdU-ELISA (68%) and LNCC(55%). Bland-Altman plot revealed that ECt's of LLNA variants largely agreed with LLNA where most values fell within 95% limit of agreement. Correlation between ECt's of LLNA and LLNA variants were high except for LNCC(pair-wise with LLNA, LLNA: DA, r = 0.848, LLNA: BrdU-ELISA, r = 0.744, LLNA: BrdU-FCM, r=0.786, and LNCC, r = 0.561 by Pearson). Collectively, these results demonstrated that LLNA variants exhibit performance comparable to LLNA in the potency sub-categorization although additional substances shall be analyzed in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Saydam, Manolya; Rigsby, Peter; Mawas, Fatme
2014-01-01
Current Haemophilus influenzae b conjugate vaccines (Hib), which are made of purified capsular polysaccharide (poly-ribosyl-ribitol-phosphate; PRP) conjugated to a carrier protein, are almost completely evaluated by physico-chemical methods to ensure the integrity and stability of the vaccine and consistency of manufacture of batches. The absence of a potency assay makes the quantification of total PRP content (in SI units) and of % free polysaccharide in final fills or bulk components of Hib vaccines critical release tests for both manufacturers and national control authorities. Here we describe a simple and sensitive Enzyme-Linked Immuno-sorbent Assay (ELISA) which has been developed to quantify total and free PRP content in Hib-TT vaccine alone or when in combination with other vaccines. The assay is robust, specific and highly sensitive. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Silibinin derivatives as anti-prostate cancer agents: Synthesis and cell-based evaluations.
Vue, Bao; Zhang, Sheng; Zhang, Xiaojie; Parisis, Konstantinos; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong
2016-02-15
This study aims to systematically explore the alkylation effect of 7-OH in silibinin and 2,3-dehydrosilibinin on the antiproliferative potency toward three prostate cancer cell lines. Eight 7-O-alkylsilibinins, eight 7-O-alkyl-2,3-dehydrosilibinins, and eight 3,7-O-dialkyl-2,3-dehydrosilibinins have been synthesized from commercially available silibinin for the in vitro cell-based evaluation. The WST-1 cell proliferation assay indicates that nineteen out of twenty-four silibinin derivatives have significantly improved antiproliferative potency when compared with silibinin. 7-O-Methylsilibinin (2) and 7-O-ethylsilibinin (3) have been identified as the most potent compounds with 98- and 123-fold enhanced potency against LNCaP human androgen-dependent prostate cancer cell line. Among 2,3-dehydrosilibinin derivatives, 7-O-methyl-2,3-dehydrosilibinin (10) and 7-O-ethyl-2,3-dehydrosilibinin (11) have been identified as the optimal compounds with the highest potency towards both androgen-dependent LNCaP and androgen-independent PC-3 prostate cancer cell lines. 7-O-Ethyl-2,3-dehydrosilibinin (11) was demonstrated to arrest PC-3 cell cycle at the G0/G1 phase and to induce PC-3 cell apoptosis. The findings in this study suggest that antiproliferative potency of silibinin and 2,3-dehydrosilibinin can be appreciably enhanced through suitable chemical modifications on the phenolic hydroxyl group at C-7 and that introduction of a chemical moiety with the potential to improve bioavailability through a linker to 7-OH in silibinin and 2,3-dehydrosilibinin would be a feasible strategy for the development of silibinin derivatives as anti-prostate cancer agents. Published by Elsevier Masson SAS.
Rizzo, Joseph M; Shi, Shuai; Li, Yunsong; Semple, Andrew; Esposito, Jessica J; Yu, Shenjiang; Richardson, Daisy; Antochshuk, Valentyn; Shameem, Mohammed
2015-05-01
In this study, an automated high-throughput relative chemical stability (RCS) assay was developed in which various therapeutic proteins were assessed to determine stability based on the resistance to denaturation post introduction to a chaotrope titration. Detection mechanisms of both intrinsic fluorescence and near UV circular dichroism (near-UV CD) are demonstrated. Assay robustness was investigated by comparing multiple independent assays and achieving r(2) values >0.95 for curve overlays. The complete reversibility of the assay was demonstrated by intrinsic fluorescence, near-UV CD, and biologic potency. To highlight the method utility, we compared the RCS assay with differential scanning calorimetry and dynamic scanning fluorimetry methodologies. Utilizing C1/2 values obtained from the RCS assay, formulation rank-ordering of 12 different mAb formulations was performed. The prediction of long-term stability on protein aggregation is obtained by demonstrating a good correlation with an r(2) of 0.83 between RCS and empirical aggregation propensity data. RCS promises to be an extremely useful tool to aid in candidate formulation development efforts based on the complete reversibility of the method to allow for multiple assessments without protein loss and the strong correlation between the C1/2 data obtained and accelerated stability under stressed conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
A homogeneous cell-based assay for measurement of endogenous paraoxonase 1 activity.
Ahmad, Syed; Carter, Jade J; Scott, John E
2010-05-01
Paraoxonase 1 (PON1) is a high-density lipoprotein-associated enzyme that plays an important role in organophosphate detoxification and prevention of atherosclerosis. Thus, there is significant interest in identifying nutritional and pharmacological enhancers of PON1 activity. To identify such compounds, we developed a rapid homogeneous assay to detect endogenous cell-associated PON1 activity. PON1 activity was measured by the simple addition of fluorigenic PON1 substrate DEPFMU to live Huh7 cells in medium and monitoring change in fluorescence. A specific PON1 inhibitor, 2-hydroxyquinoline, was used to confirm that the observed activity was due to PON1. The assay was optimized and characterized with regard to time course, substrate and sodium chloride concentration, number of cells, and tolerance to dimethyl sulfoxide and serum. Aspirin, quercetin, and simvastatin are compounds reported to increase PON1 expression. Consistent with the literature and Western blot data, these compounds enhanced PON1 activity in this assay with comparable efficacies and potencies. A known toxic compound did not increase assay signal. This assay method also detected PON1 activity in normal hepatocytes. Thus, a novel homogeneous assay for detection of endogenous PON1 expression has been developed and is amenable to high-throughput screening for the identification of small molecules that enhance PON1 expression. 2010 Elsevier Inc. All rights reserved.
Water-soluble derivatives of 25-OCH3-PPD and their anti-proliferative activities.
Zhou, Wu-Xi; Sun, Yuan-Yuan; Yuan, Wei-Hui; Zhao, Yu-Qing
2017-05-01
(20R)-25-Methoxyl-dammarane-3β,12β,20-triol (25-OCH 3 -PPD, AD-1) is a dammarane-type sapogenin showing anti-tumor potential. In the search for new anti-tumor agents with higher potency than our previously identified compound 25-OCH 3 -PPD, 11 novel sulfamic acid and diacid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 25-OCH 3 -PPD, compounds 1, 4, and 5 exhibited higher cytotoxic activity on almost all cell lines, together with lower toxicity in the normal cell. In particular, compound 1 exhibited the best anti-tumor activity in the in vitro assays. The water solubility of 25-OCH 3 -PPD and its derivatives was tested and the results showed that the solubility of 25-OCH 3 -PPD sulfamic acid and diacid derivatives were better than that of 25-OCH 3 -PPD in water, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2017 Elsevier Inc. All rights reserved.
Keilholz, Ulrich; Weber, Jeffrey; Finke, James H; Gabrilovich, Dmitry I; Kast, W Martin; Disis, Mary L; Kirkwood, John M; Scheibenbogen, Carmen; Schlom, Jeff; Maino, Vernon C; Lyerly, H Kim; Lee, Peter P; Storkus, Walter; Marincola, Franceso; Worobec, Alexandra; Atkins, Michael B
2002-01-01
The Society for Biological Therapy held a Workshop last fall devoted to immune monitoring for cancer immunotherapy trials. Participants included members of the academic and pharmaceutical communities as well as the National Cancer Institute and the Food and Drug Administration. Discussion focused on the relative merits and appropriate use of various immune monitoring tools. Six breakout groups dealt with assays of T-cell function, serologic and proliferation assays to assess B cell and T helper cell activity, and enzyme-linked immunospot assay, tetramer, cytokine flow cytometry, and reverse transcription polymerase chain reaction assays of T-cell immunity. General conclusions included: (1) future vaccine studies should be designed to determine whether T-cell dysfunction (tumor-specific and nonspecific) correlated with clinical outcome; (2) tetramer-based assays yield quantitative but not functional data (3) enzyme-linked immunospot assays have the lowest limit of detection (4) cytokine flow cytometry have a higher limit of detection than enzyme-linked immunospot assay, but offer the advantages of speed and the ability to identify subsets of reactive cells; (5) antibody tests are simple and accurate and should be incorporated to a greater extent in monitoring plans; (6) proliferation assays are imprecise and should not be emphasized in future studies; (7) the reverse transcription polymerase chain reaction assay is a promising research approach that is not ready for widespread application; and (8)there is a critical need to validate these assays as surrogates for vaccine potency and clinical effect. Current data and opinion support the use of a functional assay like the enzyme-linked immunospot assay or cytokine flow cytometry in combination with a quantitative assay like tetramers for immune monitoring. At present, assays appear to be most useful as measures of vaccine potency. Careful immune monitoring in association with larger scale clinical trials ultimately may enable the correlation of monitoring results with clinical benefit.
Holland, Erika B; Feng, Wei; Zheng, Jing; Dong, Yao; Li, Xueshu; Lehmler, Hans-Joachim; Pessah, Isaac N
2017-01-01
Nondioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine-sensitive Ca 2+ channels (RyRs) and this activation has been associated with neurotoxicity in exposed animals. RyR-active congeners follow a distinct structure-activity relationship and a quantitative structure-activity relationship (QSAR) predicts that a large number of PCBs likely activate the receptor, which requires validation. Additionally, previous structural based conclusions have been established using receptor ligand binding assays but the impact of varying PCB structures on ion channel gating behavior is not understood. We used [ 3 H]Ryanodine ([ 3 H]Ry) binding to assess the RyR-activity of 14 previously untested PCB congeners evaluating the predictability of the QSAR. Congeners determined to display widely varying potency were then assayed with single channel voltage clamp analysis to assess direct influences on channel gating kinetics. The RyR-activity of individual PCBs assessed in in vitro assays followed the general pattern predicted by the QSAR but binding and lipid bilayer experiments demonstrated higher potency than predicted. Of the 49 congeners tested to date, tetra-ortho PCB 202 was found to be the most potent RyR-active congener increasing channel open probability at 200 pM. Shifting meta-substitutions to the para-position resulted in a > 100-fold reduction in potency as seen with PCB 197. Non-ortho PCB 11 was found to lack activity at the receptor supporting a minimum mono-ortho substitution for PCB RyR activity. These findings expand and support previous SAR assessments; where out of the 49 congeners tested to date 42 activate the receptor demonstrating that the RyR is a sensitive and common target of PCBs. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Fragment-wise design of inhibitors to 3C proteinase from enterovirus 71.
Wu, Caiming; Zhang, Lanjun; Li, Peng; Cai, Qixu; Peng, Xuanjia; Yin, Ke; Chen, Xinsheng; Ren, Haixia; Zhong, Shilin; Weng, Yuwei; Guan, Yi; Chen, Shuhui; Wu, Jinzhun; Li, Jian; Lin, Tianwei
2016-06-01
Enterovirus 71 (EV71) is a causative agent of hand, foot and mouth disease (HFMD), which can spread its infection to central nervous and other systems with severe consequence. A key factor in the replication of EV71 is its 3C proteinase (3C(pro)), a significant drug target. Peptidomimetics were employed as inhibitors of this enzyme for developing antivirals. However, the peptide bonds in these peptidomimetics are a source of low bioavailability due to their susceptibility to protease digestion. To produce non-peptidomimetic inhibitors by replacing these peptide bonds, it would be important to gain better understanding on the contribution of each component to the interaction and potency. A series of compounds of different lengths targeting 3C(pro) and having an α,β-unsaturated ester as the warhead were synthesized and their interactions with the enzyme were evaluated by complex structure analyses and potency assays for a better understanding on the relationship between potency and evolution of interaction. The P2 moiety of the compound would need to be oriented to interact in the S2 site in the substrate binding cleft and the P3-P4 moieties were required to generate sufficient potency. A hydrophobic terminal group will benefit the cellular uptake and improve the activity in vivo. The data presented here provide a basis for designing a new generation of non-peptidomimetics to target EV71 3C(pro). Copyright © 2016 Elsevier B.V. All rights reserved.
Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco
2011-04-01
The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.
Harrill, Joshua A; Freudenrich, Theresa; Wallace, Kathleen; Ball, Kenneth; Shafer, Timothy J; Mundy, William R
2018-04-05
Medium- to high-throughput in vitro assays that recapitulate the critical processes of nervous system development have been proposed as a means to facilitate rapid testing and identification of chemicals which may affect brain development. In vivo neurodevelopment is a complex progression of distinct cellular processes. Therefore, batteries of in vitro assays that model and quantify effects on a variety of neurodevelopmental processes have the potential to identify chemicals which may affect brain development at different developmental stages. In the present study, the results of concentration-response screening of 67 reference chemicals in a battery of high content imaging and microplate reader-based assays that evaluate neural progenitor cell proliferation, neural proginitor cell apoptosis, neurite initiation/outgrowth, neurite maturation and synaptogenesis are summarized and compared. The assay battery had a high degree of combined sensitivity (87%) for categorizing chemicals known to affect neurodevelopment as active and a moderate degree of combined specificity (71%) for categorizing chemicals not associated with affects on neurodevelopment as inactive. The combined sensitivity of the assay battery was higher compared to any individual assay while the combined specificity of the assay battery was lower compared to any individual assay. When selectivity of effects for a neurodevelopmental endpoint as compared to general cytotoxicity was taken into account, the combined sensitivity of the assay battery decreased (68%) while the combined specificity increased (93%). The identity and potency of chemicals identified as active varied across the assay battery, underscoring the need for use of a combination of diverse in vitro models to comprehensively screen chemicals and identify those which potentially affect neurodevelopment. Overall, these data indicate that a battery of assays which address many different processes in nervous system development may be used to identify potential developmental neurotoxicants and to distinguish specific from generalized cytotoxic effects with a high degree of success. Published by Elsevier Inc.
Development of a central nervous system axonal myelination assay for high throughput screening.
Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri
2016-04-22
Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.
Hoppe Parr, Kimberly A; Hađina, Suzana; Kilburg-Basnyat, Brita; Wang, Yifang; Chavez, Dulce; Thorne, Peter S; Weiss, Jerrold P
2017-04-01
The pro-inflammatory potency and causal relationship with asthma of inhaled endotoxins have underscored the importance of accurately assessing the endotoxin content of organic dusts. The Limulus amebocyte lysate (LAL) assay has emerged as the preferred assay, but its ability to measure endotoxin in intact bacteria and organic dusts with similar sensitivity as purified endotoxin is unknown. We used metabolically radiolabeled Neisseria meningitidis and both rough and smooth Escherichia coli to compare dose-dependent activation in the LAL with purified endotoxin from these bacteria and shed outer membrane (OM) blebs. Labeled [ 14 C]-3-OH-fatty acids were used to quantify the endotoxin content of the samples. Purified meningococcal and E. coli endotoxins and OM blebs displayed similar specific activity in the LAL assay to the purified LPS standard. In contrast, intact bacteria exhibited fivefold lower specific activity in the LAL assay but showed similar MD-2-dependent potency as purified endotoxin in inducing acute airway inflammation in mice. Pre-treatment of intact bacteria and organic dusts with 0.1 M Tris-HCl/10 mM EDTA increased by fivefold the release of endotoxin. These findings demonstrate that house dust and other organic dusts should be extracted with Tris/EDTA to more accurately assess the endotoxin content and pro-inflammatory potential of these environmental samples.
Hoppe Parr, Kimberly A.; Hađina, Suzana; Kilburg-Basnyat, Brita; Wang, Yifang; Chavez, Dulce; Thorne, Peter S.; Weiss, Jerrold P.
2018-01-01
The pro-inflammatory potency and causal relationship with asthma of inhaled endotoxins have underscored the importance of accurately assessing the endotoxin content of organic dusts. The Limulus Amebocyte Lysate (LAL) assay has emerged as the preferred assay but its ability to measure endotoxin in intact bacteria and organic dusts with similar sensitivity as purified endotoxin is unknown. We used metabolically radiolabeled Neisseria meningitidis and both rough and smooth Escherichia coli to compare dose-dependent activation in the LAL with purified endotoxin from these bacteria and shed outer membrane (OM) blebs. Bacteria labeled with [14C]-3-OH-fatty acids were used to quantify the endotoxin content of the samples. Purified meningococcal and E. coli endotoxins and OM blebs displayed similar specific activity in the LAL assay to the purified LPS standard. In contrast, intact bacteria exhibited 5-fold lower specific activity in the LAL assay but showed similar MD-2-dependent potency as purified endotoxin in inducing acute airway inflammation in mice. Pretreatment of intact bacteria and organic dusts with 0.1M Tris-HCl/10mM EDTA increased by 5-fold the release of endotoxin. These findings demonstrate that house dust and other organic dusts should be extracted with Tris/EDTA to more accurately assess the endotoxin content and pro-inflammatory potential of these environmental samples. PMID:28359219
Francisco, Fabiane Lacerda; Saviano, Alessandro Morais; Almeida, Túlia de Souza Botelho; Lourenço, Felipe Rebello
2016-05-01
Microbiological assays are widely used to estimate the relative potencies of antibiotics in order to guarantee the efficacy, safety, and quality of drug products. Despite of the advantages of turbidimetric bioassays when compared to other methods, it has limitations concerning the linearity and range of the dose-response curve determination. Here, we proposed to use partial least squares (PLS) regression to solve these limitations and to improve the prediction of relative potencies of antibiotics. Kinetic-reading microplate turbidimetric bioassays for apramacyin and vancomycin were performed using Escherichia coli (ATCC 8739) and Bacillus subtilis (ATCC 6633), respectively. Microbial growths were measured as absorbance up to 180 and 300min for apramycin and vancomycin turbidimetric bioassays, respectively. Conventional dose-response curves (absorbances or area under the microbial growth curve vs. log of antibiotic concentration) showed significant regression, however there were significant deviation of linearity. Thus, they could not be used for relative potency estimations. PLS regression allowed us to construct a predictive model for estimating the relative potencies of apramycin and vancomycin without over-fitting and it improved the linear range of turbidimetric bioassay. In addition, PLS regression provided predictions of relative potencies equivalent to those obtained from agar diffusion official methods. Therefore, we conclude that PLS regression may be used to estimate the relative potencies of antibiotics with significant advantages when compared to conventional dose-response curve determination. Copyright © 2016 Elsevier B.V. All rights reserved.
A new series of estrogen receptor modulators that display selectivity for estrogen receptor beta.
Henke, Brad R; Consler, Thomas G; Go, Ning; Hale, Ron L; Hohman, Dana R; Jones, Stacey A; Lu, Amy T; Moore, Linda B; Moore, John T; Orband-Miller, Lisa A; Robinett, R Graham; Shearin, Jean; Spearing, Paul K; Stewart, Eugene L; Turnbull, Philip S; Weaver, Susan L; Williams, Shawn P; Wisely, G Bruce; Lambert, Millard H
2002-12-05
A series of 1,3,5-triazine-based estrogen receptor (ER) modulators that are modestly selective for the ERbeta subtype are reported. Compound 1, which displayed modest potency and selectivity for ERbeta vs ERalpha, was identified via high-throughput screening utilizing an ERbeta SPA-based binding assay. Subsequent analogue preparation resulted in the identification of compounds such as 21 and 43 that display 25- to 30-fold selectivity for ERbeta with potencies in the 10-30 nM range. These compounds profile as full antagonists at ERbeta and weak partial agonists at ERalpha in a cell-based reporter gene assay. In addition, the X-ray crystal structure of compound 15 complexed with the ligand binding domain of ERbeta has been solved and was utilized in the design of more conformationally restrained analogues such as 31 in an attempt to increase selectivity for the ERbeta subtype.
Stone, A L; Melton, D J; Lewis, M S
1998-07-01
Heparins/heparan sulfates modulate the function of proteins and cell membranes in numerous biological systems including normal and disease processes in humans. Heparin has been used for many years as an anticoagulant, and anticoagulant heparin-mimetics were developed several decades ago by chemical sulfation of non-mammalian polysaccharides, e.g., an antithrombotic sulfated xylan. This pharmaceutical, which comprises a mixture of sulfated oligoxylans, also mimics most other biological actions of natural heparins in vitro, including inhibition of the human immunodeficiency virus, but the molecular basis for these actions has been unclear. Here, numerous Components of the sulfated oligoxylan mixture were isolated and when bioassayed in the case of anti-HIV-1 infectivity revealed that a structural specificity underlines the capacity of sulfated xylan to inhibit HIV-1, rather than a non-specific mechanism. Components were isolated by chromatographic fractionation through Bio-Gel P10 in 0.5 M ammonium bicarbonate. This fractionation revealed an elution range associated with apparent molecular weights of approximately 22000 to <1500 relative to standard heparin and heparan sulfates and newly prepared sulfated oligosaccharide standards. Components were characterized by metachromatic absorption spectroscopy, ultracentrifugation, GlcA analysis, and potency against HIV-1 infectivity, both in the tetrazolium cytotoxicity assay and in syncytium-forming assays, in CD4-lymphocytes. Structural specificity was indicated by the differential potencies exhibited by the Components: Highest activity (cytotoxicity) was exhibited by Components in the chromatographic region > or = approximately 5500 in mass (50% effective (inhibitory) concentration = 0.5-0.7 microg ml(-1) in the first fractionation series, and 0.1-0.5 microg ml(-1) in a second series). The potency declined sharply below approximately 5400 in mass, but with an exception; a second structure exhibiting relatively high potency eluted among low-mass oligosaccharides which had an average size of approximately a nonomer. Components displayed differential potencies also against the syncytium-forming infectivity of HIV-1. The high potency against syncytium-formation was retained by Components down to a minimum size of about 4500 in mass, smaller than the > or = approximately 5400 required above. One in ten of the beta1,4-linked xyloses in the native xylan are substituted with a monomeric alpha1,2 DGlcA branch. We have speculated that pharmaceutical actions of sulfated xylan might be related to structures involving the alpha-D linked substituents and this was examined using a space-filling model of a sulfated octaxylan and by analyses of Components for GlcA content. Understanding structure/function relations in the heparin-like actions of these agents would be of general significance for the careful examination of their potential clinical usefulness in many human processes modulated by heparins, including AIDS.
Loa, Jacky; Chow, Pierce; Zhang, Kai
2009-05-01
To study anticancer activities of 68 plant polyphenols with different backbone structures and various substitutions and to analyze the structure-activity relationships. Antiproliferative activity of 68 plant polyphenols on human liver cancer cells were screened by the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide method. Structure-activity relationships were analyzed by comparison of their activities with selected structures. Cell cycle progression was assayed by flow cytometry analysis and apoptosis was analyzed by DNA fragment assay. Based on their backbone structures, 68 polyphenols were sub-classed to flavonoids (chalcones, flavanones, flavones and isoflavones), chromones and coumarins. The order of their potency to suppress the human liver cancer cells is chalcones > flavones > chromones > isoflavones > flavanones > coumarins. Chalcones comprise the most potent group with IC(50) values ranging from 21.69 to 197 microM. Top nine most potent chalcones in the group have hydroxylation at 2'-carbon position in B-ring. Flavones ranked second in their potencies. Quercetin, 4-hydroxyflavone and luteolin are three hydroxyflavones with highest potencies in this group. Their IC(50) values are 30.81, 39.29 and 71.17 microM, respectively. Chromones, isoflavones, flavanones and coumarins showed much lower potencies when compared to the first two groups with IC(50) ranges of 61 to >400, 131 to >400, 138 to >400 and 360.85 to >400 microM, respectively. In mechanistic studies, the most potent chalcone, 2,2'-dihydroxychalcone could induce G2/M arrest and then apoptosis of the cancer cells. An analysis of structure-activity relationship showed that following structures are required for their inhibitory potencies on human liver cancer cells: (1) of the six sub-classes of the polyphenols tested, the unique backbone structure of chalcones with a open C-ring; (2) within the chalcone group, hydroxyl substitution at 2'-carbon of B-ring; (3) hydroxyl substitution at 3'-carbon in B-ring of flavones. However, some other structures were found to decrease their potencies: e.g. substitutions by sugar moieties in flavones. These data are valuable for design and modification of new polyphenols, which could be potential antiproliferative agents of cancer cells.
Evaluation of a recombinant yeast cell estrogen screening assay.
Coldham, N G; Dave, M; Sivapathasundaram, S; McDonnell, D P; Connor, C; Sauer, M J
1997-01-01
A wide range of chemicals with diverse structures derived from plant and environmental origins are reported to have hormonal activity. The potential for appreciable exposure of humans to such substances prompts the need to develop sensitive screening methods to quantitate and evaluate the risk to the public. Yeast cells transformed with plasmids encoding the human estrogen receptor and an estrogen responsive promoter linked to a reporter gene were evaluated for screening compounds for estrogenic activity. Relative sensitivity to estrogens was evaluated by reference to 17 beta-estradiol (E2) calibration curves derived using the recombinant yeast cells, MCF-7 human breast cancer cells, and a prepubertal mouse uterotrophic bioassay. The recombinant yeast cell bioassay (RCBA) was approximately two and five orders of magnitude more sensitive to E2 than MCF-7 cells and the uterotrophic assay, respectively. The estrogenic potency of 53 chemicals, including steroid hormones, synthetic estrogens, environmental pollutants, and phytoestrogens, was measured using the RCBA. Potency values produced with the RCBA relative to E2 (100) included estrone (9.6), diethylstilbestrol (74.3), tamoxifen (0.0047), alpha-zearalanol (1.3), equol (0.085), 4-nonylphenol (0.005), and butylbenzyl phathalate (0.0004), which were similar to literature values but generally higher than those produced by the uterotrophic assay. Exquisite sensitivity, absence of test compound biotransformation, ease of use, and the possibility of measuring antiestrogenic activity are important attributes that argue for the suitability of the RCBA in screening for potential xenoestrogens to evaluate risk to humans, wildlife, and the environment. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:9294720
Loveless, S E; Api, A-M; Crevel, R W R; Debruyne, E; Gamer, A; Jowsey, I R; Kern, P; Kimber, I; Lea, L; Lloyd, P; Mehmood, Z; Steiling, W; Veenstra, G; Woolhiser, M; Hennes, C
2010-02-01
Hundreds of chemicals are contact allergens but there remains a need to identify and characterise accurately skin sensitising hazards. The purpose of this review was fourfold. First, when using the local lymph node assay (LLNA), consider whether an exposure concentration (EC3 value) lower than 100% can be defined and used as a threshold criterion for classification and labelling. Second, is there any reason to revise the recommendation of a previous ECETOC Task Force regarding specific EC3 values used for sub-categorisation of substances based upon potency? Third, what recommendations can be made regarding classification and labelling of preparations under GHS? Finally, consider how to integrate LLNA data into risk assessment and provide a rationale for using concentration responses and corresponding no-effect concentrations. Although skin sensitising chemicals having high EC3 values may represent only relatively low risks to humans, it is not possible currently to define an EC3 value below 100% that would serve as an appropriate threshold for classification and labelling. The conclusion drawn from reviewing the use of distinct categories for characterising contact allergens was that the most appropriate, science-based classification of contact allergens according to potency is one in which four sub-categories are identified: 'extreme', 'strong', 'moderate' and 'weak'. Since draining lymph node cell proliferation is related causally and quantitatively to potency, LLNA EC3 values are recommended for determination of a no expected sensitisation induction level that represents the first step in quantitative risk assessment. 2009 Elsevier Inc. All rights reserved.
Assessment of toxic potency of complex mixtures of PAHs from Lincoln Creek, Milwaukee, WI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villeneuve, D.; Crunkilton, R.; DeVita, W.
1995-12-31
An assay of cytochrome P4501A catalytic activity in PLHC-1 fish hepatoma cells was used to evaluate the toxic potency of dialysates from triolein filled semipermeable polymeric membrane devices (SPMDS) exposed for variable durations and under various flow regimes to water from Lincoln Creek. Toxic potency was expressed as 2,3,7,8 tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) calculated from bioassay results. Dose-dependent responses in measured ethoxyresorufin-o-deethylase (EROD) activity of PLHC-1 cells exposed to SPMD dialysates were shown. Toxic potency of dialysates, expressed as bioassay derived TCDD equivalents, increased with duration of SPMD exposure in Lincoln Creek from 2.0 pg/uL for a 2 day exposure tomore » 19.5 pg/uL for a 30 day exposure. This corresponded to an increase in dialysate polycyclic aromatic hydrocarbon (PAH) concentration from 8.82 ug/g after a 2 day exposure to 24.14 ug/g after 30 days. Dialysates from SPMDs exposed to Lincoln Creek stormflow had higher toxic potencies and total PAH concentrations than those exposed to baseflow only, These results suggest that levels of PAH contamination, particularly those associated with stormflow, in Lincoln Creek have potential to accumulate in fish to levels significant enough to elicit a measurable biological response (cytochrome P4501 A induction) at a potency level approaching 0.08% that of TCDD.« less
Dearman, Rebecca J; Betts, Catherine J; Farr, Craig; McLaughlin, James; Berdasco, Nancy; Wiench, Karin; Kimber, Ian
2007-10-01
There are currently available no systematic experimental data on the skin sensitizing properties of acrylates that are of relevance in occupational settings. Limited information from previous guinea-pig tests or from the local lymph node assay (LLNA) is available; however, these data are incomplete and somewhat contradictory. For those reasons, we have examined in the LLNA 4 acrylates: butyl acrylate (BA), ethyl acrylate (EA), methyl acrylate (MA), and ethylhexyl acrylate (EHA). The LLNA data indicated that all 4 compounds have some potential to cause skin sensitization. In addition, the relative potencies of these acrylates were measured by derivation from LLNA dose-response analyses of EC3 values (the effective concentration of chemical required to induce a threefold increase in proliferation of draining lymph node cells compared with control values). On the basis of 1 scheme for the categorization of skin sensitization potency, BA, EA, and MA were each classified as weak sensitizers. Using the same scheme, EHA was considered a moderate sensitizer. However, it must be emphasized that the EC3 value for this chemical of 9.7% is on the borderline between moderate (<10%) and weak (>10%) categories. Thus, the judicious view is that all 4 chemicals possess relatively weak skin sensitizing potential.
2011-01-01
Background One of the most critical problems about antimicrobial therapy is the increasing resistance to antibiotics. Previous studies have shown that there is a direct relation between erroneous prescription, dosage, route, duration of the therapy and the antibiotics resistance. Other important point is the uncertainty about the quality of the prescribed medicines. Some physicians believe that generic drugs are not as effective as innovator ones, so it is very important to have evidence that shows that all commercialized drugs are suitable for therapeutic use. Methods Microbial assays were used to establish the potency, the Minimal Inhibitory Concentrations (MICs), the Minimal Bactericidal Concentration (MBCs), the critical concentrations, and the production of spontaneous mutants that are resistant to vancomycin. Results The microbial assay was validated in order to determine the Vancomycin potency of the tasted samples. All the products showed that have potency values between 90 - 115% (USP requirement). The products behave similarly because the MICs, The MBCs, the critical concentrations, the critical concentrations ratios between standard and samples, and the production of spontaneous mutants don't have significant differences. Conclusions All products analyzed by microbiological tests, show that both trademarks and generics do not have statistical variability and the answer of antimicrobial activity Show also that they are pharmaceutical equivalents. PMID:21777438
Diaz, Jorge A; Silva, Edelberto; Arias, Maria J; Garzón, María
2011-07-21
One of the most critical problems about antimicrobial therapy is the increasing resistance to antibiotics. Previous studies have shown that there is a direct relation between erroneous prescription, dosage, route, duration of the therapy and the antibiotics resistance. Other important point is the uncertainty about the quality of the prescribed medicines. Some physicians believe that generic drugs are not as effective as innovator ones, so it is very important to have evidence that shows that all commercialized drugs are suitable for therapeutic use. Microbial assays were used to establish the potency, the Minimal Inhibitory Concentrations (MICs), the Minimal Bactericidal Concentration (MBCs), the critical concentrations, and the production of spontaneous mutants that are resistant to vancomycin. The microbial assay was validated in order to determine the Vancomycin potency of the tasted samples. All the products showed that have potency values between 90 - 115% (USP requirement). The products behave similarly because the MICs, The MBCs, the critical concentrations, the critical concentrations ratios between standard and samples, and the production of spontaneous mutants don't have significant differences. All products analyzed by microbiological tests, show that both trademarks and generics do not have statistical variability and the answer of antimicrobial activity Show also that they are pharmaceutical equivalents.
Brentnall, Claire; Cheng, Zhangrui; McKellar, Quintin A; Lees, Peter
2012-12-01
Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)10 to 1.84:1 for IC95. R(-) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC10 COX-1:COX-2=6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC95 COX-1:COX-2=0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(-) carprofen were 11.6:1 for IC10 and 218:1 for IC90. Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4 mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC80 COX-2 value for 32 h and the IC20 for COX-1 for 33 h. The findings are discussed in relation to efficacy and safety of carprofen in calves. Copyright © 2012 Elsevier Ltd. All rights reserved.
Structure-activity relationships of rationally designed AMACR 1A inhibitors.
Yevglevskis, Maksims; Lee, Guat L; Nathubhai, Amit; Petrova, Yoana D; James, Tony D; Threadgill, Michael D; Woodman, Timothy J; Lloyd, Matthew D
2018-04-30
α-Methylacyl-CoA racemase (AMACR; P504S) is a promising novel drug target for prostate and other cancers. Assaying enzyme activity is difficult due to the reversibility of the 'racemisation' reaction and the difficulties in the separation of epimeric products; consequently few inhibitors have been described and no structure-activity relationship study has been performed. This paper describes the first structure-activity relationship study, in which a series of 23 known and potential rational AMACR inhibitors were evaluated. AMACR was potently inhibited (IC 50 = 400-750 nM) by ibuprofenoyl-CoA and derivatives. Potency was positively correlated with inhibitor lipophilicity. AMACR was also inhibited by straight-chain and branched-chain acyl-CoA esters, with potency positively correlating with inhibitor lipophilicity. 2-Methyldecanoyl-CoAs were ca. 3-fold more potent inhibitors than decanoyl-CoA, demonstrating the importance of the 2-methyl group for effective inhibition. Elimination substrates and compounds with modified acyl-CoA cores were also investigated, and shown to be potent inhibitors. These results are the first to demonstrate structure-activity relationships of rational AMACR inhibitors and that potency can be predicted by acyl-CoA lipophilicity. The study also demonstrates the utility of the colorimetric assay for thorough inhibitor characterisation. Copyright © 2018 Elsevier Inc. All rights reserved.
Development of Tricyclic Hydroxy-1H-pyrrolopyridine-trione Containing HIV-1 Integrase Inhibitors
Zhao, Xue Zhi; Maddali, Kasthuraiah; Metifiot, Mathieu; Smith, Steven J.; Vu, B. Christie; Marchand, Christophe; Hughes, Stephen H.; Pommier, Yves; Burke, Terrence R.
2011-01-01
New tricyclic HIV-1 integrase (IN) inhibitors were prepared that combined structural features of bicyclic pyrimidinones with recently disclosed 4,5-dihydroxy-1H-isoindole-1,3(2H)-diones. This combination resulted in the introduction of a nitrogen into the aryl ring and the addition of a fused third ring to our previously described inhibitors. The resulting analogues showed low micromolar inhibitory potency in in vitro HIV-1 integrase assays, with good selectivity for strand transfer relative to 3′-processing. PMID:21493066
Novel orally active growth hormone secretagogues.
Hansen, T K; Ankersen, M; Hansen, B S; Raun, K; Nielsen, K K; Lau, J; Peschke, B; Lundt, B F; Thøgersen, H; Johansen, N L; Madsen, K; Andersen, P H
1998-09-10
A novel class of growth hormone-releasing compounds with a molecular weight in the range from 500 to 650 has been discovered. The aim of this study was to obtain growth hormone secretagogues with oral bioavailability. By a rational approach we were able to reduce the size of the lead compound ipamorelin (4) and simultaneously to reduce hydrogen-bonding potential by incorporation of backbone isosters while retaining in vivo potency in swine. A rat pituitary assay was used for screening of all compounds and to evaluate which compounds should be tested further for in vivo potency in swine and oral bioavailability, fpo, in dogs. Most of the tested compounds had fpo in the range of 10-55%. In vivo potency in swine after iv dosing is reported, and ED50 was found to be 30 nmol/kg of body weight for the most potent compound.
Wentsch, Heike K; Walter, Niklas M; Bührmann, Mike; Mayer-Wrangowski, Svenja; Rauh, Daniel; Zaman, Guido J R; Willemsen-Seegers, Nicole; Buijsman, Rogier C; Henning, Melanie; Dauch, Daniel; Zender, Lars; Laufer, Stefan
2017-05-02
Skepinone-L was recently reported to be a p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, this class of compounds still act as fully ATP-competitive Type I binders which, furthermore, suffer from short residence times at the enzyme. We herein describe a further development with the first Type I1/2 binders for p38α MAP kinase. Type I1/2 inhibitors interfere with the R-spine, inducing a glycine flip and occupying both hydrophobic regions I and II. This design approach leads to prolonged target residence time, binding to both the active and inactive states of the kinase, excellent selectivity, excellent potency on the enzyme level, and low nanomolar activity in a human whole blood assay. This promising binding mode is proven by X-ray crystallography. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unique DC-SIGN clustering activity of a small glycomimetic: A lesson for ligand design.
Sutkeviciute, Ieva; Thépaut, Michel; Sattin, Sara; Berzi, Angela; McGeagh, John; Grudinin, Sergei; Weiser, Jörg; Le Roy, Aline; Reina, Jose J; Rojo, Javier; Clerici, Mario; Bernardi, Anna; Ebel, Christine; Fieschi, Franck
2014-06-20
DC-SIGN is a dendritic cell-specific C-type lectin receptor that recognizes highly glycosylated ligands expressed on the surface of various pathogens. This receptor plays an important role in the early stages of many viral infections, including HIV, which makes it an interesting therapeutic target. Glycomimetic compounds are good drug candidates for DC-SIGN inhibition due to their high solubility, resistance to glycosidases, and nontoxicity. We studied the structural properties of the interaction of the tetrameric DC-SIGN extracellular domain (ECD), with two glycomimetic antagonists, a pseudomannobioside (1) and a linear pseudomannotrioside (2). Though the inhibitory potency of 2, as measured by SPR competition experiments, was 1 order of magnitude higher than that of 1, crystal structures of the complexes within the DC-SIGN carbohydrate recognition domain showed the same binding mode for both compounds. Moreover, when conjugated to multivalent scaffolds, the inhibitory potencies of these compounds became uniform. Combining isothermal titration microcalorimetry, analytical ultracentrifugation, and dynamic light scattering techniques to study DC-SIGN ECD interaction with these glycomimetics revealed that 2 is able, without any multivalent presentation, to cluster DC-SIGN tetramers leading to an artificially overestimated inhibitory potency. The use of multivalent scaffolds presenting 1 or 2 in HIV trans-infection inhibition assay confirms the loss of potency of 2 upon conjugation and the equal efficacy of chemically simpler compound 1. This study documents a unique case where, among two active compounds chemically derived, the compound with the lower apparent activity is the optimal lead for further drug development.
Zhang, Xiao; Yao, Wang; Xu, Xiaojiang; Sun, Huifang; Zhao, Jinhua; Meng, Xiangbao; Wu, Mingyi; Li, Zhongjun
2018-02-01
Fucosylated chondroitin sulfate (FuCS) is a structurally distinct glycosaminoglycan with excellent anticoagulant activity. Studies show that FuCS and its depolymerized fragments exhibit a different anticoagulant mechanism from that of heparin derivatives, with decreased risks of adverse effects and bleeding. However, further exploitation has been hindered by the scarcity of structurally defined oligosaccharides. Herein, facile method is reported for the synthesis of the repeating trisaccharide unit of FuCS based on the degradation of chondroitin sulfate polymers. A series of simplified FuCS glycomimetics that have highly tunable structures, controllable branches, and defined sulfation motifs were generated by copper-catalyzed alkyne-azide cycloaddition. Remarkable improvement in activated partial thromboplastin time (APTT) assay activities was observed as the branches increased, but no significant influences were observed for prothrombin time (PT) and thrombin time (TT) assay activities. Further FXase inhibition tests suggested that glycoclusters 33 b-40 b selectively inhibited intrinsic anticoagulant activities, but had little effect on the extrinsic and common coagulation pathways. Notably, glycoclusters with the 2,4-di-O-sulfated fucosyl residue displayed the most potency, which was in consistent with that of natural polysaccharides. These FuCS clusters demonstrated potency to mimic linear glycosaminoglycans and offer a new framework for the development of novel anticoagulant agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Naery; Seo, Ji Suk; Kim, Jae Ok; Ban, Sang Ja
2017-05-01
Since the 1st Korean national biological reference standard for factor (F)VIII concentrate, established in 2001, has shown declining potency, we conducted this study to replace this standard with a 2nd Korean national biological reference standard for blood coagulation FVIII concentrate. The candidate materials for the 2nd standard were prepared in 8000 vials with 10 IU/ml of target potency, according to the approved manufacturing process of blood coagulation Factor VIII:C Monoclonal Antibody-purified, Freeze-dried Human Blood Coagulation Factor VIII:C. Potency was evaluated by one-stage clotting and chromogenic methods and the stability was confirmed to meet the specifications during a period of 73 months. Since the potencies obtained by the two methods differed significantly (P < 0.015), the values were determined separately according to the geometric means (8.9 and 7.4 IU/vial, respectively). The geometric coefficients of interlaboratory variability were 3.4% and 7.6% by the one-stage clotting and chromogenic assays, respectively. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Radke, Teja Falk; Barbosa, David; Duggleby, Richard Charles; Saccardi, Riccardo; Querol, Sergio; Kögler, Gesine
2013-01-01
The assessment of nonviable haematopoietic cells by Annexin V staining method in flow cytometry has recently been published by Duggleby et al. Resulting in a better correlation with the observed colony formation in methylcellulose assays than the standard ISHAGE protocol, it presents a promising method to predict cord blood potency. Herein, we applied this method for examining the parameters during processing which potentially could affect cord blood viability. We could verify that the current standards regarding time and temperature are sufficient, since no significant difference was observed within 48 hours or in storage at 4°C up to 26°C. However, the addition of DMSO for cryopreservation alone leads to an inevitable increase in nonviable haematopoietic stem cells from initially 14.8% ± 4.3% to at least 30.6% ± 5.5%. Furthermore, CFU-assays with varied seeding density were performed in order to evaluate the applicability as a quantitative method. The results revealed that only in a narrow range reproducible clonogenic efficiency (ClonE) could be assessed, giving at least a semiquantitative estimation. We conclude that both Annexin V staining method and CFU-assays with defined seeding density are reliable means leading to a better prediction of the final potency. Especially Annexin V, due to its fast readout, is a practical tool for examining and optimising specific steps in processing, while CFU-assays add a functional confirmation. PMID:23533443
A new series of highly potent growth hormone-releasing peptides derived from ipamorelin.
Ankersen, M; Johansen, N L; Madsen, K; Hansen, B S; Raun, K; Nielsen, K K; Thogersen, H; Hansen, T K; Peschke, B; Lau, J; Lundt, B F; Andersen, P H
1998-09-10
A new series of GH secretagogues derived from ipamorelin is described. In an attempt to obtain oral bioavailability, by reducing the size and the number of potential hydrogen-bonding sites of the compounds, a strategy using the peptidomimetic fragment 3-(aminomethyl)benzoic acid and sequential backbone N-methylations was applied. Several compounds from this series release GH with high in vitro potency and efficacy in a rat pituitary cell assay and high in vivo potency and efficacy in anesthetized rats. The tetrapeptide NNC 26-0235 (3-(aminomethyl)benzoyl-D-2Nal-N-Me-D-Phe-Lys-NH2) shows, following iv administration, comparable in vivo potency to ipamorelin, GHRP-2, and GHRP-6 with an ED50 in swine at 2 nmol/kg. NNC 26-0235 demonstrated a 10% oral bioavailability in dogs, and NNC 26-0235 and ipamorelin were able to increase basal GH level by more than 10-fold after oral administration of a dose of 1.8 and 2.7 mg/kg, respectively. The tripeptide NNC 26-0323 (3-(aminomethyl)benzoic acid-N-Me-D-2Nal-N-Me-D-Phe-ol) which showed moderate in vitro potency but lacked in vivo potency demonstrated a 20% oral bioavailability in rats.
Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun
2015-02-01
Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of potent and selective iodonium-class inhibitors of NADPH oxidases.
Lu, Jiamo; Risbood, Prabhakar; Kane, Charles T; Hossain, Md Tafazzal; Anderson, Larry; Hill, Kimberly; Monks, Anne; Wu, Yongzhong; Antony, Smitha; Juhasz, Agnes; Liu, Han; Jiang, Guojian; Harris, Erik; Roy, Krishnendu; Meitzler, Jennifer L; Konaté, Mariam; Doroshow, James H
2017-11-01
The NADPH oxidases (NOXs) play a recognized role in the development and progression of inflammation-associated disorders, as well as cancer. To date, several NOX inhibitors have been developed, through either high throughput screening or targeted disruption of NOX interaction partners, although only a few have reached clinical trials. To improve the efficacy and bioavailability of the iodonium class NOX inhibitor diphenylene iodonium (DPI), we synthesized 36 analogs of DPI, focusing on improved solubility and functionalization. The inhibitory activity of the analogs was interrogated through cell viability and clonogenic studies with a colon cancer cell line (HT-29) that depends on NOX for its proliferative potential. Lack of altered cellular respiration at relevant iodonium analog concentrations was also demonstrated. Additionally, inhibition of ROS generation was evaluated with a luminescence assay for superoxide, or by Amplex Red® assay for H 2 O 2 production, in cell models expressing specific NOX isoforms. DPI and four analogs (NSCs 740104, 751140, 734428, 737392) strongly inhibited HT-29 cell growth and ROS production with nanomolar potency in a concentration-dependent manner. NSC 737392 and 734428, which both feature nitro functional groups at the meta position, had >10-fold higher activity against ROS production by cells that overexpress dual oxidase 2 (DUOX2) than the other compounds examined (IC 50 ≈200-400nM). Based on these results, we synthesized and tested NSC 780521 with optimized potency against DUOX2. Iodonium analogs with anticancer activity, including the first generation of targeted agents with improved specificity against DUOX2, may provide a novel therapeutic approach to NOX-driven tumors. Published by Elsevier Inc.
[Methods of testing inactivated antirabies vaccines].
Nedosekov, V V; Vishniakov, I F; Gruzdev, K N
2001-01-01
Methods for evaluating the potency of inactivated rabies vaccines are reviewed. Shortcomings of the traditional NIH method and advantages of modern rapid immunological in vitro methods (antibody binding test, radial immunodiffusion test, enzyme linked immunoadsorbent assay) for estimation of antigenic activity of vaccines are discussed.
Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells.
Masaki, Hideki; Kato-Itoh, Megumi; Umino, Ayumi; Sato, Hideyuki; Hamanaka, Sanae; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Nakauchi, Hiromitsu
2015-09-15
Functional assay limitations are an emerging issue in characterizing human pluripotent stem cells (PSCs). With rodent PSCs, chimera formation using pre-implantation embryos is the gold-standard assay of pluripotency (competence of progeny to differentiate into all three germ layers). In human PSCs (hPSCs), however, this can only be monitored via teratoma formation or in vitro differentiation, as ethical concerns preclude generation of human-human or human-animal chimeras. To circumvent this issue, we developed a functional assay utilizing interspecific blastocyst injection and in vitro culture (interspecies in vitro chimera assay) that enables the development and observation of embryos up to headfold stage. The assay uses mouse pre-implantation embryos and rat, monkey and human PSCs to create interspecies chimeras cultured in vitro to the early egg-cylinder stage. Intra- and interspecific chimera assays with rodent PSC lines were performed to confirm the consistency of results in vitro and in vivo. The behavior of chimeras developed in vitro appeared to recapitulate that of chimeras developed in vivo; that is, PSC-derived cells survived and were integrated into the epiblast of egg-cylinder-stage embryos. This indicates that the interspecific in vitro chimera assay is useful in evaluating the chimera-forming ability of rodent PSCs. However, when human induced PSCs (both conventional and naïve-like types) were injected into mouse embryos and cultured, some human cells survived but were segregated; unlike epiblast-stage rodent PSCs, they never integrated into the epiblast of egg-cylinder-stage embryos. These data suggest that the mouse-human interspecies in vitro chimera assay does not accurately reflect the early developmental potential/process of hPSCs. The use of evolutionarily more closely related species as host embryos might be necessary to evaluate the developmental potency of hPSCs. © 2015. Published by The Company of Biologists Ltd.
Warren, Sarah H; Claxton, Larry D; Diliberto, Janet; Hughes, Thomas J; Swank, Adam; Kusnierz, Daniel H; Marshall, Valerie; DeMarini, David M
2015-02-01
U.S. Environmental Protection Agency (US EPA) Regional Applied Research Effort (RARE) projects address the effects of environmental pollutants in a particular region on the health of the population in that region. This report is part of a RARE project that addresses this for the Penobscot Indian Nation (PIN), Penobscot Island, Maine, U.S., where the Penobscot River has had fish advisories for many years due to high levels of mercury. We used the Salmonella mutagenicity assay with strains TA100, TA98, YG1041, and YG1042 with and without metabolic activation to assess the mutagenic potencies of organic extracts of the Penobscot River water and sediment, as well as drinking-water samples, all collected by the PIN Department of Natural Resources. The source water for the PIN drinking water is gravel-packed groundwater wells adjacent to the Penobscot River. Most samples of all extracts were either not mutagenic or had low to moderate mutagenic potencies. The average mutagenic potencies (revertants/L-equivalent) were 337 for the drinking-water extracts and 177 for the river-water extracts; the average mutagenic potency for the river-sediment extracts was 244 revertants(g-equivalent)(-1). This part of the RARE project showed that extracts of the Penobscot River water and sediments and Penobscot drinking water have little to no mutagenic activity that might be due to the classes of compounds that the Salmonella mutagenicity assay detects, such as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (nitroarenes), and aromatic amines. This study is the first to examine the mutagenicity of environmental samples from a tribal nation in the U.S. Published by Elsevier Ltd.
Menchon, Grégory; Prota, Andrea E; Lucena-Agell, Daniel; Bucher, Pascal; Jansen, Rolf; Irschik, Herbert; Müller, Rolf; Paterson, Ian; Díaz, J Fernando; Altmann, Karl-Heinz; Steinmetz, Michel O
2018-05-29
Microtubule-targeting agents (MTAs) like taxol and vinblastine are among the most successful chemotherapeutic drugs against cancer. Here, we describe a fluorescence anisotropy-based assay that specifically probes for ligands targeting the recently discovered maytansine site of tubulin. Using this assay, we have determined the dissociation constants of known maytansine site ligands, including the pharmacologically active degradation product of the clinical antibody-drug conjugate trastuzumab emtansine. In addition, we discovered that the two natural products spongistatin-1 and disorazole Z with established cellular potency bind to the maytansine site on β-tubulin. The high-resolution crystal structures of spongistatin-1 and disorazole Z in complex with tubulin allowed the definition of an additional sub-site adjacent to the pocket shared by all maytansine-site ligands, which could be exploitable as a distinct, separate target site for small molecules. Our study provides a basis for the discovery and development of next-generation MTAs for the treatment of cancer.
Design and Synthesis of Selective Estrogen Receptor beta Agonists and Their Pharmacology
NASA Astrophysics Data System (ADS)
Perera, K. L. Iresha Sampathi
Estrogens (17beta-estradiol, E2) have garnered considerable attention in influencing cognitive process in relation to phases of the menstrual cycle, aging and menopausal symptoms. However, hormone replacement therapy can have deleterious effects leading to breast and endometrial cancer, predominantly mediated by estrogen receptor-alpha (ERalpha) the major isoform present in the mammary gland and uterus. Further evidence supports a dominant role of estrogen receptor-beta (ERbeta) for improved cognitive effects such as enhanced hippocampal signaling and memory consolidation via estrogen activated signaling cascades. Creation of the ERbeta selective ligands is challenging due to high structural similarity of both receptors. Thus far, several ERbeta selective agonists have been developed, however, none of these have made it to clinical use due to their lower selectivity or considerable side effects. The research in this dissertation involved the design of non-steroidal ERbeta selective agonists for hippocampal memory consolidation. The step-wise process to achieve the ultimate goal of this research includes: (1) design and synthesis of (4-hydroxyphenyl)cyclohexyl or cycloheptyl derivatives, (2) in vitro biological evaluation of synthesized compounds to identify highly potent and selective candidates, and (3) in vivo biological evaluation of selected candidates for hippocampal memory consolidation. Several (4-hydroxyphenyl)cyclohexyl or cycloheptyl derivatives were synthesized having structural alterations on both aromatic and cyclohexyl/heptyl ring scaffolds. ERbeta agonist potency was initially evaluated in TR-FRET ERbeta ligand binding assay and compounds having high potency were re-evaluated in functional cell based assays for potency and ERbeta vs. ERalpha selectivity. Two compounds from each series, ISP 163-PK4 and ISP 358-2 were identified as most selective ERbeta agonists. Both compounds revealed high metabolic stability, solubility and no cross reactivity towards other nuclear receptors. In vivo efficiency of ISP 358-2 was evaluated in ovariectomized mice (C57BL/6) with object recognition (OR) and object placement (OP) tasks. The results indicate improved memory consolidation at 100 pg/ hemisphere and 0.5 mg/Kg via DH infusion and IP injection respectively. The information learned from this project serves as a foundation for development of other cycloheptyl/hexyl based ERbeta agonists or antagonists having acceptable pharmacological profiles.
Aftab, D T; Ballas, L M; Loomis, C R; Hait, W N
1991-11-01
Phenothiazines are known to inhibit the activity of protein kinase C. To identify structural features that determine inhibitory activity against the enzyme, we utilized a semiautomated assay [Anal. Biochem. 187:84-88 (1990)] to compare the potency of greater than 50 phenothiazines and related compounds. Potency was decreased by trifluoro substitution at position 2 on the phenothiazine nucleus and increased by quinoid structures on the nucleus. An alkyl bridge of at least three carbons connecting the terminal amine to the nucleus was required for activity. Primary amines and unsubstituted piperazines were the most potent amino side chains. We selected 7,8-dihydroxychlorpromazine (DHCP) (IC50 = 8.3 microM) and 2-chloro-9-(3-[1-piperazinyl]propylidene)thioxanthene (N751) (IC50 = 14 microM) for further study because of their potency and distinct structural features. Under standard (vesicle) assay conditions, DHCP was noncompetitive with respect to phosphatidylserine and a mixed-type inhibitor with respect to ATP. N751 was competitive with respect to phosphatidylserine and noncompetitive with respect to ATP. Using the mixed micelle assay, DHCP was a competitive inhibitor with respect to both phosphatidylserine and ATP. DHCP was selective for protein kinase C compared with cAMP-dependent protein kinase, calmodulin-dependent protein kinase type II, and casein kinase. N751 was more potent against protein kinase C compared with cAMP-dependent protein kinase and casein kinase but less potent against protein kinase C compared with calmodulin-dependent protein kinase type II. DHCP was analyzed for its ability to inhibit different isoenzymes of protein kinase C, and no significant isozyme selectivity was detected. These data provide important information for the rational design of more potent and selective inhibitors of protein kinase C.
Xu, Hongyan; Li, Caixia; Li, Yan; Ng, Grace Hwee Boon; Liu, Chunsheng; Zhang, Xiaoyan; Gong, Zhiyuan
2015-12-01
Both dioxins/dioxin-like compounds and polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants and cause multiple adverse health effects on human and wildlife. Cyp1a is the most commonly used biomarker induced by these pollutants through activation of the aryl hydrocarbon receptor (AhR) pathway. Here we generated Tg(cyp1a:gfp) transgenic zebrafish for establishing a convenient in vivo assay for analysing these xenobiotic compounds. The Tg(cyp1a:gfp) larvae at 4 day post-fertilization were tested with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and GFP induction was observed mainly in the kidney, liver and gut. Similar GFP expression was also induced strongly by two dioxin-like chemicals, co-planar polychlorinated biphenyl (PCB126) and polychlorinated dibenzo-p-furan (PeCDF) and relatively weakly by two PAHs, 3-methylcholanthrene (3-MC) and benzo[a]pyrene (BAP). The lowest observed effective concentration (LOEC) of TCDD was estimated to be ∼1 pM and the EC50 (effective concentration to induce GFP in 50 % of Tg(cyp1a:gfp) larvae) was ∼10 pM. PCB126 and PeCDF had ∼10× lower potencies in GFP induction than TCDD, while the potencies for 3-MC and BAP were at least 1000× lower. The sensitivity of Tg(cyp1a:gfp) larvae to respond TCDD was also favourable compared to that of ethoxyresorufin-O-deethylase (EROD) assay in both zebrafish larvae and adult livers. As GFP-based assay in transgenic zebrafish can be easily accommodated in multi-well dishes, the Tg(cyp1a:gfp) zebrafish should provide not only a valuable biomonitoring tool for aquatic contaminants but also a potential high-throughput chemical screening platform for identification of new AhR agonists.
Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals.
Gerberick, G Frank; Ryan, Cindy A; Dearman, Rebecca J; Kimber, Ian
2007-01-01
The local lymph node assay (LLNA) is a murine model developed to evaluate the skin sensitization potential of chemicals. The LLNA is an alternative approach to traditional guinea pig methods and in comparison provides important animal welfare benefits. The assay relies on measurement of events induced during the induction phase of skin sensitization, specifically lymphocyte proliferation in the draining lymph nodes which is a hallmark of a skin sensitization response. Since its introduction the LLNA has been the subject of extensive evaluation on a national and international scale, and has been successfully validated and incorporated worldwide into regulatory guidelines. Experience gained in recent years has demonstrated that adherence to published procedures and guidelines for the LLNA (e.g., with respect to dose and vehicle selection) is critical for the successful conduct and eventual interpretation of the data. In addition to providing a robust method for skin sensitization hazard identification, the LLNA has proven very useful in assessing the skin sensitizing potency of test chemicals, and this has provided invaluable information to risk assessors. The primary method to make comparisons of the relative potency of chemical sensitizers is to use linear interpolation to estimate the concentration of chemical required to induce a stimulation index of three relative to concurrent vehicle-treated controls (EC3). In certain situations where there are available less than optimal dose response data a log-linear extrapolation method can be used to estimate an EC3 value which can reduce significantly the need for repeat testing of chemicals. The LLNA, when conducted according to published guidelines, provides a robust method for skin sensitization testing that not only provides reliable hazard identification information but also data necessary for effective risk assessment and risk management.
DC-159a Shows Inhibitory Activity against DNA Gyrases of Mycobacterium leprae.
Yamaguchi, Tomoyuki; Yokoyama, Kazumasa; Nakajima, Chie; Suzuki, Yasuhiko
2016-09-01
Fluoroquinolones are a class of antibacterial agents used for leprosy treatment. Some new fluoroquinolones have been attracting interest due to their remarkable potency that is reportedly better than that of ofloxacin, the fluoroquinolone currently recommended for treatment of leprosy. For example, DC-159a, a recently developed 8-methoxy fluoroquinolone, has been found to be highly potent against various bacterial species. Nonetheless, the efficacy of DC-159a against Mycobacterium leprae is yet to be examined. To gather data that can support highly effective fluoroquinolones as candidates for new remedies for leprosy treatment, we conducted in vitro assays to assess and compare the inhibitory activities of DC-159a and two fluoroquinolones that are already known to be more effective against M. leprae than ofloxacin. The fluoroquinolone-inhibited DNA supercoiling assay using recombinant DNA gyrases of wild type and ofloxacin-resistant M. leprae revealed that inhibitory activities of DC-159a and sitafloxacin were at most 9.8- and 11.9-fold higher than moxifloxacin. Also the fluoroquinolone-mediated cleavage assay showed that potencies of those drugs were at most 13.5- and 9.8-fold higher than moxifloxacin. In addition, these two drugs retained their inhibitory activities even against DNA gyrases of ofloxacin-resistant M. leprae. The results indicated that DC-159a and sitafloxacin are more effective against wild type and mutant M. leprae DNA gyrases than moxifloxacin, suggesting that these antibacterial drugs can be good candidates that may supersede current fluoroquinolone remedies. DC-159a in particular is very promising because it is classified in a subgroup of fluoroquinolones that is known to be less likely to cause adverse effects. Our results implied that DC-159a is well worth further investigation to ascertain its in vivo effectiveness and clinical safety for humans.
In Vitro Assays for the Discovery of PCSK9 Autoprocessing Inhibitors.
Salowe, Scott P; Zhang, Lei; Zokian, Hratch J; Gesell, Jennifer J; Zink, Deborah L; Wiltsie, Judyann; Ai, Xi; Kavana, Michael; Pinto, Shirly
2016-12-01
PCSK9 plays a significant role in regulating low-density lipoprotein (LDL) cholesterol levels and has become an important drug target for treating hypercholesterolemia. Although a member of the serine protease family, PCSK9 only catalyzes a single reaction, the autocleavage of its prodomain. The maturation of the proprotein is an essential prerequisite for the secretion of PCSK9 to the extracellular space where it binds the LDL receptor and targets it for degradation. We have found that a construct of proPCSK9 where the C-terminal domain has been truncated has sufficient stability to be expressed and purified from Escherichia coli for the in vitro study of autoprocessing. Using automated Western analysis, we demonstrate that autoprocessing exhibits the anticipated first-order kinetics. A high-throughput time-resolved fluorescence resonance energy transfer assay for autocleavage has been developed using a PCSK9 monoclonal antibody that is sensitive to the conformational changes that occur upon maturation of the proprotein. Kinetic theory has been developed that describes the behavior of both reversible and irreversible inhibitors of autocleavage. The analysis of an irreversible lactone inhibitor validates the expected relationship between potency and the reaction end point. An orthogonal liquid chromatography-mass spectrometry assay has also been implemented for the confirmation of hits from the antibody-based assays.
Wang, Jia-Hui; Shao, Xiao-Xia; Hu, Meng-Jun; Wei, Dian; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun
2017-05-01
Relaxin family peptide receptor 3 (RXFP3) is an A-class G protein-coupled receptor that is implicated in the regulation of food intake and stress response upon activation by its cognate agonist relaxin-3. To study its interaction with various ligands, we developed a novel bioluminescence resonance energy transfer (BRET)-based binding assay using the brightest NanoLuc as an energy donor and a newly developed cyan-excitable orange fluorescent protein (CyOFP) as an energy acceptor. An engineered CyOFP without intrinsic cysteine residues but with an introduced cysteine at the C-terminus was overexpressed in Escherichia coli and chemically conjugated to the A-chain N-terminus of an easily labeled chimeric R3/I5 peptide via an intermolecular disulfide linkage. After the CyOFP-conjugated R3/I5 bound to a shortened human RXFP3 (removal of 33 N-terminal residues) fused with the NanoLuc reporter at the N-terminus, high BRET signals were detected. Saturation binding and real-time binding assays demonstrated that this BRET pair retained high binding affinity with fast association/dissociation. Using this BRET pair, binding potencies of various ligands with RXFP3 were conveniently measured through competition binding assays. Thus, the novel BRET-based binding assay facilitates interaction studies of RXFP3 with various ligands. The engineered CyOFP without intrinsic cysteine residues may also be applied to other BRET-based binding assays in future studies.
Chacón, Francisco; Oviedo, Andrea; Escalante, Teresa; Solano, Gabriela; Rucavado, Alexandra; Gutiérrez, José María
2015-01-01
The potency of antivenoms is assessed by analyzing the neutralization of venom-induced lethality, and is expressed as the Median Effective Dose (ED50). The present study was designed to investigate the pathophysiological mechanisms responsible for lethality induced by the venom of Bothrops asper, in the experimental conditions used for the evaluation of the neutralizing potency of antivenoms. Mice injected with 4 LD50s of venom by the intraperitoneal route died within ∼25 min with drastic alterations in the abdominal organs, characterized by hemorrhage, increment in plasma extravasation, and hemoconcentration, thus leading to hypovolemia and cardiovascular collapse. Snake venom metalloproteinases (SVMPs) play a predominat role in lethality, as judged by partial inhibition by the chelating agent CaNa2EDTA. When venom was mixed with antivenom, there was a venom/antivenom ratio at which hemorrhage was significantly reduced, but mice died at later time intervals with evident hemoconcentration, indicating that other components in addition to SVMPs also contribute to plasma extravasation and lethality. Pretreatment with the analgesic tramadol did not affect the outcome of the neutralization test, thus suggesting that prophylactic (precautionary) analgesia can be introduced in this assay. Neutralization of lethality in mice correlated with neutralization of in vitro coagulant activity in human plasma. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lalko, J; Api, A M
2006-05-01
Essential oils are commonly used fragrance ingredients. The oils themselves are complex mixtures, which may contain naturally occurring contact sensitizers. The local lymph node assay was used to evaluate the dermal sensitization potential of basil, citronella, clove leaf, geranium, litsea cubeba, lemongrass, and palmarosa oils. Three of the major components--citral, eugenol, and geraniol--were included to investigate any difference in sensitization potential arising from their exposure in a mixture. Each fragrance material was tested at five concentration ranging from 2.5% to 50% w/v in 1:3 ethanol:diethyl phthalate. The stimulation index (SI) values were calculated for each dose level, an SI > or = 3 was considered a positive response. The estimated concentration (EC3) required to elicit a positive was calculated and taken as a measure of relative potency. The EC3 values and potency classification for basil, clove leaf, litsea cubeba, lemongrass and palmarosa oils were calculated to be <2.5% (> or = moderate), 7.1% (weak), 8.4% (weak), 6.5% (weak) and 9.6% (weak), respectively. Citronella and geranium oils were negative. The individual components citral, eugenol and geraniol resulted in EC3 values of 6.3%, 5.4% and 11.4%, respectively. In general, the potency of each essential oil did not differ significantly from that observed for its main individual component.
Corbel, Michael J; Das, Rose Gaines; Lei, Dianliang; Xing, Dorothy K L; Horiuchi, Yoshinobu; Dobbelaer, Roland
2008-04-07
This report reflects the discussion and conclusions of a WHO group of experts from National Regulatory Authorities (NRAs), National Control Laboratories (NCLs), vaccine industries and other relevant institutions involved in standardization and control of diphtheria, tetanus and pertussis vaccines (DTP), held on 20-21 July 2006 and 28-30 March 2007, in Geneva Switzerland for the revision of WHO Manual for quality control of DTP vaccines. Taking into account recent developments and standardization in quality control methods and the revision of WHO recommendations for D, T, P vaccines, and a need for updating the manual has been recognized. In these two meetings the current situation of quality control methods in terms of potency, safety and identity tests for DTP vaccines and statistical analysis of data were reviewed. Based on the WHO recommendations and recent validation of testing methods, the content of current manual were reviewed and discussed. The group agreed that the principles to be observed in selecting methods included identifying those critical for assuring safety, efficacy and quality and which were consistent with WHO recommendations/requirements. Methods that were well recognized but not yet included in current Recommendations should be taken into account. These would include in vivo and/or in vitro methods for determining potency, safety testing and identity. The statistical analysis of the data should be revised and updated. It was noted that the mouse based assays for toxoid potency were still quite widely used and it was desirable to establish appropriate standards for these to enable the results to be related to the standard guinea pig assays. The working group was met again to review the first drafts and to input further suggestions or amendments to the contributions of the drafting groups. The revised manual was to be finalized and published by WHO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulou, Myrto, E-mail: myrto.dimopoulou@wur.nl
Differential gene expression analysis in the rat whole embryo culture (WEC) assay provides mechanistic insight into the embryotoxicity of test compounds. In our study, we hypothesized that comparative analysis of the transcriptomes of rat embryos exposed to six azoles (flusilazole, triadimefon, ketoconazole, miconazole, difenoconazole and prothioconazole) could lead to a better mechanism-based understanding of their embryotoxicity and pharmacological action. For evaluating embryotoxicity, we applied the total morphological scoring system (TMS) in embryos exposed for 48 h. The compounds tested showed embryotoxicity in a dose-response fashion. Functional analysis of differential gene expression after 4 h exposure at the ID{sub 10} (effectivemore » dose for 10% decreased TMS), revealed the sterol biosynthesis pathway and embryonic development genes, dominated by genes in the retinoic acid (RA) pathway, albeit in a differential way. Flusilazole, ketoconazole and triadimefon were the most potent compounds affecting the RA pathway, while in terms of regulation of sterol function, difenoconazole and ketoconazole showed the most pronounced effects. Dose-dependent analysis of the effects of flusilazole revealed that the RA pathway related genes were already differentially expressed at low dose levels while the sterol pathway showed strong regulation at higher embryotoxic doses, suggesting that this pathway is less predictive for the observed embryotoxicity. A similar analysis at the 24-hour time point indicated an additional time-dependent difference in the aforementioned pathways regulated by flusilazole. In summary, the rat WEC assay in combination with transcriptomics could add a mechanistic insight into the embryotoxic potency ranking and pharmacological mode of action of the tested compounds. - Highlights: • Embryonic exposure to azoles revealed concentration-dependent malformations. • Transcriptomics could enhance the mechanistic knowledge of embryotoxicants. • Retinoic acid gene set identifies early embryotoxic responses to azoles. • Toxic versus pharmacologic potency determines functional efficacy.« less
Zhao, XiangLong; Chen, WeiJia; Liu, ZhengHua; Guo, JiaLiang; Zhou, ZhengYin; Crommen, Jacques; Moaddel, Ruin; Jiang, ZhengJin
2014-11-07
Drug-induced phospholipidosis (PLD) is characterized by the excessive accumulation of phospholipids, resulting in multilamellar vesicle structure within lysosomes. In the present study, a novel mixed phospholipid functionalized monolithic column was developed for the first time through a facile one-step co-polymerization approach. The phospholipid composition of the monolith can be adjusted quantitatively and accurately to mimic the mixed phospholipid environment of different biomembranes on a solid matrix. The mixed phospholipid functionalized monolith as a promising immobilized artificial membrane technique was used to study drug-phospholipid interaction. Scanning electron microscopy, elemental analysis, FT-IR spectra, ζ-potential analysis and micro-HPLC were carried out to characterize the physicochemical properties and separation performance of the monolith. Mechanism studies revealed that both hydrophobic and electrostatic interactions play an important role in the retention of analytes. The ratio of their contributions to retention can be easily manipulated by adjusting the composition of the mixed phospholipids, in order to better mimic the interaction between drugs and cell membrane. The obtained mixed phospholipid functionalized monolithic columns were applied to the screening of drug-induced PLD potency. Data from 79 drugs on the market demonstrated that the chromatographic hydrophobicity index referring to the mixed phospholipid functionalized monolith at pH 7.4 (CHI IAM7.4) for the selected drugs were highly correlated with the drug-induced PLD potency data obtained from other in vivo or in vitro assays. Moreover, the effect of the acidic phospholipid phosphatidylserine proportion on prediction accuracy was also investigated. The monolith containing 20% phosphatidylserine and 80% phosphatidylcholine exhibited the best prediction ability for the drug-induced PLD potency of the tested compounds. This research has led to the successful development of a novel and facile approach to prepare a mixed phospholipids functionalized monolith, which offers a reliable, cost-effective and high-throughput screening tool for early prediction of the PLD potency of drug candidates. Copyright © 2014 Elsevier B.V. All rights reserved.
Dozier, Samantha; Brown, Jeffrey; Currie, Alistair
2011-01-01
Simple Summary Many vaccines are tested for quality in experiments that require the use of large numbers of animals in procedures that often cause significant pain and distress. Newer technologies have fostered the development of vaccine quality control tests that reduce or eliminate the use of animals, but the availability of these newer methods has not guaranteed their acceptance by regulators or use by manufacturers. We discuss a strategic approach that has been used to assess and ultimately increase the use of non-animal vaccine quality tests in the U.S. and U.K. Abstract In recent years, technologically advanced high-throughput techniques have been developed that replace, reduce or refine animal use in vaccine quality control tests. Following validation, these tests are slowly being accepted for use by international regulatory authorities. Because regulatory acceptance itself has not guaranteed that approved humane methods are adopted by manufacturers, various organizations have sought to foster the preferential use of validated non-animal methods by interfacing with industry and regulatory authorities. After noticing this gap between regulation and uptake by industry, we began developing a paradigm that seeks to narrow the gap and quicken implementation of new replacement, refinement or reduction guidance. A systematic analysis of our experience in promoting the transparent implementation of validated non-animal vaccine potency assays has led to the refinement of our paradigmatic process, presented here, by which interested parties can assess the local regulatory acceptance of methods that reduce animal use and integrate them into quality control testing protocols, or ensure the elimination of peripheral barriers to their use, particularly for potency and other tests carried out on production batches. PMID:26486625
Wong, Erick C N; Reekie, Tristan A; Werry, Eryn L; O'Brien-Brown, James; Bowyer, Sarah L; Kassiou, Michael
2017-06-01
We report on P2X 7 receptor antagonists based on a lead adamantly-cyanoguanidine-aryl moiety. We have investigated the importance of the central cyanoguanidine moiety by replacing it with urea, thiourea or guanidine moieties. We have also investigated the linker length between the central moiety and the aryl portion. All compounds were assessed for their inhibitory potency in a pore-formation dye uptake assay at the P2X 7 receptor. None of the compounds resulted in an improved potency illustrating the importance of the cyanoguanidine moiety in this chemotype. Copyright © 2017 Elsevier Ltd. All rights reserved.
Whalen, Katie L; Chau, Anthony C; Spies, M Ashley
2013-10-01
A novel lead compound for inhibition of the antibacterial drug target, glutamate racemase (GR), was optimized for both ligand efficiency and lipophilic efficiency. A previously developed hybrid molecular dynamics-docking and scoring scheme, FERM-SMD, was used to predict relative potencies of potential derivatives prior to chemical synthesis. This scheme was successful in distinguishing between high- and low-affinity binders with minimal experimental structural information, saving time and resources in the process. In vitro potency was increased approximately fourfold against GR from the model organism, B. subtilis. Lead derivatives show two- to fourfold increased antimicrobial potency over the parent scaffold. In addition, specificity toward B. subtilis over E. coli and S. aureus depends on the substituent added to the parent scaffold. Finally, insight was gained into the capacity for these compounds to reach the target enzyme in vivo using a bacterial cell wall lysis assay. The outcome of this study is a novel small-molecule inhibitor of GR with the following characteristics: Ki=2.5 μM, LE=0.45 kcal mol(-1) atom(-1), LiPE=6.0, MIC50=260 μg mL(-1) against B. subtilis, EC50, lysis=520 μg mL(-1) against B. subtilis. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Addressing the selectivity and toxicity of antiviral nucleosides.
Feng, Joy Y
2018-01-01
Nucleoside and nucleotide analogs have played significant roles in antiviral therapies and are valued for their impressive potency and high barrier to resistance. They have been approved for treatment of herpes simplex virus-1, HIV, HBV, HCV, and influenza, and new drugs are being developed for the treatment of RSV, Ebola, coronavirus MERS, and other emerging viruses. However, this class of compounds has also experienced a high attrition rate in clinical trials due to toxicity. In this review, we discuss the utility of different biochemical and cell-based assays and provide recommendations for assessing toxicity liability before entering animal toxicity studies.
Comparative toxicity assessment of particulate matter (PM) from different sources will potentially inform the understanding of regional differences in PM-induced cardiac health effects by identifying PM sources linked to highest potency components. Conventional low-throughput in...
Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor Alpha Selective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Kennedy, L; Shi, Y
2010-01-01
An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and {approx}410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less
Arylimidamide-Azole Combinations against Leishmaniasis
2016-09-01
This compound will be selected for further in vivo testing in Q1 of Year 3. 3. Accomplishments: The efficacy of 3 arylimidamide compounds was...of this compound will take place in Q1 of Year 3. 4. IMPACT: The search for an orally bioavailable arylimidamide analogue with efficacy against...macrophage assay2 against L. major. One of the 4 compounds tested, AA2- 160, showed potency in this assay. This compound will be selected for toxicity testing and in vivo efficacy testing in Q1 of Year 3.
Engineering high-potency R-spondin adult stem cell growth factors.
Warner, Margaret L; Bell, Tufica; Pioszak, Augen A
2015-01-01
Secreted R-spondin proteins (RSPOs1-4) function as adult stem cell growth factors by potentiating Wnt signaling. Simultaneous binding of distinct regions of the RSPO Fu1-Fu2 domain module to the extracellular domains (ECDs) of the LGR4 G protein-coupled receptor and the ZNRF3 transmembrane E3 ubiquitin ligase regulates Wnt receptor availability. Here, we examine the molecular basis for the differing signaling strengths of RSPOs1-4 using purified RSPO Fu1-Fu2, LGR4 ECD, and ZNRF3 ECD proteins in Wnt signaling and receptor binding assays, and we engineer novel high-potency RSPOs. RSPO2/3/4 had similar signaling potencies that were stronger than that of RSPO1, whereas RSPO1/2/3 had similar efficacies that were greater than that of RSPO4. The RSPOs bound LGR4 with affinity rank order RSPO4 > RSPO2/3 > RSPO1 and ZNRF3 with affinity rank order RSPO2/3 > > RSPO1 > RSPO4. An RSPO2-4 chimera combining RSPO2 ZNRF3 binding with RSPO4 LGR4 binding was a "Superspondin" that exhibited enhanced ternary complex formation and 10-fold stronger signaling potency than RSPO2 and efficacy equivalent to RSPO2. An RSPO4-1 chimera combining RSPO4 ZNRF3 binding with RSPO1 LGR4 binding was a "Poorspondin" that exhibited signaling potency similar to RSPO1 and efficacy equivalent to RSPO4. Conferring increased ZNRF3 binding upon RSPO4 with amino acid substitutions L56F, I58L, and I63M enhanced its signaling potency and efficacy. Our results reveal the molecular basis for RSPOs1-4 activity differences and suggest that signaling potency is determined by ternary complex formation ability, whereas efficacy depends on ZNRF3 recruitment. High-potency RSPOs may be of value for regenerative medicine and/or therapeutic applications. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Tiwari, Krishna; Wavdhane, Madan; Haque, Shafiul; Govender, Thavendran; Kruger, Hendrik G; Mishra, Maheshwari K; Chandra, Ramesh; Tiwari, Dileep
2015-06-01
Granulocyte colony stimulating factor (G-CSF) has been commonly used to treat neutropenia caused by chemotherapy, radiotherapy, and organ transplants. Improved in vitro efficacy of G-CSF has already been observed by conjugating it to polyethylene glycol (PEG). The in vivo bioassay using tetrazolium dye with the NFS-60 cell line has been recommended for G-CSF but no such monographs are available for PEGylated G-CSF in pharmacopeias. In the present study, the assay recommended for G-CSF was evaluated for its suitability to PEGylated G-CSF. The generally used MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]-based assay was compared with a bioassay employing a water-soluble tetrazolium dye, WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium], using NFS-60 cells at a concentration of 7 × 10(5) cells/ml against 800 IU/ml of PEGylated G-CSF at 24, 48, 72, and 72 h time points to determine the efficacy of PEGylated G-CSF. Further, the optimized WST-8 dye-based assay was used to test the potency of various commercially available PEGylated G-CSF preparations. The results demonstrated enhanced sensitivity of the WST-8-based assay over the conventional MTS-based assay for determining the potency of PEGylated G-CSF using the NFS-60 cell line. Our study demonstrates the potential application of WST-8-based bioassays for other biotherapeutic proteins of human and veterinary interest.
Potential application of the consistency approach for vaccine potency testing.
Arciniega, J; Sirota, L A
2012-01-01
The Consistency Approach offers the possibility of reducing the number of animals used for a potency test. However, it is critical to assess the effect that such reduction may have on assay performance. Consistency of production, sometimes referred to as consistency of manufacture or manufacturing, is an old concept implicit in regulation, which aims to ensure the uninterrupted release of safe and effective products. Consistency of manufacture can be described in terms of process capability, or the ability of a process to produce output within specification limits. For example, the standard method for potency testing of inactivated rabies vaccines is a multiple-dilution vaccination challenge test in mice that gives a quantitative, although highly variable estimate. On the other hand, a single-dilution test that does not give a quantitative estimate, but rather shows if the vaccine meets the specification has been proposed. This simplified test can lead to a considerable reduction in the number of animals used. However, traditional indices of process capability assume that the output population (potency values) is normally distributed, which clearly is not the case for the simplified approach. Appropriate computation of capability indices for the latter case will require special statistical considerations.
Characteristics of recombinantly expressed rat and human histamine H3 receptors.
Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin
2002-10-18
Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giustarini, Daniela, E-mail: giustarini@unisi.it; Tsikas, Dimitrios, E-mail: tsikas.dimitros@mh-hannover.de; Rossi, Ranieri, E-mail: ranieri@unisi.it
2011-10-15
Both low-molecular-mass thiols (LMM-SH) and protein thiols (P-SH) can modulate the biological activity of S-nitrosothiols (RSNO) via S-transnitrosation reactions. It has been difficult to evaluate the entity of this effect in blood circulation by in vitro assays with isolated aorta rings so far, because media rich in proteins cannot be used due to the foaming as a consequence of the needed gas bubbling. We have modified the original apparatus for organ bioassay in order to minimize foaming and to increase analytical performance. By using this modified bioassay we investigated the vasodilatory potency of various endogenous RSNOs in the presence ofmore » physiologically relevant concentrations of albumin and LMM-SH. Our results show that the sulfhydryl group of the cysteine moiety of albumin and LMM-SH has a dramatic effect on the vasodilatory potency of RSNO. Considering the equilibrium constants for S-transnitrosation reactions and the concentration of P-SH and LMM-SH we measured in healthy humans (aged 18-85 years), we infer that the age-dependency of hematic levels of LMM-SH may have a considerable impact in RSNO-mediated vasodilation. S-Nitrosoproteins such as S-nitrosoalbumin may constitute a relatively silent and constant amount of circulating RSNO. On the other hand, LMM-SH may mediate and control the biological actions of S-nitrosoproteins via S-transnitrosation reactions, by forming more potent nitric oxide-releasing LMM-S-nitrosothiols. Lifestyle habits, status of health and individual age are proven factors that, in turn, may influence the concentration of these compounds. These aspects should be taken into consideration when testing the vasodilatory effects of RSNO in pre-clinical studies. - Highlights: > A modification of the organ chamber apparatus for aortic ring bioassays is proposed. > The new apparatus can work in the presence of albumin at physiological concentrations. > Potency of RSNOs was studied in the presence of albumin and low molecular mass -SH. > Plasma thiol levels decrease with age. > Potency of RSNOs varies in dependence of age and more in general of plasma thiol status.« less
Ghosh, Probir Kumar; Bhattacharjee, Paramita; Das, Satadal
2016-01-01
Antimicrobial potency of herbal extracts is well known. The review of patents and research articles revealed that several herbal extracts have been employed in the formulation of topical products such as creams, exclusive of the cream reported in the present study. 0ur previous study has established antimicrobial potency of supercritical carbon dioxide extracts of tuberose flowers, better known for its sweet fragrance. The present work focuses on formulating a topical antimicrobial herbal cream with methyl eugenol (principal antimicrobial compound) rich - supercritical carbon dioxide extract of tuberose flowers, having good combination of phytochemical and antimicrobial potencies. Supercritical carbon dioxide parameters such as temperature, pressure and time were optimized using full factorial experimental design to obtain methyl eugenol-rich extracts. A cream was formulated using the extract having the best combination of phytochemical and antimicrobial potencies and was assayed further for in vitro antimicrobial potency; physiochemical and sensory properties. Two commercial antimicrobial cream samples were used as reference samples in the study. The extract obtained at 40°C, 10 MPa, 135 min at 1 L min-1 flow rate of gaseous C02 showed the best combination of phytochemical and antimicrobial potencies and was used for formulation of herbal creams. The cream formulated with 5% w/w of extract arrested growth of the common human skin pathogen Staphylococcus aureus and showed stable physiochemical properties and high sensory appeal for a year. The cream could be considered as a 'finished herbal product&' in compliance with the World Health 0rganization guidelines.
ABSTRACT BODY: Phthalate esters (PE) vary greatly in their potency to induce malformations during sexual differentiation in the male rat. Since in vitro assay batteries are currently unable to generate useful information on the potential of chemicals within this class to disrupt ...
40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...
40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...
40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...
40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...
40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...
Evaluation of the performance of the reduced local lymph node assay for skin sensitization testing.
Ezendam, Janine; Muller, Andre; Hakkert, Betty C; van Loveren, Henk
2013-06-01
The local lymph node assay (LLNA) is the preferred method for classification of sensitizers within REACH. To reduce the number of mice for the identification of sensitizers the reduced LLNA was proposed, which uses only the high dose group of the LLNA. To evaluate the performance of this method for classification, LLNA data from REACH registrations were used and classification based on all dose groups was compared to classification based on the high dose group. We confirmed previous examinations of the reduced LLNA showing that this method is less sensitive compared to the LLNA. The reduced LLNA misclassified 3.3% of the sensitizers identified in the LLNA and misclassification occurred in all potency classes and that there was no clear association with irritant properties. It is therefore not possible to predict beforehand which substances might be misclassified. Another limitation of the reduced LLNA is that skin sensitizing potency cannot be assessed. For these reasons, it is not recommended to use the reduced LLNA as a stand-alone assay for skin sensitization testing within REACH. In the future, the reduced LLNA might be of added value in a weight of evidence approach to confirm negative results obtained with non-animal approaches. Copyright © 2013 Elsevier Inc. All rights reserved.
A comparative potency method for cancer risk assessment has been developed based upon a constant relative potency hypothesis. This method was developed and tested using data from a battery of short-term mutagenesis bioassays, animal tumorigenicity data and human lung cancer risk ...
Deng, Xi-le; Kai, Zhen-Peng; Chamberlin, Mary E; Horodyski, Frank M; Yang, Xin-Ling
2016-11-01
The midgut is an important site for both nutrient absorption and ionic regulation in lepidopteran larvae, major pests in agriculture. The larval lepidopteran midgut has become a potent insecticide target over the past few decades. Recent studies have shown that an insect neuropeptide, Manduca sexta allatotropin (Manse-AT), exhibits inhibition of active ion transport (AIT) across the larval midgut epithelium. The full characteristic of the AIT inhibition capacity of Manse-AT is essential to assay. In this study, AIT inhibition across the M. sexta midgut by Manse-AT and its analogues in a range of concentrations was assayed. The structure-activity relationship of Manse-AT was also studied by truncated and alanine-replacement strategies. Our results identified three residues, Thr4, Arg6 and Phe8, as the most important components for activity on the midgut. Replacement of Glu1, Met2 and Met3 reduced the potency of the analogues. The conservative substitution of Gly7 with alanine had little effect on the potency of the analogues. We demonstrated for the first time that Manse-AT (10-13) behaves as a potent antagonist in vitro on active ion transport across the epithelium of the posterior midgut in M. sexta. Structure-activity studies of Manse-AT are useful in developing lead compounds for the design and testing of synthetic antagonists, ultimately to develop potent and specific pest control strategies. Manse-AT (10-13) has been discovered as the first Manse-AT antagonist, with a significant effect and a short sequence compared with other insect neuropeptides. It may be a new potential pest control agent in the future. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Yao, X; Anderson, D L; Ross, S A; Lang, D G; Desai, B Z; Cooper, D C; Wheelan, P; McIntyre, M S; Bergquist, M L; MacKenzie, K I; Becherer, J D; Hashim, M A
2008-01-01
Background and purpose: Drug-induced prolongation of the QT interval can lead to torsade de pointes, a life-threatening ventricular arrhythmia. Finding appropriate assays from among the plethora of options available to predict reliably this serious adverse effect in humans remains a challenging issue for the discovery and development of drugs. The purpose of the present study was to develop and verify a reliable and relatively simple approach for assessing, during preclinical development, the propensity of drugs to prolong the QT interval in humans. Experimental approach: Sixteen marketed drugs from various pharmacological classes with a known incidence—or lack thereof—of QT prolongation in humans were examined in hERG (human ether a-go-go-related gene) patch-clamp assay and an anaesthetized guinea-pig assay for QT prolongation using specific protocols. Drug concentrations in perfusates from hERG assays and plasma samples from guinea-pigs were determined using liquid chromatography-mass spectrometry. Key results: Various pharmacological agents that inhibit hERG currents prolong the QT interval in anaesthetized guinea-pigs in a manner similar to that seen in humans and at comparable drug exposures. Several compounds not associated with QT prolongation in humans failed to prolong the QT interval in this model. Conclusions and implications: Analysis of hERG inhibitory potency in conjunction with drug exposures and QT interval measurements in anaesthetized guinea-pigs can reliably predict, during preclinical drug development, the risk of human QT prolongation. A strategy is proposed for mitigating the risk of QT prolongation of new chemical entities during early lead optimization. PMID:18587422
A three-stage experimental strategy to evaluate and validate an interplate IC50 format.
Rodrigues, Daniel J; Lyons, Richard; Laflin, Philip; Pointon, Wayne; Kammonen, Juha
2007-12-01
The serial dilution of compounds to establish potency against target enzymes or receptors can at times be a rate-limiting step in project progression. We have investigated the possibility of running 50% inhibitory concentration experiments in an interplate format, with dose ranges constructed across plates. The advantages associated with this format include a faster reformatting time for the compounds while also increasing the number of doses that can be potentially generated. These two factors, in particular, would lend themselves to a higher-throughput and more timely testing of compounds, while also maximizing chances to capture fully developed dose-response curves. The key objective from this work was to establish a strategy to assess the feasibility of an interplate format to ensure that the quality of data generated would be equivalent to historical formats used. A three-stage approach was adopted to assess and validate running an assay in an interplate format, compared to an intraplate format. Although the three-stage strategy was tested with two different assay formats, it would be necessary to investigate the feasibility for other assay types. The recommendation is that the three-stage experimental strategy defined here is used to assess feasibility of other assay formats used.
Basu, Anirban; Bhattacharya, Subhash Chandra; Kumar, Gopinatha Suresh
2018-02-01
Many proteins can abnormally fold to form pathological amyloid deposits/aggregates that are responsible for various degenerative disorders called amyloidosis. Here we have examined the anti-amyloidogenic potency of an ionic liquid, 1-butyl-3-methylimidazolium bromide, using lysozyme as a model system. Thioflavin T fluorescence assay demonstrated that the ionic liquid suppressed the formation of lysozyme fibrils significantly. This observation was further confirmed by the Congo red assay. Fluorescence microscopy, intrinsic fluorescence studies, nile red fluorescence assay, ANS binding assay and circular dichroism studies also testified diminishing of the fibrillogenesis in the presence of ionic liquid. Formation of amyloid fibrils was also characterized by α to β conformational transition. From far-UV circular dichroism studies it was observed that the β-sheet content of the lysozyme samples decreased in the presence of the ionic liquid which in turn implied that fibrillogenesis was supressed by the ionic liquid. Atomic force microscopy imaging unequivocally established that the ionic liquid attenuated fibrillogenesis in lysozyme. These results may be useful for the development of more effective therapeutics for amyloidosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Basilico, N; Pagani, E; Monti, D; Olliaro, P; Taramelli, D
1998-07-01
The malaria parasite metabolizes haemoglobin and detoxifies the resulting haem by polymerizing it to form haemozoin (malaria pigment). A polymer identical to haemozoin, beta-haematin, can be obtained in vitro from haematin at acidic pH. Quinoline-containing anti-malarials (e.g. chloroquine) inhibit the formation of either polymer. Haem polymerization is an essential and unique pharmacological target. To identify molecules with haem polymerization inhibitory activity (HPIA) and quantify their potency, we developed a simple, inexpensive, quantitative in-vitro spectrophotometric microassay of haem polymerization. The assay uses 96-well U-bottomed polystyrene microplates and requires 24 h and a microplate reader. The relative amounts of polymerized and unpolymerized haematin are determined, based on solubility in DMSO, by measuring absorbance at 405 nm in the presence of test compounds as compared with untreated controls. The final product (a solid precipitate of polymerized haematin) was validated using infrared spectroscopy and the assay proved reproducible; in this assay, activity could be partly predicted based on the compound's chemical structure. Both water-soluble and water-insoluble compounds can be quantified by this method. Although the throughput of this assay is lower than that of radiometric methods, the assay is easier to set up and cheaper, and avoids the problems related to radioactive waste disposal.
Hau, Jean Christophe; Fontana, Patrizia; Zimmermann, Catherine; De Pover, Alain; Erdmann, Dirk; Chène, Patrick
2011-06-01
The development of new drugs with better pharmacological and safety properties mandates the optimization of several parameters. Today, potency is often used as the sole biochemical parameter to identify and select new molecules. Surprisingly, thermodynamics, which is at the core of any interaction, is rarely used in drug discovery, even though it has been suggested that the selection of scaffolds according to thermodynamic criteria may be a valuable strategy. This poor integration of thermodynamics in drug discovery might be due to difficulties in implementing calorimetry experiments despite recent technological progress in this area. In this report, the authors show that fluorescence-based thermal shift assays could be used as prescreening methods to identify compounds with different thermodynamic profiles. This approach allows a reduction in the number of compounds to be tested in calorimetry experiments, thus favoring greater integration of thermodynamics in drug discovery.
Choi, Heejun; Yang, Zhilin; Weisshaar, James C
2015-01-20
Antibiotics target specific biochemical mechanisms in bacteria. In response to new drugs, pathogenic bacteria rapidly develop resistance. In contrast, antimicrobial peptides (AMPs) have retained broad spectrum antibacterial potency over millions of years. We present single-cell fluorescence assays that detect reactive oxygen species (ROS) in the Escherichia coli cytoplasm in real time. Within 30 s of permeabilization of the cytoplasmic membrane by the cationic AMP CM15 [combining residues 1-7 of cecropin A (from moth) with residues 2-9 of melittin (bee venom)], three fluorescence signals report oxidative stress in the cytoplasm, apparently involving O2 (-), H2O2, and •OH. Mechanistic studies indicate that active respiration is a prerequisite to the CM15-induced oxidative damage. In anaerobic conditions, signals from ROS are greatly diminished and the minimum inhibitory concentration increases 20-fold. Evidently the natural human AMP LL-37 also induces a burst of ROS. Oxidative stress may prove a significant bacteriostatic mechanism for a variety of cationic AMPs. If so, host organisms may use the local oxygen level to modulate AMP potency.
Quantitative determinations using portable Raman spectroscopy.
Navin, Chelliah V; Tondepu, Chaitanya; Toth, Roxana; Lawson, Latevi S; Rodriguez, Jason D
2017-03-20
A portable Raman spectrometer was used to develop chemometric models to determine percent (%) drug release and potency for 500mg ciprofloxacin HCl tablets. Parallel dissolution and chromatographic experiments were conducted alongside Raman experiments to assess and compare the performance and capabilities of portable Raman instruments in determining critical drug attributes. All batches tested passed the 30min dissolution specification and the Raman model for drug release was able to essentially reproduce the dissolution profiles obtained by ultraviolet spectroscopy at 276nm for all five batches of the 500mg ciprofloxacin tablets. The five batches of 500mg ciprofloxacin tablets also passed the potency (assay) specification and the % label claim for the entire set of tablets run were nearly identical, 99.4±5.1 for the portable Raman method and 99.2±1.2 for the chromatographic method. The results indicate that portable Raman spectrometers can be used to perform quantitative analysis of critical product attributes of finished drug products. The findings of this study indicate that portable Raman may have applications in the areas of process analytical technology and rapid pharmaceutical surveillance. Published by Elsevier B.V.
Quality requirements for allergen extracts and allergoids for allergen immunotherapy.
Zimmer, J; Bonertz, A; Vieths, S
2017-12-01
All allergen products for allergen immunotherapy currently marketed in the European Union are pharmaceutical preparations derived from allergen-containing source materials like pollens, mites and moulds. Especially this natural origin results in particular demands for the regulatory requirements governing allergen products. Furthermore, the development of regulatory requirements is complicated by the so far missing universal link between certain quality parameters, in particular biological potency, on the one hand and clinical efficacy on the other hand. As a consequence, each allergen product for specific immunotherapy has to be assessed individually for its quality, safety and efficacy. At the same time, biological potency of allergen products is most commonly determined using IgE inhibition assays based on human sera relative to product-specific in house references, ruling out full comparability of products from different manufacturers. This review article aims to summarize the current quality requirements for allergen products including the special requirements implemented for control of chemically modified allergen extracts (allergoids). Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.
Farina, Roberta; Pisani, Leonardo; Catto, Marco; Nicolotti, Orazio; Gadaleta, Domenico; Denora, Nunzio; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passos, Carolina S; Muncipinto, Giovanni; Altomare, Cosimo D; Nurisso, Alessandra; Carrupt, Pierre-Alain; Carotti, Angelo
2015-07-23
The multifactorial nature of Alzheimer's disease calls for the development of multitarget agents addressing key pathogenic processes. To this end, by following a docking-assisted hybridization strategy, a number of aminocoumarins were designed, prepared, and tested as monoamine oxidases (MAOs) and acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitors. Highly flexible N-benzyl-N-alkyloxy coumarins 2-12 showed good inhibitory activities at MAO-B, AChE, and BChE but low selectivity. More rigid inhibitors, bearing meta- and para-xylyl linkers, displayed good inhibitory activities and high MAO-B selectivity. Compounds 21, 24, 37, and 39, the last two featuring an improved hydrophilic/lipophilic balance, exhibited excellent activity profiles with nanomolar inhibitory potency toward hMAO-B, high hMAO-B over hMAO-A selectivity and submicromolar potency at hAChE. Cell-based assays of BBB permeation, neurotoxicity, and neuroprotection supported the potential of compound 37 as a BBB-permeant neuroprotective agent against H2O2-induced oxidative stress with poor interaction as P-gp substrate and very low cytotoxicity.
Morgeaux, S; Manniam, I; Variot, P; Daas, A; Costanzo, A
2015-01-01
The current batch of the European Pharmacopoeia (Ph. Eur.) Biological Reference Reagents (BRRs) used for the in vitro potency assay of hepatitis A vaccines (HAV) by ELISA (enzymelinked immunosorbent assay) was established in 2012 for use in conjunction with Ph. Eur. general chapter 2.7.14 Assay of hepatitis A vaccine. It is composed of a coating reagent and a set of detection antibodies. As stocks of the latter are running low, the European Directorate for the Quality of Medicines & HealthCare (EDQM) organised a collaborative study to qualify replacement batches. The candidate BRR antibodies (primary monoclonal antibody and labelled secondary antibody) were prepared under appropriate conditions from starting materials similar to those used for the current batches. The new batches of antibodies were tested alongside previous batches of BRRs to ensure continuity, and the results confirmed that they were suitable for use in the potency assay of hepatitis A vaccines by ELISA using the standard method referenced in Ph. Eur. general chapter 2.7.14 at the same final concentrations as the previous batches, i.e. 1:500 for the primary monoclonal antibody and 1:400 for the secondary conjugated antibody. The outcome of the study allowed their establishment by the Ph. Eur. Commission in March 2015 as anti-hepatitis A virus primary detection antibody BRR batch 3 and conjugated secondary detection antibody BRR batch 3 respectively. They are available from the EDQM as hepatitis A vaccine ELISA detection antibodies set BRR batch 3.
Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing
2016-01-01
The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dallanoce, C; Conti, P; De Amici, M; De Micheli, C; Barocelli, E; Chiavarini, M; Ballabeni, V; Bertoni, S; Impicciatore, M
1999-08-01
Two subseries of nonquaternized (5a-10a) and quaternized derivatives (5b-10b) related to oxotremorine and oxotremorine-M were synthesized and tested. The agonist potency at the muscarinic receptor subtypes of the new compounds was estimated in three classical in vitro functional assays: M1 rabbit vas deferens, M2 guinea pig left atrium and M3 guinea pig ileum. In addition, the occurrence of central muscarinic effects was evaluated as tremorigenic activity after intraperitoneal administration in mice. In in vitro tests a nonselective muscarinic activity was exhibited by all the derivatives with potencies values that, in some instances, surpassed those of the reference compounds (i.e. 8b). Functional selectivity was evidenced only for the oxotremorine-like derivative 9a, which behaved as a mixed M3-agonist/M1-antagonist (pD2 = 5.85; pA2 = 4.76, respectively). In in vivo tests non-quaternary compounds were able to evoke central muscarinic effects, with a potency order parallel to that observed in vitro.
Xie, Jinfu; Horton, Melanie; Zorman, Julie; Antonello, Joseph M.; Zhang, Yuhua; Arnold, Beth A.; Secore, Susan; Xoconostle, Rachel; Miezeiewski, Matthew; Wang, Su; Price, Colleen E.; Thiriot, David; Goerke, Aaron; Gentile, Marie-Pierre; Skinner, Julie M.
2014-01-01
Clostridium difficile strains producing binary toxin, in addition to toxin A (TcdA) and toxin B (TcdB), have been associated with more severe disease and increased recurrence of C. difficile infection in recent outbreaks. Binary toxin comprises two subunits (CDTa and CDTb) and catalyzes the ADP-ribosylation of globular actin (G-actin), which leads to the depolymerization of filamentous actin (F-actin) filaments. A robust assay is highly desirable for detecting the cytotoxic effect of the toxin and the presence of neutralizing antibodies in animal and human sera to evaluate vaccine efficacy. We describe here the optimization, using design-of-experiment (DOE) methodology, of a high-throughput assay to measure the toxin potency and neutralizing antibodies (NAb) against binary toxin. Vero cells were chosen from a panel of cells screened for sensitivity and specificity. We have successfully optimized the CDTa-to-CDTb molar ratio, toxin concentration, cell-seeding density, and sera-toxin preincubation time in the NAb assay using DOE methodology. This assay is robust, produces linear results across serial dilutions of hyperimmune serum, and can be used to quantify neutralizing antibodies in sera from hamsters and monkeys immunized with C. difficile binary toxin-containing vaccines. The assay will be useful for C. difficile diagnosis, for epidemiology studies, and for selecting and optimizing vaccine candidates. PMID:24623624
Kipandula, Wakisa; Young, Simon A; MacNeill, Stuart A; Smith, Terry K
2018-06-01
Diseases caused by the pathogenic kinetoplastids continue to incapacitate and kill hundreds of thousands of people annually throughout the tropics and sub-tropics. Unfortunately, in the countries where these neglected diseases occur, financial obstacles to drug discovery and technical limitations associated with biochemical studies impede the development of new, safe, easy to administer and effective drugs. Here we report the development and optimisation of a Crithidia fasciculata resazurin viability assay, which is subsequently used for screening and identification of anti-crithidial compounds in the MMV and GSK open access chemical boxes. The screening assay had an average Z' factor of 0.7 and tolerated a maximum dimethyl sulfoxide concentration of up to 0.5%. We identified from multiple chemical boxes two compound series exhibiting nanomolar potency against C. fasciculata, one centred around a 5-nitrofuran-2-yl scaffold, a well-known moiety in several existing anti-infectives, and another involving a 2-(pyridin-2-yl) pyrimidin-4-amine scaffold which seems to have pan-kinetoplastid activity. This work facilitates the future use of C. fasciculata as a non-pathogenic and inexpensive biological resource to identify mode of action/protein target(s) of potentially pan-trypanocidal potent compounds. This knowledge will aid in the development of new treatments for African sleeping sickness, Chagas disease and leishmaniasis. Copyright © 2018 Elsevier B.V. All rights reserved.
De Souza, Melissa; Matthews, Hayden; Lee, Jodi A; Ranson, Marie; Kelso, Michael J
2011-04-15
Binding of the urokinase-type plasminogen activator (uPA) to its cell-surface-bound receptor uPAR and upregulation of the plasminogen activation system (PAS) correlates with increased metastasis and poor prognosis in several tumour types. Disruptors of the uPA:uPAR interaction represent promising anti-tumour/metastasis agents and several approaches have been explored for this purpose, including the use of small molecule antagonists. Two highly potent non-peptidic antagonists 1 and 2 (IC(50)1=0.8 nM, IC(50)2=33 nM) from the patent literature were reportedly identified using competition assays employing radiolabelled uPAR-binding uPA fragments and appeared as useful pharmacological tools for studying the PAS. Before proceeding to such studies, confirmation was sought that 1 and 2 retained their potencies in physiologically relevant cell-based competition assays employing uPAR's native binding partner high molecular weight uPA (HMW-uPA). This study describes a new solution phase synthesis of 1, a mixed solid/solution phase synthesis of 2 and reports the activities of 1 and 2 in semi-quantitative competition flow cytometry assays and quantitative cell-based uPA activity assays that employed HMW-uPA as the competing ligand. The flow cytometry experiments revealed that high concentrations of 2 (10-100 μM) are required to compete with HMW-uPA for uPAR binding and that 1 shows no antagonist effects at 100 μM. The cell-based enzyme activity assays similarly revealed that 1 and 2 are poor inhibitors of cell surface-bound HMW-uPA activity (IC(50) >100 μM for 1 and 2). The report highlights the dangers of identifying false-positive lead uPAR antagonists from competition assays employing labelled competing ligands other than the native HMW-uPA. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mather, Stuart T; Wright, Edward; Scott, Simon D; Temperton, Nigel J
2014-12-15
Pseudotype viruses (PVs) are chimeric, replication-deficient virions that mimic wild-type virus entry mechanisms and can be safely employed in neutralisation assays, bypassing the need for high biosafety requirements and performing comparably to established serological assays. However, PV supernatant necessitates -80°C long-term storage and cold-chain maintenance during transport, which limits the scope of dissemination and application throughout resource-limited laboratories. We therefore investigated the effects of lyophilisation on influenza, rabies and Marburg PV stability, with a view to developing a pseudotype virus neutralisation assay (PVNA) based kit suitable for affordable global distribution. Infectivity of each PV was calculated after lyophilisation and immediate reconstitution, as well as subsequent to incubation of freeze-dried pellets at varying temperatures, humidities and timepoints. Integrity of glycoprotein structure following treatment was also assessed by employing lyophilised PVs in downstream PVNAs. In the presence of 0.5M sucrose-PBS cryoprotectant, each freeze-dried pseudotype was stably stored for 4 weeks at up to 37°C and could be neutralised to the same potency as unlyophilised PVs when employed in PVNAs. These results confirm the viability of a freeze-dried PVNA-based kit, which could significantly facilitate low-cost serology for a wide portfolio of emerging infectious viruses. Copyright © 2014 Elsevier B.V. All rights reserved.
Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches
Ekland, Eric H.; Schneider, Jessica; Fidock, David A.
2011-01-01
Malarial parasites have evolved resistance to all previously used therapies, and recent evidence suggests emerging resistance to the first-line artemisinins. To identify antimalarials with novel mechanisms of action, we have developed a high-throughput screen targeting the apicoplast organelle of Plasmodium falciparum. Antibiotics known to interfere with this organelle, such as azithromycin, exhibit an unusual phenotype whereby the progeny of drug-treated parasites die. Our screen exploits this phenomenon by assaying for “delayed death” compounds that exhibit a higher potency after two cycles of intraerythrocytic development compared to one. We report a primary assay employing parasites with an integrated copy of a firefly luciferase reporter gene and a secondary flow cytometry-based assay using a nucleic acid stain paired with a mitochondrial vital dye. Screening of the U.S. National Institutes of Health Clinical Collection identified known and novel antimalarials including kitasamycin. This inexpensive macrolide, used for agricultural applications, exhibited an in vitro IC50 in the 50 nM range, comparable to the 30 nM activity of our control drug, azithromycin. Imaging and pharmacologic studies confirmed kitasamycin action against the apicoplast, and in vivo activity was observed in a murine malaria model. These assays provide the foundation for high-throughput campaigns to identify novel chemotypes for combination therapies to treat multidrug-resistant malaria.—Ekland, E. H., Schneider, J., Fidock, D. A. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. PMID:21746861
Development of an in vitro skin sensitization test based on ROS production in THP-1 cells.
Saito, Kazutoshi; Miyazawa, Masaaki; Nukada, Yuko; Sakaguchi, Hitoshi; Nishiyama, Naohiro
2013-03-01
Recently, it has been reported that reactive oxygen species (ROS) produced by contact allergens can affect dendritic cell migration and contact hypersensitivity. The aim of the present study was to develop a new in vitro assay that could predict the skin sensitizing potential of chemicals by measuring ROS production in THP-1 (human monocytic leukemia cell line) cells. THP-1 cells were pre-loaded with a ROS sensitive fluorescent dye, 5-(and 6-)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), for 15min, then incubated with test chemicals for 30min. The fluorescence intensity was measured by flow cytometry. For the skin sensitizers, 25 out of 30 induced over a 2-fold ROS production at more than 90% of cell viability. In contrast, increases were only seen in 4 out of 20 non-sensitizers. The overall accuracy for the local lymph node assay (LLNA) was 82% for 50 chemicals tested. A correlation was found between the estimated concentration showing 2-fold ROS production in the ROS assay and the EC3 values (estimated concentration required to induce positive response) of the LLNA. These results indicated that the THP-1 cell-based ROS assay was a rapid and highly sensitive detection system able to predict skin sensitizing potentials and potency of chemicals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... Contact Dermatitis in Humans AGENCY: Division of the National Toxicology Program (DNTP), National... categorizing the potency of substances with the potential to cause allergic contact dermatitis (ACD) as strong... Contact Dermatitis in Humans (NIH Publication No. 11-7709), describes ICCVAM's recommendations for using...
Finney (1978) described a bioassay as an experiment for estimating the nature, constitution, or potency of a material by means of the eaction that follows its application to living matter. n this paper, two independent laboratories tested 10 known Salmonella mutagens in order to ...
Peroral bioassay of nucleopolyhedrosis viruses in larvae of western spruce budworm.
Mauro E. Martignoni; Paul J. Iwai
1981-01-01
The relative virulence of entomopathogenic viruses and the potency of virus preparations for control of destructive insects can be estimated reliably only by means of biological assay in the target species. A simple, yet sensitive peroral bioassay procedure is described for preparations of nucleopolyhedrosis viruses pathogenic for the western spruce budworm, ...
Hays, S J; Rice, M J; Ortwine, D F; Johnson, G; Schwarz, R D; Boyd, D K; Copeland, L F; Vartanian, M G; Boxer, P A
1994-10-01
Thirty-two aryl-substituted 2-benzothiazolamines have been tested for their ability to modulate sodium flux in rat cortical slices. A QSAR analysis, applied to these derivatives, showed a trend toward increasing potency as sodium flux inhibitors with increasing lipophilicity, decreasing size, and increasing electron withdrawal of the benzo ring substituents. Additionally, 4- or 5-substitution of the benzo ring was found to decrease potency. The combination of increased lipophilicity, small size, and electron withdrawal severely limited which groups were tolerated on the benzo ring, thus suggesting that the optimal substitution patterns have been prepared within this series. Nine of these compounds were potent inhibitors of veratridine-induced sodium flux (NaFl). These nine compounds also proved to be anticonvulsant in the maximal electroshock (MES) assay. Fourteen additional 2-benzothiazolamines demonstrated activity in the MES screen, yet exhibited no activity in the NaFl assay. These derivatives may be interacting at the sodium channel in a manner not discernible by the flux paradigm, or they may be acting by an alternative mechanism in vivo.
Isolation and Pharmacological Evaluation of Minor Cannabinoids from High-Potency Cannabis sativa.
Radwan, Mohamed M; ElSohly, Mahmoud A; El-Alfy, Abir T; Ahmed, Safwat A; Slade, Desmond; Husni, Afeef S; Manly, Susan P; Wilson, Lisa; Seale, Suzanne; Cutler, Stephen J; Ross, Samir A
2015-06-26
Seven new naturally occurring hydroxylated cannabinoids (1-7), along with the known cannabiripsol (8), have been isolated from the aerial parts of high-potency Cannabis sativa. The structures of the new compounds were determined by 1D and 2D NMR spectroscopic analysis, GC-MS, and HRESIMS as 8α-hydroxy-Δ(9)-tetrahydrocannabinol (1), 8β-hydroxy-Δ(9)-tetrahydrocannabinol (2), 10α-hydroxy-Δ(8)-tetrahydrocannabinol (3), 10β-hydroxy-Δ(8)-tetrahydrocannabinol (4), 10α-hydroxy-Δ(9,11)-hexahydrocannabinol (5), 9β,10β-epoxyhexahydrocannabinol (6), and 11-acetoxy-Δ(9)-tetrahydrocannabinolic acid A (7). The binding affinity of isolated compounds 1-8, Δ(9)-tetrahydrocannabinol, and Δ(8)-tetrahydrocannabinol toward CB1 and CB2 receptors as well as their behavioral effects in a mouse tetrad assay were studied. The results indicated that compound 3, with the highest affinity to the CB1 receptors, exerted the most potent cannabimimetic-like actions in the tetrad assay, while compound 4 showed partial cannabimimetic actions. Compound 2, on the other hand, displayed a dose-dependent hypolocomotive effect only.
Gao, Zhan-Guo; Jacobson, Kenneth A
2008-04-01
Structurally diverse ligands were studied in A(3) adenosine receptor (AR)-mediated beta-arrestin translocation in engineered CHO cells. The agonist potency and efficacy were similar, although not identical, to their G protein signaling. However, differences have also been found. MRS542, MRS1760, and other adenosine derivatives, A(3)AR antagonists in cyclic AMP assays, were partial agonists in beta-arrestin translocation, indicating possible biased agonism. The xanthine 7-riboside DBXRM, a full agonist, was only partially efficacious in beta-arrestin translocation. DBXRM was shown to induce a lesser extent of desensitization compared with IB-MECA. In kinetic studies, MRS3558, a potent and selective A(3)AR agonist, induced beta-arrestin translocation significantly faster than IB-MECA and Cl-IB-MECA. Non-nucleoside antagonists showed similar inhibitory potencies as previously reported. PTX pretreatment completely abolished ERK1/2 activation, but not arrestin translocation. Thus, lead candidates for biased agonists at the A(3)AR have been identified with this arrestin-translocation assay, which promises to be an effective tool for ligand screening.
Development of Special Biological Products
1981-01-01
Rocky Mountain Spotted Fever (RMSF) 20. Continued B. Tissue Culture / ?Two production lots of FRhL-2 dnd three of MRC-5 were stabilized...104) was potency tested. J. Q Fever Vaccine Storage Stability Potency Testing Q fever vaccine (NDBR 105) was put on potency test. K. Rocky Mountain Spotted Fever (RMSF...Fever Vaccine Storage Stability Potency Testing Two lots of Q fever vaccine (NDBR 105) were put on potency test. K. Rocky Mountain Spotted Fever
Saviano, Alessandro Morais; Francisco, Fabiane Lacerda; Ostronoff, Celina Silva; Lourenço, Felipe Rebello
2015-01-01
The aim of this study was to develop, optimize, and validate a microplate bioassay for relative potency determination of linezolid in pharmaceutical samples using quality-by-design and design space approaches. In addition, a procedure is described for estimating relative potency uncertainty based on microbiological response variability. The influence of culture media composition was studied using a factorial design and a central composite design was adopted to study the influence of inoculum proportion and triphenyltetrazolium chloride in microbial growth. The microplate bioassay was optimized regarding the responses of low, medium, and high doses of linezolid, negative and positive controls, and the slope, intercept, and correlation coefficient of dose-response curves. According to optimization results, design space ranges were established using: (a) low (1.0 μg/mL), medium (2.0 μg/mL), and high (4.0 μg/mL) doses of pharmaceutical samples and linezolid chemical reference substance; (b) Staphylococcus aureus ATCC 653 in an inoculum proportion of 10%; (c) antibiotic No. 3 culture medium pH 7.0±0.1; (d) 6 h incubation at 37.0±0.1ºC; and (e) addition of 50 μL of 0.5% (w/v) triphenyltetrazolium chloride solution. The microplate bioassay was linear (r2=0.992), specific, precise (repeatability RSD=2.3% and intermediate precision RSD=4.3%), accurate (mean recovery=101.4%), and robust. The overall measurement uncertainty was reasonable considering the increased variability inherent in microbiological response. Final uncertainty was comparable with those obtained with other microbiological assays, as well as chemical methods.
Fioravanti, Rossella; Desideri, Nicoletta; Carta, Antonio; Atzori, Elena Maria; Delogu, Ilenia; Collu, Gabriella; Loddo, Roberta
2017-12-01
By the antiviral screening of an in house library of pyrazoline compounds, 4-(3-(4-phenoxyphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonamide (5a) was identified as a promising hit compound for the development of anti- Yellow Fever Virus (YFV) agents. Structural optimization studies were focused on the development of 5a analogues which retain the potency as YFV inhibitors and show a reduced cytotoxicity. The synthesized 1-3,5-triphenyl-pyrazolines (4a-j, 5a-j, 6a-j) were evaluated in cell based assays for cytotoxicity and antiviral activity against representative viruses of two of the three genera of the Flaviviridae family, i.e.: Pestivirus (BVDV) and Flavivirus (YFV). These compounds were also tested against a large panel of different pathogenic RNA and DNA viruses. Most of the new 1-3,5-triphenyl-pyrazolines (4a-j, 5a-j, 6a-j) exhibited a specific activity against YFV, showing EC 50 values in the low micromolar range with almost a 10-fold improvement in potency compared to the reference inhibitor 6-azauridine. However, the selectivity indexes of the unsubstituted (4a-j) and the phenoxy (5a-j) analogues were generally modest due to the pronounced cytotoxicity against BHK-21 cells. Otherwise, the benzyloxy derivatives (6a-j) generally coupled high potency and selectivity. On the basis of both anti-YFV activity and selectivity index, pyrazolines 6a and 6b were chosen for time of addition experiments. The selected pyrazolines and the reference inhibitor 6-azauridine displayed maximal inhibition when added in the pretreatment or during the infection. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Design of potent substrate-analogue inhibitors of canine renin
NASA Technical Reports Server (NTRS)
Hui, K. Y.; Siragy, H. M.; Haber, E.
1992-01-01
Through a systematic study of structure-activity relationships, we designed potent renin inhibitors for use in dog models. In assays against dog plasma renin at neutral pH, we found that, as in previous studies of rat renin inhibitors, the structure at the P2 position appears to be important for potency. The substitution of Val for His at this position increases potency by one order of magnitude. At the P3 position, potency appears to depend on a hydrophobic side chain that does not necessarily have to be aromatic. Our results also support the approach of optimizing potency in a renin inhibitor by introducing a moiety that promotes aqueous solubility (an amino group) at the C-terminus of the substrate analogue. In the design of potent dog plasma renin inhibitors, the influence of the transition-state residue 4(S)-amino-3(S)-hydroxy-5-cyclohexylpentanoic acid (ACHPA)-commonly used as a substitute for the scissile-bond dipeptide to boost potency-is not obvious, and appears to be sequence dependent. The canine renin inhibitor Ac-paF-Pro-Phe-Val-statine-Leu-Phe-paF-NH2 (compound 15; IC50 of 1.7 nM against dog plasma renin at pH 7.4; statine, 4(S)-amino-3(S)-hydroxy-6-methylheptanoic acid; paF, para-aminophenylalanine) had a potent hypotensive effect when infused intravenously into conscious, sodium-depleted, normotensive dogs. Also, compound 15 concurrently inhibited plasma renin activity and had a profound diuretic effect.
Hazard assessment through hybrid in vitro / in silico approach: The case of zearalenone.
Ehrlich, Veronika A; Dellafiora, Luca; Mollergues, Julie; Dall'Asta, Chiara; Serrant, Patrick; Marin-Kuan, Maricel; Lo Piparo, Elena; Schilter, Benoit; Cozzini, Pietro
2015-01-01
Within the framework of reduction, refinement and replacement of animal experiments, new approaches for identification and characterization of chemical hazards have been developed. Grouping and read across has been promoted as a most promising alternative approach. It uses existing toxicological information on a group of chemicals to make predictions on the toxicity of uncharacterized ones. In the present work, the feasibility of applying in vitro and in silico techniques to group chemicals for read across was studied using the food mycotoxin zearalenone (ZEN) and metabolites as a case study. ZEN and its reduced metabolites are known to act through activation of the estrogen receptor α (ERα). The ranking of their estrogenic potencies appeared highly conserved across test systems including binding, in vitro and in vivo assays. This data suggests that activation of ERα may play a role in the molecular initiating event (MIE) and be predictive of adverse effects and provides the rationale to model receptor-binding for hazard identification. The investigation of receptor-ligand interactions through docking simulation proved to accurately rank estrogenic potencies of ZEN and reduced metabolites, showing the suitability of the model to address estrogenic potency for this group of compounds. Therefore, the model was further applied to biologically uncharacterized, commercially unavailable, oxidized ZEN metabolites (6α-, 6β-, 8α-, 8β-, 13- and 15-OH-ZEN). Except for 15-OH-ZEN, the data indicate that in general, the oxidized metabolites would be considered a lower estrogenic concern than ZEN and reduced metabolites.
14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.
Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud
2017-11-05
14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [ 35 S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile 5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (E max ) and potency (EC 50 ) than morphine in MVD, RVD or [ 35 S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.
Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine.
Poore, Elizabeth A; Slifka, Dawn K; Raué, Hans-Peter; Thomas, Archana; Hammarlund, Erika; Quintel, Benjamin K; Torrey, Lindsay L; Slifka, Ariel M; Richner, Justin M; Dubois, Melissa E; Johnson, Lawrence P; Diamond, Michael S; Slifka, Mark K; Amanna, Ian J
2017-01-05
West Nile virus (WNV) is a mosquito-transmitted pathogen with a wide geographical range that can lead to long-term disability and death in some cases. Despite the public health risk posed by WNV, including an estimated 3 million infections in the United States alone, no vaccine is available for use in humans. Here, we present a scaled manufacturing approach for production of a hydrogen peroxide-inactivated whole virion WNV vaccine, termed HydroVax-001WNV. Vaccination resulted in robust virus-specific neutralizing antibody responses and protection against WNV-associated mortality in mice or viremia in rhesus macaques (RM). A GLP-compliant toxicology study performed in rats demonstrated an excellent safety profile with clinical findings limited to minor and transient irritation at the injection site. An in vitro relative potency (IVRP) assay was developed and shown to correlate with in vivo responses following forced degradation studies. Long-term in vivo potency comparisons between the intended storage condition (2-8°C) and a thermally stressed condition (40±2°C) demonstrated no loss in vaccine efficacy or protective immunity over a 6-month span of time. Together, the positive pre-clinical findings regarding immunogenicity, safety, and stability indicate that HydroVax-001WNV is a promising vaccine candidate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S
2009-04-01
The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin.
Sánchez-Soto, Marta; Bonifazi, Alessandro; Cai, Ning Sheng; Ellenberger, Michael P.; Newman, Amy Hauck
2016-01-01
The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays. PMID:26843180
Tan, Boon Hooi; Ahemad, Nafees; Pan, Yan; Palanisamy, Uma Devi; Othman, Iekhsan; Yiap, Beow Chin; Ong, Chin Eng
2018-04-01
Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC 50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC 50 value of 32.23 μM and K i value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC 50 of 6.08 μM and K i of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/K i ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates. Copyright © 2018 John Wiley & Sons, Ltd.
Epoxy resin monomers with reduced skin sensitizing potency.
O'Boyle, Niamh M; Niklasson, Ida B; Tehrani-Bagha, Ali R; Delaine, Tamara; Holmberg, Krister; Luthman, Kristina; Karlberg, Ann-Therese
2014-06-16
Epoxy resin monomers (ERMs), especially diglycidyl ethers of bisphenol A and F (DGEBA and DGEBF), are extensively used as building blocks for thermosetting polymers. However, they are known to commonly cause skin allergy. This research describes a number of alternative ERMs, designed with the aim of reducing the skin sensitizing potency while maintaining the ability to form thermosetting polymers. The compounds were designed, synthesized, and assessed for sensitizing potency using the in vivo murine local lymph node assay (LLNA). All six epoxy resin monomers had decreased sensitizing potencies compared to those of DGEBA and DGEBF. With respect to the LLNA EC3 value, the best of the alternative monomers had a value approximately 2.5 times higher than those of DGEBA and DGEBF. The diepoxides were reacted with triethylenetetramine, and the polymers formed were tested for technical applicability using thermogravimetric analysis and differential scanning calorimetry. Four out of the six alternative ERMs gave polymers with a thermal stability comparable to that obtained with DGEBA and DGEBF. The use of improved epoxy resin monomers with less skin sensitizing effects is a direct way to tackle the problem of contact allergy to epoxy resin systems, particularly in occupational settings, resulting in a reduction in the incidence of allergic contact dermatitis.
Comparative sensitizing potencies of fragrances, preservatives, and hair dyes.
Lidén, Carola; Yazar, Kerem; Johansen, Jeanne D; Karlberg, Ann-Therese; Uter, Wolfgang; White, Ian R
2016-11-01
The local lymph node assay (LLNA) is used for assessing sensitizing potential in hazard identification and risk assessment for regulatory purposes. Sensitizing potency on the basis of the LLNA is categorized into extreme (EC3 value of ≤0.2%), strong (>0.2% to ≤2%), and moderate (>2%). To compare the sensitizing potencies of fragrance substances, preservatives, and hair dye substances, which are skin sensitizers that frequently come into contact with the skin of consumers and workers, LLNA results and EC3 values for 72 fragrance substances, 25 preservatives and 107 hair dye substances were obtained from two published compilations of LLNA data and opinions by the Scientific Committee on Consumer Safety and its predecessors. The median EC3 values of fragrances (n = 61), preservatives (n = 19) and hair dyes (n = 59) were 5.9%, 0.9%, and 1.3%, respectively. The majority of sensitizing preservatives and hair dyes are thus strong or extreme sensitizers (EC3 value of ≤2%), and fragrances are mostly moderate sensitizers. Although fragrances are typically moderate sensitizers, they are among the most frequent causes of contact allergy. This indicates that factors other than potency need to be addressed more rigorously in risk assessment and risk management. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.
2014-07-01
The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.
Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.
2014-01-01
The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL−1 during 40 days, and HSV-1, 2.7 Log10 PFU mL−1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL−1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors. PMID:25078058
Bartsch, H; Tomatis, L
1983-01-01
The qualitative relationship between carcinogenicity and mutagenicity (DNA-damaging activity), based on chemicals which are known to be or suspected of being carcinogenic to man and/or to experimental animals, is analyzed using 532 chemicals evaluated in Volumes 1-25 of the IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. About 40 compounds (industrial processes) were found to be either definitely or probably carcinogenic to man, and 130 chemicals have been adequately tested in rodents and most of them also in various short-term assays. For a comparison between the carcinogenicity of a chemical and its behavior in short-term tests, systems were selected that have a value for predicting carcinogenicity. These were divided into mutagenicity in (A) the S. typhimurium/microsome assay, (B) other submammalian systems and (C) cultured mammalian cells; (D) chromosomal abnormalities in mammalian cells; (E) DNA damage and repair; (F) cell transformation (or altered growth properties) in vitro. The following conclusions can be drawn. In the absence of studies in man, long-term animal tests are still today the only ones capable of providing evidence of the carcinogenic effect of a chemical. The development and application of an appropriate combination of short-term tests (despite current limitations) can significantly contribute to the prediction/confirmation of the carcinogenic effects of chemicals in animals/man. Confidence in positive tests results is increased when they are confirmed in multiple short-term tests using nonrepetitive end points and different activation systems. Assays to detect carcinogens which do not act via electrophiles (promoters) need to be developed. The results of a given short-term test should be interpreted in the context of other toxicological data. Increasing demand for quantitative carcinogenicity data requires further examination of whether or not there is a quantitative relationship between the potency of a carcinogen in experimental animals/man, and its genotoxic activity in short-term tests. At present, such a relationship is not sufficiently established for it to be used for the prediction of the carcinogenic potency of new compounds. PMID:6337827
Männikkö, R; Overend, G; Perrey, C; Gavaghan, CL; Valentin, J-P; Morten, J; Armstrong, M; Pollard, CE
2010-01-01
Background and purpose: Potencies of compounds blocking KV11.1 [human ether-ago-go-related gene (hERG)] are commonly assessed using cell lines expressing the Caucasian wild-type (WT) variant. Here we tested whether such potencies would be different for hERG single nucleotide polymorphisms (SNPs). Experimental approach: SNPs (R176W, R181Q, Del187-189, P347S, K897T, A915V, P917L, R1047L, A1116V) and a binding-site mutant (Y652A) were expressed in Tet-On CHO-K1 cells. Potencies [mean IC50; lower/upper 95% confidence limit (CL)] of 48 hERG blockers was estimated by automated electrophysiology [IonWorks™ HT (IW)]. In phase one, rapid potency comparison of each WT-SNP combination was made for each compound. In phase two, any compound-SNP combinations from phase one where the WT upper/lower CL did not overlap with those of the SNPs were re-examined. Electrophysiological WT and SNP parameters were determined using conventional electrophysiology. Key results: IW detected the expected sixfold potency decrease for propafenone in Y652A. In phase one, the WT lower/upper CL did not overlap with those of the SNPs for 77 compound-SNP combinations. In phase two, 62/77 cases no longer yielded IC50 values with non-overlapping CLs. For seven of the remaining 15 cases, there were non-overlapping CLs but in the opposite direction. For the eight compound-SNP combinations with non-overlapping CLs in the same direction as for phase 1, potencies were never more than twofold apart. The only statistically significant electrophysiological difference was the voltage dependence of activation of R1047L. Conclusion and implications: Potencies of hERG channel blockers defined using the Caucasian WT sequence, in this in vitro assay, were representative of potencies for common SNPs. This article is part of a themed section on QT safety. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2010 PMID:19673885
Development of at-line assay to monitor charge variants of MAbs during production.
St Amand, M M; Ogunnaike, B A; Robinson, A S
2014-01-01
One major challenge currently facing the biopharmaceutical industry is to understand how MAb microheterogeneity affects therapeutic efficacy, potency, immunogenicity, and clearance. MAb micro-heterogeneity can result from post-translational modifications such as sialylation, galactosylation, C-terminal lysine cleavage, glycine amidation, and tryptophan oxidation, each of which can generate MAb charge variants; such heterogeneity can affect pharmacokinetics (PK) considerably. Implementation of appropriate on-line quality control strategies may help to regulate bioprocesses, thus enabling more homogenous material with desired post-translational modifications and PK behavior. However, one major restriction to implementation of quality control strategies is the availability of techniques for obtaining on-line or at-line measurements of these attributes. In this work, we describe the development of an at-line assay to separate MAb charge variants in near real-time, which could ultimately be used to implement on-line quality control strategies for MAb production. The assay consists of a 2D-HPLC method with sequential in-line Protein A and WCX-10 HPLC column steps. To perform the 2D-HPLC assay at-line, the two columns steps were integrated into a single method using a novel system configuration that allowed parallel flow over column 1 or column 2 or sequential flow from column 1 to column 2. A bioreactor system was also developed such that media samples could be removed automatically from bioreactor vessels during production and delivered to the 2D-HPLC for analysis. With this at-line HPLC assay, we have demonstrated that MAb microheterogeneity occurs throughout the cell cycle whether the host cell line is grown under different or the same nominal culture conditions. © 2013 American Institute of Chemical Engineers.
Hirota, Morihiko; Ashikaga, Takao; Kouzuki, Hirokazu
2018-04-01
It is important to predict the potential of cosmetic ingredients to cause skin sensitization, and in accordance with the European Union cosmetic directive for the replacement of animal tests, several in vitro tests based on the adverse outcome pathway have been developed for hazard identification, such as the direct peptide reactivity assay, KeratinoSens™ and the human cell line activation test. Here, we describe the development of an artificial neural network (ANN) prediction model for skin sensitization risk assessment based on the integrated testing strategy concept, using direct peptide reactivity assay, KeratinoSens™, human cell line activation test and an in silico or structure alert parameter. We first investigated the relationship between published murine local lymph node assay EC3 values, which represent skin sensitization potency, and in vitro test results using a panel of about 134 chemicals for which all the required data were available. Predictions based on ANN analysis using combinations of parameters from all three in vitro tests showed a good correlation with local lymph node assay EC3 values. However, when the ANN model was applied to a testing set of 28 chemicals that had not been included in the training set, predicted EC3s were overestimated for some chemicals. Incorporation of an additional in silico or structure alert descriptor (obtained with TIMES-M or Toxtree software) in the ANN model improved the results. Our findings suggest that the ANN model based on the integrated testing strategy concept could be useful for evaluating the skin sensitization potential. Copyright © 2017 John Wiley & Sons, Ltd.
Biarylmethoxy Nicotinamides As Novel and Specific Inhibitors of Mycobacterium tuberculosis.
Kedari, Chaitanya Kumar; Roy Choudhury, Nilanjana; Sharma, Sreevalli; Kaur, Parvinder; Guptha, Supreeth; Panda, Manoranjan; Mukerjee, Kakoli; Ramachandran, Vasanthi; Bandodkar, Balachandra; Ramachandran, Sreekanth; Tantry, Subramanyam J
2014-05-08
A whole cell based screening effort on a focused library from corporate collection resulted in the identification of biarylmethoxy nicotinamides as novel inhibitors of M. tuberculosis (Mtu) H37Rv. The series exhibited tangible structure-activity relationships, and during hit to lead exploration, a cellular potency of 100 nM was achieved, which is an improvement of >200-fold from the starting point. The series is very specific to Mtu and noncytotoxic up to 250 μM as measured in the mammalian cell line THP-1 based cytotoxicity assay. This compound class retains its potency on several drug sensitive and single drug resistant clinical isolates, which indicate that the compounds could be acting through a novel mode of action.
Collaborative study for the establishment of the 4(th) International Standard for Streptomycin.
Jorajuria, S; Raphalen, C; Dujardin, V; Daas, A
2015-01-01
An international collaborative study was organised to establish the 4(th) World Health Organization (WHO) International Standard (IS) for Streptomycin. Fourteen laboratories from different countries participated. Potencies of the candidate material were estimated by microbiological assays with sensitive micro-organisms. To ensure continuity between consecutive batches, the 3(rd) IS for Streptomycin was used as a reference. Based on the results of the study, the 4(th) IS for Streptomycin was adopted at the meeting of the WHO Expert Committee for Biological Standardization (ECBS) in 2015 with an assigned potency of 76 000 International Units (IU) per vial. The 4(th) IS for Streptomycin is available from the European Directorate for the Quality of Medicines & HealthCare (EDQM).
Jarošová, Barbora; Bláha, Luděk; Giesy, John P; Hilscherová, Klára
2014-03-01
In vitro assays are broadly used tools to evaluate the estrogenic activity in Waste Water Treatment Plant (WWTP) effluents and their receiving rivers. Since potencies of individual estrogens to induce in vitro and in vivo responses can differ it is not possible to directly evaluate risks based on in vitro measures of estrogenic activity. Estrone, 17beta-estradiol, 17alfa-ethinylestradiol and to some extent, estriol have been shown to be responsible for the majority of in vitro estrogenic activity of municipal WWTP effluents. Therefore, in the present study safe concentrations of Estrogenic Equivalents (EEQs-SSE) in municipal WWTP effluents were derived based on simplified assumption that the steroid estrogens are responsible for all estrogenicity determined with particular in vitro assays. EEQs-SSEs were derived using the bioassay and testing protocol-specific in vitro potencies of steroid estrogens, in vivo predicted no effect concentration (PNECs) of these compounds, and their relative contributions to the overall estrogenicity detected in municipal WWTP effluents. EEQs-SSEs for 15 individual bioassays varied from 0.1 to 0.4ng EEQ/L. The EEQs-SSEs are supposed to be increased by use of location-specific dilution factors of WWTP effluents entering receiving rivers. They are applicable to municipal wastewater and rivers close to their discharges, but not to industrial waste waters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kolle, Susanne N; Basketter, David; Schrage, Arnhild; Gamer, Armin O; van Ravenzwaay, Bennard; Landsiedel, Robert
2012-08-01
In a previous study, the predictive capacity of a modified local lymph node assay (LLNA) based on cell counts, the LNCC, was demonstrated to be closely similar to that of the original assay. In addition, a range of substances, including some technical/commercial materials and a range of agrochemical formulations (n = 180) have also been assessed in both methods in parallel. The results in the LNCC and LLNA were generally consistent, with 86% yielding an identical classification outcome. Discordant results were associated with borderline data and were evenly distributed between the two methods. Potency information derived from each method also demonstrated good consistency (n = 101), with 93% of predictions being close. Skin irritation was observed only infrequently and was most commonly associated with positive results; it was not associated with the discordant results. Where different vehicles were used with the same test material, the effect on sensitizing activity was modest, consistent with historical data. Analysis of positive control data indicated that the LNCC and LLNA displayed similar levels of biological variation. When taken in combination with the previously published results on LLNA Performance Standard chemicals, it is concluded that the LNCC provides a viable non-radioactive alternative to the LLNA for the assessment of substances, including potency predictions, as well as for the evaluation of preparations. Copyright © 2012 John Wiley & Sons, Ltd.
Goess, Christian; Harris, Christopher M; Murdock, Sara; McCarthy, Richard W; Sampson, Erik; Twomey, Rachel; Mathieu, Suzanne; Mario, Regina; Perham, Matthew; Goedken, Eric R; Long, Andrew J
2018-06-02
Bruton's Tyrosine Kinase (BTK) is a non-receptor tyrosine kinase required for intracellular signaling downstream of multiple immunoreceptors. We evaluated ABBV-105, a covalent BTK inhibitor, using in vitro and in vivo assays to determine potency, selectivity, and efficacy to validate the therapeutic potential of ABBV-105 in inflammatory disease. ABBV-105 potency and selectivity were evaluated in enzymatic and cellular assays. The impact of ABBV-105 on B cell function in vivo was assessed using mechanistic models of antibody production. Efficacy of ABBV-105 in chronic inflammatory disease was evaluated in animal models of arthritis and lupus. Measurement of BTK occupancy was employed as a target engagement biomarker. ABBV-105 irreversibly inhibits BTK, demonstrating superior kinome selectivity and is potent in B cell receptor, Fc receptor, and TLR-9-dependent cellular assays. Oral administration resulted in rapid clearance in plasma, but maintenance of BTK splenic occupancy. ABBV-105 inhibited antibody responses to thymus-independent and thymus-dependent antigens, paw swelling and bone destruction in rat collagen induced arthritis (CIA), and reduced disease in an IFNα-accelerated lupus nephritis model. BTK occupancy in disease models correlated with in vivo efficacy. ABBV-105, a selective BTK inhibitor, demonstrates compelling efficacy in pre-clinical mechanistic models of antibody production and in models of rheumatoid arthritis and lupus.
de Oliveira, Edson R A; Lima, Bruna M M P; de Moura, Wlamir C; Nogueira, Ana Cristina M de A
2013-12-31
Type I interferons (IFNs) exert an array of important biological functions on the innate immune response and has become a useful tool in the treatment of various diseases. An increasing demand in the usage of recombinant IFNs, mainly due to the treatment of chronic hepatitis C infection, augmented the need of quality control for this biopharmaceutical. A traditional bioassay for IFN potency assessment is the cytopathic effect reduction antiviral assay where a given cell line is preserved by IFN from a lytic virus activity using the cell viability as a frequent measure of end point. However, type I IFNs induce other biological effects such as cell-cycle arrest and apoptosis that can influence directly on viability of many cell lines. Here, we standardized a cytopathic effect reduction antiviral assay using Hep-2C cell/mengovirus combination and studied a possible impact of cell viability variations caused by IFN-alpha 2b on responses generated on the antiviral assay. Using the four-parameter logistic model, we observed less correlation and less linearity on antiviral assay when responses from IFN-alpha 2b 1000 IU/ml were considered in the analysis. Cell viability tests with MTT revealed a clear cell growth inhibition of Hep-2C cells under stimulation with IFN-alpha 2b. Flow cytometric cell-cycle analysis and apoptosis assessment showed an increase of S+G2 phase and higher levels of apoptotic cells after treatment with IFN-alpha 2b 1000 IU/ml under our standardized antiviral assay procedure. Considering our studied dose range, we also observed strong STAT1 activation on Hep-2C cells after stimulation with the higher doses of IFN-alpha 2b. Our findings showed that the reduction of cell viability driven by IFN-alpha can cause a negative impact on antiviral assays. We assume that the cell death induction and the cell growth inhibition effect of IFNs should also be considered while employing antiviral assay protocols in a quality control routine and emphasizes the importance of new approaches for IFN potency determination. Copyright © 2013 Elsevier B.V. All rights reserved.
Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Schäfers, Christoph; Fischer, Rainer; Fenske, Martina
2013-12-01
Exposure to environmental chemicals known as endocrine disruptors (EDs) is in many cases associated with an unpredictable hazard for wildlife and human health. The identification of endocrine disruptive properties of chemicals certain to enter the aquatic environment relies on toxicity tests with fish, assessing adverse effects on reproduction and sexual development. The demand for quick, reliable ED assays favored the use of fish embryos as alternative test organisms. We investigated the application of a transcriptomics-based assay for estrogenic and anti-androgenic chemicals with zebrafish embryos. Two reference compounds, 17α-ethinylestradiol and flutamide, were tested to evaluate the effects on development and the transcriptome after 48h-exposures. Comparison of the transcriptome response with other estrogenic and anti-androgenic compounds (genistein, bisphenol A, methylparaben, linuron, prochloraz, propanil) showed commonalities and differences in regulated pathways, enabling us to classify the estrogenic and anti-androgenic potencies. This demonstrates that different mechanism of ED can be assessed already in fish embryos. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Kennedy, Lawrence J.; Shi, Yan
2010-04-12
An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less
DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis
Milani, Mateus; Byrne, Dominic P; Greaves, Georgia; Butterworth, Michael; Cohen, Gerald M; Eyers, Patrick A; Varadarajan, Shankar
2017-01-01
The concept of using BH3 mimetics as anticancer agents has been substantiated by the efficacy of selective drugs, such as Navitoclax and Venetoclax, in treating BCL-2-dependent haematological malignancies. However, most solid tumours depend on MCL-1 for survival, which is highly amplified in multiple cancers and a major factor determining chemoresistance. Most MCL-1 inhibitors that have been generated so far, while demonstrating early promise in vitro, fail to exhibit specificity and potency in a cellular context. To address the lack of standardised assays for benchmarking the in vitro binding of putative inhibitors before analysis of their cellular effects, we developed a rapid differential scanning fluorimetry (DSF)-based assay, and used it to screen a panel of BH3 mimetics. We next contrasted their binding signatures with their ability to induce apoptosis in a MCL-1 dependent cell line. Of all the MCL-1 inhibitors tested, only A-1210477 induced rapid, concentration-dependent apoptosis, which strongly correlated with a thermal protective effect on MCL-1 in the DSF assay. In cells that depend on both MCL-1 and BCL-XL, A-1210477 exhibited marked synergy with A-1331852, a BCL-XL specific inhibitor, to induce cell death. Despite this selectivity and potency, A-1210477 induced profound structural changes in the mitochondrial network in several cell lines that were not phenocopied following MCL-1 RNA interference or transcriptional repression, suggesting that A-1210477 induces mitochondrial fragmentation in an MCL-1-independent manner. However, A-1210477-induced mitochondrial fragmentation was dependent upon DRP-1, and silencing expression levels of DRP-1 diminished not just mitochondrial fragmentation but also BH3 mimetic-mediated apoptosis. These findings provide new insights into MCL-1 ligands, and the interplay between DRP-1 and the anti-apoptotic BCL-2 family members in the regulation of apoptosis. PMID:28079887
Chen, Rui; Wan, Jing; Song, Jing; Qian, Yan; Liu, Yong; Gu, Shuiming
2017-12-01
Peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Activation of PPARγ pathway has been shown to enhance fatty acid oxidation, improve endothelial cell function, and decrease myocardial fibrosis in heart failure. Thus, the protein has been raised as an attractive target for heart failure therapy. This work attempted to discover new and potent PPARγ agonists from natural products using a synthetic strategy of computer virtual screening and transactivation reporter assay. A large library of structurally diverse, drug-like natural products was compiled, from which those with unsatisfactory pharmacokinetic profile and/or structurally redundant compounds were excluded. The binding mode of remaining candidates to PPARγ ligand-binding domain (LBD) was computationally modelled using molecular docking and their relative binding potency was ranked by an empirical scoring scheme. Consequently, eight commercially available hits with top scores were selected and their biological activity was determined using a cell-based reporter-gene assay. Four natural product compounds, namely ZINC13408172, ZINC4292805, ZINC44179 and ZINC901461, were identified to have high or moderate agonistic potency against human PPARγ with EC 50 values of 0.084, 2.1, 0.35 and 5.6 μM, respectively, which are comparable to or even better than that of the approved PPARγ full agonists pioglitazone (EC 50 = 0.16 μM) and rosiglitazone (EC 50 = 0.034 μM). Hydrophobic interactions and van der Waals contacts are the primary chemical forces to stabilize the complex architecture of PPARγ LBD domain with these agonist ligands, while few hydrogen bonds, salt bridges and/or π-π stacking at the complex interfaces confer selectivity and specificity for the domain-agonist recognition. The integrated in vitro-in silico screening strategy can be successfully applied to rational discovery of biologically active compounds. The newly identified natural products with PPARγ agonistic potency are considered as promising lead scaffolds to develop novel chemical therapeutics for heart failure.
Thorpe, Karen L.; Gross-Sorokin, Melanie; Johnson, Ian; Brighty, Geoff; Tyler, Charles R.
2006-01-01
The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the use of bioassays for determining the estrogenic potency of WwTW effluents, and they highlight the associated problems for modeling approaches that are reliant on measured concentrations of estrogenic chemicals. PMID:16818252
2011-01-01
Background Allergic contact dermatitis is an inflammatory skin disease that affects a significant proportion of the population. This disease is caused by an adverse immune response towards chemical haptens, and leads to a substantial economic burden for society. Current test of sensitizing chemicals rely on animal experimentation. New legislations on the registration and use of chemicals within pharmaceutical and cosmetic industries have stimulated significant research efforts to develop alternative, human cell-based assays for the prediction of sensitization. The aim is to replace animal experiments with in vitro tests displaying a higher predictive power. Results We have developed a novel cell-based assay for the prediction of sensitizing chemicals. By analyzing the transcriptome of the human cell line MUTZ-3 after 24 h stimulation, using 20 different sensitizing chemicals, 20 non-sensitizing chemicals and vehicle controls, we have identified a biomarker signature of 200 genes with potent discriminatory ability. Using a Support Vector Machine for supervised classification, the prediction performance of the assay revealed an area under the ROC curve of 0.98. In addition, categorizing the chemicals according to the LLNA assay, this gene signature could also predict sensitizing potency. The identified markers are involved in biological pathways with immunological relevant functions, which can shed light on the process of human sensitization. Conclusions A gene signature predicting sensitization, using a human cell line in vitro, has been identified. This simple and robust cell-based assay has the potential to completely replace or drastically reduce the utilization of test systems based on experimental animals. Being based on human biology, the assay is proposed to be more accurate for predicting sensitization in humans, than the traditional animal-based tests. PMID:21824406
Authier, Simon; Pugsley, Michael K; Koerner, John E; Fermini, Bernard; Redfern, William S; Valentin, Jean-Pierre; Vargas, Hugo M; Leishman, Derek J; Correll, Krystle; Curtis, Michael J
2017-07-01
The Safety Pharmacology Society (SPS) has conducted a survey of its membership to identify industry practices related to testing considered in the Comprehensive In vitro Proarrhythmia Assay (CiPA). Survey topics included nonclinical approaches to address proarrhythmia issues, conduct of in silico studies, in vitro ion channel testing methods used, drugs used as positive controls during the conduct of cardiac ion channel studies, types of arrhythmias observed in non-clinical studies and use of the anticipated CiPA ion channel assay. In silico studies were used to evaluate effects on ventricular action potentials by only 15% of responders. In vitro assays were used mostly to assess QT prolongation (95%), cardiac Ca 2+ and Na + channel blockade (82%) and QT shortening or QRS prolongation (53%). For de-risking of candidate drugs for proarrhythmia, those assays most relevant to CiPA including cell lines stably expressing ion channels used to determine potency of drug block were most frequently used (89%) and human stem cell-derived or induced pluripotent stem cell cardiomyocytes (46%). Those in vivo assays related to general proarrhythmia derisking include ECG recording using implanted telemetry technology (88%), jacketed external telemetry (62%) and anesthetized animal models (53%). While the CiPA initiative was supported by 92% of responders, there may be some disconnect between current practice and future expectations, as explained. Proarrhythmia liability assessment in drug development presently includes study types consistent with CiPA. It is anticipated that CiPA will develop into a workable solution to the concern that proarrhythmia liability testing remains suboptimal. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Curreli, Francesca; Belov, Dmitry S; Kwon, Young Do; Ramesh, Ranjith; Furimsky, Anna M; O'Loughlin, Kathleen; Byrge, Patricia C; Iyer, Lalitha V; Mirsalis, Jon C; Kurkin, Alexander V; Altieri, Andrea; Debnath, Asim K
2018-05-12
We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Boyd, Windy A.; Smith, Marjolein V.; Co, Caroll A.; Pirone, Jason R.; Rice, Julie R.; Shockley, Keith R.; Freedman, Jonathan H.
2015-01-01
Background: Modern toxicology is shifting from an observational to a mechanistic science. As part of this shift, high-throughput toxicity assays are being developed using alternative, nonmammalian species to prioritize chemicals and develop prediction models of human toxicity. Methods: The nematode Caenorhabditis elegans (C. elegans) was used to screen the U.S. Environmental Protection Agency’s (EPA’s) ToxCast™ Phase I and Phase II libraries, which contain 292 and 676 chemicals, respectively, for chemicals leading to decreased larval development and growth. Chemical toxicity was evaluated using three parameters: a biologically defined effect size threshold, half-maximal activity concentration (AC50), and lowest effective concentration (LEC). Results: Across both the Phase I and Phase II libraries, 62% of the chemicals were classified as active ≤ 200 μM in the C. elegans assay. Chemical activities and potencies in C. elegans were compared with those from two zebrafish embryonic development toxicity studies and developmental toxicity data for rats and rabbits. Concordance of chemical activity was higher between C. elegans and one zebrafish assay across Phase I chemicals (79%) than with a second zebrafish assay (59%). Using C. elegans or zebrafish to predict rat or rabbit developmental toxicity resulted in balanced accuracies (the average value of the sensitivity and specificity for an assay) ranging from 45% to 53%, slightly lower than the concordance between rat and rabbit (58%). Conclusions: Here, we present an assay that quantitatively and reliably describes the effects of chemical toxicants on C. elegans growth and development. We found significant overlap in the activity of chemicals in the ToxCast™ libraries between C. elegans and zebrafish developmental screens. Incorporating C. elegans toxicological assays as part of a battery of in vitro and in vivo assays provides additional information for the development of models to predict a chemical’s potential toxicity to humans. Citation: Boyd WA, Smith MV, Co CA, Pirone JR, Rice JR, Shockley KR, Freedman JH. 2016. Developmental effects of the ToxCast™ Phase I and II chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environ Health Perspect 124:586–593; http://dx.doi.org/10.1289/ehp.1409645 PMID:26496690
Inserra, Marco C; Kompella, Shiva N; Vetter, Irina; Brust, Andreas; Daly, Norelle L; Cuny, Hartmut; Craik, David J; Alewood, Paul F; Adams, David J; Lewis, Richard J
2013-09-15
A new α-conotoxin LsIA was isolated from the crude venom of Conus limpusi using assay-guided RP-HPLC fractionation. Synthetic LsIA was a potent antagonist of α3β2, α3α5β2 and α7 nAChRs, with half-maximal inhibitory concentrations of 10, 31 and 10 nM, respectively. The structure of LsIA determined by NMR spectroscopy comprised a characteristic disulfide bond-stabilized α-helical structure and disordered N-terminal region. Potency reductions of up to 9-fold were observed for N-terminally truncated analogues of LsIA at α7 and α3β2 nAChRs, whereas C-terminal carboxylation enhanced potency 3-fold at α3β2 nAChRs but reduced potency 3-fold at α7 nAChRs. This study gives further insight into α-conotoxin pharmacology and the molecular basis of nAChR selectivity, highlighting the influence of N-terminal residues and C-terminal amidation on conotoxin pharmacology. Copyright © 2013. Published by Elsevier Inc.
Checler, F; Vincent, J P; Kitabgi, P
1986-07-31
Neuromedin N (NN) is a novel neurotensin (NT)-like hexapeptide recently isolated from porcine spinal cord. NN competitively inhibited the binding of monoiodinated [Trp11]NT to rat brain synaptic membranes with a 19-fold lower potency than NT. In the presence of 1 mM 1,10-phenanthroline or 10 microM bestatin, the potency of NN relative to NT was increased about 5-fold. NN was readily degraded by rat brain synaptic membranes, and NN-(2-6) was the major degradation product. NN-(2-6) did not bind to NT receptors at concentrations up to 1 microM whether or not peptidase inhibitors were present in the binding assay. The rate of degradation by synaptic membranes was nearly 2.5 times higher for NN than for NT. NN degradation by membranes was totally prevented by 1,10-phenanthroline and markedly inhibited by bestatin. The presence of NN in the central nervous system, its high potency to interact with brain NT receptors and its rapid inactivation by brain synaptic peptidases make it a potential neurotransmitter candidate acting at the NT receptor.
Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia
NASA Astrophysics Data System (ADS)
Machta, Benjamin B.; Gray, Ellyn; Nouri, Mariam; McCarthy, Nicola L. C.; Gray, Erin M.; Miller, Ann L.; Brooks, Nicholas J.; Veatch, Sarah L.
2016-08-01
Diverse molecules induce general anesthesia with potency strongly correlated both with their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma membrane derived vesicles by lowering the critical temperature ($T_c$) for phase separation. Here we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on $T_c$. First we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described `intoxication reversers' raise $T_c$ and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that hydrostatic pressure, long known to reverse anesthesia, also raises $T_c$ in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that $\\Delta T_c$ predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.
Jenkins, David Paul; Yu, Weifeng; Brown, Brandon M; Løjkner, Lars Damgaard; Wulff, Heike
2013-01-01
The intermediate-conductance Ca(2+)-activated K(+) channel KCa3.1 (also known as KCNN4, IK1, or the Gárdos channel) plays an important role in the activation of T and B cells, mast cells, macrophages, and microglia by regulating membrane potential, cellular volume, and calcium signaling. KCa3.1 is further involved in the proliferation of dedifferentiated vascular smooth muscle cells and fibroblast and endothelium-derived hyperpolarization responses in the vascular endothelium. Accordingly, KCa3.1 inhibitors are therapeutically interesting as immunosuppressants and for the treatment of a wide range of fibroproliferative disorders, whereas KCa3.1 activators constitute a potential new class of endothelial function preserving antihypertensives. Here, we report the development of QPatch assays for both KCa3.1 inhibitors and activators. During assay optimization, the Ca(2+) sensitivity of KCa3.1 was studied using varying intracellular Ca(2+) concentrations. A free Ca(2+) concentration of 1 μM was chosen to optimally test inhibitors. To identify activators, which generally act as positive gating modulators, a lower Ca(2+) concentration (∼200 nM) was used. The QPatch results were benchmarked against manual patch-clamp electrophysiology by determining the potency of several commonly used KCa3.1 inhibitors (TRAM-34, NS6180, ChTX) and activators (EBIO, riluzole, SKA-31). Collectively, our results demonstrate that the QPatch provides a comparable but much faster approach to study compound interactions with KCa3.1 channels in a robust and reliable assay.
Biological profiling and dose-response modeling tools ...
Through its ToxCast project, the U.S. EPA has developed a battery of in vitro high throughput screening (HTS) assays designed to assess the potential toxicity of environmental chemicals. At present, over 1800 chemicals have been tested in up to 600 assays, yielding a large number of concentration-response data sets. Standard processing of these data sets involves finding a best fitting mathematical model and set of model parameters that specify this model. The model parameters include quantities such as the half-maximal activity concentration (or “AC50”) that have biological significance and can be used to inform the efficacy or potency of a given chemical with respect to a given assay. All of this data is processed and stored in an online-accessible database and website: http://actor.epa.gov/dashboard2. Results from these in vitro assays are used in a multitude of ways. New pathways and targets can be identified and incorporated into new or existing adverse outcome pathways (AOPs). Pharmacokinetic models such as those implemented EPA’s HTTK R package can be used to translate an in vitro concentration into an in vivo dose; i.e., one can predict the oral equivalent dose that might be expected to activate a specific biological pathway. Such predicted values can then be compared with estimated actual human exposures prioritize chemicals for further testing.Any quantitative examination should be accompanied by estimation of uncertainty. We are developing met
Yeung, H W; Yamashiro, D; Tseng, L F; Chang, W C; Li, C H
1981-02-01
Four analogs of the opioid peptide human beta-endorphin (Bh-EP) have been synthesized: [D-Lys9, Phe27, Gly31]-beta h-EP, [D-PHe18,Phe27,Gly31]-beta h-EP, [D-Thr2,D-Lys9,Phe27,Gly31]-beta h-EP, and [D-Thr2,D-Phe18,Phe27,Gly31]-beta h-EP. All are practically indistinguishable from beta h-EP in the guinea pig ileum assay. All show diminished analgesic potency in the mouse tail-flick assay.
A study of antioxidant potential of Perilladehyde
NASA Astrophysics Data System (ADS)
Malu, T. J.; Banerjee, Nitesh; Singh, Avinash Kumar; Kannadasan, S.; Ethiraj, K. R.
2017-11-01
The use of plants as food, medicine is credited to a biological property of their secondary metabolites. These naturally occurring secondary metabolites are found to have great importance in controlling the formation of free radicles. These antioxidants are capable to catch the free radicles present in the body and maintain its balance. Antioxidant activity and potency of Perillaldehyde using various in vitro biochemical assays were studied. The assay involves various levels of antioxidant action such as free radical scavenging activity through DPPH, reducing power determination, nitric oxide scavenging ability, metal chelation power, scavenging of hydrogen peroxide, membrane stabilizing activity, and lipid peroxidation study.
Zheng, Wei; Padia, Janak; Urban, Daniel J.; Jadhav, Ajit; Goker-Alpan, Ozlem; Simeonov, Anton; Goldin, Ehud; Auld, Douglas; LaMarca, Mary E.; Inglese, James; Austin, Christopher P.; Sidransky, Ellen
2007-01-01
Gaucher disease is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene. Missense mutations result in reduced enzyme activity that may be due to misfolding, raising the possibility of small-molecule chaperone correction of the defect. Screening large compound libraries by quantitative high-throughput screening (qHTS) provides comprehensive information on the potency, efficacy, and structure–activity relationships (SAR) of active compounds directly from the primary screen, facilitating identification of leads for medicinal chemistry optimization. We used qHTS to rapidly identify three structural series of potent, selective, nonsugar glucocerebrosidase inhibitors. The three structural classes had excellent potencies and efficacies and, importantly, high selectivity against closely related hydrolases. Preliminary SAR data were used to select compounds with high activity in both enzyme and cell-based assays. Compounds from two of these structural series increased N370S mutant glucocerebrosidase activity by 40–90% in patient cell lines and enhanced lysosomal colocalization, indicating chaperone activity. These small molecules have potential as leads for chaperone therapy for Gaucher disease, and this paradigm promises to accelerate the development of leads for other rare genetic disorders. PMID:17670938
Yang, Zhilin; Weisshaar, James C.
2015-01-01
Antibiotics target specific biochemical mechanisms in bacteria. In response to new drugs, pathogenic bacteria rapidly develop resistance. In contrast, antimicrobial peptides (AMPs) have retained broad spectrum antibacterial potency over millions of years. We present single-cell fluorescence assays that detect reactive oxygen species (ROS) in the Escherichia coli cytoplasm in real time. Within 30 s of permeabilization of the cytoplasmic membrane by the cationic AMP CM15 [combining residues 1–7 of cecropin A (from moth) with residues 2–9 of melittin (bee venom)], three fluorescence signals report oxidative stress in the cytoplasm, apparently involving O2−, H2O2, and •OH. Mechanistic studies indicate that active respiration is a prerequisite to the CM15-induced oxidative damage. In anaerobic conditions, signals from ROS are greatly diminished and the minimum inhibitory concentration increases 20-fold. Evidently the natural human AMP LL-37 also induces a burst of ROS. Oxidative stress may prove a significant bacteriostatic mechanism for a variety of cationic AMPs. If so, host organisms may use the local oxygen level to modulate AMP potency. PMID:25561551
Moll, Guido; Geißler, Sven; Catar, Rusan; Ignatowicz, Lech; Hoogduijn, Martin J; Strunk, Dirk; Bieback, Karen; Ringdén, Olle
2016-01-01
Mesenchymal stromal cells (MSCs) harbor great therapeutic potential for numerous diseases. From early clinical trials, success and failure analysis, bench-to-bedside and back-to-bench approaches, there has been a great gain in knowledge, still leaving a number of questions to be answered regarding optimal manufacturing and quality of MSCs for clinical application. For treatment of many acute indications, cryobanking may remain a prerequisite, but great uncertainty exists considering the therapeutic value of freshly thawed (thawed) and continuously cultured (fresh) MSCs. The field has seen an explosion of new literature lately, outlining the relevance of the topic. MSCs appear to have compromised immunomodulatory activity directly after thawing for clinical application. This may provide a possible explanation for failure of early clinical trials. It is not clear if and how quickly MSCs recover their full therapeutic activity, and if the "cryo stun effect" is relevant for clinical success. Here, we will share our latest insights into the relevance of these observations for clinical practice that will be discussed in the context of the published literature. We argue that the differences of fresh and thawed MSCs are limited but significant. A key issue in evaluating potency differences is the time point of analysis after thawing. To date, prospective double-blinded randomized clinical studies to evaluate potency of both products are lacking, although recent progress was made with preclinical assessment. We suggest refocusing therapeutic MSC development on potency and safety assays with close resemblance of the clinical reality.
Bárcia, Rita N; Santos, Jorge M; Teixeira, Mariana; Filipe, Mariana; Pereira, Ana Rita S; Ministro, Augusto; Água-Doce, Ana; Carvalheiro, Manuela; Gaspar, Maria Manuela; Miranda, Joana P; Graça, Luis; Simões, Sandra; Santos, Susana Constantino Rosa; Cruz, Pedro; Cruz, Helder
2017-03-01
The effect of cryopreservation on mesenchymal stromal cell (MSC) therapeutic properties has become highly controversial. However, data thus far have indiscriminately involved the assessment of different types of MSCs with distinct production processes. This study assumed that MSC-based products are affected differently depending on the tissue source and manufacturing process and analyzed the effect of cryopreservation on a specific population of umbilical cord tissue-derived MSCs (UC-MSCs), UCX ® . Cell phenotype was assessed by flow cytometry through the evaluation of the expression of relevant surface markers such as CD14, CD19, CD31, CD34, CD44, CD45, CD90, CD105, CD146, CD200, CD273, CD274 and HLA-DR. Immunomodulatory activity was analyzed in vitro through the ability to inhibit activated T cells and in vivo by the ability to reverse the signs of inflammation in an adjuvant-induced arthritis (AIA) model. Angiogenic potential was evaluated in vitro using a human umbilical vein endothelial cell-based angiogenesis assay, and in vivo using a mouse model for hindlimb ischemia. Phenotype and immunomodulatory and angiogenic potencies of this specific UC-MSC population were not impaired by cryopreservation and subsequent thawing, both in vitro and in vivo. This study suggests that potency impairment related to cryopreservation in a given tissue source can be avoided by the production process. The results have positive implications for the development of advanced-therapy medicinal products. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Twiner, Michael J; Doucette, Gregory J; Pang, Yucheng; Fang, Chao; Forsyth, Craig J; Miles, Christopher O
2016-11-04
Okadaic acid (OA) and the closely related dinophysistoxins (DTXs) are algal toxins that accumulate in shellfish and are known serine/threonine protein phosphatase (ser/thr PP) inhibitors. Phosphatases are important modulators of enzyme activity and cell signaling pathways. However, the interactions between the OA/DTX toxins and phosphatases are not fully understood. This study sought to identify phosphatase targets and characterize their structure-activity relationships (SAR) with these algal toxins using a combination of phosphatase activity and cytotoxicity assays. Preliminary screening of 21 human and yeast phosphatases indicated that only three ser/thr PPs (PP2a, PP1, PP5) were inhibited by physiologically saturating concentrations of DTX2 (200 nM). SAR studies employed naturally-isolated OA, DTX1, and DTX2, which vary in degree and/or position of methylation, in addition to synthetic 2- epi -DTX2. OA/DTX analogs induced cytotoxicity and inhibited PP activity with a relatively conserved order of potency: OA = DTX1 ≥ DTX2 > 2- epi -DTX. The PPs were also differentially inhibited with sensitivities of PP2a > PP5 > PP1. These findings demonstrate that small variations in OA/DTX toxin structures, particularly at the head region (i.e., C1/C2), result in significant changes in toxicological potency, whereas changes in methylation at C31 and C35 (tail region) only mildly affect potency. In addition to this being the first study to extensively test OA/DTX analogs' activities towards PP5, these data will be helpful for accurately determining toxic equivalence factors (TEFs), facilitating molecular modeling efforts, and developing highly selective phosphatase inhibitors.
Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.
Multivalency of Sonic hedgehog conjugated to linear polymer chains modulates protein potency.
Wall, Samuel T; Saha, Krishanu; Ashton, Randolph S; Kam, Kimberly R; Schaffer, David V; Healy, Kevin E
2008-04-01
A potently active multivalent form of the protein Sonic hedgehog (Shh) was produced by bioconjugation of a modified recombinant form of Shh to the linear polymers poly(acrylic acid) (pAAc) and hyaluronic acid (HyA) via a two-step reaction exploiting carboimiide and maleimide chemistry. Efficiency of the conjugation was approximately 75% even at stoichiometric ratios of 30 Shh molecules per linear HyA chain (i.e., 30:1 Shh/HyA). Bioactivity of the conjugates was tested via a cellular assay across a range of stoichiometric ratios of Shh molecules to HyA linear chains, which was varied from 0.6:1 Shh/HyA to 22:1 Shh/HyA. Results indicate that low conjugation ratios decrease Shh bioactivity and high ratios increase this activity beyond the potency of monomeric Shh, with approximately equal activity between monomeric soluble Shh and conjugated Shh at 7:1 Shh/HyA. In addition, high-ratio constructs increased angiogenesis determined by the in vivo chick chorioallantoic membrane (CAM) assay. These results are captured by a kinetic model of multiple interactions between the Shh/HyA conjugates and cell surface receptors resulting in higher cell signaling at lower bulk Shh concentrations.
Willemsen-Seegers, Nicole; Uitdehaag, Joost C M; Prinsen, Martine B W; de Vetter, Judith R F; de Man, Jos; Sawa, Masaaki; Kawase, Yusuke; Buijsman, Rogier C; Zaman, Guido J R
2017-02-17
Target residence time (τ) has been suggested to be a better predictor of the biological activity of kinase inhibitors than inhibitory potency (IC 50 ) in enzyme assays. Surface plasmon resonance binding assays for 46 human protein and lipid kinases were developed. The association and dissociation constants of 80 kinase inhibitor interactions were determined. τ and equilibrium affinity constants (K D ) were calculated to determine kinetic selectivity. Comparison of τ and K D or IC 50 values revealed a strikingly different view on the selectivity of several kinase inhibitors, including the multi-kinase inhibitor ponatinib, which was tested on 10 different kinases. In addition, known pan-Aurora inhibitors resided much longer on Aurora B than on Aurora A, despite having comparable affinity for Aurora A and B. Furthermore, the γ/δ-selective PI3K inhibitor duvelisib and the δ-selective drug idelalisib had similar 20-fold selectivity for δ- over γ-isoform but duvelisib resided much longer on both targets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molecular docking study, synthesis and biological evaluation of Schiff bases as Hsp90 inhibitors.
Dutta Gupta, Sayan; Snigdha, D; Mazaira, Gisela I; Galigniana, Mario D; Subrahmanyam, C V S; Gowrishankar, N L; Raghavendra, N M
2014-04-01
Heat shock protein 90 (Hsp90) is an emerging attractive target for the discovery of novel cancer therapeutic agents. Docking methods are powerful in silico tools for lead generation and optimization. In our mission to rationally develop novel effective small molecules against Hsp90, we predicted the potency of our designed compounds by Sybyl surflex Geom X docking method. The results of the above studies revealed that Schiff bases derived from 2,4-dihydroxy benzaldehyde/5-chloro-2,4-dihydroxy benzaldehyde demonstrated effective binding with the protein. Subsequently, a few of them were synthesized (1-10) and characterized by IR, (1)HNMR and mass spectral analysis. The synthesized molecules were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The anticancer studies were performed by 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. The software generated results was in satisfactory agreement with the evaluated biological activity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery
Gordon, Laurie J.; Wayne, Gareth J.; Almqvist, Helena; Axelsson, Hanna; Seashore-Ludlow, Brinton; Treyer, Andrea; Lundbäck, Thomas; West, Andy; Hann, Michael M.; Artursson, Per
2017-01-01
Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery. PMID:28701380
Jorajuria, S; Raphalen, C; Dujardin, V; Daas, A
2015-01-01
Organization (WHO) International Standard (IS) for bleomycin complex A2/B2. Eight laboratories from different countries participated. Potencies of the candidate material were estimated by microbiological assays with sensitive micro-organisms. To ensure continuity between consecutive batches, the 1(st) IS for bleomycin complex A2/B2 was used as a reference. Based on the results of the study, the 2(nd) IS for bleomycin complex A2/B2 was adopted at the meeting of the WHO Expert Committee for Biological Standardization (ECBS) in 2014 with an assigned potency of 12 500 International Units (IU) per vial. The 2(nd) IS for bleomycin complex A2/B2 is available from the European Directorate for the Quality of Medicines & HealthCare (EDQM).
NASA Astrophysics Data System (ADS)
Chen, Wang-Chuan; Tseng, Tien-Sheng; Hsiao, Nai-Wan; Lin, Yun-Lian; Wen, Zhi-Hong; Tsai, Chin-Chuan; Lee, Yu-Ching; Lin, Hui-Hsiung; Tsai, Keng-Chang
2015-01-01
Tyrosinase is involved in melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders that can be treated with depigmenting agents. A natural product T1, bis(4-hydroxybenzyl)sulfide, isolated from the Chinese herbal plant, Gastrodia elata, is a strong competitive inhibitor against mushroom tyrosinase (IC50 = 0.53 μM, Ki = 58 +/- 6 nM), outperforms than kojic acid. The cell viability and melanin quantification assay demonstrate that 50 μM of T1 apparently attenuates 20% melanin content of human normal melanocytes without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that T1 effectively reduces melanogenesis with no adverse side effects. The acute oral toxicity study evidently confirms that T1 molecule is free of discernable cytotoxicity in mice. Furthermore, the molecular modeling demonstrates that the sulfur atom of T1 coordinating with the copper ions in the active site of tyrosinase is essential for mushroom tyrosinase inhibition and the ability of diminishing the human melanin synthesis. These results evident that T1 isolated from Gastrodia elata is a promising candidate in developing pharmacological and cosmetic agents of great potency in skin-whitening.
RELATIVE POTENCY OF FUNGAL EXTRACTS IN INDUCING ALLERGIC ASTHMA-LIKE RESPONSES IN BALB/C MICE
Indoor mold has been associated with the development of allergic asthma. However, relative potency of molds in the induction of allergic asthma is not clear. In this study, we tested the relative potency of fungal extracts (Metarizium anisophilae [MACA], Stachybotrys ...
Mouse Model of Halogenated Platinum Salt Hypersensitivity ...
Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate airway responses to Pt, we developed a mouse model of Pt hypersensitivity. Previously, we confirmed the dermal sensitizing potency of ammonium hexachloroplatinate (AHCP) using an ex vivo [3H]methyl thymidine labeling version of the local lymph node assay in BALB/c mice. Here, we investigated the ability of AHCP to induce airway responses in mice sensitized by the dermal route. Mice were sensitized through application of 100 µL 1% AHCP in DMSO to the shaved back on days 0, 5 and 19, and 25 µl to each ear on days 10, 11 and 12. Unsensitized mice received vehicle. On day 24, mice were challenged by oropharyngeal aspiration (OPA) with 0 or 100 µg AHCP in saline. Before and immediately after challenge, airway responses were assessed using whole body plethysmography (WBP). On day 26, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP; dose-dependent increases in Mch responsiveness occurred in sensitized mice. Bronchoalveolar lavage fluid harvested from sensitized mice contained an average of 7.5% eosinophils compared to less than 0.5% in control mice (p < 0.05). This model will be useful for assessing both relative sensitizing potency and cross-reacti
AMP Is an Adenosine A1 Receptor Agonist*
Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.
2012-01-01
Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671
AMP is an adenosine A1 receptor agonist.
Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J
2012-02-17
Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.
Zhang, Li; Xu, Liang; Zeng, Qiang; Zhang, Shao-Hui; Xie, Hong; Liu, Ai-Lin; Lu, Wen-Qing
2012-01-24
Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs. © 2011 Elsevier B.V. All rights reserved.
A spectrophotometric assay for fatty acid amide hydrolase suitable for high-throughput screening.
De Bank, Paul A; Kendall, David A; Alexander, Stephen P H
2005-04-15
Signalling via the endocannabinoids anandamide and 2-arachidonylglycerol appears to be terminated largely through the action of the enzyme fatty acid amide hydrolase (FAAH). In this report, we describe a simple spectrophotometric assay to detect FAAH activity in vitro using the ability of the enzyme to hydrolyze oleamide and measuring the resultant production of ammonia with a NADH/NAD+-coupled enzyme reaction. This dual-enzyme assay was used to determine Km and Vmax values of 104 microM and 5.7 nmol/min/mgprotein, respectively, for rat liver FAAH-catalyzed oleamide hydrolysis. Inhibitor potency was determined with the resultant rank order of methyl arachidonyl fluorophosphonate>phenylmethylsulphonyl fluoride>anandamide. This assay system was also adapted for use in microtiter plates and its ability to detect a known inhibitor of FAAH demonstrated, highlighting its potential for use in high-throughput screening.
Quinoxaline-based inhibitors of Ebola and Marburg VP40 egress.
Loughran, H Marie; Han, Ziying; Wrobel, Jay E; Decker, Sarah E; Ruthel, Gordon; Freedman, Bruce D; Harty, Ronald N; Reitz, Allen B
2016-08-01
We prepared a series of quinoxalin-2-mercapto-acetyl-urea analogs and evaluated them for their ability to inhibit viral egress in our Marburg and Ebola VP40 VLP budding assays in HEK293T cells. We also evaluated selected compounds in our bimolecular complementation assay (BiMC) to detect and visualize a Marburg mVP40-Nedd4 interaction in live mammalian cells. Antiviral activity was assessed for selected compounds using a live recombinant vesicular stomatitis virus (VSV) (M40 virus) that expresses the EBOV VP40 PPxY L-domain. Finally selected compounds were evaluated in several ADME assays to have an early assessment of their drug properties. Our compounds had low nM potency in these assays (e.g., compounds 21, 24, 26, 39), and had good human liver microsome stability, as well as little or no inhibition of P450 3A4. Copyright © 2016 Elsevier Ltd. All rights reserved.
Naylor, Jacqueline; Suckow, Arthur T; Seth, Asha; Baker, David J; Sermadiras, Isabelle; Ravn, Peter; Howes, Rob; Li, Jianliang; Snaith, Mike R; Coghlan, Matthew P; Hornigold, David C
2016-09-15
Dual-agonist molecules combining glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) activity represent an exciting therapeutic strategy for diabetes treatment. Although challenging due to shared downstream signalling pathways, determining the relative activity of dual agonists at each receptor is essential when developing potential novel therapeutics. The challenge is exacerbated in physiologically relevant cell systems expressing both receptors. To this end, either GIP receptors (GIPR) or GLP-1 receptors (GLP-1R) were ablated via RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonucleases in the INS-1 pancreatic β-cell line. Multiple clonal cell lines harbouring gene disruptions for each receptor were isolated and assayed for receptor activity to identify functional knockouts (KOs). cAMP production in response to GIPR or GLP-1R activation was abolished and GIP- or GLP-1-induced potentiation of glucose-stimulated insulin secretion (GSIS) was attenuated in the cognate KO cell lines. The contributions of individual receptors derived from cAMP and GSIS assays were confirmed in vivo using GLP-1R KO mice in combination with a monoclonal antibody antagonist of GIPR. We have successfully applied CRISPR/Cas9-engineered cell lines to determining selectivity and relative potency contributions of dual-agonist molecules targeting receptors with overlapping native expression profiles and downstream signalling pathways. Specifically, we have characterised molecules as biased towards GIPR or GLP-1R, or with relatively balanced potency in a physiologically relevant β-cell system. This demonstrates the broad utility of CRISPR/Cas9 when applied to native expression systems for the development of drugs that target multiple receptors, particularly where the balance of receptor activity is critical. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
In vitro toxicity testing with microplate cell cultures: Impact of cell binding.
Gülden, Michael; Schreiner, Jeannine; Seibert, Hasso
2015-06-05
In vitro generated data on toxic potencies are generally based on nominal concentrations. However, cellular and extracellular binding and elimination processes may reduce the available free fraction of a compound. Then, nominal effective concentrations do not represent appropriate measures of toxic exposure in vitro and underestimate toxic potencies. In this study it was investigated whether cell binding can affect the availability of chemicals in microplate based toxicity assays. To this end the cytotoxicity of compounds like mercury chloride, digitonin and alcohol ethoxylates, accumulated by cells via different modes, was investigated in 96-well microplate cultures with varying concentrations of Balb/c 3T3 cells. The median effective nominal concentrations of all but one of the tested compounds depended linearly from the cell concentration. Applying a previously developed equilibrium distribution model cell concentration-independent median effective extracellular concentrations and cell burdens, respectively, could be calculated. The compounds were accumulated by the cells with bioconcentration factors, BCF, between 480 and ≥ 25,000. Cell binding of the alcohol ethoxylates was correlated with their lipophilicity. The results show that significant cell binding can occur even at the small cell volume fractions (∼ 1 × 10(-5) to 3 × 10(-3) L/L) encountered in microplate assays. To what extent cell binding affects the bioavailability depends on the BCF and the cell volume fraction. EC50 measurements in the presence of at least two different cell concentrations allow for excluding or detecting significant cell binding and for determining more appropriate measures of toxic exposure in vitro like median effective extracellular (free) concentrations or cell burdens. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Boink, Mireille A.; Roffel, Sanne; Breetveld, Melanie; Thon, Maria; Haasjes, Michiel S.P.; Waaijman, Taco; Scheper, Rik J.; Blok, Chantal S.
2017-01-01
Abstract Skin and oral mucosa substitutes are a therapeutic option for closing hard‐to‐heal skin and oral wounds. Our aim was to develop bi‐layered skin and gingiva substitutes, from 3 mm diameter biopsies, cultured under identical conditions, which are compliant with current European regulations for advanced therapy medicinal products. We present in vitro mode of action methods to (i) determine viability: epithelial expansion, proliferation (Ki‐67), metabolic activity (MTT assay); (ii) characterize skin and gingiva substitutes: histology and immunohistochemistry; and (iii) determine potency: soluble wound healing mediator release (enzyme‐linked immunosorbent assay). Both skin and gingiva substitutes consist of metabolically active autologous reconstructed differentiated epithelium expanding from the original biopsy sheet on a fibroblast populated connective tissue matrix (donor dermis). Gingival epithelium expanded 1.7‐fold more than skin epithelium during the 3 week culture period. The percentage of proliferating Ki‐67‐positive cells located in the basal layer of the gingiva substitute was >1.5‐fold higher than in the skin substitute. Keratins 16 and 17, which are upregulated during normal wound healing, were expressed in both the skin and gingiva substitutes. Notably, the gingiva substitute secreted higher amounts of key cytokines involved in mitogenesis, motogenesis and chemotaxis (interleukin‐6 > 23‐fold, CXCL8 > 2.5‐fold) as well as higher amounts of the anti‐fibrotic growth factor, hepatocyte growth factor (>7‐fold), compared with the skin substitute. In conclusion, while addressing the viability, characterization and potency of the tissue substitutes, important intrinsic differences between skin and gingiva were discovered that may explain in part the superior quality of wound healing observed in the oral mucosa compared with skin. PMID:28388010
Welch, Stephen R; Scholte, Florine E M; Flint, Mike; Chatterjee, Payel; Nichol, Stuart T; Bergeron, Éric; Spiropoulou, Christina F
2017-11-01
Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne orthonairovirus, causes a severe hemorrhagic disease in humans (Crimean-Congo hemorrhagic fever, CCHF). Currently, no vaccines are approved to prevent CCHF; treatment is limited to supportive care and the use of ribavirin, the therapeutic benefits of which remain unclear. CCHF is part of WHO's priority list of infectious diseases warranting further research and development. To aid in the identification of new antiviral compounds, we generated a recombinant CCHFV expressing a reporter protein, allowing us to quantify virus inhibition by measuring the reduction in fluorescence in infected cells treated with candidate compounds. The screening assay was readily adaptable to high-throughput screening (HTS) of compounds using Huh7 cells, with a signal-to-noise ratio of 50:1, and Z'-factors > 0.6 in both 96- and 384-well formats. A screen of candidate nucleoside analog compounds identified 2'-deoxy-2'-fluorocytidine (EC 50 = 61 ± 18 nM) as having 200 × the potency of ribavirin (EC 50 = 12.5 ± 2.6 μM), as well as 17 × the potency of T-705 (favipiravir), another compound with reported anti-CCHFV activity (EC 50 = 1.03 ± 0.16 μM). Furthermore, we also determined that 2'-deoxy-2'-fluorocytidine acts synergistically with T-705 to inhibit CCHFV replication without causing cytotoxicity. The incorporation of this reporter virus into the high-throughput screening assay described here will allow more rapid identification of effective therapeutic options to combat this emerging human pathogen. Published by Elsevier B.V.
Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels
Xia, Menghang; Shahane, Sampada; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao, Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.
2011-01-01
The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K+) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially lead to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC50 potencies ranging from 0.26 to 22 μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC50 value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo. PMID:21362439
Natsch, Andreas; Emter, Roger; Ellis, Graham
2009-01-01
Tests for skin sensitization are required prior to the market launch of new cosmetic ingredients. Significant efforts are made to replace the current animal tests. It is widely recognized that this cannot be accomplished with a single in vitro test, but that rather the integration of results from different in vitro and in silico assays will be needed for the prediction of the skin sensitization potential of chemicals. This has been proposed as a theoretical scheme so far, but no attempts have been made to use experimental data to prove the validity of this concept. Here we thus try for the first time to fill this widely cited concept with data. To this aim, we integrate and report both novel and literature data on 116 chemicals of known skin sensitization potential on the following parameters: (1) peptide reactivity as a surrogate for protein binding, (2) induction of antioxidant/electrophile responsive element dependent luciferase activity as a cell-based assay; (3) Tissue Metabolism Simulator skin sensitization model in silico prediction; and (4) calculated octanol-water partition coefficient. The results of the in vitro assays were scaled into five classes from 0 to 4 to give an in vitro score and compared to the local lymph node assay (LLNA) data, which were also scaled from 0 to 4 (nonsensitizer/weak/moderate/strong/extreme). Different ways of evaluating these data have been assessed to rate the hazard of chemicals (Cooper statistics) and to also scale their potency. With the optimized model an overall accuracy for predicting sensitizers of 87.9% was obtained. There is a linear correlation between the LLNA score and the in vitro score. However, the correlation needs further improvement as there is still a relatively high variation in the in vitro score between chemicals belonging to the same sensitization potency class.
Qi, Tao; Ly, Kien; Poyner, David R; Christopoulos, George; Sexton, Patrick M; Hay, Debbie L
2011-05-01
The receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are complexes of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMP). The CGRP receptor is a CLR/RAMP1 pairing whereas CLR/RAMP2 and CLR/RAMP3 constitute two subtypes of AM receptor: AM(1) and AM(2), respectively. Previous studies identified Glu74 in RAMP3 to be important for AM binding and potency. To further understand the importance of this residue and its equivalent in RAMP1 (Trp74) we substituted the native amino acids with several others. In RAMP3, these were Trp, Phe, Tyr, Ala, Ser, Thr, Arg and Asn; in RAMP1, Glu, Phe, Tyr, Ala and Asn substitutions were made. The mutant RAMPs were co-expressed with CLR in Cos7 cells; receptor function in response to AM, AM(2)/intermedin and CGRP was measured in a cAMP assay and cell surface expression was determined by ELISA. Phe reduced AM potency in RAMP3 but had no effect in RAMP1. In contrast, Tyr had no effect in RAMP3 but enhanced AM potency in RAMP1. Most other substitutions had a small effect on AM potency in both receptors whereas there was little impact on CGRP or AM(2) potency. Overall, these data suggest that the geometry and charge of the residue at position 74 contribute to how AM interacts with the AM(2) and CGRP receptors and confirms the role of this position in dictating differential AM pharmacology at the AM(2) and CGRP receptors. Copyright © 2011. Published by Elsevier Inc.
Soeteman-Hernández, Lya G; Fellows, Mick D; Johnson, George E; Slob, Wout
2015-12-01
In this study, we explored the applicability of using in vitro micronucleus (MN) data from human lymphoblastoid TK6 cells to derive in vivo genotoxicity potency information. Nineteen chemicals covering a broad spectrum of genotoxic modes of action were tested in an in vitro MN test using TK6 cells using the same study protocol. Several of these chemicals were considered to need metabolic activation, and these were administered in the presence of S9. The Benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST to estimate the genotoxic potency from the in vitro data. The resulting in vitro BMDs were compared with previously derived BMDs from in vivo MN and carcinogenicity studies. A proportional correlation was observed between the BMDs from the in vitro MN and the BMDs from the in vivo MN assays. Further, a clear correlation was found between the BMDs from in vitro MN and the associated BMDs for malignant tumors. Although these results are based on only 19 compounds, they show that genotoxicity potencies estimated from in vitro tests may result in useful information regarding in vivo genotoxic potency, as well as expected cancer potency. Extension of the number of compounds and further investigation of metabolic activation (S9) and of other toxicokinetic factors would be needed to validate our initial conclusions. However, this initial work suggests that this approach could be used for in vitro to in vivo extrapolations which would support the reduction of animals used in research (3Rs: replacement, reduction, and refinement). © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.
Smith, Heidi L.; Cheslock, Peter; Leney, Mark; Barton, Bruce; Molrine, Deborah C.
2016-01-01
ABSTRACT Prompt administration of anti-toxin reduces mortality following Corynebacterium diphtheriae infection. Current treatment relies upon equine diphtheria anti-toxin (DAT), with a 10% risk of serum sickness and rarely anaphylaxis. The global DAT supply is extremely limited; most manufacturers have ceased production. S315 is a neutralizing human IgG1 monoclonal antibody to diphtheria toxin that may provide a safe and effective alternative to equine DAT and address critical supply issues. To guide dose selection for IND-enabling pharmacology and toxicology studies, we dose-ranged S315 and DAT in a guinea pig model of diphtheria intoxication based on the NIH Minimum Requirements potency assay. Animals received a single injection of antibody premixed with toxin, were monitored for 30 days, and assigned a numeric score for clinical signs of disease. Animals receiving ≥ 27.5 µg of S315 or ≥ 1.75 IU of DAT survived whereas animals receiving ≤ 22.5 µg of S315 or ≤ 1.25 IU of DAT died, yielding a potency estimate of 17 µg S315/IU DAT (95% CI 16–21) for an endpoint of survival. Because some surviving animals exhibited transient limb weakness, likely a systemic sign of toxicity, DAT and S315 doses required to prevent hind limb paralysis were also determined, yielding a relative potency of 48 µg/IU (95% CI 38–59) for this alternate endpoint. To support advancement of S315 into clinical trials, potency estimates will be used to evaluate the efficacy of S315 versus DAT in an animal model with antibody administration after toxin exposure, more closely modeling anti-toxin therapy in humans. PMID:27070129
Smith, Heidi L; Cheslock, Peter; Leney, Mark; Barton, Bruce; Molrine, Deborah C
2016-08-17
Prompt administration of anti-toxin reduces mortality following Corynebacterium diphtheriae infection. Current treatment relies upon equine diphtheria anti-toxin (DAT), with a 10% risk of serum sickness and rarely anaphylaxis. The global DAT supply is extremely limited; most manufacturers have ceased production. S315 is a neutralizing human IgG1 monoclonal antibody to diphtheria toxin that may provide a safe and effective alternative to equine DAT and address critical supply issues. To guide dose selection for IND-enabling pharmacology and toxicology studies, we dose-ranged S315 and DAT in a guinea pig model of diphtheria intoxication based on the NIH Minimum Requirements potency assay. Animals received a single injection of antibody premixed with toxin, were monitored for 30 days, and assigned a numeric score for clinical signs of disease. Animals receiving ≥ 27.5 µg of S315 or ≥ 1.75 IU of DAT survived whereas animals receiving ≤ 22.5 µg of S315 or ≤ 1.25 IU of DAT died, yielding a potency estimate of 17 µg S315/IU DAT (95% CI 16-21) for an endpoint of survival. Because some surviving animals exhibited transient limb weakness, likely a systemic sign of toxicity, DAT and S315 doses required to prevent hind limb paralysis were also determined, yielding a relative potency of 48 µg/IU (95% CI 38-59) for this alternate endpoint. To support advancement of S315 into clinical trials, potency estimates will be used to evaluate the efficacy of S315 versus DAT in an animal model with antibody administration after toxin exposure, more closely modeling anti-toxin therapy in humans.
Kraft, Thomas E; Heitmeier, Monique R; Putanko, Marina; Edwards, Rachel L; Ilagan, Ma Xenia G; Payne, Maria A; Autry, Joseph M; Thomas, David D; Odom, Audrey R; Hruz, Paul W
2016-12-01
The glucose transporter PfHT is essential to the survival of the malaria parasite Plasmodium falciparum and has been shown to be a druggable target with high potential for pharmacological intervention. Identification of compounds against novel drug targets is crucial to combating resistance against current therapeutics. Here, we describe the development of a cell-based assay system readily adaptable to high-throughput screening that directly measures compound effects on PfHT-mediated glucose transport. Intracellular glucose concentrations are detected using a genetically encoded fluorescence resonance energy transfer (FRET)-based glucose sensor. This allows assessment of the ability of small molecules to inhibit glucose uptake with high accuracy (Z' factor of >0.8), thereby eliminating the need for radiolabeled substrates. Furthermore, we have adapted this assay to counterscreen PfHT hits against the human orthologues GLUT1, -2, -3, and -4. We report the identification of several hits after screening the Medicines for Malaria Venture (MMV) Malaria Box, a library of 400 compounds known to inhibit erythrocytic development of P. falciparum Hit compounds were characterized by determining the half-maximal inhibitory concentration (IC 50 ) for the uptake of radiolabeled glucose into isolated P. falciparum parasites. One of our hits, compound MMV009085, shows high potency and orthologue selectivity, thereby successfully validating our assay for antimalarial screening. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
In silico study of in vitro GPCR assays by QSAR modeling ...
The U.S. EPA is screening thousands of chemicals of environmental interest in hundreds of in vitro high-throughput screening (HTS) assays (the ToxCast program). One goal is to prioritize chemicals for more detailed analyses based on activity in molecular initiating events (MIE) of adverse outcome pathways (AOPs). However, the chemical space of interest for environmental exposure is much wider than this set of chemicals. Thus, there is a need to fill data gaps with in silico methods, and quantitative structure-activity relationships (QSARs) are a proven and cost effective approach to predict biological activity. ToxCast in turn provides relatively large datasets that are ideal for training and testing QSAR models. The overall goal of the study described here was to develop QSAR models to fill the data gaps in a larger environmental database of ~32k structures. The specific aim of the current work was to build QSAR models for 18 G-Protein Coupled Receptor (GPCR) assays, part of the aminergic category. Two QSAR modeling strategies were adopted: classification models were developed to separate chemicals into active/non-active classes, and then regression models were built to predict the potency values of the bioassays for the active chemicals. Multiple software programs were used to calculate constitutional, topological and substructural molecular descriptors from two-dimensional (2D) chemical structures. Model-fitting methods included PLSDA (partial least squares d
Baylis, Sally A; Blümel, Johannes; Mizusawa, Saeko; Matsubayashi, Keiji; Sakata, Hidekatsu; Okada, Yoshiaki; Nübling, C Micha; Hanschmann, Kay-Martin O
2013-05-01
Nucleic acid amplification technique-based assays are a primary method for the detection of acute hepatitis E virus (HEV) infection, but assay sensitivity can vary widely. To improve interlaboratory results for the detection and quantification of HEV RNA, a candidate World Health Organization (WHO) International Standard (IS) strain was evaluated in a collaborative study involving 23 laboratories from 10 countries. The IS, code number 6329/10, was formulated by using a genotype 3a HEV strain from a blood donation, diluted in pooled human plasma and lyophilized. A Japanese national standard, representing a genotype 3b HEV strain, was prepared and evaluated in parallel. The potencies of the standards were determined by qualitative and quantitative assays. Assay variability was substantially reduced when HEV RNA concentrations were expressed relative to the IS. Thus, WHO has established 6329/10 as the IS for HEV RNA, with a unitage of 250,000 International Units per milliliter.
Prigge, R.; Micke, H.; Krüger, J.
1963-01-01
As part of a collaborative assay of the proposed Fifth International Standard for Gas-Gangrene Antitoxin (Perfringens), five ampoules of the proposed replacement material were assayed in the authors' laboratory against the then current Fourth International Standard. Both in vitro and in vivo methods were used. This paper presents the results and their statistical analysis. The two methods yielded different results which were not likely to have been due to chance, but exact statistical comparison is not possible. It is thought, however, that the differences may be due, at least in part, to differences in the relative proportions of zeta-antitoxin and alpha-antitoxin in the Fourth and Fifth International Standards and the consequent different reactions with the test toxin that was used for titration. PMID:14107746
Formulation of vaccines containing CpG oligonucleotides and alum
Aebig, Joan A.; Mullen, Gregory E. D.; Dobrescu, Gelu; Rausch, Kelly; Lambert, Lynn; Ajose-Popoola, Olubunmi; Long, Carole A.; Saul, Allan; Miles, Aaron P.
2007-01-01
CpG oligodeoxynucleotides are potent immunostimulants. For parenterally delivered alum based vaccines, the immunostimulatory effect of CpG depends on the association of the CpG and antigen to the alum. We describe effects of buffer components on the binding of CPG 7909 to aluminum hydroxide (Alhydrogel), assays for measuring binding of CPG 7909 to alum and CPG 7909 induced dissociation of antigen from the alum. Free CPG 7909 is a potent inducer of IP-10 in mice. However the lack of IP-10 production from formulations containing bound CPG 7909 suggested that CPG 7909 does not rapidly dissociate from the alum after injection. It also suggests that IP-10 assays are not a good basis for potency assays for alum based vaccines containing CPG 7909. PMID:17512533
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patnaik, Samarjit; Stevens, Kirk L.; Gerding, Roseanne
2009-07-23
Exploration of the SAR around a series of 3,5-disubstituted-1H-pyrrolo[2,3-b]pyridines led to the discovery of novel pyrrolopyridine inhibitors of the IGF-1R tyrosine kinase. Several compounds demonstrated nanomolar potency in enzyme and cellular mechanistic assays.
The Laboratory Animal Sciences Program will assess the in vitro potency of candidate compounds via a conventional cell-based toxicity assay (XTT living cell test) in a series of six drug concentrations (ranging from 0.1 nM to 50,000 nM) of a single a
Mutagenicity assays with Salmonella have shown that 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX), a drinking water disinfection by-product is a potent mutagen, accounting for about one third of the mutagenic potency/potential of chlorinated drinking water. The abilit...
Gamer, Armin O; Nies, Eberhard; Vohr, Hans-Werner
2008-12-01
Thirteen epoxy resin system components were tested in the LLNA with regard to their sensitizing potency. Lymph node stimulation was quantified not only by measuring the incorporation of [3H]-thymidine into the ear lymph nodes but also the counts of cells recovered from these organs. Equivalent figures were obtained with both endpoints used for the evaluation of lymph node cell proliferation if the reference stimulation indices were adjusted. When dissolved in acetone, all test substances showed skin-sensitizing potential, mainly on the boundary between "strong" and "moderate" according to common potency evaluation schemes. Replacing acetone with acetone/olive oil (4:1) as a vehicle for four selected test items, resulted in considerably lower estimated concentrations for sensitization induction. The challenges in comparing the results obtained by different LLNA variations are discussed.
Regulski, Miłosz; Piotrowska-Kempisty, Hanna; Prukała, Wiesław; Dutkiewicz, Zbigniew; Regulska, Katarzyna; Stanisz, Beata; Murias, Marek
2018-01-01
25 new trans-stilbene and trans-stilbazole derivatives were investigated using in vitro and in silico techniques. The selectivity and potency of the compounds were assessed using commercial ELISA test. The obtained results were incorporated into 2D QSAR assay. The most promising compound 4-nitro-3',4',5'-trihydroxy-trans-stilbene (N1) was synthetized and its potency and selectivity were confirmed. N1 was classified as preferential COX-2 inhibitor. Its ability to inhibit COX-2 in MCF-7 cell line was established and its cytotoxicity by MTT test was assessed. The compound was more cytotoxic than celecoxib within studied concentration range. Finally, the investigated trans-stilbene was docked into COX-1 and COX-2 active sites using "CDOCKER" protocol. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elhusseiny, Amel F; Hassan, Hammed H A M
2013-02-15
Square planar Pd (II) and octahedral Pt (IV) complexes with novel spherical aramides nanoparticles containing flexible linkages ligands have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using Kirby-Bauer disc diffusion method. The antitumor activity has been performed using liver carcinoma (HEPG2), breast carcinoma (MCF7) and colon carcinoma (HCT 116) cell lines. Palladium complexes of polyamides containing sulfones showed the highest potency as antibacterial and antifungal agents. Platinum complexes containing sulfone and ether flexible linkages and chloro groups exhibited high potency as antitumor and antimicrobial agents. The uniform sizes of these nanomaterials could find biological uses such as immune assay and other medical purposes. Copyright © 2012 Elsevier B.V. All rights reserved.
A functional dual-coated (FDC) microtiter plate method to replace the botulinum toxin LD50 test.
Liu, Yvonne Y B; Rigsby, Peter; Sesardic, Dorothea; Marks, James D; Jones, Russell G A
2012-06-01
Conventional capture ("Sandwich") ELISAs equally detect denatured inactive and native active botulinum type A toxin. Light chain endoprotease activity assays also fail to distinguish between various inactive molecules including partially denatured and fragmented material still retaining this protease activity. By co-coating microtiter plates with SNAP25 substrate and a monoclonal antibody specific for a conformational epitope of the toxin's Hc domain, it was possible to develop a highly sensitive (130 aM LoD), precise (1.4% GCV) new assay specific for the biologically active toxin molecule. Capture was performed in phosphate buffer with a fixed optimal concentration of chaotropic agent (e.g., 1.2 M urea) to differentially isolate functional toxin molecules. Addition of enzymatically favorable buffer containing zinc and DTT reduced the interchain disulfide bond releasing and activating the captured L-chain with subsequent specific cleavage of the SNAP25(1-206) substrate. A neoepitope antibody specific for the newly exposed Q(197) epitope was used to quantify the cleaved SNAP25(1-197). The assay's requirement for the intact toxin molecule was demonstrated with pre-reduced toxin (heavy and light chains), recombinant LHn fragments, and stressed samples containing partially or fully denatured material. This is the first known immunobiochemical assay that correlates with in vivo potency and provides a realistic alternative. Copyright © 2012 Elsevier Inc. All rights reserved.
Shin, Jeong-Sook; Peng, Lei; Kang, Kyungsu; Choi, Yongsoo
2016-09-09
Direct analysis of prostaglandin-E2 (PGE2) and -D2 (PGD2) produced from a RAW264.7 cell-based reaction was performed by liquid chromatography high-resolution mass spectrometry (LC-HRMS), which was online coupled with turbulent flow chromatography (TFC). The capability of this method to accurately measure PG levels in cell reaction medium containing cytokines or proteins as a reaction byproduct was cross-validated by two conventional methods. Two methods, including an LC-HRMS method after liquid-liquid extraction (LLE) of the sample and a commercial PGE2 enzyme-linked immunosorbent assay (ELISA), showed PGE2 and/or PGD2 levels almost similar to those obtained by TFC LC-HRMS over the reaction time after LPS stimulation. After the cross-validation, significant analytical throughputs, allowing simultaneous screening and potency evaluation of 80 natural products including 60 phytochemicals and 20 natural product extracts for the inhibition of the PGD2 produced in the cell-based inflammatory reaction, were achieved using the TFC LC-HRMS method developed. Among the 60 phytochemicals screened, licochalcone A and formononetin inhibited PGD2 production the most with IC50 values of 126 and 151nM, respectively. For a reference activity, indomethacin and diclofenac were used, measuring IC50 values of 0.64 and 0.21nM, respectively. This method also found a butanol extract of Akebia quinata Decne (AQ) stem as a promising natural product for PGD2 inhibition. Direct and accurate analysis of PGs in the inflammatory cell reaction using the TFC LC-HRMS method developed enables the high-throughput screening and potency evaluation of as many as 320 samples in less than 48h without changing a TFC column. Copyright © 2016 Elsevier B.V. All rights reserved.
Ueda, Takashi; Ugawa, Shinya; Ishida, Yusuke; Hondoh, Aki; Shimada, Shoichi
2009-08-01
G-protein-coupled receptors (GPCRs) are important therapeutic targets for many areas of drug research and development. Although chimeric Galpha16 proteins are valuable tools for detecting the activation of Galpha(i/o)-coupled receptors, the details of the activation process remain unclear. The authors introduce a series of chimeras that combine both Galpha16 and Galpha(i/o) (Galpha(16/o), Galpha(16/i2), and Galpha(16/i3)) into a well-established transient expression system to examine the ability of these chimeras to interact with D2 long-form (D2L) dopamine and 5-HT1A serotonin receptors. The pEC50 data obtained for known agonists were similar to results from previous studies that used other cell-based assays, thus indicating sufficient sensitivity for the assay. Moreover, quinpirole exhibited similar intrinsic activity to dopamine at the D2L receptor, whereas S-(-)-3-PPP displayed partial activity of dopamine and quinpirole in the presence of the Galpha(16/o) chimera. The potency of dopamine for D2L receptors was similar among Galpha(16/o), Galpha(16/i2), and Galpha(16/i3). In contrast, the 5-HT1A receptor exhibited a significantly preferential coupling for Galpha(16/i3) compared with Galpha(16/i2) when serotonin was used as a ligand. This finding was in close agreement with the results of previous reports. The present system could therefore be used as a rapid functional assay for high-throughput screening and deorphanization.
Colton, Craig K; Kong, Qiongman; Lai, Liching; Zhu, Michael X; Seyb, Kathleen I; Cuny, Gregory D; Xian, Jun; Glicksman, Marcie A; Lin, Chien-Liang Glenn
2010-07-01
Excitotoxicity has been implicated as the mechanism of neuronal damage resulting from acute insults such as stroke, epilepsy, and trauma, as well as during the progression of adult-onset neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis (ALS). Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. One potential approach to protect against excitotoxic neuronal damage is enhanced glutamate reuptake. The glial glutamate transporter EAAT2 is the quantitatively dominant glutamate transporter and plays a major role in clearance of glutamate. Expression of EAAT2 protein is highly regulated at the translational level. In an effort to identify compounds that can induce translation of EAAT2 transcripts, a cell-based enzyme-linked immunosorbent assay was developed using a primary astrocyte line stably transfected with a vector designed to identify modulators of EAAT2 translation. This assay was optimized for high-throughput screening, and a library of approximately 140,000 compounds was tested. In the initial screen, 293 compounds were identified as hits. These 293 hits were retested at 3 concentrations, and a total of 61 compounds showed a dose-dependent increase in EAAT2 protein levels. Selected compounds were tested in full 12-point dose-response experiments in the screening assay to assess potency as well as confirmed by Western blot, immunohistochemistry, and glutamate uptake assays to evaluate the localization and function of the elevated EAAT2 protein. These hits provide excellent starting points for developing therapeutic agents to prevent excitotoxicity.
Kankanala, Jayakanth; Kirby, Karen A; Huber, Andrew D; Casey, Mary C; Wilson, Daniel J; Sarafianos, Stefan G; Wang, Zhengqiang
2017-12-01
Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only HIV enzymatic function not targeted by current antiviral drugs. Although various chemotypes have been reported to inhibit HIV RNase H, few have shown significant antiviral activities. We report herein the design, synthesis and biological evaluation of a novel N-hydroxy thienopyrimidine-2,3-dione chemotype (11) which potently and selectively inhibited RNase H with considerable potency against HIV-1 in cell culture. Current structure-activity-relationship (SAR) identified analogue 11d as a nanomolar inhibitor of RNase H (IC 50 = 0.04 μM) with decent antiviral potency (EC 50 = 7.4 μM) and no cytotoxicity (CC 50 > 100 μM). In extended biochemical assays compound 11d did not inhibit RT polymerase (pol) while inhibiting integrase strand transfer (INST) with 53 fold lower potency (IC 50 = 2.1 μM) than RNase H inhibition. Crystallographic and molecular modeling studies confirmed the RNase H active site binding mode. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Krasner, Stuart W; Lee, Tiffany Chih Fen; Westerhoff, Paul; Fischer, Natalia; Hanigan, David; Karanfil, Tanju; Beita-Sandí, Wilson; Taylor-Edmonds, Liz; Andrews, Robert C
2016-09-06
Certain unregulated disinfection byproducts (DBPs) are more of a health concern than regulated DBPs. Brominated species are typically more cytotoxic and genotoxic than their chlorinated analogs. The impact of granular activated carbon (GAC) on controlling the formation of regulated and selected unregulated DBPs following chlorine disinfection was evaluated. The predicted cyto- and genotoxicity of DBPs was calculated using published potencies based on the comet assay for Chinese hamster ovary cells (assesses the level of DNA strand breaks). Additionally, genotoxicity was measured using the SOS-Chromotest (detects DNA-damaging agents). The class sum concentrations of trihalomethanes, haloacetic acids, and unregulated DBPs, and the SOS genotoxicity followed the breakthrough of dissolved organic carbon (DOC), however the formation of brominated species did not. The bromide/DOC ratio was higher than the influent through much of the breakthrough curve (GAC does not remove bromide), which resulted in elevated brominated DBP concentrations in the effluent. Based on the potency of the haloacetonitriles and halonitromethanes, these nitrogen-containing DBPs were the driving agents of the predicted genotoxicity. GAC treatment of drinking or reclaimed waters with appreciable levels of bromide and dissolved organic nitrogen may not control the formation of unregulated DBPs with higher genotoxicity potencies.
Zimmerlin, Alfred; Kiffe, Michael
2013-01-01
New enabling MS technologies have made it possible to elucidate metabolic pathways present in ex vivo (blood, bile and/or urine) or in vitro (liver microsomes, hepatocytes and/or S9) samples. When investigating samples from high throughput assays the challenge that the user is facing now is to extract the appropriate information and compile it so that it is understandable to all. Medicinal chemist may then design the next generation of (better) drug candidates combining the needs for potency and metabolic stability and their synthetic creativity. This review focuses on the comparison of these enabling MS technologies and the IT tools developed for their interpretation.
Shi, Wei; Zhang, Feng-Xian; Hu, Guan-Jiu; Hao, Ying-Qun; Zhang, Xiao-Wei; Liu, Hong-Ling; Wei, Si; Wang, Xin-Ru; Giesy, John P; Yu, Hong-Xia
2012-07-01
Thyroid hormone disrupting compounds in water sources is a concern. Thyroid hormone (TH) agonist and antagonist activities of water sources from the Yangtze River, Huaihe River, Taihu Lake and ground water in the Yangtze River Delta region were evaluated by use of a TH reporter gene assay based on the green monkey kidney fibroblast (CV-1). While weak TH receptor (TR) agonist potency was observed in only one of 15 water sources, antagonist potency was present in most of the water sources. TR antagonist equivalents could be explained by the presence of dibutyl phthalate (DBP), with concentrations ranging from 2.8×10(1) to 1.6×10(3) μg DBP /L (ATR-EQ(50)s). None of the ground waters exhibited TH agonist potencies while all of the samples from Taihu Lake displayed notable TR antagonist potencies. To identify the responsible thyroid active compounds, instrumental analysis was conducted to measure a list of potential thyroid-disrupting chemicals, including organochlorine (OC) pesticides and phthalate esters. Combining the results of the instrumental analysis with those of the bioassay, DBP was determined to account for 17% to 144% of ATR-EQ(50)s in water sources. Furthermore, ATR-EQ(20-80) ranges for TR antagonist activities indicated that samples from locations WX-1 and WX-2 posed the greatest health concern and the associated uncertainty may warrant further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Brase, D A; Ward, C R; Bey, P S; Dewey, W L
1991-01-01
The mouse locomotor activation test of opiate action in a 2+2 dose parallel line assay was used in a repeated testing paradigm to determine the test, opiate and hexose specificities of a previously reported antagonism of morphine-induced antinocociception by hyperglycemia. In opiate specificity studies, fructose (5 g/kg, i.p.) significantly reduced the potency ratio for morphine and methadone, but not for levorphanol, meperidine or phenazocine when intragroup comparisons were made. In intergroup comparisons, fructose significantly reduced the potencies of levorphanol and phenazocine, but not methadone or meperidine. In hexose/polyol specificity studies, tagatose and fructose significantly reduced the potency ratio for morphine, whereas glucose, galactose, mannose and the polyols, sorbitol and xylitol, caused no significant decrease in potency. Fructose, tagatose, glucose and mannose (5 g/kg, i.p.) were tested for effects on brain morphine levels 30 min after morphine (60 min after sugar), and all four sugars significantly increased brain morphine relative to saline-pretreated controls. It is concluded that the antagonism of morphine by acute sugar administration shows specificity for certain sugars and occurs despite sugar-induced increases in the distribution of morphine to the brain. Furthermore, the effects of fructose show an opiate specificity similar to that of glucose on antinociception observed previously in our laboratory, except that methadone was also significantly inhibited in the present study, when a repeated-testing experimental design was used.
Twiner, Michael J.; Doucette, Gregory J.; Pang, Yucheng; Fang, Chao; Forsyth, Craig J.; Miles, Christopher O.
2016-01-01
Okadaic acid (OA) and the closely related dinophysistoxins (DTXs) are algal toxins that accumulate in shellfish and are known serine/threonine protein phosphatase (ser/thr PP) inhibitors. Phosphatases are important modulators of enzyme activity and cell signaling pathways. However, the interactions between the OA/DTX toxins and phosphatases are not fully understood. This study sought to identify phosphatase targets and characterize their structure–activity relationships (SAR) with these algal toxins using a combination of phosphatase activity and cytotoxicity assays. Preliminary screening of 21 human and yeast phosphatases indicated that only three ser/thr PPs (PP2a, PP1, PP5) were inhibited by physiologically saturating concentrations of DTX2 (200 nM). SAR studies employed naturally-isolated OA, DTX1, and DTX2, which vary in degree and/or position of methylation, in addition to synthetic 2-epi-DTX2. OA/DTX analogs induced cytotoxicity and inhibited PP activity with a relatively conserved order of potency: OA = DTX1 ≥ DTX2 >> 2-epi-DTX. The PPs were also differentially inhibited with sensitivities of PP2a > PP5 > PP1. These findings demonstrate that small variations in OA/DTX toxin structures, particularly at the head region (i.e., C1/C2), result in significant changes in toxicological potency, whereas changes in methylation at C31 and C35 (tail region) only mildly affect potency. In addition to this being the first study to extensively test OA/DTX analogs’ activities towards PP5, these data will be helpful for accurately determining toxic equivalence factors (TEFs), facilitating molecular modeling efforts, and developing highly selective phosphatase inhibitors. PMID:27827901
SAZONOVA, I. Y.; MCNAMEE, R. A.; HOUNG, A. K.; KING, S. M.; HEDSTROM, L.; REED, G. L.
2013-01-01
Summary Background: Given the worldwide epidemic of cardiovascular diseases, a more effective means of dissolving thrombi that cause heart attacks, could markedly reduce death, disability and healthcare costs. Plasminogen activators (PAs) such as streptokinase (SK) and tissue plasminogen activator (TPA) are currently used to dissolve fibrin thrombi. SK is cheaper and more widely available, but it appears less effective because it lacks TPA’s fibrin-targeted properties that focus plasminogen activation on the fibrin surface. Objective: We examined whether re-programming SK’s mechanism of action would create PAs with greater fibrin-targeting and potency than TPA. Methods and Results: When fibrinogen consumption was measured in human plasma, reprogrammed molecules SKΔ1 and SKΔ59 were 5-fold and > 119-fold more fibrin-dependent than SK (P < 0.0001), and 2-fold and > 50-fold more fibrin-dependent than TPA (P < 0.001). The marked fibrin-targeting of SKΔ59 was due to the fact that: (i) it did not generate plasmin in plasma, (ii) it was rapidly inhibited by α2-antiplasmin, and (iii) it only processed fibrin-bound plasminogen. To assess the fibrin-targeting and therapeutic potential of these PAs in vivo, a novel ‘humanized’ fibrinolysis model was created by reconstituting plasminogen-deficient mice with human plasminogen. When compared with TPA, SKΔ1 and SKΔ59 were 4-fold (P < 0.0001) and 2-fold (P < 0.003) more potent at dissolving blood clots in vivo, respectively, on a mass-dose basis and 2–3 logs more potent than TPA (P < 0.0001) when doses were calibrated by standard activity assays. Conclusion: These experiments suggest that reprogramming SK’s mechanism of action markedly enhances fibrin-targeting and creates, in comparison with TPA, activators with greater fibrinolytic potency. PMID:19566545
Sazonova, I Y; McNamee, R A; Houng, A K; King, S M; Hedstrom, L; Reed, G L
2009-08-01
Given the worldwide epidemic of cardiovascular diseases, a more effective means of dissolving thrombi that cause heart attacks, could markedly reduce death, disability and healthcare costs. Plasminogen activators (PAs) such as streptokinase (SK) and tissue plasminogen activator (TPA) are currently used to dissolve fibrin thrombi. SK is cheaper and more widely available, but it appears less effective because it lacks TPA's fibrin-targeted properties that focus plasminogen activation on the fibrin surface. We examined whether re-programming SK's mechanism of action would create PAs with greater fibrin-targeting and potency than TPA. When fibrinogen consumption was measured in human plasma, reprogrammed molecules SKDelta1 and SKDelta59 were 5-fold and > 119-fold more fibrin-dependent than SK (P < 0.0001), and 2-fold and > 50-fold more fibrin-dependent than TPA (P < 0.001). The marked fibrin-targeting of SKDelta59 was due to the fact that: (i) it did not generate plasmin in plasma, (ii) it was rapidly inhibited by alpha2-antiplasmin, and (iii) it only processed fibrin-bound plasminogen. To assess the fibrin-targeting and therapeutic potential of these PAs in vivo, a novel 'humanized' fibrinolysis model was created by reconstituting plasminogen-deficient mice with human plasminogen. When compared with TPA, SKDelta1 and SKDelta59 were 4-fold (P < 0.0001) and 2-fold (P < 0.003) more potent at dissolving blood clots in vivo, respectively, on a mass-dose basis and 2-3 logs more potent than TPA (P < 0.0001) when doses were calibrated by standard activity assays. These experiments suggest that reprogramming SK's mechanism of action markedly enhances fibrin-targeting and creates, in comparison with TPA, activators with greater fibrinolytic potency.
Krieger, Christine C; Neumann, Susanne; Place, Robert F; Marcus-Samuels, Bernice; Gershengorn, Marvin C
2015-03-01
There is no pathogenetically linked medical therapy for Graves' ophthalmopathy (GO). Lack of animal models and conflicting in vitro studies have hindered the development of such therapy. Recent reports propose that Graves' Igs bind to and activate thyrotropin receptors (TSHRs) and IGF-1 receptors (IGF-1Rs) on cells in orbital fat, stimulating hyaluronan (HA) secretion, a component of GO. The objective of the study was to investigate potential cross talk between TSHRs and IGF-1Rs in the pathogenesis of GO using a sensitive HA assay. Orbital fibroblasts from GO patients were collected in an academic clinical practice and cultured in a research laboratory. Cells were treated with TSH, IGF-1, and a monoclonal Graves' Ig M22. HA was measured by a modified ELISA. Simultaneous activation by TSH and IGF-1 synergistically increased HA secretion from 320 ± 52 for TSH and 430 ± 65 μg/mL for IGF-1 alone, to 1300 ± 95 μg/mL. IGF-1 shifted the TSH EC50 19-fold to higher potency. The dose response to M22 was biphasic. An IGF-1R antagonist inhibited the higher potency phase but had no effect on the lower potency phase. M22 did not cause IGF-1R autophosphorylation. A TSHR antagonist abolished both phases of M22-stimulated HA secretion. M22 stimulation of HA secretion by GO fibroblasts/preadipocytes involves cross talk between TSHR and IGF-1R. This cross talk relies on TSHR activation rather than direct activation of IGF-1R and leads to synergistic stimulation of HA secretion. These data propose a model for GO pathogenesis that explains previous contradictory results and argues for TSHR as the primary therapeutic target for GO.
Assays of homeopathic remedies in rodent behavioural and psychopathological models.
Bellavite, Paolo; Magnani, Paolo; Marzotto, Marta; Conforti, Anita
2009-10-01
The first part of this paper reviews the effects of homeopathic remedies on several models of anxiety-like behaviours developed and described in rodents. The existing literature in this field comprises some fifteen exploratory studies, often published in non-indexed and non-peer-reviewed journals. Only a few results have been confirmed by multiple laboratories, and concern Ignatia, Gelsemium, Chamomilla (in homeopathic dilutions/potencies). Nevertheless, there are some interesting results pointing to the possible efficacy of other remedies, and confirming a statistically significant effect of high dilutions of neurotrophic molecules and antibodies. In the second part of this paper we report some recent results obtained in our laboratory, testing Aconitum, Nux vomica, Belladonna, Argentum nitricum, Tabacum (all 5CH potency) and Gelsemium (5, 7, 9 and 30CH potencies) on mice using ethological models of behaviour. The test was performed using coded drugs and controls in double blind (operations and calculations). After an initial screening that showed all the tested remedies (except for Belladonna) to have some effects on the behavioural parameters (light-dark test and open-field test), but with high experimental variability, we focused our study on Gelsemium, and carried out two complete series of experiments. The results showed that Gelsemium had several effects on the exploratory behaviour of mice, which in some models were highly statistically significant (p < 0.001), in all the dilutions/dynamizations used, but with complex differences according to the experimental conditions and test performed. Finally, some methodological issues of animal research in this field of homeopathy are discussed. The "Gelsemium model" - encompassing experimental studies in vitro and in vivo from different laboratories and with different methods, including significant effects of its major active principle gelsemine - may play a pivotal rule for investigations on other homeopathic remedies.
Attardi, Barbara J; Burgenson, Janet; Hild, Sheri A; Reel, Jerry R
2004-03-01
In determining the biological profiles of various antiprogestins, it is important to assess the hormonal and antihormonal activity, selectivity, and potency of their proximal metabolites. The early metabolism of mifepristone is characterized by rapid demethylation and hydroxylation. Similar initial metabolic pathways have been proposed for CDB-2914 (CDB: Contraceptive Development Branch of NICHD) and CDB-4124, and their putative metabolites have been synthesized. We have examined the functional activities and potencies, in various cell-based assays, and relative binding affinities (RBAs) for progesterone receptors (PR) and glucocorticoid receptors (GR) of the putative mono- and didemethylated metabolites of CDB-2914, CDB-4124, and mifepristone and of the 17alpha-hydroxy and aromatic A-ring derivatives of CDB-2914 and CDB-4124. The binding affinities of the monodemethylated metabolites for rabbit uterine PR and human PR-A and PR-B were similar to those of the parent compounds. Monodemethylated mifepristone bound to rabbit thymic GR with higher affinity than monodemethylated CDB-2914 or CDB-4124. T47D-CO cells were used to assess inhibition of R5020-stimulated endogenous alkaline phosphatase activity and transactivation of the PRE(2)-thymidine kinase (tk)-luciferase (LUC) reporter plasmid in transient transfections. The antiprogestational potency was as follows: mifepristone/CDB-2914/CDB-4124/monodemethylated metabolites (IC(50)'s approximately 10(-9)M) > aromatic A-ring derivatives (IC(50)'s approximately 10(-8)M) > didemethylated/17alpha-hydroxy derivatives (IC(50)'s approximately 10(-7)M). Antiglucocorticoid activity was determined by inhibition of dexamethasone-stimulated transcriptional activity in HepG2 cells. The mono- and didemethylated metabolites of CDB-2914 and CDB-4124 had less antiglucocorticoid activity (IC(50)'s approximately 10(-6)M) than monodemethylated mifepristone (IC(50) approximately 10(-8)M) or the other test compounds. At 10(-6)M in transcription assays, none of these compounds showed progestin agonist activity, whereas mifepristone and its monodemethylated metabolite manifested slight glucocorticoid agonist activity. The reduced antiglucocorticoid activity of monodemethylated CDB-2914 and CDB-4124 was confirmed in vivo by the thymus involution assay in adrenalectomized male rats. The aromatic A-ring derivatives-stimulated transcription of an estrogen-responsive reporter plasmid in MCF-7 and T47D-CO human breast cancer cells but were much less potent than estradiol. Taken together, these data suggest that the proximal metabolites of mifepristone, CDB-2914, and CDB-4124 contribute significantly to the antiprogestational activity of the parent compounds in vivo. Furthermore, the reduced antiglucocorticoid activity of CDB-2914 and CDB-4124 compared to mifepristone in vivo may be due in part to decreased activity of their putative proximal metabolites.
Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M; Volkman, Brian F; Majetschak, Matthias
2017-01-01
Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03-3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.
Progestin and estrogen potency of combination oral contraceptives and endometrial cancer risk.
Maxwell, G L; Schildkraut, J M; Calingaert, B; Risinger, J I; Dainty, L; Marchbanks, P A; Berchuck, A; Barrett, J C; Rodriguez, G C
2006-11-01
Using data from a case-control study of endometrial cancer, we investigated the relationship between the progestin and estrogen potency in combination oral contraceptives (OCs) and the risk of developing endometrial cancer. Subjects included 434 endometrial cancer cases and 2,557 controls identified from the Cancer and Steroid Hormone (CASH) study. OCs were classified into four categories according to the individual potencies of each hormonal constituent (high versus low estrogen or progestin potency). Logistic regression was used to evaluate associations between endometrial cancer risk and combination OC formulations. With non-users as the referent group, use of OCs with either high potency progestin [odds ratio for endometrial cancer (OR)=0.21, 95% confidence interval (CI)=0.10 to 0.43] or with low potency progestin (OR=0.39, 95% CI=0.25 to 0.60) were both associated with a decreased risk of endometrial cancer. Overall high progestin potency OCs did not confer significantly more protection than low progestin potency OCs (OR=0.52, 95% CI=0.24 to 1.14). However, among women with a body mass index of 22.1 kg/m2 or higher, those who used high progestin potency oral contraceptives had a lower risk of endometrial cancer than those who used low progestin potency oral contraceptives (OR=0.31, 95% CI=0.11 to 0.92) while those with a BMI below 22.1 kg/m2 did not (OR=1.36, 95% CI=0.39 to 4.70). The potency of the progestin in most OCs appears adequate to provide a protective effect against endometrial cancer. Higher progestin-potency OCs may be more protective than lower progestin potency OCs among women with a larger body habitus.
6,11-Dimethylbenzo(b]naphtho[2,3-d]thiophene (S-DMBA) is one of several carcinogenic analogs of the reference mouse skin carcinogen 7,12-dimethylbenz[alanthracene (OMBA)Demonstration of the weak carcinogenicity of S-DMBA by Tilak in 1946 established at that early stage the inadeq...
Riendeau, Denis; Salem, Myriam; Styhler, Angela; Ouellet, Marc; Mancini, Joseph A; Li, Chun Sing
2004-03-08
Loxoprofen, its trans-alcohol and cis-alcohol metabolites were evaluated for selectivity of inhibition of COX-2 over COX-1. The (2S,1'R,2'S)-trans-alcohol derivative was found to be the most active metabolite and to be a potent and nonselective inhibitor of COX-2 and COX-1 in both enzyme and human whole blood assays.
Ericson, Mark D; Freeman, Katie T; Schnell, Sathya M; Haskell-Luevano, Carrie
2017-01-26
The melanocortin system consists of five receptor subtypes, endogenous agonists, and naturally occurring antagonists. These receptors and ligands have been implicated in numerous biological pathways including processes linked to obesity and food intake. Herein, a truncation structure-activity relationship study of chimeric agouti-related protein (AGRP)/[Nle4,DPhe7]α-melanocyte stimulating hormone (NDP-MSH) ligands is reported. The tetrapeptide His-DPhe-Arg-Trp or tripeptide DPhe-Arg-Trp replaced the Arg-Phe-Phe sequence in the AGRP active loop derivative c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro], where Xxx was the native Asn of AGRP or a diaminopropionic (Dap) acid residue previously shown to increase antagonist potency at the mMC4R. The Phe, Ala, and Dap/Asn residues were successively removed to generate a 14-member library that was assayed for agonist activity at the mouse MC1R, MC3R, MC4R, and MC5R. Two compounds possessed nanomolar agonist potency at the mMC4R, c[Pro-His-DPhe-Arg-Trp-Asn-Ala-Phe-DPro] and c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro], and may be further developed to generate novel melanocortin probes and ligands for understanding and treating obesity.
Matsui, Yumi; Yasumatsu, Isao; Asahi, Takashi; Kitamura, Takahiro; Kanai, Kazuo; Ubukata, Osamu; Hayasaka, Hitoshi; Takaishi, Sachiko; Hanzawa, Hiroyuki; Katakura, Shinichi
2017-07-01
Tumor cells switch glucose metabolism to aerobic glycolysis by expressing the pyruvate kinase M2 isoform (PKM2) in a low active form, providing glycolytic intermediates as building blocks for biosynthetic processes, and thereby supporting cell proliferation. Activation of PKM2 should invert aerobic glycolysis to an oxidative metabolism and prevent cancer growth. Thus, PKM2 has gained attention as a promising cancer therapy target. To obtain novel PKM2 activators, we conducted a high-throughput screening (HTS). Among several hit compounds, a fragment-like hit compound with low potency but high ligand efficiency was identified. Two molecules of the hit compound bound at one activator binding site, and the molecules were linked based on the crystal structure. Since this linkage succeeded in maintaining the original position of the hit compound, the obtained compound exhibited highly improved potency in an in vitro assay. The linked compound also showed PKM2 activating activity in a cell based assay, and cellular growth inhibition of the A549 cancer cell line. Discovery of this novel scaffold and binding mode of the linked compound provides a valuable platform for the structure-guided design of PKM2 activators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Azarakhsh, Y; Mohammadipanah, F; Nassiri, S M; Siavashi, V; Hamedi, J
2017-06-01
Angiogenesis is a physiological process that has important impacts on the pathology and healing of various diseases, and its induction or inhibition by bioactive actinobacterial metabolites can help the treatment of some diseases. In this study, the effects of actinobacterial extract in the process of angiogenesis have been explored. In this research, proangiogenic and antiangiogenic metabolites producing actinobacteria were isolated from soil samples and their fermentation broth were extracted and after evaluation of their toxicity by MTT assay, antiangiogenic and proangiogenic activities were screened against human umbilical vein endothelial cells (HUVECs) by in vitro tube formation and migration assay. Isolated strains were identified through molecular techniques. The results showed that Nocardiopsis arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts had a high potential of anti-angiogenic activity on HUVECs. For the first time proangiogenic potency of a rare actinobacterium, Kribbella sp. UTMC 522, was reported, and N. arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts inhibits the proliferation, migration and angiogenesis activity of HUVECs with reasonable potency. Metabolites of the introduced rare actinobacteria are potent proangiogenic and angiogenic inhibitors. Identification of angiogenic-antiangiogenic mechanisms and purification of the extracts would be useful in therapeutic angiogenesis. © 2017 The Society for Applied Microbiology.
Exploration of (hetero)aryl derived thienylchalcones for antiviral and anticancer activities.
Patil, Vikrant; Patil, Siddappa A; Patil, Renukadevi; Bugarin, Alejandro; Beaman, Kenneth; Patil, Shivaputra A
2018-05-23
Search for new antiviral and anticancer agents are essential because of the emergence of drug resistance in recent years. In continuation of our efforts in identifying the new small molecule antiviral and anticancer agents, we identified chalcones as potent antiviral and anticancer agents. With the aim of identifying the broad acting antiviral and anticancer agents, we discovered substituted aryl/heteroaryl derived thienyl chalcones as antiviral and anticancer agents. A focused set of thienyl chalcone derivaties II-VI was screened for selected viruses Hepatitis B virus (HBV), Herpes simplex virus 1 (HSV-1), Human cytomegalovirus (HCMV), Dengue virus 2 (DENV2), Influenza A (H1N1) virus, MERS coronavirus, Poliovirus 1 (PV 1), Rift Valley fever (RVF), Tacaribe virus (TCRV), Venezuelan equine encephalitis virus (VEE) and Zika virus (ZIKV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. Additionally, a cyclopropylquinoline derivative IV has been screened for 60 human cancer cell lines using the Development Therapeutics Program (DTP) of NCI. All thienyl chalcone derivatives II-VI displayed moderate to excellent antiviral activity towards several viruses tested. Compounds V and VI were turned out be active compounds towards human cytomegalovirus for both normal strain (AD169) as well as resistant isolate (GDGr K17). Particularly, cyano derivative V showed very high potency (EC50: <0.05 µM) towards AD169 strain of HCMV compared to standard drug Ganciclovir (EC50: 0.12 µM). Additionally, it showed moderate activity in the secondary assay (AD169; EC50: 2.30 µM). The cyclopropylquinoline derivative IV displayed high potency towards Rift Valley fever virus (RVFV) and Tacaribe virus (TCRV). The cyclopropylquinoline derivative IV is nearly 28 times more potent in our initial in vitro visual assay (EC50: 0.39 μg/ml) and nearly 17 times more potent in neutral red assay (EC50: 0.71 μg/ml) compared to the standard drug Ribavirin (EC50: 11 μg/ml; visual assay and EC50: 12 μg/ml; neutral red assay). It is nearly 12 times more potent in our initial in vitro visual assay (EC50: >1 μg/ml) and nearly 8 times more potent in neutral red assay (EC50: >1.3 μg/ml) compared to the standard drug Ribavirin (EC50: 12 μg/ml; visual assay and EC50: 9.9 μg/ml; neutral red assay) towards Tacaribe virus (TCRV). Additionally, cyclopropylquinoline derivative IV has shown strong growth inhibitory activity towards three major cancer (colon, breast, and leukemia) cell lines and moderate growth inhibition shown towards other cancer cell lines screened. Compounds V and VI were demonstrated viral inhibition towards Human cytomegalovirus, whereas cyclopropylquinoline derivative IV towards Rift Valley fever virus and Tacaribe virus. Additionally, cyclopropylquinoline derivative IV has displayed very good cytotoxicity against colon, breast and leukemia cell lines in vitro. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
FDA perspective on specifications for biotechnology products--from IND to PLA.
Murano, G
1997-01-01
Quality standards are obligatory throughout development, approval and post-marketing phases of biotechnology-derived products, thus assuring product identity, purity, and potency/strength. The process of developing and setting specifications should be based on sound science and should represent a logical progression of actions based on the use of experiential data spanning manufacturing process validation, consistency in production, and characterization of relevant product properties/attributes, by multiple analytical means. This interactive process occurs in phases, varying in rigour. It is best described as encompassing a framework which starts with the implementation of realistic/practical operational quality limits, progressing to the establishment/adoption of more stringent specifications. The historical database is generated from preclinical, toxicology and early clinical lots. This supports the clinical development programme which, as it progresses, allows for further assay method validation/refinement, adoption/addition due to relevant or newly recognized product attributes or rejection due to irrelevance. In the next phase, (licensing/approval) specifications are set through extended experience and validation of both the preparative and analytical processes, to include availability of suitable reference standards and extensive product characterization throughout its proposed dating period. Subsequent to product approval, the incremental database of test results serves as a natural continuum for further evolving/refining specifications. While there is considerable latitude in the kinds of testing modalities finally adopted to establish product quality on a routine basis, for both drugs and drug products, it is important that the selection takes into consideration relevant (significant) product characteristics that appropriately reflect on identity, purity and potency.
Development of a Platform to Enable Fully Automated Cross-Titration Experiments.
Cassaday, Jason; Finley, Michael; Squadroni, Brian; Jezequel-Sur, Sylvie; Rauch, Albert; Gajera, Bharti; Uebele, Victor; Hermes, Jeffrey; Zuck, Paul
2017-04-01
In the triage of hits from a high-throughput screening campaign or during the optimization of a lead compound, it is relatively routine to test compounds at multiple concentrations to determine potency and maximal effect. Additional follow-up experiments, such as agonist shift, can be quite valuable in ascertaining compound mechanism of action (MOA). However, these experiments require cross-titration of a test compound with the activating ligand of the receptor requiring 100-200 data points, severely limiting the number tested in MOA assays in a screening triage. We describe a process to enhance the throughput of such cross-titration experiments through the integration of Hewlett Packard's D300 digital dispenser onto one of our robotics platforms to enable on-the-fly cross-titration of compounds in a 1536-well plate format. The process handles all the compound management and data tracking, as well as the biological assay. The process relies heavily on in-house-built software and hardware, and uses our proprietary control software for the platform. Using this system, we were able to automate the cross-titration of compounds for both positive and negative allosteric modulators of two different G protein-coupled receptors (GPCRs) using two distinct assay detection formats, IP1 and Ca 2+ detection, on nearly 100 compounds for each target.
Hoffmann, Sebastian
2015-01-01
The development of non-animal skin sensitization test methods and strategies is quickly progressing. Either individually or in combination, the predictive capacity is usually described in comparison to local lymph node assay (LLNA) results. In this process the important lesson from other endpoints, such as skin or eye irritation, to account for variability reference test results - here the LLNA - has not yet been fully acknowledged. In order to provide assessors as well as method and strategy developers with appropriate estimates, we investigated the variability of EC3 values from repeated substance testing using the publicly available NICEATM (NTP Interagency Center for the Evaluation of Alternative Toxicological Methods) LLNA database. Repeat experiments for more than 60 substances were analyzed - once taking the vehicle into account and once combining data over all vehicles. In general, variability was higher when different vehicles were used. In terms of skin sensitization potential, i.e., discriminating sensitizer from non-sensitizers, the false positive rate ranged from 14-20%, while the false negative rate was 4-5%. In terms of skin sensitization potency, the rate to assign a substance to the next higher or next lower potency class was approx.10-15%. In addition, general estimates for EC3 variability are provided that can be used for modelling purposes. With our analysis we stress the importance of considering the LLNA variability in the assessment of skin sensitization test methods and strategies and provide estimates thereof.
Hartisch, C; Kolodziej, H; von Bruchhausen, F
1997-04-01
In the present study, the effects of tannins obtained from various plant sources on the activity of 5-LOX and AT were examined. With IC50 values ranging from 1.0 to 18.7 muM, hamamelitannin and the galloylated proanthocyanidins isolated from Hamamelis virginiana L. were found to be most potent inhibitors of 5-LOX. Unlike the 5-LOX study, hamamelitannin proved to be ineffective in the AT assay. Potent candidates are represented by the group of B-type proanthocyanidins. Structure-activity relationships regarding the in vitro inhibitory potency of the polyphenols in the biological assays are discussed.
Rane, Rajesh A; Karpoormath, Rajshekhar; Naphade, Shital S; Bangalore, Pavankumar; Shaikh, Mahamadhanif; Hampannavar, Girish
2015-08-01
In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimumbiofilm inhibitory concentration(MBIC) of 0.39, 0.78 and 3.125 μg/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC = 3.125 μg/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched. Copyright © 2015 Elsevier Inc. All rights reserved.
Hickey, John M; Sahni, Neha; Toth, Ronald T; Kumru, Ozan S; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B
2016-10-01
Liquid chromatographic methods, combined with mass spectrometry, offer exciting and important opportunities to better characterize complex vaccine antigens including recombinant proteins, virus-like particles, inactivated viruses, polysaccharides, and protein-polysaccharide conjugates. The current abilities and limitations of these physicochemical methods to complement traditional in vitro and in vivo vaccine potency assays are explored in this review through the use of illustrative case studies. Various applications of these state-of-the art techniques are illustrated that include the analysis of influenza vaccines (inactivated whole virus and recombinant hemagglutinin), virus-like particle vaccines (human papillomavirus and hepatitis B), and polysaccharide linked to protein carrier vaccines (pneumococcal). Examples of utilizing these analytical methods to characterize vaccine antigens in the presence of adjuvants, which are often included to boost immune responses as part of the final vaccine dosage form, are also presented. Some of the challenges of using chromatographic and LC-MS as physicochemical assays to routinely test complex vaccine antigens are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
The local lymph node assay (LLNA).
Rovida, Costanza; Ryan, Cindy; Cinelli, Serena; Basketter, David; Dearman, Rebecca; Kimber, Ian
2012-02-01
The murine local lymph node assay (LLNA) is a widely accepted method for assessing the skin sensitization potential of chemicals. Compared with other in vivo methods in guinea pig, the LLNA offers important advantages with respect to animal welfare, including a requirement for reduced animal numbers as well as reduced pain and trauma. In addition to hazard identification, the LLNA is used for determining the relative skin sensitizing potency of contact allergens as a pivotal contribution to the risk assessment process. The LLNA is the only in vivo method that has been subjected to a formal validation process. The original LLNA protocol is based on measurement of the proliferative activity of draining lymph node cells (LNC), as determined by incorporation of radiolabeled thymidine. Several variants to the original LLNA have been developed to eliminate the use of radioactive materials. One such alternative is considered here: the LLNA:BrdU-ELISA method, which uses 5-bromo-2-deoxyuridine (BrdU) in place of radiolabeled thymidine to measure LNC proliferation in draining nodes. © 2012 by John Wiley & Sons, Inc.
Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.
Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata
2018-01-01
A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.
Maltais, René; Hospital, Audrey; Delhomme, Audrey; Roy, Jenny; Poirier, Donald
2014-04-01
The aminosteroid derivative RM-133 has been reported to be a promising pro-apoptotic agent showing activity on various cancer cell lines. Following the development of solid-phase synthesis that generated a series of libraries of aminosteroid derivatives, we now report the development of a convenient liquid phase chemical synthesis of RM-133, the most promising candidate, in order to obtain sufficient quantities to proceed with the first preclinical assays. A simple and convergent six-step synthesis was designed and allowed the preparation of a gram-quantity scale of RM-133. This aminosteroid derivative was also fully characterized by NMR experiments which revealed an interesting mixture of conformers. Finally, the in vivo potency of RM-133 was evaluated on a xenograft model in nude mice with HL-60 tumors, which has resulted in the blocking of tumor progression by 57%. Copyright © 2014 Elsevier Inc. All rights reserved.
Development and Validation of a Computational Model for Androgen Receptor Activity
2016-01-01
Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can more rapidly and inexpensively identify potential androgen-active chemicals. We integrated 11 HTS ToxCast/Tox21 in vitro assays into a computational network model to distinguish true AR pathway activity from technology-specific assay interference. The in vitro HTS assays probed perturbations of the AR pathway at multiple points (receptor binding, coregulator recruitment, gene transcription, and protein production) and multiple cell types. Confirmatory in vitro antagonist assay data and cytotoxicity information were used as additional flags for potential nonspecific activity. Validating such alternative testing strategies requires high-quality reference data. We compiled 158 putative androgen-active and -inactive chemicals from a combination of international test method validation efforts and semiautomated systematic literature reviews. Detailed in vitro assay information and results were compiled into a single database using a standardized ontology. Reference chemical concentrations that activated or inhibited AR pathway activity were identified to establish a range of potencies with reproducible reference chemical results. Comparison with existing Tier 1 AR binding data from the U.S. EPA Endocrine Disruptor Screening Program revealed that the model identified binders at relevant test concentrations (<100 μM) and was more sensitive to antagonist activity. The AR pathway model based on the ToxCast/Tox21 assays had balanced accuracies of 95.2% for agonist (n = 29) and 97.5% for antagonist (n = 28) reference chemicals. Out of 1855 chemicals screened in the AR pathway model, 220 chemicals demonstrated AR agonist or antagonist activity and an additional 174 chemicals were predicted to have potential weak AR pathway activity. PMID:27933809
Dunning, F Mark; Piazza, Timothy M; Zeytin, Füsûn N; Tucker, Ward C
2014-03-03
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Chatti, Ines Bouhlel; Boubaker, Jihed; Skandrani, Ines; Bhouri, Wissem; Ghedira, Kamel; Chekir Ghedira, Leila
2011-08-01
The antioxidant potency of Acacia salicina extracts was investigated. Total antioxidant capacity was determined using an ABTS(+) assay. Superoxide radical scavenging was measured using riboflavin-light-nitro blue tetrazolium (NBT) assay. In addition, the content of phenols, total flavonoids and sterols were measured in the tested extracts. The petroleum ether exhibited a potent scavenging activity toward ABTS radical cations. Whereas, chloroform extract showed the highest activity against superoxides radicals and was also able to protect pKS plasmid DNA against hydroxyl radicals induced DNA damages. The antimutagenicity of these extracts was assayed using the Ames assay against Salmonella typhimurium TA98 and S. typhimurium TA 1535 tester strains at different concentrations. These extracts decreased significantly the mutagenecity induced by sodium azide (SA) and 4-nitro-o-phenylenediamine (NOP). The antioxidant and antimutagenecity activities exhibited by A. salicina depended on the chemical composition of the tested extracts. Copyright © 2011 Elsevier Ltd. All rights reserved.
To, Kenneth K W; Au-Yeung, Steve C F; Ho, Yee-Ping
2006-07-01
A series of novel traditional Chinese medicine-platinum compounds has been found to be active against a number of murine and human cancers both in vitro and in vivo. Their high potency and the lack of cisplatin cross-resistance are believed to be due to the inclusion of the protein phosphatase 2A-inhibiting demethylcantharidin in the novel structures. A simple reversed-phase high-performance liquid chromatographic method was developed and validated as a stability-indicating assay for the platinum compounds. Using cisplatin and carboplatin as reference compounds, the stability study agrees well with the literature-reported findings. The novel traditional Chinese medicine-platinum compounds were more stable than cisplatin in water and dextrose, but became unstable in normal saline, a characteristic similar to that of carboplatin. The developed assay was further applied to study the chemical reactivity of the novel platinum compounds towards physiologically important nucleophiles such as glutathione and cysteine. The novel compounds were considerably less reactive to the sulfur-containing nucleophiles than cisplatin. In-vitro cytotoxicity assay was performed in a porcine kidney LLC-PK1 cell line model to investigate the nephrotoxicity potential of the platinum compounds. The lower rate of hydrolysis and the decreased reactivity of the novel traditional Chinese medicine-platinum compounds towards sulfur-containing bionucleophiles appear to have reduced their toxicity when compared with cisplatin, yet the antitumor activities of the novel compounds have not been compromised.
In Vitro Screening of Opiod Antagonist Effectiveness
2018-04-01
with a co-administration of acrylfentanyl and naloxone. Reversibility of acrylfentanyl was achieved at naloxone concentrations comparable to those of...EC50, EC90, and efficacy values were calculated (Figure 4). These values were compared to those of fentanyl (Table 1). 1 2 3 4 5 6 7 8 9 10 11 12... compare that to the metabolic rate of the reversal agent, itself. Metabolic clearance data, when combined with a potency and competition assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauber, Benjamin P.; René, Olivier; de Leon Boenig, Gladys
2014-08-01
Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma–protein unbound fraction and improvements in cellular permeability and aqueous solubility.
Nikitin, N S
1977-01-01
The morphogenetic potencies of somatic cells of the fresh-water sponge Ephydatia fluviatilis in the developing aggregates depend on their initial specialization and the number of cells in the aggregate. The aggregates of nucleolar amoebocytes consisting of 500 or more cells have the highest morphogenetic potencies. All main cell types can arise in the developing homogeneous aggregates of nucleolar amoebocytes. The fine structure of nucleolar amoebocytes at different stages of development of the homogeneous aggregates was studied by means of electron microscopy. The structural rearrangements are described which accompany the process of redifferentiation of the nucleolar amoebocytes in other cell types.
Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L
2005-09-01
Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.
Collaborative study for the establishment of erythropoietin BRP batch 4.
Burns, C; Bristow, A F; Daas, A; Costanzo, A
2015-01-01
The European Pharmacopoeia (Ph. Eur.) Biological Reference Preparation (BRP) for erythropoietin (EPO) is used as a working standard for potency determination of EPO preparations by in vivo bioassay as prescribed in the Ph. Eur. monograph Erythropoietin concentrated solution (1316). The BRP batch 3 was calibrated in 2006 and its stocks are depleted. The European Directorate for the Quality of Medicines & HealthCare (EDQM) thus initiated a project to calibrate a replacement batch in International Units against the WHO 3(rd) International Standard (IS) for Erythropoietin, recombinant, for bioassay (11/170). A Ph. Eur. Chemical Reference Substance (CRS) was established recently for use as reference in some of the physicochemical tests prescribed in the monograph. Therefore, the EPO BRP batch 4 was only calibrated for the normocythaemic and polycythaemic mouse in vivo bioassays described in the Assay section of the Ph. Eur. monograph (1316). The collaborative study involved seven laboratories from Europe, the USA and South America. The results confirmed that the candidate BRP (cBRP) is suitable for use as a reference preparation in the potency determination of EPO medicinal products by bioassay (using the normocythaemic or polycythaemic mouse methods). The outcome of the study enabled the Ph. Eur. Commission to establish the proposed standard as erythropoietin BRP batch 4 in November 2014 for use as a reference preparation solely for the polycythaemic and normocythaemic mouse bioassay, with an assigned potency of 13 000 IU/vial. Furthermore, the potency of BRP3 was confirmed during the study, thus warranting a good continuity of the IU.
Passalacqua, Thais G; Torres, Fábio A E; Nogueira, Camila T; de Almeida, Leticia; Del Cistia, Mayara L; dos Santos, Mariana B; Dutra, Luis A; Bolzani, Vanderlan da Silva; Regasini, Luis O; Graminha, Márcia A S; Marchetto, Reinaldo; Zottis, Aderson
2015-09-01
The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
3-(2-Benzofuranyl)quinuclidin-2-ene derivatives: novel muscarinic antagonists.
Nordvall, G; Sundquist, S; Johansson, G; Glas, G; Nilvebrant, L; Hacksell, U
1996-08-16
A series of 26 derivatives of the novel muscarinic antagonist 3-(2-benzofuranyl)quinuclidin-2-ene (1) has been synthesized and evaluated for muscarinic and antimuscarinic properties. The affinity of the compounds was determined by competition experiments in homogenates of cerebral cortex, heart, parotid gland, and urinary bladder from guinea pigs using (-)-[3H]-3-quinuclidinyl benzilate as the radioligand, and the antimuscarinic-potency was determined in a functional assay on isolated guinea pig urinary bladder using carbachol as the agonist. The 5-fluorobenzofuranyl derivative was slightly more potent than 1. The 7-bromo-substituted 8 displayed a 14-fold tissue selectivity ratio for muscarinic receptors in the cortex versus the parotid gland. Comparative molecular field analysis and quantitative structure-activity relationship models were developed for this series of substituted benzofuranyl derivatives.
Pham, ThanhTruc; Walden, Madeline; Butler, Christopher; Diaz-Gonzalez, Rosario; Pérez-Moreno, Guiomar; Ceballos-Pérez, Gloria; Gomez-Pérez, Veronica; García-Hernández, Raquel; Zecca, Henry; Krakoff, Emma; Kopec, Brian; Ichire, Ogar; Mackenzie, Caden; Pitot, Marika; Ruiz, Luis Miguel; Gamarro, Francisco; González-Pacanowska, Dolores; Navarro, Miguel; Dounay, Amy B
2017-08-15
In 2014, a published report of the high-throughput screen of>42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization. Through our preliminary compound synthesis and SAR studies, we have confirmed the previously reported activity of 1 in a T. brucei cell proliferation assay and have identified alternative groups to replace the pyridyl ring in 1. Pyrazole 24 achieves improvements in both potency and lipophilicity relative to 1, while also showing good in vitro metabolic stability. The SAR developed on 24 provides new directions for further optimization of this novel scaffold for anti-trypanosomal drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
COLTON, CRAIG K.; KONG, QIONGMAN; LAI, LICHING; ZHU, MICHAEL X.; SEYB, KATHLEEN I.; CUNY, GREGORY D.; XIAN, JUN; GLICKSMAN, MARCIE A.; LIN, CHIEN-LIANG GLENN
2010-01-01
Excitotoxicity has been implicated as the mechanism of neuronal damage resulting from acute insults such as stroke, epilepsy, and trauma, as well as during the progression of adult-onset neurodegenerative disorders such as Alzheimer’s disease and amyotrophic lateral sclerosis (ALS). Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. One potential approach to protect against excitotoxic neuronal damage is enhanced glutamate reuptake. The glial glutamate transporter EAAT2 is the quantitatively dominant glutamate transporter and plays a major role in clearance of glutamate. Expression of EAAT2 protein is highly regulated at the translational level. In an effort to identify compounds that can induce translation of EAAT2 transcripts, a cell-based enzyme-linked immunosorbent assay was developed using a primary astrocyte line stably transfected with a vector designed to identify modulators of EAAT2 translation. This assay was optimized for high-throughput screening, and a library of approximately 140,000 compounds was tested. In the initial screen, 293 compounds were identified as hits. These 293 hits were retested at 3 concentrations, and a total of 61 compounds showed a dose-dependent increase in EAAT2 protein levels. Selected compounds were tested in full 12-point dose-response experiments in the screening assay to assess potency as well as confirmed by Western blot, immunohistochemistry, and glutamate uptake assays to evaluate the localization and function of the elevated EAAT2 protein. These hits provide excellent starting points for developing therapeutic agents to prevent excitotoxicity. PMID:20508255
Hostanska, Katarina; Rostock, Matthias; Melzer, Joerg; Baumgartner, Stephan; Saller, Reinhard
2012-07-18
Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712-2), its succussed hydroalcoholic solvent (0712-1) and unsuccussed solvent (0712-3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined "wound field". All assays were performed in three independent controlled experiments. None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712-2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712-1) at 1:100 dilutions (p < 0.001). Unsuccussed solvent (0712-3) had no influence on cell migration (6.3%; p > 0.05). Preparation (0712-2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712-1), which caused 22.1% wound closure. Results of this study showed that the low potency homeopathic remedy (0712-2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis.
Use of an ex vivo local lymph node assay to assess contact hypersensitivity potential.
Piccotti, Joseph R; Kawabata, Thomas T
2008-07-01
The local lymph node assay (LLNA) is used to assess the contact hypersensitivity potential of compounds. In the standard assay, mice are treated topically with test compound to the dorsum of both ears on Days 1-3. The induction of a hypersensitivity response is assessed on Day 6 by injecting [(3)H]-thymidine into a tail vein and measuring thymidine incorporation into DNA of lymph node cells draining the ears. The ex vivo LLNA is conducted similarly except lymphocyte proliferation is assessed after in vitro incubation of lymph node cells with [(3)H]-thymidine, which significantly reduces the amount of radioactive waste. The current study tested the use of this approach for hazard assessment of contact hypersensitivity and to estimate allergenic potency. Female BALB/c mice were treated on Days 1-3 with two nonsensitizers (4' -methoxyacetophenone, diethyl phthalate), three weak sensitizers (hydroxycitronellal, eugenol, citral), one weak-to-moderate sensitizer (hexylcinnamic aldehyde), two moderate sensitizers (isoeugenol, phenyl benzoate), and one strong sensitizer (dinitrochlorobenzene). On Day 6, isolated lymph node cells were incubated overnight with [(3)H]-thymidine and thymidine incorporation was measured by liquid scintillation spectrophotometry. The ex vivo LLNA accurately distinguished the contact sensitizers from the nonsensitizing chemicals, and correctly ranked the relative potency of the compounds tested. The EC3 values, i.e., the effective concentration of test substance needed to induce a stimulation index of 3, were as follows: 4' -methoxyacetophenone (> 50%), diethyl phthalate (> 50%), hydroxycitronellal (20.4%), eugenol (13.6%), citral (8.9%), isoeugenol (3.8%), hexylcinnamic aldehyde (2.7%), phenyl benzoate (2%), and dinitrochlorobenzene (0.02%). In addition, low inter-animal and inter-experiment variability was seen with 25% hexyl-cinnamic aldehyde (assay positive control). The results of the ex vivo LLNA in the current study were consistent with published reports using the standard LLNA and provided further evidence that supports the use of this alternative approach to assess the skin sensitization potential of test compounds.
Eder, Erwin; Kütt, Wolfgang; Deininger, Christoph
2006-12-01
Six monofunctional alkylating methanesulphonates of widely varying structures were investigated in the in vitro micronucleus assay with Syrian hamster embryo fibroblast cells. The results were compared with the alkylating activities measured in the 4-(nitrobenzyl)pyridine test (NBP-test) and the N-methyl mercaptoimidazole (MMI-test) as measures for S(N)2 reactivity as well as in the triflouoroacetic acid (TFA) solvolysis and the hydrolysis reaction as measures for S(N)1 reactivity in order to provide insights into the role of alkylation mechanisms on induction of micronuclei. Moreover we compared the results of micronucleus assay with those of the Ames tests in strain TA 100 and TA1535 and with those of the SOS chromotest with the strains PQ37, PQ243, PM21 and GC 4798. The potency of methanesulphonates to induce micronuclei depended only to a certain degree, on the total alkylating activity (S(N)1 and S(N)2 reactivity). An inverse, significant correlation between the Ames test and the micronucleus assay was observed and an inverse correlation between the micronucleus assay and the SOS chromotest with the different strains. The results indicate that the primary mechanism leading to induction of micronuclei is not O-alkylation in DNA as it is the case in the Ames test with the hisG46 strains TA1535 and TA100 and not N-alkylation as with the SOS chromotest. There is evidence that protein alkylation, e.g. in the spindle apparatus in mitosis is decisive for induction of micronuclei by alkylating compounds. The structurally voluminous methanesulphonates 2-phenyl ethyl methanesulphonate and 1-phenyl-2-propyl methanesulphonate show a clear higher micronuclei inducing potency than the other tested though the bulky methanesulphonates possess a lower total alkylating activity than the others. This effect can be explained by a higher disturbance during mitosis after alkylation of the spindle apparatus with the structurally more bulky methanesulphonates.
On February 26, 2010, the draft Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures document and the charge to external peer reviewers were released for external peer review and public comment. The draft document and t...
Ulker, Ozge Cemiloglu; Kaymak, Yesim; Karakaya, Asuman
2014-03-01
The present studies were performed to compare the differences between sensitization potency of fragrance mix and its ingredients (oak moss absolute, isoeugenol, eugenol, cinnamal, hydroxycitronellal, geraniol, cinnamic alcohol, alpha amyl cinnamal), by using ex vivo LLNA-BrdU ELISA. The SI and EC3 values were calculated and potency classification was found for the mixture and for each ingredients. TH1 cytokines (IL-2, IFN-γ) and TH2 cytokines (IL-4, IL-5) releases from lymph node cell culture were also investigated as contact sensitization endpoints. The EC3 values were calculated and the potency of contact sensitization were classified for fragrance mix, oak moss absolute, isoeugenol, eugenol, cinnamal, hydroxycitronellal, geraniol, cinnamic alcohol, alpha amyl cinnamal respectively: 4.4% (moderate), 3.4% (moderate), 0.88% (strong), 16.6% (weak), 1.91% (moderate), 9.77% (moderate), 13.1% (weak), 17.93% (weak), 7.74% (moderate). According to our results it should be concluded that exposure to fragrance mix does not constitute an evidently increased hazard compared to exposure to each of the eight fragrance ingredients separately. Cytokine analyses results indicate that both TH1 and TH2 cytokines are involved in the regulation of murine contact allergy and can be considered as useful endpoints. Copyright © 2014 Elsevier Ltd. All rights reserved.
Scaglione, Francesco; Lucini, Valeria; Pannacci, Marilou; Caronno, Alessia; Leone, Claude
2008-01-01
Serenoa repens extract is the phytotherapeutic agent most frequently used for the treatment of the urological symptoms caused by benign prostatic hyperplasia. There are many extracts in the market and each manufacturer uses different extraction processes; for this reason, it's possible that one product is not equivalent to another. The aim of this study was to compare the activity of different extracts of Serenoa repens marketed in Italy. The following extracts were tested on 10 day co-cultured epithelial and fibroblast cells by a 5alpha-reductase activity assay: Permixon, Saba, Serpens, Idiprost, Prostamev, Profluss and Prostil. In order to assess the variability in Serenoa repens products, 2 different batches for each brand were evaluated. All extracts tested, albeit variably, are able to inhibit both isoforms of 5alpha-reductase. However, the potency of the extracts appears to be very different, as well as the potencies of 2 different batches of the same extract. This is probably due to qualitative and quantitative differences in the active ingredients. So, the product of each company must be tested to evaluate the clinical efficacy and bioactivity. Copyright 2008 S. Karger AG, Basel.
Gopinath, Ponnusamy Manogaran; Ranjani, Anandan; Dhanasekaran, Dharumadurai; Thajuddin, Nooruddin; Archunan, Govindaraju; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman
2016-01-01
The present study was aimed at evaluating the fluorescence property, sporicidal potency against Bacillus and Clostridium endospores, and surface disinfecting ability of biogenic nano silver. The nano silver was synthesized using an actinobacterial cell-filtrate. The fluorescence property as well as imaging facilitator potency of this nano silver was verified adopting spectrofluorometer along with fluorescent and confocal laser scanning microscope wherein strong emission and bright green fluorescence, respectively, on the entire spore surface was observed. Subsequently, the endospores of B. subtilis, B. cereus, B. amyloliquefaciens, C. perfringens and C. difficile were treated with physical sporicides, chemical sporicides and nano silver, in which the nano silver brought about pronounced inhibition even at a very low concentration. Finally, the environmental surface-sanitizing potency of nano silver was investigated adopting cage co-contamination assay, wherein vital organs of mice exposed to the nano silver-treated cage did not show any signs of pathological lesions, thus signifying the ability of nano silver to completely disinfect the spore or reduce the count required for infection. Taken these observations together, we have shown the multi-functional biological properties of the nano silver, synthesized using an actinobacterial cell-filtrate, which could be of application in advanced diagnostics, biomedical engineering and therapeutics in the near future. PMID:27666290
The role of non-covalent protein binding in skin sensitisation potency of chemicals.
Aleksic, Maja; Thain, Emma; Gutsell, Stephen J; Pease, Camilla K; Basketter, David A
2007-01-01
Skin sensitisation is a delayed hypersensitivity reaction caused by repeated exposure to common natural and synthetic chemical allergens. It is thought that small chemical sensitisers (haptens) are required to form a strong irreversible bond with a self protein/peptide and generate an immunogenic hapten-protein complex in order to be recognised by the immune system and stimulate T cell proliferation. The sensitisers are usually electrophilic chemicals that are directly reactive with proteins or reactive intermediates (metabolites) of chemically inert compounds (prohaptens). Sensitising chemicals are also capable of weak, non-covalent association with proteins and there is an ongoing debate about the role of weak interactions of chemicals and proteins in the chemistry of allergy. The non-covalent interactions are reversible and thus have a major impact on skin/epidermal bioavailability of chemical/reactive metabolites. We investigated the relationship between the relative level of non-covalent association to a model protein and their relative potencies as determined by the EC3 values in the murine local lymph node assay (LLNA) for a number of chemicals. Using human serum albumin as a model protein, we determined that no observable relationship exists between the two parameters for the chemicals tested. Therefore, at least for this model protein, non-covalent interactions appear not to be a key determinant of allergen potency.
Pellett, Sabine; Du, Zhong-wei; Pier, Christina L; Tepp, William H; Zhang, Su-chun; Johnson, Eric A
2011-01-07
Botulinum neurotoxins (BoNTs), the most poisonous protein toxins known, represent a serious bioterrorism threat but are also used as a unique and important bio-pharmaceutical to treat an increasing myriad of neurological disorders. The only currently accepted detection method by the United States Food and Drug Administration for biological activity of BoNTs and for potency determination of pharmaceutical preparations is the mouse bioassay (MBA). Recent advances have indicated that cell-based assays using primary neuronal cells can provide an equally sensitive and robust detection platform as the MBA to reliably and quantitatively detect biologically active BoNTs. This study reports for the first time a BoNT detection assay using mouse embryonic stem cells to produce a neuronal cell culture. The data presented indicate that this assay can reliably detect BoNT/A with a similar sensitivity as the MBA. Published by Elsevier Inc.
Synthesis and Biological Evaluation of Botulinum Neurotoxin A Protease Inhibitors
Li, Bing; Pai, Ramdas; Cardinale, Steven C.; Butler, Michelle M.; Peet, Norton P.; Moir, Donald T.; Bavari, Sina; Bowlin, Terry L.
2010-01-01
NSC 240898 was previously identified as a botulinum neurotoxin A light chain (BoNT/A LC) endopeptidase inhibitor by screening the National Cancer Institute Open Repository diversity set. Two types of analogs have been synthesized and shown to inhibit BoNT/A LC in a FRET-based enzyme assay, with confirmation in an HPLC-based assay. These two series of compounds have also been evaluated for inhibition of anthrax lethal factor (LF), an unrelated metalloprotease, to examine enzyme specificity of the BoNT/A LC inhibition. The most potent inhibitor against BoNT/A LC in these two series is compound 12 (IC50 = 2.5 µM, FRET assay), which is 4.4-fold more potent than the lead structure, and 11.2-fold more selective for BoNT/A LC versus the anthrax LF metalloproteinase. Structure-activity relationship studies have revealed structural features important to potency and enzyme specificity. PMID:20155918
Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti
Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.
2012-01-01
The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795
Stress Induces AMP-Dependent Loss of Potency Factors Id2 and Cdx2 in Early Embryos and Stem Cells
Xie, Yufen; Awonuga, Awoniyi; Liu, Jian; Rings, Edmond; Puscheck, Elizabeth Ella
2013-01-01
The AMP-activated protein kinase (AMPK) mediates rapid, stress-induced loss of the inhibitor of differentiation (Id)2 in blastocysts and trophoblast stem cells (TSC), and a lasting differentiation in TSC. However, it is not known if AMPK regulates other potency factors or regulates them before the blastocyst stage. The caudal-related homeodomain protein (Cdx)2 is a regulatory gene for determining TSC, the earliest placental lineage in the preimplantation mouse embryo, but is expressed in the oocyte and in early cleavage stage embryos before TSC arise. We assayed the expression of putative potency-maintaining phosphorylated Cdx2 ser60 in the oocyte, two-cell stage embryo, blastocyst, and in TSC. We studied the loss of Cdx2 phospho ser60 expression induced by hyperosmolar stress and its underlying mechanisms. Hyperosmolar stress caused rapid loss of nuclear Cdx2 phospho ser60 and Id2 in the two-cell stage embryo by 0.5 h. Stress-induced Cdx2 phospho ser60 and Id2 loss is reversed by the AMPK inhibitor compound C and is induced by the AMPK agonist 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide in the absence of stress. In the two-cell stage embryo and TSC hyperosmolar, stress caused AMPK-mediated loss of Cdx2 phospho ser60 as detected by immunofluorescence and immunoblot. We propose that AMPK may be the master regulatory enzyme for mediating stress-induced loss of potency as AMPK is also required for stress-induced loss of Id2 in blastocysts and TSC. Since AMPK mediates potency loss in embryos and stem cells it will be important to measure, test mechanisms for, and manage the AMPK function to optimize the stem cell and embryo quality in vitro and in vivo. PMID:23316940
Ezendam, Janine; Braakhuis, Hedwig M; Vandebriel, Rob J
2016-12-01
The hazard assessment of skin sensitizers relies mainly on animal testing, but much progress is made in the development, validation and regulatory acceptance and implementation of non-animal predictive approaches. In this review, we provide an update on the available computational tools and animal-free test methods for the prediction of skin sensitization hazard. These individual test methods address mostly one mechanistic step of the process of skin sensitization induction. The adverse outcome pathway (AOP) for skin sensitization describes the key events (KEs) that lead to skin sensitization. In our review, we have clustered the available test methods according to the KE they inform: the molecular initiating event (MIE/KE1)-protein binding, KE2-keratinocyte activation, KE3-dendritic cell activation and KE4-T cell activation and proliferation. In recent years, most progress has been made in the development and validation of in vitro assays that address KE2 and KE3. No standardized in vitro assays for T cell activation are available; thus, KE4 cannot be measured in vitro. Three non-animal test methods, addressing either the MIE, KE2 or KE3, are accepted as OECD test guidelines, and this has accelerated the development of integrated or defined approaches for testing and assessment (e.g. testing strategies). The majority of these approaches are mechanism-based, since they combine results from multiple test methods and/or computational tools that address different KEs of the AOP to estimate skin sensitization potential and sometimes potency. Other approaches are based on statistical tools. Until now, eleven different testing strategies have been published, the majority using the same individual information sources. Our review shows that some of the defined approaches to testing and assessment are able to accurately predict skin sensitization hazard, sometimes even more accurate than the currently used animal test. A few defined approaches are developed to provide an estimate of the potency sub-category of a skin sensitizer as well, but these approaches need further independent evaluation with a new dataset of chemicals. To conclude, this update shows that the field of non-animal approaches for skin sensitization has evolved greatly in recent years and that it is possible to predict skin sensitization hazard without animal testing.
Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies.
Ibrahim, Ahmad H; Li, Haibo; Al-Rawi, Sawsan S; Majid, Aman Shah Abdul; Al-Habib, Omar Am; Xia, Xiaobo; Majid, Amin Ms Abdul; Ji, Dan
2017-01-01
The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays. Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot. FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells ( P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells ( P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control ( P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 ( P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs ( P = 0.006 and 0.000, respectively). Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway.
Li, Hongru; Zony, Chati; Chen, Ping; Chen, Benjamin K
2017-05-01
Broadly neutralizing antibodies (bNAbs) have been isolated from HIV-1 patients and can potently block infection of a wide spectrum of HIV-1 subtypes. These antibodies define common epitopes shared by many viral isolates. While bNAbs potently antagonize infection with cell-free virus, inhibition of HIV-1 transmission from infected to uninfected CD4 + T cells through virological synapses (VS) has been found to require greater amounts of antibody. In this study, we examined two well-studied molecular clones and two transmitted/founder (T/F) clones for their sensitivities to a panel of bNAbs in cell-free and cell-to-cell infection assays. We observed resistance of cell-to-cell transmission to antibody neutralization that was reflected not only by reductions of antibody potency but also by decreases in maximum neutralization capacity relative to the levels seen with cell-free infections. BNAbs targeting different epitopes exhibited incomplete neutralization against cell-associated virus with T/F Envs, which was not observed with the cell-free form of the same virus. We further identified the membrane-proximal internal tyrosine-based sorting motif as a determinant that can affect the incomplete neutralization of these T/F clones in cell-to-cell infection. These findings indicate that the signal that affects surface expression and/or internalization of Env from the plasma membrane can modulate the presentation of neutralizing epitopes on infected cells. These results highlight that a fraction of virus can escape from high concentrations of antibody through cell-to-cell infection while remaining sensitive to neutralization in cell-free infection. The ability to fully inhibit cell-to-cell transmission may represent an important consideration in the development of antibodies for treatment or prophylaxis. IMPORTANCE In recent years, isolation of new-generation HIV-1 bNAbs has invigorated HIV vaccine research. These bNAbs display remarkable potency and breadth of coverage against cell-free virus; however, they exhibit a diminished ability to block HIV-1 cell-to-cell transmission. The mechanism(s) by which HIV-1 resists neutralization when transmitting through VS remains uncertain. We examined a panel of bNAbs for their ability to neutralize HIV-1 T/F viruses in cell-to-cell infection assays. We found that some antibodies exhibit not only reduced potency but also decreased maximum neutralization capacity or in vitro efficacy against cell-to-cell infection of HIV-1 with T/F Envs compared to cell-free infection of the same virus. We further identified the membrane-proximal internal tyrosine-based sorting motif YXXL as a determinant that can affect the incomplete neutralization phenotype of these T/F clones. When the maximum neutralization capacity falls short of 100%, this can have a major impact on the ability of antibodies to halt viral replication. Copyright © 2017 American Society for Microbiology.
RELATIVE POTENCY RANKING FOR CHLOROPHENOLS
Recently the National Center for Environmental Assessment-Cincinnati completed a feasibility study for developing a toxicity related relative potency ranking scheme for chlorophenols. In this study it was concluded that a large data base exists pertaining to the relative toxicity...
Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells.
Du, Zhong-Wei; Chen, Hong; Liu, Huisheng; Lu, Jianfeng; Qian, Kun; Huang, CindyTzu-Ling; Zhong, Xiaofen; Fan, Frank; Zhang, Su-Chun
2015-03-25
Human pluripotent stem cells (hPSCs) have opened new opportunities for understanding human development, modelling disease processes and developing new therapeutics. However, these applications are hindered by the low efficiency and heterogeneity of cell types, such as motorneurons (MNs), differentiated from hPSCs as well as our inability to maintain the potency of lineage-committed progenitors. Here by using a combination of small molecules that regulate multiple signalling pathways, we develop a method to guide human embryonic stem cells to a near-pure population (>95%) of motor neuron progenitors (MNPs) in 12 days, and an enriched population (>90%) of functionally mature MNs in an additional 16 days. More importantly, the MNPs can be expanded for at least five passages so that a single MNP can be amplified to 1 × 10(4). This method is reproducible in human-induced pluripotent stem cells and is applied to model MN-degenerative diseases and in proof-of-principle drug-screening assays.
Ward, Richard A; Anderton, Mark J; Ashton, Susan; Bethel, Paul A; Box, Matthew; Butterworth, Sam; Colclough, Nicola; Chorley, Christopher G; Chuaqui, Claudio; Cross, Darren A E; Dakin, Les A; Debreczeni, Judit É; Eberlein, Cath; Finlay, M Raymond V; Hill, George B; Grist, Matthew; Klinowska, Teresa C M; Lane, Clare; Martin, Scott; Orme, Jonathon P; Smith, Peter; Wang, Fengjiang; Waring, Michael J
2013-09-12
A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.
Roberts, David W; Patlewicz, Grace; Kern, Petra S; Gerberick, Frank; Kimber, Ian; Dearman, Rebecca J; Ryan, Cindy A; Basketter, David A; Aptula, Aynur O
2007-07-01
The goal of eliminating animal testing in the predictive identification of chemicals with the intrinsic ability to cause skin sensitization is an important target, the attainment of which has recently been brought into even sharper relief by the EU Cosmetics Directive and the requirements of the REACH legislation. Development of alternative methods requires that the chemicals used to evaluate and validate novel approaches comprise not only confirmed skin sensitizers and non-sensitizers but also substances that span the full chemical mechanistic spectrum associated with skin sensitization. To this end, a recently published database of more than 200 chemicals tested in the mouse local lymph node assay (LLNA) has been examined in relation to various chemical reaction mechanistic domains known to be associated with sensitization. It is demonstrated here that the dataset does cover the main reaction mechanistic domains. In addition, it is shown that assignment to a reaction mechanistic domain is a critical first step in a strategic approach to understanding, ultimately on a quantitative basis, how chemical properties influence the potency of skin sensitizing chemicals. This understanding is necessary if reliable non-animal approaches, including (quantitative) structure-activity relationships (Q)SARs, read-across, and experimental chemistry based models, are to be developed.
[Companion Diagnostics for Selecting Antiretroviral Drugs against HIV-1].
Fukutake, Katsuyuki
2015-11-01
Currently, the treatment of human immunodeficiency virus involves combination therapy, as antiretroviral therapy(ART). The treatment has improved steadily since the advent of potent combination therapy in 1996. New drugs that offer new mechanisms of action, improvements in potency and activity even against multidrug-resistant viruses, dosing convenience, and tolerability have been approved. Among ART with useful drugs, there are two important examinations before starting the treatment using the two kinds of drug. CCR5 co-receptor antagonists, maraviroc, prevent HIV entry into target cells by binding to CCR5 receptors. Genotypic assays have been developed that can determine or predict the co-receptor tropism(i.e., CCR5, CXCR4, or both) of the patient's dominant virus population. The assay for HIV-1 co-receptor usage should be performed whenever the use of a CCR5 antagonist is being considered. One of the nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), abacavir, is an important agent to develop recommended regimens for antiretroviral therapy. Serious and sometimes fatal hypersensitivity reactions have been associated with abacavir-containing products, ZIAGEN, Epzicom, and Triumeq. Patients who carry the HLA-B*5701 allele are at high-risk of a hypersensitivity reaction to abacavir. Prior to initiating therapy with abacavir, performing a screening test for the HLA-B*5701 allele is recommended. [Review].
TIMES-SS--recent refinements resulting from an industrial skin sensitisation consortium.
Patlewicz, G; Kuseva, C; Mehmed, A; Popova, Y; Dimitrova, G; Ellis, G; Hunziker, R; Kern, P; Low, L; Ringeissen, S; Roberts, D W; Mekenyan, O
2014-01-01
The TImes MEtabolism Simulator platform for predicting Skin Sensitisation (TIMES-SS) is a hybrid expert system, first developed at Bourgas University using funding and data from a consortium of industry and regulators. TIMES-SS encodes structure-toxicity and structure-skin metabolism relationships through a number of transformations, some of which are underpinned by mechanistic 3D QSARs. The model estimates semi-quantitative skin sensitisation potency classes and has been developed with the aim of minimising animal testing, and also to be scientifically valid in accordance with the OECD principles for (Q)SAR validation. In 2007 an external validation exercise was undertaken to fully address these principles. In 2010, a new industry consortium was established to coordinate research efforts in three specific areas: refinement of abiotic reactions in the skin (namely autoxidation) in the skin, refinement of the manner in which chemical reactivity was captured in terms of structure-toxicity rules (inclusion of alert reliability parameters) and defining the domain based on the underlying experimental data (study of discrepancies between local lymph node assay Local Lymph Node Assay (LLNA) and Guinea Pig Maximisation Test (GPMT)). The present paper summarises the progress of these activities and explains how the insights derived have been translated into refinements, resulting in increased confidence and transparency in the robustness of the TIMES-SS predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Molina, Jose-Manuel; INSERM, U896, Montpellier, F-34298; Universite Montpellier1, Montpellier, F-34298
Benzophenone (BP) derivatives, BP1 (2,4-dihydroxybenzophenone), BP2 (2,2',4,4'-tetrahydroxybenzophenone), BP3 (2-hydroxy-4-methoxybenzophenone), and THB (2,4,4'-trihydroxybenzophenone) are UV-absorbing chemicals widely used in pharmaceutical, cosmetics, and industrial applications, such as topical sunscreens in lotions and hair sprays to protect skin and hair from UV irradiation. Studies on their endocrine disrupting properties have mostly focused on their interaction with human estrogen receptor alpha (hER{alpha}), and there has been no comprehensive analysis of their potency in a system allowing comparison between hER{alpha} and hER{beta} activities. The objective of this study was to provide a comprehensive ER activation profile of BP derivatives using ER from human and fishmore » origin in a battery of in vitro tests, i.e., competitive binding, reporter gene based assays, vitellogenin (Vtg) induction in isolated rainbow trout hepatocytes, and proliferation based assays. The ability to induce human androgen receptor (hAR)-mediated reporter gene expression was also examined. All BP derivatives tested except BP3 were full hER{alpha} and hER{beta} agonists (BP2 > THB > BP1) and displayed a stronger activation of hER{beta} compared with hER{alpha}, the opposite effect to that of estradiol (E{sub 2}). Unlike E{sub 2}, BPs were more active in rainbow trout ER{alpha} (rtER{alpha}) than in hER{alpha} assay. All four BP derivatives showed anti-androgenic activity (THB > BP2 > BP1 > BP3). Overall, the observed anti-androgenic potencies of BP derivatives, together with their proposed greater effect on ER{beta} versus ER{alpha} activation, support further investigation of their role as endocrine disrupters in humans and wildlife.« less
Ren, Xiao-Min; Guo, Liang-Hong; Gao, Yu; Zhang, Bin-Tian; Wan, Bin
2013-05-01
Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2'-OH-BDE-28, 3'-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3'-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong, Esther de, E-mail: Esther.de.Jong@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Barenys, Marta
2011-06-01
The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds, flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known inmore » vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.« less
de Jong, Esther; Barenys, Marta; Hermsen, Sanne A B; Verhoef, Aart; Ossendorp, Bernadette C; Bessems, Jos G M; Piersma, Aldert H
2011-06-01
The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds,(1) flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays. Copyright © 2011 Elsevier Inc. All rights reserved.
Dimitrov, S; Detroyer, A; Piroird, C; Gomes, C; Eilstein, J; Pauloin, T; Kuseva, C; Ivanova, H; Popova, I; Karakolev, Y; Ringeissen, S; Mekenyan, O
2016-12-01
When searching for alternative methods to animal testing, confidently rescaling an in vitro result to the corresponding in vivo classification is still a challenging problem. Although one of the most important factors affecting good correlation is sample characteristics, they are very rarely integrated into correlation studies. Usually, in these studies, it is implicitly assumed that both compared values are error-free numbers, which they are not. In this work, we propose a general methodology to analyze and integrate data variability and thus confidence estimation when rescaling from one test to another. The methodology is demonstrated through the case study of rescaling the in vitro Direct Peptide Reactivity Assay (DPRA) reactivity to the in vivo Local Lymph Node Assay (LLNA) skin sensitization potency classifications. In a first step, a comprehensive statistical analysis evaluating the reliability and variability of LLNA and DPRA as such was done. These results allowed us to link the concept of gray zones and confidence probability, which in turn represents a new perspective for a more precise knowledge of the classification of chemicals within their in vivo OR in vitro test. Next, the novelty and practical value of our methodology introducing variability into the threshold optimization between the in vitro AND in vivo test resides in the fact that it attributes a confidence probability to the predicted classification. The methodology, classification and screening approach presented in this study are not restricted to skin sensitization only. They could be helpful also for fate, toxicity and health hazard assessment where plenty of in vitro and in chemico assays and/or QSARs models are available. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Tierney, Rob; Stickings, Paul; Hockley, Jason; Rigsby, Peter; Iwaki, Masaaki; Sesardic, Dorothea
2011-11-01
We present the results of a collaborative study for the establishment of a replacement International Standard (IS) for Tetanus Toxoid Adsorbed. Two candidate preparations were included in the study, one of which was established as the 4th IS for Tetanus Toxoid Adsorbed at the WHO Expert Committee on Biological Standardization meeting in October 2010. This preparation was found to have a unitage of 490 IU/ampoule, based on calibration in guinea pig challenge assays. Results from mouse challenge assays suggest that the relative performance of two candidate preparations may differ significantly between guinea pigs and mice. The authors note that the number of laboratories that performed guinea pig challenge assays, which are used to calibrate and assign IU, is much lower than in previous collaborative studies and this may have implications for calibration of replacement standards in the future. The issue of assigning separate units to the IS for guinea pig and mouse assays is discussed. The study also assessed performance of the replacement standard in serological assays which are used as alternative procedures to challenge assays for tetanus potency testing. Results suggest that the replacement standard is suitable for use as the reference vaccine in serological assays. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhide, Rajeev S.; Keon, Alec; Weigelt, Carolyn
2017-11-01
The identification of small molecule inhibitors of IRAK4 for the treatment of autoimmune diseases has been an area of intense research. We discovered novel 4,6-diaminonicotinamides which potently inhibit IRAK4. Optimization efforts were aided by X-ray crystal structures of inhibitors bound to IRAK4. Structure activity relationship (SAR) studies led to the identification of compound 29 which exhibited sub-micromolar potency in a LTA stimulated cellular assay.
Divergent modes of enzyme inhibition in a homologous structure-activity series.
Ferreira, Rafaela S; Bryant, Clifford; Ang, Kenny K H; McKerrow, James H; Shoichet, Brian K; Renslo, Adam R
2009-08-27
A docking screen identified reversible, noncovalent inhibitors (e.g., 1) of the parasite cysteine protease cruzain. Chemical optimization of 1 led to a series of oxadiazoles possessing interpretable SAR and potencies as much as 500-fold greater than 1. Detailed investigation of the SAR series subsequently revealed that many members of the oxadiazole class (and surprisingly also 1) act via divergent modes of inhibition (competitive or via colloidal aggregation) depending on the assay conditions employed.
Reactivity measurement in estimation of benzoquinone and benzoquinone derivatives’ allergenicity
Mbiya, Wilbes; Chipinda, Itai; Simoyi, Reuben H.; Siegel, Paul D.
2015-01-01
Benzoquinone (BQ) and benzoquinone derivatives (BQD) are used in the production of dyes and cosmetics. While BQ, an extreme skin sensitizer, is an electrophile known to covalently modify proteins via Michael Addition (MA) reaction whilst halogen substituted BQD undergo nucleophilic vinylic substitution (SNV) mechanism onto amine and thiol moieties on proteins, the allergenic effects of adding substituents on BQ have not been reported. The effects of inserting substituents on the BQ ring has not been studied in animal assays. However, mandated reduction/elimination of animals used in cosmetics testing in Europe has led to an increased need for alternatives for the prediction of skin sensitization potential. Electron withdrawing and electron donating substituents on BQ were assessed for effects on BQ reactivity toward nitrobenzene thiol (NBT). The NBT binding studies demonstrated that addition of EWG to BQ as exemplified by the chlorine substituted BQDs increased reactivity while addition of EDG as in the methyl substituted BQDs reduced reactivity. BQ and BQD skin allerginicity was evaluated in the murine local lymph node assay (LLNA). BQD with electron withdrawing groups had the highest chemical potency followed by unsubstituted BQ and the least potent were the BQD with electron donating groups. The BQD results demonstrate the impact of inductive effects on both BQ reactivity and allergenicity, and suggest the potential utility of chemical reactivity data for electrophilic allergen identification and potency ranking. PMID:26612505
Basketter, David; Ashikaga, Takao; Casati, Silvia; Hubesch, Bruno; Jaworska, Joanna; de Knecht, Joop; Landsiedel, Robert; Manou, Irene; Mehling, Annette; Petersohn, Dirk; Rorije, Emiel; Rossi, Laura H; Steiling, Winfried; Teissier, Silvia; Worth, Andrew
2015-11-01
In the two years since the last workshop report, the environment surrounding the prediction of skin sensitisation hazards has experienced major change. Validated non-animal tests are now OECD Test Guidelines. Accordingly, the recent cross sector workshop focused on how to use in vitro data for regulatory decision-making. After a review of general approaches and six case studies, there was broad consensus that a simple, transparent stepwise process involving non-animal methods was an opportunity waiting to be seized. There was also strong feeling the approach should not be so rigidly defined that assay variations/additional tests are locked out. Neither should it preclude more complex integrated approaches being used for other purposes, e.g. potency estimation. All agreed the ultimate goal is a high level of protection of human health. Thus, experience in the population will be the final arbiter of whether toxicological predictions are fit for purpose. Central to this is the reflection that none of the existing animal assays is perfect; the non-animal methods should not be expected to be so either, but by integrated use of methods and all other relevant information, including clinical feedback, we have the opportunity to continue to improve toxicology whilst avoiding animal use. Copyright © 2015 Elsevier Inc. All rights reserved.
Titze, Melanie I; Schaaf, Otmar; Hofmann, Marco H; Sanderson, Michael P; Zahn, Stephan K; Quant, Jens; Lehr, Thorsten
2016-06-01
BI 893923 is a novel IGF1R/INSR tyrosine kinase inhibitor demonstrating anti-tumor efficacy and good tolerability. We aimed to characterize the relationship between BI 893923 plasma concentration, tumor biomarker modulation, tumor growth and hyperglycemia in mice using in silico modeling analyses. In vitro molecular and cellular assays were used to demonstrate the potency and selectivity of BI 893923. Diverse in vitro DMPK assays were used to characterize the compound's drug-like properties. Mice xenografted with human GEO tumors were treated with different doses of BI 893923 to demonstrate the compound's efficacy, biomarker modulation and tolerability. PK/PD analyses were performed using nonlinear mixed-effects modeling. BI 893923 demonstrated potent and selective molecular inhibition of the IGF1R and INSR and demonstrated attractive drug-like properties (permeability, bioavailability). BI 893923 dose-dependently reduced GEO tumor growth and demonstrated good tolerability, characterized by transient hyperglycemia and normal body weight gain. A population PK/PD model was developed, which established relationships between BI 893923 pharmacokinetics, hyperglycemia, pIGF1R reduction and tumor growth. BI 893923 demonstrates molecular properties consistent with a highly attractive inhibitor of the IGF1R/INSR. A generic PK/PD model was developed to support preclinical drug development and dose finding in mice.
Kaddour-Djebbar, I; Ansari, H R; Akhtar, R A; Abdel-Latif, A A
2005-01-01
There is evidence from our own laboratory and that of others that EP-receptor ligands are strong contractile agonists in bovine iris sphincter and that FP-receptor agonists are strong contractile agonists in cat iris sphincter. Here, we have investigated the effects of prostaglandin (PG) receptor agonists of the FP-, EP-, TP- and DP-class on myosin light chain (MLC) phosphorylation, p42/p44 MAP kinase phosphorylation and contraction in the iris sphincter of bovine and cat. Using three signal transduction mechanism assays, namely MLC phosphorylation, MAP kinase phosphorylation and contraction, we demonstrated that in bovine iris sphincter the rank order of potency of the PG agonists in the contractile and MLC phosphorylation assays is as follows: E2>U46619>F2alpha>D2, and in cat F2alpha>D2>E2>U46619. In the MAP kinase assay, in bovine iris sphincter the rank order of potency is E2>F2alpha and in cat F2alpha>E2. These conclusions are supported by the following findings: (1) In the contractile assay, in the bovine sphincter the EC50s for PGF2alpha, PGE2, U46619 and PGD2 were found to be 1.4x10(-7), 5.0x10(-9), 9.0x10(-9) and 1.3x10(-6)M, respectively, and the corresponding values in the cat were 1.9x10(-8), 2.3x10(-7), 1.5x10(-6) and 6.9x10(-8)M, respectively. (2) In the MLC phophorylation assay, in the bovine sphincter PGF2alpha, PGE2, U46619 and PGD2 increased MLC phophorylation by 118%, 165%, 153% and 72%, respectively, and the corresponding values in cat were 175%, 99%, 90% and 95%, respectively. (3) In the MAP kinase assay, in the bovine iris sphincter PGF2alpha and PGE2, increased MAP kinase phosphorylation by 276% and 328%, respectively, and the corresponding values in cat were 308% and 245%, respectively. The data presented demonstrate pronounced species differences in the effects of the prostanoids on the MLC kinase signaling pathway in bovine and cat irides and furthermore confirm the existence of FP-receptors in that of the bovine.
NASA Astrophysics Data System (ADS)
Jabeen, Erum; Janjua, Naveed Kausar; Ahmed, Safeer; Murtaza, Iram; Ali, Tahir; Hameed, Shahid
2017-01-01
Cu2 + and Fe3 + complexes of three flavonoids (morin or mo, quercetin or quer and primuletin or prim) were synthesized with the objective of improving antioxidant capacities of flavonoids. The radical scavenging activities of pure flavonoids and their metal complexes were assayed to monitor their tendencies towards sequestering of radicals at physiological conditions. The scavenger potencies of metal-flavonoid complexes were significantly higher than those of the parent flavonoids. Further, influence of the solvent polarity on the radical capturing by flavonoids and their metal complexes was in favor for the polar solvent. Fe3 +-prim displayed its radical scavenging ability via up gradation of CAT and SOD activities in in-vivo antioxidant assays.
Lokhande, Tushar Narendra; Viswanathan, Chelakara Lakshmann; Juvekar, Aarti Shashikant
2008-07-01
A novel class of molecules with structure N-[3-(heteroaryl)propyl]-6-methoxynaphthalene-2-carboxamides 8-13 were synthesized by condensing 6-methoxy-2-naphthoyl chloride 1 with 3-(heteroaryl)propyl amines 2-7. Compounds 8-12 were evaluated in vitro, in P388 murine lymphocytic leukemia cell line (P388) using SRB assay for cytotoxicity and in adriamycin resistant P388 murine lymphocytic leukemia cell line (P388/ADR) using MTT assay for resistant reversal activity. Compounds 8-12 were non-toxic at lower dose of 20 microg/ml, and effectively reversed adriamycin resistance. However, at higher doses (40, 80 microg/ml) they showed significant cytotxicity and hence reversal potency was not determined at these concentrations.
Ndumnego, Okechukwu C; Crafford, Jannie; Beyer, Wolfgang; van Heerden, Henriette
2013-12-27
Presently, few data exist on the level and duration of anti-protective antigen (PA) IgG in vaccinated livestock. Various adaptation of enzyme-linked immunosorbent assays (ELISAs) have been developed in studies to assess immune response following vaccination, albeit mostly in laboratory rodent models. The quantitative anti-anthrax IgG ELISA in this study describes a method of enumerating the concentration of anti-PA specific IgG present in sera of immunized goats, with the aid of an affinity-purified caprine polyclonal anti-anthrax PA-83 IgG standard. This was compared with the anthrax toxin neutralization assay (TNA) which measures a functional subset of toxin neutralizing anti-PA IgG. The measured concentrations obtained in the standard curve correlated with the known concentration at each dilution. Percentage recovery of the standard concentrations ranged from 89 to 98% (lower and upper asymptote respectively). Mean correlation coefficient (r2) of the standard curve was 0.998. Evaluation of the intra-assay coefficient of variation showed ranges of 0.23-16.90% and 0.40-12.46% for days 28 and 140 sera samples respectively, following vaccination. The mean inter-assay coefficient of variation for triplicate samples repeated on 5 different days was 18.53 and 12.17% for days 28 and 140 sera samples respectively. Spearman's rank correlation of log-transformed IgG concentrations and TNA titres showed strong positive correlation (rs = 0.942; p = 0.01). This study provides evidence that an indirect ELISA can be used for the quantification of anti-anthrax PA IgG in goats with the added advantage of using single dilutions to save time and resources. The use of such related immunoassays can serve as potential adjuncts to potency tests for Sterne and other vaccine types under development in ruminant species. This is the first report on the correlation of polyclonal anti-anthrax PA83 antibody with the TNA in goats.
Delekta, Phillip C; Dobry, Craig J; Sindac, Janice A; Barraza, Scott J; Blakely, Pennelope K; Xiang, Jianming; Kirchhoff, Paul D; Keep, Richard F; Irani, David N; Larsen, Scott D; Miller, David J
2014-10-01
Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of neurotropic alphaviruses and, potentially, of other RNA viruses. IMPORTANCE There are currently no approved drugs to treat infections with alphaviruses. We previously identified a novel series of compounds with activity against these potentially devastating pathogens (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). We have now produced third-generation compounds with enhanced potency, and this manuscript provides detailed information on the antiviral activity of these advanced-generation compounds, including activity in an animal model. The results of this study represent a notable achievement in the continued development of this novel class of antiviral inhibitors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Delekta, Phillip C.; Dobry, Craig J.; Sindac, Janice A.; Barraza, Scott J.; Blakely, Pennelope K.; Xiang, Jianming; Kirchhoff, Paul D.; Keep, Richard F.; Irani, David N.; Larsen, Scott D.
2014-01-01
ABSTRACT Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of neurotropic alphaviruses and, potentially, of other RNA viruses. IMPORTANCE There are currently no approved drugs to treat infections with alphaviruses. We previously identified a novel series of compounds with activity against these potentially devastating pathogens (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:http://dx.doi.org/10.1086/597275; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, http://dx.doi.org/10.1021/jm401330r). We have now produced third-generation compounds with enhanced potency, and this manuscript provides detailed information on the antiviral activity of these advanced-generation compounds, including activity in an animal model. The results of this study represent a notable achievement in the continued development of this novel class of antiviral inhibitors. PMID:25031353
Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wada, Akihiro, E-mail: a-wada@nagasaki-u.ac.jp; Wong, Pooi-Fong; Hojo, Hironobu
Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radialmore » diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.« less
Fakhrudin, Nanang; Dwi Astuti, Eny; Sulistyawati, Rini; Santosa, Djoko; Susandarini, Ratna; Nurrochmad, Arief; Wahyuono, Subagus
2017-03-13
Inflammation is involved in the progression of many disorders, such as tumors, arthritis, gastritis, and atherosclerosis. Thus, the development of new agents targeting inflammation is still challenging. Medicinal plants have been used traditionally to treat various diseases including inflammation. A previous study has indicated that dichloromethane extract of P. lanceolata leaves exerts anti-inflammatory activity in an in vitro model. Here, we examined the in vivo anti-inflammatory activities of a n -hexane insoluble fraction of P. lanceolata leaves dichloromethane extract (HIFPL). We first evaluated its potency to reduce paw edema induced by carrageenan, and the expression of the proinflammatory enzyme, cyclooxygenase (COX)-2, in mice. The efficacy of HIFPL to inhibit COX-2 was also evaluated in an in vitro enzymatic assay. We further studied the effect of HIFPL on leukocytes migration in mice induced by thioglycollate. The level of chemokines facilitating the migration of leukocytes was also measured. We found that HIFPL (40, 80, 160 mg/kg) demonstrated anti-inflammatory activities in mice. The HIFPL reduced the volume of paw edema and COX-2 expression. However, HIFPL acts as an unselective COX-2 inhibitor as it inhibited COX-1 with a slightly higher potency. Interestingly, HIFPL strongly inhibited leukocyte migration by reducing the level of chemokines, Interleukine-8 (IL-8) and Monocyte chemoattractant protein-1 (MCP-1).
Jiang, Jing; Liu, Xiaobin; Deng, Leixiu; Zhang, Peipei; Wang, Guangjun; Wang, Shifu; Liu, Honghao; Su, Yunpeng
2014-10-05
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exhibits potent antitumor activity in a wide range of cancers without deleterious side effects on normal tissues. Several TRAIL derivatives have been developed to improve its pharmacokinetics and therapeutic effects through strategies such as adding a leucine zipper to increase the circulation half-life. To obtain clinical grade LZ-TRAIL for phase I clinical trial, a single batch of 30 L bioreactor culture was performed using the Escherichia coli BL21 (DE3) strain expressing the recombinant LZ-TRAIL. A robust LZ-TRAIL production fermentation process was developed, which could be scaled up from 5L to 50 L, and had a titer of approximately 1.4 g/l. A four-step purification strategy was carried out to obtain a final product with over 95% purity and 45% yield. The final material was filter sterilized, aseptically vialed, and stored at 4°C, and comprehensively characterized using multiple assays (vialed product was sterile, purity was 95%, aggregates were <5%, potency revealed IC50 of 9 nM on MDA-MB-231 cells, and the endotoxin level was <0.25 U/mg). The purity, composition, and functional activities of the molecule were confirmed. in vivo investigations indicated that LZ-TRAIL has better antitumor potency in three Xenograft tumor models compared to TRAIL (95-281). LZ-TRAIL also showed improved pharmacokinetic and safety profiles in cynomolgus monkeys without abnormalities associated with drug exposure. In conclusion, the scalable synthesis of LZ-TRAIL is useful for production of phase I clinical trial material. These preclinical investigations warrant further clinical development of this product for cancer therapy. Copyright © 2014. Published by Elsevier B.V.
Abdel-Rahman, Eman Hussein; El-Jakee, Jakeen Kamal; Hatem, Mahmoud Essam; Ata, Nagwa Sayed; Fouad, Ehab Ali
2017-01-01
Aim: As the labeled anti-camel immunoglobulins (Igs) with enzymes for enzyme-linked immunosorbent assay (ELISA) are unavailable in the Egyptian market, the present investigation was directed for developing local labeled anti-camel IgG with horseradish peroxidase (HRP) to save hard curacy. Materials and Methods: For purification of camel IgG whole molecule, camel sera was preliminary precipitated with 50% saturated ammonium sulfate and dialyzed against 15 mM phosphate-buffered saline pH 7.2 then concentrated. This preparation was further purified by protein A sepharose affinity column chromatography. The purity of the eluted camel IgG was tested by sodium dodecyl sulfate polyacrylamide gel electrophoresi. Anti-camel IgG was prepared by immunization of goats and rabbits separately, with purified camel IgG. The anti-camel IgG was purified by protein A sepharose affinity column chromatography. Whole molecule anti-camel IgG was conjugated with HRP using glutraldehyde based assay. Sensitivity and specificity of prepared conjugated secondary antibodies were detected using positive and negative camel serum samples reacted with different antigens in ELISA, respectively. The potency of prepared conjugated antibodies was evaluated compared with protein A HRP. The stability of the conjugate at −20°C during 1 year was assessed by ELISA. Results: The electrophoretic profile of camel IgG showed four bands of molecular weight 63, 52, 40 and 33 kDa. The recorded sensitivity and specificity of the product are 100%. Its potency is also 100% compared to 58-75% of commercial protein A HRP. The conjugates are stable for 1 year at −20°C as proved by ELISA. Conclusion: Collectively, this study introduces goat and rabbit anti-camel IgG whole molecules with simple, inexpensive method, with 100% sensitivity, 100% specificity and stability up to 1 year at −20°C. The important facet of the current study is saving hard curacy. Future investigations are necessary for preparation of IgG subclasses. PMID:28246453
Mahajan, Sudipta; Hogan, James K; Shlyakhter, Dina; Oh, Luke; Salituro, Francesco G; Farmer, Luc; Hoock, Thomas C
2015-05-01
Cytokines, growth factors, and other chemical messengers rely on a class of intracellular nonreceptor tyrosine kinases known as Janus kinases (JAKs) to rapidly transduce intracellular signals. A number of these cytokines are critical for lymphocyte development and mediating immune responses. JAK3 is of particular interest due to its importance in immune function and its expression, which is largely confined to lymphocytes, thus limiting the potential impact of JAK3 inhibition on nonimmune physiology. The aim of this study was to evaluate the potency and selectivity of the investigational JAK3 inhibitor VX-509 (decernotinib) [(R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide] against JAK3 kinase activity and inhibition of JAK3-mediated signaling in vitro and JAK3-dependent physiologic processes in vivo. These results demonstrate that VX-509 potently inhibits JAK3 in enzyme assays (Ki = 2.5 nM + 0.7 nM) and cellular assays dependent on JAK3 activity (IC50 range, 50-170 nM), with limited or no measurable potency against other JAK isotypes or non-JAK kinases. VX-509 also showed activity in two animal models of aberrant immune function. VX-509 treatment resulted in dose-dependent reduction in ankle swelling and paw weight and improved paw histopathology scores in the rat collagen-induced arthritis model. In a mouse model of oxazolone-induced delayed-type hypersensitivity, VX-509 reduced the T cell-mediated inflammatory response in skin. These findings demonstrate that VX-509 is a selective and potent inhibitor of JAK3 in vitro and modulates proinflammatory response in models of immune-mediated diseases, such as collagen-induced arthritis and delayed-type hypersensitivity. The data support evaluation of VX-509 for treatment of patients with autoimmune and inflammatory diseases such as rheumatoid arthritis. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Clinical-scale expansion of mesenchymal stromal cells: a large banking experience.
Lechanteur, Chantal; Briquet, Alexandra; Giet, Olivier; Delloye, Olivier; Baudoux, Etienne; Beguin, Yves
2016-05-20
Mesenchymal stromal cells (MSC) are largely investigated in clinical trials aiming to control inappropriate immune reactions (GVHD, Crohn's disease, solid organ transplantation). As the percentage of MSC precursors in bone marrow is very low, these must be expanded in vitro to obtain therapeutic cell doses. We describe here the constitution of an allogeneic human third-party MSC bank from screened healthy volunteer donors in compliance with quality specifications and ISCT-release criteria and report follow-up of different aspects of this activity since 2007. 68 clinical-grade large-scale MSC cultures were completed and analyzed. The whole process was described, including volunteer donor screening, bone marrow collection, mononuclear cell isolation and expansion over 4 weeks, harvesting, cryopreservation, release, administration and quality controls of the cells (including microbiology, phenotype, and potency assays). From 59 validated donors, 68 cultures were completed (mean of final yields: 886 × 10(6) cells/culture) and a total of 464 MSC aliquots have been produced and stored in liquid nitrogen (mean of 132.8 × 10(6) cells/bag). Each MSC batch underwent extensive testing to verify its conformity with EBMT and ISCT release criteria and was individually validated. As of June 1 2015, 314 bags have been released and infused to patients included in 6 different clinical protocols. All thawed MSC units satisfied to release criteria and no infusion-related toxicity was reported. In conclusion, despite low passage cultures, we have been able to create an allogeneic "off-the-shelf" MSC bank with a large number of frozen aliquots and report here an efficient clinical-grade MSC banking activity in place for more than 7 years. Our challenge now is to produce MSC in compliance with good manufacturing practices (GMP) as, in the meantime, MSC have become considered as advanced therapy medicinal products (ATMP). Another significant challenge remains the development of relevant potency assay.
Sakaguchi, Hitoshi; Miyazawa, Masaaki; Yoshida, Yukiko; Ito, Yuichi; Suzuki, Hiroyuki
2007-02-01
Preservatives are important components in many products, but have a history of purported allergy. Several assays [e.g., guinea pig maximization test (GPMT), local lymph node assay (LLNA)] are used to evaluate allergy potential of preservatives. We recently developed the human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test using human THP-1 cells. This test evaluates the augmentation of CD86 and CD54 expression, which are key events in the sensitization process, as an indicator of allergy following treatment with test chemical. Earlier, we found that a sub-toxic concentration was needed for the up-regulation of surface marker expression. In this study, we further evaluate the capability of h-CLAT to predict allergy potential using eight preservatives. Cytotoxicity was determined using propidium iodide with flow cytometry analysis and five doses that produce a 95, 85, 75, 65, and 50% cell viability were selected. If a material did not have any cytotoxicity at the highest technical dose (HTD), five doses are set using serial 1.3 dilutions of the HTD. The test materials used were six known allergic preservatives (e.g., methylchloroisothiazolinone/methylisothiazolinone, formaldehyde), and two non-allergic preservatives (methylparaben and 4-hydroxybenzoic acid). All allergic preservatives augmented CD86 and/or CD54 expression, indicating h-CLAT correctly identified the allergens. No augmentation was observed with the non-allergic preservatives; also correctly identified by h-CLAT. In addition, we report two threshold concentrations that may be used to categorize skin sensitization potency like the LLNA estimated concentration that yield a three-fold stimulation (EC3) value. These corresponding values are the estimated concentration which gives a relative fluorescence intensity (RFI) = 150 for CD86 and an RFI = 200 for CD54. These data suggest that h-CLAT, using THP-1 cells, may be able to predict the allergy potential of preservatives and possibility classify the potency of an allergen.
Puy-Azurmendi, E; Olivares, A; Vallejo, A; Ortiz-Zarragoitia, M; Piña, B; Zuloaga, O; Cajaraville, M P
2014-01-01
Commercial OP and NP are complex isomer mixtures that can be individually present in the environment, showing different estrogenic potencies. The aims of this study were to establish the estrogenic potency of some AP isomers in comparison to the commercial NP (cNP) mixture in vitro and to investigate in vivo their possible effects during the embryo and larval development of zebrafish. An in vitro estrogen receptor-based recombinant yeast assay was used to test the estrogenicity of specific AP isomers (22-OP, 33-OP, 22-NP, 33-NP and 363-NP) and cNP. The EC₅₀ was in the range of 0.6-7.7 mg/L. Both OP isomers and 363-NP exhibited higher estrogenic activity than cNP. For in vivo experiments, one-day postfertilisation (dpf) embryos were exposed to cNP (50, 250 and 500 μg/L), 363-NP and 33-OP (50 μg/L), 17β-estradiol (100 ng/L) and DMSO (0.01% v/v) for 4weeks. After exposure fish were maintained for 2 weeks in clean water in order to evaluate a possible recovery. Fish of groups exposed to cNP and 363-NP were the last to hatch. Histological alterations were not observed after 7, 28 or 42 dpf. Exposure to 33-OP increased transcriptional levels of erα, vtg and cyp19a1b genes. However, transcriptional response in E2 exposure was observed at later stages and with higher fold induction levels. Exposure to cNP decreased levels of erα whereas increased levels of rxrγ and cyp19a1b. Exposure to 363-NP did not cause changes in transcriptional levels of studied genes. The differences in response of the OP isomer compared to the NP isomer in zebrafish could be related to the rapid decay in concentration of the latter. Copyright © 2013 Elsevier B.V. All rights reserved.
Toxico-Cheminformatics and QSPR Modeling of the Carcinogenic Potency Database
Report on the development of a tiered, confirmatory scheme for prediction of chemical carcinogenicity based on QSAR studies of compounds with available mutagenic and carcinogenic data. For 693 such compounds from the Carcinogenic Potency Database characterized molecular topologic...
Sun, Kui; Xing, Weiwei; Yu, Xinling; Fu, Wenliang; Wang, Yuanyuan; Zou, Minji; Luo, Zhihong; Xu, Donggang
2016-08-31
With the continuous decline in prevalence and intensity of Schistosoma japonicum infection in China, more accurate and sensitive methods suitable for field detection become much needed for schistosomiasis control. Here, a novel rapid and visual detection method based on the combination of recombinase polymerase amplification (RPA) and lateral flow dipstick (LFD) was developed to detect S. japonicum DNA in fecal samples. The LFD-RPA assay targeting SjR2 could detect 5 fg S. japonicum DNA, which was identical to qPCR and real-time RPA assay, and showed no cross-reaction with other parasites. The detection could be finished within 15-20 min at a wide temperature range (25-45 °C), and the results could be visualized by naked eye. The diagnostic validity of LFD-RPA assay was further assessed with 14 fecal samples of infected patients diagnosed by Kato-Katz method and 31 fecal samples of healthy persons, and compared with that of Enzyme-linked immunosorbent assay (ELSIA) and Indirect Hemagglutination Assay (IHA). The LFD-RPA assay showed 92.68 % sensitivity, 100 % specificity and excellent diagnostic agreement with the gold standard Kato-Katz test (k = 0.947, Z = 6.36, P < 0.001), whereas ELISA showed 85.71 % sensitivity, 93.55 % specificity, and substantial diagnostic agreement (k = 0.793, Z = 5.31, P < 0.001), and IHA showed 78.57 % sensitivity, 83.87 % specificity, and moderate diagnostic agreement (k = 0.600, Z = 4.05, P < 0.001), indicating that the LFD-RPA was much better than the traditional methods. The LFD-RPA assay established by us is a sensitive, specific, rapid and convenient method for the diagnosis of schistosomiasis, and shows a great potency in field application.
Davies, Nicola L.; Compson, Joanne E.; MacKenzie, Brendon; O'Dowd, Victoria L.; Oxbrow, Amanda K. F.; Heads, James T.; Turner, Alison; Sarkar, Kaushik; Dugdale, Sarah L.; Jairaj, Mark; Christodoulou, Louis; Knight, David E. O.; Cross, Amanda S.; Hervé, Karine J. M.; Tyson, Kerry L.; Hailu, Hanna; Doyle, Carl B.; Ellis, Mark; Kriek, Marco; Cox, Matthew; Page, Matthew J. T.; Moore, Adrian R.; Lightwood, Daniel J.
2013-01-01
Clostridium difficile infections are a major cause of antibiotic-associated diarrhea in hospital and care facility patients. In spite of the availability of effective antibiotic treatments, C. difficile infection (CDI) is still a major cause of patient suffering, death, and substantial health care costs. Clostridium difficile exerts its major pathological effects through the actions of two protein exotoxins, TcdA and TcdB, which bind to and disrupt gut tissue. Antibiotics target the infecting bacteria but not the exotoxins. Administering neutralizing antibodies against TcdA and TcdB to patients receiving antibiotic treatment might modulate the effects of the exotoxins directly. We have developed a mixture of three humanized IgG1 monoclonal antibodies (MAbs) which neutralize TcdA and TcdB to address three clinical needs: reduction of the severity and duration of diarrhea, reduction of death rates, and reduction of the rate of recurrence. The UCB MAb mixture showed higher potency in a variety of in vitro binding and neutralization assays (∼10-fold improvements), higher levels of protection in a hamster model of CDI (82% versus 18% at 28 days), and higher valencies of toxin binding (12 versus 2 for TcdA and 3 versus 2 for TcdB) than other agents in clinical development. Comparisons of the MAb properties also offered some insight into the potential relative importance of TcdA and TcdB in the disease process. PMID:23324518
Abbott, W. Mark; Snow, Melanie; Eckersley, Sonia; Renshaw, Jonathan; Davies, Gareth; Norman, Richard A.; Ceuppens, Peter; Slootstra, Jerry; Benschop, Joris J.; Hamuro, Yoshitomo; Lee, Jessica E.; Newham, Peter
2013-01-01
TNFα (tumour necrosis factor α) is an early mediator in the systemic inflammatory response to infection and is therefore a therapeutic target in sepsis. AZD9773 is an ovine-derived, polyclonal anti-TNFα Fab fragment derived from a pool of serum and currently being developed as a treatment for severe sepsis and septic shock. In the present study, we show that although AZD9773 has a modest affinity for TNFα in a binding assay, the Ki in a cell-based assay is approximately four orders of magnitude lower. We show using SEC (size exclusion chromatography) that the maximum size of the complex between AZD9773 and TNFα is consistent with approximately 12 Fabs binding to one TNFα trimer. A number of approaches were taken to map the epitopes recognized by AZD9773. These revealed that a number of different regions on TNFα are involved in binding to the polyclonal Fab. The data suggest that there are probably three epitopes per monomer that are responsible for most of the inhibition by AZD9773 and that all three can be occupied at the same time in the complex. We conclude that AZD9773 is clearly demonstrated to bind to multiple epitopes on TNFα and suggest that the polyclonal nature may account, at least in part, for the very high potency observed in cell-based assays. PMID:23863106
Bak, Nicola; Rajagopal, Shalini; Stickings, Paul; Sesardic, Dorothea
2017-07-20
Botulinum toxins (BoNTs), of which there are seven serotypes, are among the most potent neurotoxins, with serotypes A, B and E causing human botulism. Antitoxins form the first line of treatment for botulism, and functional, highly sensitive in vitro methods for toxin neutralization are needed to replace the current in vivo methods used for determination of antitoxin potency. In this preliminary proof of concept study, we report the development of a neutralization test using the neuroblastoma SiMa cell line. The assay is serotype specific for either BoNT/A or BoNT/E, which both cleave unique sequences on SNAP-25 within SiMa cells. The end point is simple immunodetection of cleaved SNAP-25 from cell lysates with antibodies detecting only the newly exposed sequence on SNAP-25. Neutralizing antibodies prevent the toxin-induced cleavage of SNAP-25. The toxin neutralization assay, with an EC50 of ~2 mIU/mL determined with a standardized reference antiserum, is more sensitive than the mouse bioassays. Relevance was demonstrated with commercial and experimental antitoxins targeting different functional domains, and of known in vivo neutralizing activities. This is the first report describing a simple, specific, in vitro cell-based assay for the detection of neutralizing antibodies against BoNT/A and BoNT/E with a sensitivity exceeding that of the mouse bioassay.
Bak, Nicola; Rajagopal, Shalini; Stickings, Paul; Sesardic, Dorothea
2017-01-01
Botulinum toxins (BoNTs), of which there are seven serotypes, are among the most potent neurotoxins, with serotypes A, B and E causing human botulism. Antitoxins form the first line of treatment for botulism, and functional, highly sensitive in vitro methods for toxin neutralization are needed to replace the current in vivo methods used for determination of antitoxin potency. In this preliminary proof of concept study, we report the development of a neutralization test using the neuroblastoma SiMa cell line. The assay is serotype specific for either BoNT/A or BoNT/E, which both cleave unique sequences on SNAP-25 within SiMa cells. The end point is simple immunodetection of cleaved SNAP-25 from cell lysates with antibodies detecting only the newly exposed sequence on SNAP-25. Neutralizing antibodies prevent the toxin-induced cleavage of SNAP-25. The toxin neutralization assay, with an EC50 of ~2 mIU/mL determined with a standardized reference antiserum, is more sensitive than the mouse bioassays. Relevance was demonstrated with commercial and experimental antitoxins targeting different functional domains, and of known in vivo neutralizing activities. This is the first report describing a simple, specific, in vitro cell-based assay for the detection of neutralizing antibodies against BoNT/A and BoNT/E with a sensitivity exceeding that of the mouse bioassay. PMID:28726719
Integrating asthma hazard characterization methods for consumer products.
Maier, A; Vincent, M J; Gadagbui, B; Patterson, J; Beckett, W; Dalton, P; Kimber, I; Selgrade, M J K
2014-10-01
Despite extensive study, definitive conclusions regarding the relationship between asthma and consumer products remain elusive. Uncertainties reflect the multi-faceted nature of asthma (i.e., contributions of immunologic and non-immunologic mechanisms). Many substances used in consumer products are associated with occupational asthma or asthma-like syndromes. However, risk assessment methods do not adequately predict the potential for consumer product exposures to trigger asthma and related syndromes under lower-level end-user conditions. A decision tree system is required to characterize asthma and respiratory-related hazards associated with consumer products. A system can be built to incorporate the best features of existing guidance, frameworks, and models using a weight-of-evidence (WoE) approach. With this goal in mind, we have evaluated chemical hazard characterization methods for asthma and asthma-like responses. Despite the wealth of information available, current hazard characterization methods do not definitively identify whether a particular ingredient will cause or exacerbate asthma, asthma-like responses, or sensitization of the respiratory tract at lower levels associated with consumer product use. Effective use of hierarchical lines of evidence relies on consideration of the relevance and potency of assays, organization of assays by mode of action, and better assay validation. It is anticipated that the analysis of existing methods will support the development of a refined WoE approach. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; ...
2012-12-13
The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less
Fragrances Categorized According to Relative Human Skin Sensitization Potency
Api, Anne Marie; Parakhia, Rahul; O'Brien, Devin; Basketter, David A.
2017-01-01
Background The development of non-animal alternatives for skin sensitization potency prediction is dependent upon the availability of a sufficient dataset whose human potency is well characterized. Previously, establishment of basic categorization criteria for 6 defined potency categories, allowed 131 substances to be allocated into them entirely on the basis of human information. Objectives To supplement the original dataset with an extended range of fragrance substances. Methods A more fully described version of the original criteria was used to assess 89 fragrance chemicals, allowing their allocation into one of the 6 potency categories. Results None of the fragrance substances were assigned to the most potent group, category 1, whereas 11 were category 2, 22 were category 3, 37 were category 4, and 19 were category 5. Although none were identified as non-sensitizing, note that substances in category 5 also do not pass the threshold for regulatory classification. Conclusions The combined datasets of >200 substances placed into potency categories solely on the basis of human data provides an essential resource for the elaboration and evaluation of predictive non-animal methods. PMID:28691948
Inhaled asbestos fibers result in respiratory diseases such as asbestosis, lung cancer and mesothelioma, but different asbestos fibers exhibit different potency. We applied a recently developed dosimetry model (Asgharian et al., Poster # 104) that describes th...
Targeting Phosphatidylserine with a 64Cu-Labeled Peptide for Molecular Imaging of Apoptosis.
Perreault, Amanda; Richter, Susan; Bergman, Cody; Wuest, Melinda; Wuest, Frank
2016-10-03
Molecular imaging of programmed cell death (apoptosis) in vivo is an innovative strategy for early assessment of treatment response and treatment efficacy in cancer patients. Externalization of phosphatidylserine (PS) to the cell membrane surface of dying cells makes this phospholipid an attractive molecular target for the development of apoptosis imaging probes. In this study, we have radiolabeled PS-binding 14-mer peptide FNFRLKAGAKIRFG (PSBP-6) with positron-emitter copper-64 ( 64 Cu) for PET imaging of apoptosis. Peptide PSBP-6 was conjugated with radiometal chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) through an aminovaleric acid (Ava) linker for subsequent radiolabeling with 64 Cu to prepare radiotracer 64 Cu-NOTA-Ava-PSBP-6. PS-binding potencies of PSBP-6, NOTA-Ava-PSBP-6, and nat Cu-NOTA-Ava-PSBP-6 were determined in a competitive radiometric PS-binding assay. Radiotracer 64 Cu-NOTA-Ava-PSBP-6 was studied in camptothecin-induced apoptotic EL4 mouse lymphoma cells and in a murine EL4 tumor model of apoptosis using dynamic PET imaging. Peptide PSBP-6 was also conjugated via an Ava linker with fluorescein isothiocyanate (FITC). FITC-Ava-PSBP-6 was evaluated in flow cytometry and fluorescence confocal microscopy experiments. Radiopeptide 64 Cu-NOTA-Ava-PSBP-6 was synthesized in high radiochemical yields of >95%. The IC 50 values for PS-binding potency of PSBP-6, NOTA-Ava-PSBP-6, and nat Cu-NOTA-PSBP-6 were 600 μM, 30 μM, and 23 μM, respectively. A competitive radiometric cell binding assay confirmed binding of 64 Cu-NOTA-Ava-PSBP-6 to camptothecin-induced apoptotic EL4 cells in a Ca 2+ -independent manner. PET imaging studies demonstrated significantly higher uptake of 64 Cu-NOTA-Ava-PSBP-6 in apoptotic EL4 tumors (SUV 5min 0.95 ± 0.04) compared to control tumors (SUV 5min 0.74 ± 0.03). Flow cytometry studies showed significantly higher binding of FITC-Ava-PSBP-6 to EL4 cells treated with camptothecin compared to untreated cells. Fluorescence microscopy studies revealed that FITC-Ava-PSBP-6 was binding to cell membranes of early apoptotic cells, but was internalized in late apoptotic and necrotic cells. The present study showed that radiotracer 64 Cu-NOTA-Ava-PSBP-6 holds promise as a first peptide-based PET imaging agent for molecular imaging of apoptosis. However, additional "fine-tuning" of 64 Cu-NOTA-Ava-PSBP-6 is required to enhance PS-binding potency and in vivo stability to improve tumor uptake and retention.
Homogeneous screening assay for human tankyrase.
Narwal, Mohit; Fallarero, Adyary; Vuorela, Pia; Lehtiö, Lari
2012-06-01
Tankyrase, a member of human PARP protein superfamily, catalyzes a covalent post-translational modification of substrate proteins. This modification, poly(ADP-ribos)ylation, leads to changes in protein interactions and modifies downstream signaling events. Tankyrase 1 is a potential drug target due to its functions in telomere homeostasis and in Wnt signaling. We describe here optimization and application of an activity-based homogenous assay for tankyrase inhibitors in a high-throughput screening format. The method measures the consumption of substrate by the chemical conversion of the remaining NAD(+) into a stable fluorescent condensation product. Conditions were optimized to measure the enzymatic auto-modification of a recombinant catalytic fragment of tankyrase 1. The fluorescence assay is inexpensive, operationally easy and performs well according to the statistical analysis (Z'= 0.7). A validatory screen with a natural product library confirmed suitability of the assay for finding new tankyrase inhibitors. Flavone was the most potent (IC(50)=325 nM) hit from the natural compounds. A flavone derivative, apigenin, and isopropyl gallate showed potency on the micromolar range, but displayed over 30-fold selectivity for tankyrase over the studied isoenzymes PARP1 and PARP2. The assay is robust and will be useful for screening new tankyrase inhibitors.
Mahboubi, Arash; Sadjady, Seyyed Kazem; Mirzaei Saleh Abadi, Mohammad; Azadi, Saeed; Solaimanian, Roya
2012-01-01
DETERMINATION OF STREPTOKINASE ACTIVITY IS USUALLY ACCOMPLISHED THROUGH TWO ASSAY METHODS: a) Clot lysis, b) Chromogenic substrate assay. In this study the biological activity of two streptokinase products, namely Streptase®, which is a native product and Heberkinasa®, which is a recombinant product, was determined against the third international reference standard using the two forementioned assay methods. The results indicated that whilst the activity of Streptase® was found to be 101 ± 4% and 97 ± 5% of the label claim with Clot lysis and Chromogenic substrate assay respectively, for Heberkinasa® the potency values obtained were 42 ± 5% and 92.5 ± 2% of the label claim respectively. To shed some light on the reason for this finding, the n-terminal sequence of the streptokinase molecules present in the two products was determined. The results showed slight differences in the amino acid sequence of the recombinant product in comparison to the native one at the amino terminus. This finding supports those of other workers who found that n-terminal sequence of the streptokinase molecule can have significant effect on the activity of this protein.
The two most common strains used in Ames mutagenicity assays, TA98 and TA 100, contain a �uvrB mutation designed to enhance the mutagenicity of compounds, presumably due to the loss of the nucleotide excision repair system. We showed previously that the �uvrB mutations in these s...
Higuchi, Robert I; Thompson, Anthony W; Chen, Jyun-Hung; Caferro, Thomas R; Cummings, Marquis L; Deckhut, Charlotte P; Adams, Mark E; Tegley, Christopher M; Edwards, James P; López, Francisco J; Kallel, E Adam; Karanewsky, Donald S; Schrader, William T; Marschke, Keith B; Zhi, Lin
2007-10-01
A series of androgen receptor modulators based on 8H-[1,4]oxazino[2,3-f]quinolin-8-ones was synthesized and evaluated in an androgen receptor transcriptional activation assay. The most potent analogues from the series exhibited single-digit nanomolar potency in vitro. Compound 18h demonstrated full efficacy in the maintenance of muscle weight, at 10 mg/kg, with reduced activity in prostate weight in an in vivo model of androgen action.
[Recurrent urological cancer--diagnose and treatment].
Takeshima, H; Akaza, H
1998-02-01
Clinical efforts to spare bladder function even in the case of muscle invasive recurrent bladder cancer is taking. Early detection of recurrence is essential for bladder sparing, and both urinary NMP22 and BTA are thought to have potency to detect recurrence of bladder cancer earlier than urinary cytology. Intravesical administration of BCG for superficial bladder cancer and intraarterial injection of chemoagents (Methotrexate and Cisplatin) with radiation for muscle invasive bladder cancer are thought to play important roles in sparing the bladder. Early detection of recurrent prostate cancer is becoming easier by ultrasensitive PSA assay. Though the value of early detection of recurrence is not proven since the benefits of early hormonal treatment have not yet been established, that should be a good indicator to evaluate new and coming treatments and play a important role to develop an effective treatment for recurrent prostate cancer.
Campbell, K.; Rawn, D.F.K.; Niedzwiadek, B.; Elliott, C.T.
2011-01-01
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area. PMID:21623494
A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp
Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z.; Mathews Griner, Lesley A.; Zheng, Wei; Inglese, James; Austin, Christopher P.; Marugan, Juan J.; Southall, Noel; Neumann, Susanne; Northup, John K.; Ferrer, Marc; Collins, Michael T.
2014-01-01
Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses. PMID:24667240
Fabini, Edoardo; Tramarin, Anna; Bartolini, Manuela
2018-06-05
In the continuous research for potential drug lead candidates, the availability of highly informative screening methodologies may constitute a decisive element in the selection of best-in-class compounds. In the present study, a surface plasmon resonance (SPR)-based assay was developed and employed to investigate interactions between human recombinant AChE (hAChE) and four known ligands: galantamine, tacrine, donepezil and edrophonium. To this aim, a sensor chip was functionalized with hAChE using mild immobilization conditions to best preserve enzyme integrity. Binding affinities and, for the first time, kinetic rate constants for all drug-hAChE complexes formation/disruption were determined. Inhibitors were classified in two groups: slow-reversible and fast-reversible binders according to respective target residence time. Combining data obtained on drug-target residence time with data obtained on serum albumin binding levels, a good correlation with potency, plasma protein binding in vivo, and administration regimen was found. The outcomes of this work demonstrated that the developed SPR-based assay is suitable for the screening, the binding affinity ranking and the kinetic evaluation of hAChE inhibitors. The method proposed ensures a simpler and cost-effective assay to quantify kinetic rate constants for inhibitor-hAChE interaction as compared with other proposed and published methods. Eventually, the determination of residence time in combination with preliminary ADME studies might constitute a better tool to predict in vivo behaviour, a key information for the research of new potential drug candidates. Copyright © 2018 Elsevier B.V. All rights reserved.
Campbell, K; Rawn, D F K; Niedzwiadek, B; Elliott, C T
2011-06-01
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.
How, Su-Chun; Yang, Szu-Ming; Hsin, Ai; Tseng, Chia-Ping; Hsueh, Shu-Shun; Lin, Ming-Shen; Chen, Rita P-Y; Chou, Wei-Lung; Wang, Steven S-S
2016-12-07
More than thirty human proteins and/or peptides can fold incorrectly to form amyloid deposits associated with several protein aggregation diseases. No cure is currently available for treating these diseases. This work is aimed at examining the inhibitory potency of fast green FCF, a biocompatible dye, toward the fibrillogenesis/aggregation of lysozyme. As verified by ThT binding assay along with transmission electron microscopy, fast green FCF was observed to suppress the generation of lysozyme fibrils in a concentration-dependent manner. We next used circular dichroism absorption spectroscopy, ANS fluorescence spectroscopy, and SDS-PAGE to characterize the structural alterations in lysozyme samples upon the addition of fast green FCF. Furthermore, experiments with the addition of fast green FCF at different time points of incubation showed that fast green FCF also exhibited disaggregating activity against the preformed/existing lysozyme fibrils. We believe that the results from this study suggest a potential therapeutic role of biocompatible molecules in treating or preventing protein aggregation diseases.
A single, continuous metric to define tiered serum neutralization potency against HIV
Hraber, Peter Thomas; Korber, Bette Tina Marie; Wagh, Kshitij; ...
2018-01-19
HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of themore » neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.« less
A single, continuous metric to define tiered serum neutralization potency against HIV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hraber, Peter Thomas; Korber, Bette Tina Marie; Wagh, Kshitij
HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of themore » neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.« less
Slow self-activation enhances the potency of viridin prodrugs.
Blois, Joseph; Yuan, Hushan; Smith, Adam; Pacold, Michael E; Weissleder, Ralph; Cantley, Lewis C; Josephson, Lee
2008-08-14
When the viridin wortmannin (Wm) is modified by reaction with certain nucleophiles at the C20 position, the compounds obtained exhibit an improved antiproliferative activity even though a covalent reaction between C20 and a lysine in the active site of PI3 kinase is essential to Wm's ability to inhibit this enzyme. Here we show that this improved potency results from an intramolecular attack by the C6 hydroxyl group that slowly converts these inactive prodrugs to the active species Wm over the 48 h duration of the antiproliferative assay. Our results provide a guide for selecting Wm-like compounds to maximize kinase inhibition with the variety of protocols used to assess the role of PI3 kinase in biological systems, or for achieving optimal therapeutic effects in vivo . In addition, the slow self-activation of WmC20 derivatives provides a mechanism that can be exploited to obtain kinase inhibitors endowed with physical and pharmacokinetic properties far different from man-made kinase inhibitors because they do not bind to kinase active sites.
Interaction of 3,8-diazabicyclo (3.2.1) octanes with mu and delta opioid receptors.
Cignarella, G; Barlocco, D; Tranquillini, M E; Volterra, A; Brunello, N; Racagni, G
1988-05-01
A series of 3,8-diazabicyclo (3.2.1) octanes (DBO) (1) substituted at the nitrogen atoms by acyl and aralkenyl groups, were tested in in vitro binding assays towards mu and delta opioid receptors. The most representative terms (1a, 1d, 1g, 1j,) were also evaluated for the analgesic potency in vivo by the hot plate method. Among the compounds tested the most potent was the p.nitrocinnamyl DBO (1d) which displayed a mu/delta selectivity and an analgesic activity respectively 25 and 17 fold those of morphine. On the contrary, the m.hydroxycinnamyl DBO (1g) was markedly less active as agonist than the parent 1a, thus suggesting that structure 1 interacts with opioid receptors in a different fashion than morphine. Compound 1j isomer of 1a which is provided with high mu affinity, but lower analgesic potency, was found to possess a mixed agonist-antagonist activity.
Integrated Model of Chemical Perturbations of a Biological ...
We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform (“”assay interference”). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 52 (2.8%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in v
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-06-06
In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-01-01
Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328
Factor Activity Assays for Monitoring Extended Half-Life FVIII and Factor IX Replacement Therapies.
Kitchen, Steve; Tiefenbacher, Stefan; Gosselin, Robert
2017-04-01
The advent of modified factor VIII (FVIII) and factor IX (FIX) molecules with extended half-lives (EHLs) compared with native FVIII and FIX represents a major advance in the field of hemophilia care, with the potential to reduce the frequency of prophylactic injections and/or to increase the trough level prior to subsequent injections. Monitoring treatment through laboratory assays will be an important part of ensuring patient safety, including any tailoring of prophylaxis. Several approaches have been used to extend half-lives, including PEGylation, and fusion to albumin or immunoglobulin. Some of these modifications affect factor assays as routinely performed in hemophilia centers; so, laboratories will need to use FVIII and FIX assays which have been shown to be suitable on a product-by-product basis. For some products, there are marked differences between results obtained using one-stage or chromogenic assays and results obtained using different reagents in the one-stage assay. The laboratory should use an assay in which the recovery of the product closely aligns with the assay used by the pharmaceutical company to assign potency to the product, so that the units reported by the laboratory agree with those used to demonstrate efficacy of the product during clinical trials. Reported assay differences in relation to several of the EHL FVIII and FIX molecules will be reviewed in this article. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Gal, Yoav; Alcalay, Ron; Sabo, Tamar; Noy-Porat, Tal; Epstein, Eyal; Kronman, Chanoch; Mazor, Ohad
2015-09-01
Ricin is one of the most potent and lethal toxins known against which there is no available antidote. Currently, the most promising countermeasures against the toxin are based on neutralizing antibodies elicited by active vaccination or administered passively. A cell-based assay is widely applied for the primary screening and evaluation of anti-ricin antibodies, yet such assays are usually time-consuming (18-72 h). Here, we report of a novel assay to monitor ricin activity, based on HeLa cells that stably express the rapidly-degraded ubiquitin-luciferase (Ub-FL, half-life of 2 min). Ricin-induced arrest of protein synthesis could be quantified within 3 to 6h post intoxication (IC90 of 300 and 100 ng/ml, respectively). Furthermore, by stabilizing the intracellular levels of Ub-FL in the last hour of the assay, a 3-fold increase in the assay sensitivity was attained. We applied this assay to monitor the efficacy of a ricin holotoxin-based vaccine by measuring the formation of neutralizing antibodies throughout the immunization course. The potency of anti-ricin monoclonal antibodies (directed to either subunit of the toxin) could also be easily and accurately measured in this assay format. Owing to its simplicity, this assay may be implemented for high-throughput screening of ricin-neutralizing antibodies and for identification of small-molecule inhibitors of the toxin, as well as other ribosome-inactivating toxins. Copyright © 2015 Elsevier B.V. All rights reserved.
Qiang, Xiaoming; Li, Yan; Yang, Xia; Luo, Li; Xu, Rui; Zheng, Yunxiaozhu; Cao, Zhongcheng; Tan, Zhenghuai; Deng, Yong
2017-02-15
Considering the complex etiology of Alzheimer's disease (AD), multifunctional agents may be beneficial for the treatment of this disease. A series of DL-3-n-butylphthalide-Edaravone hybrids were designed, synthesized and evaluated as novel dual inhibitors of amyloid-β aggregation and monoamine oxidases. Among them, compounds 9a-d exhibited good inhibition of self-induced Aβ 1-42 aggregation with inhibition ratio 57.7-71.5%. For MAO, these new hybrids exhibited good balance of inhibition for MAO-A and MAO-B. In addition, all target compounds retained the antioxidant activity of edaravone, showed equal or better antioxidant activity than edaravone. The results of the parallel artificial membrane permeability assay for blood-brain barrier indicated that compounds 9a-d would be able to cross the blood-brain barrier and reach their biological targets in the central nervous system. The promising results in all assays demonstrated that the strategy behind the designing of compounds was rational and favourable. Taken together, these preliminary findings suggested that the compounds with the strongest bioactivity deserves further investigated for pharmacological development in AD therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wei, Jun; Kitada, Shinichi; Stebbins, John L.; Placzek, William; Zhai, Dayong; Wu, Bainan; Rega, Michele F.; Zhang, Ziming; Cellitti, Jason; Yang, Li; Dahl, Russell; Reed, John C.; Pellecchia, Maurizio
2010-01-01
Overexpression of anti-apoptotic Bcl-2 family proteins is commonly related with tumor maintenance, progression, and chemoresistance. Inhibition of these anti-apoptotic proteins is an attractive approach for cancer therapy. Guided by nuclear magnetic resonance (NMR) binding assays, a series of 5, 5′ substituted compound 6a (Apogossypolone) derivatives was synthesized and identified pan-active antagonists of anti-apoptotic Bcl-2 family proteins, with binding potency in the low micromolar to nanomolar range. Compound 6f inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2 and Mcl-1 with IC50 values of 3.10, 3.12 and 2.05 μM, respectively. In a cellular assay, 6f potently inhibits cell growth in several human cancer cell lines in a dose-dependent manner. Compound 6f further displays in vivo efficacy in transgenic mice and demonstrated superior single-agent antitumor efficacy in a PPC-1 mouse xenograft model. Together with its negligible toxicity, compound 6f represents a promising drug lead for the development of novel apoptosis-based therapies for cancer. PMID:21033669
Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol
Kemme, Michael; Heinzel-Wieland, Regina
2018-01-01
Profound screening and evaluation methods for biocide-releasing polymer films are crucial for predicting applicability and therapeutic outcome of these drug delivery systems. For this purpose, we developed an agar overlay assay embedding biopolymer composite films in a seeded microbial lawn. By combining this approach with model-dependent analysis for agar diffusion, antimicrobial potency of the entrapped drug can be calculated in terms of minimum inhibitory concentrations (MICs). Thus, the topical antiseptic 4-hexylresorcinol (4-HR) was incorporated into poly(lactic-co-glycolic acid) (PLGA) films at different loadings up to 3.7 mg/cm2 surface area through a solvent casting technique. The antimicrobial activity of 4-HR released from these composite films was assessed against a panel of Gram-negative and Gram–positive bacteria, yeasts and filamentous fungi by the proposed assay. All the microbial strains tested were susceptible to PLGA-4-HR films with MIC values down to 0.4% (w/w). The presented approach serves as a reliable method in screening and quantifying the antimicrobial activity of polymer composite films. Moreover, 4-HR-loaded PLGA films are a promising biomaterial that may find future application in the biomedical and packaging sector. PMID:29324696
Chang, Lei; Lee, Sang-Yong; Leonczak, Piotr; Rozenski, Jef; De Jonghe, Steven; Hanck, Theodor; Müller, Christa E; Herdewijn, Piet
2014-12-11
Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) belongs to the family of ecto-nucleotidases, which control extracellular nucleotide, nucleoside, and (di)phosphate levels. To study the (patho)physiological roles of NPP1 potent and selective inhibitors with drug-like properties are required. Therefore, a compound library was screened for NPP1 inhibitors using a colorimetric assay with p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) as an artificial substrate. This led to the discovery of 2-(3H-imidazo[4,5-b]pyridin-2-ylthio)-N-(3,4-dimethoxyphenyl)acetamide (5a) as a hit compound with a Ki value of 217 nM. Subsequent structure-activity relationship studies led to the development of purine and imidazo[4,5-b]pyridine analogues with high inhibitory potency (Ki values of 5.00 nM and 29.6 nM, respectively) when assayed with p-Nph-5'-TMP as a substrate. Surprisingly, the compounds were significantly less potent when tested versus ATP as a substrate, with Ki values in the low micromolar range. A prototypic inhibitor was investigated for its mechanism of inhibition and found to be competitive versus both substrates.
Zhang, Jie; Zhang, Tiehua; Guan, Tianzhu; Ruan, Ping; Ren, Dayong; Dai, Weichang; Yu, Hansong; Li, Tiezhu
2017-08-01
A fluorescence polarization (FP) assay for the simultaneous determination of bisphenol A (BPA), bisphenol F (BPF), bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) was developed. The method was based on the competition between bisphenols (BPs) and fluorescein-labeled dexamethasone derivative (Dex-fl) for mouse peroxisome proliferator-activated receptor α ligand binding domain (mPPARα-LBD). A recombinant soluble protein derivative mPPARα-LBD* was prepared, then in vitro binding of 4 BPs to mPPARα-LBD* was investigated. Fluorescence polarization assay showed that these compounds exhibited different binding potencies with mPPARα-LBD*. Additionally, molecular dynamics simulations were performed to further understand the mechanism of BPs binding affinity for mPPARα-LBD*. Docking results elucidated that the driving forces for the binding of BPs to mPPARα-LBD* were predominantly dependent on hydrophobic and hydrogen-bonding interactions. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation (R 2 = 0.7258). The proposed method has potential for multi-residue detection of BPA, BPF, BADGE, and BFDGE. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jarvis, Cassie; Han, Zhenfu; Kalas, Vasilios; Klein, Roger; Pinkner, Jerome S; Ford, Bradley; Binkley, Jana; Cusumano, Corinne K; Cusumano, Zachary; Mydock-McGrane, Laurel; Hultgren, Scott J; Janetka, James W
2016-02-17
Uropathogenic E. coli (UPEC) employ the mannose-binding adhesin FimH to colonize the bladder epithelium during urinary tract infection (UTI). Previously reported FimH antagonists exhibit good potency and efficacy, but low bioavailability and a short half-life in vivo. In a rational design strategy, we obtained an X-ray structure of lead mannosides and then designed mannosides with improved drug-like properties. We show that cyclizing the carboxamide onto the biphenyl B-ring aglycone of biphenyl mannosides into a fused heterocyclic ring, generates new biaryl mannosides such as isoquinolone 22 (2-methyl-4-(1-oxo-1,2-dihydroisoquinolin-7-yl)phenyl α-d-mannopyranoside) with enhanced potency and in vivo efficacy resulting from increased oral bioavailability. N-Substitution of the isoquinolone aglycone with various functionalities produced a new potent subseries of FimH antagonists. All analogues of the subseries have higher FimH binding affinity than unsubstituted lead 22, as determined by thermal shift differential scanning fluorimetry assay. Mannosides with pyridyl substitution on the isoquinolone group inhibit bacteria-mediated hemagglutination and prevent biofilm formation by UPEC with single-digit nanomolar potency, which is unprecedented for any FimH antagonists or any other antivirulence compounds reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bradley, M E; Dombrecht, B; Manini, J; Willis, J; Vlerick, D; De Taeye, S; Van den Heede, K; Roobrouck, A; Grot, E; Kent, T C; Laeremans, T; Steffensen, S; Van Heeke, G; Brown, Z; Charlton, S J; Cromie, K D
2015-02-01
Chemokines and chemokine receptors are key modulators in inflammatory diseases and malignancies. Here, we describe the identification and pharmacologic characterization of nanobodies selectively blocking CXCR2, the most promiscuous of all chemokine receptors. Two classes of selective monovalent nanobodies were identified, and detailed epitope mapping showed that these bind to distinct, nonoverlapping epitopes on the CXCR2 receptor. The N-terminal-binding or class 1 monovalent nanobodies possessed potencies in the single-digit nanomolar range but lacked complete efficacy at high agonist concentrations. In contrast, the extracellular loop-binding or class 2 monovalent nanobodies were of lower potency but were more efficacious and competitively inhibited the CXCR2-mediated functional response in both recombinant and neutrophil in vitro assays. In addition to blocking CXCR2 signaling mediated by CXCL1 (growth-related oncogene α) and CXCL8 (interleukin-8), both classes of nanobodies displayed inverse agonist behavior. Bivalent and biparatopic nanobodies were generated, respectively combining nanobodies from the same or different classes via glycine/serine linkers. Interestingly, receptor mutation and competition studies demonstrated that the biparatopic nanobodies were able to avidly bind epitopes within one or across two CXCR2 receptor molecules. Most importantly, the biparatopic nanobodies were superior over their monovalent and bivalent counterparts in terms of potency and efficacy. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Dose-dependent establishment of Trichuris suis larvae in Göttingen minipigs.
Vejzagić, Nermina; Roepstorff, Allan; Kringel, Helene; Thamsborg, Stig Milan; Nielsen, Mads Pårup; Kapel, Christian M O
2015-03-15
Embryonated eggs of the pig whipworm Trichuris suis (TSOee) constitute the active pharmaceutical ingredient (API) in a medicinal product explored in human clinical trials against several immune-mediated diseases. The measurement of TSO biological potency (hatchability and infectivity) is a requirement for the assessment of TSO's pharmacological potency in human clinical trials. The present study aims to validate the dose-dependent establishment of T. suis larvae in Göttingen minipigs and eventual clinical implication of a dose range (1000-10,000 TSO). Four groups of 5 minipigs were inoculated with doses of 1000, 2500, 7500, and 10,000 TSOee, respectively, to evaluate a range of concentrations of TSOee in a minipig infectivity model. Unembryonated eggs (TSOue) were added to keep the total egg number in the inoculum constant at 10,000 eggs. Two groups received 2500 and 7500 TSOee per pig without the addition of TSOue as controls. The intestinal larval establishment at 21 days post inoculation (dpi) demonstrated a clear positive linear dose-response relationship between numbers of inoculated TSOee and recovered larvae. There was a low level of variation in larval counts in all study groups. Thus, the infectivity model in minipigs within the tested dose range offers a reliable, sensitive and accurate assay for testing biological potency of TSO. Copyright © 2015 Elsevier B.V. All rights reserved.
Healy, Zachary R; Liu, Hua; Holtzclaw, W David; Talalay, Paul
2011-07-01
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine with keto-enol tautomerase activity, rises rapidly in response to inflammation and is elevated in many chronic diseases. Isothiocyanates, such as sulforaphane from broccoli, are very potent inactivators of MIF tautomerase activity. A simple rapid method for determining this activity in tissues and body fluids may therefore be valuable for assessing severity of inflammation and efficacy of intervention. Existing spectrophotometric assays of MIF, based on conversion of methyl L-dopachrome to methyl 5,6-dihydroxyindole-2-carboxylate and associated loss of absorption at 475 nm, lack sensitivity. Assay sensitivity and efficiency were markedly improved by reducing the nonenzymatic rate, by lowering pH to 6.2, replacing phosphate (which catalyzes the reaction) with Bis-Tris buffer, and converting to a microtiter plate format. A structure-potency study of MIF tautomerase inactivation by isothiocyanates showed that sulforaphane, benzyl, n-hexyl, and phenethyl isothiocyanates were especially potent. MIF tautomerase could be readily quantified in human urine concentrated by ultrafiltration. This activity comprised: (i) a heat-labile, sulforaphane-inactivated macromolecular fraction (presumably MIF) that was concentrated during ultrafiltration; (ii) a flow-through fraction, with constant activity during filtration, that was heat stable and insensitive to sulforaphane. Administration of the sulforaphane precursor glucoraphanin to human volunteers almost completely abolished urinary tautomerase activity, which recovered over many hours. A simple, rapid, quantitative MIF tautomerase assay has been developed as a potential biomarker for assessing inflammatory severity and effectiveness of intervention. An improved assay for measuring MIF tautomerase activity and its applications are described. ©2011 AACR