Sample records for potent anti-hiv action

  1. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides

    NASA Astrophysics Data System (ADS)

    Briz, Verónica; Sepúlveda-Crespo, Daniel; Diniz, Ana Rita; Borrego, Pedro; Rodes, Berta; de La Mata, Francisco Javier; Gómez, Rafael; Taveira, Nuno; Muñoz-Fernández, Mª Ángeles

    2015-08-01

    The development of topical microbicide formulations for vaginal delivery to prevent HIV-2 sexual transmission is urgently needed. Second- and third-generation polyanionic carbosilane dendrimers with a silicon atom core and 16 sulfonate (G2-S16), napthylsulfonate (G2-NS16) and sulphate (G3-Sh16) end-groups have shown potent and broad-spectrum anti-HIV-1 activity. However, their antiviral activity against HIV-2 and mode of action have not been probed. Cytotoxicity, anti-HIV-2, anti-sperm and antimicrobial activities of dendrimers were determined. Analysis of combined effects of triple combinations with tenofovir and raltegravir was performed by using CalcuSyn software. We also assessed the mode of antiviral action on the inhibition of HIV-2 infection through a panel of different in vitro antiviral assays: attachment, internalization in PBMCs, inactivation and cell-based fusion. Vaginal irritation and histological analysis in female BALB/c mice were evaluated. Our results suggest that G2-S16, G2-NS16 and G3-Sh16 exert anti-HIV-2 activity at an early stage of viral replication inactivating the virus, inhibiting cell-to-cell HIV-2 transmission, and blocking the binding of gp120 to CD4, and the HIV-2 entry. Triple combinations with tenofovir and raltegravir increased the anti-HIV-2 activity, consistent with synergistic interactions (CIwt: 0.33-0.66). No vaginal irritation was detected in BALB/c mice after two consecutive applications for 2 days with 3% G2-S16. Our results have clearly shown that G2-S16, G2-NS16 and G3-Sh16 have high potency against HIV-2 infection. The modes of action confirm their multifactorial and non-specific ability, suggesting that these dendrimers deserve further studies as potential candidate microbicides to prevent vaginal/rectal HIV-1/HIV-2 transmission in humans.

  2. Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages.

    PubMed

    Ma, Tong-Cui; Zhou, Run-Hong; Wang, Xu; Li, Jie-Liang; Sang, Ming; Zhou, Li; Zhuang, Ke; Hou, Wei; Guo, De-Yin; Ho, Wen-Zhe

    2016-10-13

    The Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, is known to have anti-inflammatory effect in both in vitro and in vivo systems. Macrophages play a key role in inflammation and immune activation, which is implicated in HIV disease progression. Here, we investigated the effect of BBI on HIV infection of peripheral blood monocyte-derived macrophages. We demonstrated that BBI could potently inhibit HIV replication in macrophages without cytotoxicity. Investigation of the mechanism(s) of BBI action on HIV showed that BBI induced the expression of IFN-β and multiple IFN stimulated genes (ISGs), including Myxovirus resistance protein 2 (Mx2), 2',5'-oligoadenylate synthetase (OAS-1), Virus inhibitory protein (viperin), ISG15 and ISG56. BBI treatment of macrophages also increased the expression of several known HIV restriction factors, including APOBEC3F, APOBEC3G and tetherin. Furthermore, BBI enhanced the phosphorylation of IRF3, a key regulator of IFN-β. The inhibition of IFN-β pathway by the neutralization antibody to type I IFN receptor (Anti-IFNAR) abolished BBI-mediated induction of the anti-HIV factors and inhibition of HIV in macrophages. These findings that BBI could activate IFN-β-mediated signaling pathway, initialize the intracellular innate immunity in macrophages and potently inhibit HIV at multiple steps of viral replication cycle indicate the necessity to further investigate BBI as an alternative and cost-effective anti-HIV natural product.

  3. Combined molecular docking, molecular dynamics simulation and quantitative structure-activity relationship study of pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives as potent anti-HIV drugs

    NASA Astrophysics Data System (ADS)

    Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun; Li, Peizhen; Tian, Yueli; Zhai, Honglin; Li, Yang

    2014-06-01

    3,4-Dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine is an antiretroviral agent, which can act against human immunodeficiency virus (HIV) infection, but the mechanism of action of pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives remained ambiguous. In this study, multiple linear regression (MLR) was applied to establish a quite reliable model with the squared correlation coefficient (R2) of 0.8079. We also used chemical information descriptors based on the simplified molecular input line entry system (SMILES) to get a better model with R2 of 0.9086 for the training set, and R2 of 0.8031 for the test set. Molecular docking was utilized to provide more useful information between pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives and HIV-1 protease, such as active site, binding mode and important residues. Molecular dynamics simulation was employed to further validate the docking results. This work may lead to a better understanding of the mechanism of action and aid to design novel and more potent anti-HIV drugs.

  4. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    PubMed Central

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  5. Discovery of 3,4-dihydropyrimidin-2(1H)-ones with inhibitory activity against HIV-1 replication.

    PubMed

    Kim, Junwon; Park, Changmin; Ok, Taedong; So, Wonyoung; Jo, Mina; Seo, Minjung; Kim, Youngmi; Sohn, Jeong-Hun; Park, Youngsam; Ju, Moon Kyeong; Kim, Junghwan; Han, Sung-Jun; Kim, Tae-Hee; Cechetto, Jonathan; Nam, Jiyoun; Sommer, Peter; No, Zaesung

    2012-03-01

    3,4-Dihydropyrimidin-2(1H)-ones (DHPMs) were selected and derivatized through a HIV-1 replication assay based on GFP reporter cells. Compounds 14, 25, 31, and 36 exhibited significant inhibition of HIV-1 replication with a good safety profile. Chiral separation of each enantiomer by fractional crystallization showed that only the S enantiomer retained anti-HIV activity. Compound (S)-40, a novel and potent DHPM analog, could serve as an advanced lead for further development and the determination of the mechanism of action. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. New anionic carbosilane dendrons functionalized with a DO3A ligand at the focal point for the prevention of HIV-1 infection.

    PubMed

    Moreno, Silvia; Sepúlveda-Crespo, Daniel; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Ma Ángeles

    2017-10-01

    Novel third-generation polyanionic carbosilane dendrons with sulfonate or carboxylate end-groups and functionalized with a DO3A ligand at the focal point, and their corresponding copper complexes, have been prepared as antiviral compounds to prevent HIV-1 infection. The topology enables the compound to have an excellent chelating agent, DO3A, while keeping anionic peripheral groups for a therapeutic action. In this study, the cytotoxicity and anti-HIV-1 abilities of carboxylate- (5) or sulfonate-terminated (6) dendrons containing DO3A and their copper complexes (7 or 8) were evaluated. All compounds showed low cytotoxicity and demonstrated potent and broad-spectrum anti-HIV-1 activity in vitro. We also assessed the mode of antiviral action on the inhibition of HIV-1 through a panel of different in vitro antiviral assays. Our results show that copper-free dendron 6 protects the epithelial monolayer from short-term cell disruption. Copper-free dendrons 5 and 6 exert anti-HIV-1 activity at an early stage of the HIV-1 lifecycle by binding to the envelope glycoproteins of HIV-1 and by interacting with the CD4 cell receptor and blocking the binding of gp120 to CD4, and consequently HIV-1 entry. These findings show that copper-free dendrons 5 and 6 have a high potency against HIV-1 infection, confirming their non-specific ability and suggesting that these compounds deserve further study as potential candidate microbicides to prevent HIV-1 transmission. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms.

    PubMed

    Tang, Jun; Jones, Stacey A; Jeffrey, Jerry L; Miranda, Sonia R; Galardi, Cristin M; Irlbeck, David M; Brown, Kevin W; McDanal, Charlene B; Johns, Brian A

    2017-06-15

    A new class of betulin-derived α-keto amides was identified as HIV-1 maturation inhibitors. Through lead optimization, GSK8999 was identified with IC 50 values of 17nM, 23nM, 25nM, and 8nM for wild type, Q369H, V370A, and T371A respectively. When tested in a panel of 62 HIV-1 isolates covering a diversity of CA-SP1 genotypes including A, AE, B, C, and G using a PBMC based assay, GSK8999 was potent against 57 of 62 isolates demonstrating an improvement over the first generation maturation inhibitor BVM. The data disclosed here also demonstrated that the new α-keto amide GSK8999 has a mechanism of action consistent with inhibition of the proteolytic cleavage of CA-SP1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Comparative study of the anti-HIV activities of ascorbate and thiol-containing reducing agents in chronically HIV-infected cells.

    PubMed

    Harakeh, S; Jariwalla, R J

    1991-12-01

    To elucidate the action of vitamin C on pathogenic human retroviruses, we investigated and compared the effects of noncytoxic concentrations of ascorbic acid (AA), its calcium salt (Ca-ascorbate), and two thiol-based reducing agents [glutathione (GSH) and N-acetyl-L-cysteine (NAC)] against human immunodeficiency virus (HIV)-1 replication in chronically infected T lymphocytes. Ca-ascorbate reduced extracellular HIV reverse transcriptase (RT) activity by about the same magnitude as the equivalent dose of AA. Long-term experiments showed that continuous presence of ascorbate was necessary for HIV suppression. NAC (10 mmol/L) caused less than twofold inhibition of HIV RT and conferred a synergistic effect (approximately eightfold inhibition) when tested simultaneously with AA (0.426 mmol/L). In contrast, nonesterified GSH (less than or equal to 1.838 mmol/L) had no effect on RT concentrations and did not potentiate the anti-HIV effect of AA. These results further support the potent antiviral activity of ascorbate and suggest its therapeutic value in controlling HIV infection in combination with thiols.

  9. Rational CCL5 mutagenesis integration in a lactobacilli platform generates extremely potent HIV-1 blockers.

    PubMed

    Secchi, Massimiliano; Grampa, Valentina; Vangelista, Luca

    2018-01-30

    Efforts to improve existing anti-HIV-1 therapies or develop preventatives have identified CCR5 as an important target and CCL5 as an ideal scaffold to sculpt potent HIV-1 entry inhibitors. We created novel human CCL5 variants that exhibit exceptional anti-HIV-1 features using recombinant lactobacilli (exploited for live microbicide development) as a screening platform. Protein design, expression and anti-HIV-1 activity flowed in iterative cycles, with a stepwise integration of successful mutations and refinement of an initial CCL5 mutant battery towards the generation of two ultimate CCL5 derivatives, a CCR5 agonist and a CCR5 antagonist with similar anti-HIV-1 potency. The CCR5 antagonist was tested in human macrophages and against primary R5 HIV-1 strains, exhibiting cross-clade low picomolar IC 50 activity. Moreover, its successful combination with several HIV-1 inhibitors provided the ground for conceiving therapeutic and preventative anti-HIV-1 cocktails. Beyond HIV-1 infection, these CCL5 derivatives may now be tested against several inflammation-related pathologies where the CCL5:CCR5 axis plays a relevant role.

  10. Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gnidium.

    PubMed

    Vidal, Vincent; Potterat, Olivier; Louvel, Séverine; Hamy, François; Mojarrab, Mahdi; Sanglier, Jean-Jacques; Klimkait, Thomas; Hamburger, Matthias

    2012-03-23

    Despite the existence of an extended armamentarium of effective synthetic drugs to treat HIV, there is a continuing need for new potent and affordable drugs. Given the successful history of natural product based drug discovery, a library of close to one thousand plant and fungal extracts was screened for antiretroviral activity. A dichloromethane extract of the aerial parts of Daphne gnidium exhibited strong antiretroviral activity and absence of cytotoxicity. With the aid of HPLC-based activity profiling, the antiviral activity could be tracked to four daphnane derivatives, namely, daphnetoxin (1), gnidicin (2), gniditrin (3), and excoecariatoxin (4). Detailed anti-HIV profiling revealed that the pure compounds were active against multidrug-resistant viruses irrespective of their cellular tropism. Mode of action studies that narrowed the site of activity to viral entry events suggested a direct interference with the expression of the two main HIV co-receptors, CCR5 and CXCR4, at the cell surface by daphnetoxin (1).

  11. Potent Inhibition of Human Immunodeficiency Virus Type 1 Replication by an Intracellular Anti-Rev Single-Chain Antibody

    NASA Astrophysics Data System (ADS)

    Duan, Lingxun; Bagasra, Omar; Laughlin, Mark A.; Oakes, Joseph W.; Pomerantz, Roger J.

    1994-05-01

    Human immunodeficiency virus type 1 (HIV-1) has a complex life cycle, which has made it a difficult target for conventional therapeutic modalities. A single-chain antibody moiety, directed against the HIV-1 regulatory protein Rev, which rescues unspliced viral RNA from the nucleus of infected cells, has now been developed. This anti-Rev single-chain construct (SFv) consists of both light and heavy chain variable regions of an anti-Rev monoclonal antibody, which, when expressed intracellularly within human cells, potently inhibits HIV-1 replication. This intracellular SFv molecule is demonstrated to specifically antagonize Rev function. Thus, intracellular SFv expression, against a retroviral regulatory protein, may be useful as a gene therapeutic approach to combat HIV-1 infections.

  12. Anti-AIDS agents 81. Design, synthesis, and structure-activity relationship study of betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors.

    PubMed

    Qian, Keduo; Kuo, Reen-Yun; Chen, Chin-Ho; Huang, Li; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2010-04-22

    In our continuing study of triterpene derivatives as potent anti-HIV agents, different C-3 conformationally restricted betulinic acid (BA, 1) derivatives were designed and synthesized in order to explore the conformational space of the C-3 pharmacophore. 3-O-Monomethylsuccinyl-betulinic acid (MSB) analogues were also designed to better understand the contribution of the C-3' dimethyl group of bevirimat (2), the first-in-class HIV maturation inhibitor, which is currently in phase IIb clinical trials. In addition, another triterpene skeleton, moronic acid (MA, 3), was also employed to study the influence of the backbone and the C-3 modification toward the anti-HIV activity of this compound class. This study enabled us to better understand the structure-activity relationships (SAR) of triterpene-derived anti-HIV agents and led to the design and synthesis of compound 12 (EC(50): 0.0006 microM), which displayed slightly better activity than 2 as a HIV-1 maturation inhibitor.

  13. Hybrid chemistry. Part 4: Discovery of etravirine-VRX-480773 hybrids as potent HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Wan, Zheng-Yong; Tao, Yuan; Wang, Ya-Feng; Mao, Tian-Qi; Yin, Hong; Chen, Fen-Er; Piao, Hu-Ri; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe

    2015-08-01

    A novel series of etravirine-VRX-480773 hybrids were designed using structure-guided molecular hybridization strategy and fusing the pharmacophore templates of etravirine and VRX-480773. The anti-HIV-1 activity and cytotoxicity was evaluated in MT-4 cell cultures. The most active hybrid compound in this series, N-(2-chlorophenyl)-2-((4-(4-cyano-2,6-dimethylphenoxy)pyrimidin-2-yl)thio)acetamide 3d (EC50=0.24 , SI>1225), was more potent than delavirdine (EC50=0.66 μM, SI>67) in the anti-HIV-1 in vitro cellular assay. Studies of structure-activity relationships established a correlation between anti-HIV activity and the substitution pattern of the acetanilide group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Arzanol, a Potent mPGES-1 Inhibitor: Novel Anti-Inflammatory Agent

    PubMed Central

    Kothavade, Pankaj S.; Nagmoti, Dnyaneshwar M.; Bulani, Vipin D.; Juvekar, Archana R.

    2013-01-01

    Arzanol is a novel phloroglucinol α-pyrone, isolated from a Mediterranean plant Helichrysum italicum (Roth) Don ssp. microphyllum which belongs to the family Asteraceae. Arzanol has been reported to possess a variety of pharmacological activities. However, anti-inflammatory, anti-HIV, and antioxidant activities have been studied in some detail. Arzanol has been reported to inhibit inflammatory transcription factor NFκB activation, HIV replication in T cells, releases of IL-1β, IL-6, IL-8, and TNF-α, and biosynthesis of PGE2 by potentially inhibiting mPGES-1 enzyme. Diversity of mechanisms of actions of arzanol may be useful in treatment of disease involving these inflammatory mediators such as autoimmune diseases and cancer. This review presents comprehensive information on the chemistry, structure-activity relationship, and pharmacological activities of arzanol. In addition this review discusses recent developments and the scope for future research in these aspects. PMID:24198734

  15. Imidazopyridine-5,6,7,8-tetrahydro-8-quinolinamine derivatives with potent activity against HIV-1.

    PubMed

    Gudmundsson, Kristjan S; Boggs, Sharon D; Catalano, John G; Svolto, Angilique; Spaltenstein, Andrew; Thomson, Michael; Wheelan, Pat; Jenkinson, Stephen

    2009-11-15

    Synthesis of several novel imidazopyridine-5,6,7,8-tetrahydro-8-quinolinamine derivatives with potent activity against HIV are described. Synthetic approaches allowing for variation of the substitution pattern are outlined and resulting changes in antiviral activity and pharmacokinetics are highlighted. Several compounds with low nanomolar anti-HIV activity and oral bioavailability are described.

  16. Antiviral interactions of combinations of highly potent 2,4(1H,3H)-pyrimidinedione congeners and other anti-HIV agents.

    PubMed

    Hartman, Tracy L; Yang, Lu; Buckheit, Robert W

    2011-12-01

    Structure-activity relationship evaluation of seventy-four 2,4(1H,3H)-pyrimidinedione derivatives identified seven lead compounds based on anti-HIV-1 potency, extended range of action to include HIV-2, virus entry inhibition, reverse transcriptase inhibition, and lack of cytotoxicity to human cells. The selected pyrimidinedione congeners are highly active inhibitors of HIV-1 with EC(50) values ranging from 0.6 to 2 nM in CEM-SS cells infected with laboratory derived viruses, 11-20 nM in fresh human PBMCs infected with subtype B (HT/92/599) virus, and 2-7 nM in PBMCs infected with the clinical subtype C (ZA/97/003) virus. Combination antiviral assays were performed using the laboratory adapted RF strain of HIV-1 in CEM-SS cells and with a clade B and C low passage clinical isolate in fresh human peripheral mononuclear cells and the compound interactions were analyzed using MacSynergy II. The seven pyrimidinedione compounds resulted in additive to synergistic interactions in combination with entry and fusion inhibitors, nonnucleoside and nucleoside reverse transcriptase inhibitors, and the protease inhibitors. No evidence of antagonistic antiviral activity or synergistic cytotoxicity was detected with the combinations of compounds tested. The dual mechanism of action of the pyrimidinediones resulting in inhibition of both virus entry and reverse transcription suggests excellent potential of these lead pyrimidinediones as candidates for combination therapy with other approved HIV inhibitors of varying mechanism of action. Copyright © 2011. Published by Elsevier B.V.

  17. Structure-Based Design of Novel Dihydroalkoxybenzyloxopyrimidine Derivatives as Potent Nonnucleoside Inhibitors of the Human Immunodeficiency Virus Reverse Transcriptase

    PubMed Central

    Sudbeck, Elise A.; Mao, Chen; Vig, Rakesh; Venkatachalam, T. K.; Tuel-Ahlgren, Lisa; Uckun, Fatih M.

    1998-01-01

    Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM. PMID:9835518

  18. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoguang; Department of Medical Microbiology, Harbin Medical University, Harbin 150086; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviralmore » activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.« less

  19. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1).

    PubMed

    Yamaguchi, Koushi; Honda, Mitsuo; Ikigai, Hajime; Hara, Yukihiko; Shimamura, Tadakatsu

    2002-01-01

    Epigallocatechin gallate (EGCg), the major tea catechin, is known as a potent anti-bacterial agent. In addition, anti-tumor promoting, anti-inflammatory, anti-oxidative and antiviral activities have been reported. In the present study, we investigated possible anti-human immunodeficiency virus type-1 (HIV-1) activity of EGCg and its mechanisms of action in the viral life cycle. EGCg impinges on each step of the HIV life cycle. Thus, destruction of the viral particles, viral attachment to cells, post-adsorption entry into cells, reverse transcription (RT), viral production from chronically-infected cells, and the level of expression of viral mRNA, were analyzed using T-lymphoid (H9) and monocytoid (THP-1) cell systems, and antiviral protease activity was measured using a cell-free assay. Inhibitory effects of EGCg on specific binding of the virions to the cellular surfaces and changes in the steady state viral regulation (mRNA expression) due to EGCg were not observed. However, EGCg had a destructive effect on the viral particles, and post-adsorption entry and RT in acutely infected monocytoid cells were significantly inhibited at concentrations of EGCg greater than 1 microM, and protease kinetics were suppressed at a concentration higher than 10 microM in the cell-free study. Viral production by THP-1 cells chronically-infected with HIV-1 was also inhibited in a dose-dependent manner and the inhibitory effect was enhanced by liposome modification of EGCg. As expected, increased viral mRNA production was observed in lipopolysaccharide (LPS)-activated chronically HIV-1-infected cells. This production was significantly inhibited by EGCg treatment of THP-1 cells. In contrast, production of HIV-1 viral mRNA in unstimulated or LPS-stimulated T-lymphoid cells (H9) was not inhibited by EGCg. Anti-HIV viral activity of EGCg may thus result from an interaction with several steps in the HIV-1 life cycle.

  20. Two M-T hook residues greatly improve the antiviral activity and resistance profile of the HIV-1 fusion inhibitor SC29EK

    PubMed Central

    2014-01-01

    Background Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 such as T20 (Enfuvirtide) and C34 are potent viral fusion inhibitors. We have recently found that two N-terminal residues (Met115 and Thr116) of CHR peptides form a unique M-T hook structure that can greatly enhance the binding and anti-HIV activity of inhibitors. Here, we applied two M-T hook residues to optimize SC29EK, an electrostatically constrained peptide inhibitor with a potent anti-HIV activity. Results The resulting peptide MT-SC29EK showed a dramatically increased binding affinity and could block the six-helical bundle (6-HB) formation more efficiently. As expected, MT-SC29EK potently inhibited HIV-1 entry and infection, especially against those T20- and SC29EK-resistant HIV-1 variants. More importantly, MT-SC29EK and its short form (MT-SC22EK) suffered from the difficulty to induce HIV-1 resistance during the in vitro selection, suggesting their high genetic barriers to the development of resistance. Conclusions Our studies have verified the M-T hook structure as a vital strategy to design novel HIV-1 fusion inhibitors and offered an ideal candidate for clinical development. PMID:24884671

  1. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification

    PubMed Central

    Garg, Himanshu; Joshi, Anjali

    2016-01-01

    Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy. PMID:26800572

  2. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification.

    PubMed

    Garg, Himanshu; Joshi, Anjali

    2016-05-01

    Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy.

  3. Dual-acting stapled peptides target both HIV-1 entry and assembly

    PubMed Central

    2013-01-01

    Background Previously, we reported the conversion of the 12-mer linear and cell-impermeable peptide CAI to a cell-penetrating peptide NYAD-1 by using an i,i + 4 hydrocarbon stapling technique and confirmed its binding to the C-terminal domain (CTD) of the HIV-1 capsid (CA) protein with an improved affinity (Kd ~ 1 μM) compared to CAI (Kd ~ 15 μM). NYAD-1 disrupts the formation of both immature- and mature-like virus particles in in vitro and cell-based assembly assays. In addition, it displays potent anti-HIV-1 activity in cell culture against a range of laboratory-adapted and primary HIV-1 isolates. Results In this report, we expanded the study to i,i + 7 hydrocarbon-stapled peptides to delineate their mechanism of action and antiviral activity. We identified three potent inhibitors, NYAD-36, -66 and -67, which showed strong binding to CA in NMR and isothermal titration calorimetry (ITC) studies and disrupted the formation of mature-like particles. They showed typical α-helical structures and penetrated cells; however, the cell penetration was not as efficient as observed with the i,i + 4 peptides. Unlike NYAD-1, the i,i + 7 peptides did not have any effect on virus release; however, they impaired Gag precursor processing. HIV-1 particles produced in the presence of these peptides displayed impaired infectivity. Consistent with an effect on virus entry, selection for viral resistance led to the emergence of two mutations in the gp120 subunit of the viral envelope (Env) glycoprotein, V120Q and A327P, located in the conserved region 1 (C1) and the base of the V3 loop, respectively. Conclusion The i,i + 7 stapled peptides derived from CAI unexpectedly target both CA and the V3 loop of gp120. This dual-targeted activity is dependent on their ability to penetrate cells as well as their net charge. This mechanistic revelation will be useful in further modifying these peptides as potent anti-HIV-1 agents. PMID:24237936

  4. Maraviroc (UK-427,857), a Potent, Orally Bioavailable, and Selective Small-Molecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity

    PubMed Central

    Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony; Perros, Manos

    2005-01-01

    Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 μM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS. PMID:16251317

  5. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro.

    PubMed

    Ortega, Joseph T; Suárez, Alirica I; Serrano, Maria L; Baptista, Jani; Pujol, Flor H; Rangel, Hector R

    2017-10-12

    Plant extracts are sources of valuable compounds with biological activity, especially for the anti-proliferative activity against pathogens or tumor cells. Myricetin is a flavonoid found in several plants that has been described as an inhibitor of Human immunodeficiency virus type 1 (HIV-1) through its action against the HIV reverse transcriptase, but myricetin derivatives have not been fully studied. The aim of this study was to evaluate the anti-HIV-1 activity of glycosylated metabolites obtained from Marcetia taxifolia and derived from myricetin: myricetin rhamnoside and myricetin 3-(6-rhamnosylgalactoside). Compounds were obtained from organic extracts by maceration of aerial parts of M. taxifolia. All biological assays were performed in the MT4 cell line. Antiviral activity was measured as inhibition of p24 and reverse transcriptase with a fluorescent assay. Both flavonoids have antiviral activity in vitro, with an EC50 of 120 µM for myricetin 3-rhamnoside (MR) and 45 µM for myricetin 3-(6-rhamnosylgalactoside) (MRG), both significantly lower than the EC50 of myricetin (230 µM). Although both compounds inhibited the reverse transcriptase activity, with an IC50 of 10.6 µM for MR and 13.8 µM for MRG, myricetin was the most potent, with an IC50 of 7.6 µM, and an inhibition greater than 80%. Molecular docking approach showed correlation between the free energy of binding with the assays of enzyme inhibition. The results suggest that glycosylated moiety might enhance the anti-HIV-1 activity of myricetin, probably by favoring the internalization of the flavonoid into the cell. The inhibition of the HIV-1 reverse transcriptase is likely responsible for the antiviral activity.

  6. Anti-HIV Drugs Decrease the Expression of Matrix Metalloproteinases in Astrocytes and Microglia

    ERIC Educational Resources Information Center

    Liuzzi, G. M.; Mastroianni, C. M.; Latronico, T.; Mengoni, F.; Fasano, A.; Lichtner, M.; Vullo, V.; Riccio, P.

    2004-01-01

    The introduction of potent antiretroviral drugs for the treatment of patients with human immunodeficiency virus (HIV) infection has dramatically reduced the prevalence of HIV-associated neurological disorders. Such diseases can be mediated by proteolytic enzymes, i.e. matrix metalloproteinases (MMPs) and, in particular gelatinases, released from…

  7. Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage.

    PubMed

    Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Li, Zhufang; Zhang, Sharon; Sun, Yongnian; Samanta, Himadri; Terry, Brian; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J; Chen, Jie; Venables, Brian L; Healy, Matthew; Meanwell, Nicholas A; Cockett, Mark; Hanumegowda, Umesh; Regueiro-Ren, Alicia; Krystal, Mark; Dicker, Ira B

    2016-07-01

    BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat. Copyright © 2016 Nowicka-Sans et al.

  8. A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo

    PubMed Central

    Freund, Natalia T.; Horwitz, Joshua A.; Nogueira, Lilian; Sievers, Stuart A.; Scharf, Louise; Scheid, Johannes F.; Gazumyan, Anna; Liu, Cassie; Velinzon, Klara; Goldenthal, Ariel; Sanders, Rogier W.; Moore, John P.; Bjorkman, Pamela J.; Seaman, Michael S.; Walker, Bruce D.; Klein, Florian; Nussenzweig, Michel C.

    2015-01-01

    The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans. PMID:26516768

  9. Heterocyclic N-Oxides – An Emerging Class of Therapeutic Agents

    PubMed Central

    Mfuh, Adelphe M.; Larionov, Oleg V.

    2016-01-01

    Heterocyclic N-oxides have emerged as potent compounds with anticancer, antibacterial, antihypertensive, antiparasitic, anti-HIV, anti-inflammatory, herbicidal, neuroprotective, and procognitive activities. The N-oxide motif has been successfully employed in a number of recent drug development projects. This review surveys the emergence of this scaffold in the mainstream medicinal chemistry with a focus on the discovery of the heterocyclic N-oxide drugs, N-oxide-specific mechanisms of action, drug-receptor interactions and synthetic avenues to these compounds. As the first review on this subject that covers the developments since 1950s to date, it is expected that it will inspire wider implementation of the heterocyclic N-oxide motif in the rational design of new medicinal agents. PMID:26087764

  10. The Low-Cost Compound Lignosulfonic Acid (LA) Exhibits Broad-Spectrum Anti-HIV and Anti-HSV Activity and Has Potential for Microbicidal Applications

    PubMed Central

    D’huys, Thomas; Petrova, Mariya I.; Lebeer, Sarah; Snoeck, Robert; Andrei, Graciela; Schols, Dominique

    2015-01-01

    Objectives Lignosulfonic acid (LA), a low-cost lignin-derived polyanionic macromolecule, was extensively studied for its anti-HIV and anti-HSV activity in various cellular assays, its mechanism of viral inhibition and safety profile as potential microbicide. Results LA demonstrated potent inhibitory activity of HIV replication against a wide range of R5 and X4 HIV strains and prevented the uptake of HIV by bystander CD4+ T cells from persistently infected T cells in vitro (IC50: 0.07 – 0.34 μM). LA also inhibited HSV-2 replication in vitro in different cell types (IC50: 0.42 – 1.1 μM) and in rodents in vivo. Furthermore, LA neutralized the HIV-1 and HSV-2 DC-SIGN-mediated viral transfer to CD4+ T cells (IC50: ∼1 μM). In addition, dual HIV-1/HSV-2 infection in T cells was potently blocked by LA (IC50: 0.71 μM). No antiviral activity was observed against the non-enveloped viruses Coxsackie type B4 and Reovirus type 1. LA is defined as a HIV entry inhibitor since it interfered with gp120 binding to the cell surface of T cells. Pretreatment of PBMCs with LA neither increased expression levels of cellular activation markers (CD69, CD25 and HLA-DR), nor enhanced HIV-1 replication. Furthermore, we found that LA had non-antagonistic effects with acyclovir, PRO2000 or LabyA1 (combination index (CI): 0.46 – 1.03) in its anti-HSV-2 activity and synergized with tenofovir (CI: 0.59) in its anti-HIV-1 activity. To identify mechanisms of LA resistance, we generated in vitro a mutant HIV-1 NL4.3LAresistant virus, which acquired seven mutations in the HIV-1 envelope glycoproteins: S160N, V170N, Q280H and R389T in gp120 and K77Q, N113D and H132Y in gp41. Additionally, HIV-1 NL4.3LAresistant virus showed cross-resistance with feglymycin, enfuvirtide, PRO2000 and mAb b12, four well-described HIV binding/fusion inhibitors. Importantly, LA did not affect the growth of vaginal Lactobacilli strains. Conclusion Overall, these data highlight LA as a potential and unique low-cost microbicide displaying broad anti-HIV and anti-HSV activity. PMID:26132818

  11. Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency.

    PubMed

    Bournazos, Stylianos; Gazumyan, Anna; Seaman, Michael S; Nussenzweig, Michel C; Ravetch, Jeffrey V

    2016-06-16

    Broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) suppress viremia in animal models of HIV-1 and humans. To achieve potent activity without the emergence of viral escape mutants, co-administration of different bNAbs is necessary to target distinct epitopes essential for viral fitness. Here, we report the development of bispecific anti-Env neutralizing antibodies (biNAbs) with potent activity. Synergistic activity of biNAbs was achieved by combining an engineered hinge domain of IgG3 to increase Fab domain flexibility necessary for hetero-bivalent binding to the Env trimer while retaining the functional properties of the IgG1-Fc. Compared to unmodified biNAbs, hinge domain variants exhibited substantially improved neutralization activity, with particular combinations showing evidence of synergistic neutralization potency in vitro and enhanced in vivo therapeutic activity in HIV-1-infected humanized mice. These findings suggest innovative strategies for generating biNAbs with enhanced neutralization breadth and potency, representing ideal candidate molecules for the control of HIV-1 infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Synthesis, anti-HIV activity studies, and in silico rationalization of cyclobutane-fused nucleosides.

    PubMed

    Figueras, Antoni; Miralles-Llumà, Rosa; Flores, Ramon; Rustullet, Albert; Busqué, Félix; Figueredo, Marta; Font, Josep; Alibés, Ramon; Maréchal, Jean-Didier

    2012-06-01

    The present work describes some recent approaches to novel 3-oxabicyclo[3.2.0]heptane-type nucleosides structurally similar to the potent anti-HIV agent stavudine (d4T). To gain knowledge at the molecular level relevant for further synthetic designs, the lack of activity of these compounds was investigated by computational approaches accounting for three main physiological requirements of anti-HIV nucleosides: their drug-likeness, their activation process, and their subsequent interaction with HIV reverse transcriptase (HIV-RT). Our results show that the inclusion of the fused cyclobutane at the 2'- and 3'-positions of the sugar portion provides drug-like compounds. Nonetheless, the presence of this cyclobutane moiety prevents binding orientations consistent with the catalytic activation for at least one of the enzymes known to activate d4T. To the best of our knowledge, this is the first study to explicitly consider the simulation of the entire activation process to rationalize anti-HIV activities. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Design, enantiopure synthesis, and biological evaluation of novel iso-D-2',3'-dideoxy-3'-fluorothianucleoside derivatives as a bioisostere of lamivudine.

    PubMed

    Kim, Kyung Ran; Park, Ah-Young; Moon, Hyung Ryong; Chun, Moon Woo; Jeong, Lak Shin

    2007-01-01

    Novel iso D-2',3'-dideoxythianucleoside derivatives 1-3 were designed and asymmetrically synthesized to search for new anti-HIV agents. Final compounds 1-3 were evaluated against a variety of viruses including HIV-1 and 2. Only cytosine analog 3 showed a potent anti-VSV activity (EC(50) = 9.43 microg/mL). This result implies that iso 2',3'-dideoxy sugar templates might play a role of a sugar surrogate of nucleosides for the development of anti-RNA virus agent.

  14. Intravaginal ring delivery of tenofovir disoproxil fumarate for prevention of HIV and herpes simplex virus infection.

    PubMed

    Mesquita, Pedro M M; Rastogi, Rachna; Segarra, Theodore J; Teller, Ryan S; Torres, N Merna; Huber, Ashley M; Kiser, Patrick F; Herold, Betsy C

    2012-07-01

    A safe and effective topical prevention strategy will likely require sustained delivery of potent antiviral drugs and a delivery system that simultaneously maximizes drug distribution and overcomes the behavioural challenges related to adherence. Activity against HIV and herpes simplex virus (HSV) would be advantageous, given the epidemiological link between the two pathogens. We hypothesize that tenofovir disoproxil fumarate (tenofovir DF), a prodrug of tenofovir, may be more potent than tenofovir and ideal for sustained intravaginal ring (IVR) delivery. The anti-HIV and anti-HSV activity of tenofovir and tenofovir DF were assessed in cell and explant models. Cumulative tenofovir DF release and stability from polyether urethane (PEU), ethylene-co-vinyl acetate (EVA) and silicone IVRs were compared, and the activity and safety of drug released were evaluated in cervical explants and in a polarized dual-chamber model. Tenofovir DF inhibited HIV and HSV at ≈ 100-fold lower concentrations than tenofovir and retained activity in the presence of semen. PEU rings delivered >1 mg/day of tenofovir DF for 30 days. Pre-treatment of cervical explants with 10 μg/mL tenofovir DF or eluants from PEU minirings resulted in >90% inhibition of HIV and reduced HSV-2 yields by 2.5 log. Tenofovir DF and eluants did not prevent cell growth or polarization, or have any deleterious effects on an epithelial barrier. The findings support the development of a PEU tenofovir DF ring, which may provide potent and sustained protection against HIV and HSV.

  15. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggiano, Cesar; Jiang Shibo; Lu Hong

    2006-09-08

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonalmore » antibody and chemokine SDF-1{alpha} to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.« less

  16. Inhibition of HIV-1 by curcumin A, a novel curcumin analog

    PubMed Central

    Kumari, Namita; Kulkarni, Amol A; Lin, Xionghao; McLean, Charlee; Ammosova, Tatiana; Ivanov, Andrey; Hipolito, Maria; Nekhai, Sergei; Nwulia, Evaristus

    2015-01-01

    Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities. PMID:26366056

  17. Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Won-Gil; Chan, Albert H.; Spasov, Krasimir A.

    Catechol diethers that incorporate a 7-cyano-2-naphthyl substituent are reported as non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs). Many of the compounds have 1–10 nM potencies toward wild-type HIV-1. An interesting conformational effect allows two unique conformers for the naphthyl group in complexes with HIV-RT. X-ray crystal structures for 4a and 4f illustrate the alternatives.

  18. Soybean-derived Bowman-Birk inhibitor (BBI) blocks HIV entry into macrophages.

    PubMed

    Ma, Tong-Cui; Le Guo; Zhou, Run-Hong; Wang, Xu; Liu, Jin-Biao; Li, Jie-Liang; Zhou, Yu; Hou, Wei; Ho, Wen-Zhe

    2018-01-01

    Bowman-Birk inhibitor (BBI) is a soybean-derived protease inhibitor that has anti-inflammation and anti-HIV effect. Here, we further investigated the anti-HIV action of BBI in macrophages, focusing on its effect on viral entry. We found that BBI could significantly block HIV entry into macrophages. Investigation of the mechanism(s) of the BBI action on HIV inhibition showed that BBI down-regulated the expression of CD4 receptor (as much as 80%) and induced the production of the CC chemokines (up to 60 folds at protein level) in macrophages. This inhibitory effect of BBI on HIV entry could be blocked by the neutralization antibodies to CC chemokines. These findings indicate that BBI may have therapeutic potential as a viral entry inhibitor for the prevention and treatment of HIV infection. Copyright © 2017. Published by Elsevier Inc.

  19. Characteristics of a group of nonnucleoside reverse transcriptase inhibitors with structural diversity and potent anti-human immunodeficiency virus activity.

    PubMed

    Yang, S S; Fliakas-Boltz, V; Bader, J P; Buckheit, R W

    1995-10-01

    Current thrust in controlling the Acquired Immune Deficiency Syndrome (AIDS) focuses on antiviral drug development targeting the infection and replication of the human immunodeficiency virus (HIV), the causative agent of AIDS. To date, treatment of AIDS has relied on nucleoside reverse transcriptase inhibitors such as AZT, ddI, and ddC, which eventually become ineffective upon the emergence of resistant mutants bearing specific nucleotide substitutions. The Anti-AIDS Drug Screening Program of the NCI conducts and coordinates a high-capacity semi-robotic in vitro screening of synthetic or natural compounds submitted by academic, research and pharmaceutical institutions world-wide. About 10,000 synthetic compounds are screened annually for anti-HIV activity. Confirmed active agents are subjected to in-depth studies on range and mechanism of action. Emerging from this intense screening activity were a number of potentially promising categories of nonnucleoside reverse transcriptase inhibitors (NNRTI) with structural diversity but strong and reproducible anti-HIV activity. Over 2500 active compounds were evaluated for their inhibitory activity against a panel of both laboratory and clinical virus isolates in the appropriate established cell line or fresh human peripheral blood leukocyte and macrophage preparations. Out of these, 40 agents could be placed structurally in nine categories with an additional 16 unique compounds that share the characteristics of NNRTI. These NNRTIs were shown to inhibit reverse transcriptase enzymatically using homopolymeric or ribosomal RNA as templates. NNRTIs demonstrated similarity in their inhibitory pattern against the HIV-1 laboratory strains IIIB and RF, and an AZT-resistant strain; all were inactive against HIV-2. These compounds were further tested against NNRTI-resistant HIV-1 isolates. NNRTI-resistant HIV-1 isolates were selected and characterized with respect to the change(s) in the viral reverse transcriptase nucleotide sequence. Also, differential cross-resistance or sensitivity patterns to NNRTIs were studied in detail among NNRTI-resistant mutants. When tested in combination with AZT, all of the NNRTI's uniformly exhibited synergistic inhibition of HIV-1, suggesting that combination antiviral therapy of NNRTIs with AZT may be therapeutically promising for AIDS treatment.

  20. Potent Immune Responses in Rhesus Macaques Induced by Nonviral Delivery of a Self-amplifying RNA Vaccine Expressing HIV Type 1 Envelope With a Cationic Nanoemulsion

    PubMed Central

    Bogers, Willy M.; Oostermeijer, Herman; Mooij, Petra; Koopman, Gerrit; Verschoor, Ernst J.; Davis, David; Ulmer, Jeffrey B.; Brito, Luis A.; Cu, Yen; Banerjee, Kaustuv; Otten, Gillis R.; Burke, Brian; Dey, Antu; Heeney, Jonathan L.; Shen, Xiaoying; Tomaras, Georgia D.; Labranche, Celia; Montefiori, David C.; Liao, Hua-Xin; Haynes, Barton; Geall, Andrew J.; Barnett, Susan W.

    2015-01-01

    Self-amplifying messenger RNA (mRNA) of positive-strand RNA viruses are effective vectors for in situ expression of vaccine antigens and have potential as a new vaccine technology platform well suited for global health applications. The SAM vaccine platform is based on a synthetic, self-amplifying mRNA delivered by a nonviral delivery system. The safety and immunogenicity of an HIV SAM vaccine encoding a clade C envelope glycoprotein formulated with a cationic nanoemulsion (CNE) delivery system was evaluated in rhesus macaques. The HIV SAM vaccine induced potent cellular immune responses that were greater in magnitude than those induced by self-amplifying mRNA packaged in a viral replicon particle (VRP) or by a recombinant HIV envelope protein formulated with MF59 adjuvant, anti-envelope binding (including anti-V1V2), and neutralizing antibody responses that exceeded those induced by the VRP vaccine. These studies provide the first evidence in nonhuman primates that HIV vaccination with a relatively low dose (50 µg) of formulated self-amplifying mRNA is safe and immunogenic. PMID:25234719

  1. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice.

    PubMed

    Klein, Florian; Halper-Stromberg, Ariel; Horwitz, Joshua A; Gruell, Henning; Scheid, Johannes F; Bournazos, Stylianos; Mouquet, Hugo; Spatz, Linda A; Diskin, Ron; Abadir, Alexander; Zang, Trinity; Dorner, Marcus; Billerbeck, Eva; Labitt, Rachael N; Gaebler, Christian; Marcovecchio, Paola; Incesu, Reha-Baris; Eisenreich, Thomas R; Bieniasz, Paul D; Seaman, Michael S; Bjorkman, Pamela J; Ravetch, Jeffrey V; Ploss, Alexander; Nussenzweig, Michel C

    2012-12-06

    Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy, the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals.

  2. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies

    PubMed Central

    Fuchs, Sebastian P; Desrosiers, Ronald C

    2016-01-01

    Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized. PMID:28197421

  3. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    PubMed

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  4. Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide.

    PubMed

    Sepúlveda-Crespo, Daniel; Lorente, Raquel; Leal, Manuel; Gómez, Rafael; De la Mata, Francisco J; Jiménez, José Luis; Muñoz-Fernández, M Ángeles

    2014-04-01

    Polyanionic carbosilane dendrimers represent opportunities to develop new anti-HIV microbicides. Dendrimers and antiretrovirals (ARVs) acting at different stages of HIV replication have been proposed as compounds to decrease new HIV infections. Thus, we determined the potential use of our G2-STE16 carbosilane dendrimer in combination with other carbosilane dendrimers and ARVs for the use as topical microbicide against HIV-1. We showed that these combinations obtained 100% inhibition and displayed a synergistic profile against different HIV-1 isolates in our model of TZM.bl cells. Our results also showed their potent activity in the presence of an acidic vaginal or seminal fluid environment and did not activate an inflammatory response. This study is the first step toward exploring the use of different anionic carbosilane dendrimers in combination and toward making a safe microbicide. Therefore, our results support further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicide. This paper describes the first steps toward the use of anionic carbosilane dendrimers in combination with antivirals to address HIV-1, paving the way to further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicides. © 2014.

  5. Abasic Phosphorothioate Oligomers Inhibit HIV-1 Reverse Transcription and Block Virus Transmission across Polarized Ectocervical Organ Cultures

    PubMed Central

    Fraietta, Joseph A.; Mueller, Yvonne M.; Lozenski, Karissa L.; Ratner, Deena; Boesteanu, Alina C.; Hancock, Aidan S.; Lackman-Smith, Carol; Zentner, Isaac J.; Chaiken, Irwin M.; Chung, Suhman; LeGrice, Stuart F. J.; Snyder, Beth A.; Mankowski, Marie K.; Jones, Natalie M.; Hope, Jennifer L.; Gupta, Phalguni; Anderson, Sharon H.; Wigdahl, Brian

    2014-01-01

    In the absence of universally available antiretroviral (ARV) drugs or a vaccine against HIV-1, microbicides may offer the most immediate hope for controlling the AIDS pandemic. The most advanced and clinically effective microbicides are based on ARV agents that interfere with the earliest stages of HIV-1 replication. Our objective was to identify and characterize novel ARV-like inhibitors, as well as demonstrate their efficacy at blocking HIV-1 transmission. Abasic phosphorothioate 2′ deoxyribose backbone (PDB) oligomers were evaluated in a variety of mechanistic assays and for their ability to inhibit HIV-1 infection and virus transmission through primary human cervical mucosa. Cellular and biochemical assays were used to elucidate the antiviral mechanisms of action of PDB oligomers against both lab-adapted and primary CCR5- and CXCR4-utilizing HIV-1 strains, including a multidrug-resistant isolate. A polarized cervical organ culture was used to test the ability of PDB compounds to block HIV-1 transmission to primary immune cell populations across ectocervical tissue. The antiviral activity and mechanisms of action of PDB-based compounds were dependent on oligomer size, with smaller molecules preventing reverse transcription and larger oligomers blocking viral entry. Importantly, irrespective of molecular size, PDBs potently inhibited virus infection and transmission within genital tissue samples. Furthermore, the PDB inhibitors exhibited excellent toxicity and stability profiles and were found to be safe for vaginal application in vivo. These results, coupled with the previously reported intrinsic anti-inflammatory properties of PDBs, support further investigations in the development of PDB-based topical microbicides for preventing the global spread of HIV-1. PMID:25224013

  6. Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration.

    PubMed

    Bannenberg, Gerard; Moussignac, Rose-Laure; Gronert, Karsten; Devchand, Pallavi R; Schmidt, Birgitta A; Guilford, William J; Bauman, John G; Subramanyam, Babu; Perez, H Daniel; Parkinson, John F; Serhan, Charles N

    2004-09-01

    1. Lipoxins (LX) and aspirin-triggered 15-epi-lipoxins (ATL) exert potent anti-inflammatory actions. In the present study, we determined the anti-inflammatory efficacy of endogenous LXA(4) and LXB(4), the stable ATL analog ATLa2, and a series of novel 3-oxa-ATL analogs (ZK-996, ZK-990, ZK-994, and ZK-142) after intravenous, oral, and topical administration in mice. 2. LXA(4), LXB(4), ATLa2, and ZK-994 were orally active, exhibiting potent systemic inhibition of zymosan A-induced peritonitis at very low doses (50 ng kg(-1)-50 microg kg(-1)). 3. Intravenous ZK-994 and ZK-142 (500 microg kg(-1)) potently attenuated hind limb ischemia/reperfusion-induced lung injury, with 32+/-12 and 53+/-5% inhibition (P<0.05), respectively, of neutrophil accumulation in lungs. The same dose of ATLa2 had no significant protective action. 4. Topical application of ATLa2, ZK-994, and ZK-142 ( approximately 20 microg cm(-2)) prevented vascular leakage and neutrophil infiltration in LTB(4)/PGE(2)-stimulated ear skin inflammation. While ATLa2 and ZK-142 displayed approximately equal anti-inflammatory efficacy in this model, ZK-994 displayed a slower onset of action. 5. In summary, native LXA(4) and LXB(4), and analogs ATLa2, ZK-142, and ZK-994 retain broad anti-inflammatory effects after intravenous, oral, and topical administration. The 3-oxa-ATL analogs, which have enhanced metabolic and chemical stability and a superior pharmacokinetic profile, provide new opportunities to explore the actions and therapeutic potential for LX and ATL.

  7. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    NASA Astrophysics Data System (ADS)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  8. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase

    PubMed Central

    Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario

    2008-01-01

    Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development. PMID:18197976

  9. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells

    PubMed Central

    Ordonez, Paula; Kunzelmann, Simone; Groom, Harriet C. T.; Yap, Melvyn W.; Weising, Simon; Meier, Chris; Bishop, Kate N.; Taylor, Ian A.; Stoye, Jonathan P.

    2017-01-01

    SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs. PMID:28220857

  10. Vaginal concentrations of lactic acid potently inactivate HIV

    PubMed Central

    Aldunate, Muriel; Tyssen, David; Johnson, Adam; Zakir, Tasnim; Sonza, Secondo; Moench, Thomas; Cone, Richard; Tachedjian, Gilda

    2013-01-01

    Objectives When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). Methods HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. Results l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. Conclusions l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV. PMID:23657804

  11. Synthesis and biological evaluation of 2-thioxopyrimidin-4(1H)-one derivatives as potential non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Khalifa, Nagy M; Al-Omar, Mohamed A

    2014-11-12

    A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity.

  12. Synthesis and Biological Evaluation of 2-Thioxopyrimidin-4(1H)-one Derivatives as Potential Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Khalifa, Nagy M.; Al-Omar, Mohamed A.

    2014-01-01

    A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity. PMID:25397597

  13. P2X-selective purinergic antagonists are strong inhibitors of HIV-1 fusion during both cell-to-cell and cell-free infection.

    PubMed

    Swartz, Talia H; Esposito, Anthony M; Durham, Natasha D; Hartmann, Boris M; Chen, Benjamin K

    2014-10-01

    Human immunodeficiency virus type 1 (HIV-1) infection is chronic and presently still incurable. Antiretroviral drugs effectively suppress replication; however, persistent activation of inflammatory pathways remains a key cause of morbidity. Recent studies proposed that purinergic signaling is required for HIV-1 infection. Purinergic receptors are distributed throughout a wide variety of tissue types and detect extracellular ATP as a danger signal released from dying cells. We have explored how these pathways are involved in the transmission of HIV-1 from cell to cell through virological synapses. Infection of CD4+ T lymphocytes with HIV-1 in the presence of an inhibitor of P2X receptors effectively inhibited HIV-1 infection through both cell-free and cell-to-cell contact in a dose-dependent manner. Inhibition of direct cell-to-cell infection did not affect the formation of virological synapses or the subsequent cell-to-cell transfer of HIV-1. During both cell-free and cell-to-cell CD4+ T lymphocyte infection, purinergic antagonists blocked infection at the level of viral membrane fusion. During cell-to-cell transmission, we observed CXCR4 colocalization with the newly internalized virus particles within target lymphocytes and found that the purinergic antagonists did not impair the recruitment of the coreceptor CXCR4 to the site of Gag internalization in the target cell. In a screen of a library of purinergic antagonists, we found that the most potent inhibitors of HIV-1 fusion were those that target P2X receptors, while P2Y-selective receptor antagonists or adenosine receptor antagonists were ineffective. Our results suggest that P2X receptors may provide a therapeutic target and that purinergic antagonists may have potent activity against viral infection of CD4+ T lymphocytes by both cell-free and cell-to-cell transmission. This study identifies purinergic antagonists to be potent inhibitors of HIV-1 cell-free and cell-to-cell-mediated infection and provides a stepwise determination of when these compounds inhibit HIV-1 infection. These data provide a rationale for the development of novel antiretroviral therapies that have a dual role in both direct antiviral activity and the reduction of HIV-associated inflammation. Purinergic antagonists are shown here to have equivalent efficacy in inhibiting HIV infection via cell-free and cell-to-cell infection, and it is shown that purinergic receptors could provide an attractive therapeutic anti-HIV target that might avoid resistance by targeting a host signaling pathway that potently regulates HIV infection. The high-throughput screen of HIV-1 fusion inhibitors further defines P2X-selective compounds among the purinergic compounds as being the most potent HIV entry inhibitors. Clinical studies on these drugs for other inflammatory indications suggest that they are safe, and thus, if developed for use as anti-HIV agents, they could reduce both HIV replication and HIV-related inflammation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Synthesis and potent in vitro activity of novel 1H-benzimidazoles as anti-MRSA agents.

    PubMed

    Karataş, Hacer; Alp, Mehmet; Yildiz, Sulhiye; Göker, Hakan

    2012-08-01

    A new class of 1H-benzimidazolecarboxamidines was synthesized and evaluated for in vitro antibacterial and antifungal activities, including drug-resistant bacterial strains. The most potent compound (32) has the same ratio of anti-MRSA activity as Vancomycin (minimal inhibitory concentrations value 0.78 μg/mL). The mechanism of action for 1H-benzimidazolecarboxamidine appears to be different from existing antibacterial agents. These compounds have potential for development as a new class of potent anti-MRSA agent. © 2012 John Wiley & Sons A/S.

  15. HIV treatment 2020: what will it look like?

    PubMed

    Gulick, Roy

    2014-01-01

    Currently there are 28 approved antiretroviral drugs in six mechanistic classes, and recommended first-line regimens are highly potent, well tolerated, and as convenient as one pill, once-a-day. How will HIV treatment change by 2020? Over the next few years, we are likely to see potent 2-drug regimens tested head-to-head with standard three-drug regimens, and some of these will likely become standard-of-care. Newer agents with novel drug resistance profiles (e.g. doravirine, an NNRTI) or new mechanisms of action (e.g. BMS 663068, a CD4 attachment inhibitor) will provide virologic activity in patients with drug-resistant viral strains. Comparative studies of current and newer agents such as the investigational prodrug of tenofovir (TAF) will help define less toxic regimens. We will see additional convenient co-formulations developed; with them, we are likely to have second- and even third-line regimens administered one pill, once-daily. Long-acting injectable investigational formulations currently in clinical trials such as rilpivirine LA (administered monthly) and cabotegravir (administered quarterly), and others (including combinations of these agents) could provide additional convenient treatment options. Other novel formulations (e.g. patches, implants, rings) and combinations of antiretrovirals with other kinds of medications (e.g. contraceptives) may be developed and tested. In the developing world, we will see increasing numbers of patients taking potent, well-tolerated convenient first-line and subsequent regimens with the goal of "20 by 20" - 20 million treated people by 2020. Generic formulations of antiretroviral drugs, including combinations, will be increasingly available and used worldwide. With the current appreciation that inflammation and immune activation play an important role in the natural history of treated HIV infection, anti-inflammatory agents will be tested and may supplement (or even be co-formulated with) standard antiretroviral regimens. Recognizing our progress to date, these and other innovations will further improve HIV therapy by 2020.

  16. Characterization of the Neutralizing Antibody Response in a Case of Genetically Linked HIV Superinfection.

    PubMed

    Ssemwanga, Deogratius; Doria-Rose, Nicole A; Redd, Andrew D; Shiakolas, Andrea R; Longosz, Andrew F; Nsubuga, Rebecca N; Mayanja, Billy N; Asiki, Gershim; Seeley, Janet; Kamali, Anatoli; Ransier, Amy; Darko, Samuel; Walker, Michael P; Bruno, Daniel; Martens, Craig; Douek, Daniel; Porcella, Stephen F; Quinn, Thomas C; Mascola, John R; Kaleebu, Pontiano

    2018-04-23

    This report describes the identification of a genetically confirmed linked heterosexual human immunodeficiency virus (HIV) superinfection (HIV-SI) in a woman with chronic HIV infection who acquired a second strain of the virus from her husband. Serum neutralizing antibody (NAb) responses against their homologous and heterologous viruses, including the superinfecting strain, in the woman and her husband were examined before and after onset of HIV-SI. The woman displayed a moderately potent and broad anti-HIV NAb response prior to superinfection but did not possess NAb activity against the superinfecting strain. This case highlights the unique potential of linked HIV-SI studies to examine natural protection from HIV infection.

  17. Synthesis and in vitro activity of dicationic bis-benzimidazoles as a new class of anti-MRSA and anti-VRE agents.

    PubMed

    Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman

    2009-03-01

    A new class of novel bis-benzimidazole diamidine compounds have been synthesized and evaluated for in vitro antibacterial activities, including drug-resistant bacterial strains. Anti-MRSA and anti-VRE activities of the most potent compound 1 were more active than Vancomycin. The mechanism of action for this class of compounds appears to be different from existing antibiotics. Bis-benzimidazole diamidine compounds have potential for further investigation as a new class of potent anti-MRSA and anti-VRE agents.

  18. Natural Products as Anti-HIV Agents and Role in HIV-Associated Neurocognitive Disorders (HAND): A Brief Overview

    PubMed Central

    Kurapati, Kesava Rao V.; Atluri, Venkata S.; Samikkannu, Thangavel; Garcia, Gabriella; Nair, Madhavan P. N.

    2016-01-01

    As the threat of Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS) persists to rise, effective drug treatments are required to treat the infected people. Even though combination antiretroviral therapy (cART) provides stable viral suppression, it is not devoid of undesirable side effects, especially in persons undergoing long-term treatment. The present therapy finds its limitations in the emergence of multidrug resistance and accordingly finding new drugs and novel targets is the need of the hour to treat the infected persons and further to attack HIV reservoirs in the body like brain, lymph nodes to achieve the ultimate goal of complete eradication of HIV and AIDS. Natural products such as plant-originated compounds and plant extracts have enormous potential to become drug leads with anti-HIV and neuroprotective activity. Accordingly, many research groups are exploring the biodiversity of the plant kingdom to find new and better anti-HIV drugs with novel mechanisms of action and for HIV-associated neurocognitive disorders (HAND). The basic challenge that still persists is to develop viral replication-targeted therapy using novel anti-HIV compounds with new mode of action, accepted toxicity and less resistance profile. Against this backdrop, the World Health Organization (WHO) suggested the need to evaluate ethno-medicines for the management of HIV/AIDS. Consequently, there is need to evaluate traditional medicine, particularly medicinal plants and other natural products that may yield effective and affordable therapeutic agents. Although there are a good number of reports on traditional uses of plants to treat various diseases, knowledge of herbal remedies used to manage HIV/AIDS and HAND are scanty, vague and not well documented. In this review, plant substances showing a promising action that is anti-HIV and HAND will be explored along with what they interact. Since some plant substances are also known to modulate several cellular factors which are also involved in the replication of HIV and hence their role as potential candidates will be discussed. HIV/AIDS being an exceptional epidemic, demands an exceptional approach and that forms very much focus for the current review. PMID:26793166

  19. Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog.

    PubMed Central

    Rosenwirth, B; Billich, A; Datema, R; Donatsch, P; Hammerschmid, F; Harrison, R; Hiestand, P; Jaksche, H; Mayer, P; Peichl, P

    1994-01-01

    (Me-Ile-4)cyclosporin (SDZ NIM 811) is a 4-substituted cyclosporin which is devoid of immunosuppressive activity but retains full capacity for binding to cyclophilin and exhibits potent anti-human immunodeficiency virus type 1 (HIV-1) activity. SDZ NIM 811 selectively inhibits HIV-1 replication in T4 lymphocyte cell lines, in a monocytic cell line, and in HeLa T4 cells. Furthermore, its antiviral activity against laboratory strains and against clinical isolates from geographically distinct regions in primary T4 lymphocytes and in primary monocytes (50% inhibitory concentration = 0.011 to 0.057 micrograms/ml) was demonstrated. SDZ NIM 811 does not inhibit proviral gene expression or virus-specific enzyme functions, either free or bound to cyclophilin. The compound does not influence CD4 expression or inhibit fusion between virus-infected and uninfected cells. SDZ NIM 811 was, however, found to block formation of infectious particles from chronically infected cells. Oral administration to mice, rats, dogs, and monkeys resulted in levels in blood considerably exceeding the drug concentration, which completely blocked virus replication in primary cells. SDZ NIM 811 caused changes of toxicity parameters in rats to a smaller degree than cyclosporine (formerly cyclosporin A). Thus, the potent and selective anti-HIV-1 activity of SDZ NIM 811 and its favorable pharmacokinetic behavior together with its lower nephrotoxicity than that of cyclosporine make this compound a promising candidate for development as an anti-HIV drug. PMID:7527198

  20. Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog.

    PubMed

    Rosenwirth, B; Billich, A; Datema, R; Donatsch, P; Hammerschmid, F; Harrison, R; Hiestand, P; Jaksche, H; Mayer, P; Peichl, P

    1994-08-01

    (Me-Ile-4)cyclosporin (SDZ NIM 811) is a 4-substituted cyclosporin which is devoid of immunosuppressive activity but retains full capacity for binding to cyclophilin and exhibits potent anti-human immunodeficiency virus type 1 (HIV-1) activity. SDZ NIM 811 selectively inhibits HIV-1 replication in T4 lymphocyte cell lines, in a monocytic cell line, and in HeLa T4 cells. Furthermore, its antiviral activity against laboratory strains and against clinical isolates from geographically distinct regions in primary T4 lymphocytes and in primary monocytes (50% inhibitory concentration = 0.011 to 0.057 micrograms/ml) was demonstrated. SDZ NIM 811 does not inhibit proviral gene expression or virus-specific enzyme functions, either free or bound to cyclophilin. The compound does not influence CD4 expression or inhibit fusion between virus-infected and uninfected cells. SDZ NIM 811 was, however, found to block formation of infectious particles from chronically infected cells. Oral administration to mice, rats, dogs, and monkeys resulted in levels in blood considerably exceeding the drug concentration, which completely blocked virus replication in primary cells. SDZ NIM 811 caused changes of toxicity parameters in rats to a smaller degree than cyclosporine (formerly cyclosporin A). Thus, the potent and selective anti-HIV-1 activity of SDZ NIM 811 and its favorable pharmacokinetic behavior together with its lower nephrotoxicity than that of cyclosporine make this compound a promising candidate for development as an anti-HIV drug.

  1. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands.

    PubMed

    Sancineto, Luca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Manfroni, Giuseppe; Corazza, Gianmarco; Cecchetti, Violetta; Marcello, Alessandro; Daelemans, Dirk; Pannecouque, Christophe; Tabarrini, Oriana

    2014-09-01

    It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Inhibition of retinoic acid catabolism by minocycline: evidence for a novel mode of action?

    PubMed

    Regen, Francesca; Hildebrand, Martin; Le Bret, Nathalie; Herzog, Irmelin; Heuser, Isabella; Hellmann-Regen, Julian

    2015-06-01

    Retinoic acid (RA) represents an essential and highly potent endogenous retinoid with pronounced anti-inflammatory properties and potent anti-acne activity, and has recently been suggested to share a common anti-inflammatory mode of action with tetracycline antibiotics. We hypothesized that tetracyclines may directly interfere with RA homeostasis via inhibition of its local cytochrome P450 (CYP450)-mediated degradation, an essential component of tightly regulated skin RA homeostasis. To test this hypothesis, we performed controlled in vitro RA metabolism assays using rat skin microsomes and measured RA levels in a RA-synthesizing human keratinocyte cell line, both in the presence and in the absence of minocycline, a tetracycline popular in acne treatment. Interestingly, minocycline potently blocked RA degradation in rat skin microsomes, and strikingly enhanced RA levels in RA-synthesizing cell cultures, in a dose-dependent manner. These findings indicate a potential role for CYP-450-mediated RA metabolism in minocycline's pleiotropic mode of action and anti-acne efficacy and could account for the overlap between minocycline and RA-induced effects at the level of their molecular mode of action, but also clinically at the level of the rare side effect of pseudotumor cerebri, which is observed for both, RA and minocycline treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Toll-like receptor agonists are potent inhibitors of human immunodeficiency virus-type 1 replication in peripheral blood mononuclear cells.

    PubMed

    Buitendijk, Maarten; Eszterhas, Susan K; Howell, Alexandra L

    2014-05-01

    Innate immune responses to microbial pathogens are initiated following the binding of ligand to specific pattern recognition receptors. Each pattern recognition receptor, which includes members of the Toll-like receptor (TLR) family, is specific for a particular type of pathogen associated molecular pattern ensuring that the organism can respond rapidly to a wide range of pathogens including bacteria, viruses, and fungi. We studied the extent to which agonists to endosomal TLR could induce anti-HIV-1 activity in peripheral blood mononuclear cells (PBMCs). When agonists to TLR3, TLR7, TLR8 and TLR9 were added prior to infection with HIV-1, they significantly reduced infection of peripheral blood mononuclear cells. Interestingly, agonists to TLR8 and TLR9 were highly effective at blocking HIV replication even when added as late as 48 h or 72 h, respectively, after HIV-1 infection, indicating that the anti-viral effect was durable and long lasting. Analysis of the induction of anti-viral genes after agonist activation of TLR indicated that all of the agonists induced expression of the type I interferons and interferon stimulated genes, although to variable levels that depended on the agonist used. Interestingly, only the agonist to TLR9, ODN2395 DNA, induced expression of type II interferon and the anti-HIV proteins Apobec3G and SAMHD1. By blocking TLR activity using an inhibitor to the MyD88 adaptor protein, we demonstrated that, at least for TLR8 and TLR9, the anti-HIV activity was not entirely mediated by TLR activation, but likely by the activation of additional anti-viral sensors in HIV target cells. These findings suggest that agonists to the endosomal TLR function to induce expression of anti-HIV molecules by both TLR-mediated and non-TLR-mediated mechanisms. Moreover, the non-TLR-mediated mechanisms induced by these agonists could potentially be exploited to block HIV-1 replication in recently HIV-exposed individuals.

  4. The discovery of a class of novel HIV-1 maturation inhibitors and their potential in the therapy of HIV.

    PubMed

    Yu, Donglei; Wild, Carl T; Martin, David E; Morris-Natschke, Susan L; Chen, Chin-Ho; Allaway, Graham P; Lee, Kuo-Hsiung

    2005-06-01

    Although HIV infection is now primarily treated with reverse transcriptase and protease inhibitors, HIV therapy must look toward new drugs with novel mechanism(s) of action to both improve efficacy and address the growing problem of drug resistance. Using natural products as a source of biologically active compounds, our drug discovery program has successfully optimised the natural product betulinic acid to the first-in-class maturation inhibitor 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (DSB). DSB's unique viral target has been identified as a late step in Gag processing. Specifically, it inhibits the cleavage of the capsid precursor, CA-SP1, resulting in a block to the processing of mature capsid protein leading to a defect in viral core condensation. DSB represents a unique class of anti-HIV compounds that inhibit virus maturation and provide additional opportunities for anti-HIV therapy. In this review, the discovery of DSB and its mode of action are summarised. Anti-AIDS Agents part 64. For part 63 in the series, see YU D, LEE KH: Recent progress and prospects on plant-derived anti-HIV agents and analogs. In: Medicinal Chemistry of Bioactive Natural Products. XT Liang, WS Fang (Eds), Wiley, New York, USA (2005) (In Press).

  5. Synthesis and biological properties of novel 2-aminopyrimidin-4(3H)-ones highly potent against HIV-1 mutant strains.

    PubMed

    Mai, Antonello; Artico, Marino; Rotili, Dante; Tarantino, Domenico; Clotet-Codina, Imma; Armand-Ugón, Mercedes; Ragno, Rino; Simeoni, Silvia; Sbardella, Gianluca; Nawrozkij, Maxim B; Samuele, Alberta; Maga, Giovanni; Esté, José A

    2007-11-01

    Following the disclosure of dihydro-alkoxy-, dihydro-alkylthio-, and dihydro-alkylamino-benzyl-oxopyrimidines (DABOs, S-DABOs, and NH-DABOs) as potent and selective anti-HIV-1 agents belonging to the non-nucleoside reverse transcriptase inhibitor (NNRTI) class, we report here the synthesis and biological evaluation of a novel series of DABOs bearing a N,N-disubstituted amino group or a cyclic amine at the pyrimidine-C2 position, a hydrogen atom or a small alkyl group at C5 and/or at the benzylic position, and the favorable 2,6-difluorobenzyl moiety at the C6 position (F2-N,N-DABOs). The new compounds were highly active up to the subnanomolar level against both wt HIV-1 and the Y181C mutant and at the submicromolar to nanomolar range against the K103N and Y188L mutant strains. Such derivatives were more potent than S-DABOs, NH-DABOs, and nevirapine and efavirenz were chosen as reference drugs. The higher inhibitor adaptability to the HIV-1 RT non-nucleoside binding site (NNBS) may account for the higher inhibitory effect exerted by the new molecules against the mutated RTs.

  6. An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression.

    PubMed

    Darcis, Gilles; Kula, Anna; Bouchat, Sophie; Fujinaga, Koh; Corazza, Francis; Ait-Ammar, Amina; Delacourt, Nadège; Melard, Adeline; Kabeya, Kabamba; Vanhulle, Caroline; Van Driessche, Benoit; Gatot, Jean-Stéphane; Cherrier, Thomas; Pianowski, Luiz F; Gama, Lucio; Schwartz, Christian; Vila, Jorge; Burny, Arsène; Clumeck, Nathan; Moutschen, Michel; De Wit, Stéphane; Peterlin, B Matija; Rouzioux, Christine; Rohr, Olivier; Van Lint, Carine

    2015-07-01

    The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs.

  7. An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression

    PubMed Central

    Bouchat, Sophie; Fujinaga, Koh; Corazza, Francis; Ait-Ammar, Amina; Delacourt, Nadège; Melard, Adeline; Kabeya, Kabamba; Vanhulle, Caroline; Van Driessche, Benoit; Gatot, Jean-Stéphane; Cherrier, Thomas; Pianowski, Luiz F.; Gama, Lucio; Schwartz, Christian; Vila, Jorge; Burny, Arsène; Clumeck, Nathan; Moutschen, Michel; De Wit, Stéphane; Peterlin, B. Matija; Rouzioux, Christine; Rohr, Olivier; Van Lint, Carine

    2015-01-01

    The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs. PMID:26225566

  8. Isolation of HIV-1-Neutralizing Mucosal Monoclonal Antibodies from Human Colostrum

    PubMed Central

    Friedman, James; Alam, S. Munir; Shen, Xiaoying; Xia, Shi-Mao; Stewart, Shelley; Anasti, Kara; Pollara, Justin; Fouda, Genevieve G.; Yang, Guang; Kelsoe, Garnett; Ferrari, Guido; Tomaras, Georgia D.; Haynes, Barton F.; Liao, Hua-Xin

    2012-01-01

    Background Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. Methods We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). Results The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. Conclusions These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces. PMID:22624058

  9. Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition.

    PubMed

    Ding, Xiaohui; Zhang, Xiujuan; Chong, Huihui; Zhu, Yuanmei; Wei, Huamian; Wu, Xiyuan; He, Jinsheng; Wang, Xinquan; He, Yuxian

    2017-09-15

    The peptide drug enfuvirtide (T20) is the only viral fusion inhibitor used in combination therapy for HIV-1 infection, but it has relatively low antiviral activity and easily induces drug resistance. Emerging studies demonstrate that lipopeptide-based fusion inhibitors, such as LP-11 and LP-19, which mainly target the gp41 pocket site, have greatly improved antiviral potency and in vivo stability. In this study, we focused on developing a T20-based lipopeptide inhibitor that lacks pocket-binding sequence and targets a different site. First, the C-terminal tryptophan-rich motif (TRM) of T20 was verified to be essential for its target binding and inhibition; then, a novel lipopeptide, termed LP-40, was created by replacing the TRM with a fatty acid group. LP-40 showed markedly enhanced binding affinity for the target site and dramatically increased inhibitory activity on HIV-1 membrane fusion, entry, and infection. Unlike LP-11 and LP-19, which required a flexible linker between the peptide sequence and the lipid moiety, addition of a linker to LP-40 sharply reduced its potency, implying different binding modes with the extended N-terminal helices of gp41. Also, interestingly, LP-40 showed more potent activity than LP-11 in inhibiting HIV-1 Env-mediated cell-cell fusion while it was less active than LP-11 in inhibiting pseudovirus entry, and the two inhibitors displayed synergistic antiviral effects. The crystal structure of LP-40 in complex with a target peptide revealed their key binding residues and motifs. Combined, our studies have not only provided a potent HIV-1 fusion inhibitor, but also revealed new insights into the mechanisms of viral inhibition. IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection; however, T20 requires high doses and has a low genetic barrier for resistance, and its inhibitory mechanism and structural basis remain unclear. Here, we report the design of LP-40, a T20-based lipopeptide inhibitor that has greatly improved anti-HIV activity and is a more potent inhibitor of cell-cell fusion than of cell-free virus infection. The binding modes of two classes of membrane-anchoring lipopeptides (LP-40 and LP-11) verify the current fusion model in which an extended prehairpin structure bridges the viral and cellular membranes, and their complementary effects suggest a vital strategy for combination therapy of HIV-1 infection. Moreover, our understanding of the mechanism of action of T20 and its derivatives benefits from the crystal structure of LP-40. Copyright © 2017 American Society for Microbiology.

  10. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation

    PubMed Central

    Abdel-Mohsen, Mohamed; Chavez, Leonard; Tandon, Ravi; Chew, Glen M.; Deng, Xutao; Danesh, Ali; Keating, Sheila; Lanteri, Marion; Samuels, Michael L.; Hoh, Rebecca; Sacha, Jonah B.; Norris, Philip J.; Niki, Toshiro; Shikuma, Cecilia M.; Hirashima, Mitsuomi; Deeks, Steven G.; Ndhlovu, Lishomwa C.; Pillai, Satish K.

    2016-01-01

    Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies. PMID:27253379

  11. Advances in development, scale-up and manufacturing of microbicide gels, films, and tablets.

    PubMed

    Garg, Sanjay; Goldman, David; Krumme, Markus; Rohan, Lisa C; Smoot, Stuart; Friend, David R

    2010-12-01

    Vaginal HIV microbicides are topical, self administered products designed to prevent or significantly reduce transmission of HIV infection in women. The earliest microbicide candidates developed have been formulated as coitally dependent (used around the time of sex) gels and creams. All microbicide candidates tested in Phase III clinical trials, so far, have been gel products with non-specific mechanisms of action. However, recently, research is focusing on compounds containing highly potent and specific anti-retrovirals. These specific anti-retrovirals are being formulated as primary dosage forms such as vaginal gels or in alternative dosage forms such as fast dissolve films and tablets. Recent innovations also include development of combination products of highly active antiviral drugs such as reverse transcriptase inhibitors and entry inhibitors, which would theoretically be more effective and would reduce the possibility of drug resistance. In this article, an overview of recent advances in the microbicide gel, film, and tablet formulations and issues pertaining to scale-up, formulation, and evaluation challenges and regulatory guidelines have been presented. This article forms part of a special supplement covering presentations on gels, tablets, and films from the symposium on "Recent Trends in Microbicide Formulations" held on 25 and 26 January 2010, Arlington, VA. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. HIV-1 vaccine strategies utilizing viral vectors including antigen- displayed inoviral vectors.

    PubMed

    Hassapis, Kyriakos A; Kostrikis, Leondios G

    2013-12-01

    Antigen-presenting viral vectors have been extensively used as vehicles for the presentation of antigens to the immune system in numerous vaccine strategies. Particularly in HIV vaccine development efforts, two main viral vectors have been used as antigen carriers: (a) live attenuated vectors and (b) virus-like particles (VLPs); the former, although highly effective in animal studies, cannot be clinically tested in humans due to safety concerns and the latter have failed to induce broadly neutralizing anti-HIV antibodies. For more than two decades, Inoviruses (non-lytic bacterial phages) have also been utilized as antigen carriers in several vaccine studies. Inoviral vectors are important antigen-carriers in vaccine development due to their ability to present an antigen on their outer architecture in many copies and to their natural high immunogenicity. Numerous fundamental studies have been conducted, which have established the unique properties of antigen-displayed inoviral vectors in HIV vaccine efforts. The recent isolation of new, potent anti-HIV broadly neutralizing monoclonal antibodies provides a new momentum in this emerging technology.

  13. HIV-1 Therapy with Monoclonal Antibody 3BNC117 Elicits Host Immune Responses against HIV-1

    PubMed Central

    Schoofs, Till; Klein, Florian; Braunschweig, Malte; Kreider, Edward F.; Feldmann, Anna; Nogueira, Lilian; Oliveira, Thiago; Lorenzi, Julio C. C.; Parrish, Erica H.; Learn, Gerald H.; West, Anthony P.; Bjorkman, Pamela J.; Schlesinger, Sarah J.; Seaman, Michael S.; Czartoski, Julie; McElrath, M. Juliana; Pfeifer, Nico; Hahn, Beatrice H.; Caskey, Marina; Nussenzweig, Michel C.

    2016-01-01

    3BNC117 is a broad and potent anti-HIV-1 neutralizing antibody that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 impacts host antibody responses in viremic subjects. In comparison to untreated controls that showed little change in their neutralizing activity over a six-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1. PMID:27199429

  14. Anti-HIV and cytotoxic biphenyls, benzophenones and xanthones from stems, leaves and twigs of Garcinia speciosa.

    PubMed

    Pailee, Phanruethai; Kuhakarn, Chutima; Sangsuwan, Chanyapat; Hongthong, Sakchai; Piyachaturawat, Pawinee; Suksen, Kanoknetr; Jariyawat, Surawat; Akkarawongsapat, Radeekorn; Limthongkul, Jitra; Napaswad, Chanita; Kongsaeree, Palangpon; Prabpai, Samran; Jaipetch, Thaworn; Pohmakotr, Manat; Tuchinda, Patoomratana; Reutrakul, Vichai

    2018-03-01

    Eleven previously undescribed compounds, including four benzophenones (garciosones A-D), four xanthones (garciosones E-H) and three biphenyls (garciosines A-C), along with eighteen known compounds were isolated from the stems, leaves and twigs of Garcinia speciosa Wall. (Clusiaceae). Their structures were established by extensive spectroscopic analysis. For garciosines A-C, the structures were confirmed by single crystal X-ray diffraction analysis. Most of the isolated compounds were evaluated for their cytotoxic activity and anti-HIV-1 activity using the syncytium inhibition assay and HIV-1 reverse transcriptase (RT) assay. The known compounds, 4,6,3',4'-tetrahydroxy-2-methoxybenzophenone and macluraxanthone, displayed significant cytotoxic activity with the ED 50 in the range of 1.85-11.76 μM. 1,5-Dihydroxyxanthone exhibited the most potent anti-HIV activity against syncytium formation with EC 50  < 17.13 μM (SI > 25.28) and 2-(3,3-dimethylallyl)-1,3,7-trihydroxyxanthone was the most active compound in the HIV-1 reverse transcriptase assay with IC 50 value of 58.24 μM. Structure-activity relationship of some isolated compounds were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design, synthesis, and biological evaluation of novel iso-D-2',3'-dideoxy-3'-fluorothianucleoside derivatives.

    PubMed

    Kim, Kyung Ran; Moon, Hyung Ryong; Park, Ah-Young; Chun, Moon Woo; Jeong, Lak Shin

    2007-01-01

    Novel iso-d-2',3'-dideoxythianucleoside derivatives 1-4 were designed and asymmetrically synthesized as a bioisostere of lamivudine to search for new anti-HIV agents. The information about using sulfur participation occurred on DAST fluorination and Mitsunobu reaction will be of great help in synthesizing sulfur-containing compounds. Final compounds 1-4 were evaluated against HIV-1 and 2, HSV-1 and 2, EMCV, Cox. B3, VSV, FluA (Taiwan), FluA (Johan.), FCV, and FIP. Only cytosine analogue 3 showed a potent anti-VSV activity (EC(50)=9.43microg/mL). This result implies that iso-2',3'-dideoxy sugar templates might play a role of a sugar surrogate of nucleosides for the development of anti-RNA virus agent.

  16. Indolyl aryl sulfones (IASs): development of highly potent NNRTIs active against wt-HIV-1 and clinically relevant drug resistant mutants.

    PubMed

    Silvestri, Romano; Artico, Marino

    2005-01-01

    Indolyl aryl sulfones (IASs) are a potent class of NNRTIs developed from L-737,126, a lead agent discovered by Merck AG. IAS derivatives are endowed with inhibitory activities against wt HIV-1 in the low nanomolar concentration range. Introduction of two methyl groups at positions 3 and 5 of the phenyl ring of the aryl sulfonyl moiety furnished IAS derivatives such as 5-chloro- or 5-bromo-3-[(3,5-dimethylphenyl)sulfonyl]indole-2-carboxyamide, which showed very potent and selective anti-HIV-1 activity against some mutants carrying NNRTI resistant mutations at positions 103 and 181 of the reverse transcriptase. IAS derivatives bearing 2-hydroxyethylcarboxyamide or 2-hydroxyethylcarboxyhydrazide groups at position 2 of the indole nucleus were more active than L-737,126 against the K103N-Y181C double mutant. A great improvement of antiviral activity against wt HIV-1 and resistant mutants was obtained by coupling 1-3 simple amino acids, such as glycine and alanine, in sequence, with the 3-[(3,5-dimethylphenyl)sulfonyl]-1H-indole-2-carbonyl moiety. The transformation of the chain terminus into amide or hydrazide, produced short peptides with high selectivity and potent activity against wt HIV-1, and the viral mutants Y181C, K103N-Y181C and EFV(R). IAS having two halogen atoms at the indole showed potent inhibitory activity against the Y181C and the EFV(R) resistant mutant strains. In particular, the introduction of a fluorine atom at position 4 of the indole ring notably contributed to improve the antiviral activities against both wt and the related resistant mutants. 5-Nitro-IASs were highly active against wt HIV-1 and exhibited low cytotoxicity. Experimental data highlighted the class IAS derivatives as promising candidates for clinical trials.

  17. Docking analysis of gallic acid derivatives as HIV-1 protease inhibitors.

    PubMed

    Singh, Anjali; Pal, Tapan Kumar

    2015-01-01

    HIV-1 Protease (HIV-1 PR) enzymes are essential for accurate assembly and maturation of infectious HIV retroviruses. The significant role of HIV-1 protease in viral replication has made it a potential drug target. In the recent past, phytochemical Gallic Acid (GA) derivatives have been screened for protease inhibitor activity. The present work aims to design and evaluate potential GA-based HIV-1 PR phytoinhibitors by docking approach. The ligands were prepared by ChemDraw and docking was performed in HEX software. In this present study, one of the GA analogues (GA4) emerged as a potent drug candidate for HIV-1 PR inhibition, and docking results showed it to be comparable with anti-HIV drugs, darunavir and amprenavir. The GA4 derivative provided a lead for designing more effective HIV-1 PR inhibitors.

  18. The discovery of novel diarylpyri(mi)dine derivatives with high level activity against a wide variety of HIV-1 strains as well as against HIV-2.

    PubMed

    Lu, Xueyi; Yang, Jiapei; Kang, Dongwei; Gao, Ping; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong

    2018-05-01

    By means of structure-based molecular hybridization strategy, a series of novel diarylpyri(mi)dine derivatives targeting the entrance channel of HIV-1 reverse transcriptase (RT) were designed, synthesized and evaluated as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs). Encouragingly, all the tested compounds showed good activities against wild-type (WT) HIV-1 (IIIB) with EC 50 in the range of 1.36 nM-29 nM, which is much better than those of nevirapine (NVP, EC 50  = 125.42 nM) and azidothymidine (AZT, EC 50  = 11.36 nM). Remarkably, these compounds also displayed effective activity against the most of the single and double-mutated HIV-1 strains with low EC 50 values, which is comparable to the control drugs. Besides, these compounds were also exhibited favorable enzymatic inhibitory activity. Moreover, preliminary structure-activity relationships (SARs) and molecular modeling study were investigated and discussed in detail. Unexpectedly, four diarylpyrimidines yielded moderate anti-HIV-2 activities. To our knowledge, this is rarely reported that diarylpyrimidine-based NNRTIs have potent activity against both HIV-1 and HIV-2 in cell culture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives.

    PubMed

    Tian, Ye; Du, Deping; Rai, Diwakar; Wang, Liu; Liu, Huiqing; Zhan, Peng; De Clercq, Erik; Pannecouque, Christophe; Liu, Xinyong

    2014-04-01

    In our continuous efforts to identify novel potent HIV-1 NNRTIs, a novel class of 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives were rationally designed, synthesized and evaluated for their anti-HIV activities in MT4 cell cultures. Biological results showed that most of the tested compounds displayed excellent activity against wild-type HIV-1 with a wide range of EC50 values from 5.98 to 0.07μM. Among the active compounds, 5a was found to be the most promising analogue with an EC50 of 0.07μM against wild-type HIV-1 and very high selectivity index (SI, 3999). Compound 5a was more effective than the reference drugs nevirapine (by 2-fold) and delavirdine (by 2-fold). In order to further confirm their binding target, an HIV-1 RT inhibitory assay was also performed. Furthermore, SAR analysis among the newly synthesized compounds was discussed and the binding mode of the active compound 5a was rationalized by molecular modeling studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 1,4-Bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene, a small molecule, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular Lens epithelium-derived growth factor.

    PubMed

    Gu, Wan-gang; Ip, Denis Tsz-Ming; Liu, Si-jie; Chan, Joseph H; Wang, Yan; Zhang, Xuan; Zheng, Yong-tang; Wan, David Chi-Cheong

    2014-04-25

    Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 μM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 μM. Compound 15 might supply useful structural information for further anti-HIV agent discovery. Copyright © 2014. Published by Elsevier Ireland Ltd.

  1. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

    PubMed

    Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua

    2017-08-30

    Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.

  2. SAMHD1 Phosphorylation Coordinates the Anti-HIV-1 Response by Diverse Interferons and Tyrosine Kinase Inhibition.

    PubMed

    Szaniawski, Matthew A; Spivak, Adam M; Cox, James E; Catrow, Jonathan L; Hanley, Timothy; Williams, Elizabeth S C P; Tremblay, Michel J; Bosque, Alberto; Planelles, Vicente

    2018-05-15

    Macrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted. IMPORTANCE Our experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved changes in phosphorylation status but not in protein levels. Phosphorylation of SAMHD1 in macrophages occurred at least in part via CDK1. Tyrosine kinase inhibitors similarly induced SAMHD1 dephosphorylation, which protects macrophages from HIV-1 in a SAMHD1-dependent manner. SAMHD1 is a critical restriction factor regulating HIV-1 infection of macrophages. Copyright © 2018 Szaniawski et al.

  3. Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C.

    PubMed

    Ghimire, Dibya; Timilsina, Uddhav; Srivastava, Tryambak Pratap; Gaur, Ritu

    2017-03-02

    HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics.

  4. Special coverage: 9th Conference on Retroviruses. New drugs, new data hold promise for next decade of HIV treatment.

    PubMed

    2002-05-01

    Antiretroviral research presented recently at the 9th Conference on Retroviruses and Opportunistic Infections demonstrates that investigators and pharmaceutical companies continue to strive for the next highly potent and easily tolerated anti-HIV drug. Among the new approaches are entry inhibitor drug and second-generation non-nucleoside reverse transcriptase inhibitors. New studies also looked into potency against multidrug-resistant virus and medication regimens that are simpler to take and have fewer side effects.

  5. Inhibitory effect of aqueous dandelion extract on HIV-1 replication and reverse transcriptase activity

    PubMed Central

    2011-01-01

    Background Acquired immunodeficiency syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV), is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects. PMID:22078030

  6. An anti-inflammatory principle from cactus.

    PubMed

    Park, E H; Kahng, J H; Lee, S H; Shin, K H

    2001-03-01

    In previous studies, the ethanol extract of cactus (Opuntia ficus-indica) showed potent anti-inflammatory action. In the present study, following fractionation of the methanol extract of cactus stems guided by adjuvant-induced chronic inflammation model in mice, an active anti-inflammatory principle has been isolated and identified as beta-sitosterol.

  7. The Lupane-type Triterpene 30-Oxo-calenduladiol Is a CCR5 Antagonist with Anti-HIV-1 and Anti-chemotactic Activities*

    PubMed Central

    Barroso-González, Jonathan; El Jaber-Vazdekis, Nabil; García-Expósito, Laura; Machado, José-David; Zárate, Rafael; Ravelo, Ángel G.; Estévez-Braun, Ana; Valenzuela-Fernández, Agustín

    2009-01-01

    The existence of drug-resistant human immunodeficiency virus (HIV) viruses in patients receiving antiretroviral treatment urgently requires the characterization and development of new antiretroviral drugs designed to inhibit resistant viruses and to complement the existing antiretroviral strategies against AIDS. We assayed several natural or semi-synthetic lupane-type pentacyclic triterpenes in their ability to inhibit HIV-1 infection in permissive cells. We observed that the 30-oxo-calenduladiol triterpene, compound 1, specifically impaired R5-tropic HIV-1 envelope-mediated viral infection and cell fusion in permissive cells, without affecting X4-tropic virus. This lupane derivative competed for the binding of a specific anti-CCR5 monoclonal antibody or the natural CCL5 chemokine to the CCR5 viral coreceptor with high affinity. 30-Oxo-calenduladiol seems not to interact with the CD4 antigen, the main HIV receptor, or the CXCR4 viral coreceptor. Our results suggest that compound 1 is a specific CCR5 antagonist, because it binds to the CCR5 receptor without triggering cell signaling or receptor internalization, and inhibits RANTES (regulated on activation normal T cell expressed and secreted)-mediated CCR5 internalization, intracellular calcium mobilization, and cell chemotaxis. Furthermore, compound 1 appeared not to interact with β-chemokine receptors CCR1, CCR2b, CCR3, or CCR4. Thereby, the 30-oxo-calenduladiol-associated anti-HIV-1 activity against R5-tropic virus appears to rely on the selective occupancy of the CCR5 receptor to inhibit CCR5-mediated HIV-1 infection. Therefore, it is plausible that the chemical structure of 30-oxo-calenduladiol or other related dihydroxylated lupane-type triterpenes could represent a good model to develop more potent anti-HIV-1 molecules to inhibit viral infection by interfering with early fusion and entry steps in the HIV life cycle. PMID:19386595

  8. Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies

    PubMed Central

    Schanz, Merle; Reynell, Lucy; Günthard, Huldrych F.; Rusert, Peter; Trkola, Alexandra

    2012-01-01

    HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo. PMID:22496655

  9. DB-02, a C-6-Cyclohexylmethyl Substituted Pyrimidinone HIV-1 Reverse Transcriptase Inhibitor with Nanomolar Activity, Displays an Improved Sensitivity against K103N or Y181C Than S-DABOs

    PubMed Central

    Zhang, Xing-Jie; Lu, Li-He; Wang, Rui-Rui; Wang, Yue-Ping; Luo, Rong-Hua; Cong Lai, Christopher; Yang, Liu-Meng; He, Yan-Ping; Zheng, Yong-Tang

    2013-01-01

    6-(cyclohexylmethyl)-5-ethyl-2-((2-oxo-2-phenylethyl)thio)pyrimidin-4(3H)-one (DB-02) is a member of the newly reported synthetic anti-HIV-1 compounds dihydro-aryl/alkylsulfanyl-cyclohexylmethyl-oxopyrimidines, S-DACOs. In vitro anti-HIV-1 activity and resistance profile studies have suggested that DB-02 has very low cytotoxicity (CC50>1mM) to cell lines and peripheral blood mononuclear cells (PBMCs). It displays potent anti-HIV-1 activity against laboratory adapted strains and primary isolated strains including different subtypes and tropism strains (EC50s range from 2.40 to 41.8 nM). Studies on site-directed mutagenesis, genotypic resistance profiles revealed that V106A was the major resistance contributor for the compound. Molecular docking analysis showed that DB-02 located in the hydrophobic pocket with interactions of Lys101, Val106, Leu234, His235. DB-02 also showed non-antagonistic effects to four approved antiretroviral drugs. All studies indicated that DB-02 would be a potential NNRTI with low cytotoxicity and improved activity. PMID:24282600

  10. Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek

    2015-08-28

    In recent years, widespread outbreak of numerous infectious diseases across the globe has created havoc among the population. Particularly, the inhabitants of tropical and sub-tropical regions are mainly affected by these pathogens. Several natural and (semi) synthetic chalcones deserve the credit of being potential anti-infective candidates that inhibit various parasitic, malarial, bacterial, viral, and fungal targets like cruzain-1/2, trypanopain-Tb, trans-sialidase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, falcipain-1/2, β-hematin, topoisomerase-II, plasmepsin-II, lactate dehydrogenase, protein kinases (Pfmrk and PfPK5), and sorbitol-induced hemolysis, DEN-1 NS3, H1N1, HIV (Integrase/Protease), protein tyrosine phosphatase A/B (Ptp-A/B), FtsZ, FAS-II, lactate/isocitrate dehydrogenase, NorA efflux pump, DNA gyrase, fatty acid synthase, chitin synthase, and β-(1,3)-glucan synthase. In this review, a comprehensive study (from Jan. 1982 to May 2015) of the structural features of anti-infective chalcones, their mechanism of actions (MOAs) and structure activity relationships (SARs) have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-infective agents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere.

    PubMed

    Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M

    1996-09-01

    The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues.

  12. Cytotoxic and Anti-HIV Phenanthroindolizidine Alkaloids from Cryptocarya chinensis

    PubMed Central

    Wu, Tian-Shung; Su, Chung-Ren; Lee, Kuo-Hsiung

    2013-01-01

    Bioassay-guided fractionation of the cytotoxic ethanol extract of Cryptocarya chinensis has led to the isolation of 11 compounds, including two phenanthroindolizidine alkaloids [(−)-antofine (1) and dehydroantofine (2)], five pavine alkaloids (3–7), and four proaporphine alkaloids (8–11). The structures of the isolated compounds were determined by means of NMR spectroscopic methods, and supported by HRMS and optical rotation data. Compounds 1 and 2 showed cytotoxic activity against four cancer cell lines, L1210, P388, A549, and HCT-8, with 1 being the most potent against A549 and HCT-8 with EC50 values of 0.002 and 0.001 μg/mL, respectively. In addition, 2 is first reported to exhibit significant anti-HIV activity. PMID:22816292

  13. Modulation of innate and adaptive cellular immunity relevant to HIV-1 vaccine design by seminal plasma.

    PubMed

    Selva, Kevin J; Kent, Stephen J; Parsons, Matthew S

    2017-01-28

    Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.

  14. The Anti-Inflammatory Activity of Curcumin Protects the Genital Mucosal Epithelial Barrier from Disruption and Blocks Replication of HIV-1 and HSV-2

    PubMed Central

    Ferreira, Victor H.; Mueller, Kristen; Kaushic, Charu

    2015-01-01

    Inflammation is a known mechanism that facilitates HIV acquisition and the spread of infection. In this study, we evaluated whether curcumin, a potent and safe anti-inflammatory compound, could be used to abrogate inflammatory processes that facilitate HIV-1 acquisition in the female genital tract (FGT) and contribute to HIV amplification. Primary, human genital epithelial cells (GECs) were pretreated with curcumin and exposed to HIV-1 or HIV glycoprotein 120 (gp120), both of which have been shown to disrupt epithelial tight junction proteins, including ZO-1 and occludin. Pre-treatment with curcumin prevented disruption of the mucosal barrier by maintaining ZO-1 and occludin expression and maintained trans-epithelial electric resistance across the genital epithelium. Curcumin pre-treatment also abrogated the gp120-mediated upregulation of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL)-6, which mediate barrier disruption, as well as the chemokines IL-8, RANTES and interferon gamma-induced protein-10 (IP-10), which are capable of recruiting HIV target cells to the FGT. GECs treated with curcumin and exposed to the sexually transmitted co-infecting microbes HSV-1, HSV-2 and Neisseria gonorrhoeae were unable to elicit innate inflammatory responses that indirectly induced activation of the HIV promoter and curcumin blocked Toll-like receptor (TLR)-mediated induction of HIV replication in chronically infected T-cells. Finally, curcumin treatment resulted in significantly decreased HIV-1 and HSV-2 replication in chronically infected T-cells and primary GECs, respectively. All together, our results suggest that the use of anti-inflammatory compounds such as curcumin may offer a viable alternative for the prevention and/or control of HIV replication in the FGT. PMID:25856395

  15. Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1.

    PubMed

    Telwatte, Sushama; Moore, Katie; Johnson, Adam; Tyssen, David; Sterjovski, Jasminka; Aldunate, Muriel; Gorry, Paul R; Ramsland, Paul A; Lewis, Gareth R; Paull, Jeremy R A; Sonza, Secondo; Tachedjian, Gilda

    2011-06-01

    Topical microbicides for use by women to prevent the transmission of human immunodeficiency virus (HIV) and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. SPL7013 is a dendrimer with broad-spectrum activity against HIV type I (HIV-1) and -2 (HIV-2), herpes simplex viruses type-1 (HSV-1) and -2 (HSV-2) and human papillomavirus. SPL7013 [3% (w/w)] has been formulated in a mucoadhesive carbopol gel (VivaGel®) for use as a topical microbicide. Previous studies showed that SPL7013 has similar potency against CXCR4-(X4) and CCR5-using (R5) strains of HIV-1 and that it blocks viral entry. However, the ability of SPL7013 to directly inactivate HIV-1 is unknown. We examined whether SPL7013 demonstrates virucidal activity against X4 (NL4.3, MBC200, CMU02 clade EA and 92UG046 clade D), R5 (Ba-L, NB25 and 92RW016 clade A) and dual-tropic (R5X4; MACS1-spln) HIV-1 using a modified HLA-DR viral capture method and by polyethylene glycol precipitation. Evaluation of virion integrity was determined by ultracentrifugation through a sucrose cushion and detection of viral proteins by Western blot analysis. SPL7013 demonstrated potent virucidal activity against X4 and R5X4 strains, although virucidal activity was less potent for the 92UG046 X4 clade D isolate. Where potent virucidal activity was observed, the 50% virucidal concentrations were similar to the 50% effective concentrations previously reported in drug susceptibility assays, indicating that the main mode of action of SPL7013 is by direct viral inactivation for these strains. In contrast, SPL7013 lacked potent virucidal activity against R5 HIV-1 strains. Evaluation of the virucidal mechanism showed that SPL7013-treated NL4.3, 92UG046 and MACS1-spln virions were intact with no significant decrease in gp120 surface protein with respect to p24 capsid content compared to the corresponding untreated virus. These studies demonstrate that SPL7013 is virucidal against HIV-1 strains that utilize the CXCR4 coreceptor but not viruses tested in this study that solely use CCR5 by a mechanism that is distinct from virion disruption or loss of gp120. In addition, the mode of action by which SPL7013 prevents infection of cells with X4 and R5X4 strains is likely to differ from R5 strains of HIV-1. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. 3-Hydroxypyrimidine-2,4-dione-5-N-benzylcarboxamides potently inhibit HIV-1 integrase and RNase H

    PubMed Central

    Wu, Bulan; Tang, Jing; Wilson, Daniel J.; Huber, Andrew D.; Casey, Mary C.; Ji, Juan; Kankanala, Jayakanth; Xie, Jiashu; Sarafianos, Stefan G.; Wang, Zhengqiang

    2016-01-01

    Resistance selection by human immunodeficiency virus (HIV) towards known drug regimens necessitates the discovery of structurally novel antivirals with a distinct resistance profile. Based on our previously reported 3-hydroxypyrimidine-2,4-dione (HPD) core we have designed and synthesized a new integrase strand transfer (INST) inhibitor type featuring a 5-N-benzylcarboxamide moiety. Significantly, the 6-alkylamino variant of this new chemotype consistently conferred low nanomolar inhibitory activity against HIV-1. Extended antiviral testing against a few raltegravir-resistant HIV-1 clones revealed a resistance profile similar to that of the second generation INST inhibitor (INSTIs) dolutegravir. Although biochemical testing and molecular modeling also strongly corroborate the inhibition of INST as the antiviral mechanism of action, selected antiviral analogues also potently inhibited reverse transcriptase (RT) associated RNase H, implying potential dual target inhibition. In vitro ADME assays demonstrated that this novel chemotype possesses largely favorable physicochemical properties suitable for further development. PMID:27283261

  17. Arylazolylthioacetanilide. Part 11: design, synthesis and biological evaluation of 1,2,4-triazole thioacetanilide derivatives as novel non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Li, Zhenyu; Cao, Yuan; Zhan, Peng; Pannecouque, Christophe; Balzarini, Jan; Clercq, Erik De; Shen, Yuemao; Liu, Xinyong

    2013-11-01

    A series of novel 1,2,4-triazole thioacetanilide derivatives has been designed, synthesized and evaluated for their anti-HIV activities in MT-4 cells. Half of these compounds showed moderate to potent activities against wild-type HIV-1 with an EC50 ranging from 38.0 μM to 4.08 µM. Among them, 2-(4-(2-fluorobenzyl)-5-isopropyl-4H-1,2,4-triazol- 3-ylthio)-N-(2-nitrophenyl)acetamide 7d was identified as the most promising compound (EC50 = 4.26 µM, SI = 49). However, no compound was active against HIV-2. The preliminary structure-activity relationships among the newly synthesized congeners are discussed.

  18. Molecular Docking and Molecular Dynamics to Identify a Novel Human Immunodeficiency Virus Inhibitor from Alkaloids of Toddalia asiatica.

    PubMed

    Priya, R; Sumitha, Rajendrarao; Doss, C George Priya; Rajasekaran, C; Babu, S; Seenivasan, R; Siva, R

    2015-10-01

    Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug likeness score of the standard anti HIV drug zidovudine. Results from simulation analysis revealed that toddanol RT complex is more stable than toddanone RT complex inferring toddanol as a potential anti HIV drug molecule. Abbreviations used: HIV: Human immunodeficiency virus, HIV 1 RT: HIV 1 reverse transcriptase, RNase H: Ribonuclease H, MD: Molecular dynamics, PDB: Protein databank, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation.

  19. Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives.

    PubMed

    Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi

    2015-02-01

    A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure-activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives

    PubMed Central

    Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi

    2015-01-01

    Background A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. Methods A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Results Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure–activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. Conclusion The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. PMID:26149262

  1. Discovery of drugs that possess activity against feline leukemia virus.

    PubMed

    Greggs, Willie M; Clouser, Christine L; Patterson, Steven E; Mansky, Louis M

    2012-04-01

    Feline leukemia virus (FeLV) is a gammaretrovirus that is a significant cause of neoplastic-related disorders affecting cats worldwide. Treatment options for FeLV are limited, associated with serious side effects, and can be cost-prohibitive. The development of drugs used to treat a related retrovirus, human immunodeficiency virus type 1 (HIV-1), has been rapid, leading to the approval of five drug classes. Although structural differences affect the susceptibility of gammaretroviruses to anti-HIV drugs, the similarities in mechanism of replication suggest that some anti-HIV-1 drugs may also inhibit FeLV. This study demonstrates the anti-FeLV activity of four drugs approved by the US FDA (Food and Drug Administration) at non-toxic concentrations. Of these, tenofovir and raltegravir are anti-HIV-1 drugs, while decitabine and gemcitabine are approved to treat myelodysplastic syndromes and pancreatic cancer, respectively, but also have anti-HIV-1 activity in cell culture. Our results indicate that these drugs may be useful for FeLV treatment and should be investigated for mechanism of action and suitability for veterinary use.

  2. Lentiviral gene therapy against human immunodeficiency virus type 1, using a novel human TRIM21-cyclophilin A restriction factor.

    PubMed

    Chan, Emma; Schaller, Torsten; Eddaoudi, Ayad; Zhan, Hong; Tan, Choon Ping; Jacobsen, Marianne; Thrasher, Adrian J; Towers, Greg J; Qasim, Waseem

    2012-11-01

    TRIM5α (tripartite motif-containing protein-5, isoform α)-cyclophilin A fusion proteins are anti-human immunodeficiency virus (HIV) restriction factors that have evolved in certain nonhuman primates over millions of years and protect against HIV and related viruses. Restriction by TRIM5αCypA is potent and highly resistant to viral escape by mutation and, in combination with a suitable gene delivery platform, offers the possibility of novel therapeutic approaches against HIV. Here we report that lentiviral vector delivery of human mimics of TRIM5α-cyclophilin A (TRIM5CypA) fusion proteins afforded robust and durable protection against HIV-1, but resulted in downregulation of host cell antiviral responses mediated by endogenous TRIM5α. We found that substitution of TRIM5α RING, B-box, and coiled-coil domains with similar domains from a related TRIM protein, TRIM21, produced a novel and equally potent inhibitor of HIV-1. Both TRIM5CypA and TRIM21CypA inhibited transduction by HIV-1-derived viral vectors and prevented propagation of replication-competent HIV-1 in human cell lines and in primary human T cells. Restriction factor-modified T cells exhibited preferential survival in the presence of wild-type HIV. Restriction was dependent on proteasomal degradation and was reversed in the presence of the cyclophilin inhibitor cyclosporin. Importantly, TRIM21CypA did not disturb endogenous TRIM5α-mediated restriction of gammaretroviral infection. Furthermore, endogenous TRIM21 antiviral activity was assessed by measuring inhibition of adenovirus-antibody complexes and was found to be preserved in all TRIMCypA-modified groups. We conclude that lentivirus-mediated expression of the novel chimeric restriction factor TRIM21CypA provides highly potent protection against HIV-1 without loss of normal innate immune TRIM activity.

  3. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene

    PubMed Central

    Chan, Chi N.; Trinité, Benjamin

    2017-01-01

    ABSTRACT HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. PMID:28652233

  4. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene.

    PubMed

    Chan, Chi N; Trinité, Benjamin; Levy, David N

    2017-09-01

    HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. Copyright © 2017 American Society for Microbiology.

  5. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs

    PubMed Central

    Wang, Guangshun

    2013-01-01

    Antimicrobial peptides (AMPs), small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1) or methicillin-resistant Staphylococcus aureus (MRSA). While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells. PMID:24276259

  6. Thiazolides Elicit Anti-Viral Innate Immunity and Reduce HIV Replication.

    PubMed

    Trabattoni, Daria; Gnudi, Federica; Ibba, Salomè V; Saulle, Irma; Agostini, Simone; Masetti, Michela; Biasin, Mara; Rossignol, Jean-Francois; Clerici, Mario

    2016-06-02

    Nitazoxanide (Alinia(®), NTZ) and tizoxanide (TIZ), its active circulating metabolite, belong to a class of agents known as thiazolides (TZD) endowed with broad anti-infective activities. TIZ and RM-4848, the active metabolite of RM-5038, were shown to stimulate innate immunity in vitro. Because natural resistance to HIV-1 infection in HIV-exposed seronegative (HESN) individuals is suggested to be associated with strong innate immune responses, we verified whether TIZ and RM-4848 could reduce the in vitro infectiousness of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 20 healthy donors were infected in vitro with HIV-1BaL in the presence/absence of TIZ or RM4848. HIV-1 p24 were measured at different timepoints. The immunomodulatory abilities of TZD were evaluated by the expression of type I IFN pathway genes and the production of cytokines and chemokines. TZD drastically inhibited in vitro HIV-1 replication (>87%). This was associated with the activation of innate immune responses and with the up-regulation of several interferon-stimulated genes (ISGs), including those involved in cholesterol pathway, particularly the cholesterol-25 hydroxylase (CH25H). TZD inhibition of HIV-1 replication in vitro could be due to their ability to stimulate potent and multifaceted antiviral immune responses. These data warrant the exploration of TZD as preventive/therapeutic agent in HIV infection.

  7. Pharmacological intervention of HIV-1 maturation.

    PubMed

    Wang, Dan; Lu, Wuxun; Li, Feng

    2015-11-01

    Despite significant advances in antiretroviral therapy, increasing drug resistance and toxicities observed among many of the current approved human immunodeficiency virus (HIV) drugs indicate a need for discovery and development of potent and safe antivirals with a novel mechanism of action. Maturation inhibitors (MIs) represent one such new class of HIV therapies. MIs inhibit a late step in the HIV-1 Gag processing cascade, causing defective core condensation and the release of non-infectious virus particles from infected cells, thus blocking the spread of the infection to new cells. Clinical proof-of-concept for the MIs was established with betulinic acid derived bevirimat, the prototype HIV-1 MI. Despite the discontinuation of its further clinical development in 2010 due to a lack of uniform patient response caused by naturally occurring drug resistance Gag polymorphisms, several second-generation MIs with improved activity against viruses exhibiting Gag polymorphism mediated resistance have been recently discovered and are under clinical evaluation in HIV/AID patients. In this review, current understanding of HIV-1 MIs is described and recent progress made toward elucidating the mechanism of action, target identification and development of second-generation MIs is reviewed.

  8. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamata, Masakazu, E-mail: masa3k@ucla.edu; Kim, Patrick Y.; Ng, Hwee L.

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To testmore » this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.« less

  9. Synthesis of different types of alkoxy fullerene derivatives from chlorofullerene C60Cl6.

    PubMed

    Khakina, Ekaterina A; Kraevaya, Ol'ga A; Popova, Maria L; Peregudov, Alexander S; Troyanov, Sergey I; Chernyak, Alexander V; Martynenko, Vyacheslav M; Kulikov, Alexander V; Schols, Dominique; Troshin, Pavel A

    2017-01-25

    We report novel synthetic routes for facile preparation of highly functionalized fullerene derivatives C 60 (OR) 5 X (X = H, Cl, Br), C 60 (OR) 4 O and C 60 (OR) 2 from chlorofullerene C 60 Cl 6 . The first water-soluble fullerene compound bearing residues of 3-oxypropanoic acid demonstrated a potent anti-HIV activity.

  10. [Experimental study of candidate vaccines against variable or quasi-species pathogenes: multiepitopic synthetic peptide antigenes and new receptor-guiding adjuvants].

    PubMed

    Ignat'eva, G A; Maksiutov, A Z; L'vov, V L; Kolobov, A A; Ignat'ev, T I

    2011-01-01

    The short multiepitopic synthetic peptides from the sequences of hypervariable area of V3-loope of gp120 of HIV don't induce anti-peptides antibodies production in mice themselves. We prepared the potent immunogen by noncovalent conjugations of the multitude peptides with pure peptidoglycans from cell wall of Salmonella typhi. The sera from immunized mice have the anti-peptides antibody titers (3-5) x 10(5) in ELISA, as high as Freund's adjuvant is of use.

  11. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 2: discovery of novel [1,2,4]Triazolo[1,5-a]pyrimidines using a structure-guided core-refining approach.

    PubMed

    Wang, Liu; Tian, Ye; Chen, Wenmin; Liu, Hong; Zhan, Peng; Li, Dongyue; Liu, Huiqing; De Clercq, Erik; Pannecouque, Christophe; Liu, Xinyong

    2014-10-06

    Guided by crystal structures of HIV-1 RT/DAPY complex and molecular modeling studies, a series of novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives were rationally designed via structure-based core refining approach, synthesized through the readily accessible synthetic methods and evaluated for their anti-HIV activities in MT-4 cells. Preliminary biological evaluation indicated that most of the compounds exhibited marked inhibitory activity against the wild-type HIV-1 IIIB. Particularly, compound 7n was the most potent inhibitor against wild-type and K103N/Y181C double resistant mutant strain of HIV-1, possessing EC50 values of 0.02 μM and 7.6 μM, respectively, which were much better than or similar to nevirapine (NVP, EC50 = 0.15 μM, 2.9 μM) and delavirdine (DLV, EC50 = 0.07 μM, >36 μM). Besides, some other compounds, 5b, 7c, 7e, 7f, and 7m, were also endowed with favorable anti-HIV-1 potency (EC50 = 0.07, 0.05, 0.05, 0.07, and 0.05 μM, respectively), which were better than or similar to those of NVP and DLV, suggesting a high potential to further develop this type of bridgehead nitrogen heterocycle as a novel class of NNRTIs with improved antiviral efficacy and resistance profile. The selected compound, 7i, was found moderately inhibitory towards RT (IC50 = 0.39 μM), which was higher than for ETV (IC50 = 0.56 μM). Preliminary structure-activity relationships (SARs) and molecular modeling of these new analogues were detailed in this manuscript. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model.

    PubMed

    Sato, Kei; Takeuchi, Junko S; Misawa, Naoko; Izumi, Taisuke; Kobayashi, Tomoko; Kimura, Yuichi; Iwami, Shingo; Takaori-Kondo, Akifumi; Hu, Wei-Shau; Aihara, Kazuyuki; Ito, Mamoru; An, Dong Sung; Pathak, Vinay K; Koyanagi, Yoshio

    2014-10-01

    Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo.

  13. Indolylarylsulfones carrying a heterocyclic tail as very potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Famiglini, Valeria; La Regina, Giuseppe; Coluccia, Antonio; Pelliccia, Sveva; Brancale, Andrea; Maga, Giovanni; Crespan, Emmanuele; Badia, Roger; Riveira-Muñoz, Eva; Esté, José A; Ferretti, Rosella; Cirilli, Roberto; Zamperini, Claudio; Botta, Maurizio; Schols, Dominique; Limongelli, Vittorio; Agostino, Bruno; Novellino, Ettore; Silvestri, Romano

    2014-12-11

    We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.

  14. Crystal Structure of HIV-1 Primary Receptor CD4 i Complex with a Potent Antiviral Antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, M.M.; Hong, X.; Seaman, M.S.

    2010-06-18

    Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 {angstrom} resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalentmore » forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.« less

  15. Immense essence of excellence: marine microbial bioactive compounds.

    PubMed

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-10-15

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  16. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    PubMed Central

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

  17. Evodiamine, a Novel NOTCH3 Methylation Stimulator, Significantly Suppresses Lung Carcinogenesis in Vitro and in Vivo.

    PubMed

    Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu

    2018-01-01

    Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.

  18. Evodiamine, a Novel NOTCH3 Methylation Stimulator, Significantly Suppresses Lung Carcinogenesis in Vitro and in Vivo

    PubMed Central

    Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu

    2018-01-01

    Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO’s anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO’s anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment. PMID:29765324

  19. Molecular Docking and Molecular Dynamics to Identify a Novel Human Immunodeficiency Virus Inhibitor from Alkaloids of Toddalia asiatica

    PubMed Central

    Priya, R.; Sumitha, Rajendrarao; Doss, C. George Priya; Rajasekaran, C.; Babu, S.; Seenivasan, R.; Siva, R.

    2015-01-01

    Background: Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. Objective: For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. Materials and Methods: In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). Results: The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. Conclusion: The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. SUMMARY In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug likeness score of the standard anti HIV drug zidovudine. Results from simulation analysis revealed that toddanol RT complex is more stable than toddanone RT complex inferring toddanol as a potential anti HIV drug molecule. Abbreviations used: HIV: Human immunodeficiency virus, HIV 1 RT: HIV 1 reverse transcriptase, RNase H: Ribonuclease H, MD: Molecular dynamics, PDB: Protein databank, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation. PMID:26929575

  20. Maslinic acid, a natural triterpenoid compound from Olea europaea, protects cortical neurons against oxygen-glucose deprivation-induced injury.

    PubMed

    Qian, Yisong; Guan, Teng; Tang, Xuzhen; Huang, Longfei; Huang, Menghao; Li, Yunman; Sun, Hongbin

    2011-11-16

    Maslinic acid is a triterpenoid compound present in plants of Olea europaea. This compound has been reported to have potent antioxidant, anti-cancer, anti-HIV and anti-inflammatory activities. In this study, we investigated the neuroprotective effect of maslinic acid and its mechanism of action. With presence or absence of maslinic acid, cortical neurons were subjected to 1h of oxygen-glucose deprivation and 24h of reoxygenation. Cell injury was determined by lactate dehydrogenase (LDH) measurement and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. Neuronal apoptosis was evaluated by flow cytometry assay, caspase-3 expression/activity, caspase-9 activity and Bcl-2/Bax ratio. Nitric Oxide (NO) production and inducible nitric oxide synthase (iNOS) expression were also detected. Results showed that maslinic acid dose-dependently ameliorated neuron injury and apoptosis. Maslinic acid treatment normalized the caspase expression/activation and increased the Bcl-2/Bax ratio. In addition, maslinic acid inhibited oxygen-glucose deprivation-induced NO production and iNOS expression. These results indicated that maslinic acid has beneficial effects on hypoxic neurons by suppressing iNOS activation, which may, in turn, provide neuroprotection. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A precisely substituted benzopyran targets androgen refractory prostate cancer cells through selective modulation of estrogen receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev; Verma, Vikas; Sharma, Vikas

    Dietary consumption of phytoestrogens like genistein has been linked with lower incidence of prostate cancer. The estradiol-like benzopyran core of genistein confers estrogen receptor-β (ER-β) selectivity that imparts weak anti-proliferative activity against prostate cancer cells. DL-2-[4-(2-piperidinoethoxy)phenyl]-3-phenyl-2H-1-benzopyran (BP), a SERM designed with benzopyran core, targeted androgen independent prostate cancer (PC-3) cells 14-times more potently than genistein, ~ 25% more efficiently than tamoxifen and 6.5-times more actively than ICI-182780, without forfeiting significant specificity in comparison to genistein. BP increased apoptosis (annexin-V and TUNEL labeling), arrested cell cycle, and significantly increased caspase-3 activity along with mRNA expressions of estrogen receptor (ER)-β and FasLmore » (qPCR) in PC-3 cells. In classical ERE-luc reporter assay BP behaved as a potent ER-α antagonist and ER-β agonist. Accordingly, it decreased expression of ER-α target PS2 (P < 0.01) and increased expression of ER-β target TNF-α (P < 0.05) genes in PC-3. ER-β deficient PC-3 (siRNA-transfected) was resistant to apoptotic and anti-proliferative actions of SERMs, including stimulation of FasL expression by BP. BP significantly inhibited phosphorylation of Akt and ERK-1/2, JNK and p38 in PC-3 (immunoblotting), and thus adopted a multi-pathway mechanism to exert a more potent anti-proliferative activity against prostate cancer cells than natural and synthetic SERMs. Its precise ER-subtype specific activity presents a unique lead structure for further optimization. - Highlights: • BP with benzopyran core of genistein was identified for ER-β selective action. • BP was 14-times more potent than genistien in targeting prostate cancer cells. • It behaved as a potent ER-β agonist and ER-α antagonist in gene reporter assays. • BP's anti-proliferative action was inhibited significantly in ER-β deficient cells. • BP — a unique lead structure for further optimization.« less

  2. Discovery of potent HIV-1 non-nucleoside reverse transcriptase inhibitors from arylthioacetanilide structural motif.

    PubMed

    Li, Wenxin; Li, Xiao; De Clercq, Erik; Zhan, Peng; Liu, Xinyong

    2015-09-18

    The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of the clinically used anti-HIV drugs. Therefore, the discovery of novel and effective NNRTIs is still an extremely primary mission. Arylthioacetanilide family is one of the highly active HIV-1 NNRTIs against wide-type (WT) HIV-1 and a wide range of drug-resistant mutant strains. Especially, VRX-480773 and RDEA806 have been chosen as candidates for further clinical studies. In this article, we review the discovery and development of the arylthioacetanilides, and, especially, pay much attention to the structural modifications, SARs conclusions and molecular modeling. Moreover, several medicinal chemistry strategies to overcome drug resistance involved in the optimization process of arylthioacetanilides are highlighted, providing valuable clues for further investigations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment.

    PubMed

    Monajemi, Mahdis; Woodworth, Claire F; Benkaroun, Jessica; Grant, Michael; Larijani, Mani

    2012-04-30

    The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G's standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.

  4. Epidural Steroid Injections

    MedlinePlus

    ... slipped vertebrae’, also known as spondylolisthesis). The epidural space is a fat filled ‘sleeve’ that surrounds the ... spinal cord. Steroids (‘cortisone’) placed into the epidural space have a very potent anti-inflammatory action that ...

  5. Heme oxygenase-1-derived bilirubin counteracts HIV protease inhibitor-mediated endothelial cell dysfunction

    PubMed Central

    Liu, Xiao-Ming; Durante, Zane E.; Peyton, Kelly J.; Durante, William

    2016-01-01

    The use of HIV protease inhibitors (PIs) has extended the duration and quality of life for HIV-positive individuals. However there is increasing concern that this antiviral therapy may promote premature cardiovascular disease by impairing endothelial cell (EC) function. In the present study, we investigated the effect of HIV PIs on EC function and determined if the enzyme heme oxygenase (HO-1) influences the biological action of these drugs. We found that three distinct PIs, including ritonavir, atazanavir, and lopinavir, stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). PIs also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the PI-mediated induction of HO-1 was abolished by N-acetyl-L-cysteine and rotenone. Furthermore, PIs blocked EC proliferation and migration and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition of HO-1 activity or expression potentiated the anti-proliferative and inflammatory actions of PIs which was reversed by bilirubin but not carbon monoxide. Alternatively, adenovirus-mediated overexpression of HO-1 attenuated the growth-inhibitory and inflammatory effect of PIs. In contrast, blocking HO-1 activity failed to modify the anti-migratory effect of the PIs. Thus, induction of HO-1 via the ROS–Nrf2 pathway in human ECs counteracts the anti-proliferative and inflammatory actions of PIs by generating bilirubin. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing EC dysfunction and vascular disease in HIV-infected patients undergoing antiretroviral therapy. PMID:26968795

  6. [Epidemiology of HIV infection in the world and in France].

    PubMed

    Semaille, Caroline; Lot, Florence

    2006-05-15

    All continents are affected by HIV at various degrees and the situation of Africa is certainly one of the most serious with HIV prevalence over 20% in Austral Africa, and accounting for half of all HIV cases in the world. Eastern Europe has been recently affected by HIV mainly among IDU. In Asia, the spread of epidemic on general population follows HIV transmission linked to drug use and commercial sex. Similar trends have been observed in Western Europe: relapse of safer sex among men wich have sex with men (MSM) with new HIV contamination, decrease of HIV transmission among drug users and increase of new HIV diagnosis among heterosexuals originating from countries with high prevalence of HIV/AIDS, notably sub-Saharan Africa. Since the introduction of potent anti-retroviral agents in 1996, the numbers of AIDS cases and mortality due to AIDS have sharply decreased in Western Europe. The number of new HIV diagnosis in 2004 is around 7 000 cases in France. The two mostly affected populations in 2003-2004 are homosexuals and sub-Saharan Africans. The harm reduction policies conducted has markedly reduced HIV transmission among injecting drug users.

  7. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Han, Gye Won; Abagyan, Ruben

    CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokinemore » interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.« less

  8. Intra-Prostate Cancer Vaccine Inducer

    DTIC Science & Technology

    2006-02-01

    analyzed by flowcytometry for Ii and MHC class II expression. The active constructs were used for the Ii suppression in the experiments planned in...care guidelines under an approved protocol. Cell lines and antibodies Green monkey kidney COS cells (#CRL-1650), cultured in RPMI-1640 medium with...AIDS vaccine protection in rhesus monkeys . J Virol 2004;78(14):7490-7. 12. Letvin NL, Montefiori DC, Yasutomi Y, et al. Potent, protective anti-HIV

  9. Antiviral Activity of Trappin-2 and Elafin In Vitro and In Vivo against Genital Herpes

    PubMed Central

    Drannik, Anna G.; Nag, Kakon; Sallenave, Jean-Michel

    2013-01-01

    Serine protease inhibitor elafin (E) and its precursor, trappin-2 (Tr), have been associated with mucosal resistance to HIV-1 infection. We recently showed that Tr/E are among principal anti-HIV-1 molecules in cervicovaginal lavage (CVL) fluid, that E is ∼130 times more potent than Tr against HIV-1, and that Tr/E inhibited HIV-1 attachment and transcytosis across human genital epithelial cells (ECs). Since herpes simplex virus 2 (HSV-2) is a major sexually transmitted infection and risk factor for HIV-1 infection and transmission, we assessed Tr/E contribution to defense against HSV-2. Our in vitro studies demonstrated that pretreatment of endometrial (HEC-1A) and endocervical (End1/E6E7) ECs with human Tr-expressing adenovirus (Ad/Tr) or recombinant Tr/E proteins before or after HSV-2 infection resulted in significantly reduced virus titers compared to those of controls. Interestingly, E was ∼7 times more potent against HSV-2 infection than Tr. Conversely, knockdown of endogenous Tr/E by small interfering RNA (siRNA) significantly increased HSV-2 replication in genital ECs. Recombinant Tr and E reduced viral attachment to genital ECs by acting indirectly on cells. Further, lower viral replication was associated with reduced secretion of proinflammatory interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) and decreased NF-κB nuclear translocation. Additionally, protected Ad/Tr-treated ECs demonstrated enhanced interferon regulatory factor 3 (IRF3) nuclear translocation and increased antiviral IFN-β in response to HSV-2. Lastly, in vivo studies of intravaginal HSV-2 infection in Tr-transgenic mice (Etg) showed that despite similar virus replication in the genital tract, Etg mice had reduced viral load and TNF-α in the central nervous system compared to controls. Collectively, this is the first experimental evidence highlighting anti-HSV-2 activity of Tr/E in female genital mucosa. PMID:23637403

  10. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

    PubMed Central

    Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

    2015-01-01

    Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483

  11. Rapid High-Level Production of Functional HIV Broadly Neutralizing Monoclonal Antibodies in Transient Plant Expression Systems

    PubMed Central

    Rosenberg, Yvonne; Sack, Markus; Montefiori, David; Forthal, Donald; Mao, Lingjun; -Abanto, Segundo Hernandez; Urban, Lori; Landucci, Gary; Fischer, Rainer; Jiang, Xiaoming

    2013-01-01

    Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs) has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT) of simian/human immunodeficiency virus (SHIV) in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6PΔ140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01) or a single chain antibody construct (m9), for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production. PMID:23533588

  12. Vaginal Microbicide Film Combinations of Two Reverse Transcriptase Inhibitors, EFdA and CSIC, for the Prevention of HIV-1 Sexual Transmission.

    PubMed

    Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S; Moncla, Bernard; Sarafianos, Stefan G; Parniak, Michael A; Rohan, Lisa C

    2015-09-01

    EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission.

  13. Putting copper into action: copper-impregnated products with potent biocidal activities.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2004-11-01

    Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria.

  14. Modulation of HIV replication in monocyte derived macrophages (MDM) by steroid hormones.

    PubMed

    Devadas, Krishnakumar; Biswas, Santanu; Ragupathy, Viswanath; Lee, Sherwin; Dayton, Andrew; Hewlett, Indira

    2018-01-01

    Significant sex specific differences in the progression of HIV/AIDS have been reported. Several studies have implicated steroid hormones in regulating host factor expression and modulating HIV transmission and replication. However, the exact mechanism exerted by steroid hormones estrogen and progesterone in the regulation of HIV-1 replication is still unclear. Results from the current study indicated a dose dependent down regulation of HIV-1 replication in monocyte derived macrophages pre-treated with high concentrations of estrogen or progesterone. To elucidate the molecular mechanisms associated with the down regulation of HIV-1 replication by estrogen and progesterone we used PCR arrays to analyze the expression profile of host genes involved in antiviral responses. Several chemokines, cytokines, transcription factors, interferon stimulated genes and genes involved in type-1 interferon signaling were down regulated in cells infected with HIV-1 pre-treated with high concentrations of estrogen or progesterone compared to untreated HIV-1 infected cells or HIV-1 infected cells treated with low concentrations of estrogen or progesterone. The down regulation of CXCL9, CXCL10 and CXCL11 chemokines and IL-1β, IL-6 cytokines in response to high concentrations of estrogen and progesterone pre-treatment in HIV-1 infected cells was confirmed at the protein level by quantitating chemokine and cytokine concentrations in the culture supernatant. These results demonstrate that a potent anti-inflammatory response is mediated by pre-treatment with high concentrations of estrogen and progesterone. Thus, our study suggests a strong correlation between the down-modulation of anti-viral and pro-inflammatory responses mediated by estrogen and progesterone pre-treatment and the down regulation of HIV-1 replication. These findings may be relevant to clinical observations of sex specific differences in patient populations and point to the need for further investigation.

  15. Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone

    PubMed Central

    Jin, Xia

    2015-01-01

    ABSTRACT Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. IMPORTANCE Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. PMID:26223636

  16. Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone.

    PubMed

    Jin, Xia; McGrath, Michael S; Xu, Hua

    2015-11-01

    Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. A B cell follicle sanctuary permits persistent productive SIV infection in elite controllers

    PubMed Central

    Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A.; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I.; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W.; Axthelm, Michael K.; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M.; Edlefsen, Paul T.; Piatak, Michael; Estes, Jacob D.; Lifson, Jeffrey D.; Picker, Louis J.

    2014-01-01

    Chronic phase HIV/SIV replication is reduced by as much as 10,000-fold in elite controllers (EC) compared to typical progressors, but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here, we show that productive SIV infection in rhesus monkey EC is strikingly restricted to follicular helper CD4+ T cells (TFH), suggesting that while the potent SIV-specific CD8+ T cells of these monkeys can effectively clear productive infection from extra-follicular sites, their relative exclusion from B cell follicles limits elimination of infected TFH. Indeed, CD8+ lymphocyte depletion of EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH, with TFH restriction resuming upon CD8+ T cell recovery. Thus, B cell follicles constitute sanctuaries for persistent SIV replication in the presence of potent anti-viral CD8+ T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy. PMID:25599132

  18. New hydrazides derivatives of isoniazid against Mycobacterium tuberculosis: Higher potency and lower hepatocytotoxicity.

    PubMed

    Castelo-Branco, Frederico Silva; de Lima, Evanoel Crizanto; Domingos, Jorge Luiz de Oliveira; Pinto, Angelo C; Lourenço, Maria Cristina S; Gomes, Karen Machado; Costa-Lima, Mariana Marques; Araujo-Lima, Carlos Fernando; Aiub, Claudia Alessandra Fortes; Felzenszwalb, Israel; Costa, Thadeu Estevam M M; Penido, Carmen; Henriques, Maria G; Boechat, Nubia

    2018-02-25

    Tuberculosis (TB) is one of the leading causes of death worldwide. The emergence of multi-drug resistant strains of Mycobacterium tuberculosis (Mtb) and TB-HIV co-infection are major public health challenges. The anti-TB drugs of first choice were developed more than 4 decades ago and present several adverse effects, making the treatment of TB even more complicated and the development of new chemotherapeutics for this disease imperative. In this work, we synthesized two series of new acylhydrazides and evaluated their activity against different strains of Mtb. Derivatives of isoniazid (INH) showed important anti-Mtb activity, some being more potent than all anti-TB drugs of first choice. Moreover, three compounds proved to be more potent than INH against resistant Mtb. The Ames test showed favorable results for two of these substances compared to INH, one of which presented expressly lower toxicity to HepG2 cells than that of INH. This result shows that this compound has the potential to overcome one of the main adverse effects of this drug. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Histone deacetylase inhibitors: can we consider potent anti-neoplastic agents for the treatment of asthma?

    PubMed

    Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    Histone deacetylase inhibitors have emerged as a new class of anti-cancer therapeutics due to their potent anti-proliferative and apoptotic effects in malignant cells. Accumulating evidence is indicating that histone deacetylase inhibitors may also have potential clinical utility in non-oncological applications, including asthma. However, the potential of histone deacetylase inhibitors in asthma remains controversial. For example, the mechanisms of action of the broad-spectrum histone deacetylase inhibitor, Trichostatin A, in animal models of allergic airways disease are conflicting. Further, there is evidence suggesting potential problems associated with histone deacetylase 2 inhibition and conventional glucocorticosteroid therapy. Similarly, disparate findings are emerging following modulation of the class III, sirtuin 1 enzyme. Indeed, it is becoming apparent that the mechanism of action may not be related to histone deacetylase inhibition activity per se. Further, there is only limited evidence that these compounds possess anti-inflammatory effects in models of asthma. In this review, we provide an overview of the biology of the metal-dependent and sirtuin deacetylases in the context of asthma. The controversies surrounding the potential use of histone deacetylase inhibitors in asthma are discussed and future directions involving the investigation of more specific analogues are explored.

  20. Adenosine and Ischemic Preconditioning

    PubMed Central

    Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.

    2012-01-01

    Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860

  1. Bioactivities of anastasia black (Russian sweet pepper).

    PubMed

    Shirataki, Yoshiaki; Kawase, Masami; Sakagami, Hiroshi; Nakashima, Hideki; Tani, Satoru; Tanaka, Toru; Sohara, Yoshitaka; Schelz, Zsuzsanna; Molnar, Joseph; Motohashi, Noboru

    2005-01-01

    Anastasia Black (Russian sweet pepper) of Capsicum annuum L. var. angulosum Mill. (Solanaceae) was successively extracted with hexane, acetone, methanol and 70% methanol, and the extracts were further separated into a total of twenty-three fractions by silica gel or octadecylsilane (ODS; C18) column chromatography. These extracts and fractions were investigated for their cytotoxicity, anti-human immunodeficiency virus (HIV), anti-Helicobacter pylori (H. pylori), urease inhibition and multidrug resistance (MDR) reversal activity. Some fractions of hexane and acetone extracts showed higher cytotoxic activity against three human oral tumor cell lines (squamous cell carcinoma HSC-2, HSC-3, submandibular gland carcinoma HSG) than against three normal human oral cells (gingival fibroblast HGF, pulp cell HPC, periodontal ligament fibroblast HPLF), suggesting a tumor-specific cytotoxic activity. No fractions displayed anti-HIV activity, but some hydrophobic fractions showed higher anti-H. pylori activity, urease inhibition activity and MDR reversal activity. The higher MDR activity of these fractions against MDR gene-transfected L5178 mouse lymphoma T cells may possibly be due to their higher content of carotene or polyphenol. These data suggest that Anastasia Black should be further investigated as a potent supplement for cancer chemotherapy.

  2. Epidemiological, virological and clinical characteristics of HBV infection in 223 HIV co-infected patients: a French multi-centre collaborative study.

    PubMed

    Thibault, Vincent; Gaudy-Graffin, Catherine; Colson, Philippe; Gozlan, Joël; Schnepf, Nathalie; Trimoulet, Pascale; Pallier, Coralie; Saune, Karine; Branger, Michel; Coste, Marianne; Thoraval, Francoise Roudot

    2013-03-15

    Chronic hepatitis B (CHB) is a clinical concern in human immunodeficiency virus (HIV)-infected individuals due to substantial prevalence, difficulties to treat, and severe liver disease outcome. A large nationwide cross-sectional multicentre analysis of HIV-HBV co-infected patients was designed to describe and identify parameters associated with virological and clinical outcome of CHB in HIV-infected individuals with detectable HBV viremia. A multicenter collaborative cross-sectional study was launched in 19 French University hospitals distributed through the country. From January to December 2007, HBV load, genotype, clinical and epidemiological characteristics of 223 HBV-HIV co-infected patients with an HBV replication over 1000 IU/mL were investigated. Patients were mostly male (82%, mean age 42 years). Genotype distribution (A 52%; E 23.3%; D 16.1%) was linked to risk factors, geographic origin, and co-infection with other hepatitis viruses. This genotypic pattern highlights divergent contamination event timelines by HIV and HBV viruses. Most patients (74.7%) under antiretroviral treatment were receiving a drug with anti-HBV activity, including 47% receiving TDF. Genotypic lamivudine-resistance detected in 26% of the patients was linked to duration of lamivudine exposure, age, CD4 count and HIV load. Resistance to adefovir (rtA181T/V) was detected in 2.7% of patients. Advanced liver lesions were observed in 54% of cases and were associated with an older age and lower CD4 counts but not with viral load or genotype. Immune escape HBsAg variants were seldom detected. Despite the detection of advanced liver lesions in most patients, few were not receiving anti-HBV drugs and for those treated with the most potent anti-HBV drugs, persistent replication suggested non-optimal adherence. Heterogeneity in HBV strains reflects epidemiological differences that may impact liver disease progression. These findings are strong arguments to further optimize clinical management and to promote vaccination in HIV-infected patients.

  3. Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol alpha-Pyrone from Helichrysum italicum ssp. microphyllum.

    PubMed

    Appendino, Giovanni; Ottino, Michela; Marquez, Nieves; Bianchi, Federica; Giana, Anna; Ballero, Mauro; Sterner, Olov; Fiebich, Bernd L; Munoz, Eduardo

    2007-04-01

    An acetone extract of Helichrysum italicum ssp. microphyllum afforded the phloroglucinol alpha-pyrone arzanol (1a) as a potent NF-kappaB inhibitor. Arzanol is identical with homoarenol (2a), whose structure should be revised. The phloroglucinol-type structure of arzanol and the 1,2,4-trihydroxyphenyl-type structure of the base-induced fragmentation product of homoarenol could be reconciled in light of a retro-Fries-type fragmentation that triggers a change of the hydroxylation pattern of the aromatic moiety. On the basis of these findings, the structure of arenol, the major constituent of the clinically useful antibiotic arenarin, should be revised from 2b to 1b, solving a long-standing puzzle over its biogenetic derivation. An alpha-pyrone (micropyrone, 7), the monoterpene rac-E-omega-oleoyloxylinalol (10), four known tremetones (9a-d), and the dimeric pyrone helipyrone (8) were also obtained. Arzanol inhibited HIV-1 replication in T cells and the release of pro-inflammatory cytokines in LPS-stimulated primary monocytes, qualifying as a novel plant-derived anti-inflammatory and antiviral chemotype worth further investigation.

  4. Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells

    PubMed Central

    Sloan, Derek D.; Lam, Chia-Ying Kao; Irrinki, Alivelu; Liu, Liqin; Tsai, Angela; Pace, Craig S.; Kaur, Jasmine; Murry, Jeffrey P.; Balakrishnan, Mini; Moore, Paul A.; Johnson, Syd; Nordstrom, Jeffrey L.; Cihlar, Tomas; Koenig, Scott

    2015-01-01

    HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs. PMID:26539983

  5. In Vitro Virology Profile of Tenofovir Alafenamide, a Novel Oral Prodrug of Tenofovir with Improved Antiviral Activity Compared to That of Tenofovir Disoproxil Fumarate

    PubMed Central

    Stepan, George; Tian, Yang; Miller, Michael D.

    2015-01-01

    Tenofovir alafenamide (TAF) is an investigational oral prodrug of the HIV-1 nucleotide reverse transcriptase inhibitor tenofovir (TFV). Tenofovir disoproxil fumarate (TDF) is another TFV prodrug, widely used for the treatment of HIV-1 infection. TAF is converted mostly intracellularly to TFV and, in comparison to TDF, achieves higher tenofovir diphosphate (TFV-DP) levels in peripheral blood mononuclear cells. As a result, TAF has demonstrated potent anti-HIV-1 activity at lower doses than TDF in monotherapy studies. Here, the in vitro virology profile of TAF was evaluated and compared to that of TDF. TAF displayed potent antiviral activity against all HIV-1 groups/subtypes, as well as HIV-2. TAF exhibited minimal changes in the drug concentration needed to inhibit 50% of viral spread (EC50) upon removal of the prodrug, similar to TDF, demonstrating intracellular antiviral persistence. While TAF and TDF exhibited comparable potencies in the absence of serum pretreatment, TAF maintained activity in the presence of human serum, whereas TDF activity was significantly reduced. This result demonstrates TAF's improved plasma stability over TDF, which is driven by the different metabolic pathways of the two prodrugs and is key to TAF's improved in vivo antiviral activity. The activity of TAF is specific for HIV, as TAF lacked activity against a large panel of human viruses, with the exception of herpes simplex virus 2, where weak TAF antiviral activity was observed, as previously observed with TFV. Finally, in vitro combination studies with antiretroviral drugs from different classes showed additive to synergistic interactions with TAF, consistent with ongoing clinical studies with TAF in fixed-dose combinations with multiple other antiretroviral drugs for the treatment of HIV. PMID:26149992

  6. Peptide P5 (residues 628–683), comprising the entire membrane proximal region of HIV-1 gp41 and its calcium-binding site, is a potent inhibitor of HIV-1 infection

    PubMed Central

    Yu, Huifeng; Tudor, Daniela; Alfsen, Annette; Labrosse, Beatrice; Clavel, François; Bomsel, Morgane

    2008-01-01

    The membrane proximal region (MPR) of the transmembrane subunit, gp41, of the HIV envelope glycoprotein plays a critical role in HIV-1 infection of CD4+ target cells and CD4-independent mucosal entry. It contains continuous epitopes recognized by neutralizing IgG antibodies 2F5, 4E10 and Z13, and is therefore considered to be a promising target for vaccine design. Moreover, some MPR-derived peptides, such as T20 (enfuvirtide), are in clinical use as HIV-1 inhibitors. We have shown that an extended MPR peptide, P5, harbouring the lectin-like domain of gp41 and a calcium-binding site, is implicated in the interaction of HIV with its mucosal receptor. We now investigate the potential antiviral activities of P5 and other such long MPR-derived peptides. Structural studies of gp41 MPR-derived peptides using circular dichroism showed that the peptides P5 (a.a.628–683), P1 (a.a.648–683), P5L (a.a.613–683) and P7 (a.a.613–746) displayed a well-defined α-helical structure. Peptides P5 inhibited HIV-1 envelope mediated cell-cell fusion and infection of peripheral blood mononuclear cells by both X4- and R5-tropic HIV-1 strains, whereas peptides P5 mutated in the calcium binding site or P1 lacked antiviral activity, when P5L blocked cell fusion in contrast to P7. Strikingly, P5 inhibited CD4-dependent infection by T20-resistant R5-tropic HIV-1 variants. Cell-cell fusion studies indicated that the anti-HIV-1 activity of P5, unlike T20, could not be abrogated in the presence of the N-terminal leucine zipper domain (LZ). These results suggested that P5 could serve as a potent fusion inhibitor. PMID:18925934

  7. Vaginal microbicide film combinations of two reverse transcriptase inhibitors, EFdA and CSIC, for the prevention of HIV-1 sexual transmission

    PubMed Central

    Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S.; Moncla, Bernard; Sarafianos, Stefan G.; Parniak, Michael A.; Rohan, Lisa C.

    2015-01-01

    Purpose EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Methods Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. Results No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Conclusions Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission. PMID:25794967

  8. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrolmore » induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.« less

  9. Potent influenza A virus entry inhibitors targeting a conserved region of hemagglutinin.

    PubMed

    Lin, Dongguo; Luo, Yinzhu; Yang, Guang; Li, Fangfang; Xie, Xiangkun; Chen, Daiwei; He, Lifang; Wang, Jingyu; Ye, Chunfeng; Lu, Shengsheng; Lv, Lin; Liu, Shuwen; He, Jian

    2017-11-15

    Influenza A viruses (IAVs) induce acute respiratory disease and cause significant morbidity and mortality throughout the world. With the emergence of drug-resistant viral strains, new and effective anti-IAV drugs with different modes of action are urgently needed. In this study, by conjugating cholesterol to the N-terminus of the short peptide KKWK, a lipopeptide named S-KKWK was created. The anti-IAV test indicated that S-KKWK and its derivatives displayed potent antiviral activities against a broad variety of influenza A viral strains including oseltamivir-resistant strains and clinically relevant isolates with IC 50 values ranging from 0.7 to 3.0µM. An extensive mechanistic study showed that these peptides functioned as viral "entry blockers" by inhibiting the conformational rearrangements of HA2 subunit, thereby interrupting the fusion of virus-host cell membranes. Significantly, a computer-aided docking simulation and protein sequence alignment identified conserved residues in the stem region of HA2 as the possible binding site of S-KKWK, which may be employed as a potential drug target for designing anti-IAVs with a broad-spectrum of activity. By targeting this region, a potent anti-IAV agent was subsequently created. In addition, the anti-IAV activity of S-KKWK was assessed by experiments with influenza A virus-infected mice, in which S-KKWK reduced the mortality of infected animals and extended survival time significantly. Overall, in addition to providing a strategy for designing broad-spectrum anti-IAV agents, these results indicate that S-KKWK and its derivatives are prospective candidates for potent antivirals. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Discovery of Critical Residues for Viral Entry and Inhibition through Structural Insight of HIV-1 Fusion Inhibitor CP621–652*

    PubMed Central

    Chong, Huihui; Yao, Xue; Qiu, Zonglin; Qin, Bo; Han, Ruiyun; Waltersperger, Sandro; Wang, Meitian; Cui, Sheng; He, Yuxian

    2012-01-01

    The core structure of HIV-1 gp41 is a stable six-helix bundle (6-HB) folded by its trimeric N- and C-terminal heptad repeats (NHR and CHR). We previously identified that the 621QIWNNMT627 motif located at the upstream region of gp41 CHR plays critical roles for the stabilization of the 6-HB core and peptide CP621–652 containing this motif is a potent HIV-1 fusion inhibitor, however, the molecular determinants underlying the stability and anti-HIV activity remained elusive. In this study, we determined the high-resolution crystal structure of CP621–652 complexed by T21. We find that the 621QIWNNMT627 motif does not maintain the α-helical conformation. Instead, residues Met626 and Thr627 form a unique hook-like structure (denoted as M-T hook), in which Thr627 redirects the peptide chain to position Met626 above the left side of the hydrophobic pocket on the NHR trimer. The side chain of Met626 caps the hydrophobic pocket, stabilizing the interaction between the pocket and the pocket-binding domain. Our mutagenesis studies demonstrate that mutations of the M-T hook residues could completely abolish HIV-1 Env-mediated cell fusion and virus entry, and significantly destabilize the interaction of NHR and CHR peptides and reduce the anti-HIV activity of CP621–652. Our results identify an unusual structural feature that stabilizes the six-helix bundle, providing novel insights into the mechanisms of HIV-1 fusion and inhibition. PMID:22511760

  11. Synthesis and evaluation of 1,4-naphthoquinone ether derivatives as SmTGR inhibitors and new anti-schistosomal drugs.

    PubMed

    Johann, Laure; Belorgey, Didier; Huang, Hsin-Hung; Day, Latasha; Chessé, Matthieu; Becker, Katja; Williams, David L; Davioud-Charvet, Elisabeth

    2015-08-01

    Investigations regarding the chemistry and mechanism of action of 2-methyl-1,4-naphthoquinone (or menadione) derivatives revealed 3-phenoxymethyl menadiones as a novel anti-schistosomal chemical series. These newly synthesized compounds (1-7) and their difluoromethylmenadione counterparts (8, 9) were found to be potent and specific inhibitors of Schistosoma mansoni thioredoxin-glutathione reductase (SmTGR), which has been identified as a potential target for anti-schistosomal drugs. The compounds were also tested in enzymic assays using both human flavoenzymes, i.e. glutathione reductase (hGR) and selenium-dependent human thioredoxin reductase (hTrxR), to evaluate the specificity of the inhibition. Structure-activity relationships as well as physico- and electro-chemical studies showed a high potential for the 3-phenoxymethyl menadiones to inhibit SmTGR selectively compared to hGR and hTrxR enzymes, in particular those bearing an α-fluorophenol methyl ether moiety, which improves anti-schistosomal action. Furthermore, the (substituted phenoxy)methyl menadione derivative (7) displayed time-dependent SmTGR inactivation, correlating with unproductive NADPH-dependent redox cycling of SmTGR, and potent anti-schistosomal action in worms cultured ex vivo. In contrast, the difluoromethylmenadione analog 9, which inactivates SmTGR through an irreversible non-consuming NADPH-dependent process, has little killing effect in worms cultured ex vivo. Despite ex vivo activity, none of the compounds tested was active in vivo, suggesting that the limited bioavailability may compromise compound activity. Therefore, future studies will be directed toward improving pharmacokinetic properties and bioavailability. © 2015 FEBS.

  12. Montelukast is a potent and durable inhibitor of multidrug resistance protein 2 (MRP2)-mediated efflux of taxol and saquinavir

    PubMed Central

    Roy, Upal; Chakravarty, Geetika; Honer Zu Bentrup, Kerstin; Mondal, Debasis

    2009-01-01

    The ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of HIV-1 protease inhibitors (HPIs), e.g. saquinavir. Increased expression of several ABC-transporters, especially P-gp and MRP2, are observed in multidrug resistant (MDR) tumor cells and on HIV-1 infected lymphocytes. In addition, due to their apical expression on vascular endothelial barriers, both P-gp and MRP2 are of crucial importance towards dictating drug access into sequestered tissues. However, although a number of P-gp inhibitors are currently in clinical trials, possible inhibitors of MRP2 are not being thoroughly investigated. The experimental leukotriene receptor antagonist (LTRA), MK-571 is known to be a potent inhibitor of MRP transporters. Using the MRP2 over-expressing cell line, MDCKII-MRP2, we evaluated whether the clinically approved LTRAs, e.g. montelukast (Singulair™) and zafirlukast (Accolate™), can similarly suppress MRP2-mediated efflux. We compared the efficacy of increasing concentrations (20-100 μM) of MK-571, montelukast, and zafirlukast, in suppressing the efflux of calcein-AM, a fluorescent MRP substrate, and the radiolabeled [3H-] drugs, taxol and saquinavir. Montelukast was the most potent inhibitor (p<0.01) of MRP2-mediated efflux of all three substrates. Montelukast also increased (p<0.01) the duration of intracellular retention of both taxol and saquinavir. More than 50% of the drugs were retained in cells even after 90 mins post removal of montelukast from the medium. Our findings implicate that montelukast, a relatively safe anti-asthmatic agent, may be used as an adjunct therapy to suppress the efflux of taxol and saquinavir from MRP2 overexpressing cells. PMID:19952419

  13. Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost

    PubMed Central

    Hulot, Sandrine L.; Korber, Bette; Giorgi, Elena E.; Vandergrift, Nathan; Saunders, Kevin O.; Balachandran, Harikrishnan; Mach, Linh V.; Lifton, Michelle A.; Pantaleo, Giuseppe; Tartaglia, Jim; Phogat, Sanjay; Jacobs, Bertram; Kibler, Karen; Perdiguero, Beatriz; Gomez, Carmen E.; Esteban, Mariano; Rosati, Margherita; Felber, Barbara K.; Pavlakis, George N.; Parks, Robert; Lloyd, Krissey; Sutherland, Laura; Scearce, Richard; Letvin, Norman L.; Seaman, Michael S.; Alam, S. Munir; Montefiori, David; Liao, Hua-Xin; Haynes, Barton F.

    2015-01-01

    ABSTRACT An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4+ and CD8+ T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses. PMID:25855741

  14. Adjuvant Activity of the Catalytic A1 Domain of Cholera Toxin for Retroviral Antigens Delivered by GeneGun▿

    PubMed Central

    Bagley, Kenneth C.; Lewis, George K.; Fouts, Timothy R.

    2011-01-01

    Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques. PMID:21508173

  15. Adjuvant activity of the catalytic A1 domain of cholera toxin for retroviral antigens delivered by GeneGun.

    PubMed

    Bagley, Kenneth C; Lewis, George K; Fouts, Timothy R

    2011-06-01

    Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques.

  16. Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors

    PubMed Central

    Bam, Rujuta A.; Willkom, Madeleine; Frey, Christian R.; Tsai, Luong; Stray, Kirsten M.; Yant, Stephen R.; Cihlar, Tomas

    2015-01-01

    Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4+ T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF. PMID:26503655

  17. Breast Milk of HIV-Positive Mothers Has Potent and Species-Specific In Vivo HIV-Inhibitory Activity

    PubMed Central

    Wahl, Angela; Baker, Caroline; Spagnuolo, Rae Ann; Stamper, Lisa W.; Fouda, Genevieve G.; Permar, Sallie R.; Hinde, Katie; Kuhn, Louise; Bode, Lars; Aldrovandi, Grace M.

    2015-01-01

    ABSTRACT Despite the nutritional and health benefits of breast milk, breast milk can serve as a vector for mother-to-child HIV transmission. Most HIV-infected infants acquire HIV through breastfeeding. Paradoxically, most infants breastfed by HIV-positive women do not become infected. This is potentially attributed to anti-HIV factors in breast milk. Breast milk of HIV-negative women can inhibit HIV infection. However, the HIV-inhibitory activity of breast milk from HIV-positive mothers has not been evaluated. In addition, while significant differences in breast milk composition between transmitting and nontransmitting HIV-positive mothers have been correlated with transmission risk, the HIV-inhibitory activity of their breast milk has not been compared. This knowledge may significantly impact the design of prevention approaches in resource-limited settings that do not deny infants of HIV-positive women the health benefits of breast milk. Here, we utilized bone marrow/liver/thymus humanized mice to evaluate the in vivo HIV-inhibitory activity of breast milk obtained from HIV-positive transmitting and nontransmitting mothers. We also assessed the species specificity and biochemical characteristics of milk's in vivo HIV-inhibitory activity and its ability to inhibit other modes of HIV infection. Our results demonstrate that breast milk of HIV-positive mothers has potent HIV-inhibitory activity and indicate that breast milk can prevent multiple routes of infection. Most importantly, this activity is unique to human milk. Our results also suggest multiple factors in breast milk may contribute to its HIV-inhibitory activity. Collectively, our results support current recommendations that HIV-positive mothers in resource-limited settings exclusively breastfeed in combination with antiretroviral therapy. IMPORTANCE Approximately 240,000 children become infected with HIV annually, the majority via breastfeeding. Despite daily exposure to virus in breast milk, most infants breastfed by HIV-positive women do not acquire HIV. The low risk of breastfeeding-associated HIV transmission is likely due to antiviral factors in breast milk. It is well documented that breast milk of HIV-negative women can inhibit HIV infection. Here, we demonstrate, for the first time, that breast milk of HIV-positive mothers (nontransmitters and transmitters) inhibits HIV transmission. We also demonstrate that breast milk can prevent multiple routes of HIV acquisition and that this activity is unique to human milk. Collectively, our results support current guidelines which recommend that HIV-positive women in resource-limited settings exclusively breastfeed in combination with infant or maternal antiretroviral therapy. PMID:26292320

  18. Involvement of Sp1 in butyric acid-induced HIV-1 gene expression.

    PubMed

    Imai, Kenichi; Okamoto, Takashi; Ochiai, Kuniyasu

    2015-01-01

    The ability of human immunodeficiency virus-1(HIV-1) to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs), could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP) was required for butyric acid-induced HIV-1 activation. These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria. © 2015 S. Karger AG, Basel.

  19. Structural insights into the anti-HIV activity of the Oscillatoria agardhii agglutinin homolog lectin family.

    PubMed

    Koharudin, Leonardus M I; Kollipara, Sireesha; Aiken, Christopher; Gronenborn, Angela M

    2012-09-28

    Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ~66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties.

  20. Dual HIV-1 reverse transcriptase and integrase inhibitors from Limonium morisianum Arrigoni, an endemic species of Sardinia (Italy).

    PubMed

    Sanna, Cinzia; Rigano, Daniela; Corona, Angela; Piano, Dario; Formisano, Carmen; Farci, Domenica; Franzini, Genni; Ballero, Mauro; Chianese, Giuseppina; Tramontano, Enzo; Taglialatela-Scafati, Orazio; Esposito, Francesca

    2018-02-04

    During our search for potential templates of HIV-1 reverse transcriptase (RT) and integrase (IN) dual inhibitors, the methanolic extract obtained from aerial parts of Limonium morisianum was investigated. Repeated bioassay-guided chromatographic purifications led to the isolation of the following secondary metabolites: myricetin, myricetin 3-O-rutinoside, myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside, (-)-epigallocatechin 3-O-gallate, tryptamine, ferulic and phloretic acids. The isolated compounds were tested on both HIV-1 RT-associated RNase H and IN activities. Interestingly, (-)-epigallocatechin-3-O-gallate and myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside potently inhibited both enzyme activities with IC 50 values ranging from 0.21 to 10.9 μM. Differently, tryptamine and ferulic acid exhibited a significant inhibition only on the IN strand transfer reaction, showing a selectivity for this viral enzyme. Taken together these results strongly support the potential of this plant as a valuable anti HIV-1 drugs source worthy of further investigations.

  1. Old plants newly discovered: Cassia sieberiana D.C. and Cassia abbreviata Oliv. Oliv. root extracts inhibit in vitro HIV-1c replication in peripheral blood mononuclear cells (PBMCs) by different modes of action.

    PubMed

    Leteane, Melvin M; Ngwenya, Barbara N; Muzila, Mbaki; Namushe, Amos; Mwinga, John; Musonda, Rosemary; Moyo, Sikhulile; Mengestu, Yehualashete B; Abegaz, Berhanu M; Andrae-Marobela, Kerstin

    2012-05-07

    Despite advances in anti-retroviral therapy which has transformed HIV/AIDS from a fatal to a manageable chronic disease, increasing viral drug resistance, side effects and uneven access to anti-retroviral drugs remain considerable therapeutic challenges. Partly as a consequence of these shortcomings and partly based on the fact that HIV/AIDS gives rise to opportunistic infections whose symptoms have been managed in Africa in an HIV/AIDS-independent context by traditional healers for centuries, many HIV/AIDS patients use herbal medicines. The aim of this study was to screen selected medicinal plants from Botswana, used by traditional healers to treat/manage HIV/AIDS, for inhibitory activities on HIV replication. Based on an ethnomedical survey, ethanolic tannin-containing and tannin-free extracts from 10 medicinal plants were tested for inhibitory properties against a clone of HIV-1c (MJ(4)) measuring cytopathic effect protection and levels of viral p24 antigen in infected PBMCs. Cassia sieberiana D.C., Cassia abbreviata Oliv. Oliv. and Plumbago zeylanica L. extracts showed significant inhibition of HIV-1c (MJ(4)) replication. The inhibitory activity of the Plumbago zeylanica extract could be attributed to its tannin content. Anti-HIV activity of Cassia sieberiana root and bark extracts, and Cassia abbreviata root extracts occurred in a concentration-dependent manner with an effective concentration (EC(50)) of 65.1μg/ml, 85.3μg/ml and 102.8μg/ml, respectively. Experiments to elucidate possible mechanism(s) of action revealed that Cassia sieberiana root and bark extracts blocked HIV replication at its binding- (EC(50)=70.2μg/ml and 90.8μg/ml, respectively) and entry stage (EC(50)=88.9μg/ml and 100.5μg/ml, respectively) while Cassia abbreviata extracts did not. We report here for the first time a direct inhibitory effect on HIV-1c replication of extracts from two extremely popular medicinal plants, Cassia sieberiana and Cassia abbreviata. Considering the traditional uses of both Cassia species, our findings strongly suggest pilot clinical observational studies involving traditional healers to further evaluate the therapeutic potential of the Cassia extracts. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Resveratrol glucuronides as the metabolites of resveratrol in humans: characterization, synthesis, and anti-HIV activity.

    PubMed

    Wang, Lai-Xi; Heredia, Alonso; Song, Haijing; Zhang, Zhaojun; Yu, Biao; Davis, Charles; Redfield, Robert

    2004-10-01

    Resveratrol is a natural product with diverse biological activities. We have previously reported that resveratrol possesses potent synergistic inhibitory activity against human immunodeficiency virus (HIV)-1 infection in combination with nucleoside analogs (Heredia et al. 2000. J Acquir Immune Defic Syndr 25:246-255). As a part of our program in developing resveratrol as a component for anti-HIV chemotherapy, we describe in this article the characterization, chemical synthesis, and biological effects of the human metabolites of resveratrol. We found that resveratrol was metabolized in humans into two metabolites, which were characterized as resveratrol-3-O- and 4'-O-glucuronides. For further biological studies, we reported two simple, alternative methods for the synthesis of the metabolites. The cytotoxic and antiviral activities of resveratrol and its metabolites were compared in cell culture experiments using human peripheral blood mononuclear cells. Whereas resveratrol was cytotoxic at > or =30 microM, no cytotoxicity was observed for the metabolites at concentrations as high as 300 microM. However, resveratrol showed strong synergistic anti-HIV activity with didanosine at 10 microM, but no synergistic effects were observed for either of the metabolites at up to 300 microM. Nevertheless, the in vitro activity of the metabolites (resveratrol glucuronides) may not necessarily reflect their in vivo function, given the fact that the ubiquitously existing human beta-glucuronidase could convert the metabolites back to resveratrol locally or systematically in vivo. The present studies have implications for future development of resveratrol and/or its derivatives as a chemotherapeutic agent. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  3. Hypothesis of snake and insect venoms against Human Immunodeficiency Virus: a review

    PubMed Central

    2009-01-01

    Background Snake and insect venoms have been demonstrated to have beneficial effects in the treatment of certain diseases including drug resistant human immunodeficiency virus (HIV) infection. We evaluated and hypothesized the probable mechanisms of venoms against HIV. Methods Previous literatures published over a period of 30 years (1979-2009) were searched using the key words snake venom, insect venom, mechanisms and HIV. Mechanisms were identified and discussed. Results & Conclusion With reference to mechanisms of action, properties and components of snake venom such as sequence homology and enzymes (protease or L- amino acid oxidase) may have an effect on membrane protein and/or act against HIV at multiple levels or cells carrying HIV virus resulting in enhanced effect of anti-retroviral therapy (ART). This may cause a decrease in viral load and improvement in clinical as well as immunological status. Insect venom and human Phospholipase A2 (PLA2) have potential anti-viral activity through inhibition of virion entry into the cells. However, all these require further evaluation in order to establish its role against HIV as an independent one or as a supplement. PMID:19922674

  4. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus

    PubMed Central

    Serhan, C N; Chiang, N

    2008-01-01

    Complete resolution of an acute inflammatory response and its return to homeostasis are essential for healthy tissues. Here, we overview ongoing efforts to characterize cellular and molecular mechanisms that govern the resolution of self-limited inflammation. Systematic temporal analyses of evolving inflammatory exudates using mediator lipidomics-informatics, proteomics, and cellular trafficking with murine resolving exudates demonstrate novel endogenous pathways of local-acting mediators that share both anti-inflammatory and pro-resolving properties. In murine systems, resolving-exudate leukocytes switch their phenotype to actively generate new families of mediators from major omega-3 fatty acids EPA and DHA termed resolvins and protectins. Recent advances on their biosynthesis and actions are reviewed with a focus on the E-series resolvins (RvE1, RvE2), D series resolvins (RvD1, RvD2) and the protectins including neuroprotectin D1/protectin D1 (NPD1/PD1) as well as their aspirin-triggered epimeric forms. Members of each new family demonstrate potent stereo-specific actions, joining the lipoxins as endogenous local signals that govern resolution and endogenous anti-inflammation mechanisms. In addition to their origins and roles in resolution biology in the immune system, recent findings indicate that these new mediator families also display potent protective actions in lung, kidney, and eye as well as enhance microbial clearance. Thus, these endogenous agonists of resolution pathways constitute a novel genus of chemical mediators that possess pro-resolving, anti-inflammatory, and antifibrotic as well as host-directed antimicrobial actions. These may be useful in the design of new therapeutics and treatments for diseases with the underlying trait of uncontrolled inflammation and redox organ stress. PMID:17965751

  5. Development and Characterization of a Vaginal Film Containing Dapivirine, a Non- nucleoside Reverse Transcriptase Inhibitor (NNRTI), for prevention of HIV-1 sexual transmission

    PubMed Central

    Akil, Ayman; Parniak, Michael A.; Dezzuitti, Charlene S.; Moncla, Bernard J.; Cost, Marilyn R.; Li, Mingguang; Rohan, Lisa Cencia

    2012-01-01

    Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide. PMID:22708075

  6. Development and Characterization of a Vaginal Film Containing Dapivirine, a Non- nucleoside Reverse Transcriptase Inhibitor (NNRTI), for prevention of HIV-1 sexual transmission.

    PubMed

    Akil, Ayman; Parniak, Michael A; Dezzuitti, Charlene S; Moncla, Bernard J; Cost, Marilyn R; Li, Mingguang; Rohan, Lisa Cencia

    2011-06-01

    Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide.

  7. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin.

    PubMed

    Tuli, Hardeep S; Sandhu, Sardul S; Sharma, A K

    2014-02-01

    An entomopathogenic fungus, Cordyceps sp. has been known to have numerous pharmacological and therapeutic implications, especially, in terms of human health making it a suitable candidate for ethno-pharmacological use. Main constituent of the extract derived from this fungus comprises a novel bio-metabolite called as Cordycepin (3'deoxyadenosine) which has a very potent anti-cancer, anti-oxidant and anti-inflammatory activities. The current review discusses about the broad spectrum potential of Cordycepin including biological and pharmacological actions in immunological, hepatic, renal, cardiovascular systems as well as an anti-cancer agent. The article also reviews the current efforts to delineate the mechanism of action of Cordycepin in various bio-molecular processes. The study will certainly draw the attention of scientific community to improve the bioactivity and production of Cordycepin for its commercial use in pharmacological and medical fields.

  8. Efficient Vpu-Mediated Tetherin Antagonism by an HIV-1 Group O Strain

    PubMed Central

    Mack, Katharina; Starz, Kathrin; Sauter, Daniel; Langer, Simon; Bibollet-Ruche, Frederic; Learn, Gerald H.; Stürzel, Christina M.; Leoz, Marie; Plantier, Jean-Christophe; Geyer, Matthias; Hahn, Beatrice H.

    2017-01-01

    ABSTRACT Simian immunodeficiency viruses (SIVs) use their Nef proteins to counteract the restriction factor tetherin. However, a deletion in human tetherin prevents antagonism by the Nef proteins of SIVcpz and SIVgor, which represent the ape precursors of human immunodeficiency virus type 1 (HIV-1). To promote virus release from infected cells, pandemic HIV-1 group M strains evolved Vpu as a tetherin antagonist, while the Nef protein of less widespread HIV-1 group O strains acquired the ability to target a region adjacent to this deletion. In this study, we identified an unusual HIV-1 group O strain (RBF206) that evolved Vpu as an effective antagonist of human tetherin. While both RBF206 Vpu and Nef exert anti-tetherin activity in transient-transfection assays, mainly Vpu promotes RBF206 release in infected CD4+ T cells. Although mutations distinct from the adaptive changes observed in group M Vpus (M-Vpus) were critical for the acquisition of its anti-tetherin activity, RBF206 O-Vpu potently suppresses NF-κB activation and reduces CD4 cell surface expression. Interestingly, RBF206 Vpu counteracts tetherin in a largely species-independent manner, degrading both the long and short isoforms of human tetherin. Downmodulation of CD4, but not counteraction of tetherin, by RBF206 Vpu was dependent on the cellular ubiquitin ligase machinery. Our data present the first example of an HIV-1 group O Vpu that efficiently antagonizes human tetherin and suggest that counteraction by O-Nefs may be suboptimal. IMPORTANCE Previous studies showed that HIV-1 groups M and O evolved two alternative strategies to counteract the human ortholog of the restriction factor tetherin. While HIV-1 group M switched from Nef to Vpu due to a deletion in the cytoplasmic domain of human tetherin, HIV-1 group O, which lacks Vpu-mediated anti-tetherin activity, acquired a Nef protein that is able to target a region adjacent to the deletion. Here we report an unusual exception, identifying a strain of HIV-1 group O (RBF206) whose Vpu protein evolved an effective antagonism of human tetherin. Interestingly, the adaptive changes in RBF206 Vpu are distinct from those found in M-Vpus and mediate efficient counteraction of both the long and short isoforms of this restriction factor. Our results further illustrate the enormous flexibility of HIV-1 in counteracting human defense mechanisms. PMID:28077643

  9. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia

    NASA Astrophysics Data System (ADS)

    Shingai, Masashi; Nishimura, Yoshiaki; Klein, Florian; Mouquet, Hugo; Donau, Olivia K.; Plishka, Ronald; Buckler-White, Alicia; Seaman, Michael; Piatak, Michael; Lifson, Jeffrey D.; Dimitrov, Dimiter; Nussenzweig, Michel C.; Martin, Malcolm A.

    2013-11-01

    Neutralizing antibodies can confer immunity to primate lentiviruses by blocking infection in macaque models of AIDS. However, earlier studies of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies administered to infected individuals or humanized mice reported poor control of virus replication and the rapid emergence of resistant variants. A new generation of anti-HIV-1 monoclonal antibodies, possessing extraordinary potency and breadth of neutralizing activity, has recently been isolated from infected individuals. These neutralizing antibodies target different regions of the HIV-1 envelope glycoprotein including the CD4-binding site, glycans located in the V1/V2, V3 and V4 regions, and the membrane proximal external region of gp41 (refs 9, 10, 11, 12, 13, 14). Here we have examined two of the new antibodies, directed to the CD4-binding site and the V3 region (3BNC117 and 10-1074, respectively), for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian-human immunodeficiency virus (SHIV)-AD8, which emulates many of the pathogenic and immunogenic properties of HIV-1 during infections of rhesus macaques. Either antibody alone can potently block virus acquisition. When administered individually to recently infected macaques, the 10-1074 antibody caused a rapid decline in virus load to undetectable levels for 4-7days, followed by virus rebound during which neutralization-resistant variants became detectable. When administered together, a single treatment rapidly suppressed plasma viraemia for 3-5weeks in some long-term chronically SHIV-infected animals with low CD4+ T-cell levels. A second cycle of anti-HIV-1 monoclonal antibody therapy, administered to two previously treated animals, successfully controlled virus rebound. These results indicate that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected individuals experiencing immune dysfunction.

  10. Mitigating hERG Inhibition: Design of Orally Bioavailable CCR5 Antagonists as Potent Inhibitors of R5 HIV-1 Replication

    PubMed Central

    2012-01-01

    A series of CCR5 antagonists representing the thiophene-3-yl-methyl ureas were designed that met the pharmacological criteria for HIV-1 inhibition and mitigated a human ether-a-go-go related gene (hERG) inhibition liability. Reducing lipophilicity was the main design criteria used to identify compounds that did not inhibit the hERG channel, but subtle structural modifications were also important. Interestingly, within this series, compounds with low hERG inhibition prolonged the action potential duration (APD) in dog Purkinje fibers, suggesting a mixed effect on cardiac ion channels. PMID:24900457

  11. Natural resistance to HIV infection: The Vif-APOBEC interaction.

    PubMed

    Malim, Michael H

    2006-11-01

    Members of the APOBEC family of cellular polynucleotide cytidine deaminases (e.g., APOBEC3G) are potent inhibitors of HIV infection. Wild type viral infections are largely spared from APOBEC function through the action of the viral Vif protein. In Vif's absence, inhibitory APOBEC proteins are encapsidated by budding virus particles leading to excessive cytidine (C) to uridine (U) hypermutation of negative sense reverse transcripts in newly infected cells. This registers as guanosine (G) to adenosine (A) mutations in plus stranded cDNA. Because the functions of Vif and APOBEC proteins oppose each other, it is likely that fluctuations in the Vif/APOBEC balance can influence the natural history of HIV infection. Experimental support for this notion would further justify and stimulate drug discovery initiatives in this area.

  12. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase.

    PubMed

    Wu, Mingyi; Wen, Dandan; Gao, Na; Xiao, Chuang; Yang, Lian; Xu, Li; Lian, Wu; Peng, Wenlie; Jiang, Jianmin; Zhao, Jinhua

    2015-03-06

    Fucosylated chondroitin sulfate (FCS), a structurally unusual glycosaminoglycan, has distinct anticoagulant properties, and is an especially strong inhibitor of the intrinsic factor Xase (anti-Xase). To obtain a highly selective inhibitor of human Xase, we purified six native FCSs with various sulfation patterns, prepared a series of FCS derivatives, and then elucidated the relationship between the structures and the anticoagulant activities of FCSs. FCSs 1-3 containing higher Fuc2S4S exhibit stronger AT-dependent anti-IIa activities, whereas 4-6 containing more Fuc3S4S produce potent HCII-dependent anti-IIa activities. Saccharides containing a minimum of 6-8 trisaccharide units, free carboxyl groups, and full fucosylation of GlcA may be required for potent anti-Xase activity, and approximately six trisaccharide units and partial fucosylation of GlcA may contribute to potent HCII-dependent activity. Decreasing of the molecular weights markedly reduces their AT-dependent anti-IIa activities, and even eliminates human platelet and factor XII activation. Furthermore, in vitro and in vivo studies suggested that fractions of 6-12 kDa may be very promising compounds as putative selective intrinsic Xase inhibitors with antithrombotic action, but without the consequences of major bleeding and factor XII activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib.

    PubMed

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-09-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8 + T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses.

  14. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib

    PubMed Central

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-01-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8+ T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses. PMID:26405606

  15. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs.

    PubMed

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang; Liu, Chao; Zhang, Hui

    2015-12-01

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Recent developments in therapeutic applications of Cyanobacteria.

    PubMed

    Raja, Rathinam; Hemaiswarya, Shanmugam; Ganesan, Venkatesan; Carvalho, Isabel S

    2016-05-01

    The cyanobacteria (blue-green algae) are photosynthetic prokaryotes having applications in human health with numerous biological activities and as a dietary supplement. It is used as a food supplement because of its richness in nutrients and digestibility. Many cyanobacteria (Microcystis sp, Anabaena sp, Nostoc sp, Oscillatoria sp., etc.) produce a great variety of secondary metabolites with potent biological activities. Cyanobacteria produce biologically active and chemically diverse compounds belonging to cyclic peptides, lipopeptides, fatty acid amides, alkaloids and saccharides. More than 50% of the marine cyanobacteria are potentially exploitable for extracting bioactive substances which are effective in killing cancer cells by inducing apoptotic death. Their role as anti-viral, anti-tumor, antimicrobial, anti-HIV and a food additive have also been well established. However, such products are at different stages of clinical trials and only a few compounds have reached to the market.

  17. Alcohol Enhances HIV Infection of Cord Blood Monocyte-Derived Macrophages

    PubMed Central

    Mastrogiannis, Dimitrios S.; Wang, Xu; Dai, Min; Li, Jieliang; Wang, Yizhong; Zhou, Yu; Sakarcan, Selin; Peña, Juliet Crystal; Ho, Wenzhe

    2014-01-01

    Alcohol consumption or alcohol abuse is common among pregnant HIV+ women and has been identified as a potential behavioral risk factor for the transmission of HIV. In this study, we examined the impact of alcohol on HIV infection of cord blood monocyte-derived macrophages (CBMDM). We demonstrated that alcohol treatment of CBMDM significantly enhanced HIV infection of CBMDM. Investigation of the mechanisms of alcohol action on HIV demonstrated that alcohol inhibited the expression of several HIV restriction factors, including anti-HIV microRNAs, APOBEC3G and APOBEC3H. Additionally, alcohol also suppressed the expression of IFN regulatory factor 7 (IRF-7) and retinoic acid-inducible gene I (RIG-I), an intracellular sensor of viral infection. The suppression of these IFN regulatory factors was associated with reduced expression of type I IFN. These experimental findings suggest that maternal alcohol consumption may facilitate HIV infection, promoting vertical transmission of HIV. PMID:25053361

  18. Nobiletin and tangeretin ameliorate scratching behavior in mice by inhibiting the action of histamine and the activation of NF-κB, AP-1 and p38.

    PubMed

    Jang, Se-Eun; Ryu, Kwon-Ryeol; Park, Sung-Hwan; Chung, Suna; Teruya, Yuto; Han, Myung Joo; Woo, Je-Tae; Kim, Dong-Hyun

    2013-11-01

    Nobiletin and tangeretin are polymethoxy flavonoids that are abundantly present in the pericarp of Citrus unshiu (family Rutaceae) and the fruit of Citrus depressa (family Rutaceae). They exhibit various biological activities, including anti-inflammatory and anti-asthmatic effects. To evaluate the anti-allergic effects of nobiletin and tangeretin, we measured their inhibitory effects in histamine- or compound 48/80-induced scratching behavioral mice. Nobiletin and tangeretin potently inhibited scratching behavior, as well as histamine-induced vascular permeability. Furthermore, they inhibited the expression of the allergic cytokines, IL-4 and TNF-α as well as the activation of their transcription factors NF-κB, AP-1 and p38 in histamine-stimulated skin tissues. They also inhibited the expression of IL-4 and TNF-α and the activation of NF-κB and c-jun in PMA-stimulated RBL-2H3 cells. Furthermore, nobiletin and tangeretin inhibited protein kinase C (PKC) activity and the IgE-induced degranulation of RBL-2H3 cells. These agents showed potent anti-histamine effect through the Magnus test when guinea pig ileum was used. Based on these results, nobiletin and tangeretin may ameliorate scratching behavioral reactions by inhibiting the action of histamine as well as the activation of the transcription factors NF-κB and AP-1 via PKC. © 2013.

  19. Inhibitory effects of ethyl pyruvate on platelet aggregation and phosphatidylserine exposure.

    PubMed

    Li, Wenjin; Yang, Xinyu; Peng, Minyuan; Li, Can; Mu, Guangfu; Chen, Fangping

    2017-06-03

    Ethyl pyruvate (EP) is a stable lipophilic pyruvate derivative. Studies demonstrated that EP shows potent anti-oxidation, anti-inflammatory and anti-coagulant effects. Inflammation and coagulation are closely interacted with platelet activation. However, it is unclear whether EP has anti-platelet effects. Therefore, we investigated the anti-platelet effect of EP in this study in vitro. We found that EP inhibited agonists induced platelets aggregation, ATP release and adhesion to collagen. Flow cytometric analysis revealed that EP inhibited agonist induced platelets PAC-1 binding, as well as P-selectin and CD40L expression. The underlying mechanism of action may involve the inhibition of platelet PI3K/Akt and Protein Kinase C (PKC) signaling pathways. Additionally, EP dose dependently inhibited platelet PS exposure induced by high concentration thrombin. Lactate dehydrogenase (LDH) activity assay and mice platelet count implied that EP may have no toxic effect on platelets. Therefore, we are the first to report that EP has potent anti-platelet activity and attenuates platelet PS exposure in vitro, suggesting that the inhibitory effects of EP on platelets may also play important roles in improvement of inflammation and coagulation disorder in related animal models. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Dynamics of HIV neutralization by a microbicide formulation layer: biophysical fundamentals and transport theory.

    PubMed

    Geonnotti, Anthony R; Katz, David F

    2006-09-15

    Topical microbicides are an emerging HIV/AIDS prevention modality. Microbicide biofunctionality requires creation of a chemical-physical barrier against HIV transmission. Barrier effectiveness derives from properties of the active compound and its delivery system, but little is known about how these properties translate into microbicide functionality. We developed a mathematical model simulating biologically relevant transport and HIV-neutralization processes occurring when semen-borne virus interacts with a microbicide delivery vehicle coating epithelium. The model enables analysis of how vehicle-related variables, and anti-HIV compound characteristics, affect microbicide performance. Results suggest HIV neutralization is achievable with postcoital coating thicknesses approximately 100 mum. Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer. Durable vehicle structures that restrict viral diffusion could provide significant protection. Our findings demonstrate the need to pair potent active ingredients with well-engineered formulation vehicles, and highlight the importance of the dosage form in microbicide effectiveness. Microbicide formulations can function not only as drug delivery vehicles, but also as physical barriers to viral penetration. Total viral neutralization with 100-mum-thin coating layers supports future microbicide use against HIV transmission. This model can be used as a tool to analyze diverse factors that govern microbicide functionality.

  1. Cellular immunity for prevention and clearance of HIV infection.

    PubMed

    Kalams, Spyros A

    2003-05-01

    Despite the major strides that have been made in HIV therapy with the advent of potent anti-retroviral drugs, these medications are quite expensive and are still not readily available for the vast majority of infected individuals worldwide. Even when available, the long-term toxicities associated with anti-retroviral medications and the frequent emergence of drug-resistance mutations can complicate therapy, making the formulation of effective vaccines imperative. This chapter will review the current state of understanding regarding cell-mediated immune responses that are associated with control of HIV replication. This knowledge has generated sound hypotheses regarding the prospects for augmenting cell-mediated immunity through immune-based therapies. With regard to prophylactic vaccines, it is presently unclear which vaccine-induced immune responses will protect against infection. While much progress has been made in formulating vaccine constructs designed to elicit cell-mediated immune responses, sterilizing immunity is unlikely to be achieved with the current vaccines. However, the ability to control viremia and prevent disease progression in animal infection models looks promising. The ability to measure immune responses has also advanced markedly over the past few years and will allow investigators to more accurately measure the immunogenicity of vaccine constructs, and correlate the magnitude and breadth of these responses with protection.

  2. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies.

    PubMed

    Asamitsu, Kaori; Fujinaga, Koh; Okamoto, Takashi

    2018-04-17

    Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.

  3. Lectins with anti-HIV activity: a review.

    PubMed

    Akkouh, Ouafae; Ng, Tzi Bun; Singh, Senjam Sunil; Yin, Cuiming; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Cheung, Randy Chi Fai

    2015-01-06

    Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.

  4. Loss of PEDF: A Novel Mechanism of Antihormone Resistance in Breast Cancer

    DTIC Science & Technology

    2015-10-01

    positive control. After overnight incubation at 37°C in 5% CO2, the media-containing virus was removed and replaced with 2 ml complete culture media. After...potently restricts entry and infections by a number of highly pathogenic viruses , including HIV-1, filovirus, and SARS coronavirus [30]. More recently...and MCF-7:5C cells were pretreated with 5 μg/mL anti-IFNAR1/2/MMHAR2 from Millipore, Temecula, CA, USA ( cat # MAB1155) for four hours and then treated

  5. Engineering a switch-on peptide to ricin A chain for increasing its specificity towards HIV-infected cells.

    PubMed

    Au, Ka-Yee; Wang, Rui-Rui; Wong, Yuen-Ting; Wong, Kam-Bo; Zheng, Yong-Tang; Shaw, Pang-Chui

    2014-03-01

    Ricin is a type II ribosome-inactivating protein (RIP) that potently inactivates eukaryotic ribosomes by removing a specific adenine residue at the conserved α-sarcin/ricin loop of 28S ribosomal RNA (rRNA). Here, we try to increase the specificity of the enzymatically active ricin A chain (RTA) towards human immunodeficiency virus type 1 (HIV-1) by adding a loop with HIV protease recognition site to RTA. HIV-specific RTA variants were constructed by inserting a peptide with HIV-protease recognition site either internally or at the C-terminal region of wild type RTA. Cleavability of variants by viral protease was tested in vitro and in HIV-infected cells. The production of viral p24 antigen and syncytium in the presence of C-terminal variants was measured to examine the anti-HIV activities of the variants. C-terminal RTA variants were specifically cleaved by HIV-1 protease both in vitro and in HIV-infected cells. Upon proteolysis, the processed variants showed enhanced antiviral effect with low cytotoxicity towards uninfected cells. RTA variants with HIV protease recognition sequence engineered at the C-terminus were cleaved and the products mediated specific inhibitory effect towards HIV replication. Current cocktail treatment of HIV infection fails to eradicate the virus from patients. Here we illustrate the feasibility of targeting an RIP towards HIV-infected cells by incorporation of HIV protease cleavage sequence. This approach may be generalized to other RIPs and is promising in drug design for combating HIV. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Characterization of New Cationic N,N-Dimethyl[70]fulleropyrrolidinium Iodide Derivatives as Potent HIV-1 Maturation Inhibitors.

    PubMed

    Castro, Edison; Martinez, Zachary S; Seong, Chang-Soo; Cabrera-Espinoza, Andrea; Ruiz, Mauro; Hernandez Garcia, Andrea; Valdez, Federico; Llano, Manuel; Echegoyen, Luis

    2016-12-22

    HIV-1 maturation can be impaired by altering protease (PR) activity, the structure of the Gag-Pol substrate, or the molecular interactions of viral structural proteins. Here we report the synthesis and characterization of new cationic N,N-dimethyl[70]fulleropyrrolidinium iodide derivatives that inhibit more than 99% of HIV-1 infectivity at low micromolar concentrations. Analysis of the HIV-1 life cycle indicated that these compounds inhibit viral maturation by impairing Gag and Gag-Pol processing. Importantly, fullerene derivatives 2a-c did not inhibit in vitro PR activity and strongly interacted with HIV immature capsid protein in pull-down experiments. Furthermore, these compounds potently blocked infectivity of viruses harboring mutant PR that are resistant to multiple PR inhibitors or mutant Gag proteins that confer resistance to the maturation inhibitor Bevirimat. Collectively, our studies indicate fullerene derivatives 2a-c as potent and novel HIV-1 maturation inhibitors.

  7. A “building block” approach to the new influenza A virus entry inhibitors with reduced cellular toxicities

    NASA Astrophysics Data System (ADS)

    Lin, Dongguo; Li, Fangfang; Wu, Qiuyi; Xie, Xiangkun; Wu, Wenjiao; Wu, Jie; Chen, Qing; Liu, Shuwen; He, Jian

    2016-03-01

    Influenza A virus (IAV) is a severe worldwide threat to public health and economic development that results in the emergence of drug-resistant or highly virulent strains. Therefore, it is imperative to develop potent anti-IAV drugs with different modes of action to currently available drugs. Herein, we show a new class of antiviral peptides generated by conjugating two known short antiviral peptides: part-1 (named Jp with the sequence of ARLPR) and part-2 (named Hp with the sequence of KKWK). The new peptides were thus created by hybridization of these two domains at C- and N- termini, respectively. The anti-IAV screening results identified that C20-Jp-Hp was the most potent peptide with IC50 value of 0.53 μM against A/Puerto Rico/8/34 (H1N1) strain. Interestingly, these new peptides display lower toxicities toward mammalian cells and higher therapeutic indices than their prototypes. In addition, the mechanism of action of C20-Jp-Hp was extensively investigated.

  8. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach.

    PubMed

    Costi, Roberta; Métifiot, Mathieu; Esposito, Francesca; Cuzzucoli Crucitti, Giuliana; Pescatori, Luca; Messore, Antonella; Scipione, Luigi; Tortorella, Silvano; Zinzula, Luca; Novellino, Ettore; Pommier, Yves; Tramontano, Enzo; Marchand, Christophe; Di Santo, Roberto

    2013-11-14

    The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.

  9. Tetracycline compounds with non-antimicrobial organ protective properties: possible mechanisms of action

    PubMed Central

    Griffin, Michael O.; Ceballos, Guillermo; Villarreal, Francisco

    2010-01-01

    Tetracyclines were developed as a result of the screening of soil samples for antibiotics. The firstt of these compounds, chlortetracycline, was introduced in 1947. Tetracyclines were found to be highly effective against various pathogens including rickettsiae, as well as both gram-positive and gram-negative bacteria, thus becoming the first class of broad spectrum antibiotics. Many other interesting properties, unrelated to their antibiotic activity, have been identified for tetracyclines which have led to widely divergent experimental and clinical uses. For example, tetracyclines are also an effective anti-malarial drug. Minocycline, which can readily cross cell membranes, is known to be a potent anti-apoptotic agent. Another tetracycline, doxycycline is known to exert anti-protease activities. Doxycycline can inhibit matrix metalloproteinases which contribute to tissue destruction activities in diseases such as periodontitis. A large body of literature has provided additional evidence for the “beneficial” actions of tetracyclines, including their ability to act as reactive oxygen species scavengers and anti-inflammatory agents. This review provides a summary of tetracycline’s multiple mechanisms of action as a means to understand their beneficial effects. PMID:20951211

  10. [Successful treatment of HIV-associated chronic inflammatory demyelinating polyneuropathy by early initiation of highly active anti-retroviral therapy].

    PubMed

    Kume, Kodai; Ikeda, Kazuyo; Kamada, Masaki; Touge, Tetsuo; Deguchi, Kazushi; Masaki, Tsutomu

    2013-01-01

    A 47-year-old man with HIV infection presented with lower leg dominant dysesthesia, muscle weakness and sensory ataxia of 3 month's duration. Nerve conduction studies (NCS) showed demyelination change in the median and tibial nerves and sensory nerve action potential (SNAP) in the sural nerve was not evoked. Somatosensory evoked potential (SEP) showed the delayed N9 latency. Diagnose of HIV-associated chronic inflammatory demyelinating polyneuropathy (CIDP) was made. Although the CD4 lymphocyte counts were relatively preserved (466/μl), highly active anti-retroviral therapy (HAART) was started according to a new guideline for the use of antiretroviral agents in HIV-1-infected adults and adolescents recommending early initiation of treatment. After six months, HIV1-RNA was not detected and the CD4 lymphocyte counts showed a recovering trend (585/μl). His symptoms had disappeared, except for dysesthesia in the tip of a toe. Repeated NCS demonstrated full recovery from the demyelination and appearance of SNAP in the sural nerve. The improvement of his symptoms and NCS findings has been maintained for two years. Although effectiveness of immunotherapies such as oral prednisone, high-dose immunoglobulins and plasmapheresis have been reported in HIV-associated CIDP, early initiation of HAART may be also important for favorable prognosis in HIV-associated CIDP.

  11. Role of TIM-4 in exosome-dependent entry of HIV-1 into human immune cells

    PubMed Central

    Sims, Brian; Farrow, Anitra L; Williams, Sparkle D; Bansal, Anju; Krendelchtchikov, Alexandre; Gu, Linlin; Matthews, Qiana L

    2017-01-01

    Exosomes, 30–200 nm nanostructures secreted from donor cells and internalized by recipient cells, can play an important role in the cellular entry of some viruses. These microvesicles are actively secreted into various body fluids, including blood, urine, saliva, cerebrospinal fluid, and breast milk. We successfully isolated exosomes from human breast milk and plasma. The size and concentration of purified exosomes were measured by nanoparticle tracking, while Western blotting confirmed the presence of the exosomal-associated proteins CD9 and CD63, clathrin, and T cell immunoglobulin and mucin proteins (TIMs). Through viral infection assays, we determined that HIV-1 utilizes an exosome-dependent mechanism for entry into human immune cells. The virus contains high amounts of phosphatidylserine (PtdSer) and may bind PtdSer receptors, such as TIMs. This mechanism is supported by our findings that exosomes from multiple sources increased HIV-1 entry into T cells and macrophages, and viral entry was potently blocked with anti-TIM-4 antibodies. PMID:28740388

  12. Acting locally: innate mucosal immunity in resistance to HIV-1 infection in Kenyan commercial sex workers.

    PubMed

    Yao, X-D; Omange, R W; Henrick, B M; Lester, R T; Kimani, J; Ball, T B; Plummer, F A; Rosenthal, K L

    2014-03-01

    Cohort studies of female commercial sex workers (CSWs) in Kenya were among the first to identify highly HIV-1-exposed seronegative (HESN) individuals. As natural resistance is usually mediated by innate immune mechanisms, we focused on determining whether expression and function of innate signaling pathways were altered locally in the genital mucosa of HESN CSWs. Our results demonstrated that selected pattern-recognition receptors (PRRs) were significantly reduced in expression in cervical mononuclear cells (CMCs) from HESN compared with the new HIV-negative (HIV-N) and HIV-positive (HIV-P) groups. Although baseline levels of secreted cytokines were reduced in CMCs of HESN, they were highly stimulated following exposure to ssRNA40 in vitro. Importantly, cervical epithelial cells from HESN also expressed reduced levels of PRRs, but Toll-like receptor 3 (TLR3) and TLR7 as well as nuclear factor-κB and activator protein 1 were highly expressed and activated. Lastly, inflammatory cytokines interleukin (IL)-1β, IL-8, and RANTES (regulated and normal T cell expressed and secreted) were detected at lower levels in cervicovaginal lavage of HESN compared with the HIV-N and HIV-P groups. Overall, our study reveals a local microenvironment of HIV resistance in the genital mucosa consisting of a finely controlled balance of basal immune quiescence with a focused and potent innate anti-viral response critical to resistance to sexual transmission of HIV-1.

  13. Concerns of occupational HIV infection among surgical Staff in the light of anti-HIV sero-status and the distribution of Δ32 allele of the CCR5 gene: a cross-sectional study.

    PubMed

    Gańczak, Maria; Korzeń, Marcin; Owsianka, Barbara; Szych, Zbigniew

    2015-01-01

    Surgical staff might be considered at most risk of accidental viral infection due to their higher exposure to blood. To evaluate surgical staff concerns about occupational HIV infection, to determine contributing factors, to assess their sero-status regarding this pathogen, and the frequency of the Δ32 allele of the CCR5 gene. With the use of a self-administered anonymous questionnaire a cross-sectional sero-survey was conducted from February 2009-January 2010 among doctors/nurses from the surgical/ gynaecological wards of 16 randomly selected hospitals in Western Pomerania, Poland. Fear level was measured by the use of the VAS scale (range 0-10). Serum samples were tested by ELISA. Genotyping was performed using a PCR-AFLP assay. Response rate 84.9%; 427 participants, 88.3% females; 84.8% nurses, 15.2% doctors (median age 42 years, range 22-61 years). More than two thirds of respondents (67.2%) overestimated HIV single exposure risk. The median level of occupational HIV fear was 6.67. The prevalence of anti-HIV was 0.0% (95%CI: 0-0.9%); 1.2% (95%CI: 0.5%-2.9%) of participants were homozygotes Δ32/Δ32. The stepwise regression model revealed that job category (nurse) was associated with HIV fear (p<0.001). The risk of contracting occupational HIV infection remains low; no anti-HIV positive individuals were found among surgical staff, one in one hundred were resistant to HIV infection. Staff members, especially nurses, were much concerned with acquiring an occupational HIV infection, possibly due to the lack of knowledge on single exposure risk. Educational actions and better access to specialists which would help surgical staff in managing anxiety at the workplace is urgently needed.

  14. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    PubMed

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-02-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  15. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    PubMed

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-04-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and cDNA cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per a litter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide-binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48-1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  16. Novel indole sulfides as potent HIV-1 NNRTIs.

    PubMed

    Brigg, Siobhan; Pribut, Nicole; Basson, Adriaan E; Avgenikos, Moscos; Venter, Reinhardt; Blackie, Margaret A; van Otterlo, Willem A L; Pelly, Stephen C

    2016-03-15

    In a previous communication we described a series of indole based NNRTIs which were potent inhibitors of HIV replication, both for the wild type and K103N strains of the virus. However, the methyl ether functionality on these compounds, which was crucial for potency, was susceptible to acid promoted indole assisted SN1 substitution. This particular problem did not bode well for an orally bioavailable drug. Here we describe bioisosteric replacement of this problematic functional group, leading to a series of compounds which are potent inhibitors of HIV replication, and are acid stable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Countervailing social network influences on problem behaviors among homeless youth.

    PubMed

    Rice, Eric; Stein, Judith A; Milburn, Norweeta

    2008-10-01

    The impact of countervailing social network influences (i.e., pro-social, anti-social or HIV risk peers) on problem behaviors (i.e., HIV drug risk, HIV sex risk or anti-social behaviors) among 696 homeless youth was assessed using structural equation modeling. Results revealed that older youth were less likely to report having pro-social peers and were more likely to have HIV risk and anti-social peers. A longer time homeless predicted fewer pro-social peers, more anti-social peers, and more HIV risk peers. Heterosexual youth reported fewer HIV risk peers and more pro-social peers. Youth recruited at agencies were more likely to report pro-social peers. Having pro-social peers predicted less HIV sex risk behavior and less anti-social behavior. Having HIV risk peers predicted all problem behavior outcomes. Anti-social peers predicted more anti-social behavior. Once the association between anti-social and HIV risk peers was accounted for independently, having anti-social peers did not independently predict sex or drug risk behaviors.

  18. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP 3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    DOE PAGES

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; ...

    2015-08-19

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP 3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neithermore » recognized AP 3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP 3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP 3 form a hook-like structure to stabilize interaction between AP 3 and NHR helices. Therefore, AP 3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less

  19. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP 3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP 3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neithermore » recognized AP 3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP 3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP 3 form a hook-like structure to stabilize interaction between AP 3 and NHR helices. Therefore, AP 3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less

  20. Anti-human immunodeficiency virus (HIV) activities of halogenated gomisin J derivatives, new nonnucleoside inhibitors of HIV type 1 reverse transcriptase.

    PubMed

    Fujihashi, T; Hara, H; Sakata, T; Mori, K; Higuchi, H; Tanaka, A; Kaji, H; Kaji, A

    1995-09-01

    Halogenated gomisin J (a derivative of lignan compound), represented by the bromine derivative 1506 [(6R, 7S, S-biar)-4,9-dibromo-3,10-dihydroxy-1,2,11,12-tetramethoxy-6, 7-dimethyl-5,6,7,8- tetrahydrodibenzo[a,c]cyclo-octene], was found to be a potent inhibitor of the cytopathic effects of human immunodeficiency virus type 1 (HIV-1) on MT-4 human T cells (50% effective dose, 0.1 to 0.5 microM). Gomisin J derivatives were active in preventing p24 production from acutely HIV-1-infected H9 cells. The selective indices (toxic dose/effective dose) of these compounds were as high as > 300 in some systems. 1506 was active against 3'-azido-3'-deoxythymidine-resistant HIV-1 and acted synergistically with AZT and 2',3'-ddC. 1506 inhibited HIV-1 reverse transcriptase (RT) in vitro but not HIV-1 protease. From the time-of-addition experiment, 1506 was found to inhibit the early phase of the HIV life cycle. A 1506-resistant HIV mutant was selected and shown to possess a mutation within the RT-coding region (at position 188 [Tyr to Leu]). The mutant RT expressed in Escherichia coli was resistant to 1506 in the in vitro RT assay. Some of the HIV strains resistant to other nonnucleoside HIV-1 RT inhibitors were also resistant to 1506. Comparison of various gomisin J derivatives with gomisin J showed that iodine, bromine, and chlorine in the fourth and ninth positions increased RT inhibitory activity as well as cytoprotective activity.

  1. Studies on the pharmacological action of cactus: identification of its anti-inflammatory effect.

    PubMed

    Park, E H; Kahng, J H; Paek, E A

    1998-02-01

    The ethanol extracts of Opuntia ficus-indica fructus (EEOF) and Opuntia ficus-indica stem (EEOS) were prepared and used to evaluate the pharmacological effects of cactus. Both the extracts inhibited the writhing syndrome induced by acetic acid, indicating that they contains analgesic effect. The oral administrations of EEOF and EEOS suppressed carrageenan-induced rat paw edema and also showed potent inhibition in the leukocyte migration of CMC-pouch model in rats. Moreover, the extracts suppressed the release of beta-glucuronidase, a lysosomal enzyme in rat neutrophils. It was also noted that the extracts showed the protective effect on gastric mucosal layers. From the results it is suggested that the cactus extracts contain anti-inflammatory action having protective effect against gastric lesions.

  2. Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) using pre-steady-state kinetics.

    PubMed

    Muftuoglu, Yagmur; Sohl, Christal D; Mislak, Andrea C; Mitsuya, Hiroaki; Sarafianos, Stefan G; Anderson, Karen S

    2014-06-01

    The novel antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3'-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3'-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) using pre-steady-state kinetics

    PubMed Central

    Muftuoglu, Yagmur; Sohl, Christal D.; Mislak, Andrea C.; Mitsuya, Hiroaki; Sarafianos, Stefan G.; Anderson, Karen S.

    2014-01-01

    The novel antiretroviral 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3′-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3′-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. PMID:24632447

  4. A Synthetic Analogue of Neopeltolide, 8,9-Dehydroneopeltolide, Is a Potent Anti-Austerity Agent against Starved Tumor Cells.

    PubMed

    Fuwa, Haruhiko; Sato, Mizuho

    2017-10-20

    Neopeltolide, an antiproliferative marine macrolide, is known to specifically inhibit complex III of the mitochondrial electron transport chain (mETC). However, details of the biological mode-of-action(s) remain largely unknown. This work demonstrates potent cytotoxic activity of synthetic neopeltolide analogue, 8,9-dehydroneopeltolide (8,9-DNP), against starved human pancreatic adenocarcinoma PANC-1 cells and human non-small cell lung adenocarcinoma A549 cells. 8,9-DNP induced rapid dissipation of the mitochondrial membrane potential and depletion of intracellular ATP level in nutrient-deprived medium. Meanwhile, in spite of mTOR inhibition under starvation conditions, impairment of cytoprotective autophagy was observed as the lipidation of LC3-I to form LC3-II and the degradation of p62 were suppressed. Consequently, cells were severely deprived of energy sources and underwent necrotic cell death. The autophagic flux inhibited by 8,9-DNP could be restored by glucose, and this eventually rescued cells from necrotic death. Thus, 8,9-DNP is a potent anti-austerity agent that impairs mitochondrial ATP synthesis and cytoprotective autophagy in starved tumor cells.

  5. A Synthetic Analogue of Neopeltolide, 8,9-Dehydroneopeltolide, Is a Potent Anti-Austerity Agent against Starved Tumor Cells

    PubMed Central

    Sato, Mizuho

    2017-01-01

    Neopeltolide, an antiproliferative marine macrolide, is known to specifically inhibit complex III of the mitochondrial electron transport chain (mETC). However, details of the biological mode-of-action(s) remain largely unknown. This work demonstrates potent cytotoxic activity of synthetic neopeltolide analogue, 8,9-dehydroneopeltolide (8,9-DNP), against starved human pancreatic adenocarcinoma PANC-1 cells and human non-small cell lung adenocarcinoma A549 cells. 8,9-DNP induced rapid dissipation of the mitochondrial membrane potential and depletion of intracellular ATP level in nutrient-deprived medium. Meanwhile, in spite of mTOR inhibition under starvation conditions, impairment of cytoprotective autophagy was observed as the lipidation of LC3-I to form LC3-II and the degradation of p62 were suppressed. Consequently, cells were severely deprived of energy sources and underwent necrotic cell death. The autophagic flux inhibited by 8,9-DNP could be restored by glucose, and this eventually rescued cells from necrotic death. Thus, 8,9-DNP is a potent anti-austerity agent that impairs mitochondrial ATP synthesis and cytoprotective autophagy in starved tumor cells. PMID:29053565

  6. Synthesis and structure-activity relationship of dicationic diaryl ethers as novel potent anti-MRSA and anti-VRE agents.

    PubMed

    Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman

    2009-08-15

    A series of dicationic diaryl ethers have been synthesized and evaluated for in vitro antibacterial activities, including drug resistant bacterial strains. Most of these compounds have shown potent antibacterial activities. Several compounds, such as piperidinyl and thiomorpholinyl compounds 9e and 9l, improved the antimicrobial selectivity and kept potent anti-MRSA and anti-VRE activity. The most potent bis-indole diphenyl ether 19 exhibited anti-MRSA MIC value of 0.06 microg/mL and enhanced antimicrobial selectivity.

  7. Preclinical discovery and development of maraviroc for the treatment of HIV.

    PubMed

    Veljkovic, Nevena; Vucicevic, Jelica; Tassini, Sabrina; Glisic, Sanja; Veljkovic, Veljko; Radi, Marco

    2015-06-01

    Maraviroc is a first-in-class antiretroviral (ARV) drug acting on a host cell target (CCR5), which blocks the entry of the HIV virus into the cell. Maraviroc is currently indicated for combination ARV treatment in adults infected only with CCR5-tropic HIV-1. This drug discovery case history focuses on the key studies that led to the discovery and approval of maraviroc, as well as on post-launch clinical reports. The article is based on the data reported in published preclinical and clinical studies, conference posters and on drug package data. The profound understanding of HIV's entry mechanisms has provided a strong biological rationale for targeting the chemokine receptor CCR5. The CCR5-antagonist mariviroc, with its unique mode of action and excellent safety profile, is an important therapeutic option for HIV patients. In general, the authors believe that targeting host factors is a useful approach for combating new and re-emerging transmissible diseases, as well as pathogens that easily become resistant to common antiviral drugs. Maraviroc, offering a potent and safe cellular receptor-mediated pharmacological response to HIV, has paved the way for the development of a new generation of host-targeting antivirals.

  8. The design of drugs for HIV and HCV.

    PubMed

    De Clercq, Erik

    2007-12-01

    Since the discovery of the human immunodeficiency virus (HIV) in 1983, dramatic progress has been made in the development of novel antiviral drugs. The HIV epidemic fuelled the development of new antiviral drug classes, which are now combined to provide highly active antiretroviral therapies. The need for the treatment of hepatitis C virus (HCV), which was discovered in 1989, has also provided considerable impetus for the development of new classes of antiviral drugs, and future treatment strategies for chronic HCV might involve combination regimens that are analogous to those currently used for HIV. By considering the drug targets in the different stages of the life cycle of these two viruses, this article presents aspects of the history, medicinal chemistry and mechanisms of action of approved and investigational drugs for HIV and HCV, and highlights general lessons learned from anti-HIV-drug design that could be applied to HCV.

  9. Broad, Intense Anti-Human Immunodeficiency Virus (HIV) Ex Vivo CD8+ Responses in HIV Type 1-Infected Patients: Comparison with Anti-Epstein-Barr Virus Responses and Changes during Antiretroviral Therapy

    PubMed Central

    Dalod, Marc; Dupuis, Marion; Deschemin, Jean-Christophe; Sicard, Didier; Salmon, Dominique; Delfraissy, Jean-Francois; Venet, Alain; Sinet, Martine; Guillet, Jean-Gerard

    1999-01-01

    The ex vivo antiviral CD8+ repertoires of 34 human immunodeficiency virus (HIV)-seropositive patients with various CD4+ T-cell counts and virus loads were analyzed by gamma interferon enzyme-linked immunospot assay, using peptides derived from HIV type 1 and Epstein-Barr virus (EBV). Most patients recognized many HIV peptides, with markedly high frequencies, in association with all the HLA class I molecules tested. We found no correlation between the intensity of anti-HIV CD8+ responses and the CD4+ counts or virus load. In contrast, the polyclonality of anti-HIV CD8+ responses was positively correlated with the CD4+ counts. The anti-EBV responses were significantly less intense than the anti-HIV responses and were positively correlated with the CD4+ counts. Longitudinal follow-up of several patients revealed the remarkable stability of the anti-HIV and anti-EBV CD8+ responses in two patients with stable CD4+ counts, while both antiviral responses decreased in two patients with obvious progression toward disease. Last, highly active antiretroviral therapy induced marked decreases in the number of anti-HIV CD8+ T cells, while the anti-EBV responses increased. These findings emphasize the magnitude of the ex vivo HIV-specific CD8+ responses at all stages of HIV infection and suggest that the CD8+ hyperlymphocytosis commonly observed in HIV infection is driven mainly by virus replication, through intense, continuous activation of HIV-specific CD8+ T cells until ultimate progression toward disease. Nevertheless, highly polyclonal anti-HIV CD8+ responses may be associated with a better clinical status. Our data also suggest that a decrease of anti-EBV CD8+ responses may occur with depletion of CD4+ T cells, but this could be restored by highly active antiretroviral treatment. PMID:10438796

  10. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity

    PubMed Central

    Almeida, Jorge R.; Sauce, Delphine; Price, David A.; Papagno, Laura; Shin, So Youn; Moris, Arnaud; Larsen, Martin; Pancino, Gianfranco; Douek, Daniel C.; Autran, Brigitte; Sáez-Cirión, Asier

    2009-01-01

    CD8+ T cells are major players in the immune response against HIV. However, recent failures in the development of T cell–based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell–mediated efficacy. CD8+ T cells from HIV-1–infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8+ T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8+ T cells from infected donors. We report that attributes of CD8+ T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8+ T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8+ T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy. PMID:19389882

  11. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity.

    PubMed

    Almeida, Jorge R; Sauce, Delphine; Price, David A; Papagno, Laura; Shin, So Youn; Moris, Arnaud; Larsen, Martin; Pancino, Gianfranco; Douek, Daniel C; Autran, Brigitte; Sáez-Cirión, Asier; Appay, Victor

    2009-06-18

    CD8(+) T cells are major players in the immune response against HIV. However, recent failures in the development of T cell-based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell-mediated efficacy. CD8(+) T cells from HIV-1-infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8(+) T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8(+) T cells from infected donors. We report that attributes of CD8(+) T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8(+) T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8(+) T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.

  12. Cytotoxic, Cytostatic and HIV-1 PR Inhibitory Activities of the Soft Coral Litophyton arboreum

    PubMed Central

    Ellithey, Mona S.; Lall, Namrita; Hussein, Ahmed A.; Meyer, Debra

    2013-01-01

    Bioassay-guided fractionation using different chromatographic and spectroscopic techniques in the analysis of the Red Sea soft coral Litophyton arboreum led to the isolation of nine compounds; sarcophytol M (1), alismol (2), 24-methylcholesta-5,24(28)-diene-3β-ol (3), 10-O-methyl alismoxide (4), alismoxide (5), (S)-chimyl alcohol (6), 7β-acetoxy-24-methylcholesta-5-24(28)-diene-3,19-diol (7), erythro-N-dodecanoyl-docosasphinga-(4E,8E)-dienine (8), and 24-methylcholesta-5,24(28)-diene-3β,7β,19-triol (9). Some of the isolated compounds demonstrated potent cytotoxic- and/or cytostatic activity against HeLa and U937 cancer cell lines and inhibitory activity against HIV-1 protease (PR). Compound 7 was strongly cytotoxic against HeLa cells (CC50 4.3 ± 0.75 µM), with selectivity index of SI 8.1, which was confirmed by real time cell electronic sensing (RT-CES). Compounds 2, 7, and 8 showed strong inhibitory activity against HIV-1 PR at IC50s of 7.20 ± 0.7, 4.85 ± 0.18, and 4.80 ± 0.92 µM respectively. In silico docking of most compounds presented comparable scores to that of acetyl pepstatin, a known HIV-1 PR inhibitor. Interestingly, compound 8 showed potent HIV-1 PR inhibitory activity in the absence of cytotoxicity against the cell lines used. In addition, compounds 2 and 5 demonstrated cytostatic action in HeLa cells, revealing potential use in virostatic cocktails. Taken together, data presented here suggest Litophyton arboreum to contain promising compounds for further investigation against the diseases mentioned. PMID:24336129

  13. Pruritic papular eruption and eosinophilic folliculitis associated with human immunodeficiency virus (HIV) infection: a histopathological and immunohistochemical comparative study.

    PubMed

    Afonso, João Paulo Junqueira Magalhães; Tomimori, Jane; Michalany, Nilceo Schwery; Nonogaki, Suely; Porro, Adriana Maria

    2012-08-01

    Among the papular-pruriginous dermatoses related to human immunodeficiency (HIV) infection, two entities remain poorly differentiated leading to confusion in their diagnosis: HIV-related pruritic papular eruption (HIV-PPE or prurigo) and eosinophilic folliculitis (HIV-EF). To establish histopathological and immunohistochemical parameters to differentiate between two conditions associated with HIV infection, the pruritic papular eruption (HIV-PPE) and eosinophilic folliculitis (HIV-EF). Clinically typical HIV-PPE (18 cases) and HIV-EF (10 cases) cases were compared with each other in terms of the following topics: clinical and laboratory features (gender, age, CD4+ cell and eosinophil count), histopathological features (hematoxylin-eosin and toluidine blue staining) and immunohistochemical features (anti-CD1a, anti-CD4, anti-CD7, anti-CD8, anti-CD15, anti-CD20, anti-CD30, anti-CD68/macrophage and anti-S-100 reactions). Among the HIV-EF patients, we found an intense perivascular and diffuse inflammatory infiltration compared with those patients with HIV-PPE. The tissue mast cell count by toluidine staining was higher in the HIV-EF patients, who also presented higher expression levels of CD15 (for eosinophils), CD4 (T helper), and CD7 (pan-T lymphocytes) than the HIV-PPE patients. Only quantitative differences and not qualitative differences were found. These data indicate that HIV-related PPE and EF could possibly be differentiated by histopathological and immunohistochemical findings in addition to clinical characteristics. In fact, these two inflammatory manifestations could be within the spectrum of the same disease because only quantitative, and not qualitative, differences were found. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  14. Anti-infective activity of apolipoprotein domain derived peptides in vitro: identification of novel antimicrobial peptides related to apolipoprotein B with anti-HIV activity

    PubMed Central

    2010-01-01

    Background Previous reports have shown that peptides derived from the apolipoprotein E receptor binding region and the amphipathic α-helical domains of apolipoprotein AI have broad anti-infective activity and antiviral activity respectively. Lipoproteins and viruses share a similar cell biological niche, being of overlapping size and displaying similar interactions with mammalian cells and receptors, which may have led to other antiviral sequences arising within apolipoproteins, in addition to those previously reported. We therefore designed a series of peptides based around either apolipoprotein receptor binding regions, or amphipathic α-helical domains, and tested these for antiviral and antibacterial activity. Results Of the nineteen new peptides tested, seven showed some anti-infective activity, with two of these being derived from two apolipoproteins not previously used to derive anti-infective sequences. Apolipoprotein J (151-170) - based on a predicted amphipathic alpha-helical domain from apolipoprotein J - had measurable anti-HSV1 activity, as did apolipoprotein B (3359-3367) dp (apoBdp), the latter being derived from the LDL receptor binding domain B of apolipoprotein B. The more active peptide - apoBdp - showed similarity to the previously reported apoE derived anti-infective peptide, and further modification of the apoBdp sequence to align the charge distribution more closely to that of apoEdp or to introduce aromatic residues resulted in increased breadth and potency of activity. The most active peptide of this type showed similar potent anti-HIV activity, comparable to that we previously reported for the apoE derived peptide apoEdpL-W. Conclusions These data suggest that further antimicrobial peptides may be obtained using human apolipoprotein sequences, selecting regions with either amphipathic α-helical structure, or those linked to receptor-binding regions. The finding that an amphipathic α-helical region of apolipoprotein J has antiviral activity comparable with that for the previously reported apolipoprotein AI derived peptide 18A, suggests that full-length apolipoprotein J may also have such activity, as has been reported for full-length apolipoprotein AI. Although the strength of the anti-infective activity of the sequences identified was limited, this could be increased substantially by developing related mutant peptides. Indeed the apolipoprotein B-derived peptide mutants uncovered by the present study may have utility as HIV therapeutics or microbicides. PMID:20298574

  15. Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34(+) cells.

    PubMed

    Podsakoff, Greg M; Engel, Barbara C; Carbonaro, Denise A; Choi, Chris; Smogorzewska, Elzbieta M; Bauer, Gerhard; Selander, David; Csik, Susan; Wilson, Kathy; Betts, Michael R; Koup, Richard A; Nabel, Gary J; Bishop, Keith; King, Steven; Schmidt, Manfred; von Kalle, Christof; Church, Joseph A; Kohn, Donald B

    2005-07-01

    Two HIV-1-infected children on antiretroviral therapy were enrolled into a clinical study of retroviral-mediated transfer of a gene that inhibits replication of HIV-1, targeting bone marrow CD34+ hematopoietic stem/progenitor cells. Two retroviral vectors were used, one encoding a "humanized" dominant-negative REV protein (huM10) that is a potent inhibitor of HIV-1 replication and one encoding a nontranslated marker gene (FX) to serve as an internal control for the level of gene marking. Peripheral blood mononuclear cells (PBMC) containing the huM10 gene or FX gene were detected by quantitative PCR at frequencies of approximately 1/10,000 in both subjects for the first 1-3 months following re-infusion of the gene-transduced bone marrow, but then were at or below the limits of detection (<1/1,000,000) at most times over 2 years. In one patient, a reappearance of PBMC containing the huM10 gene, but not the FX gene, occurred concomitant with a rise in the HIV-1 viral load during a period of nonadherence to the antiretroviral regimen. Unique clones of gene-marked PBMC were detected by LAM-PCR during the time of elevated HIV-1 levels. These findings indicate that there was a selective survival advantage for PBMC containing the huM10 gene during the time of increased HIV-1 load.

  16. Natural Immunity to HIV: A Template for Vaccine Strategies.

    PubMed

    Fourcade, Lyvia; Poudrier, Johanne; Roger, Michel

    2018-04-23

    Africa accounts for the majority of global human immunodeficiency virus (HIV) infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN) individuals among African female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4⁺ and CD8⁺ T-cells as well as immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.

  17. In vitro 5-lipoxygenase and anti-oxidant activities of South African medicinal plants commonly used topically for skin diseases.

    PubMed

    Frum, Y; Viljoen, A M

    2006-01-01

    An investigation was undertaken to determine the possible mechanisms of action of medicinal plants used for dermatological pathologies. A total of 14 plant species were selected from the readily available ethnobotanical literature. 5-Lipoxygenase and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays were used to determine the anti-inflammatory activity and the anti-oxidant activity of selected medicinal plants, respectively. Both aqueous and methanol extracts were tested. Among the plants screened, four species (Croton sylvaticus, Warburgia salutaris, Pentanisia prunelloides, and Melianthus comosus) displayed promising 5-lipoxygenase inhibitory activity with IC(50) values <61 ppm. A large number of plants exhibited significant anti-oxidant activities with IC(50) values between 5.27 and 83.36 ppm. Aqueous extracts of M. comosus exhibited the most potent anti-inflammatory and anti-oxidant activity.

  18. The roles of special proresolving mediators in pain relief.

    PubMed

    Zhang, Lan-Yu; Jia, Ming-Rui; Sun, Tao

    2018-02-08

    The resolution of acute inflammation, once thought to be a passive process, is now recognized as an active one. The productions of endogenous special proresolving mediators (SPMs) are involved in this process. SPMs, including lipoxins, resolvins, protectins, and maresins, are endogenous lipid mediators generated from ω-6 arachidonic acid or ω-3 poly-unsaturated fatty acids during the resolution phase of acute inflammation. They have potent anti-inflammatory and proresolving actions in various inflammatory disorders. Due to the potent proresolving and anti-inflammatory effects, SPMs are also used for pain relief. This review focuses on the mechanisms by which SPMs act on their respective G-protein-coupled receptors in immune cells and nerve cells to normalize pain via regulating inflammatory mediators, transient receptor potential ion channels, and central sensitization. SPMs may offer novel therapeutic approaches for preventing and treating pain conditions associated with inflammation.

  19. Macromolecular prodrugs of ribavirin: towards a treatment for co-infection with HIV and HCV† †Electronic supplementary information (ESI) available: Additional experimental details and figures. See DOI: 10.1039/c4sc02754j Click here for additional data file. ‡A.A.A.S.; K.Z.; M.B.L.K.; B.W. contributed equally to this work.

    PubMed Central

    Smith, Anton A. A.; Zuwala, Kaja; Kryger, Mille B. L.; Wohl, Benjamin M.; Guerrero-Sanchez, Carlos; Tolstrup, Martin; Postma, Almar

    2015-01-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) represent tremendous healthcare burdens with a large proportion of patients hosting the two viruses at the same time. An altered hepatic function and immunity as well as cross-interference of drugs make treatment of co-infection increasingly challenging. Herein we report the first design of macromolecular prodrugs (MP) with concurrent success in fighting HIV and alleviating hepatitis (liver inflammation). To achieve this, polymer compositions were systematically screened in a broad range of molar mass and content of ribavirin – a broad spectrum antiviral agent. For the first time, we report that ribavirin is efficacious in fighting HIV and in the form of MP, the treatment is safe, both in terms of lack of association of ribavirin with red blood cells and lack of toxicity upon cellular internalization. The lead polymer compositions were also potent in anti-inflammatory assays with relevance to viral hepatitis – thus making up formulations with potential for treatment of co-infection with HIV and HCV. PMID:28580095

  20. Structural insights into the mechanisms of drug resistance in HIV-1 protease NL4-3.

    PubMed

    Heaslet, Holly; Kutilek, Victoria; Morris, Garrett M; Lin, Ying-Chuan; Elder, John H; Torbett, Bruce E; Stout, C David

    2006-03-03

    The development of resistance to anti-retroviral drugs targeted against HIV is an increasing clinical problem in the treatment of HIV-1-infected individuals. Many patients develop drug-resistant strains of the virus after treatment with inhibitor cocktails (HAART therapy), which include multiple protease inhibitors. Therefore, it is imperative that we understand the mechanisms by which the viral proteins, in particular HIV-1 protease, develop resistance. We have determined the three-dimensional structure of HIV-1 protease NL4-3 in complex with the potent protease inhibitor TL-3 at 2.0 A resolution. We have also obtained the crystal structures of three mutant forms of NL4-3 protease containing one (V82A), three (V82A, M46I, F53L) and six (V82A, M46I, F53L, V77I, L24I, L63P) point mutations in complex with TL-3. The three protease mutants arose sequentially under ex vivo selective pressure in the presence of TL-3, and exhibit fourfold, 11-fold, and 30-fold resistance to TL-3, respectively. This series of protease crystal structures offers insights into the biochemical and structural mechanisms by which the enzyme can overcome inhibition by TL-3 while recovering some of its native catalytic activity.

  1. Potent activity of the HIV-1 maturation inhibitor bevirimat in SCID-hu Thy/Liv mice.

    PubMed

    Stoddart, Cheryl A; Joshi, Pheroze; Sloan, Barbara; Bare, Jennifer C; Smith, Philip C; Allaway, Graham P; Wild, Carl T; Martin, David E

    2007-11-28

    The HIV-1 maturation inhibitor, 3-O-(3',3'-dimethylsuccinyl) betulinic acid (bevirimat, PA-457) is a promising drug candidate with 10 nM in vitro antiviral activity against multiple wild-type (WT) and drug-resistant HIV-1 isolates. Bevirimat has a novel mechanism of action, specifically inhibiting cleavage of spacer peptide 1 (SP1) from the C-terminus of capsid which results in defective core condensation. Oral administration of bevirimat to HIV-1-infected SCID-hu Thy/Liv mice reduced viral RNA by >2 log(10) and protected immature and mature T cells from virus-mediated depletion. This activity was observed at plasma concentrations that are achievable in humans after oral dosing, and bevirimat was active up to 3 days after inoculation with both WT HIV-1 and an AZT-resistant HIV-1 clinical isolate. Consistent with its mechanism of action, bevirimat caused a dose-dependent inhibition of capsid-SP1 cleavage in HIV-1-infected human thymocytes obtained from these mice. HIV-1 NL4-3 with an alanine-to-valine substitution at the N-terminus of SP1 (SP1/A1V), which is resistant to bevirimat in vitro, was also resistant to bevirimat treatment in the mice, and SP1/AIV had replication and thymocyte kinetics similar to that of WT NL4-3 with no evidence of fitness impairment in in vivo competition assays. Interestingly, protease inhibitor-resistant HIV-1 with impaired capsid-SP1 cleavage was hypersensitive to bevirimat in vitro with a 50% inhibitory concentration 140 times lower than for WT HIV-1. These results support further clinical development of this first-in-class maturation inhibitor and confirm the usefulness of the SCID-hu Thy/Liv model for evaluation of in vivo antiretroviral efficacy, drug resistance, and viral fitness.

  2. Targetable Polymer - Antiangiogenic Drug Conjugates for Systemic Breast Cancer Therapy

    DTIC Science & Technology

    2005-09-01

    6099-103. 6 Kusaka M, Sudo K, Fujita T, Marui S, Itoh F, Ingber D, Folkman J. Potent anti-angiogenic action of AGM-1470: comparison to the fumagillin...178: 2159 (1977). 6. S. Marui et al., Chem. Pharm. Bull, 40: 96 (1992). The U.S. Army Medical Research and Materiel Command under W81XWH-04-1-0777

  3. Autoantibodies and human immunodeficiency viruses infection: a case-control study.

    PubMed

    Chretien, P; Monier, J C; Oksman, F; San Marco, M; Escande, A; Goetz, J; Cohen, J; Baquey, A; Humbel, R L; Sibilia, J

    2003-01-01

    To determine the prevalence of organ-specific and non-specific autoantibodies in HIV-infected patients. A multicentric collaborative case-control study including 105 HIV patients and 100 sex- and age-matched HIV-negative healthy volunteers. Antinuclear, anti-ds DNA, anti-histone, anti-Sm, rheumatoid factor(IgM), anti-beta 2 glycoprotein 1, antineutrophil cytoplasmic, anti-LKM1, anti-LCA1, anti-gastric parietal cell, antiplatelet, anti-intermediate filament, anti-mitotic spindle apparatus, anti-Golgi, anti-ribosome and anti-thyroid autoantibodies were screened in six European laboratories. Only IgG and IgM anticardiolipin, IgG antiplatelet, anti-smooth muscle and anti-thyroglobulin antibodies were statistically more frequent in HIV patients. There was no correlation with the numbers of CD4+ cells except in the case of anti-smooth muscle antibodies. We were unable to find specific autoantibodies such as anti-ds DNA, anti-Sm, AMA, anti-LKM1, anti-LCA1 or anti-beta 2 GP1 antibodies in these patients. Our results indicate that the autoantibody profile of HIV infections is comparable to those of other chronic viral infections. HIV does not seem to be more autoimmunogenic than other viruses.

  4. Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus.

    PubMed

    Salehi, Bahare; Kumar, Nanjangud V Anil; Şener, Bilge; Sharifi-Rad, Mehdi; Kılıç, Mehtap; Mahady, Gail B; Vlaisavljevic, Sanja; Iriti, Marcello; Kobarfard, Farzad; Setzer, William N; Ayatollahi, Seyed Abdulmajid; Ata, Athar; Sharifi-Rad, Javad

    2018-05-14

    Since the beginning of the epidemic, human immunodeficiency virus (HIV) has infected around 70 million people worldwide, most of whom reside is sub-Saharan Africa. There have been very promising developments in the treatment of HIV with anti-retroviral drug cocktails. However, drug resistance to anti-HIV drugs is emerging, and many people infected with HIV have adverse reactions or do not have ready access to currently available HIV chemotherapies. Thus, there is a need to discover new anti-HIV agents to supplement our current arsenal of anti-HIV drugs and to provide therapeutic options for populations with limited resources or access to currently efficacious chemotherapies. Plant-derived natural products continue to serve as a reservoir for the discovery of new medicines, including anti-HIV agents. This review presents a survey of plants that have shown anti-HIV activity, both in vitro and in vivo.

  5. Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus

    PubMed Central

    Şener, Bilge; Sharifi-Rad, Mehdi; Kılıç, Mehtap; Mahady, Gail B.; Vlaisavljevic, Sanja; Kobarfard, Farzad; Setzer, William N.; Ayatollahi, Seyed Abdulmajid; Ata, Athar

    2018-01-01

    Since the beginning of the epidemic, human immunodeficiency virus (HIV) has infected around 70 million people worldwide, most of whom reside is sub-Saharan Africa. There have been very promising developments in the treatment of HIV with anti-retroviral drug cocktails. However, drug resistance to anti-HIV drugs is emerging, and many people infected with HIV have adverse reactions or do not have ready access to currently available HIV chemotherapies. Thus, there is a need to discover new anti-HIV agents to supplement our current arsenal of anti-HIV drugs and to provide therapeutic options for populations with limited resources or access to currently efficacious chemotherapies. Plant-derived natural products continue to serve as a reservoir for the discovery of new medicines, including anti-HIV agents. This review presents a survey of plants that have shown anti-HIV activity, both in vitro and in vivo. PMID:29757986

  6. Mucosal immunology of HIV infection.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S

    2013-07-01

    Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Antiviral properties of deazaadenine nucleoside derivatives.

    PubMed

    Vittori, S; Dal Ben, D; Lambertucci, C; Marucci, G; Volpini, R; Cristalli, G

    2006-01-01

    Viral infections have menaced human beings since time immemorial, and even today new viral strains that cause lethal diseases are being discovered with alarming frequency. One major example is HIV, the etiological agent of AIDS, which spread up in the last two decades. Very recently, other virus based diseases such as avian flu have spread fear around the world, and hemorrhagic fevers from central Africa serious threaten human health because of their very deadly effects. New antiviral agents are still greatly needed to counter these menaces. Many scientists are involved in this field of research, and many of the recently discovered effective antiviral compounds are nucleoside analogues. Among those derivatives, deazapurine nucleoside analogues have demonstrated potent inhibitory effect of viral replication. This review reports on recently generated data from preparing and testing deazapurine nucleoside derivatives as inhibitors in virus replication systems. Although most of the reported data have been produced in antiHIV, antiHCMV, and antiHSV biological testing, very recently other new important fields of application have been discovered, all in topical subjects of strong interest. In fact, deazapurine nucleosides have been found to be active as chemotherapeutics for some veterinary systemic viral infections, for which no antiviral drugs are licensed yet. Furthermore, they demonstrated efficacy in the inhibition of Hepatitis C virus replication. Finally, these compounds showed high potency as virucides against Ebola Virus, curing Ebola infected mice with a single dose administration.

  8. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded activemore » site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.« less

  9. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma

    PubMed Central

    Martellini, Julie A.; Cole, Amy L.; Venkataraman, Nitya; Quinn, Gerry A.; Svoboda, Pavel; Gangrade, Bhushan K.; Pohl, Jan; Sørensen, Ole E.; Cole, Alexander M.

    2009-01-01

    Mucosal surfaces of the reproductive tract as well as their secretions have important roles in preventing sexual transmission of HIV-1. In the current study, the majority of the intrinsic anti-HIV-1 activity of human seminal plasma (SP) was determined to reside in the cationic polypeptide fraction. Antiviral assays utilizing luciferase reporter cells and lymphocytic cells revealed the ability of whole SP to prevent HIV-1 infection, even when SP was diluted 3200-fold. Subsequent fractionation by continuous flow acid-urea (AU)-PAGE and antiviral testing revealed that cationic polypeptides within SP were responsible for the majority of anti-HIV-1 activity. A proteomic approach was utilized to resolve and identify 52 individual cationic polypeptides that contribute to the aggregate anti-HIV-1 activity of SP. One peptide fragment of semenogelin I, termed SG-1, was purified from SP by a multistep chromatographic approach, protein sequenced, and determined to exhibit anti-HIV-1 activity against HIV-1. Anti-HIV-1 activity was transient, as whole SP incubated for prolonged time intervals exhibited a proportional decrease in anti-HIV-1 activity that was directly attributed to the degradation of semenogelin I peptides. Collectively, these results indicate that the cationic polypeptide fraction of SP is active against HIV-1, and that semenogelin-derived peptides contribute to the intrinsic anti-HIV-1 activity of SP.—Martellini, J. A., Cole, A. C., Venkataraman, N., Quinn, G. A., Svoboda, P., Gangrade, B. K., Pohl, J., Sørensen, O. E., Cole, A. M. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. PMID:19487309

  10. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation.

    PubMed

    Gallo, Cristina; Dallaglio, Katiuscia; Bassani, Barbara; Rossi, Teresa; Rossello, Armando; Noonan, Douglas M; D'Uva, Gabriele; Bruno, Antonino; Albini, Adriana

    2016-09-13

    Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Recently, increased attention has been addressed to the ability of flavonoids to prevent cancer by suppressing angiogenesis, strategy that we named "angioprevention". Several natural compounds exert their anti-tumor properties by activating 5' adenosine monophosphate-activated protein kinase (AMPK), a key regulator of metabolism in cancer cells. Drugs with angiopreventive activities, in particular metformin, regulate AMPK in endothelial cells. Here we investigated the involvement of AMPK in the anti-angiogenic effects of xanthohumol (XN), the major prenylated flavonoid of the hop plant, and mechanisms of action. The anti-angiogenic activity of XN was more potent than epigallocatechin-3-gallate (EGCG). Treatment of endothelial cells with XN led to increased AMPK phosphorylation and activity. Functional studies using biochemical approaches confirmed that AMPK mediates XN anti-angiogenic activity. AMPK activation by XN was mediated by CAMMKβ, but not LKB1. Analysis of the downstream mechanisms showed that XN-induced AMPK activation reduced nitric oxide (NO) levels in endothelial cells by decreasing eNOS phosphorylation. Finally, AKT pathway was inactivated by XN as part of its anti-angiogenic activity, but independently from AMPK, suggesting that these two signaling pathways proceed autonomously. Our study dissects the molecular mechanism by which XN exerts its potent anti-angiogenic activity, pointing out AMPK as a crucial signal transducer.

  11. Presence of anti-HBc is associated to high rates of HBV resolved infection and low threshold for Occult HBV Infection in HIV patients with negative HBsAg in Chile.

    PubMed

    Vargas, Jose Ignacio; Jensen, Daniela; Sarmiento, Valeska; Peirano, Felipe; Acuña, Pedro; Fuster, Felipe; Soto, Sabrina; Ahumada, Rodrigo; Huilcaman, Marco; Bruna, Mario; Jensen, Werner; Fuster, Francisco

    2016-04-01

    HBV-HIV coinfection is prevalent. Frequently, anti-HBc is the only serological marker of HBV, which can be indicative of HBV resolved infection, when found together with anti-HBs reactivity; or present as "isolated anti-HBc," related to HBV occult infection with presence of detectable DNA HBV, more prevalent in HIV-positive individuals. Regional data about this condition are scarce. Anti-HBc rapid test has been used as screening, but its performance has not been described in HIV-positive patients. The aim of this study was determine prevalence of anti-HBc in HIV-positive patients, serological pattern of HBV resolved infection and isolated anti-HBc, evaluating presence of HBV occult infection. Assess anti-HBc rapid test compared to ECLIA. Methods included measurement of anti-HBc and anti-HBs in HIV-positive patients with negative HBsAg. Serum HBV DNA quantification and HBV booster vaccination to "isolated anti-HBc" individuals. Detection of anti-HBc by rapid test and ECLIA. In 192 patients, prevalence of anti-HBc was 42.7% (82/192); associated to male gender, drug use, men-sex-men, positive-VDRL, and longer time HIV diagnosis. 34.4% (66/192) had presence of anti-HBs, mean titers of 637 ui/ml. Isolated anti-HBc in 8.3% (16/192), associated to detectable HIV viral load and no-use of HAART; in them, HBV DNA was undetectable, and 60% responded to HBV vaccination booster. Anti-HBc rapid test showed low sensibility (32.9%) compared to ECLIA. These results show that prevalence of anti-HBc in HIV-positive individuals is high, in most cases accompanied with anti-HBs as HBV resolved infection. Low prevalence of "isolated anti-HBc," with undetectable HBV DNA, and most had anamnestic response to HBV vaccination; suggest low possibility of occult HBV infection. Anti-HBc rapid test cannot be recommended as screening method for anti-HBc. © 2015 Wiley Periodicals, Inc.

  12. Reactivation of latent HIV-1 by new semi-synthetic ingenol esters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandeló José, Diego; Bartholomeeusen, Koen; Delveccio da Cunha, Rodrigo

    The ability of HIV to establish long-lived latent infection is mainly due to transcriptional silencing of viral genome in resting memory T lymphocytes. Here, we show that new semi-synthetic ingenol esters reactivate latent HIV reservoirs. Amongst the tested compounds, 3-caproyl-ingenol (ING B) was more potent in reactivating latent HIV than known activators such as SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. ING B activated PKC isoforms followed by NF-κB nuclear translocation. As virus reactivation is dependent on intact NF-κB binding sites in the LTR promoter region ING B, we have shown that. ING B was able to reactivate virus transcriptionmore » in primary HIV-infected resting cells up to 12 fold and up to 25 fold in combination with SAHA. Additionally, ING B promoted up-regulation of P-TEFb subunits CDK9/Cyclin T1. The role of ING B on promoting both transcription initiation and elongation makes this compound a strong candidate for an anti-HIV latency drug combined with suppressive HAART. - Highlights: • 3-caproyl-ingenol (ING B) reactivates latent HIV better than SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. • ING B promotes PKC activation and NF-kB translocation to the nucleus. • ING B activates virus transcription of B and non-B subtypes of HIV-1. • ING B activates HIV transcription in infected primary resting CD4+ T cells. • ING B induces higher levels of P-TEFb components in human primary cells.« less

  13. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    PubMed

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions. NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation. Copyright © 2017 the American Physiological Society.

  14. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships.

    PubMed

    Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.

  15. The successes and failures of HIV drug discovery.

    PubMed

    Hashimoto, Chie; Tanaka, Tomohiro; Narumi, Tetsuo; Nomura, Wataru; Tamamura, Hirokazu

    2011-10-01

    To date, several anti-human immunodeficiency virus (HIV) drugs, including reverse transcriptase inhibitors and protease inhibitors, have been developed and used clinically for the treatment of patients infected with HIV. Recently, novel drugs have been discovered which have different mechanisms of action from those of the above inhibitors, including entry inhibitors and integrase (IN) inhibitors; the clinical use of three of these inhibitors has been approved. Other inhibitors are still in development. This review article summarizes the history of the development of anti-HIV drugs and also focuses on successes in the development of these entry and IN inhibitors, along with looking at exploratory approaches for the development of other inhibitors. Currently used highly active antiretroviral therapy can be subject to a loss of efficacy, due to the emergence of multi-drug resistant (MDR) strains; a change of regimens of the drug combination is required to combat this, along with careful monitoring of the virus and CD4 in the blood, by methods such as cellular tropism testing. In such a situation, entry inhibitors such as CCR5/CXCR4 antagonists, CD4 mimics, fusion inhibitors and IN inhibitors might be optional agents for an expansion of the drug repertoire available to patients at all stages of HIV infection.

  16. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  17. GRL-09510, a Unique P2-Crown-Tetrahydrofuranylurethane -Containing HIV-1 Protease Inhibitor, Maintains Its Favorable Antiviral Activity against Highly-Drug-Resistant HIV-1 Variants in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, Masayuki; Miguel Salcedo-Gómez, Pedro; Yedidi, Ravikiran S.

    We report that GRL-09510, a novel HIV-1 protease inhibitor (PI) containing a newly-generated P2-crown-tetrahydrofuranylurethane (Crwn-THF), a P2'-methoxybenzene, and a sulfonamide isostere, is highly active against laboratory and primary clinical HIV-1 isolates (EC50: 0.0014–0.0028 μM) with minimal cytotoxicity (CC50: 39.0 μM). Similarly, GRL-09510 efficiently blocked the replication of HIV-1NL4-3 variants, which were capable of propagating at high-concentrations of atazanavir, lopinavir, and amprenavir (APV). GRL-09510 was also potent against multi-drug-resistant clinical HIV-1 variants and HIV-2ROD. Under the selection condition, where HIV-1NL4-3 rapidly acquired significant resistance to APV, an integrase inhibitor raltegravir, and a GRL-09510 congener (GRL-09610), no variants highly resistant against GRL-09510more » emerged over long-term in vitro passage of the virus. Crystallographic analysis demonstrated that the Crwn-THF moiety of GRL-09510 forms strong hydrogen-bond-interactions with HIV-1 protease (PR) active-site amino acids and is bulkier with a larger contact surface, making greater van der Waals contacts with PR than the bis-THF moiety of darunavir. The present data demonstrate that GRL-09510 has favorable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants, that the newly generated P2-Crwn-THF moiety confers highly desirable anti-HIV-1 potency. The use of the novel Crwn-THF moiety sheds lights in the design of novel PIs.« less

  18. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize.

    PubMed

    Adams, Stephen R; Yang, Howard C; Savariar, Elamprakash N; Aguilera, Joe; Crisp, Jessica L; Jones, Karra A; Whitney, Michael A; Lippman, Scott M; Cohen, Ezra E W; Tsien, Roger Y; Advani, Sunil J

    2016-10-04

    Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery.

  19. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize

    PubMed Central

    Adams, Stephen R.; Yang, Howard C.; Savariar, Elamprakash N.; Aguilera, Joe; Crisp, Jessica L.; Jones, Karra A.; Whitney, Michael A.; Lippman, Scott M.; Cohen, Ezra E. W.; Tsien, Roger Y.; Advani, Sunil J.

    2016-01-01

    Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery. PMID:27698471

  20. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Feng; Zhang, Junsong; Zhang, Yijun

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-boxmore » of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.« less

  1. Inhibition of HIV Fusion with Multivalent Gold Nanoparticles

    PubMed Central

    Bowman, Mary-Catherine; Ballard, T. Eric; Ackerson, Christopher J.; Feldheim, Daniel L.; Margolis, David M.; Melander, Christian

    2010-01-01

    The design and synthesis of a multivalent gold nanoparticle therapeutic is presented. SDC-1721, a fragment of the potent HIV inhibitor TAK-779, was synthesized and conjugated to 2.0 nm diameter gold nanoparticles. Free SDC-1721 had no inhibitory effect on HIV infection; however, the (SDC-1721)-gold nanoparticle conjugates displayed activity comparable to that of TAK-779. This result suggests that multivalent presentation of small molecules on gold nanoparticle surfaces can convert inactive drugs into potent therapeutics. PMID:18473457

  2. CD25 Preselective Anti-HIV Vectors for Improved HIV Gene Therapy

    PubMed Central

    Kalomoiris, Stefanos; Lawson, Je'Tai; Chen, Rachel X.; Bauer, Gerhard; Nolta, Jan A.

    2012-01-01

    Abstract As HIV continues to be a global public health problem with no effective vaccine available, new and innovative therapies, including HIV gene therapies, need to be developed. Due to low transduction efficiencies that lead to low in vivo gene marking, therapeutically relevant efficacy of HIV gene therapy has been difficult to achieve in a clinical setting. Methods to improve the transplantation of enriched populations of anti-HIV vector-transduced cells may greatly increase the in vivo efficacy of HIV gene therapies. Here we describe the development of preselective anti-HIV lentiviral vectors that allow for the purification of vector-transduced cells to achieve an enriched population of HIV-resistant cells. A selectable protein, human CD25, not normally found on CD34+ hematopoietic progenitor cells (HPCs), was incorporated into a triple combination anti-HIV lentiviral vector. Upon purification of cells transduced with the preselective anti-HIV vector, safety was demonstrated in CD34+ HPCs and in HPC-derived macrophages in vitro. Upon challenge with HIV-1, improved efficacy was observed in purified preselective anti-HIV vector-transduced macrophages compared to unpurified cells. These proof-of-concept results highlight the potential use of this method to improve HIV stem cell gene therapy for future clinical applications. PMID:23216020

  3. Behavioral Studies on the Mechanism of Buspirone, an Atypical Anti-Anxiety Drug

    DTIC Science & Technology

    1986-06-17

    D. P., Hyslop , D. K., & Riblet, L. AA Buspirone: A model for anxioselective drug action. Neuroscie~ce 8bstracts, 1980 , ~, 791. Temple, D. L...shows few other similarites to conventional anxiolytics. While benzodiazepines (BZs) are potent anticonvulsants and sedatives (Harvey, 1980 ), buspirone...anxiolytics, and is considered an effective predictor of their effectiveness (Sepinwall & Cook, 1980 ). However, compounds that stimulate GABA receptors

  4. THE USE OF HEXAMETHONIUM IN ARTERIAL HYPERTENSION

    PubMed Central

    Rytand, David A.

    1954-01-01

    Hexamethonium is a potent anti-hypertensive agent. Its use is associated with prominent and unpleasant side effects, and sometimes with circulatory complications from excessive depressor action. It is suitable for relatively few hypertensive patients, and often fails when renal insufficiency is present. The degree of care required to obtain satisfactory effectiveness is such that the program of treatment becomes too unwieldy for general use. PMID:13150214

  5. Preclinical evaluation of anti-HIV microbicide products: New models and biomarkers.

    PubMed

    Doncel, Gustavo F; Clark, Meredith R

    2010-12-01

    A safe and effective microbicide product designed to prevent sexual transmission of HIV-1 rests on a solid foundation provided by the proper selection and preclinical characterization of both its active pharmaceutical ingredient (API) and formulation. The evaluation of API and formulation physicochemical properties, drug release, specific antiviral activity, cell and tissue toxicity, organ toxicity, pharmacokinetics, and pharmacodynamics and efficacy provides information to understand the product, make go/no go decisions in the critical path of product development and complete a regulatory dossier to file an investigational new drug (IND) with the US Food and Drug Administration. Incorporation of new models, assays and biomarkers has expanded our ability to understand the mechanisms of action underlying microbicide toxicity and efficacy, enabling a more rational selection of drug and formulation candidates. This review presents an overview of the models and endpoints used to comprehensively evaluate an anti-HIV microbicide in preclinical development. This article forms part of a special supplement on presentations covering HIV transmission and microbicides, based on the symposium "Trends in Microbicide Formulations", held on 25 and 26 January 2010, Arlington, VA. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Non-Cationic Proteins Are Associated with HIV Neutralizing Activity in Genital Secretions of Female Sex Workers.

    PubMed

    Birse, Kenzie D M; Cole, Amy L; Hirbod, Taha; McKinnon, Lyle; Ball, Terry B; Westmacott, Garrett R; Kimani, Joshua; Plummer, Frank; Cole, Alexander M; Burgener, Adam; Broliden, Kristina

    2015-01-01

    Cationic proteins found in cervicovaginal secretions (CVS) are known to contribute to the early antiviral immune response against HIV-infection in vitro. We here aimed to define additional antiviral factors that are over-expressed in CVS from female sex workers at high risk of infection. CVS were collected from Kenyan HIV-seronegative (n = 34) and HIV-seropositive (n = 12) female sex workers, and were compared with those from HIV-seronegative low-risk women (n = 12). The highly exposed seronegative (HESN) sex workers were further divided into those with less (n = 22) or more (n = 12) than three years of documented sex work. Cationic protein-depleted CVS were assessed for HIV-neutralizing activity by a PBMC-based HIV-neutralizing assay, and then characterized by proteomics. HIV neutralizing activity was detected in all unprocessed CVS, however only CVS from the female sex worker groups maintained its HIV neutralizing activity after cationic protein-depletion. Differentially abundant proteins were identified in the cationic protein-depleted secretions including 26, 42, and 11 in the HESN>3 yr, HESN<3 yr, and HIV-positive groups, respectively. Gene ontology placed these proteins into functional categories including proteolysis, oxidation-reduction, and epidermal development. The proteins identified in this study include proteins previously associated with the HESN phenotype in other cohorts as well as novel proteins not yet associated with anti-HIV activities. While cationic proteins appear to contribute to the majority of the intrinsic HIV neutralizing activity in the CVS of low-risk women, a broader range of non-cationic proteins were associated with HIV neutralizing activity in HESN and HIV-positive female sex workers. These results indicate that novel protein factors found in CVS of women with high-risk sexual practices may have inherent antiviral activity, or are involved in other aspects of anti-HIV host defense, and warrant further exploration into their mode of action.

  7. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling

    2011-10-15

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratorymore » effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: > Several resveratrol oligomers from grape plants are examined on VSMC behaviors. > Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. > It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. > The anti-migratory effect results from anti-PDGF signaling and pro-adhesiveness. > The more resveratrols oligomerize, the more potent effects they exert.« less

  8. Targeting cancer by binding iron: Dissecting cellular signaling pathways

    PubMed Central

    Lui, Goldie Y.L.; Kovacevic, Zaklina; Richardson, Vera; Merlot, Angelica M.; Kalinowski, Danuta S.; Richardson, Des R.

    2015-01-01

    Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer. PMID:26125440

  9. TOXOPLASMA AND VIRAL ANTIBODIES AMONG HIV PATIENTS AND INMATES IN CENTRAL JAVA, INDONESIA.

    PubMed

    Sari, Yulia; Haryati, Sri; Raharjo, Irvan; Prasetyo, Afiono Agung

    2015-11-01

    In Indonesia, Toxoplasma and its associations with blood-borne viruses have been poorly studied. In order to study the association between anti-Toxoplasma antibodies and blood-borne viral antibodies, blood samples from 497 participants (375 inmates from four prisons in Central Java, Indonesia and 122 HIV patients at a Voluntary Counseling and Testing Clinic in Surakarta, Indonesia) were tested for serological markers of Toxoplasma, human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV) and human T-lymphotropic virus types I and II (HTLV-1/2). Anti-Toxoplasma IgG and IgM positivity rates were 41.6% and 3.6%, respectively. One point two percent of participants was positive for both anti-Toxoplasma IgG and IgM antibodies. Sixteen point five percent, 11.3%, 2.6% and 2.8% of participants were positive for anti- Toxoplasma IgG combined with anti-HCV antibodies, anti-Toxoplasma IgG combined with anti-HIV antibodies, anti-Toxoplasma IgM combined with anti-HIV antibodes and anti-Toxoplasma IgG combined with both anti-HIV and anti-HCV antibodies, respectively. Anti-Toxoplasma IgM seropositivity was associated with anti-HIV (aOR = 4.3; 95% CI: 1.112-16.204, p = 0.034). Anti-Toxoplasma IgG antibodies were associated with anti-HCV (aOR = 2.8; 95% CI: 1.749-4.538, p < 0.001) and history of injection drug use (aOR = 3.1; 95% CI: 1.905-5.093, p < 0.001). In conclusion, we recommend patients with HIV, HCV infection and injection drug users should be screened for Toxoplasma infection in Indonesia.

  10. Biological Activities of Aerial Parts Extracts of Euphorbia characias

    PubMed Central

    Pisano, Maria Barbara; Cosentino, Sofia; Viale, Silvia; Spanò, Delia; Corona, Angela; Esposito, Francesca; Tramontano, Enzo; Montoro, Paola; Tuberoso, Carlo Ignazio Giovanni; Medda, Rosaria; Pintus, Francesca

    2016-01-01

    The aim of the present study was to evaluate antioxidant, antimicrobial, anti-HIV, and cholinesterase inhibitory activities of aqueous and alcoholic extracts from leaves, stems, and flowers of Euphorbia characias. The extracts showed a high antioxidant activity and were a good source of total polyphenols and flavonoids. Ethanolic extracts from leaves and flowers displayed the highest inhibitory activity against acetylcholinesterase and butyrylcholinesterase, showing potential properties against Alzheimer's disease. Antimicrobial assay showed that leaves and flowers extracts were active against all Gram-positive bacteria tested. The ethanolic leaves extract appeared to have the strongest antibacterial activity against Bacillus cereus with MIC value of 312.5 μg/mL followed by Listeria monocytogenes and Staphylococcus aureus that also exhibited good sensitivity with MIC values of 1250 μg/mL. Moreover, all the extracts possessed anti-HIV activity. The ethanolic flower extract was the most potent inhibitor of HIV-1 RT DNA polymerase RNA-dependent and Ribonuclease H with IC50 values of 0.26 and 0.33 μg/mL, respectively. The LC-DAD metabolic profile showed that ethanolic leaves extract contains high levels of quercetin derivatives. This study suggests that Euphorbia characias extracts represent a good source of natural bioactive compounds which could be useful for pharmaceutical application as well as in food system for the prevention of the growth of food-borne bacteria and to extend the shelf-life of processed foods. PMID:27314007

  11. Genetic Pathway of HIV-1 Resistance to Novel Fusion Inhibitors Targeting the Gp41 Pocket

    PubMed Central

    Su, Yang; Chong, Huihiui; Xiong, Shengwen; Qiao, Yuanyuan; Qiu, Zonglin

    2015-01-01

    ABSTRACT The peptide drug enfuvirtide (T20) is the only HIV-1 fusion inhibitor in clinical use, but it easily induces drug resistance, calling for new strategies for developing effective drugs. On the basis of the M-T hook structure, we recently developed highly potent short-peptide HIV-1 fusion inhibitors (MTSC22 and HP23), which mainly target the conserved gp41 pocket and possess high genetic barriers to resistance. Here, we focused on the selection and characterization of HIV-1 escape mutants of MTSC22, which revealed new resistance pathways and mechanisms. Two mutations (E49K and L57R) located at the inhibitor-binding site and two mutations (N126K and E136G) located at the C-terminal heptad repeat region of gp41 were identified as conferring high resistance either singly or in combination. While E49K reduced the C-terminal binding of inhibitors via an electrostatic repulsion, L57R dramatically disrupted the N-terminal binding of M-T hook structure and pocket-binding domain. Unlike E49K and N126K, which enhanced the stability of the endogenous viral six-helical bundle core (6-HB), L57R and E136G conversely destabilized the 6-HB structure. We also demonstrated that both primary and secondary mutations caused the structural changes in 6-HB and severely impaired the capability for HIV-1 entry. Collectively, our data provide novel insights into the mechanisms of short-peptide fusion inhibitors targeting the gp41 pocket site and help increase our understanding of the structure and function of gp41 and HIV-1 evolution. IMPORTANCE The deep pocket on the N-trimer of HIV-1 gp41 has been considered an ideal drug target because of its high degree of conservation and essential role in viral entry. Short-peptide fusion inhibitors, which contain an M-T hook structure and mainly target the pocket site, show extremely high binding and inhibitory activities as well as high genetic barriers to resistance. In this study, the HIV-1 mutants resistant to MTSC22 were selected and characterized, which revealed that the E49K and L57R substitutions at the inhibitor-binding site and the N126K and E136G substitutions at the C-terminal heptad repeat region of gp41 critically determine the resistance phenotype. The data provide novel insights into the mechanisms of action of the M-T hook structure-based fusion inhibitors which will help further our understanding of the structure-function relationship of gp41 and molecular pathways of HIV-1 evolution and eventually facilitate the development of new anti-HIV drugs. PMID:26446597

  12. Human antibodies and fusion proteins as HIV-1 therapeutic | NCI Technology Transfer Center | TTC

    Cancer.gov

    Available for licensing from the NCI are novel human anti-HIV-1 domain antibodies and their fusion proteins for anti-HIV-1 antibodies and anti-retroviral as therapeutics and/or preventatives for infection by different HIV-1 strains.

  13. Testing for Human Immunodeficiency Virus

    MedlinePlus

    ... level of HIV is high. • Take anti-HIV drugs during labor and delivery as needed. • Give an anti-HIV drug to ... and the baby can be given anti-HIV drugs in the first few days after delivery. These precautions can greatly decrease the risk of ...

  14. Pence, Putin, Mbeki and Their HIV/AIDS-Related Crimes Against Humanity: Call for Social Justice and Behavioral Science Advocacy.

    PubMed

    Kalichman, Seth C

    2017-04-01

    Indiana, a large rural state in the Midwestern United States, suffered the worst North American HIV outbreak among injection drug users in years. The Indiana state government under former Governor and current US Vice President Mike Pence fueled the HIV outbreak by prohibiting needle/syringe exchange and failed to take substantive action once the outbreak was identified. This failure in public health policy parallels the HIV epidemics driven by oppressive drug laws in current day Russia and is reminiscent of the anti-science AIDS denialism of 1999-2007 South Africa. The argument that Russian President Putin and former South African President Mbeki should be held accountable for their AIDS policies as crimes against humanity can be extended to Vice President Pence. Social and behavioral scientists have a responsibility to inform the public of HIV prevention realities and to advocate for evidence-based public health policies to prevent future outbreaks of HIV infection.

  15. ATP-Binding Pocket-Targeted Suppression of Src and Syk by Luteolin Contributes to Its Anti-Inflammatory Action

    PubMed Central

    Lee, Jeong-Oog; Kim, Mi-Yeon

    2015-01-01

    Luteolin is a flavonoid identified as a major anti-inflammatory component of Artemisia asiatica. Numerous reports have demonstrated the ability of luteolin to suppress inflammation in a variety of inflammatory conditions. However, its exact anti-inflammatory mechanism has not been fully elucidated. In the present study, the anti-inflammatory mode of action in activated macrophages of luteolin from Artemisia asiatica was examined by employing immunoblotting analysis, a luciferase reporter gene assay, enzyme assays, and an overexpression strategy. Luteolin dose-dependently inhibited the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) and diminished the levels of mRNA transcripts of inducible NO synthase (iNOS), tumor necrosis factor- (TNF-) α, and cyclooxygenase-2 (COX-2) in lipopolysaccharide- (LPS-) and pam3CSK-treated macrophage-like RAW264.7 cells without displaying cytotoxicity. Luteolin displayed potent NO-inhibitory activity and also suppressed the nuclear translocation of NF-κB (p65 and p50) via blockade of Src and Syk, but not other mitogen-activated kinases. Overexpression of wild type Src and point mutants thereof, and molecular modelling studies, suggest that the ATP-binding pocket may be the luteolin-binding site in Src. These results strongly suggest that luteolin may exert its anti-inflammatory action by suppressing the NF-κB signaling cascade via blockade of ATP binding in Src and Syk. PMID:26236111

  16. The 3D structures of G-quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas phase.

    PubMed

    Li, Ming-Hui; Zhou, Yi-Han; Luo, Quan; Li, Ze-Sheng

    2010-04-01

    The unimolecular G-quadruplex structures of d(GGGTGGGTGGGTGGGT) (G1) and d(GTGGTGGGTGGGTGGGT) (G2) are known as the potent nanomolar HIV-1 integrase inhibitors, thus investigating the 3D structures of the two sequences is significant for structure-based rational anti-HIV drug design. In this research, based on the experimental data of circular dichroism (CD) spectropolarimetry and electrospray ionization mass spectrometry (ESI-MS), the initial models of G1 and G2 were constructed by molecular modeling method. The modeling structures of G1 and G2 are intramolecular parallel-stranded quadruplex conformation with three guanine tetrads. Particularly, the structure of G2 possesses a T loop residue between the first and the second G residues that are the component of two adjacent same-stranded G-tetrad planes. This structure proposed by us has a very novel geometry and is different from all reported G-quadruplexes. The extended (35 ns) molecular dynamic (MD) simulations for the models indicate that the G-quadruplexes maintain their structures very well in aqueous solution whether the existence of K(+) or NH (4) (+) in the central channel. Furthermore, we perform 500 ns MD simulations for the models in the gas phase. The results show that all the ion-G-quadruplex complexes are maintained during the whole simulations, despite the large magnitude of phosphate-phosphate repulsions. The gas phase MD simulations provide a good explanation to ESI-MS experiments. Our 3D structures for G1 and G2 will assist in understanding geometric formalism of G-quadruplex folding and may be helpful as a platform for rational anti-HIV drug design.

  17. Mannich Bases: An Important Pharmacophore in Present Scenario

    PubMed Central

    Sharma, Neha; Kajal, Anu; Saini, Vipin

    2014-01-01

    Mannich bases are the end products of Mannich reaction and are known as beta-amino ketone carrying compounds. Mannich reaction is a carbon-carbon bond forming nucleophilic addition reaction and is a key step in synthesis of a wide variety of natural products, pharmaceuticals, and so forth. Mannich reaction is important for the construction of nitrogen containing compounds. There is a number of aminoalkyl chain bearing Mannich bases like fluoxetine, atropine, ethacrynic acid, trihexyphenidyl, and so forth with high curative value. The literature studies enlighten the fact that Mannich bases are very reactive and recognized to possess potent diverse activities like anti-inflammatory, anticancer, antifilarial, antibacterial, antifungal, anticonvulsant, anthelmintic, antitubercular, analgesic, anti-HIV, antimalarial, antipsychotic, antiviral activities and so forth. The biological activity of Mannich bases is mainly attributed to α, β-unsaturated ketone which can be generated by deamination of hydrogen atom of the amine group. PMID:25478226

  18. Evaluation of Biological Activity of Mastic Extracts Based on Chemotherapeutic Indices

    PubMed Central

    SUZUKI, RYUICHIRO; SAKAGAMI, HIROSHI; AMANO, SHIGERU; FUKUCHI, KUNIHIKO; SUNAGA, KATSUYOSHI; KANAMOTO, TAISEI; TERAKUBO, SHIGEMI; NAKASHIMA, HIDEKI; SHIRATAKI, YOSHIAKI; TOMOMURA, MINEKO; MASUDA, YOSHIKO; YOKOSE, SATOSHI; TOMOMURA, AKITO; WATANABE, HIROFUMI; OKAWARA, MASAKI; MATAHIRA, YOSHIHARU

    2017-01-01

    Background: Most previous mastic investigators have not considered its potent cytotoxicity that may significantly affect the interpretation of obtained data. In the present study, we re-evaluated several biological activities of mastic extracts, based on chemotherapeutic indexes. Materials and Methods: Pulverized mastic gum was extracted with n-hexane and then with ethyl acetate or independently with methanol or n-butanol. Tumor specificity (TS) of the extracts was determined by their cytotoxicity against human malignant and non-malignant cells. Antibacterial activity was determined by their cytotoxicity against bacteria and normal oral cells. Antiviral activity was determined by their protection of viral infection and cytotoxic activity. Cytochrome P-450 (CYP) 3A4 activity was measured by β-hydroxylation of testosterone. Results: Ethyl acetate extract showed slightly higher tumor specificity (TS=2.6) and one order higher antibacterial activity (selectivity index (SI)=0.813) than other extracts (TS=1.4-2.5; SI=0.030-0.063). All extracts showed no anti-human immunodeficiency virus (HIV) activity, but some anti-herpes simplex virus (HSV) activity, which was masked by potent cytotoxicity. They showed strong inhibitory activity against CYP3A4. Conclusion: Ethyl acetate extraction following the removal of cytotoxic and CYP3A4 inhibitory substances by n-hexane can enhance antitumor and antibacterial activity of mastic. PMID:28652425

  19. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs

    PubMed Central

    Wright, Bernice; Spencer, Jeremy P.E.; Lovegrove, Julie A.; Gibbins, Jonathan M.

    2013-01-01

    Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy. PMID:23024269

  20. Anti-stress, anti-HIV and vitamin C-synergized radical scavenging activity of mulberry juice fractions.

    PubMed

    Sakagami, Hiroshi; Asano, Kazuhito; Satoh, Kazue; Takahashi, Keiso; Kobayashi, Masaki; Koga, Noriko; Takahashi, Hitomi; Tachikawa, Rieko; Tashiro, Tadamasa; Hasegawa, Akihiko; Kurihara, Kaeko; Ikarashi, Takeshi; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Watanabe, Satoru; Nakamura, Wataru

    2007-01-01

    Anti-stress and anti-HIV activity of mulberry juice were separated by centrifugation. The anti-stress activity was enriched in the supernatant fraction whereas the anti-HIV activity in the precipitate fraction. Oral administration of the supernatant fraction significantly reduced the elevated plasma level of lipid peroxide in mice loaded with water immersion restraint stress. The kinetic study revealed that the anti-stress activity was maintained for 4 hours after cessation of the administration of mulberry juice. The lignin fraction in the precipitate fraction scavenged superoxide and hydroxyl radicals more efficiently than other fractions, in a synergistic fashion with sodium ascorbate. Anti-HIV activity of mulberry juice was concentrated in the lignin fraction, whereas blueberry juice, which has no precipitating fibrous materials, did not show anti-HIV activity. The present study suggests the functionality of mulberry juice as an alternative medicine.

  1. Non-Specific Microbicide Product Development: Then and Now

    PubMed Central

    Romano, Joseph W.; Robbiani, Melissa; Doncel, Gustavo F.; Moench, Thomas

    2015-01-01

    Despite the identification of HIV-1 as the etiological agent responsible for AIDS nearly 30 years ago, a sterilizing vaccine capable of preventing transmission of the virus remains elusive. In response to struggles on the vaccine development front, significant effort has been devoted to preventing the transmission of HIV with alternative products, technologies, and strategies. One of the early alternative HIV prevention strategies was microbicides, which are topical products that can be used to prevent sexual transmission of HIV either vaginally or rectally. First generation microbicide products were designed to be simple gel formulations comprised of readily available active agents that were inexpensive and broadly active (i.e., non-specific). Unfortunately, despite the clinical investigation of multiple product concepts satisfying these requirements, none were shown to be efficacious in pivotal trials. More recently, microbicide and oral prevention strategies involving highly specific and potent anti-retroviral (ARV) drugs have shown to be efficacious in trials. Although building on these successes continues, these products have a number of issues including potential toxicity with long term use, selection of HIV resistance, and cost. Further, all of the original justifications for non-specific microbicide products remain valid. This review provides a brief history of non-specific microbicide development, outlines the evolution to, and limitations of, ARV based microbicides, and summarizes the current activity on non-specific microbicide product development. PMID:22264041

  2. Vibrational Markovian modelling of footprints after the interaction of antibiotics with the packaging region of HIV type 1.

    PubMed

    Díaz, Humberto González; de Armas, Ronal Ramos; Molina, Reinaldo

    2003-11-01

    The design of novel anti-HIV compounds has now become a crucial area for scientists working in numerous interrelated fields of science such as molecular biology, medicinal chemistry, mathematical biology, molecular modelling and bioinformatics. In this context, the development of simple but physically meaningful mathematical models to represent the interaction between anti-HIV drugs and their biological targets is of major interest. One such area currently under investigation involves the targets in the HIV-RNA-packaging region. In the work described here, we applied Markov chain theory in an attempt to describe the interaction between the antibiotic paromomycin and the packaging region of the RNA in Type-1 HIV. In this model, a nucleic acid squeezed graph is used. The vertices of the graph represent the nucleotides while the edges are the phosphodiester bonds. A stochastic (Markovian) matrix was subsequently defined on this graph, an operation that codifies the probabilities of interaction between specific nucleotides of HIV-RNA and the antibiotic. The strength of these local interactions can be calculated through an inelastic vibrational model. The successive power of this matrix codifies the probabilities with which the vibrations after drug-RNA interactions vanish along the polynucleotide main chain. The sums of self-return probabilities in the k-vicinity of each nucleotide represent physically meaningful descriptors. A linear discriminant function was developed and gave rise to excellent discrimination in 80.8% of interacting and footprinted nucleotides. The Jackknife method was employed to assess the stability and predictability of the model. On the other hand, a linear regression model predicted the local binding affinity constants between a specific nucleotide and the antibiotic (R(2)=0.91, Q(2)=0.86). These kinds of models could play an important role either in the discovery of new anti-HIV compounds or the study of their mode of action.

  3. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo

    PubMed Central

    Goraczniak, Rafal; Wall, Brian A; Behlke, Mark A; Lennox, Kim A; Ho, Eric S; Zaphiros, Nikolas H; Jakubowski, Christopher; Patel, Neil R; Zhao, Steven; Magaway, Carlo; Subbie, Stacey A; Jenny Yu, Lumeng; LaCava, Stephanie; Reuhl, Kenneth R; Chen, Suzie; Gunderson, Samuel I

    2013-01-01

    U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first in vivo use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, B-cell lymphoma 2 (BCL2) and metabotropic glutamate receptor 1 (GRM1), in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-BCL2 U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 µg/kg with twice weekly intravenous (iv) administration. Anti-GRM1 U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-BCL2 and anti-GRM1 treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6) indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups) validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases. PMID:23673539

  4. Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms.

    PubMed

    Ellithey, Mona S; Lall, Namrita; Hussein, Ahmed A; Meyer, Debra

    2014-02-25

    Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the medicinal potential of crude extracts of these marine organisms.

  5. Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms

    PubMed Central

    2014-01-01

    Background Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. Methods The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Results Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). Conclusion The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the medicinal potential of crude extracts of these marine organisms. PMID:24568567

  6. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents.

    PubMed

    Liu, Jinbing; Wu, Fengyan; Chen, Changhong

    2015-11-15

    Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sulfonate-ended carbosilane dendrimers with a flexible scaffold cause inactivation of HIV-1 virions and gp120 shedding.

    PubMed

    Sepúlveda-Crespo, Daniel; de la Mata, Francisco J; Gómez, Rafael; Muñoz-Fernández, Mª A

    2018-05-17

    Infection with human immunodeficiency virus type 1 (HIV-1) continues to be a global public health issue, especially in low-resource countries. Sexual transmission is responsible for the majority of HIV-1 infections worldwide. Women are more susceptible to HIV-1 acquisition than men and represent nearly 50% of the HIV-infected population. Topical vaginal microbicides that act at the earlier stages of infection offer a prevention strategy to reduce the acquisition of HIV-1. Dendrimers are nano-sized, radially symmetric molecules with a well-defined and monodisperse structure consisting of tree-like arms or branches. We perform a TZM.bl cell line-based screening of two families of carbosilane dendrimers (6 nanocompounds: G1-S12P, G2-S24P, G3-S48P, G1-C12P, G2-C24P and G3-C48P) that we have previously synthesized, containing 12, 24 or 48 sulfonate (or carboxylate) end-groups and a polyphenolic core. This work shows that second- and third-generation sulfonate-ended carbosilane dendrimers with a polyphenolic core (G2-S24P and G3-S48P, respectively) display low cytotoxicity (CC50 > 300 μM) with virucidal anti-R5-HIV-1 activity (EC50 < 50 nM; therapeutic index >6000) causing irreversible HIV-1 inactivation (80-90%) by loss of HIV-1 RNA (40%), gp120 shedding (70-80%) and p24 capsid protein release (45-60%). Herein, we demonstrate that sulfonate end-groups and a flexible scaffold from carbosilane dendrimers strongly influence their properties acting as potent virucides.

  8. Synergy against drug-resistant HIV-1 with the microbicide antiretrovirals, dapivirine and tenofovir, in combination.

    PubMed

    Schader, Susan M; Colby-Germinario, Susan P; Schachter, Jordana R; Xu, Hongtao; Wainberg, Mark A

    2011-08-24

    To evaluate the candidate antiretroviral microbicide compounds, dapivirine (DAP) and tenofovir (TFV), alone and in combination against the transmission of wild-type and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 from different subtypes. We determined single-drug efficacy of the RTIs, DAP and TFV, against subtype B and non-B wild-type and NNRTI-resistant HIV-1 in vitro. To assess breadth of activity, compounds were tested alone and in combination against wild-type and NNRTI-resistant subtype C primary HIV-1 isolates and complimentary clonal HIV-1 from subtypes B, C and CRF02_AG to control for viral variation. Early infection was quantified by counting light units emitted from TZM-bl cells less than 48-h postinfection. Combination ratios were based on drug inhibitory concentrations (IC(50)s) and combined effects were determined by calculating combination indices. Both candidate microbicide antiretrovirals demonstrated potent anti-NNRTI-resistant HIV-1 activity in vitro, albeit the combination protected better than the single-drug treatments. Of particular interest, the DAP with TFV combination exhibited synergy (50% combination index, CI(50) = 0.567) against subtype C NNRTI-resistant HIV-1, whereas additivity (CI(50) = 0.987) was observed against the wild-type counterpart from the same patient. The effect was not compounded by the presence of subdominant viral fractions, as experiments using complimentary clonal subtype C wild-type (CI(50) = 0.968) and NNRTI-resistant (CI(50) = 0.672) HIV-1, in lieu of the patient quasispecies, gave similar results. This study supports the notion that antiretroviral drug combinations may retain antiviral activity against some drug-resistant HIV-1 despite subtype classification and quasispecies diversity.

  9. High Potency of Indolyl Aryl Sulfone Nonnucleoside Inhibitors towards Drug-Resistant Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutants Is Due to Selective Targeting of Different Mechanistic Forms of the Enzyme

    PubMed Central

    Cancio, Reynel; Silvestri, Romano; Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Crespan, Emmanuele; Zanoli, Samantha; Hübscher, Ulrich; Spadari, Silvio; Maga, Giovanni

    2005-01-01

    Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation. PMID:16251294

  10. In vitro anti-Helicobacter pylori action of 30 Chinese herbal medicines used to treat ulcer diseases.

    PubMed

    Li, Yang; Xu, Chen; Zhang, Qiang; Liu, Jun Yan; Tan, Ren Xiang

    2005-04-26

    Infection by Helicobacter pylori has been ascertained to be an important etiologic impetus leading usually to chronic active gastritis and gastric ulcer with growing incidences worldwide. Utilizing as the test pathogen a standard and five clinic strains of Helicobacter pylori, the antibacterial action was assessed in vitro with ethanol extracts of 30 Chinese herbal medicines which have been frequently prescribed since ancient times for treating gastritis-like disorders. Among the 30 tested materials, the ethanol extracts of Abrus cantoniensis (Fabaceae), Saussurea lappa (Asteraceae) and Eugenia caryophyllata (Myrtaceae) were strongly inhibitory to all test strains (MICs: approximately 40 microg/ml), and Hippophae rhamnoides (Elaeagnaceae), Fritillaria thunbergii (Liliaceae), Magnolia officinalis and Schisandra chinensis (Magnoliaceae), Corydalis yanhusuo (Papaveraceae), Citrus reticulata (Rutaceae), Bupleurum chinense and Ligusticum chuanxiong (Apiaceae) substantially active with MICs close to 60.0 microg/ml. As to antibacterial actions of the aqueous extracts of the same drugs, those derived from Cassia obtusifolia (Fabaceae), Fritillaria thunbergii and Eugenia caryophyllata were remarkably inhibitory against all the six Helicobacter pylori strains (MICs: approximately 60 microg/ml). The work compared almost quantitatively the magnitude of the anti-Helicobacter pylori actions of the 30 most prescribed gastritis-treating Chinese herbal drugs, and located as well some source plants where potent anti-Helicobacter pylori phytochemicals could be characterized.

  11. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain.

    PubMed

    Miljanich, G P

    2004-12-01

    Ziconotide (PRIALT) is a neuroactive peptide in the final stages of clinical development as a novel non-opioid treatment for severe chronic pain. It is the synthetic equivalent of omega-MVIIA, a component of the venom of the marine snail, Conus magus. The mechanism of action underlying ziconotide's therapeutic profile derives from its potent and selective blockade of neuronal N-type voltage-sensitive calcium channels (N-VSCCs). Direct blockade of N-VSCCs inhibits the activity of a subset of neurons, including pain-sensing primary nociceptors. This mechanism of action distinguishes ziconotide from all other analgesics, including opioid analgesics. In fact, ziconotide is potently anti-nociceptive in animal models of pain in which morphine exhibits poor anti-nociceptive activity. Moreover, in contrast to opiates, tolerance to ziconotide is not observed. Clinical studies of ziconotide in more than 2,000 patients reveal important correlations to ziconotide's non-clinical pharmacology. For example, ziconotide provides significant pain relief to severe chronic pain sufferers who have failed to obtain relief from opiate therapy and no evidence of tolerance to ziconotide is seen in these patients. Contingent on regulatory approval, ziconotide will be the first in a new class of neurological drugs: the N-type calcium channel blockers, or NCCBs. Its novel mechanism of action as a non-opioid analgesic suggests ziconotide has the potential to play a valuable role in treatment regimens for severe chronic pain. If approved for clinical use, ziconotide will further validate the neuroactive venom peptides as a source of new and useful medicines.

  12. Anti-MRSA activity of isoplagiochin-type macrocyclic bis(bibenzyl)s is mediated through cell membrane damage.

    PubMed

    Onoda, Kenji; Sawada, Hiromi; Morita, Daichi; Fujii, Kana; Tokiwa, Hiroaki; Kuroda, Teruo; Miyachi, Hiroyuki

    2015-07-01

    We synthesized three geometrical isomers of a macrocyclic bis(bibenzyl) based on isoplagiochin, a natural product isolated from bryophytes, and evaluated their antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). The isomer containing a 1,4-linked ring (5) showed only weak activity, whereas the isomers containing a 1,3-linked (6) or 1,2-linked (7) C ring showed potent anti-MRSA activity. Molecular dynamics calculations indicated that these differences are probably due to differences in the conformational flexibility of the macrocyclic ring; the active compounds 6 and 7 were more rigid than 5. In order to understand the action mechanism of anti-MRSA activity, we investigated the cellular flux of a fluorescent DNA-binder, ethidium bromide (EtBr), in the presence and absence of these macrocycles. The active compound 6 increased the levels of EtBr inflow and outflow in S. aureus cells, as did our potent anti-MRSA riccardin derivative (4), indicating that these compounds increased the permeability of the cytoplasmic membrane. Inactive 5 had no effect on EtBr inflow or outflow. Furthermore, compound 6 abrogated the normal intracellular concentration gradients of Na(+) and K(+) in S. aureus cells, increasing the intracellular Na(+) concentration and decreasing the K(+) concentration, while 5 had no such effect. These results indicate that anti-MRSA-active macrocyclic bis(bibenzyl) derivatives directly damage the gram-positive bacterial membrane, resulting in increased permeability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Mayuko; Liu Dongxiang; Kumar, Santosh

    2005-09-30

    The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1,more » respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4.« less

  14. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    PubMed

    Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela

    2015-09-22

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  15. The early years of retroviral protease crystal structures.

    PubMed

    Miller, Maria

    2010-01-01

    Soon after its discovery, the attempts to develop anti-AIDS therapeutics focused on the retroviral protease (PR)-an enzyme used by lentiviruses to process the precursor polypeptide into mature viral proteins. An urgent need for the three-dimensional structure of PR to guide rational drug design prompted efforts to produce milligram quantities of this enzyme. However, only minute amounts of PR were present in the HIV-1 and HIV-2 viruses, and initial attempts to express this protein in bacteria were not successful. This review describes X-ray crystallographic studies of the retroviral proteases carried out at NCI-Frederick in the late 1980s and early 1990s and puts into perspective the crucial role that the total protein chemical synthesis played in unraveling the structure, mechanism of action, and inhibition of HIV-1 PR. Notably, the first fully correct structure of HIV-1 PR and the first cocrystal structure of its complex with an inhibitor (a substrate-derived, reduced isostere hexapeptide MVT-101) were determined using chemically synthesized protein. Most importantly, these sets of coordinates were made freely available to the research community and were used worldwide to solve X-ray structures of HIV-1 PR complexes with an array of inhibitors and set in motion a variety of theoretical studies. Publication of the structure of chemically synthesized HIV-1 PR complexed with MVT-101 preceded only by six years the approval of the first PR inhibitor as an anti-AIDS drug. Copyright (c) 2010 Wiley Periodicals, Inc.

  16. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    PubMed

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-05-31

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

  17. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009).

    PubMed

    de Béthune, Marie-Pierre

    2010-01-01

    It is almost 20 years since NNRTIs were identified as a new class of antiretroviral drugs for the treatment of HIV-1 infection. Although they belong to different and diverse chemical families, they share a common and unique mechanism of action: their interaction with HIV-1 reverse transcriptase induces conformational changes that inhibit the catalytic activities of the enzyme. They are characterized by their specificity for HIV-1, which makes them very selective inhibitors of the virus. First generation NNRTIs nevirapine and efavirenz, in combination with other antiretroviral drugs, have become a cornerstone for the treatment of HIV-1 infection, in patients initiating antiretroviral therapy. Further research has led to the discovery and development of next generation NNRTIs with an increased genetic barrier to the development of resistance. Etravirine is the first NNRTI to show sustained virologic efficacy in patients with NNRTI resistant HIV-1. This review covers the NNRTI class of anti-HIV-1 drugs, from the initial discovery of the class in 1990 to the current compounds in clinical development, i.e. around 20 years of research and development efforts. It describes the characteristics of the NNRTIs, their mechanisms of action, HIV-1 resistance to the inhibitors, and the drugs that have been approved for the treatment of HIV-1 infection, or are currently in clinical development. The role of NNRTIs in prevention of HIV transmission is also addressed. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease.

    PubMed

    Jochmans, Dirk; Anders, Maria; Keuleers, Inge; Smeulders, Liesbeth; Kräusslich, Hans-Georg; Kraus, Günter; Müller, Barbara

    2010-10-15

    Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action.

  19. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease

    PubMed Central

    2010-01-01

    Background Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Results Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. Conclusion These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action. PMID:20950436

  20. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs.

    PubMed

    El-Aarag, Bishoy Y A; Kasai, Tomonari; Zahran, Magdy A H; Zakhary, Nadia I; Shigehiro, Tsukasa; Sekhar, Sreeja C; Agwa, Hussein S; Mizutani, Akifumi; Murakami, Hiroshi; Kakuta, Hiroki; Seno, Masaharu

    2014-08-01

    Inhibition of angiogenesis is currently perceived as a promising strategy in the treatment of cancer. The anti-angiogenicity of thalidomide has inspired a second wave of research on this teratogenic drug. The present study aimed to investigate the anti-proliferative and anti-angiogenic activities of two thalidomide dithiocarbamate analogs by studying their anti-proliferative effects on human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cell lines. Their action on the expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 was also assessed. Furthermore, their effect on angiogenesis was evaluated through wound healing, migration, tube formation, and nitric oxide (NO) assays. Results illustrated that the proliferation of HUVECs and MDA-MB-231 cells was not significantly affected by thalidomide at 6.25-100μM. Thalidomide failed to block angiogenesis at similar concentrations. By contrast, thalidomide dithiocarbamate analogs exhibited significant anti-proliferative action on HUVECs and MDA-MB-231 cells without causing cytotoxicity and also showed powerful anti-angiogenicity in wound healing, migration, tube formation, and NO assays. Thalidomide analogs 1 and 2 demonstrated more potent activity to suppress expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 than thalidomide. Analog 1 consistently, showed the highest potency and efficacy in all the assays. Taken together, our results support further development and evaluation of novel thalidomide analogs as anti-tumor and anti-angiogenic agents. Copyright © 2014. Published by Elsevier B.V.

  1. Advances on Semisynthesis, Total Synthesis, and Structure-Activity Relationships of Honokiol and Magnolol Derivatives.

    PubMed

    Yang, Chun; Zhi, Xiaoyan; Xu, Hui

    2016-01-01

    Honokiol and magnolol (an isomer of honokiol) are small-molecule polyphenols isolated from the barks of Magnolia officinalis, which have been widely used in traditional Chinese and Japanese medicines. In the last decade, a variety of biological properties of honokiol and magnolol (e.g., anti-oxidativity, antitumor activity, anti-depressant activity, anti-inflammatory activity, neuroprotective activity, anti-diabetic activity, antiviral activity, and antimicrobial activity) have been reported. Meanwhile, certain mechanisms of action of some biological activities were also investigated. Moreover, many analogs of honokiol and magnolol were prepared by structural modification or total synthesis, and some exhibited very potent pharmacological activities with improved water solubility. Therefore, the present review will provide a systematic coverage on recent developments of honokiol and magnolol derivatives in regard to semisynthesis, total synthesis, and structure-activity relationships from 2000 up to now.

  2. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications

    PubMed Central

    Elsayed, Elsayed A.; El Enshasy, Hesham; Wadaan, Mohammad A. M.; Aziz, Ramlan

    2014-01-01

    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents. PMID:25505823

  3. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    PubMed

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  4. Repurposing psychiatric drugs as anti-cancer agents.

    PubMed

    Huang, Jing; Zhao, Danwei; Liu, Zhixiong; Liu, Fangkun

    2018-04-10

    Cancer is a major public health problem and one of the leading contributors to the global disease burden. The high cost of development of new drugs and the increasingly severe burden of cancer globally have led to increased interest in the search and development of novel, affordable anti-neoplastic medications. Antipsychotic drugs have a long history of clinical use and tolerable safety; they have been used as good targets for drug repurposing. Being used for various psychiatric diseases for decades, antipsychotic drugs are now reported to have potent anti-cancer properties against a wide variety of malignancies in addition to their antipsychotic effects. In this review, an overview of repurposing various psychiatric drugs for cancer treatment is presented, and the putative mechanisms for the anti-neoplastic actions of these antipsychotic drugs are reviewed. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Enhancement of High-Density Lipoprotein Cholesterol Functions by Encapsulation of Policosanol Exerts Anti-Senescence and Tissue Regeneration Effects Via Improvement of Anti-Glycation, Anti-Apoptosis, and Cholesteryl Ester Transfer Inhibition.

    PubMed

    Lim, So-Mang; Yoo, Jeong-Ah; Lee, Eun-Young; Cho, Kyung-Hyun

    2016-02-01

    Consumption of policosanol (PCO), a refined mixture of sugar cane wax alcohols, can elevate serum levels of high-density lipoprotein cholesterol (HDL-C), although the molecular mechanism is still unknown. To investigate the mechanism of action responsible for the anti-senescence effects of PCO on lipoprotein metabolism and HDL functionality, we synthesized reconstituted HDL (rHDL) containing PCO. Encapsulation of PCO by rHDL (PCO-rHDL) enhanced anti-oxidant activity against cupric ion-mediated low-density lipoprotein (LDL) oxidation. PCO-rHDL (final concentration, 9 μM PCO) showed more potent anti-oxidant activity than vitamin C treatment (final concentration, 100 μM). PCO-rHDL inhibited fructose-mediated glycation, which is a major pathological mechanism of diabetic complications, in a dose-dependent manner. PCO also showed cytoprotective effects in monocytes and macrophages with less triggering of apoptotic processes and reactive oxygen species (ROS) production in the presence of hydrogen peroxide (H2O2). PCO-rHDL strongly inhibited uptake of acetylated LDL into macrophages, which is an initial atherosclerotic process. Surprisingly, PCO-rHDL inhibited human serum cholesteryl ester transfer protein (CETP) activity by up to 47% (final concentration, 10 μM PCO). Subcutaneous injection of PCO-rHDL dose-dependently enhanced tissue regeneration activity by 2.4-fold and 3.6-fold compared to that of the phosphate-buffered saline (PBS) control. In conclusion, PCO in HDL showed potent anti-oxidant, anti-glycation, and CETP inhibitory activities along with tissue regenerative activity, especially upon incorporation into HDL. These results suggest that PCO can enhance functionality of HDL in serum to exert anti-senescence and longevity effects.

  6. Status of vaccine research and development of vaccines for HIV-1.

    PubMed

    Safrit, Jeffrey T; Fast, Patricia E; Gieber, Lisa; Kuipers, Hester; Dean, Hansi J; Koff, Wayne C

    2016-06-03

    Human immunodeficiency virus (HIV) is the cause of one of the most lethal pandemics in human history, although in recent years access to highly effective anti-retroviral therapy has provided new hope worldwide. Transmission of HIV by sexual contact, childbirth and injection drug use has been reduced, but 2 million are newly infected each year, and much of the transmission is from people who do not know their status. In addition to known methods, a preventive vaccine is needed to end the pandemic. The extraordinary mutability and genetic diversity of HIV is an enormous challenge, but vaccines are being designed for broad coverage. Computer-aided design of mosaic immunogens, incorporating many epitopes from the entire genome or from conserved regions aim to induce CD8+ T cells to kill virus-infected cells or inhibit virus replication, while trimeric envelope proteins or synthetic mimics aim to induce broadly reactive neutralizing antibodies similar to those cloned from some infected patients. Induction of more potent and durable responses may require new adjuvants or replicating chimeric vectors chimeras that bear HIV genes. Passive or genetic delivery of broadly neutralizing antibodies may provide broad protection and/or lead to insights for vaccine designers. Proof-of-concept trials in non-human primates and in one human efficacy trial have provided scientific clues for a vaccine that could provide broad and durable protection against HIV. The use of vaccines to destroy HIV reservoirs as part of therapy or cure is now also being explored. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  7. Synthesis and anti-HIV activity of novel N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT).

    PubMed

    Pontikis, R; Benhida, R; Aubertin, A M; Grierson, D S; Monneret, C

    1997-06-06

    A series of 33 N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (1, HEPT) were synthesized and evaluated for their anti-HIV-1 activity. In particular, the influence of substitution of the terminal hydroxy group of the acyclic structure of HEPT and the structural rigidity of this side chain were investigated. Halo (7, 8), azido (9), and amino (10-15) derivatives were synthesized from HEPT via the p-tosylate derivative 6. Acylation of the primary amine 15 afforded the amido analogs 16-20. The diaryl derivatives 26-29 were prepared by reaction of HEPT, or of the 6-(2-pyridylthio) analog 23, with diaryl disulfides in the presence of tri-n-butylphosphine. Compounds 39-41, in which the N-1 side chain is rigidified by incorporation of an E-configured double bond, were obtained by palladium(0)-catalyzed coupling of several different 6-(arylthio)uracil derivatives (37, 38) with allyl acetates 33. Compounds 13, 40a,c,d,f, and 41, incorporating an aromatic ring at the end of the acyclic side chain, were found to be more potent than the known diphenyl-substituted HEPT analog BPT (2), two of them, 40c,d, being 10-fold more active.

  8. Clearing the smoke around the TB-HIV syndemic: smoking as a critical issue for TB and HIV treatment and care

    PubMed Central

    Jackson-Morris, A.; Fujiwara, P. I.; Pevzner, E.

    2016-01-01

    SUMMARY The collision of the tuberculosis (TB) and human immunodeficiency virus (HIV) epidemics has been described as a ‘syndemic’ due to the synergistic impact on the burden of both diseases. This paper explains the urgent need for practitioners and policy makers to address a third epidemic that exacerbates TB, HIV and TB-HIV. Tobacco use is the leading cause of preventable death worldwide. Smoking is more prevalent among persons diagnosed with TB or HIV. Smoking is associated with tuberculous infection, TB disease and poorer anti-tuberculosis treatment outcomes. It is also associated with an increased risk of smoking-related diseases among people living with HIV, and smoking may also inhibit the effectiveness of life-saving ART. In this paper, we propose integrating into TB and HIV programmes evidence-based strategies from the ‘MPO-WER’ package recommended by the World Health Organization’s Framework Convention on Tobacco Control. Specific actions that can be readily incorporated into current practice are recommended to improve TB and HIV outcomes and care, and reduce the unnecessary burden of death and disease due to smoking. PMID:26260816

  9. In vitro anti-Trypanosoma cruzi activity of dronedarone, a novel amiodarone derivative with an improved safety profile.

    PubMed

    Benaim, Gustavo; Hernandez-Rodriguez, Vanessa; Mujica-Gonzalez, Sheira; Plaza-Rojas, Lourdes; Silva, May Li; Parra-Gimenez, Nereida; Garcia-Marchan, Yael; Paniz-Mondolfi, Alberto; Uzcanga, Graciela

    2012-07-01

    Amiodarone, a commonly used antiarrhythmic, is also a potent and selective anti-Trypanosoma cruzi agent. Dronedarone is an amiodarone derivative in which the 2,5-diiodophenyl moiety of the parental drug has been replaced with an unsubstituted phenyl group aiming to eliminate the thyroid toxicity frequently observed with amiodarone treatment. Dronedarone has been approved by the Food and Drug Administration (FDA), and its use as a safe antiarrhythmic has been extensively documented. We show here that dronedarone also has potent anti-T. cruzi activity, against both extracellular epimastigotes and intracellular amastigotes, the clinically relevant form of the parasite. The 50% inhibitory concentrations against both proliferative stages are lower than those previously reported for amiodarone. The mechanism of action of dronedarone resembles that of amiodarone, as it induces a large increase in the intracellular Ca(2+) concentration of the parasite, which results from the release of this ion from intracellular storage sites, including a direct effect of the drug on the mitochondrial electrochemical potential, and through alkalinization of the acidocalcisomes. Our results suggest a possible future repurposed use of dronedarone for the treatment of Chagas' disease.

  10. Laws prohibiting over-the-counter syringe sales to injection drug users: relations to population density, HIV prevalence, and HIV incidence.

    PubMed

    Friedman, S R; Perlis, T; Des Jarlais, D C

    2001-05-01

    This study sought to assess relations of laws prohibiting over-the-counter syringe sales (anti-OTC laws) to population prevalence of injection drug users and HIV prevalence or incidence among 96 US metropolitan areas. A cross-sectional analysis was used. Metropolitan areas with anti-OTC laws had a higher mean HIV prevalence (13.8% vs 6.7%) than other metropolitan areas (pseudo-P < .001). In 83 metropolitan areas with HIV prevalence of less than 20%, anti-OTC laws were associated with HIV incidence rates of 1% or greater (pseudo-P < .001). Population proportions of injection drug users did not vary by presence of anti-OTC laws. Anti-OTC laws are not associated with lower population proportions of injection drug users. Laws restricting syringe access are associated with HIV transmission and should be repealed.

  11. The immunomodulating role of exercise in metabolic disease.

    PubMed

    Lancaster, Graeme I; Febbraio, Mark A

    2014-06-01

    A lack of physical activity is linked to the development of many chronic diseases. It is now well established that the immune system and inflammation play a central role in the development of numerous chronic metabolic diseases including insulin resistance, type 2 diabetes, atherosclerosis, nonalcoholic fatty liver disease, and specific types of cancer. Physical exercise elicits potent anti-inflammatory effects that are likely to account for many of the salutary actions of regular exercise on chronic metabolic diseases. Here we review the anti-inflammatory and immunomodulatory mechanisms by which the beneficial effects of exercise on chronic metabolic diseases may be mediated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses.

    PubMed

    Dunkel, Amber; Shen, Shixue; LaBranche, Celia C; Montefiori, David; McGettigan, James P

    2015-11-01

    We previously showed that a matrix (M) gene-deleted rabies virus (RABV)-based vaccine (RABV-ΔM) is highly immunogenic and induces potent B cell responses in the context of RABV infection. We speculated that RABV-ΔM expressing HIV proteins would also induce potent B cell responses against HIV antigens. As a prerequisite to future studies in nonhuman primates, we completed immunogenicity studies in mice to confirm the ability of RABV-ΔM to induce polyfunctional B cell responses in the context of HIV. To that end, the envelope protein from the mac239 strain of SIV (SIVmac239Env) was cloned into RABV-ΔM, resulting in RABV-ΔM-Env. Infectious virus was recovered following standard methods and propagated on baby hamster kidney cells stably expressing RABV M [>10(7) focus forming units (ffu)/ml]. Western blot analysis of cell lysates or of purified virions confirmed Env expression on the surface of infected cells and within virus particles, respectively. Positive neutralization activity against a neutralization-sensitive SIV strain and to a lesser extent against a neutralization-resistant SIV strain was detected in mice after a single intramuscular inoculation with RABV-ΔM-Env. The quality, but not quantity, of the antibody response was enhanced via boosting with recombinant gp130 or RABV-ΔM-Env as measured by an increase in antibody avidity and a skewing toward a Th1-type antibody response. We also show that an intradermal inoculation induces higher antibodies than an intramuscular or intranasal inoculation. An intradermal inoculation of RABV-ΔM-Env followed by a boost inoculation with recombinant gp130 produced anti-SIV antibodies with neutralizing and nonneutralizing antibody (nNAb) effector functions. Together, RABV-ΔM-Env induces B cells to secrete antibodies against SIV with the potential to clear both "free" and cell-associated virus. Strategies capable of eliciting both NAbs as well as nNAbs might help to improve the efficacy of HIV-1 vaccines.

  13. Sensitivity of a rapid point of care assay for early HIV antibody detection is enhanced by its ability to detect HIV gp41 IgM antibodies.

    PubMed

    Moshgabadi, Noushin; Galli, Rick A; Daly, Amelia C; Ko, Sze Mun Shirley; Westgard, Tayla E; Bulpitt, Ashley F; Shackleton, Christopher R

    2015-10-01

    Anti-HIV-1 IgM antibody is an important immunoassay target for early HIV antibody detection. The objective of this study is to determine if the early HIV antibody sensitivity of the 60s INSTI test is due to detection of anti-HIV-1 IgM in addition to IgG. To demonstrate HIV gp41 IgM antibody capture by the INSTI HIV-1 gp41 recombinant antigen, an HIV-IgM ELISA was conducted with commercial HIV-1 seroconversion samples. To demonstrate that the INSTI dye-labelled Protein A-based colour developer (CD) has affinity to human IgM, commercial preparations of purified human immunoglobulins (IgM, IgD, IgA, IgE, and IgG) were blotted onto nitrocellulose (NC) and probed with the CD to observe spot development. To determine that INSTI is able to detect anti-HIV-1 IgM antibody, early seroconversion samples, were tested for reduced INSTI test spot intensity following IgM removal. The gp41-based HIV-IgM ELISA results for 6 early seroconversion samples that were INSTI positive determined that the assay signal was due to anti-HIV-1 IgM antibody capture by the immobilised gp41 antigen. The dye-labelled Protein-A used in the INSTI CD produced distinct spots for purified IgM, IgA, and IgG blotted on the NC membrane. Following IgM removal from 21HIV-1 positive seroconversion samples with known or undetermined anti-HIV-1 IgM levels that were western blot negative or indeterminate, all samples had significantly reduced INSTI test spot intensity. The INSTI HIV-1/HIV-2 Antibody Test is shown to detect anti-HIV-1 IgM antibodies in early HIV infection which enhances its utility in early HIV diagnosis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G.

    PubMed

    Furukawa, Ayako; Nagata, Takashi; Matsugami, Akimasa; Habu, Yuichirou; Sugiyama, Ryuichi; Hayashi, Fumiaki; Kobayashi, Naohiro; Yokoyama, Shigeyuki; Takaku, Hiroshi; Katahira, Masato

    2009-02-18

    Human APOBEC3G exhibits anti-human immunodeficiency virus-1 (HIV-1) activity by deaminating cytidines of the minus strand of HIV-1. Here, we report a solution structure of the C-terminal deaminase domain of wild-type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real-time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3' --> 5' order. Virus infectivity factor (Vif) of HIV-1 counteracts the anti-HIV-1 activity of APOBEC3G. The structure of the N-terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species-specific sensitivity of APOBEC3G to Vif action.

  15. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G

    PubMed Central

    Furukawa, Ayako; Nagata, Takashi; Matsugami, Akimasa; Habu, Yuichirou; Sugiyama, Ryuichi; Hayashi, Fumiaki; Kobayashi, Naohiro; Yokoyama, Shigeyuki; Takaku, Hiroshi; Katahira, Masato

    2009-01-01

    Human APOBEC3G exhibits anti-human immunodeficiency virus-1 (HIV-1) activity by deaminating cytidines of the minus strand of HIV-1. Here, we report a solution structure of the C-terminal deaminase domain of wild-type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real-time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3′ → 5′ order. Virus infectivity factor (Vif) of HIV-1 counteracts the anti-HIV-1 activity of APOBEC3G. The structure of the N-terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species-specific sensitivity of APOBEC3G to Vif action. PMID:19153609

  16. Anti-bacterial activity of intermittent preventive treatment of malaria in pregnancy: comparative in vitro study of sulphadoxine-pyrimethamine, mefloquine, and azithromycin

    PubMed Central

    2010-01-01

    Background Intermittent preventive treatment of malaria with sulphadoxine-pyrimethamine (SP) is recommended for the prevention of malaria in pregnancy in sub-Saharan Africa. Increasing drug resistance necessitates the urgent evaluation of alternative drugs. Currently, the most promising candidates in clinical development are mefloquine and azithromycin. Besides the anti-malarial activity, SP is also a potent antibiotic and incurs significant anti-microbial activity when given as IPTp - though systematic clinical evaluation of this action is still lacking. Methods In this study, the intrinsic anti-bacterial activity of mefloquine and azithromycin was assessed in comparison to sulphadoxine-pyrimethamine against bacterial pathogens with clinical importance in pregnancy in a standard microdilution assay. Results SP was highly active against Staphylococcus aureus and Streptococcus pneumoniae. All tested Gram-positive bacteria, except Enterococcus faecalis, were sensitive to azithromycin. Additionally, azithromycin was active against Neisseria gonorrhoeae. Mefloquine showed good activity against pneumococci but lower in vitro action against all other tested pathogens. Conclusion These data indicate important differences in the spectrum of anti-bacterial activity for the evaluated anti-malarial drugs. Given the large scale use of IPTp in Africa, the need for prospective clinical trials evaluating the impact of antibiotic activity of anti-malarials on maternal and foetal health and on the risk of promoting specific drug resistance of bacterial pathogens is discussed. PMID:21029476

  17. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    NASA Astrophysics Data System (ADS)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  18. Leiodermatolide, a novel marine natural product, has potent cytotoxic and anti-mitotic activity against cancer cells, appears to affect microtubule dynamics, and exhibits anti-tumor activity

    PubMed Central

    Guzmán, Esther A.; Xu, Qunli; Pitts, Tara P.; Mitsuhashi, Kaoru Ogawa; Baker, Cheryl; Linley, Patricia A.; Oestreicher, Judy; Tendyke, Karen; Winder, Priscilla L.; Suh, Edward M.; Wright, Amy E.

    2016-01-01

    Pancreatic cancer, the fourth leading cause of cancer death in the United States, has a negative prognosis because metastasis occurs before symptoms manifest. Leiodermatolide, a polyketide macrolide with antimitotic activity isolated from a deep water sponge of the genus Leiodermatium, exhibits potent and selective cytotoxicity towards the pancreatic cancer cell lines AsPC-1, PANC-1, BxPC-3, and MIA PaCa-2, and potent cytotoxicity against skin, breast and colon cancer cell lines. Induction of apoptosis by leiodermatolide was confirmed in the AsPC-1, BxPC-3 and MIA PaCa-2 cells. Leiodermatolide induces cell cycle arrest but has no effects on in vitro polymerization or depolymerization of tubulin alone, while it enhances polymerization of tubulin containing microtubule associated proteins (MAPs). Observations through confocal microscopy show that leiodermatolide, at low concentrations, causes minimal effects on polymerization or depolymerization of the microtubule network in interphase cells, but disruption of spindle formation in mitotic cells. At higher concentrations, depolymerization of the microtubule network is observed. Visualization of the growing microtubule in HeLa cells expressing GFP-tagged plus end binding protein EB-1 showed that leiodermatolide stopped the polymerization of tubulin. These results suggest that leiodermatolide may affect tubulin dynamics without directly interacting with tubulin and hint at a unique mechanism of action. In a mouse model of metastatic pancreatic cancer, leiodermatolide exhibited significant tumor reduction when compared to gemcitabine and controls. The anti-tumor activities of leiodermatolide, as well as the proven utility of anti-mitotic compounds against cancer, make leiodermatolide an interesting compound with potential chemotherapeutic effects that may merit further research. PMID:27376928

  19. The HIV glycan shield as a target for broadly neutralizing antibodies.

    PubMed

    Doores, Katie J

    2015-12-01

    The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host-derived N-linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host-derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose-type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein-directed and cell-directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies. © The Author. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  20. Synthetic Studies of Complex Immunostimulants from Quillaja saponaria: Synthesis of the Potent Clinical Immunoadjuvant QS-21Aapi

    PubMed Central

    Kim, Yong-Jae; Wang, Pengfei; Navarro-Villalobos, Mauricio; Rohde, Bridget D.; Derryberry, JohnMark; Gin, David Y.

    2008-01-01

    QS-21 is one of the most promising new adjuvants for immune response potentiation and dose-sparing in vaccine therapy given its exceedingly high level of potency and its favorable toxicity profile. Melanoma, breast cancer, small cell lung cancer, prostate cancer, HIV-1, and malaria are among the numerous maladies targeted in more than 80 recent and ongoing vaccine therapy clinical trials involving QS-21 as a critical adjuvant component for immune response augmentation. QS-21 is a natural product immunostimulatory adjuvant, eliciting both T-cell- and antibody-mediated immune responses with microgram doses. Herein is reported the synthesis of QS-21Aapi in a highly modular strategy, applying novel glycosylation methodologies to a convergent construction of the potent saponin immunostimulant. The chemical synthesis of QS-21 offers unique opportunities to probe its mode of biological action through the preparation of otherwise unattainable nonnatural saponin analogues. PMID:16953631

  1. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-120 interface

    PubMed Central

    Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark

    2014-01-01

    The isolation of human monoclonal antibodies (mAbs) is providing important insights regarding the specificities that underlie broad neutralization of HIV-1 (reviewed in1). Here we report a broad and extremely potent HIV-specific mAb, termed 35O22, which binds novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with an IC50<50 μg/ml. The median IC50 of neutralized viruses was 0.033 μg/ml, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed it to bind a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current mAb-based approaches to immunotherapies, prophylaxis, and vaccine design. PMID:25186731

  2. Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions. Synthesis, Biological Evaluation, and Protein-Ligand X-ray Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Arun K.; Martyr, Cuthbert D.; Osswald, Heather L.

    Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand–binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolutionmore » X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand–binding site interactions are possibly responsible for their potent activity.« less

  3. LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 - 2014).

    PubMed

    Demeulemeester, Jonas; Chaltin, Patrick; Marchand, Arnaud; De Maeyer, Marc; Debyser, Zeger; Christ, Frauke

    2014-06-01

    Integration of the viral genome into the host cell chromatin is a central step in the replication cycle of the HIV. Blocking the viral integrase (IN) enzyme therefore provides an attractive therapeutic strategy, as evidenced by the recent clinical approval of three IN strand transfer inhibitors. Viral resistance and cross-resistance among these inhibitors, however, warrant the search for compounds targeting HIV integration through alternative mechanisms of action. The most potent class of allosteric IN inhibitors was independently identified at the University of Leuven, Belgium, and at Boehringer Ingelheim, Canada. These compounds, coined LEDGINs (after the lens epithelium-derived growth factor/p75 cofactor binding pocket on IN) or non-catalytic site IN inhibitors (NCINIs) by the respective groups, have shown remarkable antiviral activity. This review provides a brief introduction to the compound class and discusses the recent patent literature (2006 to the present). LEDGINs are still early in development. Trials with clinical candidate BI-224436 were put on hold despite promising results. Literature, however, reveals that almost all major pharmaceutical companies active in the treatment of HIV/AIDS have taken a significant interest in this class. As a result, several of these inhibitors may soon enter clinical trials.

  4. Adenovirus-Vectored Broadly Neutralizing Antibodies Directed Against gp120 Prevent Human Immunodeficiency Virus Type 1 Acquisition in Humanized Mice.

    PubMed

    Liu, Shan; Jackson, Andrew; Beloor, Jagadish; Kumar, Priti; Sutton, Richard E

    2015-09-01

    Despite nearly three decades of research, a safe and effective vaccine against human immunodeficiency virus type 1 (HIV-1) has yet to be achieved. More recently, the discovery of highly potent anti-gp160 broadly neutralizing antibodies (bNAbs) has garnered renewed interest in using antibody-based prophylactic and therapeutic approaches. Here, we encoded bNAbs in first-generation adenoviral (ADV) vectors, which have the distinctive features of a large coding capacity and ease of propagation. A single intramuscular injection of ADV-vectorized bNAbs in humanized mice generated high serum levels of bNAbs that provided protection against multiple repeated challenges with a high dose of HIV-1, prevented depletion of peripheral CD4(+) T cells, and reduced plasma viral loads to below detection limits. Our results suggest that ADV vectors may be a viable option for the prophylactic and perhaps therapeutic use of bNAbs in humans.

  5. Potent In Vivo NK Cell-Mediated Elimination of HIV-1-Infected Cells Mobilized by a gp120-Bispecific and Hexavalent Broadly Neutralizing Fusion Protein

    PubMed Central

    Bardhi, Ariola; Wu, Yanling; Chen, Weizao; Li, Wei; Zhu, Zhongyu; Zheng, Jian Hua; Wong, Hing; Jeng, Emily; Jones, Jennifer; Ochsenbauer, Christina; Kappes, John C.; Dimitrov, Dimiter S.; Ying, Tianlei

    2017-01-01

    ABSTRACT Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. PMID:28794022

  6. Potent In Vivo NK Cell-Mediated Elimination of HIV-1-Infected Cells Mobilized by a gp120-Bispecific and Hexavalent Broadly Neutralizing Fusion Protein.

    PubMed

    Bardhi, Ariola; Wu, Yanling; Chen, Weizao; Li, Wei; Zhu, Zhongyu; Zheng, Jian Hua; Wong, Hing; Jeng, Emily; Jones, Jennifer; Ochsenbauer, Christina; Kappes, John C; Dimitrov, Dimiter S; Ying, Tianlei; Goldstein, Harris

    2017-10-15

    Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. Copyright © 2017 American Society for Microbiology.

  7. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1 seroconverters.

    PubMed

    Rezza, Giovanni; Fiorelli, Valeria; Dorrucci, Maria; Ciccozzi, Massimo; Tripiciano, Antonella; Scoglio, Arianna; Collacchi, Barbara; Ruiz-Alvarez, Maria; Giannetto, Concettina; Caputo, Antonella; Tomasoni, Lina; Castelli, Francesco; Sciandra, Mauro; Sinicco, Alessandro; Ensoli, Fabrizio; Buttò, Stefano; Ensoli, Barbara

    2005-04-15

    The human immunodeficiency virus (HIV) type 1 Tat protein plays a key role in the life cycle of the virus and in pathogenesis and is highly conserved among HIV subtypes. On the basis of this and of safety, immunogenicity, and efficacy findings in monkeys, Tat is being tested as a vaccine in phase 1 trials. Here, we evaluated the incidence and risk of progression to advanced HIV disease by anti-Tat serostatus in a cohort of 252 HIV-1 seroconverters. The risk of progression was lower in the anti-Tat-positive subjects than in the anti-Tat-negative subjects. Progression was faster in the persistently anti-Tat-negative subjects than in the transiently anti-Tat-positive subjects, and no progression was observed in the persistently anti-Tat-positive subjects.

  8. Long-Term Serologic Follow-Up of Isolated Hepatitis B Core Antibody in HIV-Infected and HIV-Uninfected Women

    PubMed Central

    French, Audrey L.; Lin, Michael Y.; Evans, Charlesnika T.; Benning, Lorie; Glesby, Marshall J.; Young, Mary A.; Operskalski, Eva A.; Augenbraun, Michael; Peters, Marion

    2009-01-01

    Background Isolated antibody to hepatitis B core antigen (anti-HBc) is a common serologic finding in persons infected with human immunodeficiency virus (HIV), but the outcome and clinical significance are uncertain. Methods We performed repeated hepatitis B virus (HBV) serologic tests on women who participated in the Women’s Interagency HIV Study and who had isolated anti-HBc at study entry. Results Repeated serologic tests were performed for 322 women (282 HIV-infected and 40 HIV-uninfected) at a median of 7.5 years after study entry. Seventy-one percent of women retained isolated anti-HBc serologic status, 20% acquired antibody to hepatitis B surface antigen (anti-HBs), and 2% acquired hepatitis B surface antigen (HBsAg). In unadjusted analysis, increasing age, injection drug use, and hepatitis C viremia were negatively associated with acquisition of anti-HBs. For HIV-infected women, predictors of acquisition of anti-HBs were an increase in CD4 cell count and the use of highly active antiretroviral therapy (HAART). Receipt of drugs with activity against HBV and self-reported HBV vaccination did not predict anti-HBs acquisition. In the multivariable regression model, HAART use remained a significant predictor of anti-HBs acquisition, whereas women with hepatitis C viremia were more likely to retain isolated anti-HBc serologic status. Conclusions Isolated anti-HBc status remained stable over time for the majority of women, especially women with chronic hepatitis C virus infection. Development of anti-HBs was predicted by HAART use and an increase in CD4 cell count. We conclude that a proportion of HIV-infected women with isolated anti-HBc have prior natural HBV infection with anti-HBs that is at an undetectable level because of immune dysfunction. Isolated anti-HBc in the presence of chronic hepatitis C virus infection may be attributable to a different phenomenon, such as dysfunctional antibody production. PMID:19480573

  9. Synthesis and biological evaluation of tricyclic guanidine analogues of batzelladine K for antimalarial, antileishmanial, antibacterial, antifungal, and anti-HIV activities.

    PubMed

    Ahmed, Nafees; Brahmbhatt, Keyur G; Khan, Shabana I; Jacob, Melissa; Tekwani, Babu L; Sabde, Sudeep; Mitra, Debashis; Singh, Inder P; Khan, Ikhlas A; Bhutani, Kamlesh K

    2013-04-01

    Fifty analogues of batzelladine K were synthesized and evaluated for in vitro antimalarial (Plasmodium falciparum), antileishmanial (Leishmania donovani), antimicrobial (panel of bacteria and fungi), antiviral (HIV-1) activities. Analogues 14h and 20l exhibited potential antimalarial activity against chloroquine-sensitive D6 strain with IC(50) 1.25 and 0.88 μM and chloroquine-resistant W2 strain with IC(50) 1.64 and 1.07 μM, respectively. Analogues 12c and 14c having nonyl substitution showed the most potent antileishmanial activity with IC(50) 2.39 and 2.78 μM and IC(90) 11.27 and 12.76 μM, respectively. Three analogues 12c, 14c, and 14i were the most active against various pathogenic bacteria and fungi with IC(50) < 3.02 μM and MIC/MBC/MFC <6 μM. Analogue 20l having pentyl and methyl substituents on tricycle showed promising activities against all pathogens. However, none was found active against HIV-1. Our study demonstrated that the tricyclic guanidine compounds provide new structural class for broad spectrum activity. © 2012 John Wiley & Sons A/S.

  10. Synthesis and biological evaluation of tricyclic guanidine analogues of batzelladine K for antimalarial, antileishmanial, antibacterial, antifungal and anti-HIV activities.

    PubMed

    Ahmed, Nafees; Brahmbhatt, Keyur G; Khan, Shabana I; Jacob, Melissa; Tekwani, Babu L; Sabde, Sudeep; Mitra, Debashis; Singh, Inder Pal; Khan, Ikhlas A; Bhutani, Kamlesh K

    2012-06-15

    Fifty analogues of batzelladine K were synthesized and evaluated for in vitro antimalarial (Plasmodium falciparum), antileishmanial (Leishmania donovani), antimicrobial (panel of bacteria and fungi), antiviral (HIV-1) activities. Analogues 14h and 20l exhibited potential antimalarial activity against chloroquine-sensitive D6 strain with IC 50 1.25 and 0.88 μM and chloroquine-resistant W2 strain with IC 50 1.64 and 1.07 μM, respectively. Analogues 12c and 14c having nonyl substitution showed the most potent antileishmanial activity with IC 50 2.39 and 2.78 μM and IC 90 11.27 and 12.76 μM respectively. Three analogues 12c, 14c and 14i were the most active against various pathogenic bacteria and fungi with IC 50 <3.02 μM and MIC/MBC/MFC <6 μM. Analogue 20l having pentyl and methyl substituents on tricycle showed promising activities against all pathogens. However, none was found active against HIV-1. Our study demonstrated that the tricyclic guanidine compounds provide new structral class for broad spectrum activity. © 2012 John Wiley & Sons A/S. © 2012 John Wiley & Sons A/S.

  11. Structure-guided Design and Immunological Characterization of Immunogens Presenting the HIV-1 gp120 V3 Loop on a CTB Scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Totrov; X Jiang; X Kong

    2011-12-31

    V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boostingmore » with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.« less

  12. PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not Induce Conformational Changes Characteristic of CD4

    PubMed Central

    Falkowska, Emilia; Ramos, Alejandra; Feng, Yu; Zhou, Tongqing; Moquin, Stephanie; Walker, Laura M.; Wu, Xueling; Seaman, Michael S.; Wrin, Terri; Kwong, Peter D.; Wyatt, Richard T.; Mascola, John R.; Poignard, Pascal

    2012-01-01

    Recently, several broadly neutralizing monoclonal antibodies (bnMAbs) directed to the CD4-binding site (CD4bs) of gp120 have been isolated from HIV-1-positive donors. These include VRC01, 3BNC117, and NIH45-46, all of which are capable of neutralizing about 90% of circulating HIV-1 isolates and all of which induce conformational changes in the HIV-1 gp120 monomer similar to those induced by the CD4 receptor. In this study, we characterize PGV04 (also known as VRC-PG04), a MAb with potency and breadth that rivals those of the prototypic VRC01 and 3BNC117. When screened on a large panel of viruses, the neutralizing profile of PGV04 was distinct from those of CD4, b12, and VRC01. Furthermore, the ability of PGV04 to neutralize pseudovirus containing single alanine substitutions exhibited a pattern distinct from those of the other CD4bs MAbs. In particular, substitutions D279A, I420A, and I423A were found to abrogate PGV04 neutralization. In contrast to VRC01, PGV04 did not enhance the binding of 17b or X5 to their epitopes (the CD4-induced [CD4i] site) in the coreceptor region on the gp120 monomer. Furthermore, in contrast to CD4, none of the anti-CD4bs MAbs induced the expression of the 17b epitope on cell surface-expressed cleaved Env trimers. We conclude that potent CD4bs bnMAbs can display differences in the way they recognize and access the CD4bs and that mimicry of CD4, as assessed by inducing conformational changes in monomeric gp120 that lead to enhanced exposure of the CD4i site, is not uniquely correlated with effective neutralization at the site of CD4 binding on HIV-1. PMID:22345481

  13. Inhibiting cancer cell hallmark features through nuclear export inhibition.

    PubMed

    Sun, Qingxiang; Chen, Xueqin; Zhou, Qiao; Burstein, Ezra; Yang, Shengyong; Jia, Da

    2016-01-01

    Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application. Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I-III) on both advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1 inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.

  14. Anti-MPER antibodies with heterogeneous neutralization capacity are detectable in most untreated HIV-1 infected individuals

    PubMed Central

    2014-01-01

    Background The MPER region of the HIV-1 envelope glycoprotein gp41 is targeted by broadly neutralizing antibodies. However, the localization of this epitope in a hydrophobic environment seems to hamper the elicitation of these antibodies in HIV infected individuals. We have quantified and characterized anti-MPER antibodies by ELISA and by flow cytometry using a collection of mini gp41-derived proteins expressed on the surface of 293T cells. Longitudinal plasma samples from 35 HIV-1 infected individuals were assayed for MPER recognition and MPER-dependent neutralizing capacity using HIV-2 viruses engrafted with HIV-1 MPER sequences. Results Miniproteins devoid of the cysteine loop of gp41 exposed the MPER on 293T cell membrane. Anti-MPER antibodies were identified in most individuals and were stable when analyzed in longitudinal samples. The magnitude of the responses was strongly correlated with the global response to the HIV-1 envelope glycoprotein, suggesting no specific limitation for anti-MPER antibodies. Peptide mapping showed poor recognition of the C-terminal MPER moiety and a wide presence of antibodies against the 2F5 epitope. However, antibody titers failed to correlate with 2F5-blocking activity and, more importantly, with the specific neutralization of HIV-2 chimeric viruses bearing the HIV-1 MPER sequence; suggesting a strong functional heterogeneity in anti-MPER humoral responses. Conclusions Anti-MPER antibodies can be detected in the vast majority of HIV-1 infected individuals and are generated in the context of the global anti-Env response. However, the neutralizing capacity is heterogeneous suggesting that eliciting neutralizing anti-MPER antibodies by immunization might require refinement of immunogens to skip nonneutralizing responses. PMID:24909946

  15. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    PubMed

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  16. HIV-specific antibodies but not t-cell responses are associated with protection in seronegative partners of HIV-1-infected individuals in Cambodia.

    PubMed

    Nguyen, Marie; Pean, Polidy; Lopalco, Lucia; Nouhin, Janin; Phoung, Viseth; Ly, Nary; Vermisse, Pierre; Henin, Yvette; Barré-Sinoussi, Françoise; Burastero, Samuele E; Reynes, Jean-Marc; Carcelain, Guislaine; Pancino, Gianfranco

    2006-08-01

    To study biological factors related to protection against HIV-1 infection in Cambodia, we recruited 48 partners of HIV-1-infected patients who remained uninfected (exposed uninfected individuals, EUs) despite unprotected sexual intercourse for more than 1 year and 49 unexposed controls (UCs). HIV-1-specific antibodies (IgA anti-gp41 and IgG anti-CD4-gp120 complex), T-cell responses, and cellular factors that may be involved in protection (peripheral blood mononuclear cell [PBMC] resistance to HIV-1 infection and beta-chemokine production) were evaluated. Anti-HIV-1 antibodies were higher in EUs than those in UCs (P = 0.01 and P = 0.04 for anti-gp41 and anti-CD4-gp120, respectively). We observed a decreased susceptibility to a primary Cambodian isolate, HIV-1KH019, in EU PBMCs as compared with UC PBMCs (P = 0.03). A weak T-cell response to one pool of HIV-1 Gag peptides was found by ELISpot in 1 of 19 EUs. Whereas T-cell specific immunity was not associated to protection, our results suggest that HIV-specific humoral immunity and reduced cell susceptibility to infection may contribute to protection against HIV-1 infection in Cambodian EUs.

  17. Croton megalobotrys Müll Arg. and Vitex doniana (Sweet): Traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of HIV-1.

    PubMed

    Tietjen, Ian; Gatonye, Teresia; Ngwenya, Barbara N; Namushe, Amos; Simonambanga, Sundana; Muzila, Mbaki; Mwimanzi, Philip; Xiao, Jianbo; Fedida, David; Brumme, Zabrina L; Brockman, Mark A; Andrae-Marobela, Kerstin

    2016-09-15

    Human Immunodeficiency Virus (HIV) strains resistant to licensed anti-retroviral drugs (ARVs) continue to emerge. On the African continent, uneven access to ARVs combined with occurrence of side-effects after prolonged ARV therapy have led to searches for traditional medicines as alternative or complementary remedies to conventional HIV/AIDS management. Here we characterize a specific three-step traditional HIV/AIDS treatment regimen consisting of Cassia sieberiana root, Vitex doniana root, and Croton megalobotrys bark by combining qualitative interviews of traditional medical knowledge users in Botswana with in vitro HIV replication studies. Crude extracts from a total of seven medicinal plants were tested for in vitro cytotoxicity and inhibition of wild-type (NL4.3) and ARV-resistant HIV-1 replication in an immortalized GFP-reporter CD4+ T-cell line. C. sieberiana root, V. doniana root, and C. megalobotrys bark extracts inhibited HIV-1NL4.3 replication with dose-dependence and without concomitant cytotoxicity. C. sieberiana and V. doniana extracts inhibited HIV-1 replication by 50% at 84.8µg/mL and at 25µg/mL, respectively, while C. megalobotrys extracts inhibited HIV-1 replication by a maximum of 45% at concentrations as low as 0.05µg/mL. Extracts did not interfere with antiviral activities of licensed ARVs when applied in combination and exhibited comparable efficacies against viruses harboring major resistance mutations to licensed protease, reverse-transcriptase, or integrase inhibitors. We report for the first time a three-step traditional HIV/AIDS regimen, used alone or in combination with standard ARV regimens, where each step exhibited more potent ability to inhibit HIV replication in vitro. Our observations support the "reverse pharmacology" model where documented clinical experiences are used to identify natural products of therapeutic value. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Trypsin Inhibitors from Cajanus cajan and Phaseolus limensis Possess Antioxidant, Anti-Inflammatory, and Antibacterial Activity.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Afreen, Sumbul; Azam, Mudasser; Sen, Priyankar; Sharma, Yamini; Haque, Qazi Mohd Rizwanul; Fatma, Tasneem; Manzoor, Nikhat; Fatima, Sadaf

    2018-01-18

    Protease inhibitors are one of the most promising and investigated subjects for their role in pharmacognostic and pharmacological studies. This study aimed to investigate antioxidant, anti-inflammatory, and antimicrobial activities of trypsin inhibitors (TIs) from two plant sources (Cajanus cajan and Phaseolus limensis). TI was purified from C. cajan (PUSA-992) by ammonium sulfate precipitation followed by ion exchange chromatography. TI from Phaseolus limensis (lima bean trypsin inhibitor; LBTI) was procured from Sigma-Aldrich, St. Louis, Missouri, United States. The antioxidant activity was analyzed by ferric ion reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The anti-inflammatory property of TIs was determined by inhibition of albumin denaturation assay. Ascorbic acid and aspirin were used as standards for antioxidant and anti-inflammatory assays, respectively. These TIs were tested against various bacterial and fungal strains. The TIs showed DPPH radical-scavenging activity in a concentration-dependent manner with IC 50 values comparable to ascorbic acid. The FRAP values were also observed comparable to ascorbic acid and followed the trend of dose-dependent manner. The half maximal inhibitory concentration (IC 50 ) values of CCTI and LBTI in anti-inflammatory test showed that LBTI is more potent than CCTI. The TIs showed potent antibacterial activity, but apparently no action against fungi. This study has reported the biological properties of CCTI and LBTI for the first time. The results show that TIs possess the ability to inhibit diseases caused by oxidative stress, inflammation, and bacterial infestation.

  19. Medicinal plants in the treatment of Helicobacter pylori infections.

    PubMed

    Safavi, Maliheh; Shams-Ardakani, Mohammadreza; Foroumadi, Alireza

    2015-07-01

    Helicobacter pylori is a small, spiral, Gram-negative bacillus that plays a role in the pathogenesis of a number of diseases ranging from asymptomatic gastritis to gastric cancer. Schedule compliance, antibiotic drug resistance, and side-effects of triple or quadruple therapy have led to research for novel candidates from plants. The purpose of this paper is to review the most potent medicinal plants of recently published literature with anti-H. pylori activity. For centuries, herbals have been used by traditional healers around the world to treat various gastrointestinal tract disorders such as dyspepsia, gastritis, and peptic ulcer disease. The mechanism of action by which these botanicals exert their therapeutic properties has not been completely and clearly elucidated. Anti-H. pylori properties may be one of the possible mechanisms by which gastroprotective herbs treat gastrointestinal tract disorders. Electronic databases such as PubMed, Google scholar, EBSCO, and local databases were explored for medicinal plants with anti-H. pylori properties between 1984 and 2013 using key words "medicinal plants" and "Helicobacter pylori" or "anti-Helicobacter pylori". A total of 43 medicinal plant species belonging to 27 families including Amaryllidaceae, Anacardiaceae, Apiaceae, Apocynaceae, Asclepiadoideae, Asteraceae, Bignoniaceae, Clusiaceae, Chancapiedra, Combretaceae, Cyperaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Lamiaceae, Lauraceae, Lythraceae, Menispermaceae, Myristicaceae, Myrtaceae, Oleaceae, Papaveraceae, Plumbaginaceae, Poaceae, Ranunculaceae, Rosaceae, and Theaceae were studied as herbs with potent anti-H. pylori effects. Traditional folk medicinal use of some of these plants to treat gastric infections is substantiated by the antibacterial activity of their extracts against H. pylori.

  20. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    PubMed Central

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732

  1. Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate.

    PubMed

    Mohamed, Mohamed F; Brezden, Anna; Mohammad, Haroon; Chmielewski, Jean; Seleem, Mohamed N

    2017-04-01

    The worldwide emergence of antibiotic resistance represents a serious medical threat. The ability of these resistant pathogens to form biofilms that are highly tolerant to antibiotics further aggravates the situation and leads to recurring infections. Thus, new therapeutic approaches that adopt novel mechanisms of action are urgently needed. To address this significant problem, we conjugated the antibiotic kanamycin with a novel antimicrobial peptide (P14LRR) to develop a kanamycin peptide conjugate (P14KanS). Antibacterial activities were evaluated in vitro and in vivo using a Caenorhabditis elegans model. Additionally, the mechanism of action, antibiofilm activity and anti-inflammatory effect of P14KanS were investigated. P14KanS exhibited potent antimicrobial activity against ESKAPE pathogens. P14KanS demonstrated a ≥128-fold improvement in MIC relative to kanamycin against kanamycin-resistant strains. Mechanistic studies confirmed that P14KanS exerts its antibacterial effect by selectively disrupting the bacterial cell membrane. Unlike many antibiotics, P14KanS demonstrated rapid bactericidal activity against stationary phases of both Gram-positive and Gram-negative pathogens. Moreover, P14KanS was superior in disrupting adherent bacterial biofilms and in killing intracellular pathogens as compared to conventional antibiotics. Furthermore, P14KanS demonstrated potent anti-inflammatory activity via the suppression of LPS-induced proinflammatory cytokines. Finally, P14KanS protected C. elegans from lethal infections of both Gram-positive and Gram-negative pathogens. The potent in vitro and in vivo activity of P14KanS warrants further investigation as a potential therapeutic agent for bacterial infections. This study demonstrates that equipping kanamycin with an antimicrobial peptide is a promising method to tackle bacterial biofilms and address bacterial resistance to aminoglycosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Anti-HIV-1 Activity of Flavonoid Myricetin on HIV-1 Infection in a Dual-Chamber In Vitro Model

    PubMed Central

    Pasetto, Silvana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2014-01-01

    HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01–100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic), H9 and PBMC cells plus HIV-1 MN (X4 tropic), and the dual tropic (X4R5) HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research. PMID:25546350

  3. Synthesis and In Vitro Activity of Polyhalogenated 2-phenylbenzimidazoles as a New Class of anti-MRSA and Anti-VRE Agents.

    PubMed

    Göker, Hakan; Karaaslan, Cigdem; Püsküllü, Mustafa Orhan; Yildiz, Sulhiye; Duydu, Yalcin; Üstündağ, Aylin; Yalcin, Can Özgür

    2016-01-01

    A series of novel polyhalogenated 2-phenylbenzimidazoles have been synthesized and evaluated for in vitro antistaphylococcal activity against drug-resistant bacterial strains (methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium. Certain compounds inhibit bacterial growth perfectly. 11 was active than vancomycin (0.78 μg/mL) with the lowest MIC values with 0.19 μg/mL against methicillin-resistant Staphylococcus aureus, 8 and 35 exhibited best inhibitory activity against vancomycin-resistant Enterococcus faecium (1.56 μg/mL). The mechanism of action for this class of compounds appears to be different than clinically used antibiotics. These polyhalogenated benzimidazoles have potential for further investigation as a new class of potent anti-methicillin-resistant Staphylococcus aureus and anti-vancomycin-resistant Enterococcus faecium agents. © 2015 John Wiley & Sons A/S.

  4. Structure-anti-MRSA activity relationship of macrocyclic bis(bibenzyl) derivatives.

    PubMed

    Sawada, Hiromi; Onoda, Kenji; Morita, Daichi; Ishitsubo, Erika; Matsuno, Kenji; Tokiwa, Hiroaki; Kuroda, Teruo; Miyachi, Hiroyuki

    2013-12-15

    We synthesized a series of macrocyclic bis(bibenzyl) derivatives, including riccardin-, isoplagiochin- and marchantin-class structures, and evaluated their antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). The structure-activity relationships and the results of molecular dynamics simulations indicated that bis(bibenzyl)s with potent anti-MRSA activity commonly have a 4-hydroxyl group at the D-benzene ring and a 2-hydroxyl group at the C-benzene ring in the hydrophilic part of the molecule, and an unsubstituted phenoxyphenyl group in the hydrophobic part of the molecule containing the A-B-benzene rings. Pharmacological characterization of the bis(bibenzyl) derivatives and 2-phenoxyphenol fragment 25, previously proposed as the minimum structure of riccardin C 1 for anti-MRSA activity, indicated that they have different action mechanisms: the bis(bibenzyl)s are bactericidal, while 25 is bacteriostatic, showing only weak bactericidal activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Design, Synthesis, and Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parai, Maloy Kumar; Huggins, David J.; Cao, Hong

    2012-09-11

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and Cmore » and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.« less

  6. Potent Autologous and Heterologous Neutralizing Antibody Responses Occur in HIV-2 Infection across a Broad Range of Infection Outcomes

    PubMed Central

    Aasa-Chapman, Marlén; Cotten, Matthew; Hué, Stéphane; Robinson, James; Bibollet-Ruche, Frederic; Sarge-Njie, Ramu; Berry, Neil; Jaye, Assan; Aaby, Peter; Whittle, Hilton; Rowland-Jones, Sarah; Weiss, Robin

    2012-01-01

    Few studies have explored the role of neutralizing antibody (NAb) responses in controlling HIV-2 viremia and disease progression. Using a TZM-bl neutralization assay, we assessed heterologous and autologous NAb responses from a community cohort of HIV-2-infected individuals with a broad range of disease outcomes in rural Guinea-Bissau. All subjects (n = 40) displayed exceptionally high heterologous NAb titers (50% inhibitory plasma dilution or 50% inhibitory concentration [IC50], 1:7,000 to 1:1,000,000) against 5 novel primary HIV-2 envelopes and HIV-2 7312A, whereas ROD A and 3 primary envelopes were relatively resistant to neutralization. Most individuals also showed high autologous NAb against contemporaneous envelopes (78% of plasma-envelope combinations in 69 envelopes from 21 subjects), with IC50s above 1:10,000. No association between heterologous or autologous NAb titer and greater control of HIV-2 was found. A subset of envelopes was found to be more resistant to neutralization (by plasma and HIV-2 monoclonal antibodies). These envelopes were isolated from individuals with greater intrapatient sequence diversity and were associated with changes in potential N-linked glycosylation sites but not CD4 independence or CXCR4 use. Plasma collected from up to 15 years previously was able to potently neutralize recent autologous envelopes, suggesting a lack of escape from NAb and the persistence of neutralization-sensitive variants over time, despite significant NAb pressure. We conclude that despite the presence of broad and potent NAb responses in HIV-2-infected individuals, these are not the primary forces behind the dichotomous outcomes observed but reveal a limited capacity for adaptive selection and escape from host immunity in HIV-2 infection. PMID:22072758

  7. Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson's disease.

    PubMed

    Jouve, Loréline; Salin, Pascal; Melon, Christophe; Kerkerian-Le Goff, Lydia

    2010-07-21

    The thalamic centromedian-parafascicular (CM/Pf) complex, mainly represented by Pf in rodents, is proposed as an interesting target for the neurosurgical treatment of movement disorders, including Parkinson's disease. In this study, we examined the functional impact of subchronic high-frequency stimulation (HFS) of Pf in the 6-hydroxydopamine-lesioned hemiparkinsonian rat model. Pf-HFS had significant anti-akinetic action, evidenced by alleviation of limb use asymmetry (cylinder test). Whereas this anti-akinetic action was moderate, Pf-HFS totally reversed lateralized neglect (corridor task), suggesting potent action on sensorimotor integration. At the cellular level, Pf-HFS partially reversed the dopamine denervation-induced increase in striatal preproenkephalin A mRNA levels, a marker of the neurons of the indirect pathway, without interfering with the markers of the direct pathway (preprotachykinin and preprodynorphin). Pf-HFS totally reversed the lesion-induced changes in the gene expression of cytochrome oxidase subunit I in the subthalamic nucleus, the globus pallidus, and the substantia nigra pars reticulata, and partially in the entopeduncular nucleus. Unlike HFS of the subthalamic nucleus, Pf-HFS did not induce per se dyskinesias and directly, although partially, alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced forelimb dyskinesia. Conversely, L-DOPA treatment negatively interfered with the anti-parkinsonian effect of Pf-HFS. Altogether, these data show that Pf-DBS, by recruiting a large basal ganglia circuitry, provides moderate to strong anti-parkinsonian benefits that might, however, be affected by L-DOPA. The widespread behavioral and cellular outcomes of Pf-HFS evidenced here demonstrate that CM/Pf is an important node for modulating the pathophysiological functioning of basal ganglia and related disorders.

  8. Design, synthesis, and biological evaluation of a novel series of quercetin diacylglucosides as potent anti-MRSA and anti-VRE agents.

    PubMed

    Hossion, Abugafar M L; Otsuka, Nao; Kandahary, Rafiya K; Tsuchiya, Tomofusa; Ogawa, Wakano; Iwado, Akimasa; Zamami, Yoshito; Sasaki, Kenji

    2010-09-01

    A series of novel quercetin diacylglucosides were designed and first synthesized by Steglich esterification on the basis of MRSA strains inhibiting natural compound A. The in vitro inhibition of different multi-drug resistant bacterial strains and Escherichia coli DNA gyrase B was investigated. In the series, compound 10h was up to 128-fold more potent against vancomycin-resistant enterococci and more effective than A, which represents a promising new candidate as a potent anti-MRSA and anti-VRE agent. Copyright 2010. Published by Elsevier Ltd.

  9. Identification of DNA-PKcs as a primary resistance factor of TIC10 in hepatocellular carcinoma cells.

    PubMed

    Cheng, Long; Liu, Yuan-Yuan; Lu, Pei-Hua; Peng, Yi; Yuan, Qiang; Gu, Xin-Shi; Jin, Yong; Chen, Min-Bin; Bai, Xu-Ming

    2017-04-25

    The current study tested the anti-hepatocellular carcinoma (HCC) cell activity of TIC10, a first-in-class small-molecule tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL) inducer. TIC10 exerted potent anti-proliferative and pro-apoptotic actions in primary and established human HCC cells. TIC10 blocked Akt-Erk activation, leading to Foxo3a nuclear translocation, as well as TRAIL and death receptor-5 (DR5) transcription in HCC cells. We propose that DNA-PKcs is a major resistance factor of TIC10 possibly via inhibiting Foxo3a nuclear translocation. DNA-PKcs inhibition, knockdown or mutation facilitated TIC10-induced Foxo3a nuclear translocation, TRAIL/DR5 expression and cell apoptosis. Reversely, exogenous DNA-PKcs over-expression inhibited above actions by TIC10. In vivo, oral administration of TIC10 significantly inhibited HepG2 tumor growth in nude mice, which was further potentiated with Nu7026 co-administration. Thus, TIC10 shows promising anti-HCC activity, alone or together with DNA-PKcs inhibitors.

  10. Potent activity of nobiletin-rich Citrus reticulata peel extract to facilitate cAMP/PKA/ERK/CREB signaling associated with learning and memory in cultured hippocampal neurons: identification of the substances responsible for the pharmacological action.

    PubMed

    Kawahata, Ichiro; Yoshida, Masaaki; Sun, Wen; Nakajima, Akira; Lai, Yanxin; Osaka, Naoya; Matsuzaki, Kentaro; Yokosuka, Akihito; Mimaki, Yoshihiro; Naganuma, Akira; Tomioka, Yoshihisa; Yamakuni, Tohru

    2013-10-01

    cAMP/PKA/ERK/CREB signaling linked to CRE-mediated transcription is crucial for learning and memory. We originally found nobiletin as a natural compound that stimulates this intracellular signaling and exhibits anti-dementia action in animals. Citrus reticulata or C. unshiu peels are employed as "chinpi" and include a small amount of nobiletin. We here provide the first evidence for beneficial pharmacological actions on the cAMP/PKA/ERK/CREB cascade of extracts from nobiletin-rich C.reticulata peels designated as Nchinpi, the nobiletin content of which was 0.83 ± 0.13% of the dry weight or 16-fold higher than that of standard chinpi extracts. Nchinpi extracts potently facilitated CRE-mediated transcription in cultured hippocampal neurons, whereas the standard chinpi extracts showed no such activity. Also, the Nchinpi extract, but not the standard chinpi extract, stimulated PKA/ERK/CREB signaling. Interestingly, treatment with the Nchinpi extract at the concentration corresponding to approximately 5 μM nobiletin more potently facilitated CRE-mediated transcriptional activity than did 30 μM nobiletin alone. Consistently, sinensetin, tangeretin, 6-demethoxynobiletin, and 6-demethoxytangeretin were also identified as bioactive substances in Nchinpi that facilitated the CRE-mediated transcription. Purified sinensetin enhanced the transcription to a greater degree than nobiletin. Furthermore, samples reconstituted with the four purified compounds and nobiletin in the ratio of each constituent's content in the extract showed activity almost equal to that of the Nchinpi extract to stimulate CRE-mediated transcription. These findings suggest that above four compounds and nobiletin in the Nchinpi extract mainly cooperated to facilitate potently CRE-mediated transcription linked to the upstream cAMP/PKA/ERK/CREB pathway in hippocampal neurons.

  11. Arylazolyl(azinyl)thioacetanilides. Part 16: Structure-based bioisosterism design, synthesis and biological evaluation of novel pyrimidinylthioacetanilides as potent HIV-1 inhibitors.

    PubMed

    Li, Xiao; Lu, Xueyi; Chen, Wenmin; Liu, Huiqing; Zhan, Peng; Pannecouque, Christophe; Balzarini, Jan; De Clercq, Erik; Liu, Xinyong

    2014-10-01

    A series of novel pyrimidinylthioacetanilides were designed, synthesized, and evaluated for their biological activity as potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Most of the tested compounds were proved to be effective in inhibiting HIV-1 (IIIB) replication with EC50 ranging from 0.15 μM to 24.2 μM, thereinto compound 15 was the most active lead with favorable inhibitory activity against HIV-1 (IIIB) (EC50=0.15 μM, SI=684). Besides, compound 6 displayed moderate inhibition against the double-mutated HIV-1 strain (K103N/Y181C) (EC50=3.9 μM). Preliminary structure-activity relationships (SARs), structure-cytotoxicity relationships (SCRs) data, and molecular modeling studies were discussed as well, which may provide valuable insights for further optimizations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evaluation of Biological Activity of Mastic Extracts Based on Chemotherapeutic Indices.

    PubMed

    Suzuki, Ryuichiro; Sakagami, Hiroshi; Amano, Shigeru; Fukuchi, Kunihiko; Sunaga, Katsuyoshi; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Shirataki, Yoshiaki; Tomomura, Mineko; Masuda, Yoshiko; Yokose, Satoshi; Tomomura, Akito; Watanabe, Hirofumi; Okawara, Masaki; Matahira, Yoshiharu

    2017-01-01

    Most previous mastic investigators have not considered its potent cytotoxicity that may significantly affect the interpretation of obtained data. In the present study, we re-evaluated several biological activities of mastic extracts, based on chemotherapeutic indexes. Pulverized mastic gum was extracted with n-hexane and then with ethyl acetate or independently with methanol or n-butanol. Tumor specificity (TS) of the extracts was determined by their cytotoxicity against human malignant and non-malignant cells. Antibacterial activity was determined by their cytotoxicity against bacteria and normal oral cells. Antiviral activity was determined by their protection of viral infection and cytotoxic activity. Cytochrome P-450 (CYP) 3A4 activity was measured by β-hydroxylation of testosterone. Ethyl acetate extract showed slightly higher tumor specificity (TS=2.6) and one order higher antibacterial activity (selectivity index (SI)=0.813) than other extracts (TS=1.4-2.5; SI=0.030-0.063). All extracts showed no anti-human immunodeficiency virus (HIV) activity, but some anti-herpes simplex virus (HSV) activity, which was masked by potent cytotoxicity. They showed strong inhibitory activity against CYP3A4. Ethyl acetate extraction following the removal of cytotoxic and CYP3A4 inhibitory substances by n-hexane can enhance antitumor and antibacterial activity of mastic. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistantmore » mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.« less

  14. Dendritic Cell Immune Responses in HIV-1 Controllers.

    PubMed

    Martin-Gayo, Enrique; Yu, Xu G

    2017-02-01

    Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.

  15. HIV Infection Status as a Predictor of Hepatitis C Virus RNA Testing in Primary Care

    PubMed Central

    Yartel, Anthony K.; Morgan, Rebecca L.; Rein, David B.; Brown, Kimberly Ann; Kil, Natalie B.; Massoud, Omar I.; Fallon, Michael B.; Smith, Bryce D.

    2015-01-01

    Introduction Receipt of hepatitis C virus (HCV) RNA testing following a positive HCV antibody (anti-HCV+) test result to establish current infection is a quality indicator for HCV-related care. This study examines HIV infection status as a predictor of HCV RNA test receipt after an anti-HCV+ result in the primary care setting. Methods Electronic medical records of anti-HCV+ patients from a multisite retrospective study of patients aged ≥18 years who utilized one or more primary care outpatient services during 2005–2010 were analyzed in 2014. A multivariable logistic regression model examined the independent relationships between patient characteristics and receipt of HCV RNA testing. Results Among 1,115 anti-HCV+ patients, 133 (11.9%) were also HIV-positive. Of these, 77.4% (n=103) underwent HCV RNA testing to determine current infection status. By contrast, 66.7% (n=654/980) of anti-HCV+ patients who were HIV-negative received HCV RNA testing. Following multivariable adjustment, the odds of receiving HCV RNA testing were higher among anti-HCV+ patients who were also HIV-positive (AOR=1.9, 95% CI=1.2, 3.0), compared with their HIV-negative counterparts. Elevated alanine aminotransferase level was also associated with receipt of HCV RNA testing (AOR=1.9, 95% CI=1.4, 2.4). Black race was associated with decreased odds of receiving HCV RNA testing (AOR=0.7, 95% CI=0.5, 1.0). Conclusions HIV infection status is independently associated with the likelihood of receiving HCV RNA testing following an anti-HCV+ result. One quarter of anti-HCV+ patients who were also HIV-positive and one third of their HIV-negative counterparts, respectively, did not receive testing to establish active HCV infection, which is imperative for appropriate care and treatment. PMID:25896194

  16. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinghe; Kang, Byong H.; Ishida, Elise

    Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permittedmore » it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.« less

  17. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses

    PubMed Central

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-01-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  18. Structural basis of clade-specific HIV-1 neutralization by humanized anti-V3 monoclonal antibody KD-247.

    PubMed

    Kirby, Karen A; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G; Chiang, Leslie A; Pan, Yun; Moran, Jennifer L; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G

    2015-01-01

    Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target. © FASEB.

  19. Evolution of information-driven HIV/AIDS policies in China.

    PubMed

    Sun, Xinhua; Lu, Fan; Wu, Zunyou; Poundstone, Katharine; Zeng, Gang; Xu, Peng; Zhang, Dapeng; Liu, Kangmai; Liau, Adrian

    2010-12-01

    As China continues to commit to universal access to HIV/AIDS prevention, treatment and care services, its HIV/AIDS policies have become increasingly information driven. We review China's key national-level HIV/AIDS policies and discuss policy gaps and challenges ahead. We conducted a desk review of key national-level policies that have had a major impact on China's HIV/AIDS epidemic, and examined recent epidemiological data relevant to China's HIV response. National-level policies that have had a major impact on China's HIV/AIDS response include: 'Four Frees and One Care'; 5-year action plans; and HIV/AIDS regulation. These landmark policies have facilitated massive scaling up of services over the past decade. For example, the number of drug users provided with methadone maintenance treatment significantly increased from 8116 in 2005 to 241 975 in 2009; almost a 30-fold increase. The 'Four Frees and One Care' policy has increased the number of people living with AIDS on anti-retroviral treatment from some 100 patients in 2003 to over 80 000 in 2009. However, stigma and discrimination remains major obstacles for people living with HIV/AIDS trying to access services. China's current national policies are increasingly information driven and responsive to changes in the epidemic. However, gaps remain in policy implementation, and new policies are needed to meet emerging challenges.

  20. Venom Components of Iranian Scorpion Hemiscorpius lepturus Inhibit the Growth and Replication of Human Immunodeficiency Virus 1 (HIV-1).

    PubMed

    Zabihollahi, Rezvan; Pooshang Bagheri, Kamran; Keshavarz, Zohreh; Motevalli, Fatemeh; Bahramali, Golnaz; Siadat, Seyed Davar; Momen, Seyed Bahman; Shahbazzadeh, Delavar; Aghasadeghi, Mohammad Reza

    2016-11-01

    During the recent years, significant progress has been achieved on development of novel anti-viral drugs. Natural products are assumed as the potential sources of novel anti-viral drugs; therefore, there are some previous studies reporting the anti-viral compounds from venomous animals. Based on the significant value for tracing of non-toxic anti-viral agents from natural resources, this study was aimed to investigate the anti-viral activity of some HPLC purified fractions derived from the venom of Iranian scorpion, Hemiscorpius lepturus, against human immunodeficiency virus 1 (HIV-1) and herpes simplex virus 1 (HSV-1). H. Lepturus crude venom was subjected to reverse phase HPLC analysis to determine its active components precisely where four dominant fractions obtained at retention time of 156-160 minutes. The phospholipase A2 and hemolytic activities of the purified fractions were first evaluated. Then the anti-viral activity was measured using single cycle HIV (NL4-3) replication and HSV (KOS) plaque reduction assays. The H. lepturus crude venom inhibited HIV replication by 73% at the concentration of 200 µg/ml, while it did not show significant anti-HSV activity. It also inhibited the cell-free viral particles in a virucidal assay, while it showed no toxicity for the target cells in a proliferation assay. The four HPLC fractions purified from H. lepturus inhibited HIV with IC50 of 20 µg/ml. H. lepturus venom contains components with considerable anti-HIV activity insofar as it has virucidal activity that offers a novel therapeutic approach against HIV infection. Our results suggest a promising pilot for anti-HIV drug discovery with H. lepturus scorpion venom.

  1. The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity.

    PubMed

    Ezzat, Shahira M; Ezzat, Marwa I; Okba, Mona M; Menze, Esther T; Abdel-Naim, Ashraf B

    2018-03-25

    Ginger (Zingiber officinale Roscoe) is a well known anti-inflammatory drug in the Egyptian, Indian and Chinese folk medicines, yet its mechanism of action is unclear. To explore its mechanism of action and to correlate it to its biophytochemicals. Various extracts viz. water, 50%, 70%, 80%, and 90% ethanol were prepared from ginger rhizomes. Fractionation of the aqueous extract (AE) was accomplished using Diaion HP-20. In vitro anti-inflammatory activity of the different extracts and isolated compounds was evaluated using protein denaturation inhibition, membrane stabilization, protease inhibition, and anti-lipoxygenase assays. In vivo anti-inflammatory activity of AE was estimated using carrageenan-induced rat paw edema in rats at doses 25, 50, 100 and 200mg/kg b.wt. All the tested extracts showed significant (p< 0.1) in vitro anti-inflammatory activities. The strongest anti-lipoxygenase activity was observed for AE that was more significant than that of diclofenac (58% and 52%, respectively) at the same concentration (125μg/ml). Purification of AE led to the isolation of 6-poradol (G1), 6-shogaol (G2); methyl 6- gingerol (G3), 5-gingerol (G4), 6-gingerol (G5), 8-gingerol (G6), 10-gingerol (G7), and 1-dehydro-6-gingerol (G8). G1, G2 and G8 exhibited potent activity in all the studied assays, while G4 and G5 exhibited moderate activity. In vivo administration of AE ameliorated rat paw edema in a dose-dependent manner. AE (at 200mg/kg) showed significant reduction in production of PGE2, TNF-α, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated upon activation, normal T-cell expressed and secreted (RANTES), myeloperoxidase (MPO) activity by 60%, 57%, 60%, 41%, 32% and 67%, respectively. AE at 100 and 200mg/kg was equipotent to indomethacin in reduction of NO x level and in increasing the total antioxidant capacity (TAC). Histopathological examination revealed very few inflammatory cells infiltration and edema after administration of AE (200mg/kg) prior to carrageenan. Ginger anti-inflammatory activity is mediated by inhibiting macrophage and neutrophils activation as well as negatively affecting monocyte and leukocyte migration. This was evidenced by the dose-dependent decrease in pro-inflammatory cytokines and chemokines and replenishment the total antioxidant capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A newly synthesized macakurzin C-derivative attenuates acute and chronic skin inflammation: The Nrf2/heme oxygenase signaling as a potential target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akram, Muhammad

    Impaired immune responses in skin play a pivotal role in the development and progression of chemical-associated inflammatory skin disorders. In this study, we synthesized new flavonoid derivatives from macakurzin C, and identified in vitro and in vivo efficacy of a potent anti-inflammatory flavonoid, Compound 14 (CPD 14), with its underlying mechanisms. In lipopolysaccharide (LPS)-stimulated murine macrophages and IFN-γ/TNF-α-stimulated human keratinocytes, CPD 14 significantly inhibited the release of inflammatory mediators including nitric oxide (NO), prostaglandins, and cytokines (IC{sub 50} for NO inhibition in macrophages: 4.61 μM). Attenuated NF-κB signaling and activated Nrf2/HO-1 pathway were responsible for the anti-inflammatory effects of CPDmore » 14. The in vivo relevance was examined in phorbol 12-myristate 13-acetate (TPA)-induced acute skin inflammation and oxazolone-induced atopic dermatitis models. Topically applied CPD 14 significantly protected both irritation- and sensitization-associated skin inflammation by suppressing the expression of inflammatory mediators. In summary, we demonstrated that a newly synthesized flavonoid, CPD 14, has potent inhibitory effects on skin inflammation, suggesting it is a potential therapeutic candidate to treat skin disorders associated with excessive inflammation. - Highlights: • An anti-inflammatory flavonoid CPD 14 was newly synthesized from macakurzin C. • CPD 14 potently inhibited inflammatory reaction in keratinocytes and macrophages. • Dermal toxicity by irritation or sensitization in rats was protected by CPD 14. • Attenuated NF-κB and activated Nrf2/HO-1 were main mechanisms of CPD 14 action.« less

  3. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinghe; Kang, Byong H.; Pancera, Marie

    The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC 50) <50 μg ml -1. The median IC 50 of neutralized viruses was 0.033 μg ml -1, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and amore » reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.« less

  4. Resveratrol induces dynamic changes to the microglia transcriptome, inhibiting inflammatory pathways and protecting against microglia-mediated photoreceptor apoptosis.

    PubMed

    Wiedemann, Johanna; Rashid, Khalid; Langmann, Thomas

    2018-06-18

    Microglia activation is central to the pathophysiology of retinal degenerative disorders. Resveratrol, a naturally occurring non-flavonoid phenolic compound present in red wine has potent anti-inflammatory and immunomodulatory properties. However, molecular mechanisms by which resveratrol influences microglial inflammatory pathways and housekeeping functions remain unclear. Here, we first studied the immuno-modulatory effects of resveratrol on BV-2 microglial cells at the transcriptome level using DNA-microarrays and selected qRT-PCR analyses. We then analyzed resveratrol effects on microglia morphology, phagocytosis and migration and estimated their neurotoxicity on 661 W photoreceptors by quantification of caspase 3/7 levels. We found that resveratrol effectively blocked gene expression of a broad spectrum of lipopolysaccharide (LPS)-induced pro-inflammatory molecules, including cytokines and complement proteins. These transcriptomic changes were accompanied by potent inhibition of LPS-induced nitric oxide secretion and reduced microglia-mediated apoptosis of 661 W photoreceptor cultures. Our findings highlight novel targets involved in the anti-inflammatory and neuroprotective action of resveratrol against neuroinflammatory responses. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity

    PubMed Central

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-01-01

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. DOI: http://dx.doi.org/10.7554/eLife.11156.001 PMID:27244239

  6. Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers

    PubMed Central

    Raj, Ganesh V; Sareddy, Gangadhara Reddy; Ma, Shihong; Lee, Tae-Kyung; Viswanadhapalli, Suryavathi; Li, Rui; Liu, Xihui; Murakami, Shino; Chen, Chien-Cheng; Lee, Wan-Ru; Mann, Monica; Krishnan, Samaya Rajeshwari; Manandhar, Bikash; Gonugunta, Vijay K; Strand, Douglas; Tekmal, Rajeshwar Rao; Ahn, Jung-Mo; Vadlamudi, Ratna K

    2017-01-01

    The majority of human breast cancer is estrogen receptor alpha (ER) positive. While anti-estrogens/aromatase inhibitors are initially effective, resistance to these drugs commonly develops. Therapy-resistant tumors often retain ER signaling, via interaction with critical oncogenic coregulator proteins. To address these mechanisms of resistance, we have developed a novel ER coregulator binding modulator, ERX-11. ERX-11 interacts directly with ER and blocks the interaction between a subset of coregulators with both native and mutant forms of ER. ERX-11 effectively blocks ER-mediated oncogenic signaling and has potent anti-proliferative activity against therapy-sensitive and therapy-resistant human breast cancer cells. ERX-11 is orally bioavailable, with no overt signs of toxicity and potent activity in both murine xenograft and patient-derived breast tumor explant models. This first-in-class agent, with its novel mechanism of action of disrupting critical protein-protein interactions, overcomes the limitations of current therapies and may be clinically translatable for patients with therapy-sensitive and therapy-resistant breast cancers. DOI: http://dx.doi.org/10.7554/eLife.26857.001 PMID:28786813

  7. Population Pharmacokinetics and Pharmacodynamic Modeling of Abacavir (1592U89) from a Dose-Ranging, Double-Blind, Randomized Monotherapy Trial with Human Immunodeficiency Virus-Infected Subjects

    PubMed Central

    Weller, Stephen; Radomski, Kristine M.; Lou, Yu; Stein, Daniel S.

    2000-01-01

    Abacavir (formerly 1592U89) is a carbocyclic nucleoside analog with potent anti-human immunodeficiency virus (anti-HIV) activity when administered alone or in combination with other antiretroviral agents. The population pharmacokinetics and pharmacodynamics of abacavir were investigated in 41 HIV type 1 (HIV-1)-infected, antiretroviral naive adults with baseline CD4+ cell counts of ≥100/mm3 and plasma HIV-1 RNA levels of >30,000 copies/ml. Data for analysis were obtained from patients who received randomized, blinded monotherapy with abacavir at 100, 300, or 600 mg twice-daily (BID) for up to 12 weeks. Plasma abacavir concentrations from sparse sampling were analyzed by standard population pharmacokinetic methods, and the effects of dose, combination therapy, gender, weight, and age on parameter estimates were investigated. Bayesian pharmacokinetic parameter estimates were calculated to determine the peak concentration of abacavir in plasma (Cmax) and the area under the concentration-time curve from time zero to infinity (AUC0–∞) for individual subjects. The pharmacokinetics of abacavir were dose proportional over the 100- to 600-mg dose range and were unaffected by any covariates. No significant correlations were observed between the incidence of the five most common adverse events (headache, nausea, diarrhea, vomiting, and malaise or fatigue) and AUC0–∞. A significant correlation was observed between Cmax and nausea by categorical analysis (P = 0.019), but this was of borderline significance by logistic regression (odds ratio, 1.45; 95% confidence interval, 0.95 to 2.32). The log10 time-averaged AUC0–∞ minus baseline (AAUCMB) values for HIV-1 RNA and CD4+ cell count correlated significantly with Cmax and AUC0–∞, but with better model fits for AUC0–∞. The increase in AAUCMB values for CD4+ cell count plateaued early for drug exposures that were associated with little change in AAUCMB values for plasma HIV-1 RNA. There was less than a 0.4 log10 difference over 12 weeks in the HIV-1 RNA levels with the doubling of the abacavir AUC0–∞ from 300 to 600 mg BID dosing. In conclusion, pharmacodynamic modeling supports the selection of abacavir 300 mg twice-daily dosing. PMID:10898675

  8. The traditional use of Vachellia nilotica for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses.

    PubMed

    Donalisio, Manuela; Cagno, Valeria; Civra, Andrea; Gibellini, Davide; Musumeci, Giuseppina; Rittà, Massimo; Ghosh, Manik; Lembo, David

    2018-03-01

    Vachellia (Acacia) nilotica and other plants of this genus have been used in traditional medicine of Asian and African countries to treat many disorders, including sexually transmitted diseases, but few studies were performed to validate their anti-microbial and anti-viral activity against sexually transmitted infections. The present study was undertaken to explore whether the ethnomedical use of V.nilotica to treat genital lesions is substantiated by its antiviral activity against the human immunodeficiency virus (HIV), the herpes simplex virus (HSV) and the human papillomavirus (HPV). The antiviral activity of V.nilotica was tested in vitro by virus-specific inhibition assays using HSV-2 strains, sensible or resistant to acyclovir, HIV-1IIIb strain and HPV-16 pseudovirion (PsV). The potential mode of action of extract against HSV-2 and HPV-16 was further investigated by virus inactivation and time-of-addition assays on cell cultures. V.nilotica chloroform, methanolic and water bark extracts exerted antiviral activity against HSV-2 and HPV-16 PsV infections; among these, methanolic extract showed the best EC50s with values of 4.71 and 1.80µg/ml against HSV-2 and HPV-16, respectively, and it was also active against an acyclovir-resistant HSV-2 strain with an EC50 of 6.71µg/ml. By contrast, no suppression of HIV infection was observed. Investigation of the mechanism of action revealed that the methanolic extract directly inactivated the infectivity of the HPV-16 particles, whereas a partial virus inactivation and interference with virus attachment (EC50 of 2.74µg/ml) were both found to contribute to the anti-HSV-2 activity. These results support the traditional use of V.nilotica applied externally for the treatment of genital lesions. Further work remains to be done in order to identify the bioactive components. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Antibodies for HIV Prevention in young women

    PubMed Central

    Abdool Karim, Salim S.; Karim, Quarraisha Abdool; Baxter, Cheryl

    2016-01-01

    Purpose of review Young women in sub-Saharan Africa bear a disproportionate HIV burden. They urgently require new HIV prevention approaches that women can use. This review provides an overview of the use of antiretrovirals for HIV pre-exposure prophylaxis (PrEP), highlighting some of the challenges with this technology and explores the potential role of monoclonal antibodies (mAbs) for HIV prevention in women. Recent findings Recent findings on the initial steps in viral entry and establishment of a productive local infectious nidus in the vaginal epithelium has provided important clues for HIV prevention in the female genital tract. Topical and oral formulations of antiretroviral drugs have been shown to prevent HIV infection in women with varying levels of success, depending principally on adherence. Further, a number of new broad and potent mAbs have been isolated over the last 5 years. Non-human primate studies demonstrate that broadly neutralizing HIV mAbs can protect rhesus macaques from SHIV infection. These findings have created newfound enthusiasm for passive immunization as a potential prevention strategy for women. Summary If potent broadly neutralising mAbs are effective in preventing HIV infection in women, it could fill an important gap in HIV prevention technologies for young women, especially in Africa. PMID:25700207

  10. Control of HIV infection by IFN-α: implications for latency and a cure.

    PubMed

    Bourke, Nollaig M; Napoletano, Silvia; Bannan, Ciaran; Ahmed, Suaad; Bergin, Colm; McKnight, Áine; Stevenson, Nigel J

    2018-03-01

    Viral infections, including HIV, trigger the production of type I interferons (IFNs), which in turn, activate a signalling cascade that ultimately culminates with the expression of anti-viral proteins. Mounting evidence suggests that type I IFNs, in particular IFN-α, play a pivotal role in limiting acute HIV infection. Highly active anti-retroviral treatment reduces viral load and increases life expectancy in HIV positive patients; however, it fails to fully eliminate latent HIV reservoirs. To revisit HIV as a curable disease, this article reviews a body of literature that highlights type I IFNs as mediators in the control of HIV infection, with particular focus on the anti-HIV restriction factors induced and/or activated by IFN-α. In addition, we discuss the relevance of type I IFN treatment in the context of HIV latency reversal, novel therapeutic intervention strategies and the potential for full HIV clearance.

  11. Optimization of the central linker of dicationic bis-benzimidazole anti-MRSA and anti-VRE agents.

    PubMed

    Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman

    2009-07-01

    A series of bis-benzimidazole diamidine compounds containing different central linkers has been synthesized and evaluated for in vitro antibacterial activities, including drug-resistant bacterial strains. Seven compounds have shown potent antibacterial activities. The anti-MRSA and anti-VRE activities of compound 1h were more potent than that of the lead compound 1a and vancomycin.

  12. Evaluation of surrogate markers for human immunodeficiency virus infection among blood donors at the blood bank of "Hospital Universitário Regional Norte do Paraná", Londrina, PR, Brazil.

    PubMed

    Reiche, Edna Maria Vissoci; Vogler, Ingridt Hildegard; Morimoto, Helena Kaminami; Bortoliero, André Luis; Matsuo, Tiemi; Yuahasi, Kátia Kioko; Cancian, Sanderson Júnior; Koguichi, Roberto Setsuo

    2003-01-01

    This study evaluated the usefulness of the anti-HBc, hepatitis C virus antibodies (anti-HCV), human T cell lymphotropic virus I and II antibodies (anti-HTLV I/II), serologic tests for syphilis, and surface antigen of hepatitis B virus (HBsAg) as surrogate markers for the risk for HIV infection in 80,284 serum samples from blood donors from the Blood Bank of "Hospital Universitário Regional Norte do Paraná", Londrina, Paraná State, Brazil, analyzed from July 1994 to April 2001. Among 39 blood donors with positive serology for HIV, 12 (30.8%) were anti-HBc positive, 10 (25.6%) for anti-HCV, 1 (2.6%) for anti-HTLV I/I, 1 (2.6%) was positive for syphilis, and 1 (2.6%) for HBsAg. Among the donors with negative serology for HIV, these markers were detected in 8,407 (10.5%), 441 (0.5%), 189 (0.2%), 464 (0.6%), and 473 (0.6%) samples, respectively. The difference was statistically significant (p < 0.001) for anti-HBc and anti-HCV. Although the predictive positive values for these surrogate markers were low for HIV infection, the results confirmed the anti-HBc and anti-HCV as useful surrogate markers for HIV infection thus reinforcing the maintenance of them in the screening for blood donors contributing to the prevention of the small number of cases in which HIV is still transmitted by transfusion.

  13. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  14. Seroprevalence of HBV, HCV & HIV co-infection and risk factors analysis in Tripoli-Libya.

    PubMed

    Daw, Mohamed A; Shabash, Amira; El-Bouzedi, Abdallah; Dau, Aghnya A

    2014-01-01

    In 1998 Libya experienced a major outbreak of multiple blood borne viral hepatitis and HIV infections. Since then, no studies have been done on the epidemic features and risk factors of HBV, HCV, HIV and co-infection among the general population. A prospective study was carried out using a multi-centre clustering method to collect samples from the general population. The participants were interviewed, and relevant information was collected, including socio-demographic, ethnic, and geographic variables. This information was correlated with the risk factors involved in the transmission of HBV, HCV and HIV. Blood samples were collected and the sera were tested for HBsAg, anti-HCV and anti-HIV using enzyme immunoassay. A total of 9,170 participants from the nine districts of Tripoli were enrolled. The average prevalence of HBsAg was 3.7%, anti-HCV 0.9%, anti-HIV 0.15% and co-infection 0.02%. The prevalence varied from one district to another. HBV was more prevalent among those aged over 50 years and was associated with family history. Anti-HCV and anti-HIV were more prevalent among those aged 20-40 years. Intravenous drug use and blood transfusion were the main risk factors for HCV and HIV infection. HBV, HCV, HIV and co-infection are relatively common in Libya. High prevalence was associated with geographic, ethnic and socioeconomic variability within the community. HCV and HIV infections among the younger age groups are becoming an alarming issue. Regulations and health care education need to be implemented and longer term follow-up should be planned.

  15. Seroprevalence of HBV, HCV & HIV Co-Infection and Risk Factors Analysis in Tripoli-Libya

    PubMed Central

    Daw, Mohamed A.; Shabash, Amira; El-Bouzedi, Abdallah; Dau, Aghnya A.

    2014-01-01

    Background In 1998 Libya experienced a major outbreak of multiple blood borne viral hepatitis and HIV infections. Since then, no studies have been done on the epidemic features and risk factors of HBV, HCV, HIV and co-infection among the general population. Methods A prospective study was carried out using a multi-centre clustering method to collect samples from the general population. The participants were interviewed, and relevant information was collected, including socio-demographic, ethnic, and geographic variables. This information was correlated with the risk factors involved in the transmission of HBV, HCV and HIV. Blood samples were collected and the sera were tested for HBsAg, anti-HCV and anti-HIV using enzyme immunoassay. Results A total of 9,170 participants from the nine districts of Tripoli were enrolled. The average prevalence of HBsAg was 3.7%, anti-HCV 0.9%, anti-HIV 0.15% and co-infection 0.02%. The prevalence varied from one district to another. HBV was more prevalent among those aged over 50 years and was associated with family history. Anti-HCV and anti-HIV were more prevalent among those aged 20–40 years. Intravenous drug use and blood transfusion were the main risk factors for HCV and HIV infection. Conclusion HBV, HCV, HIV and co-infection are relatively common in Libya. High prevalence was associated with geographic, ethnic and socioeconomic variability within the community. HCV and HIV infections among the younger age groups are becoming an alarming issue. Regulations and health care education need to be implemented and longer term follow-up should be planned. PMID:24936655

  16. Anti-CD22 and anti-CD79b antibody-drug conjugates preferentially target proliferating B cells.

    PubMed

    Fuh, Franklin K; Looney, Caroline; Li, Dongwei; Poon, Kirsten A; Dere, Randall C; Danilenko, Dimitry M; McBride, Jacqueline; Reed, Chae; Chung, Shan; Zheng, Bing; Mathews, William Rodney; Polson, Andrew; Prabhu, Saileta; Williams, Marna

    2017-04-01

    CD22 and CD79b are cell-surface receptors expressed on B-cell-derived malignancies such as non-Hodgkin's lymphoma (NHL). An anti-mitotic agent, monomethyl auristatin E, was conjugated to anti-CD22 and anti-CD79b antibodies to develop target-specific therapies for NHL. The mechanism of action (MOA) and pharmacological and pharmacokinetic (PK) profiles of these antibody-drug conjugates (ADCs) were investigated in cynomolgus monkeys. Animals were administered anti-CD22 or anti-CD79b ADCs, respective unconjugated antibodies or vehicle. Pharmacodynamic effects on total and proliferating B cells and serum PK were then assessed. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) of the ADCs were evaluated in vitro. Depletion of B cells was observed after administration of either ADC or the respective unconjugated antibodies. An extended duration of depletion was observed in animals administered ADCs. Similarly, preferential depletion of proliferating B cells in blood and germinal centre B cells in spleen were only observed in animals administered ADCs. Serum PK profiles of ADCs and respective unconjugated antibodies were comparable. In vitro, anti-human CD22 and anti-human CD79b antibodies showed no or only moderate ADCC activity, respectively; neither antibody had CDC activity. The findings support the proposed MOA: initial depletion of total B cells by antibody-mediated opsonization, followed by preferential, sustained depletion of proliferating B cells by the auristatin conjugate due to its anti-mitotic action. Delivering potent anti-mitotic agents to B cells via the specificity of monoclonal antibodies provides a means to eliminate pathogenic B cells in NHL with improved risk-benefit profiles over traditional chemotherapeutics. © 2016 Genentech. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  17. High avidity anti-integrase antibodies discriminate recent and non-recent HIV infection: Implications for HIV incidence assay.

    PubMed

    Rikhtegaran Tehrani, Zahra; Azadmanesh, Kayhan; Mostafavi, Ehsan; Gharibzadeh, Safoora; Soori, Shahrzad; Azizi, Mohammad; Khabiri, Alireza

    2018-03-01

    Estimation of HIV incidence provides real-time information of HIV transmission trends for decision makers. Anti-integrase antibodies are the last ones produced during seroconversion and presence of high-avidity anti-integrase antibodies indicates the chronicity of HIV infection. This study aimed to evaluate the performance of these antibodies in discriminating of recent from non-recent HIV infection. For this purpose, different ELISA formats were developed to detect high-avidity anti-integrase antibodies in a commercially available performance panel, and the best assay was selected for further evaluation. The false recent rate of the selected assay was evaluated in a panel of Iranian patients and compared to two commercial assays, BED-EIA and LAg-Avidity. While the false recent rate of the developed assay was 3.8%, it was 14.1% and 1.3% for BED-EIA and LAg-Avidity, respectively. To our knowledge, this is the first report to study the performance of high-avidity anti-integrase antibodies for classification of HIV infection. The preliminary results showed that the specificity of the newly developed assay is markedly higher than BED-EIA and is comparable with LAg-Avidity. The promising results point to the potential use of anti-integrase antibodies as a biomarker in HIV incidence laboratory tests or algorithms. The developed assay needs further evaluation in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Glitazones inhibit human monoamine oxidase but their anti-inflammatory actions are not mediated by VAP-1/semicarbazide-sensitive amine oxidase inhibition.

    PubMed

    Carpéné, Christian; Bizou, Mathilde; Tréguer, Karine; Hasnaoui, Mounia; Grès, Sandra

    2015-09-01

    Glitazones are peroxisome proliferator-activated receptor gamma (PPARγ) agonists widely used as antidiabetic drugs also known as thiazolidinediones. Most of them exert other effects such as anti-inflammatory actions via mechanisms supposed to be independent from PPARγ activation (e.g., decreased plasma monocyte chemoattractant protein-1 (MCP-1) levels). Recently, pioglitazone has been shown to inhibit the B form of monoamine oxidase (MAO) in mouse, while rosiglitazone and troglitazone were described as non-covalent inhibitors of both human MAO A and MAO B. Since molecules interacting with MAO might also inhibit semicarbazide-sensitive amine oxidase (SSAO), known as vascular adhesion protein-1 (VAP-1), and since VAP-1/SSAO inhibitors exhibit anti-inflammatory activity, our aim was to elucidate whether VAP-1/SSAO inhibition could be a mechanism involved in the anti-inflammatory behaviour of glitazones. To this aim, MAO and SSAO activities were measured in human subcutaneous adipose tissue biopsies obtained from overweight women undergoing plastic surgery. The production of hydrogen peroxide, an end-product of amine oxidase activity, was determined in tissue homogenates using a fluorometric method. The oxidation of 1 mM tyramine was inhibited by pargyline and almost resistant to semicarbazide, therefore predominantly MAO-dependent. Rosiglitazone was more potent than pioglitazone in inhibiting tyramine oxidation. By contrast, benzylamine oxidation was only abolished by semicarbazide: hence SSAO-mediated. Pioglitazone hampered SSAO activity only when tested at 1 mM while rosiglitazone was inefficient. However, rosiglitazone exhibited anti-inflammatory activity in human adipocytes by limiting MCP-1 expression. Our observations rule out any involvement of VAP-1/SSAO inhibition and subsequent limitation of leukocyte extravasation in the anti-inflammatory action of glitazones.

  19. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters

    PubMed Central

    Nancolas, Bethany; Guo, Lili; Zhou, Rong; Nath, Kavindra; Nelson, David S.; Leeper, Dennis B.; Blair, Ian A.; Glickson, Jerry D.; Halestrap, Andrew P.

    2016-01-01

    Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitising tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Here we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5 μM) and cooperatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill Coefficient values of 36–40 μM and 1.65–1.85. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50 ~7 μM) than other substrates including glutamate (IC50 ~20 μM). In isolated DB-1 melanoma cells 1–10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output while increasing intracellular [L-lactate] > five-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND on L-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate. PMID:26831515

  20. Synthesis, anti-inflammatory, bactericidal activities and docking studies of novel 1,2,3-triazoles derived from ibuprofen using click chemistry.

    PubMed

    Angajala, Kishore Kumar; Vianala, Sunitha; Macha, Ramesh; Raghavender, M; Thupurani, Murali Krishna; Pathi, P J

    2016-01-01

    Nonsteroidal anti-inflammatory drugs are of vast therapeutic benefit in the treatment of different types of inflammatory conditions. 1,2,3-Triazoles and their derivatives have a wide range of applications as anti-bacterial, anti-fungal, anti-tubercular, cytostatic, anti-HIV, anti-allergic, anti-neoplastic and anti-inflammatory (AI) agents. Considering the individual biological and medicinal importance of ibuprofen and 1,2,3-triazoles, we wanted to explore novel chemical entities based on ibuprofen and triazole moieties towards their biological significance. Click chemistry has utilized as an ideal strategy to prepare novel ibuprofen-based 1,4-disubstituted 1,2,3-triazole containing molecules. These compounds were screened for their in vivo AI activity, among all the synthesized analogues 13o was shown potent effect than the reference AI drug ibuprofen at the same concentration (10 mg/kg body weight). Compounds 13l, 13g, 13c, 13k, 13i, 13n, 13m and 13j were shown significant AI activity. These triazole analogues were also screened for their bactericidal profile. Compounds 13c, 13i, 13l and 13o exhibited considerable bactericidal activity against gram positive and gram negative strains. In addition to this, molecular docking studies were also carried out into cyclooxygenase-2 active site to predict the affinity and orientation of these novel compounds (13a-q). In summary, we have designed and synthesized 1,2,3-triazole analogues of ibuprofen in good yields using Click chemistry approach. AI and bactericidal activities of these compounds were evaluated and shown remarkable results.

  1. HbAHP-25, an In-Silico Designed Peptide, Inhibits HIV-1 Entry by Blocking gp120 Binding to CD4 Receptor.

    PubMed

    Bashir, Tahir; Patgaonkar, Mandar; Kumar, Selvaa C; Pasi, Achhelal; Reddy, Kudumula Venkata Rami

    2015-01-01

    Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection.

  2. HbAHP-25, an In-Silico Designed Peptide, Inhibits HIV-1 Entry by Blocking gp120 Binding to CD4 Receptor

    PubMed Central

    Bashir, Tahir; Patgaonkar, Mandar; Kumar C, Selvaa; Pasi, Achhelal; Reddy, Kudumula Venkata Rami

    2015-01-01

    Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection. PMID:25915507

  3. Design, synthesis and biological evaluation of piperazinyl-β-carbolinederivatives as anti-leishmanial agents.

    PubMed

    Ashok, Penta; Chander, Subhash; Smith, Terry K; Sankaranarayanan, Murugesan

    2018-04-25

    Molecular hybridization is a ligand based drug design approach is well known recent medicinal chemistry to design anti-parasitic agents. In the present study, we have designed a series of (1-phenyl-9H-pyrido [3,4-b]indol-3-yl) (4-phenylpiperazin-1-yl)methanone derivatives using molecular hybridization approach. Designed analogues were evaluated for cytotoxicity and inhibition activity against Leishmania infantum and Leishmania donovani. Among these reported analogues 7b, 7d, 7e, 7f and 7m displayed potent inhibition of both L. infantum and L. donovani. Compounds 7i and 7k exhibited selective potent inhibition of L. donovani. Especially, compounds 7e and 7k showed most potent anti-leishmanial activity against L. infantum and L. donovani respectively. Anti-leishmanial activity of these compounds is comparable with standard drugs miltefosine and pentamidine. SAR studies revealed that, electron donating group substitution on phenyl ring recommended for potent anti-leishmanial activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. A rapid microtiter plate assay for measuring the effect of compounds on Staphylococcus aureus membrane potential.

    PubMed

    Gentry, Daniel R; Wilding, Imogen; Johnson, John M; Chen, Dongzhao; Remlinger, Katja; Richards, Cindy; Neill, Susan; Zalacain, Magdalena; Rittenhouse, Stephen F; Gwynn, Michael N

    2010-11-01

    We developed a homogenous microtiter based assay using the cationic dye 3, 3'-Diethyloxacarbocyanine iodide, DiOC2(3), to measure the effect of compounds on membrane potential in Staphylococcus aureus. In a screen of 372 compounds from a synthetic compound collection with anti-Escherichia coli activity due to unknown modes of action at least 17% demonstrated potent membrane activity, enabling rapid discrimination of nuisance compounds. Copyright © 2010. Published by Elsevier B.V.

  5. Dendritic Cell Response to HIV-1 Is Controlled by Differentiation Programs in the Cells and Strain-Specific Properties of the Virus.

    PubMed

    Nasi, Aikaterini; Amu, Sylvie; Göthlin, Mårten; Jansson, Marianne; Nagy, Noemi; Chiodi, Francesca; Réthi, Bence

    2017-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that might play contradictory roles during HIV-1 infection, contributing not only to antiviral immunity but also to viral dissemination and immune evasion. Although DCs are characterized by enormous functional diversity, it has not been analyzed how differentially programmed DCs interact with HIV-1. We have previously described the reprogramming of DC development by endogenously produced lactic acid that accumulated in a cell culture density-dependent manner and provided a long-lasting anti-inflammatory signal to the cells. By exploiting this mechanism, we generated immunostimulatory DCs characterized by the production of TH1 polarizing and inflammatory mediators or, alternatively, suppressed DCs that produce IL-10 upon activation, and we tested the interaction of these DC types with different HIV-1 strains. Cytokine patterns were monitored in HIV-1-exposed DC cultures. Our results showed that DCs receiving suppressive developmental program strongly upregulated their capacity to produce the TH1 polarizing cytokine IL-12 and the inflammatory chemokines CCL2 and CCL7 upon interaction with HIV-1 strains IIIB and SF162. On the contrary, HIV-1 abolished cytokine production in the more inflammatory DC types. Preincubation of the cells with the HIV-1 proteins gp120 and Nef could inhibit IL-12 production irrespectively of the tested DC types, whereas MyD88- and TRIF-dependent signals stimulated IL-12 production in the suppressed DC type only. Rewiring of DC cytokines did not require DC infections or ligation of the HIV-1 receptor CD209. A third HIV-1 strain, BaL, could not modulate DC cytokines in a similar manner indicating that individual HIV-1 strains can differ in their capacity to influence DCs. Our results demonstrated that HIV-1 could not induce definite and invariable modulatory programs in DCs. Instead, interaction with the virus triggered different responses in different DC types. Thus, the outcome of DC-HIV-1 interactions might be highly variable, shaped by endogenous features of the cells and diversity of the virus.

  6. Dendritic Cell Response to HIV-1 Is Controlled by Differentiation Programs in the Cells and Strain-Specific Properties of the Virus

    PubMed Central

    Nasi, Aikaterini; Amu, Sylvie; Göthlin, Mårten; Jansson, Marianne; Nagy, Noemi; Chiodi, Francesca; Réthi, Bence

    2017-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that might play contradictory roles during HIV-1 infection, contributing not only to antiviral immunity but also to viral dissemination and immune evasion. Although DCs are characterized by enormous functional diversity, it has not been analyzed how differentially programmed DCs interact with HIV-1. We have previously described the reprogramming of DC development by endogenously produced lactic acid that accumulated in a cell culture density-dependent manner and provided a long-lasting anti-inflammatory signal to the cells. By exploiting this mechanism, we generated immunostimulatory DCs characterized by the production of TH1 polarizing and inflammatory mediators or, alternatively, suppressed DCs that produce IL-10 upon activation, and we tested the interaction of these DC types with different HIV-1 strains. Cytokine patterns were monitored in HIV-1-exposed DC cultures. Our results showed that DCs receiving suppressive developmental program strongly upregulated their capacity to produce the TH1 polarizing cytokine IL-12 and the inflammatory chemokines CCL2 and CCL7 upon interaction with HIV-1 strains IIIB and SF162. On the contrary, HIV-1 abolished cytokine production in the more inflammatory DC types. Preincubation of the cells with the HIV-1 proteins gp120 and Nef could inhibit IL-12 production irrespectively of the tested DC types, whereas MyD88- and TRIF-dependent signals stimulated IL-12 production in the suppressed DC type only. Rewiring of DC cytokines did not require DC infections or ligation of the HIV-1 receptor CD209. A third HIV-1 strain, BaL, could not modulate DC cytokines in a similar manner indicating that individual HIV-1 strains can differ in their capacity to influence DCs. Our results demonstrated that HIV-1 could not induce definite and invariable modulatory programs in DCs. Instead, interaction with the virus triggered different responses in different DC types. Thus, the outcome of DC-HIV-1 interactions might be highly variable, shaped by endogenous features of the cells and diversity of the virus. PMID:28348557

  7. The thalidomide analogue CC-3052 inhibits HIV-1 and tumour necrosis factor-alpha (TNF-α) expression in acutely and chronically infected cells in vitro

    PubMed Central

    La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W

    2000-01-01

    We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-α production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-α expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-α is concerned, CC-3052 significantly reduced TNF-α mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-α production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-α is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-α may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-α and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents. PMID:10606973

  8. The thalidomide analogue CC-3052 inhibits HIV-1 and tumour necrosis factor-alpha (TNF-alpha) expression in acutely and chronically infected cells in vitro.

    PubMed

    La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W

    2000-01-01

    We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-alpha production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-alpha expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-alpha is concerned, CC-3052 significantly reduced TNF-alpha mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-alpha production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-alpha is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-alpha may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-alpha and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents.

  9. Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy.

    PubMed

    Miller, Elizabeth; Spadaccia, Meredith; Sabado, Rachel; Chertova, Elena; Bess, Julian; Trubey, Charles Mac; Holman, Rose Marie; Salazar, Andres; Lifson, Jeffrey; Bhardwaj, Nina

    2015-01-03

    Therapeutic interventions for HIV-1 that successfully augment adaptive immunity to promote killing of infected cells may be a requisite component of strategies to reduce latent cellular reservoirs. Adoptive immunotherapies utilizing autologous monocyte-derived dendritic cells (DCs) that have been activated and antigen loaded ex vivo may serve to circumvent defects in DC function that are present during HIV infection in order to enhance adaptive immune responses. Here we detail the clinical preparation of DCs loaded with autologous aldrithiol-2 (AT-2)-inactivated HIV that have been potently activated with the viral mimic, Polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose (Poly-ICLC). HIV is first propagated from CD4+ T cells from HIV-infected donors and then rendered non-replicative by chemical inactivation with aldrithiol-2 (AT-2), purified, and quantified. Viral inactivation is confirmed through measurement of Tat-regulated β-galactosidase reporter gene expression following infection of TZM-bl cells. In-process testing for sterility, mycoplasma, LPS, adventitious agents, and removal of AT-2 is performed on viral preparations. Autologous DCs are generated and pulsed with autologous AT-2-inactivated virus and simultaneously stimulated with Poly-ICLC to constitute the final DC vaccine product. Phenotypic identity, maturation, and induction of HIV-specific adaptive immune responses are confirmed via flow cytometric analysis of DCs and cocultured autologous CD4+ and CD8+ T cells. Lot release criteria for the DC vaccine have been defined in accordance with Good Manufacturing Practice (GMP) guidelines. The demonstrated feasibility of this approach has resulted in approval by the FDA for investigational use in antiretroviral (ART) suppressed individuals. We discuss how this optimized DC formulation may enhance the quality of anti-HIV adaptive responses beyond what has been previously observed during DC immunotherapy trials for HIV infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2-ligands: Design, Synthesis, and Protein-ligand X-Ray Studies

    PubMed Central

    Ghosh, Arun K.; Parham, Garth L.; Martyr, Cuthbert D.; Nyalapatla, Prasanth R.; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2013-01-01

    The design, synthesis, and biological evaluation of a series of HIV-1 protease inhibitors incorporating stereochemically defined fused tricyclic P2-ligands are described. Various substituent effects were investigated in order to maximize the ligand-binding site interactions in the protease active site. Inhibitors 16a and 16f showed excellent enzyme inhibitory and antiviral activity while incorporation of sulfone functionality resulted in a decrease in potency. Both inhibitors 16a and 16f have maintained activity against a panel of multidrug resistant HIV-1 variants. A high-resolution X-ray crystal structure of 16a-bound HIV-1 protease revealed important molecular insights into the ligand-binding site interactions which may account for the inhibitor’s potent antiviral activity and excellent resistance profiles. PMID:23947685

  11. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    PubMed

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  12. Differential effects of ABT-510 and a CD36-binding peptide derived from the type 1 repeats of thrombospondin-1 on fatty acid uptake, nitric oxide signaling, and caspase activation in vascular cells.

    PubMed

    Isenberg, Jeff S; Yu, Christine; Roberts, David D

    2008-02-15

    ABT-510 is a potent mimetic of an anti-angiogenic sequence from the second type 1 repeat of thrombospondin-1. ABT-510 and the original d-Ile mimetic from which it was derived, GDGV(dI)TRIR, are similarly active for inhibiting vascular outgrowth in a B16 melanoma explant assay. Because GDGV(dI)TRIR and thrombospondin-1 modulate nitric oxide signaling by inhibiting the fatty translocase activity of CD36, we examined the ability ABT-510 to modulate fatty acid uptake into vascular cells and downstream nitric oxide/cGMP signaling. Remarkably, ABT-510 is less active than GDGV(dI)TRIR for inhibiting myristic acid uptake into both endothelial and vascular smooth muscle cells. Correspondingly, ABT-510 is less potent than GDGV(dI)TRIR for blocking a myristate-stimulated increase in cell adhesion to collagen and nitric oxide-driven accumulation of cGMP. ABT-510 at concentrations sufficient to inhibit CD36 fatty acid translocase activity synergizes with thrombin in aggregating platelets and blunts the activity of NO to delay aggregation, but again less than GDGV(dI)TRIR. In contrast, ABT-510 is more potent than GDGV(dI)TRIR for inducing caspase activation in vascular cells. Thus, we propose that ABT-510 is a drug with at least two mechanisms of action, and its potent anti-tumor activity may be in part independent of CD36 fatty acid translocase inhibition.

  13. Differential Effects of ABT-510 and a CD36-binding Peptide Derived from the Type 1 Repeats of Thrombospondin-1 on Fatty Acid Uptake, Nitric Oxide Signaling, and Caspase Activation in Vascular Cells

    PubMed Central

    Isenberg, Jeff S.; Yu, Christine; Roberts, David D.

    2008-01-01

    ABT-510 is a potent mimetic of an anti-angiogenic sequence from the second type 1 repeat of thrombospondin-1. ABT-510 and the original d-Ile mimetic from which it was derived, GDGV(dI)TRIR, are similarly active for inhibiting vascular outgrowth in a B16 melanoma explant assay. Because GDGV(dI)TRIR and thrombospondin-1 modulate nitric oxide signaling by inhibiting the fatty translocase activity of CD36, we examined the ability ABT-510 to modulate fatty acid uptake into vascular cells and downstream nitric oxide/cGMP signaling. Remarkably, ABT-510 is less active than GDGV(dI)TRIR for inhibiting myristic acid uptake into both endothelial and vascular smooth muscle cells. Correspondingly, ABT-510 is less potent than GDGV(dI)TRIR for blocking a myristate-stimulated increase in cell adhesion to collagen and nitric oxide-driven accumulation of cGMP. ABT-510 at concentrations sufficient to inhibit CD36 fatty acid translocase activity synergizes with thrombin in aggregating platelets and blunts the activity of NO to delay aggregation, but again less than GDGV(dI)TRIR. In contrast, ABT-510 is more potent than GDGV(dI)TRIR for inducing caspase activation in vascular cells. Thus, we propose that ABT-510 is a drug with at least two mechanisms of action, and its potent anti-tumor activity may be in part independent of CD36 fatty acid translocase inhibition. PMID:18068687

  14. Diaryltriazine non-nucleoside reverse transcriptase inhibitors are potent candidates for pre-exposure prophylaxis in the prevention of sexual HIV transmission.

    PubMed

    Ariën, Kevin K; Venkatraj, Muthusamy; Michiels, Johan; Joossens, Jurgen; Vereecken, Katleen; Van der Veken, Pieter; Abdellati, Saïd; Cuylaerts, Vicky; Crucitti, Tania; Heyndrickx, Leo; Heeres, Jan; Augustyns, Koen; Lewi, Paul J; Vanham, Guido

    2013-09-01

    Pre-exposure prophylaxis and topical microbicides are important strategies in the prevention of sexual HIV transmission, especially since partial protection has been shown in proof-of-concept studies. In search of new candidate drugs with an improved toxicity profile and with activity against common non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV, we have synthesized and investigated a library of 60 new diaryltriazine analogues. From this library, 15 compounds were evaluated in depth using a broad armamentarium of in vitro assays that are part of a preclinical testing algorithm for microbicide development. Antiviral activity was assessed in a cell line, and in primary human cells, against both subtype B and subtype C HIV-1 and against viruses resistant to therapeutic NNRTIs and the candidate NNRTI microbicide dapivirine. Toxicity towards primary blood-derived cells, cell lines originating from the female reproductive tract and female genital microflora was also studied. We identified several compounds with highly potent antiviral activity and toxicity profiles that are superior to that of dapivirine. In particular, compound UAMC01398 is an interesting new candidate that warrants further investigation because of its superior toxicity profile and potent activity against dapivirine-resistant viruses.

  15. Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight.

    PubMed

    Kim, H-Y; Choi, G J; Lee, H B; Lee, S-W; Lim, H K; Jang, K S; Son, S W; Lee, S O; Cho, K Y; Sung, N D; Kim, J-C

    2007-03-01

    To isolate endophytic fungi from vegetable plants and examine their in vivo anti-oomycete activity against Phytophthora infestans in tomato plants. Endophytic fungi were isolated from surface-sterilized plant tissues and anti-oomycete activity was measured by in vivo assay using tomato seedlings. Endophytic fungi showing potent anti-oomycete activity were identified by morphological characteristics and nuclear ribosomal ITS1-5.8S-ITS2 sequence analysis. A total of 152 isolates were obtained from 66 healthy tissue samples of cucumber, red pepper, tomato, pumpkin and Chinese cabbage and the fermentation broths of 23 isolates showed potent in vivo anti-oomycete activity against tomato late blight with control values over 90%. The Fusarium oxysporum strain EF119, which was isolated from roots of red pepper, showed the most potent disease control efficacy against tomato late blight. In dual-culture tests, it inhibited the growth of Pythium ultimum, P. infestans and Phytophthora capsici. Among endophytic fungi isolated from healthy tissues of vegetable plants, F. oxysporum EF119 showed the most potent in vivo anti-oomycete activity against tomato late blight and in vitro anti-oomycete activity against several oomycete pathogens. Endophytic fungi showing anti-oomycete activity in vitro and in vivo may be used as biocontrol agents particularly of tomato late blight.

  16. A novel dual-functioning ruthenium(II)-arene complex of an anti-microbial ciprofloxacin derivative - Anti-proliferative and anti-microbial activity.

    PubMed

    Ude, Ziga; Romero-Canelón, Isolda; Twamley, Brendan; Fitzgerald Hughes, Deirdre; Sadler, Peter J; Marmion, Celine J

    2016-07-01

    7-(4-(Decanoyl)piperazin-1-yl)-ciprofloxacin, CipA, (1) which is an analogue of the antibiotic ciprofloxacin, and its ruthenium(II) complex [Ru(η(6)-p-cymene)(CipA-H)Cl], (2) have been synthesised and the x-ray crystal structures of 1·1.3H2O·0.6CH3OH and 2·CH3OH·0.5H2O determined. The complex adopts a typical pseudo-octahedral 'piano-stool' geometry, with Ru(II) π-bonded to the p-cymene ring and σ-bonded to a chloride and two oxygen atoms of the chelated fluoroquinolone ligand. The complex is highly cytotoxic in the low μM range and is as potent as the clinical drug cisplatin against the human cancer cell lines A2780, A549, HCT116, and PC3. It is also highly cytotoxic against cisplatin- and oxaliplatin-resistant cell lines suggesting a different mechanism of action. The complex also retained low μM cytotoxicity against the human colon cancer cell line HCT116p53 in which the tumour suppressor p53 had been knocked out, suggesting that the potent anti-proliferative properties associated with this complex are independent of the status of p53 (in contrast to cisplatin). The complex also retained moderate anti-bacterial activity in two Escherichia coli, a laboratory strain and a clinical isolate resistant to first, second and third generation β-lactam antibiotics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases

    NASA Astrophysics Data System (ADS)

    Mauro, Nicolò; Ferruti, Paolo; Ranucci, Elisabetta; Manfredi, Amedea; Berzi, Angela; Clerici, Mario; Cagno, Valeria; Lembo, David; Palmioli, Alessandro; Sattin, Sara

    2016-09-01

    The initial steps of viral infections are mediated by interactions between viral proteins and cellular receptors. Blocking the latter with high-affinity ligands may inhibit infection. DC-SIGN, a C-type lectin receptor expressed by immature dendritic cells and macrophages, mediates human immunodeficiency virus (HIV) infection by recognizing mannose clusters on the HIV-1 gp120 envelope glycoprotein. Mannosylated glycodendrimers act as HIV entry inhibitors thanks to their ability to block this receptor. Previously, an amphoteric, but prevailingly cationic polyamidoamine named AGMA1 proved effective as infection inhibitor for several heparan sulfate proteoglycan-dependent viruses, such as human papilloma virus HPV-16 and herpes simplex virus HSV-2. An amphoteric, but prevailingly anionic PAA named ISA23 proved inactive. It was speculated that the substitution of mannosylated units for a limited percentage of AGMA1 repeating units, while imparting anti-HIV activity, would preserve the fundamentals of its HPV-16 and HSV-2 infection inhibitory activity. In this work, four biocompatible linear PAAs carrying different amounts of mannosyl-triazolyl pendants, Man-ISA7, Man-ISA14, Man-AGMA6.5 and Man-AGMA14.5, were prepared by reaction of 2-(azidoethyl)-α-D-mannopyranoside and differently propargyl-substituted AGMA1 and ISA23. All mannosylated PAAs inhibited HIV infection. Both Man-AGMA6.5 and Man-AGMA14.5 maintained the HPV-16 and HSV-2 activity of the parent polymer, proving broad-spectrum, dual action mode virus infection inhibitors.

  18. Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship.

    PubMed

    Roohbakhsh, Ali; Iranshahy, Milad; Iranshahi, Mehrdad

    2016-01-01

    The anti-cancer properties of liquorice have been attributed, at least in part, to glycyrrhizin (GL). However, GL is not directly absorbed through the gastrointestinal tract. It is hydrolyzed to 18-β-glycyrrhetinic acid (GA), the pharmacologically active metabolite, by human intestinal microflora. GA exhibits remarkable cytotoxic and anti-tumor properties. The pro-apoptotic targets and mechanisms of action of GA have been extensively studied over the past decade. In addition, GA is an inexpensive and available triterpene with functional groups (COOH and OH) in its structure, which make it an attractive lead compound for medicinal chemists to prepare a large number of analogues. To date, more than 400 cytotoxic derivatives have been prepared on the basis of GA scaffold, including 128 cytotoxic derivatives with IC50 values less than 30 µM. Researchers have also succeeded in synthesizing very potent cytotoxic derivatives with IC50s ≤ 1 µM. Studies have shown that the introduction of a double bound at the C1-C2 position combined with an electronegative functional group, such as CN, CF3 or iodine at C2 position, and the oxidation of the hydroxyl group of C3 to the carbonyl group, significantly increased cytotoxicity. This review describes the cytotoxic and anti-tumor properties of GA and its derivatives, targets and mechanisms of action and provides insight into the structure-activity relationship of GA derivatives.

  19. Immunosuppressive phenolic compounds from Hydnora abyssinica A. Braun.

    PubMed

    Koko, Waleed S; Mesaik, Mohamed A; Ranjitt, Rosa; Galal, Mohamed; Choudhary, Muhammad I

    2015-11-09

    Hydnora abyssinica (HA) A. Braun is an endemic Sudanese medicinal plant traditionally used as anti-inflammatory and against many infectious diseases. However, it proved to be very rich in phenols and tannins, so the present study was undertaken to investigate the immunomodulatory potential of the whole plant ethanolic extract and its isolated compounds. Lymphocyte proliferation, chemiluminescence and superoxide reduction assays were used for immunomodulatory evaluation. While, MTT (3-(4, 5-dimethylthazol-2-yl)-2, 5-diphenyl tetrazonium bromide) test was performed on 3 T3 cell line clone in order to evaluate the cytoxicity effect of the extracts and isolated compounds of phenolic derivatives which were carried out by chromotographic techniques. Catechin, (1), tyrosol (2) and benzoic acid, 3, 4, dihydroxy-, ethyl ester (3) compounds were isolated from HA ethanolic extract which revealed potent immunosuppressive activity against reactive oxygen species from both polymorph nuclear cells (PMNs) (45-90 % inhibition) and mononuclear cells (MNCs) (30 -65 % inhibition), T lymphocyte proliferation assay (70-93 % inhibition) as well as potent inhibitory effect against superoxide production (42-71 % inhibition) at concentrations of 6.25-100 μg/mL. Catechin (1) was found the most potent immunosuppressive agent among all constituents examined. These results can support the traditional uses of H. abyssinica extracts as anti-inflammatory and immunosuppressive and further investigations of the mode of action and other pharmacological studies are highly desirable.

  20. Minimum structural requirements for cell membrane leakage-mediated anti-MRSA activity of macrocyclic bis(bibenzyl)s.

    PubMed

    Fujii, Kana; Morita, Daichi; Onoda, Kenji; Kuroda, Teruo; Miyachi, Hiroyuki

    2016-05-01

    Macrocyclic bis(bibenzyl)-type phenolic natural products, found exclusively in bryophytes, exhibit potent antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). Here, in order to identify the minimum essential structure for cell membrane leakage-mediated anti-MRSA activity of these compounds, we synthesized acyclic fragment structures and evaluated their anti-MRSA activity. The activities of all of the acyclic fragments tested exhibited similar characteristics to those of the macrocycles, i.e., anti-MRSA bactericidal activity, an enhancing effect on influx and efflux of ethidium bromide (EtBr: fluorescent DNA-binder) in Staphylococcus aureus cells, and bactericidal activity towards a Staphylococcus aureus strain resistant to 2-phenoxyphenol (4). The latter result suggests that they have a different mechanism of action from 4, which is a FabI inhibitor previously proposed to be the minimum active fragment of riccardin-type macrocycles. Thus, cyclic structure is not a necessary condition for cell membrane leakage-mediated anti-MRSA activity of macrocyclic bis(bibenzyl)s. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Potent D-peptide inhibitors of HIV-1 entry

    PubMed Central

    Welch, Brett D.; VanDemark, Andrew P.; Heroux, Annie; Hill, Christopher P.; Kay, Michael S.

    2007-01-01

    During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS. PMID:17942675

  2. Discovery of novel DAPY-IAS hybrid derivatives as potential HIV-1 inhibitors using molecular hybridization based on crystallographic overlays.

    PubMed

    Huang, Boshi; Wang, Xueshun; Liu, Xinhao; Chen, Zihui; Li, Wanzhuo; Sun, Songkai; Liu, Huiqing; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong

    2017-08-15

    Crystallographic overlap studies and pharmacophoric analysis indicated that diarylpyrimidine (DAPY)-based HIV-1 NNRTIs showed a similar binding mode and pharmacophoric features as indolylarylsulfones (IASs), another class of potent NNRTIs. Thus, a novel series of DAPY-IAS hybrid derivatives were identified as newer NNRTIs using structure-based molecular hybridization. Some target compounds exhibited moderate activities against HIV-1 IIIB strain, among which the two most potent inhibitors possessed EC 50 values of 1.48μM and 1.61μM, respectively. They were much potent than the reference drug ddI (EC 50 =76.0μM) and comparable to 3TC (EC 50 =2.54μM). Compound 7a also exhibited the favorable selectivity index (SI=80). Preliminary structure-activity relationships (SARs), structure-cytotoxicity relationships, molecular modeling studies, and in silico calculation of physicochemical properties of these new inhibitors were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Neutrophils Turn Plasma Proteins into Weapons against HIV-1

    PubMed Central

    Hagleitner, Magdalena; Rambach, Günter; Van Aken, Hugo; Dierich, Manfred; Kehrel, Beate E.

    2013-01-01

    As a consequence of innate immune activation granulocytes and macrophages produce hypochlorite/hypochlorous acid (HOCl) via secretion of myeloperoxidase (MPO) to the outside of the cells, where HOCl immediately reacts with proteins. Most proteins that become altered by this system do not belong to the invading microorganism but to the host. While there is no doubt that the myeloperoxidase system is capable of directly inactivating HIV-1, we hypothesized that it may have an additional indirect mode of action. We show in this article that HOCl is able to chemically alter proteins and thus turn them into Idea-Ps (Idea-P = immune defence-altered protein), potent amyloid-like and SH-groups capturing antiviral weapons against HIV-1. HOCl-altered plasma proteins (Idea-PP) have the capacity to bind efficiently and with high affinity to the HIV-1 envelope protein gp120, and to its receptor CD4 as well as to the protein disulfide isomerase (PDI). Idea-PP was able to inhibit viral infection and replication in a cell culture system as shown by reduced number of infected cells and of syncytia, resulting in reduction of viral capsid protein p24 in the culture supernatant. The unmodified plasma protein fraction had no effect. HOCl-altered isolated proteins antithrombin III and human serum albumin, taken as representative examples of the whole pool of plasma proteins, were both able to exert the same activity of binding to gp120 and inhibition of viral proliferation. These data offer an opportunity to improve the understanding of the intricacies of host-pathogen interactions and allow the generation of the following hypothetical scheme: natural immune defense mechanisms generate by posttranslational modification of plasma proteins a potent virucidal weapon that immobilizes the virus as well as inhibits viral fusion and thus entry into the host cells. Furthermore simulation of this mechanism in vitro might provide an interesting new therapeutic approach against microorganisms. PMID:23840401

  4. Short communication: Nitazoxanide inhibits HIV viral replication in monocyte-derived macrophages.

    PubMed

    Gekonge, Bethsebah; Bardin, Matthew C; Montaner, Luis J

    2015-02-01

    We document the anti-HIV activity of nitazoxanide (NTZ), the first member of the thiazolide class of antiinfective drugs, originally effective against enteritis caused by Cryptosporidium parvum and Giardia lamblia. NTZ has been administered extensively worldwide, with no severe toxicities associated with its use. Here, we show for the first time that NTZ decreases HIV-1 replication in monocyte-derived macrophages (MDM) if present before or during HIV-1 infection. This NTZ effect is associated with downregulation of HIV-1 receptors CD4 and CCR5, and increasing gene expression of host cell anti-HIV resistance factors APOBEC3A/3G and tetherin. As NTZ is already in clinical use for other conditions, this newly described anti-HIV activity in MDM may facilitate innovative intensification strategies against HIV-1 when combined with current antiretroviral drug regimens.

  5. CHP1002, a novel andrographolide derivative, inhibits pro-inflammatory inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW264.7 macrophages via up-regulation of heme oxygenase-1 expression.

    PubMed

    Zhang, Bo; Yan, Lingdi; Zhou, Peilan; Dong, Zhaoqi; Feng, Siliang; Liu, Keliang; Gong, Zehui

    2013-02-01

    Andrographolides, a type of diterpene lactone, are widely known to have anti-inflammatory and anti-oxidative properties. CHP1002, a synthetic derivative of andrographolide, has similar anti-inflammatory action in mouse ear swelling test and rat paw edema test. In the present study, the mechanism of anti-inflammatory effects of CHP1002 was investigated in RAW264.7 macrophages. CHP1002 potently suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. CHP1002 reduced the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 (PGE2). CHP1002 induced heme oxygenase-1 (HO-1) expression via activation of extracellular signal-regulated kinase (ERK) and NF-E2 related factor 2 transcription factor (Nrf2). Down-regulation of LPS-induced iNOS and COX-2 expressions was partially reversed by the HO-1 inhibitor zinc protoporphyrin (ZnPP). In addition, CHP1002 significantly attenuated LPS-induced TNF-α, IL-1β and IL-6 production. CHP1002 effectively induced HO-1 and was capable of inhibiting some macrophage-derived pro-inflammatory mediators, which may be closely correlated with its anti-inflammatory action. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Can Inhibitors of Snake Venom Phospholipases A₂ Lead to New Insights into Anti-Inflammatory Therapy in Humans? A Theoretical Study.

    PubMed

    Sales, Thaís A; Marcussi, Silvana; da Cunha, Elaine F F; Kuca, Kamil; Ramalho, Teodorico C

    2017-10-25

    Human phospholipase A₂ ( h PLA₂) of the IIA group (HGIIA) catalyzes the hydrolysis of membrane phospholipids, producing arachidonic acid and originating potent inflammatory mediators. Therefore, molecules that can inhibit this enzyme are a source of potential anti-inflammatory drugs, with different action mechanisms of known anti-inflammatory agents. For the study and development of new anti-inflammatory drugs with this action mechanism, snake venom PLA₂ ( sv PLA₂) can be employed, since the sv PLA₂ has high similarity with the human PLA₂ HGIIA. Despite the high similarity between these secretory PLA₂s , it is still not clear if these toxins can really be employed as an experimental model to predict the interactions that occur with the human PLA₂ HGIIA and its inhibitors. Thus, the present study aims to compare and evaluate, by means of theoretical calculations, docking and molecular dynamics simulations, as well as experimental studies, the interactions of human PLA₂ HGIIA and two sv PLA₂s , Bothrops toxin II and Crotoxin B (BthTX-II and CB, respectively). Our theoretical findings corroborate experimental data and point out that the human PLA₂ HGIIA and sv PLA₂ BthTX-II lead to similar interactions with the studied compounds. From our results, the sv PLA₂ BthTX-II can be used as an experimental model for the development of anti-inflammatory drugs for therapy in humans.

  7. Single-Chain Fv-Based Anti-HIV Proteins: Potential and Limitations

    PubMed Central

    West, Anthony P.; Galimidi, Rachel P.; Gnanapragasam, Priyanthi N. P.

    2012-01-01

    The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization. PMID:22013046

  8. Repurposing the Open Access Malaria Box To Discover Potent Inhibitors of Toxoplasma gondii and Entamoeba histolytica

    PubMed Central

    Fokou, Patrick V. T.; Tchokouaha, Lauve R. Y.; Spangenberg, Thomas; Mfopa, Alvine N.; Kouipou, Ruffin M. T.; Mbouna, Cedric J.; Donfack, Valerie F. Donkeng; Zollo, Paul H. A.

    2014-01-01

    Toxoplasmosis and amebiasis are important public health concerns worldwide. The drugs currently available to control these diseases have proven limitations. Therefore, innovative approaches should be adopted to identify and develop new leads from novel scaffolds exhibiting novel modes of action. In this paper, we describe results from the screening of compounds in the Medicines for Malaria Venture (MMV) open access Malaria Box in a search for new anti-Toxoplasma and anti-Entamoeba agents. Standard in vitro phenotypic screening procedures were adopted to assess their biological activities. Seven anti-Toxoplasma compounds with a 50% inhibitory concentration (IC50) of <5 μM and selectivity indexes (SI) of >6 were identified. The most interesting compound was MMV007791, a piperazine acetamide, which has an IC50 of 0.19 μM and a selectivity index of >157. Also, we identified two compounds, MMV666600 and MMV006861, with modest activities against Entamoeba histolytica, with IC50s of 10.66 μM and 15.58 μM, respectively. The anti-Toxoplasma compounds identified in this study belong to scaffold types different from those of currently used drugs, underscoring their novelty and potential as starting points for the development of new antitoxoplasmosis drugs with novel modes of action. PMID:25049259

  9. Evaluation of HBsAg and anti-HBc assays in saliva and dried blood spot samples according HIV status.

    PubMed

    Flores, Geane Lopes; Cruz, Helena Medina; Potsch, Denise Vigo; May, Silvia Beatriz; Brandão-Mello, Carlos Eduardo; Pires, Marcia Maria Amendola; Pilotto, Jose Henrique; Lewis-Ximenez, Lia Laura; Lampe, Elisabeth; Villar, Livia Melo

    2017-09-01

    Influence of HIV status in HBV markers detection in saliva and dried blood spots (DBS) was not well established. This study aims to evaluate the performance of optimized commercial immunoassay for identifying HBsAg and anti-HBc in saliva and DBS according HIV status. A sum of 535 individuals grouped as HIV + , HBV + , HIV/HBV + and HIV/HBV- were recruited where 347 and 188 were included for HBsAg and anti-HBc evaluation, respectively. Serum, DBS collected in Whatman 903 paper and saliva obtained using salivette device were analyzed using EIA. Increased sample volume and ROC curve analysis for cut off determination were used for DBS and saliva testing. HBsAg detection in saliva and DBS exhibited sensitivities of 80.9% and 85.6% and specificities of 86.8% and 96.3%. Sensitivity of anti-HBc in saliva and DBS were 82.4% and 76.9% and specificities in saliva and DBS were 96.9% and 91.7%. Low sensitivities were observed for HBsAg (62%) and anti-HBc (47%) detection in saliva of HIV/HBV+ individuals. OD values were also lower for HBsAg detection in DBS and saliva of HIV/HBV+ individuals compared to their serum samples. Statistical significance was found for sensitivities in HBsAg detection between saliva and DBS demonstrating high sensitivity for DBS specimens. In conclusion, HIV status or antiretroviral treatment appears to interfere in the performance of HBsAg and anti-HBc detection in DBS and saliva samples using the adapted commercial EIA. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The M-T Hook Structure Is Critical for Design of HIV-1 Fusion Inhibitors*

    PubMed Central

    Chong, Huihui; Yao, Xue; Sun, Jianping; Qiu, Zonglin; Zhang, Meng; Waltersperger, Sandro; Wang, Meitian; Cui, Sheng; He, Yuxian

    2012-01-01

    CP621-652 is a potent HIV-1 fusion inhibitor peptide derived from the C-terminal heptad repeat of gp41. We recently identified that its N-terminal residues Met-626 and Thr-627 adopt a unique hook-like structure (termed M-T hook) thus stabilizing the interaction of the inhibitor with the deep pocket on the N-terminal heptad repeat. In this study, we further demonstrated that the M-T hook structure is a key determinant of CP621-652 in terms of its thermostability and anti-HIV activity. To directly define the structure and function of the M-T hook, we generated the peptide MT-C34 by incorporating Met-626 and Thr-627 into the N terminus of the C-terminal heptad repeat-derived peptide C34. The high resolution crystal structure (1.9 Å) of MT-C34 complexed by an N-terminal heptad repeat-derived peptide reveals that the M-T hook conformation is well preserved at the N-terminal extreme of the inhibitor. Strikingly, addition of two hook residues could dramatically enhance the binding affinity and thermostability of 6-helix bundle core. Compared with C34, MT-C34 exhibited significantly increased activity to inhibit HIV-1 envelope-mediated cell fusion (6.6-fold), virus entry (4.5-fold), and replication (6-fold). Mechanistically, MT-C34 had a 10.5-fold higher increase than C34 in blocking 6-helix bundle formation. We further showed that MT-C34 possessed higher potency against T20 (Enfuvirtide, Fuzeon)-resistant HIV-1 variants. Therefore, this study provides convincing data for our proposed concept that the M-T hook structure is critical for designing HIV-1 fusion inhibitors. PMID:22879603

  11. Substrate mimicry: HIV-1 reverse transcriptase recognizes 6-modified-3′-azido-2′,3′-dideoxyguanosine-5′-triphosphates as adenosine analogs

    PubMed Central

    Herman, Brian D.; Schinazi, Raymond F.; Zhang, Hong-wang; Nettles, James H.; Stanton, Richard; Detorio, Mervi; Obikhod, Aleksandr; Pradère, Ugo; Coats, Steven J.; Mellors, John W.; Sluis-Cremer, Nicolas

    2012-01-01

    β-D-3′-Azido-2′,3′-dideoxyguanosine (3′-azido-ddG) is a potent inhibitor of HIV-1 replication with a superior resistance profile to zidovudine. Recently, we identified five novel 6-modified-3′-azido-ddG analogs that exhibit similar or superior anti-HIV-1 activity compared to 3′-azido-ddG in primary cells. To gain insight into their structure–activity–resistance relationships, we synthesized their triphosphate (TP) forms and assessed their ability to inhibit HIV-1 reverse transcriptase (RT). Steady-state and pre-steady-state kinetic experiments show that the 6-modified-3′-azido-ddGTP analogs act as adenosine rather than guanosine mimetics in DNA synthesis reactions. The order of potency of the TP analogs against wild-type RT was: 3′-azido-2,6-diaminopurine >3′-azido-6-chloropurine; 3′-azido-6-N-allylaminopurine > 2-amino-6-N,N-dimethylaminopurine; 2-amino-6-methoxypurine. Molecular modeling studies reveal unique hydrogen-bonding interactions between the nucleotide analogs and the template thymine base in the active site of RT. Surprisingly, the structure–activity relationship of the analogs differed in HIV-1 RT ATP-mediated excision assays of their monophosphate forms, suggesting that it may be possible to rationally design a modified base analog that is efficiently incorporated by RT but serves as a poor substrate for ATP-mediated excision reactions. Overall, these studies identify a promising strategy to design novel nucleoside analogs that exert profound antiviral activity against both WT and drug-resistant HIV-1. PMID:21914723

  12. Prevalence, risk factors, and impact of isolated antibody to hepatitis B core antigen and occult hepatitis B virus infection in HIV-1-infected pregnant women.

    PubMed

    Khamduang, Woottichai; Ngo-Giang-Huong, Nicole; Gaudy-Graffin, Catherine; Jourdain, Gonzague; Suwankornsakul, Weerapong; Jarupanich, Tapnarong; Chalermpolprapa, Veeradate; Nanta, Sirisak; Puarattana-Aroonkorn, Noossara; Tonmat, Sakchai; Lallemant, Marc; Goudeau, Alain; Sirirungsi, Wasna

    2013-06-01

    Prevalence and risk factors for isolated antibody to hepatitis B core antigen (anti-HBc) and occult hepatitis B virus (HBV) infection are not well known in human immunodeficiency virus type 1 (HIV-1)-infected pregnant women. It is unclear if women with occult infections are at risk of transmitting HBV to their infants. HIV-1-infected and HBV surface antigen (HBsAg)-negative pregnant women were tested for antibody to HBsAg (anti-HBs) and anti-HBc using enzyme immunoassay. Women with isolated anti-HBc were assessed for occult HBV infection, defined as HBV DNA levels >15 IU/mL, using the Abbott RealTime HBV DNA assay. Infants born to women with isolated anti-HBc and detectable HBV DNA were tested at 4 months of age for HBV DNA. Logistic regression analysis was used to identify factors associated with isolated anti-HBc and occult HBV infection. Among 1812 HIV-infected pregnant women, 1682 were HBsAg negative. Fourteen percent (95% confidence interval [CI], 12%-15%) of HBsAg-negative women had an isolated anti-HBc that was independently associated with low CD4 count, age >35 years, birth in northern Thailand, and positive anti-hepatitis C virus serology. Occult HBV infection was identified in 24% (95% CI, 18%-30%) of women with isolated anti-HBc, representing 2.6% (95% CI, 1.9%-3.5%) of HIV-1-infected pregnant women, and was inversely associated with HIV RNA levels. None of the women with isolated anti-HBc and occult HBV infection transmitted HBV to their infants. HIV-1-infected pregnant women with isolated anti-HBc and occult HBV infection have very low HBV DNA levels and are thus at very low risk to transmit HBV to their infants.

  13. Priming of Anti-Human Immunodeficiency Virus (HIV) CD8^+ Cytotoxic T Cells in vivo by Carrier-Free HIV Synthetic Peptides

    NASA Astrophysics Data System (ADS)

    Hart, Mary Kate; Weinhold, Kent J.; Scearce, Richard M.; Washburn, Eileen M.; Clark, Cynthia A.; Palker, Thomas J.; Haynes, Barton F.

    1991-11-01

    The generation of antiviral cytotoxic T lymphocytes (CTLs) is a critical component of the immune response to viral infections. A safe and nontoxic vaccine for AIDS would optimally use a carrier-free synthetic peptide immunogen containing only components of HIV necessary for induction of protective immune responses. We report that hybrid synthetic peptides containing either a HIV envelope gp120 T-cell determinant (T1) or the envelope gp41 fusion domain (F) N-terminal to HIV CTL determinants are capable of priming murine CD8^+, major histocompatibility complex class I-restricted anti-HIV CTLs in vivo. These data demonstrate that carrier-free, nonderivatized synthetic peptides can be used in vivo to induce anti-HIV CTL responses.

  14. Synthetic cyclin dependent kinase inhibitors. New generation of potent anti-cancer drugs.

    PubMed

    Hajdúch, M; Havlíèek, L; Veselý, J; Novotný, R; Mihál, V; Strnad, M

    1999-01-01

    The unsatisfactory results of current anti-cancer therapies require the active search for new drugs, new treatment strategies and a deeper understanding of the host-tumour relationship. From this point of view, the drugs with a capacity to substitute the functions of altered tumour suppressor genes are of prominent interest. Since one of the main functions of oncosuppressors is to mediate cell cycle arrest via modification of cyclin dependent kinases (CDKs) activity, the compounds with ability to substitute altered functions of these genes in neoplastic cells are of prominent interest. Synthetic inhibitors of cyclin dependent kinases (CDKIs) are typical representatives of such drugs. Olomoucine (OC), flavopiridol (FP), butyrolactone I (BL) and their derivatives selectively inhibit CDKs and thus constrain tumor cell proliferation under in vitro and/or in vivo conditions. We originally discovered OC and its inhibitory activity toward CDK1 family of CDKs, and recently reported the induction of apoptosis and tumor regression following OC application. Moreover, the OC family of synthetic CDKIs has the capacity of directly inhibit CDK7, the principal enzyme required for activating other CDKs, and thus these compounds are the first known CDK7 inhibitors. Its unique mechanism of action and potent anti-cancer activity under both in vitro and in vivo conditions provide a unique tool to inhibit tumour cell proliferation, and to selectively induce apoptosis in neoplastic tissues. The mechanisms of anti-cancer activities of FP, BL, OC and related synthetic CDKIs are compared and discussed in this paper.

  15. Inhibition of Nuclear Factor κB Activation and Cyclooxygenase-2 Expression by Aqueous Extracts of Hispanic Medicinal Herbs

    PubMed Central

    Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.

    2010-01-01

    Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259

  16. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Weihong; Xu, Bin; Yao, Yiting

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administrationmore » of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.« less

  17. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    NASA Astrophysics Data System (ADS)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  18. Antiretroviral therapy for human immunodeficiency virus infection in 1997.

    PubMed Central

    Katzenstein, D A

    1997-01-01

    It has become clear that the acquired immunodeficiency syndrome follows continuous replication of the human immunodeficiency virus (HIV) and a decrease in immune capability, most obviously a decline in the number of CD4 lymphocytes. An understanding of key elements in the infectious life cycle of HIV has led to the development of potent antiretroviral drugs selectively targeting unique reverse transcriptase and protease enzymes of the virus. Completed clinical trials have shown that antiretroviral therapy for HIV infection, begun early, reduces viral replication and reverses the decline in CD4 lymphocyte numbers. Recent studies of combination therapies have shown that decreases in plasma HIV viremia to low levels and sustained increases in CD4 cell numbers are associated with longer survival. Potent combination regimens including protease inhibitors and non-nucleoside reverse transcriptase inhibitors suppress detectable viral replication and have demonstrated clinical benefits in patients with advanced disease. Progress in antiretroviral therapy and methods to monitor responses to treatment are providing new hope in the treatment of HIV infection. PMID:9217434

  19. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches.

    PubMed

    Huang, Boshi; Li, Cuicui; Chen, Wenmin; Liu, Tao; Yu, Mingyan; Fu, Lu; Sun, Yueyue; Liu, Huiqing; De Clercq, Erik; Pannecouque, Christophe; Balzarini, Jan; Zhan, Peng; Liu, Xinyong

    2015-03-06

    In our arduous efforts to develop new potent HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs), novel piperidine-linked [1,2,4]triazolo[1,5-a]pyrimidine derivatives were designed, synthesized and evaluated for their antiviral activities in MT-4 cell cultures. Biological results showed that all of the title compounds displayed moderate to excellent activities against wild-type (wt) HIV-1 strain (IIIB) with EC50 values ranging from 8.1 nM to 2284 nM in a cell-based assay. Among them, the most promising analog 7d possessed an EC50 value of 8.1 nM against wt HIV-1, which was much more potent than the reference drugs DDI, 3 TC, NVP and DLV. Additionally, 7d demonstrated weak activity against the double mutant HIV-1 strain (K103N + Y181C), and was more efficient than NVP in a RT inhibition assay. Besides, some measured and calculated physicochemical properties of 7d, like log P and water solubility, as well as the structure-activity relationships (SARs) analysis have been discussed in detail. Furthermore, the binding mode of the active compound 7d was rationalized by molecular simulation studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Molecular analysis of the Na+ channel blocking actions of the novel class I anti-arrhythmic agent RSD 921

    PubMed Central

    Pugsley, Michael K; Goldin, Alan L

    1999-01-01

    RSD 921 is a novel, structurally unique, class I Na+ channel blocking drug under development as a local anaesthetic agent and possibly for the treatment of cardiac arrhythmias. The effects of RSD 921 on wild-type heart, skeletal muscle, neuronal and non-inactivating IFMQ3 mutant neuronal Na+ channels expressed in Xenopus laevis oocytes were examined using a two-electrode voltage clamp.RSD 921 produced similarly potent tonic block of all three wild-type channel isoforms, with EC50 values between 35 and 47 μM, whereas the EC50 for block of the IFMQ3 mutant channel was 110±5.5 μM.Block of Na+ channels by RSD 921 was concentration and use-dependent, with marked frequency-dependent block of heart channels and mild frequency-dependent block of skeletal muscle, wild-type neuronal and IFMQ3 mutant channels.RSD 921 produced a minimal hyperpolarizing shift in the steady-state voltage-dependence of inactivation of all three wild-type channel isoforms.Open channel block of the IFMQ3 mutant channel was best fit with a first order blocking scheme with kon equal to 0.11±0.012×106 M−1 s−1 and koff equal to 12.5±2.5 s−1, resulting in KD of 117±31 μM. Recovery from open channel block occurred with a time constant of 14±2.7 s−1.These results suggest that RSD 921 preferentially interacts with the open state of the Na+ channel, and that the drug may produce potent local anaesthetic or anti-arrhythmic action under conditions of shortened action potentials, such as during anoxia or ischaemia. PMID:10369450

  1. Molecular analysis of the Na+ channel blocking actions of the novel class I anti-arrhythmic agent RSD 921.

    PubMed

    Pugsley, M K; Goldin, A L

    1999-05-01

    RSD 921 is a novel, structurally unique, class I Na+ channel blocking drug under development as a local anaesthetic agent and possibly for the treatment of cardiac arrhythmias. The effects of RSD 921 on wild-type heart, skeletal muscle, neuronal and non-inactivating IFMQ3 mutant neuronal Na+ channels expressed in Xenopus laevis oocytes were examined using a two-electrode voltage clamp. RSD 921 produced similarly potent tonic block of all three wild-type channel isoforms, with EC50 values between 35 and 47 microM, whereas the EC50 for block of the IFMQ3 mutant channel was 110+5.5 microM. Block of Na+ channels by RSD 921 was concentration and use-dependent, with marked frequency-dependent block of heart channels and mild frequency-dependent block of skeletal muscle, wild-type neuronal and IFMQ3 mutant channels. RSD 921 produced a minimal hyperpolarizing shift in the steady-state voltage-dependence of inactivation of all three wild-type channel isoforms. Open channel block of the IFMQ3 mutant channel was best fit with a first order blocking scheme with k(on) equal to 0.11+/-0.012x10(6) M(-1) s(-1) and k(off) equal to 12.5+/-2.5 s(-1), resulting in KD of 117+/-31 microM. Recovery from open channel block occurred with a time constant of 14+/-2.7 s(-1). These results suggest that RSD 921 preferentially interacts with the open state of the Na+ channel, and that the drug may produce potent local anaesthetic or anti-arrhythmic action under conditions of shortened action potentials, such as during anoxia or ischaemia.

  2. Seroprevalence of HIV, HBV, HCV, and HTLV among Pregnant Women in Southwestern Nigeria.

    PubMed

    Opaleye, Oluyinka Oladele; Igboama, Magdalene C; Ojo, Johnson Adeyemi; Odewale, Gbolabo

    2016-01-01

    Sexually transmitted infections (STIs) are major public health challenge especially in developing countries. This study was designed to determine the prevalence of Hepatitis B virus (HBV), Hepatitis C Virus (HCV), Human immunodeficiency virus (HIV), and Human T-cell lymphotropic Virus type I (HTLV-I) among pregnant women attending antenatal clinic, in Ladoke Akintola University Teaching Hospital, Osogbo, and South-Western Nigeria. One hundred and eighty two randomly selected pregnant women were screened for HBsAg, anti-HCV, anti-HIV and HTLV-1 IgM antibodies using commercially available ELISA kit. Of the 182 blood samples of pregnant women screened whose age ranged from 15-49 years, 13 (7.1%), 5 (2.7%), 9 (4.9%), and 44 (24.2%) were positive for HBsAg, anti-HCV, anti-HIV, and HTLV-1 IgM antibodies, respectively. The co-infection rate of 0.5% was obtained for HBV/HCV, HBV/HIV, HIV/HTLV-1, and HCV/HTLV-1 while 1.1% and 0% was recorded for HBV/HTLV-1 and HCV/HIV co-infections, respectively. Expected risk factors such as history of surgery, circumcision, tattooing and incision showed no significant association with any of the viral STIs (P > 0.05). This study shows that there is the need for a comprehensive screening of all pregnant women for HBsAg, anti-HCV, anti-HIV and HTLV-1 to prevent mother to child transmission of these viral infections and its attending consequences.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophagesmore » with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.« less

  4. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers.

    PubMed

    Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W; Axthelm, Michael K; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M; Edlefsen, Paul T; Piatak, Michael; Estes, Jacob D; Lifson, Jeffrey D; Picker, Louis J

    2015-02-01

    Chronic-phase HIV and simian immunodeficiency virus (SIV) replication is reduced by as much as 10,000-fold in elite controllers (ECs) compared with typical progressors (TPs), but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here we show that productive SIV infection in rhesus monkey ECs, but not TPs, is markedly restricted to CD4(+) follicular helper T (TFH) cells, suggesting that these EC monkeys' highly effective SIV-specific CD8(+) T cells can effectively clear productive SIV infection from extrafollicular sites, but their relative exclusion from B cell follicles prevents their elimination of productively infected TFH cells. CD8(+) lymphocyte depletion in EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH cells, with restriction of productive infection to TFH cells resuming upon CD8(+) T cell recovery. Thus, B cell follicles constitute 'sanctuaries' for persistent SIV replication in the presence of potent anti-viral CD8(+) T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy.

  5. Abacavir, an anti-HIV-1 drug, targets TDP1-deficient adult T cell leukemia.

    PubMed

    Tada, Kohei; Kobayashi, Masayuki; Takiuchi, Yoko; Iwai, Fumie; Sakamoto, Takashi; Nagata, Kayoko; Shinohara, Masanobu; Io, Katsuhiro; Shirakawa, Kotaro; Hishizawa, Masakatsu; Shindo, Keisuke; Kadowaki, Norimitsu; Hirota, Kouji; Yamamoto, Junpei; Iwai, Shigenori; Sasanuma, Hiroyuki; Takeda, Shunichi; Takaori-Kondo, Akifumi

    2015-04-01

    Adult T cell leukemia (ATL) is an aggressive T cell malignancy caused by human T cell leukemia virus type 1 (HTLV-1) and has a poor prognosis. We analyzed the cytotoxic effects of various nucleoside analog reverse transcriptase inhibitors (NRTIs) for HIV-1 on ATL cells and found that abacavir potently and selectively kills ATL cells. Although NRTIs have minimal genotoxicities on host cells, the therapeutic concentration of abacavir induced numerous DNA double-strand breaks (DSBs) in the chromosomal DNA of ATL cells. DSBs persisted over time in ATL cells but not in other cell lines, suggesting impaired DNA repair. We found that the reduced expression of tyrosyl-DNA phosphodiesterase 1 (TDP1), a repair enzyme, is attributable to the cytotoxic effect of abacavir on ATL cells. We also showed that TDP1 removes abacavir from DNA ends in vitro. These results suggest a model in which ATL cells with reduced TDP1 expression are unable to excise abacavir incorporated into genomic DNA, leading to irreparable DSBs. On the basis of the above mechanism, we propose abacavir as a promising chemotherapeutic agent for ATL.

  6. Repurposing Drugs in Oncology (ReDO)—diclofenac as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P

    2016-01-01

    Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper. PMID:26823679

  7. Identification of marine neuroactive molecules in behaviour-based screens in the larval zebrafish.

    PubMed

    Long, Si-Mei; Liang, Feng-Yin; Wu, Qi; Lu, Xi-Lin; Yao, Xiao-Li; Li, Shi-Chang; Li, Jing; Su, Huanxing; Pang, Ji-Yan; Pei, Zhong

    2014-05-30

    High-throughput behavior-based screen in zebrafish is a powerful approach for the discovery of novel neuroactive small molecules for treatment of nervous system diseases such as epilepsy. To identify neuroactive small molecules, we first screened 36 compounds (1-36) derived from marine natural products xyloketals and marine isoprenyl phenyl ether obtained from the mangrove fungus. Compound 1 demonstrated the most potent inhibition on the locomotor activity in larval zebrafish. Compounds 37-42 were further synthesized and their potential anti-epilepsy action was then examined in a PTZ-induced epilepsy model in zebrafish. Compound 1 and compounds 39, 40 and 41 could significantly attenuate PTZ-induced locomotor hyperactivity and elevation of c-fos mRNA in larval zebrafish. Compound 40 showed the most potent inhibitory action against PTZ-induced hyperactivity. The structure-activity analysis showed that the OH group at 12-position played a critical role and the substituents at the 13-position were well tolerated in the inhibitory activity of xyloketal derivatives. Thus, these derivatives may provide some novel drug candidates for the treatment of epilepsy.

  8. The risk of HIV, HBV, HCV and HTLV infection among musculoskeletal tissue donors in Australia.

    PubMed

    Yao, F; Seed, C; Farrugia, A; Morgan, D; Cordner, S; Wood, D; Zheng, M H

    2007-12-01

    In Australia, there are no current national estimates of the risks of transmission of human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) or human T-lymphotrophic virus (HTLV) by musculoskeletal tissue transplantation. We determined the prevalence rates of antibodies against HIV (anti-HIV), HCV (anti-HCV) and HTLV (anti-HTLV) and Hepatitis B surface antigen (HBsAg) for 12,415 musculoskeletal tissue donors from three major bone tissue banks across Australia for the period 1993-2004. The prevalence (per 100,000 persons) was 64.44 for anti-HIV, 407.13 for HBsAg, 534.63 for anti-HCV and 121.88 for anti-HTLV. The estimated probability of viremia at the time of donation was 1 in 128,000, 1 in 189,000, 1 in 55,000 and 1 in 118,000, respectively. With the addition of nucleic acid amplification testing (NAT), the probability of donor viremia would be reduced to 1 in 315,000 for HIV, 1 in 385,000 for HBV and 1 in 500,000 for HCV. The prevalence of HIV, HBV, HCV and HTLV although low, are higher among musculoskeletal tissue donors than among first-time blood donors. The risks associated with musculoskeletal donation will be reduced with NAT, though further cost analysis is required prior to its implementation.

  9. Innate immunity in the vagina (Part II): Anti-HIV activity and antiviral content of human vaginal secretions.

    PubMed

    Patel, Mickey V; Ghosh, Mimi; Fahey, John V; Ochsenbauer, Christina; Rossoll, Richard M; Wira, Charles R

    2014-07-01

    Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions change across the menstrual cycle is unknown. Using a menstrual cup, vaginal secretions from pre-menopausal women were recovered at the proliferative (d6-8), mid-cycle (d13-15), and secretory (d21-23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. CCL20, RANTES, elafin, HBD2, SDF-1α, and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women and in consecutive cycles from the same woman. The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and interindividual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. © 2014 John Wiley & Sons Ltd.

  10. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor

    PubMed Central

    Richardson, Max W.; Ellebrecht, Christoph T.; Glover, Joshua A.; Secreto, Anthony J.; Kulikovskaya, Irina; Yi, Yanjie; Wang, Jianbin; Dufendach, Keith A.; Holmes, Michael C.; Collman, Ronald G.

    2017-01-01

    HIV is adept at avoiding naturally generated T cell responses; therefore, there is a need to develop HIV-specific T cells with greater potency for use in HIV cure strategies. Starting with a CD4-based chimeric antigen receptor (CAR) that was previously used without toxicity in clinical trials, we optimized the vector backbone, promoter, HIV targeting moiety, and transmembrane and signaling domains to determine which components augmented the ability of T cells to control HIV replication. This re-engineered CAR was at least 50-fold more potent in vitro at controlling HIV replication than the original CD4 CAR, or a TCR-based approach, and substantially better than broadly neutralizing antibody-based CARs. A humanized mouse model of HIV infection demonstrated that T cells expressing optimized CARs were superior at expanding in response to antigen, protecting CD4 T cells from infection, and reducing viral loads compared to T cells expressing the original, clinical trial CAR. Moreover, in a humanized mouse model of HIV treatment, CD4 CAR T cells containing the 4-1BB costimulatory domain controlled HIV spread after ART removal better than analogous CAR T cells containing the CD28 costimulatory domain. Together, these data indicate that potent HIV-specific T cells can be generated using improved CAR design and that CAR T cells could be important components of an HIV cure strategy. PMID:29023549

  11. Ruxolitinib and Tofacitinib Are Potent and Selective Inhibitors of HIV-1 Replication and Virus Reactivation In Vitro

    PubMed Central

    Gavegnano, Christina; Detorio, Mervi; Montero, Catherine; Bosque, Alberto; Planelles, Vicente

    2014-01-01

    The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals. PMID:24419350

  12. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies.

    PubMed

    Ahmed, Yousuf; Tian, Meijuan; Gao, Yong

    2017-09-12

    The extreme HIV diversity posts a great challenge on development of an effective anti-HIV vaccine. To solve this problem, it is crucial to discover an appropriate immunogens and strategies that are able to prevent the transmission of the diverse viruses that are circulating in the world. Even though there have been a number of broadly neutralizing anti-HIV antibodies (bNAbs) been discovered in recent years, induction of such antibodies to date has only been observed in HIV-1 infection. Here, in this mini review, we review the progress in development of HIV vaccine in eliciting broad immune response, especially production of bNAbs, discuss possible strategies, such as polyvalent sequential vaccination, that facilitates B cell maturation leading to bNAb response.

  13. Broad neutralization response in a subset of HIV-1 subtype C-infected viraemic non-progressors from southern India.

    PubMed

    Nandagopal, Paneerselvam; Bhattacharya, Jayanta; Srikrishnan, Aylur K; Goyal, Rajat; Ravichandran Swathirajan, Chinnambedu; Patil, Shilpa; Saravanan, Shanmugam; Deshpande, Suprit; Vignesh, Ramachandran; Solomon, Sunil Suhas; Singla, Nikhil; Mukherjee, Joyeeta; Murugavel, Kailapuri G

    2018-02-05

    Broadly neutralizing antibodies (bnAbs) have been considered to be potent therapeutic tools and potential vaccine candidates to enable protection against various clades of human immunodeficiency virus (HIV). The generation of bnAbs has been associated with enhanced exposure to antigen, high viral load and low CD4+ T cell counts, among other factors. However, only limited data are available on the generation of bnAbs in viraemic non-progressors that demonstrate moderate to high viraemia. Further, since HIV-1 subtype C viruses account for more than 50 % of global HIV infections, the identification of bnAbs with novel specificities is crucial to enable the development of potent tools to aid in HIV therapy and prevention. In the present study, we analysed and compared the neutralization potential of responses in 70 plasma samples isolated from ART-naïve HIV-1 subtype C-infected individuals with various disease progression profiles against a panel of 30 pseudoviruses. Among the seven samples that exhibited a neutralization breadth of ≥70 %, four were identified as 'elite neutralizers', and three of these were from viraemic non-progressors while the fourth was from a typical progressor. Analysis of the neutralization specificities revealed that none of the four elite neutralizers were reactive to epitopes in the membrane proximal external region (MPER), CD4-binding site and V1V2 or V3 glycan. However, two of the four elite neutralizers exhibited enhanced sensitivity towards viruses lacking N332 glycan, indicating high neutralization potency. Overall, our findings indicate that the identification of potent neutralization responses with distinct epitope specificities is possible from the as yet unexplored Indian population, which has a high prevalence of HIV-1 subtype C infection.

  14. DPC 681 and DPC 684: Potent, Selective Inhibitors of Human Immunodeficiency Virus Protease Active against Clinically Relevant Mutant Variants

    PubMed Central

    Kaltenbach, Robert F.; Trainor, George; Getman, Daniel; Harris, Greg; Garber, Sena; Cordova, Beverly; Bacheler, Lee; Jeffrey, Susan; Logue, Kelly; Cawood, Pamela; Klabe, Ronald; Diamond, Sharon; Davies, Marc; Saye, Joanne; Jona, Janan; Erickson-Viitanen, Susan

    2001-01-01

    Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of many highly active antiretroviral therapy regimens. However, development of phenotypic and/or genotypic resistance can occur, including cross-resistance to other PIs. Development of resistance takes place because trough levels of free drug are inadequate to suppress preexisting resistant mutant variants and/or to inhibit de novo-generated resistant mutant variants. There is thus a need for new PIs, which are more potent against mutant variants of HIV and show higher levels of free drug at the trough. We have optimized a series of substituted sulfonamides and evaluated the inhibitors against laboratory strains and clinical isolates of HIV type 1 (HIV-1), including viruses with mutations in the protease gene. In addition, serum protein binding was determined to estimate total drug requirements for 90% suppression of virus replication (plasma IC90). Two compounds resulting from our studies, designated DPC 681 and DPC 684, are potent and selective inhibitors of HIV protease with IC90s for wild-type HIV-1 of 4 to 40 nM. DPC 681 and DPC 684 showed no loss in potency toward recombinant mutant HIVs with the D30N mutation and a fivefold or smaller loss in potency toward mutant variants with three to five amino acid substitutions. A panel of chimeric viruses constructed from clinical samples from patients who failed PI-containing regimens and containing 5 to 11 mutations, including positions 10, 32, 46, 47, 50, 54, 63, 71, 82, 84, and 90 had mean IC50 values of <20 nM for DPC 681 and DPC 681, respectively. In contrast, marketed PIs had mean IC50 values ranging from 200 nM (amprenavir) to >900 nM (nelfinavir). PMID:11600351

  15. HIV-Infected Children Have Lower Frequencies of CD8+ Mucosal-Associated Invariant T (MAIT) Cells that Correlate with Innate, Th17 and Th22 Cell Subsets

    PubMed Central

    Kilberg, Max; Kravietz, Adam; Ilmet, Tiina; Tastan, Cihan; Mwamzuka, Mussa; Marshed, Fatma; Liu, Mengling; Ahmed, Aabid; Borkowsky, William; Unutmaz, Derya

    2016-01-01

    Mucosal-associated invariant T cells (MAIT) are innate T cells restricted by major histocompatibility related molecule 1 (MR1) presenting riboflavin metabolite ligands derived from microbes. Specificity to riboflavin metabolites confers MAIT cells a broad array of host-protective activity against gram-negative and -positive bacteria, mycobacteria, and fungal pathogens. MAIT cells are present at low levels in the peripheral blood of neonates and gradually expand to relatively abundant levels during childhood. Despite no anti-viral activity, MAIT cells are depleted early and irreversibly in HIV infected adults. Such loss or impaired expansion of MAIT cells in HIV-positive children may render them more susceptible to common childhood illnesses and opportunistic infections. In this study we evaluated the frequency of MAIT cells in perinatally HIV-infected children, their response to antiretroviral treatment and their associations with HIV clinical status and related innate and adaptive immune cell subsets with potent antibacterial effector functions. We found HIV+ children between ages 3 to 18 years have significantly decreased CD8+ MAIT cell frequencies compared to uninfected healthy children. Remarkably, CD8 MAIT levels gradually increased with antiretroviral therapy, with greater recovery when treatment is initiated at a young age. Moreover, diminished CD8+ MAIT cell frequencies are associated with low CD4:CD8 ratios and elevated sCD14, suggesting a link with HIV disease progression. Last, CD8+ MAIT cell levels tightly correlate with other antibacterial and mucosa-protective immune subsets, namely, neutrophils, innate-like T cells, and Th17 and Th22 cells. Together these findings suggest that low frequencies of MAIT cells in HIV positive children are part of a concerted disruption to the innate and adaptive immune compartments specialized in sensing and responding to pathogenic or commensal bacteria. PMID:27560150

  16. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity

    PubMed Central

    Lu, Lihua; Liu, Li-Juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-01-01

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus. PMID:26416333

  17. From plant extract to molecular panacea: a commentary on Stone (1763) ‘An account of the success of the bark of the willow in the cure of the agues’

    PubMed Central

    Wood, John N.

    2015-01-01

    The application of aspirin-like drugs in modern medicine is very broad, encompassing the treatment of inflammation, pain and a variety of cardiovascular conditions. Although anecdotal accounts of willow bark extract as an anti-inflammatory drug have occurred since written records began (for example by Hippocrates), the first convincing demonstration of a potent anti-pyretic effect of willow bark containing salicylates was made by the English cleric Edward Stone in the late eighteenth century. Here, we discuss the route to optimizing and understanding the mechanism of action of anti-inflammatory drugs that have their origins in Stone's seminal study, ‘An account of the success of the bark of the willow in the cure of agues’. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750237

  18. Thiazoline peptides and a tris-phenethyl urea from Didemnum molle with anti-HIV activity.

    PubMed

    Lu, Zhenyu; Harper, Mary Kay; Pond, Christopher D; Barrows, Louis R; Ireland, Chris M; Van Wagoner, Ryan M

    2012-08-24

    As part of our screening for anti-HIV agents from marine invertebrates, the MeOH extract of Didemnum molle was tested and showed moderate in vitro anti-HIV activity. Bioassay-guided fractionation of a large-scale extract allowed the identification of two new cyclopeptides, mollamides E and F (1 and 2), and one new tris-phenethyl urea, molleurea A (3). The absolute configurations were established using the advanced Marfey's method. The three compounds were evaluated for anti-HIV activity in both an HIV integrase inhibition assay and a cytoprotective cell-based assay. Compound 2 was active in both assays with IC(50) values of 39 and 78 μM, respectively. Compound 3 was active only in the cytoprotective cell-based assay, with an IC(50) value of 60 μM.

  19. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    PubMed

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  20. Earlier Detection of Hepatitis C Virus Infection Through Routine Hepatitis C Virus Antibody Screening of Human Immunodeficiency Virus-Positive Men Who Have Sex With Men Attending A Sexually Transmitted Infection Outpatient Clinic: A Longitudinal Study.

    PubMed

    van Rooijen, Martijn; Heijman, Titia; de Vrieze, Nynke; Urbanus, Anouk; Speksnijder, Arjen; van Leeuwen, Petra; de Vries, Henry; Prins, Maria

    2016-09-01

    In 2007, routine hepatitis C virus (HCV) antibody testing was introduced for men who have sex with men (MSM) with a human immunodeficiency virus (HIV)-positive or unknown status attending a Dutch sexually transmitted infection (STI) outpatient clinic. We evaluated whether this screening resulted in additional and earlier HCV diagnoses among MSM who also attend HIV clinics. At first STI consultation, HIV-positive MSM and MSM opting-out of HIV testing (HIV-status-unknown) were tested for HCV antibodies (anti-HCV). During follow-up consultations, only previously HCV-negative men were tested. Retrospectively, STI clinic and HIV clinic HCV diagnosis dates were compared. One hundred twelve (6.4%) of 1742 (95% confidence interval [CI], 5.3-7.6%) HIV-positive and 3 (0.7%) of 446 (95% CI, 0.2-2.0%) HIV-status-unknown MSM tested anti-HCV-positive at first consultation. During follow-up consultations, 32 HIV-positive (incidence HCV-positive: 2.35/100 person years (PY) (95% CI, 1.66-3.33)) and 0 (1-sided, 97.5% CI, 0.0-3.76) HIV-status-unknown MSM became anti-HCV-positive. Four (11.8%) of 34 HIV-positive MSM notified by their sexual partner of HCV tested anti-HCV-positive.Of 163 HIV-positive MSM with HCV antibodies, 78 reported a history of HCV. HCV diagnosis data at the HIV clinic was requested for the remaining 85 MSM and available for 54 MSM. Of these 54 MSM, 28 (51.9%) had their first HCV diagnosis at the STI clinic, of whom 7 concurrently with HIV. At their next scheduled HIV clinic consultation, 3 HCV cases probably would have been missed. The introduction of routine anti-HCV testing at the STI outpatient clinic resulted in additional and earlier HCV detection among HIV-positive MSM. Testing should be continued among HIV-positive MSM, at least for those not (yet) under the care of an HIV clinic and those notified of HCV by their sexual partner.

  1. HIV therapeutic vaccines: moving towards a functional cure.

    PubMed

    Mylvaganam, Geetha H; Silvestri, Guido; Amara, Rama Rao

    2015-08-01

    Anti-viral T-cell and B-cell responses play a crucial role in suppressing HIV and SIV replication during chronic infection. However, these infections are rarely controlled by the host immune response, and most infected individuals need lifelong antiretroviral therapy (ART). Recent advances in our understanding of how anti-HIV immune responses are elicited and regulated prompted a surge of interest in harnessing these responses to reduce the HIV 'residual disease' that is present in ART-treated HIV-infected individuals. Novel approaches that are currently explored include both conventional therapeutic vaccines (i.e., active immunization strategies using HIV-derived immunogens) as well as the use of checkpoint blockers such as anti-PD-1 antibodies. These approaches appear promising as key components of complex therapeutic strategies aimed at curing HIV infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Identification of potent maturation inhibitors against HIV-1 clade C.

    PubMed

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J; Wild, Carl T; Freed, Eric O; Gaur, Ritu

    2016-06-06

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic.

  3. Lipopolysaccharide is a potent monocyte/macrophage-specific stimulator of human immunodeficiency virus type 1 expression

    PubMed Central

    1990-01-01

    Lipopolysaccharide (LPS) potently stimulates human immunodeficiency virus type 1-long terminal repeat (HIV-1-LTR) CAT constructs transfected into monocyte/macrophage-like cell lines but not a T cell line. This effect appears to be mediated through the induction of nuclear factor kappa B (NF-kappa B). Electrophoretic mobility shift assays demonstrate that LPS induces a DNA binding activity indistinguishable from NF-kappa B in U937 and THP-1 cells. LPS is also shown to dramatically increase HIV-1 production from a chronically infected monocyte/macrophage-like cloned cell line, U1, which produces very low levels of HIV-1 at baseline. The stimulation of viral production from this cell line occurs only if these cells are treated with granulocyte/macrophage colony-stimulating factor (GM-CSF) before treatment with LPS. This stimulation of HIV-1 production is correlated with an increase in the level of HIV-1 RNA and and activation of NF- kappa B. LPS is not able to induce HIV-1 production in a cloned T cell line. The effect of LPS on HIV-1 replication occurs at picogram per milliliter concentrations and may be clinically significant in understanding the variability of the natural history of HIV-1 infection. PMID:2193097

  4. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus.

    PubMed

    Li, Sumei; Jia, Xiuhua; Shen, Xintian; Wei, Zhuwen; Jiang, Zhiyan; Liao, Yixian; Guo, Yiming; Zheng, Xiaojun; Zhong, Guohua; Song, Gaopeng

    2017-08-15

    Highly pathogenic H5N1 virus (H5N1) entry is a key target for the development of novel anti-influenza agents with new mechanisms of action. In our continuing efforts to identify novel potential anti-H5N1 entry inhibitors, a series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on two small molecule inhibitors 1 and 2 previously discovered by us. The anti-H5N1 entry activities were determined based on HA/HIV and VSVG/HIV entry assays. Compound 15 displayed the most promising anti-H5N1 entry activities with average IC 50 values of 4.05μM and good selective index (22.9). Detailed structure-activity relationships (SARs) studies suggested that either the introduction of an additional oxo group to position 11 at OA or alteration of the C-3 configuration of OA from 3β- to 3α-forms can significantly enhance the selective index while maintaining their antiviral activities in vitro. Molecular simulation analysis confirmed that the compounds exert their inhibitory activity through binding tightly to hemagglutinin (HA2) protein near the fusion peptide and prevent virus entry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The HIV-1 integrase-LEDGF allosteric inhibitor MUT-A: resistance profile, impairment of virus maturation and infectivity but without influence on RNA packaging or virus immunoreactivity.

    PubMed

    Amadori, Céline; van der Velden, Yme Ubeles; Bonnard, Damien; Orlov, Igor; van Bel, Nikki; Le Rouzic, Erwann; Miralles, Laia; Brias, Julie; Chevreuil, Francis; Spehner, Daniele; Chasset, Sophie; Ledoussal, Benoit; Mayr, Luzia; Moreau, François; García, Felipe; Gatell, José; Zamborlini, Alessia; Emiliani, Stéphane; Ruff, Marc; Klaholz, Bruno P; Moog, Christiane; Berkhout, Ben; Plana, Montserrat; Benarous, Richard

    2017-11-09

    HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF interaction during integration, the major impact of these inhibitors was surprisingly found on virus maturation, causing a reverse transcription defect in target cells. Here we describe the MUT-A compound as a genuine INLAI with an original chemical structure based on a new type of scaffold, a thiophene ring. MUT-A has all characteristics of INLAI compounds such as inhibition of IN-LEDGF/p75 interaction, IN multimerization, dual antiretroviral (ARV) activities, normal packaging of genomic viral RNA and complete Gag protein maturation. MUT-A has more potent ARV activity compared to other INLAIs previously reported, but similar profile of resistance mutations and absence of ARV activity on SIV. HIV-1 virions produced in the presence of MUT-A were non-infectious with the formation of eccentric condensates outside of the core. In studying the immunoreactivity of these non-infectious virions, we found that inactivated HIV-1 particles were captured by anti-HIV-specific neutralizing and non-neutralizing antibodies (b12, 2G12, PGT121, 4D4, 10-1074, 10E8, VRC01) with efficiencies comparable to non-treated virus. Autologous CD4 + T lymphocyte proliferation and cytokine induction by monocyte-derived dendritic cells (MDDC) pulsed either with MUT-A-inactivated HIV or non-treated HIV were also comparable. Although strongly defective in infectivity, HIV-1 virions produced in the presence of the MUT-A INLAI have a normal protein and genomic RNA content as well as B and T cell immunoreactivities comparable to non-treated HIV-1. These inactivated viruses might form an attractive new approach in vaccine research in an attempt to study if this new type of immunogen could elicit an immune response against HIV-1 in animal models.

  6. Neutralizing antibodies decrease the envelope fluidity of HIV-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Shinji; Monde, Kazuaki; Tanaka, Yuetsu

    2008-01-05

    For successful penetration of HIV-1, the formation of a fusion pore may be required in order to accumulate critical numbers of fusion-activated gp41 with the help of fluidization of the plasma membrane and viral envelope. An increase in temperature to 40 {sup o}C after viral adsorption at 25 {sup o}C enhanced the infectivity by 1.4-fold. The enhanced infectivity was inhibited by an anti-CXCR4 peptide, T140, and anti-V3 monoclonal antibodies (0.5{beta} and 694/98-D) by post-attachment neutralization, but not by non-neutralizing antibodies (670-30D and 246-D) specific for the C5 of gp120 and cluster I of gp41, respectively. Anti-HLA-II and an anti-HTLV-I gp46more » antibody, LAT27, neutralized the molecule-carrying HIV-1{sub C-2(MT-2)}. The anti-V3 antibodies suppressed the fluidity of the HIV-1{sub C-2} envelope, whereas the non-neutralizing antibodies did not. The anti-HLA-II antibody decreased the envelope fluidity of HIV-1{sub C-2(MT-2)}, but not that of HIV-1{sub C-2}. Therefore, fluidity suppression by these antibodies represents an important neutralization mechanism, in addition to inhibition of viral attachment.« less

  7. 21 CFR 1270.21 - Determination of donor suitability for human tissue intended for transplantation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... virus, Type 1 (e.g., FDA licensed screening test for anti-HIV-1); (2) Human immunodeficiency virus, Type 2 (e.g., FDA licensed screening test for anti-HIV-2); (3) Hepatitis B (e.g., FDA licensed screening... been tested and found negative using FDA licensed screening tests for HIV-1, HIV-2, hepatitis B, and...

  8. 21 CFR 1270.21 - Determination of donor suitability for human tissue intended for transplantation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... virus, Type 1 (e.g., FDA licensed screening test for anti-HIV-1); (2) Human immunodeficiency virus, Type 2 (e.g., FDA licensed screening test for anti-HIV-2); (3) Hepatitis B (e.g., FDA licensed screening... been tested and found negative using FDA licensed screening tests for HIV-1, HIV-2, hepatitis B, and...

  9. 21 CFR 1270.21 - Determination of donor suitability for human tissue intended for transplantation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... virus, Type 1 (e.g., FDA licensed screening test for anti-HIV-1); (2) Human immunodeficiency virus, Type 2 (e.g., FDA licensed screening test for anti-HIV-2); (3) Hepatitis B (e.g., FDA licensed screening... been tested and found negative using FDA licensed screening tests for HIV-1, HIV-2, hepatitis B, and...

  10. 21 CFR 1270.21 - Determination of donor suitability for human tissue intended for transplantation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... virus, Type 1 (e.g., FDA licensed screening test for anti-HIV-1); (2) Human immunodeficiency virus, Type 2 (e.g., FDA licensed screening test for anti-HIV-2); (3) Hepatitis B (e.g., FDA licensed screening... been tested and found negative using FDA licensed screening tests for HIV-1, HIV-2, hepatitis B, and...

  11. Natural antimicrobial peptides as promising anti-HIV candidates

    PubMed Central

    Wang, Guangshun

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection remains to be one of the major global health problems. It is thus necessary to identify novel therapeutic molecules to combat HIV-1. Natural antimicrobial peptides (AMPs) have been recognized as promising templates for developing topical microbicides. This review systematically discusses over 80 anti-HIV peptides annotated in the antimicrobial peptide database (http://aps.unmc.edu/AP). Such peptides have been discovered from bacteria, plants, and animals. Examples include gramicidin and bacteriocins from bacteria, cyclotides from plants, melittins and cecropins from insects, piscidins from fish, ascaphins, caerins, dermaseptins, esculentins, and maximins from amphibians, and cathelicidins and defensins from vertebrates. These peptides appear to work by different mechanisms and could block viral entry in multiple ways. As additional advantages, such anti-HIV peptides may possess other desired features such as antibacterial, antiparasital, spermicidal, and anticancer activity. With continued optimization of peptide stability, production, formulation and delivery methods, it is anticipated that some of these compounds may eventually become new anti-HIV drugs. PMID:26834391

  12. Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers.

    PubMed

    Rivero-Buceta, Eva; Carrero, Paula; Casanova, Elena; Doyagüez, Elisa G; Madrona, Andrés; Quesada, Ernesto; Peréz-Pérez, María Jesús; Mateos, Raquel; Bravo, Laura; Mathys, Leen; Noppen, Sam; Kiselev, Evgeny; Marchand, Christophe; Pommier, Yves; Liekens, Sandra; Balzarini, Jan; Camarasa, María José; San-Félix, Ana

    2015-12-01

    The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly α-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes α-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry.

    PubMed

    Yang, Shu; Xu, Miao; Lee, Emily M; Gorshkov, Kirill; Shiryaev, Sergey A; He, Shihua; Sun, Wei; Cheng, Yu-Shan; Hu, Xin; Tharappel, Anil Mathew; Lu, Billy; Pinto, Antonella; Farhy, Chen; Huang, Chun-Teng; Zhang, Zirui; Zhu, Wenjun; Wu, Yuying; Zhou, Yi; Song, Guang; Zhu, Heng; Shamim, Khalida; Martínez-Romero, Carles; García-Sastre, Adolfo; Preston, Richard A; Jayaweera, Dushyantha T; Huang, Ruili; Huang, Wenwei; Xia, Menghang; Simeonov, Anton; Ming, Guoli; Qiu, Xiangguo; Terskikh, Alexey V; Tang, Hengli; Song, Hongjun; Zheng, Wei

    2018-01-01

    The re-emergence of Zika virus (ZIKV) and Ebola virus (EBOV) poses serious and continued threats to the global public health. Effective therapeutics for these maladies is an unmet need. Here, we show that emetine, an anti-protozoal agent, potently inhibits ZIKV and EBOV infection with a low nanomolar half maximal inhibitory concentration (IC 50 ) in vitro and potent activity in vivo. Two mechanisms of action for emetine are identified: the inhibition of ZIKV NS5 polymerase activity and disruption of lysosomal function. Emetine also inhibits EBOV entry. Cephaeline, a desmethyl analog of emetine, which may be better tolerated in patients than emetine, exhibits a similar efficacy against both ZIKV and EBOV infections. Hence, emetine and cephaeline offer pharmaceutical therapies against both ZIKV and EBOV infection.

  14. Docking simulations and in vitro assay unveil potent inhibitory action of papaverine against protein tyrosine phosphatase 1B.

    PubMed

    Bustanji, Yasser; Taha, Mutasem Omar; Al-Masri, Ihab Mustafa; Mohammad, Mohammad Khalil

    2009-04-01

    The structural similarity between papaverine and berberine, a known inhibitor of human protein tyrosine phosphatase 1B (h-PTP 1B), prompted us to investigate the potential of papaverine as h-PTP 1B inhibitor. The investigation included simulated docking experiments to fit papaverine into the binding pocket of h-PTP 1B. Papaverine was found to readily dock within the binding pocket of h-PTP 1B in a low energy orientation via an optimal set of attractive interactions. Experimentally, papaverine illustrated potent in vitro inhibitory effect against recombinant h-PTP 1B (IC(50)=1.20 microM). In vivo, papaverine significantly decreased fasting blood glucose level of Balb/c mice. Our findings should encourage screening of other natural alkaloids for possible anti-h-PTP 1B activities.

  15. Synthesis and Anti-cancer Activity of 3-substituted Benzoyl-4-substituted Phenyl-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin

    2017-01-01

    Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Binding of Single Walled Carbon Nanotube to WT and Mutant HIV-1 Proteases: Analysis of Flap Dynamics and Binding Mechanism

    PubMed Central

    Meher, Biswa Ranjan; Wang, Yixuan

    2012-01-01

    Most of the currently treated HIV-1 protease (HIV-PR) inhibitors have been prone to suffer from the mutations associated drug resistance. Therefore, it is necessary to search for potent alternatives against the drug resistance. In the current study we have tested the single-walled carbon nanotube (SWCNT) as an inhibitor in wild type (WT) as well as in three primary mutants (I50VPR, V82APR and I84VPR) of the HIV-1-PR through docking the SWCNT in the active site region, and then performed all-atom MD simulations for the complexes. The conformational dynamics of HIV-PR with a 20 ns trajectory reveals that the SWCNT can effectively bind to the HIV-1-PR active site and regulate the flap dynamics such as maintaining the flap-flap closed. To gain an insight into the binding affinity, we also performed the MM-PBSA based binding free energy calculations for the four HIV-PR/SWCNT complexes. It was observed that, although the binding between the SWCNT and the HIV-PR decreases due to the mutations, the SWCNTs bind to the HIV-PRs 3–5 folds stronger than the most potent HIV-1-PR inhibitor, TMC114. Remarkably, the significant interactions with binding energy higher than 1 kcal/mol focus on the flap and active regions, which favors closing flap-flap and deactivating the active residues of the HIV-PR. The flap dynamics and binding strength information for HIV-PR and SWCNTs can help design SWCNT-based HIV-1-PR inhibitors. PMID:23142620

  17. Investigational Antiretroviral Drugs: What is Coming Down the Pipeline.

    PubMed

    Gulick, Roy M

    2018-04-01

    Over the past 30 years, antiretroviral drug regimens for treating HIV infection have become more effective, safer, and more convenient. Despite 31 currently approved drugs, the pipeline of investigational HIV drugs remains full. Investigational antiretroviral drugs include the nucleoside analogue reverse transcriptase translocation inhibitor (NRTTI) MK-8591, a long-acting compound that could be dosed once weekly. Investigational nonnucleoside analogue reverse transcriptase inhibitors (NNRTIs) include doravirine, which is active in vitro against NNRTI-resistant HIV and was potent and well-tolerated when used in combination with a dual-nucleoside analogue RTI (nRTI) backbone in treatment-naive individuals.New integrase strand transfer inhibitors (InSTIs) include recently approved bictegravir, which is active against InSTI-resistant viral strains in vitro and was potent and well-tolerated in combination regimens in treatment-naive individuals, and investigational cabotegravir, which is being studied with monthly parenteral dosing for HIV maintenance treatment and with bimonthly dosing for HIV preexposure prophylaxis (PrEP). Investigational HIV entry inhibitors include the new CD4 attachment inhibitor fostemsavir, which targets HIV envelope glycoprotein 120, and recently approved ibalizumab, which binds the CD4 receptor. This article summarizes presentations by Roy M. Gulick, MD, MPH, at the IAS-USA continuing education program, Improving the Management of HIV Disease, held in Los Angeles, California, in April 2017, and at the 2017 Ryan White HIV/AIDS Program Clinical Conference, held in San Antonio, Texas, in August 2017.

  18. Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component

    PubMed Central

    O'Keefe, Barry R.; Vojdani, Fakhrieh; Buffa, Viviana; Shattock, Robin J.; Montefiori, David C.; Bakke, James; Mirsalis, Jon; d'Andrea, Anna-Lisa; Hume, Steven D.; Bratcher, Barry; Saucedo, Carrie J.; McMahon, James B.; Pogue, Gregory P.; Palmer, Kenneth E.

    2009-01-01

    To prevent sexually transmitted HIV, the most desirable active ingredients of microbicides are antiretrovirals (ARVs) that directly target viral entry and avert infection at mucosal surfaces. However, most promising ARV entry inhibitors are biologicals, which are costly to manufacture and deliver to resource-poor areas where effective microbicides are urgently needed. Here, we report a manufacturing breakthrough for griffithsin (GRFT), one of the most potent HIV entry inhibitors. This red algal protein was produced in multigram quantities after extraction from Nicotiana benthamiana plants transduced with a tobacco mosaic virus vector expressing GRFT. Plant-produced GRFT (GRFT-P) was shown as active against HIV at picomolar concentrations, directly virucidal via binding to HIV envelope glycoproteins, and capable of blocking cell-to-cell HIV transmission. GRFT-P has broad-spectrum activity against HIV clades A, B, and C, with utility as a microbicide component for HIV prevention in established epidemics in sub-Saharan Africa, South Asia, China, and the industrialized West. Cognizant of the imperative that microbicides not induce epithelial damage or inflammatory responses, we also show that GRFT-P is nonirritating and noninflammatory in human cervical explants and in vivo in the rabbit vaginal irritation model. Moreover, GRFT-P is potently active in preventing infection of cervical explants by HIV-1 and has no mitogenic activity on cultured human lymphocytes. PMID:19332801

  19. 3D-QSAR CoMFA of a series of DABO derivatives as HIV-1 reverse transcriptase non-nucleoside inhibitors.

    PubMed

    de Brito, Monique Araújo; Rodrigues, Carlos Rangel; Cirino, José Jair Vianna; de Alencastro, Ricardo Bicca; Castro, Helena Carla; Albuquerque, Magaly Girão

    2008-08-01

    A series of 74 dihydroalkoxybenzyloxopyrimidines (DABOs), a class of highly potent non-nucleoside reverse transcriptase inhibitors (NNRTIs), was retrieved from the literature and studied by comparative molecular field analysis (CoMFA) in order to derive three-dimensional quantitative structure-activity relationship (3D-QSAR) models. The CoMFA study has been performed with a training set of 59 compounds, testing three alignments and four charge schemes (DFT, HF, AM1, and PM3) and using defaults probe atom (Csp (3), +1 charge), cutoffs (30 kcal.mol (-1) for both steric and electrostatic fields), and grid distance (2.0 A). The best model ( N = 59), derived from Alignment 1 and PM3 charges, shows q (2) = 0.691, SE cv = 0.475, optimum number of components = 6, r (2) = 0.930, SEE = 0.226, and F-value = 115.544. The steric and electrostatic contributions for the best model were 43.2% and 56.8%, respectively. The external predictive ability (r (2) pred = 0.918) of the resultant best model was evaluated using a test set of 15 compounds. In order to design more potent DABO analogues as anti-HIV/AIDS agents, attention should be taken in order to select a substituent for the 4-oxopyrimidine ring, since, as revealed by the best CoMFA model, there are a steric restriction at the C2-position, a electron-rich group restriction at the C6-position ( para-substituent of the 6-benzyl group), and a steric allowed region at the C5-position.

  20. Anti-tumour activity of a novel coumarin-chalcone hybrid is mediated through intrinsic apoptotic pathway by inducing PUMA and altering Bax/Bcl-2 ratio.

    PubMed

    Singh, Neetu; Sarkar, Jayanta; Sashidhara, Koneni V; Ali, Shakir; Sinha, Sudhir

    2014-06-01

    Coumarins and chalcones are secondary plant metabolites which have shown an array of pharmacological properties including anti-tumour activity. We have previously reported on the synthesis and anti-proliferative activity of a series of novel coumarin-chalcone hybrids. Now we report on the in vivo efficacy as well as mechanism of action of the most potent molecule of the series, S009-131. Oral administration of this molecule resulted in regression of tumours induced by HeLa cell xenografts in nod SCID mice. The molecule inhibited proliferation of cervical cancer cells (HeLa and C33A) by inducing apoptosis and arresting cell cycle at G2/M phase. Apoptosis was induced through induction of caspase-dependent intrinsic pathway and alterations in the cellular levels of Bcl-2 family proteins. The mitochondrial transmembrane potential got highly depleted in S009-131 treated cells due to an increase in Bax/Bcl-2 ratio and intracellular ROS. The molecule induced release of cytochrome c into the cytosol and activation of initiator caspase-9 and executioner caspases-3/7. Tumour suppressor protein p53 and its transcriptional target PUMA were up regulated, suggesting their role in mediating the cell death. These results suggest that S009-131 is a potent candidate for the chemotherapy of cervical carcinoma.

  1. A Helical Short-Peptide Fusion Inhibitor with Highly Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus

    PubMed Central

    Xiong, Shengwen; Borrego, Pedro; Ding, Xiaohui; Zhu, Yuanmei; Martins, Andreia; Chong, Huihui

    2016-01-01

    ABSTRACT Human immunodeficiency virus type 2 (HIV-2) has already spread to different regions worldwide, and currently about 1 to 2 million people have been infected, calling for new antiviral agents that are effective on both HIV-1 and HIV-2 isolates. T20 (enfuvirtide), a 36-mer peptide derived from the C-terminal heptad repeat region (CHR) of gp41, is the only clinically approved HIV-1 fusion inhibitor, but it easily induces drug resistance and is not active on HIV-2. In this study, we first demonstrated that the M-T hook structure was also vital to enhancing the binding stability and inhibitory activity of diverse CHR-based peptide inhibitors. We then designed a novel short peptide (23-mer), termed 2P23, by introducing the M-T hook structure, HIV-2 sequences, and salt bridge-forming residues. Promisingly, 2P23 was a highly stable helical peptide with high binding to the surrogate targets derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV). Consistent with this, 2P23 exhibited potent activity in inhibiting diverse subtypes of HIV-1 isolates, T20-resistant HIV-1 mutants, and a panel of primary HIV-2 isolates, HIV-2 mutants, and SIV isolates. Therefore, we conclude that 2P23 has high potential to be further developed for clinical use, and it is also an ideal tool for exploring the mechanisms of HIV-1/2- and SIV-mediated membrane fusion. IMPORTANCE The peptide drug T20 is the only approved HIV-1 fusion inhibitor, but it is not active on HIV-2 isolates, which have currently infected 1 to 2 million people and continue to spread worldwide. Recent studies have demonstrated that the M-T hook structure can greatly enhance the binding and antiviral activities of gp41 CHR-derived inhibitors, especially for short peptides that are otherwise inactive. By combining the hook structure, HIV-2 sequence, and salt bridge-based strategies, the short peptide 2P23 has been successfully designed. 2P23 exhibits prominent advantages over many other peptide fusion inhibitors, including its potent and broad activity on HIV-1, HIV-2, and even SIV isolates, its stability as a helical, oligomeric peptide, and its high binding to diverse targets. The small size of 2P23 would benefit its synthesis and significantly reduce production cost. Therefore, 2P23 is an ideal candidate for further development, and it also provides a novel tool for studying HIV-1/2- and SIV-mediated cell fusion. PMID:27795437

  2. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    PubMed

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Immunity in the Vagina (Part II): Anti-HIV Activity and Antiviral Content of Human Vaginal Secretions

    PubMed Central

    Patel, Mickey V.; Ghosh, Mimi; Fahey, John V.; Ochsenbauer, Christina; Rossoll, Richard M.; Wira, Charles R.

    2015-01-01

    Problem Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions changes across the menstrual cycle is unknown. Method of Study Using a menstrual cup, vaginal secretions from premenopausal women were recovered at the proliferative (d6–8), mid-cycle (d13–15) and secretory (d21–23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. Results CCL20, RANTES, elafin, HBD2, SDF-1α and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women, and in consecutive cycles from the same woman. Conclusion The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and inter-individual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. PMID:24806967

  4. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  5. A New Class of Allosteric HIV-1 Integrase Inhibitors Identified by Crystallographic Fragment Screening of the Catalytic Core Domain.

    PubMed

    Patel, Disha; Antwi, Janet; Koneru, Pratibha C; Serrao, Erik; Forli, Stefano; Kessl, Jacques J; Feng, Lei; Deng, Nanjie; Levy, Ronald M; Fuchs, James R; Olson, Arthur J; Engelman, Alan N; Bauman, Joseph D; Kvaratskhelia, Mamuka; Arnold, Eddy

    2016-11-04

    HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC 50 of 72 μm and impaired HIV-1 infection of T cells at an EC 50 of 36 μm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Synthesis of novel (2R,4R)- and (2S,4S)-iso dideoxynucleosides with exocyclic methylene as potential antiviral agents.

    PubMed

    Yoo, Su Jeong; Kim, Hea Ok; Lim, Yoongho; Kim, Jeongmin; Jeong, Lak Shin

    2002-01-01

    Novel (2R,4R)- and (2S,4S)-iso dideoxynucleosides with exocyclic methylene have been designed and synthesized, based on the lead BMS-200475 (3) which exhibited potent anti-HBV activity. For the synthesis of D types of (2R,4R)-nucleosides, L-xylose was converted to the key intermediate 14. The intermediate 14 was converted to the uracil derivative 4a and the cytosine derivative 4b. Compound 14 was also converted to the purine derivatives such as adenine derivative 4c, hypoxanthine derivative 4d, and guanine derivative 4e. The corresponding L types of (2S,4S)-enantiomers were more efficiently synthesized from the commercially available 1,2-isopropylidene-D-xylose (20) than the synthetic method used in the synthesis of (2R,4R)-nucleosides. The key intermediate 25 was converted to the pyrimidine analogues 5a and 5b and the purine derivatives 5c, 5d, and 5e using the similar method used in the preparation of 4c, 4d, and 4e. The synthesized final (2R,4R)- and (2S,4S)-nucleosides were tested against several viruses such as HIV-1, HSV-1, HSV-2, HCMV and HBV. (2R,4R)-Adenine analogue 4c exhibited potent anti-HBV activity (EC(50)=1.5 microM in 2.2.15 cells) among compounds tested, while (2R,4R)-uracil derivative 4a was the most active against HCMV among compounds tested and (2R,4R)-adenine derivative 4c was found to be moderately active against the same virus. However, the corresponding (2S,4S)-isomers were found to be totally inactive against all tested viruses. Both (2R,4R)-adenine derivative 4c and (2S,4S)-adenine analogue 5c were totally resistant to the adenosine deaminase like iso-ddA (1). From the molecular modeling study the hydroxymethyl side chains of BMS-200475 (3) and 4c were almost overlapped, indicating that 4c may be suitable for phosphorylation by cellular kinases like the lead 3, but some discrepancy between two bases was observed, indicating why 4c is less potent against HBV than 3. It is concluded that discovery of (2R,4R)-adenine analogue 4c as potent anti-HBV agent suggested that the sugar moiety of this series can be regarded as a novel template for the development of new anti-HBV agent and oxygen atom can be acted as a bioisostere of C-OH.

  7. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Revealing the drug-resistant mechanism for diarylpyrimidine analogue inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Zhang, Hao; Qin, Fang; Ye, Wei; Li, Zeng; Ma, Songyao; Xia, Yan; Jiang, Yi; Zhu, Jiayi; Li, Yixue; Zhang, Jian; Chen, Hai-Feng

    2011-09-01

    Diaryltriazine (DATA) and diarylpyrimidine (DAPY) were two category inhibitors with highly potent activity for wild type (wt) and four principal mutant types (L100I, K103N, Y181C and Y188L) of HIV-1 reverse transcriptase (RT). We had revealed the drug-resistant mechanism of DATA analogue inhibitors with molecular dynamics simulation and three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. In this work, we investigated the drug-resistant mechanism of DAPY analogue inhibitors. It was found that DAPY analogue inhibitors form more hydrogen bonds and hydrophobic contacts with wild type and mutants of HIV-1 RT than DATA inhibitors. This could explain that DAPY analogue inhibitors are more potent than DATA for the wild type and mutants of HIV-1 RT. Then, 3D-QSAR models were constructed for these inhibitors of wild type and four principal mutant types HIV-1 RT and evaluated by test set compounds. These combined models can be used to design new chemical entities and make quantitative prediction of the bioactivities for HIV-1 RT inhibitors before resorting to in vitro and in vivo experiment. © 2011 John Wiley & Sons A/S.

  9. Overt and occult hepatitis B virus infection in adult Sudanese HIV patients.

    PubMed

    Mudawi, Hatim; Hussein, Waleed; Mukhtar, Maowia; Yousif, Mukhlid; Nemeri, Omer; Glebe, Dieter; Kramvis, Anna

    2014-12-01

    Human immunodeficiency virus (HIV) infection in Sub-Saharan Africa is complicated by co-infection with hepatitis B and C viruses (HBV and HCV), which share similar transmission routes. The aims of this study were to determine the prevalence of hepatitis B surface antigen (HBsAg)-positive and HBsAg-negative HBV infection and of HCV infection among HIV-infected patients. A cross-sectional study was conducted among treatment-naïve HIV-positive adults in Khartoum State. HBV, HCV, and HIV infections were detected using immunoassays for HBsAg, hepatitis B core antibodies (anti-HBc), hepatitis C antibodies (anti-HCV), and HIV antibodies (anti-HIV), while real-time PCR was used to measure HBV DNA. The mean age of the 358 patients was 35.2±9.3 years and the male to female ratio was 1.3:1.0. The mean alanine aminotransferase (ALT) level was 10.9±18.0 U/l. Evidence of 23, current or past HBV infection was detected in 62.8% of the patients. HBV DNA was detected in 96 patients (26.8%), 42 HBsAg-positive (11.7%) and 54 (15.1%) HBsAg-negative, indicating occult hepatitis B infection. Anti-HCV was detected in 1.7%. Evidence of HBV infection was detected in 26.8% of HIV patients with HBsAg-negative infection, with viraemia detected in 15.1% of the patients. All HIV-infected patients should be screened carefully for HBV infection with HBsAg and anti-HBc IgG antibodies prior to starting antiretroviral therapy. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities.

    PubMed

    Huang, Boshi; Kang, Dongwei; Zhan, Peng; Liu, Xinyong

    2015-12-01

    The search for additional drugs to treat HIV infection is a continuing effort due to the emergence and spread of HIV strains resistant to nearly all current drugs. The recent literature reveals that fragment-based drug design/discovery (FBDD) has become an effective alternative to conventional high-throughput screening strategies for drug discovery. In this critical review, the authors describe the state of the art in FBDD strategies for the discovery of anti-HIV drug-like compounds. The article focuses on fragment screening techniques, direct fragment-based design and early hit-to-lead progress. Rapid progress in biophysical detection and in silico techniques has greatly aided the application of FBDD to discover candidate agents directed at a variety of anti-HIV targets. Growing evidence suggests that structural insights on key proteins in the HIV life cycle can be applied in the early phase of drug discovery campaigns, providing valuable information on the binding modes and efficiently prompting fragment hit-to-lead progression. The combination of structural insights with improved methodologies for FBDD, including the privileged fragment-based reconstruction approach, fragment hybridization based on crystallographic overlays, fragment growth exploiting dynamic combinatorial chemistry, and high-speed fragment assembly via diversity-oriented synthesis followed by in situ screening, offers the possibility of more efficient and rapid discovery of novel drugs for HIV-1 prevention or treatment. Though the use of FBDD in anti-HIV drug discovery is still in its infancy, it is anticipated that anti-HIV agents developed via fragment-based strategies will be introduced into the clinic in the future.

  11. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades.

    PubMed

    Chen, Meiling; Xu, Shuhong; Zhou, Peipei; He, Guangwei; Jie, Qiong; Wu, Yulin

    2015-11-15

    Chemokines have chemotactic properties on leukocyte subsets whose modulation plays a pivotal role in allergic inflammatory processes. Our present study was designed to investigate the anti-allergic and anti-inflammatory properties of desloratadine citrate disodium injection (DLC) and elucidate the molecular mechanisms of its anti-inflammatory properties. The anti-allergic effects of DLC were evaluated based on allergic symptoms, serological marker production and histological changes of the nasal mucosa in guinea pigs model of allergic rhinitis. The anti-inflammatory properties and molecular mechanisms of DLC were explored by studying the regulation of a set of chemokines and extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) pathways, after DLC treatment in guinea pigs model of allergic rhinitis in vivo and histamine-activated human nasal epithelial cells (HNECs) in vitro. In vivo model in guinea pigs, DLC alleviated the rhinitis symptoms, inhibited inflammatory cells infiltration in nasal lavage fluid (NLF) and histamine, monocyte chemotactic protein (MCP)-1, regulated on activation normal T cell expressed, and presumably secreted (RANTEs) and interleukin (IL)-8 release in sera and P-ERK1/2 and NF-κB activation in nasal mucosa. In vitro, DLC markedly inhibited histamine-induced production of MCP-1, RANTEs and IL-8 and suppressed c-Raf, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and ERK1/2 activation in HNECs. These results provide evidence that DLC possesses potent anti-allergic and anti-inflammatory properties. The mechanism of action underlying DLC in allergic inflammation appears to be inhibition of the phosphorylation of ERK1/2, in addition to blocking of the NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. HIV-1 Neutralization Profile and Plant-Based Recombinant Expression of Actinohivin, an Env Glycan-Specific Lectin Devoid of T-Cell Mitogenic Activity

    PubMed Central

    Matoba, Nobuyuki; Husk, Adam S.; Barnett, Brian W.; Pickel, Michelle M.; Arntzen, Charles J.; Montefiori, David C.; Takahashi, Atsushi; Tanno, Kazunobu; Omura, Satoshi; Cao, Huyen; Mooney, Jason P.; Hanson, Carl V.; Tanaka, Haruo

    2010-01-01

    The development of a topical microbicide blocking the sexual transmission of HIV-1 is urgently needed to control the global HIV/AIDS pandemic. The actinomycete-derived lectin actinohivin (AH) is highly specific to a cluster of high-mannose-type glycans uniquely found on the viral envelope (Env). Here, we evaluated AH's candidacy toward a microbicide in terms of in vitro anti-HIV-1 activity, potential side effects, and recombinant producibility. Two validated assay systems based on human peripheral blood mononuclear cell (hPBMC) infection with primary isolates and TZM-bl cell infection with Env-pseudotyped viruses were employed to characterize AH's anti-HIV-1 activity. In hPMBCs, AH exhibited nanomolar neutralizing activity against primary viruses with diverse cellular tropisms, but did not cause mitogenicity or cytotoxicity that are often associated with other anti-HIV lectins. In the TZM-bl-based assay, AH showed broad anti-HIV-1 activity against clinically-relevant, mucosally transmitting strains of clades B and C. By contrast, clade A viruses showed strong resistance to AH. Correlation analysis suggested that HIV-1′s AH susceptibility is significantly linked to the N-glycans at the Env C2 and V4 regions. For recombinant (r)AH expression, we evaluated a tobacco mosaic virus-based system in Nicotiana benthamiana plants as a means to facilitate molecular engineering and cost-effective mass production. Biochemical analysis and an Env-mediated syncytium formation assay demonstrated high-level expression of functional rAH within six days. Taken together, our study revealed AH's cross-clade anti-HIV-1 activity, apparent lack of side effects common to lectins, and robust producibility using plant biotechnology. These findings justify further efforts to develop rAH toward a candidate HIV-1 microbicide. PMID:20559567

  13. Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo.

    PubMed

    Zhai, Lei; Sun, Nan; Han, Zhe; Jin, Hai-chao; Zhang, Bo

    Osteosarcoma (OS) remains one deadly disease for many affected patients. The search for novel and more efficient anti-OS agents is urgent. In the current study, we demonstrated that liposome-packed C6 ceramide exerted potent cytotoxic effect against established (U2OS and MG-63 lines) and primary human OS cells. Meanwhile, the liposomal C6 (ceramide) induced caspase-mediated apoptotic death in OS cells. Liposomal C6 was significantly more potent than conventional free C6 in inhibiting OS cells, yet it was safe to non-cancerous bone cells (primary murine osteoblasts or human MLO-Y4 osteocytic cells). At the signaling level, we showed that liposomal C6 potently inhibited Akt activation in OS cells. Further studies revealed that a low dose of liposomal C6 dramatically sensitized the in vitro anti-OS activity of two conventional chemodrugs: methotrexate (MTX) and doxorubicin. In vivo, intravenous injection of liposomal C6 inhibited Akt activation and suppressed U2OS xenograft growth in nude mice without causing apparent toxicities. Meanwhile, when given at a low-dose (5 mg/kg body weight), liposomal C6 dramatically sensitized MTX's anti-U2OS activity in vivo. Collectively, our data demonstrate that liposomal C6 exerts potent anti-tumor activity in preclinical OS models. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Evaluation of HIV/AIDS diagnostics kits and formulation of a testing strategy for Pakistan.

    PubMed

    Waheed, Usman; Hayat, Khizar; Ahmad, Bashir; Waheed, Yasir; Zaheer, Hasan Abbas

    2013-04-01

    Rapid diagnosis of HIV/AIDS enables the development of prevention and treatment programmes but accurate, reliable and cost effective testing strategies should be used for testing of HIV/AIDS from a large population. To evaluate the performance and effectiveness of three assays for the diagnosis of HIV in comparison with Western blot and to formulate an alternative cost-effective confirmatory approach for HIV diagnosis. 472 specimens (serum) from a Pakistani population were evaluated. Two rapid HIV testing kits (Capillus, SD Bioline) and one ELISA (Vironostika Ag/Ab) kit were used to detect HIV. Results were compared with Western blot against which sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of all HIV assays were assessed. 280/472 (59.3%) of the samples were positive for antibodies against purified HIV-1 viral proteins. The sensitivity of SD Bioline and Vironostika ELISA was 100% (95% CI; 98-100) while that of anti-HIV Capillus™ kit was 94.6% (95% CI; 91-96.8). The specificity of the Vironostika ELISA and anti-HIV Capillus™ kit was 100% (95% CI; 97-100) while specificity of SD Bioline was 98.4% (95% CI; 95-99). PPV was 100% (95% CI; 98-100%) for the anti-HIV Capillus™ and Vironostika ELISA and 98.9% (95% CI; 96-99%) for SD Bioline. NPV for SD Bioline and Vironostika ELISA was 100% (95% CI; 98-100%) and 92.7% for anti-HIV Capillus™ (95% CI; 88-96%). The sensitivity and specificity of all three kits were satisfactory compared to Western blot and could be used for effective diagnosis of HIV/AIDS in Pakistani population. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. HIV infection-induced transcriptional program in renal tubular epithelial cells activates a CXCR2-driven CD4+ T-cell chemotactic response.

    PubMed

    Chen, Ping; Yi, Zhengzi; Zhang, Weijia; Klotman, Mary E; Chen, Benjamin K

    2016-07-31

    Viral replication and interstitial inflammation play important roles in the pathogenesis of HIV-associated nephropathy. Cell-cell interactions between renal tubule epithelial cells (RTECs) and HIV-infected T cells can trigger efficient virus internalization and viral gene expression by RTEC. To understand how HIV replication initiates HIV-associated nephropathy, we studied the cellular response of RTECs to HIV, examining the transcriptional profiles of primary RTECs exposed to cell-free HIV or HIV-infected T cells. HIV-induced gene expression in hRTECs was examined in vitro by Illumina RNA deep sequencing and revealed an innate response to HIV, which was subclassified by gene ontology biological process terms. Chemokine responses were examined by CD4 T-cell chemotaxis assays. As compared with cell-free virus infection, exposure to HIV-infected T cells elicited a stronger upregulation of inflammatory and immune response genes. A major category of upregulated genes are chemokine/cytokine families involved in inflammation and immune response, including inflammatory cytokines CCL20, IL6 and IL8-related chemokines: IL8, CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6. Supernatants from virus-exposed RTECs contained strong chemoattractant activity on primary CD4 T cells, which was potently blocked by a CXCR2 antagonist that antagonizes IL8-related chemokines. We observed a preferential migration of CXCR2-expressing, central memory CD4 T cells in response to HIV infection of RTECs. Interactions between primary RTECs and HIV-infected T cells result in potent induction of inflammatory response genes and release of cytokines/chemokines from RTECs that can attract additional T cells. Activation of these genes reflects an innate response to HIV by nonimmune cells.

  16. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex.

    PubMed

    Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc

    2011-07-01

    Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.

  17. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex

    PubMed Central

    Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc

    2011-01-01

    Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1. PMID:21447560

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis.more » NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.« less

  19. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages

    PubMed Central

    Shim, Do-Wan; Heo, Kang-Hyuck; Kim, Young-Kyu; Sim, Eun-Jeong; Kang, Tae-Bong; Choi, Jae-Wan; Sim, Dae-Won; Cheong, Sun-Hee; Lee, Seung-Hong; Bang, Jeong-Kyu; Won, Hyung-Sik; Lee, Kwang-Ho

    2015-01-01

    Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation. PMID:26017270

  20. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages.

    PubMed

    Shim, Do-Wan; Heo, Kang-Hyuck; Kim, Young-Kyu; Sim, Eun-Jeong; Kang, Tae-Bong; Choi, Jae-Wan; Sim, Dae-Won; Cheong, Sun-Hee; Lee, Seung-Hong; Bang, Jeong-Kyu; Won, Hyung-Sik; Lee, Kwang-Ho

    2015-01-01

    Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.

  1. Characterizing the Anti-HIV Activity of Papuamide A

    PubMed Central

    Andjelic, Cynthia D; Planelles, Vicente; Barrows, Louis R

    2008-01-01

    Papuamide A is representative of a class of marine derived cyclic depsipeptides, reported to have cytoprotective activity against HIV-1 in vitro. We show here that papuamide A acts as an entry inhibitor, preventing human immunodeficiency virus infection of host cells and that this inhibition is not specific to R5 or X4 tropic virus. This inhibition of viral entry was determined to not be due to papuamide A binding to CD4 or HIV gp120, the two proteins involved in the cell-virus recognition and binding. Furthermore, papuamide A was able to inhibit HIV pseudotype viruses expressing envelope glycoproteins from vesicular stomatitis virus or amphotropic murine leukemia virus indicating the mechanism of viral entry inhibition is not HIV-1 envelope glycoprotein specific. Time delayed addition studies with the pseudotyped viruses show that papuamide A inhibits viral infection only at the initial stage of the viral life cycle. Additionally, pretreatment studies revealed that the virus, and not the cell, is the target of papuamide A’s action. Together, these results suggest a direct virucidal mechanism of HIV-1 inhibition by papuamide A. We also demonstrate here that the other papuamides (B-D) are able to inhibit viral entry indicating that the free amino moiety of 2,3-diaminobutanoic acid residue is not required for the virucidal activity. PMID:19172193

  2. Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis.

    PubMed

    Uchio, Eiichi; Fuchigami, Aki; Kadonosono, Kazuaki; Hayashi, Akio; Ishiko, Hiroaki; Aoki, Koki; Ohno, Shigeaki

    2007-09-01

    Around one million people are affected by adenoviral keratoconjunctivitis a year in Japan, and it is recognized as one of the major pathogens of ophthalmological nosocomial infection worldwide. Although cidofovir can be used systemically for immunocompromised patients with disseminated adenoviral infection, no specific anti-adenoviral agent has been established for the treatment of adenoviral infection. We evaluated the anti-adenoviral effect of anti-HIV (human immunodeficiency virus) agents in this study. Five anti-HIV agents (zalcitabine, stavudine, nevirapine, indinavir and amprenavir) were subjected to in vitro evaluation. A549 cells were used for viral cell culture, and adenovirus serotypes 3, 4, 8, 19 and 37 were used. After calculating CC(50) (50% cytotoxic concentration) of each agent by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, we cultured adenovirus with the agents for seven days and quantitatively measured extracted adenoviral DNA by real-time PCR. Among the anti-HIV drugs, zalcitabine and stavudine, both nucleoside reverse transcriptase inhibitors, showed significant anti-adenoviral activity. In contrast, nevirapine, a non-nucleoside reverse transcriptase inhibitor, and indinavir and amprenavir, which are both protease inhibitors, were ineffective against adenovirus. These results indicate that zalcitabine and stavudine are possible candidates for the local and systemic treatment of adenoviral infection, and the anti-adenoviral effect might depend on the pharmacological properties of anti-HIV agents. The chemical properties on the clinical safety for systemic and local application need to be determined in order to for these drugs to be accepted for the treatment of adenovirus in clinical settings.

  3. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents

    PubMed Central

    Husain, Asif; Ahmad, Aftab; Khan, Shah Alam; Asif, Mohd; Bhutani, Rubina; Al-Abbasi, Fahad A.

    2015-01-01

    The aim of this study was to design and synthesize pharmaceutical agents containing imidazolidine heterocyclic ring in the hope of developing potent, safe and orally active anti-inflammatory agents. A number of substituted-imidazolidine derivatives (3a–k) were synthesized starting from ethylene diamine and aromatic aldehydes. The imidazolidine derivatives (3a–k) were investigated for their anticipated anti-inflammatory, and analgesic activity in Wistar albino rats and Swiss albino mice, respectively. Bioactivity score, molecular and pharmacokinetic properties of the imidazolidine derivatives were calculated by online computer software programs viz. Molinspiration and Osiris property explorer. The results of biological testing indicated that among the synthesized compounds only three imidazolidine derivatives namely 4-[1,3-Bis(2,6-dichlorobenzyl)-2-imidazolidinyl]phenyl-diethylamine (3g), 4-[1,3-Bis(3-hydroxy-4-methoxybenzyl)-2-imidazolidinyl]phenyl-diethylamine (3i) and 4-(1,3-Bis(4-methoxybenzyl)-4-methylimidazolidin-2-yl)-phenyl-diethylamine (3j) possess promising anti-inflammatory and analgesic actions. Additionally these derivatives displayed superior GI safety profile (low severity index) with respect to the positive control, Indomethacin. All synthesized compounds showed promising bioactivity score for drug targets by Molinspiration software. Almost all the compounds were predicted to have very low toxicity risk by Osiris online software. Compound number (3i) emerged as a potential candidate for further research as it obeyed Lipinski’s rule of five for drug likeness, exhibited promising biological activity in-vivo and showed no risk of toxicity in computer aided screening. PMID:26903774

  4. Heterosexual transmission of HIV in Greece.

    PubMed

    Roumelioutou-Karayannis, A; Nestoridou, K; Mandalaki, T; Stefanou, T; Papaevangelou, G

    1988-06-01

    To provide further evidence for the heterosexual transmission of the acquired immunodeficiency syndrome (AIDS) in Greece we examined 53 Greek female steady heterosexual partners of 53 anti-HIV-positive men. Human immunodeficiency virus (HIV) transmission was estimated by the detection of anti-HIV antibodies. Our results showed that 27.8% (5 of 18) of the female partners of bisexuals, 33.3% (2 of 6) of intravenous drug abusers (IVDA), and 100% (4 of 4) of those who had lived for a long time in Africa were found anti-HIV positive. In contrast, only 4% (1 of 25) of the studied sexual partners of hemophiliac carriers were found to be HIV seropositive. The use of condoms seemed to be the most important factor in reducing HIV transmission. According to our results the duration of sexual relationships and the practice of anal intercourse did not increase the possibility of seroconversion. These results confirm the heterosexual transmission of HIV. However, further studies should be conducted to evaluate the relative role of various risk factors and the overall importance of heterosexual spread of HIV infections.

  5. Anti-inflammatory activities of cucurbitacin E isolated from Citrullus lanatus var. citroides: role of reactive nitrogen species and cyclooxygenase enzyme inhibition.

    PubMed

    Abdelwahab, Siddig Ibrahim; Hassan, Loiy Elsir Ahmed; Sirat, Hasnah Mohd; Yagi, Sakina M Ahmed; Koko, Waleed S; Mohan, Syam; Taha, Manal Mohamed Elhassan; Ahmad, Syahida; Chuen, Cheah Shiau; Narrima, Putri; Rais, Mohd Mustafa; Hadi, A Hamid A

    2011-12-01

    The in vivo and in vitro mechanistic anti-inflammatory actions of cucurbitacin E (CE) (Citrullus lanatus var. citroides) were examined. The results showed that LPS/INF-γ increased NO production in RAW264.7 macrophages, whereas L-NAME and CE curtailed it. CE did not reveal any cytotoxicity on RAW264.7 and WRL-68 cells. CE inhibited both COX enzymes with more selectivity toward COX-2. Intraperitoneal injection of CE significantly suppressed carrageenan-induced rat's paw edema. ORAC and FRAP assays showed that CE is not a potent ROS scavenger. It could be concluded that CE is potentially useful in treating inflammation through the inhibition of COX and RNS but not ROS. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Synthesis and anti-H5N1 activity of chiral gossypol derivatives and its analogs implicated by a viral entry blocking mechanism.

    PubMed

    Yang, Jian; Chen, Gang; Li, Long Long; Pan, Wei; Zhang, Fang; Yang, Jingxiang; Wu, Shuwen; Tien, Po

    2013-05-01

    A series of chiral gossypol derivatives and its analogs were synthesized and tested in vitro for their anti-H5N1 activity. Interestingly, (+)-gossypol derivatives and its analogs were more active against H5N1 than the corresponding (-)-gossypol derivatives and its analogs. Through a simple chemical modification with amino acids, less active chiral gossypol could be converted into more active derivatives, and most of chiral gossypol derivatives were more potent against H5N1 than 1-adamantylamine. With regard to the mechanism of action, chiral gossypol derivatives and its analogs might impair the virus entry step of cell infection, likely targeting to HA2 protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Anti-oxidant and anti-inflammatory activity of leaf extracts and fractions of Mangifera indica.

    PubMed

    Mohan, C G; Deepak, M; Viswanatha, G L; Savinay, G; Hanumantharaju, V; Rajendra, C E; Halemani, Praveen D

    2013-04-13

    To evaluate the anti-oxidant and anti-inflammatory activity of leaf extracts and fractions of Mangifera indica in in vitro conditions. In vitro DPPH radical scavenging activity and lipoxygenase (LOX) inhibition assays were used to evaluate the anti-oxidant and anti-inflammatory activities respectively. Methanolic extract (MEMI), successive water extract (SWMI) and ethyl acetate fraction (EMEMI), n-butanol fraction (BMEMI) and water soluble fraction (WMEMI) of methanolic extract were evaluated along with respective reference standards. In in vitro DPPH radical scavenging activity, the MEMI, EMEMI and BMEMI have offered significant antioxidant activity with IC(50) values of 13.37, 3.55 and 14.19 μg/mL respectively. Gallic acid, a reference standard showed significant antioxidant activity with IC(50) value of 1.88 and found to be more potent compared to all the extracts and fractions. In in vitro LOX inhibition assay, the MEMI, EMEMI and BMEMI have showed significant inhibition of LOX enzyme activity with IC(50) values of 96.71, 63.21 and 107.44 μg/mL respectively. While, reference drug Indomethacin also offered significant inhibition against LOX enzyme activity with IC(50) of 57.75. Furthermore, MEMI was found to more potent than SWMI and among the fractions EMEMI was found to possess more potent antioxidant and anti-inflammatory activity. These findings suggest that the MEMI and EMEMI possess potent anti-oxidant and anti-inflammatory activities in in vitro conditions. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  8. CMV retinitis recurs after stopping treatment in virological and immunological failures of potent antiretroviral therapy.

    PubMed

    Torriani, F J; Freeman, W R; Macdonald, J C; Karavellas, M P; Durand, D M; Jeffrey, D D; Meylan, P R; Schrier, R D

    2000-01-28

    To determine predictors of clinical relapse of cytomegalovirus (CMV) end-organ disease in a cohort of 17 HIV-infected patients with healed and treated CMV retinitis (CMVR) who responded to HAART with an increase in CD4 cell counts to above 70 cells/mm3 and discontinued CMV maintenance therapy (MT). Seventeen patients were monitored for reactivation of retinitis. The CD4 cell counts, HIV RNA and peripheral blood mononuclear cell (PBMC) lymphoproliferative assays to CMV at 3 month intervals were compared between patients with and without reactivation of CMVR. Positive lymphoproliferative responses were defined as a stimulation index of 3 or greater. Five out of 17 (29%) patients experienced a recurrence of CMVR a mean of 14.5 months after stopping CMV MT and between 8 days and 10 months after CD4 cell counts fell below 50 cells/mm3. Median CD4 cell counts and plasma HIV RNA at reactivation were 37 cells/mm3 and 5.3 log10 copies/ml. Three patients recurred at a previously active site of the retina, one had contralateral CMVR, and one a recurrence of retinitis and pancreatitis simultaneously. Mean lymphoproliferative responses to CMV were 2.4 in patients with reactivation versus 21.0 stimulation index (SI) in patients without reactivation (P= 0.01). A model incorporating four variables (CD4 cell counts and HIV RNA at maintenance discontinuation, highest CD4 cell count, nadir HIV RNA and median lymphoproliferative responses) identified correctly 88% of patients with and without reactivation. CMV disease recurs after virological and immunological failure of HAART if CD4 cell counts drop below 50. In this situation, anti-CMV agents should be resumed before clinical reactivation ensues, because of the risk of contralateral retinal involvement and systemic disease.

  9. Preformulation and Vaginal Film Formulation Development of Microbicide Drug Candidate CSIC for HIV prevention

    PubMed Central

    Gong, Tiantian; Zhang, Wei; Parniak, Michael A.; Graebing, Phillip W.; Moncla, Bernard; Gupta, Phalguni; Empey, Kerry M.; Rohan, Lisa C.

    2017-01-01

    Purpose 5-chloro-3-[phenylsulfonyl] indole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 which has been shown to have a more desirable resistance profile than other NNRTIs in development as HIV prevention strategies. This work involves generation of preformulation data for CSIC and systematic development of a cosolvent system to effectively solubilize this hydrophobic drug candidate. This system was then applied to produce a polymeric thin film solid dosage form for vaginal administration of CSIC for use in prevention of sexual acquisition of HIV. Methods Extensive preformulation, formulation development, and film characterization studies were conducted. An HPLC method was developed for CSIC quantification. Preformulation tests included solubility, crystal properties, stability, and drug-excipient compatibility. Cytotoxicity was evaluated using both human epithelial and mouse macrophage cell lines. Ternary phase diagram methodology was used to identify a cosolvent system for CSIC solubility enhancement. Following preformulation evaluation, a CSIC film formulation was developed and manufactured using solvent casting technique. The developed film product was assessed for physicochemical properties, anti-HIV bioactivity, and Lactobacillus biocompatibility during 12-month stability testing period. Results Preformulation studies showed CSIC to be very stable. Due to its hydrophobicity, a cosolvent system consisting of polyethylene glycol 400, propylene glycol, and glycerin (5:2:1, w/w/w) was developed, which provided a uniform dispersion of CSIC in the film formulation. The final film product met target specifications established for vaginal microbicide application. Conclusions The hydrophobic drug candidate CSIC was successfully formulated with high loading capacity in a vaginal film by means of a cosolvent system. The developed cosolvent strategy is applicable for incorporation of other hydrophobic drug candidates in the film platform. PMID:28983328

  10. Preformulation and Vaginal Film Formulation Development of Microbicide Drug Candidate CSIC for HIV prevention.

    PubMed

    Gong, Tiantian; Zhang, Wei; Parniak, Michael A; Graebing, Phillip W; Moncla, Bernard; Gupta, Phalguni; Empey, Kerry M; Rohan, Lisa C

    2017-06-01

    5-chloro-3-[phenylsulfonyl] indole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 which has been shown to have a more desirable resistance profile than other NNRTIs in development as HIV prevention strategies. This work involves generation of preformulation data for CSIC and systematic development of a cosolvent system to effectively solubilize this hydrophobic drug candidate. This system was then applied to produce a polymeric thin film solid dosage form for vaginal administration of CSIC for use in prevention of sexual acquisition of HIV. Extensive preformulation, formulation development, and film characterization studies were conducted. An HPLC method was developed for CSIC quantification. Preformulation tests included solubility, crystal properties, stability, and drug-excipient compatibility. Cytotoxicity was evaluated using both human epithelial and mouse macrophage cell lines. Ternary phase diagram methodology was used to identify a cosolvent system for CSIC solubility enhancement. Following preformulation evaluation, a CSIC film formulation was developed and manufactured using solvent casting technique. The developed film product was assessed for physicochemical properties, anti-HIV bioactivity, and Lactobacillus biocompatibility during 12-month stability testing period. Preformulation studies showed CSIC to be very stable. Due to its hydrophobicity, a cosolvent system consisting of polyethylene glycol 400, propylene glycol, and glycerin (5:2:1, w/w/w ) was developed, which provided a uniform dispersion of CSIC in the film formulation. The final film product met target specifications established for vaginal microbicide application. The hydrophobic drug candidate CSIC was successfully formulated with high loading capacity in a vaginal film by means of a cosolvent system. The developed cosolvent strategy is applicable for incorporation of other hydrophobic drug candidates in the film platform.

  11. Spontaneous control of HIV-1 viremia in a subject with protective HLA-B plus HLA-C alleles and HLA-C associated single nucleotide polymorphisms.

    PubMed

    Moroni, Marco; Ghezzi, Silvia; Baroli, Paolo; Heltai, Silvia; De Battista, Davide; Pensieroso, Simone; Cavarelli, Mariangela; Dispinseri, Stefania; Vanni, Irene; Pastori, Claudia; Zerbi, Pietro; Tosoni, Antonella; Vicenzi, Elisa; Nebuloni, Manuela; Wong, Kim; Zhao, Hong; McHugh, Sarah; Poli, Guido; Lopalco, Lucia; Scarlatti, Gabriella; Biassoni, Roberto; Mullins, James I; Malnati, Mauro S; Alfano, Massimo

    2014-12-05

    Understanding the mechanisms by which some individuals are able to naturally control HIV-1 infection is an important goal of AIDS research. We here describe the case of an HIV-1(+) woman, CASE1, who has spontaneously controlled her viremia for the last 14 of her 20 years of infection. CASE1 has been clinically monitored since 1993. Detailed immunological, virological and histological analyses were performed on samples obtained between 2009 and 2011. As for other Elite Controllers, CASE1 is characterized by low to undetectable levels of plasma HIV-1 RNA, peripheral blood mononuclear cell (PBMC) associated HIV-1 DNA and reduced in vitro susceptibility of target cells to HIV-1 infection. Furthermore, a slow rate of virus evolution was demonstrated in spite the lack of assumption of any antiretroviral agent. CASE1 failed to transmit HIV-1 to either her sexual male partner or to her child born by vaginal delivery. Normal values and ratios of T and B cells were observed, along with normal histology of the intestinal mucosa. Attempts to isolate HIV-1 from her PBMC and gut-derived cells were unsuccessful, despite expression of normal cell surface levels of CD4, CCRC5 and CXCR4. CASE1 did not produce detectable anti-HIV neutralizing antibodies in her serum or genital mucosal fluid although she displayed potent T cell responses against HIV-1 Gag and Nef. CASE1 also possessed multiple genetic polymorphisms, including HLA alleles (B*14, B*57, C*06 and C*08.02) and HLA-C single nucleotide polymorphisms (SNPs, rs9264942 C/C and rs67384697 del/del), that have been previously individually associated with spontaneous control of plasma viremia, maintenance of high CD4(+) T cell counts and delayed disease progression. CASE1 has controlled her HIV-1 viremia below the limit of detection in the absence of antiretroviral therapy for more than 14 years and has not shown any sign of immunologic deterioration or disease progression. Co-expression of multiple protective HLA alleles, HLA-C SNPs and strong T cell responses against HIV-1 proteins are the most likely explanation of this very benign case of spontaneous control of HIV-1 disease progression.

  12. Impaired antibody memory to varicella zoster virus in HIV-infected children: low antibody levels and avidity*.

    PubMed

    L'Huillier, A G; Ferry, T; Courvoisier, D S; Aebi, C; Cheseaux, J-J; Kind, C; Rudin, C; Nadal, D; Hirschel, B; Sottas, C; Siegrist, C-A; Posfay-Barbe, K M

    2012-01-01

    HIV-infected children have impaired antibody responses after exposure to certain antigens. Our aim was to determine whether HIV-infected children had lower varicella zoster virus (VZV) antibody levels compared with HIV-infected adults or healthy children and, if so, whether this was attributable to an impaired primary response, accelerated antibody loss, or failure to reactivate the memory VZV response. In a prospective, cross-sectional and retrospective longitudinal study, we compared antibody responses, measured by enzyme-linked immunosorbent assay (ELISA), elicited by VZV infection in 97 HIV-infected children and 78 HIV-infected adults treated with antiretroviral therapy, followed over 10 years, and 97 age-matched healthy children. We also tested antibody avidity in HIV-infected and healthy children. Median anti-VZV immunoglobulin G (IgG) levels were lower in HIV-infected children than in adults (264 vs. 1535 IU/L; P<0.001) and levels became more frequently unprotective over time in the children [odds ratio (OR) 17.74; 95% confidence interval (CI) 4.36-72.25; P<0.001]. High HIV viral load was predictive of VZV antibody waning in HIV-infected children. Anti-VZV antibodies did not decline more rapidly in HIV-infected children than in adults. Antibody levels increased with age in healthy (P=0.004) but not in HIV-infected children. Thus, antibody levels were lower in HIV-infected than in healthy children (median 1151 IU/L; P<0.001). Antibody avidity was lower in HIV-infected than healthy children (P<0.001). A direct correlation between anti-VZV IgG level and avidity was present in HIV-infected children (P=0.001), but not in healthy children. Failure to maintain anti-VZV IgG levels in HIV-infected children results from failure to reactivate memory responses. Further studies are required to investigate long-term protection and the potential benefits of immunization. © 2011 British HIV Association.

  13. Developing a community-level anti-HIV/AIDS stigma and homophobia intervention in new York city: The project CHHANGE model.

    PubMed

    Frye, Victoria; Paige, Mark Q; Gordon, Steven; Matthews, David; Musgrave, Geneva; Kornegay, Mark; Greene, Emily; Phelan, Jo C; Koblin, Beryl A; Taylor-Akutagawa, Vaughn

    2017-08-01

    HIV/AIDS stigma and homophobia are associated with significant negative health and social outcomes among people living with HIV/AIDS (PLWHA) and those at risk of infection. Interventions to decrease HIV stigma have focused on providing information and education, changing attitudes and values, and increasing contact with people living with HIV/AIDS (PLWHA), activities that act to reduce stereotyped beliefs and prejudice, as well as acts of discrimination. Most anti-homophobia interventions have focused on bullying reduction and have been implemented at the secondary and post-secondary education levels. Few interventions address HIV stigma and homophobia and operate at the community level. Project CHHANGE, Challenge HIV Stigma and Homophobia and Gain Empowerment, was a community-level, multi-component anti-HIV/AIDS stigma and homophobia intervention designed to reduce HIV stigma and homophobia thus increasing access to HIV prevention and treatment access. The theory-based intervention included three primary components: workshops and trainings with local residents, businesses and community-based organizations (CBO); space-based events at a CBO-partner drop-in storefront and "pop-up" street-based events and outreach; and a bus shelter ad campaign. This paper describes the intervention design process, resultant intervention and the study team's experiences working with the community. We conclude that CHHANGE was feasible and acceptable to the community. Promoting the labeling of gay and/or HIV-related "space" as a non-stigmatized, community resource, as well as providing opportunities for residents to have contact with targeted groups and to understand how HIV stigma and homophobia relate to HIV/AIDS prevalence in their neighborhood may be crucial components of successful anti-stigma and discrimination programming. Copyright © 2017. Published by Elsevier Ltd.

  14. Antiviral Activity of HIV gp120 Targeting Bispecific T Cell Engager (BiTE®) Antibody Constructs.

    PubMed

    Brozy, Johannes; Schlaepfer, Erika; Mueller, Christina K S; Rochat, Mary-Aude; Rampini, Silvana K; Myburgh, Renier; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A; Muenz, Markus; Speck, Roberto F

    2018-05-02

    Today's gold standard in HIV therapy is the combined antiretroviral therapy (cART). It requires strict adherence by patients and life-long medication, which can lower the viral load below detection limits and prevent HIV-associated immunodeficiency, but cannot cure patients. The bispecific T cell engaging (BiTE®) antibody technology has demonstrated long-term relapse-free outcomes in patients with relapsed and refractory acute lymphocytic leukemia. We here generated BiTE® antibody constructs that target the HIV-1 envelope protein gp120 (HIV gp120) using either the scFv B12 or VRC01, the first two extracellular domains (1+2) of human CD4 alone or joined to the single chain variable fragment (scFv) of the antibody 17b fused to an anti-human CD3ϵ scFv. These engineered human BiTE® antibody constructs showed engagement of T cells for redirected lysis of HIV gp120-transfected CHO cells. Furthermore, they substantially inhibited HIV-1 replication in PBMCs as well as in macrophages co-cultured with autologous CD8+ T-cells, the most potent being the human CD4(1+2) BiTE® antibody construct and the CD4(1+2)L17b BiTE® antibody construct. The CD4(1+2) h BiTE® antibody construct promoted HIV infection of human CD4-/CD8+ T cells. In contrast, the neutralizing B12 and the VRC01 BiTE® antibody constructs as well as the CD4(1+2)L17b BiTE® antibody construct did not. Thus, BiTE® antibody constructs targeting HIV gp120 are very promising for constraining HIV and warrant further development as novel antiviral therapy with curative potential. Importance HIV is a chronic infection well controlled with the current cART. However, we lack cure of HIV, and the HIV pandemic goes on. Here we showed in vitro and ex vivo t hat a bispecific T-cell engaging (BiTE®) antibody construct targeting HIV gp120 resulted in substantially reduced HIV replication. In addition, these BiTE® antibody constructs display efficient killing of gp120 expressing cells and inhibited replication in ex vivo HIV-infected PBMCs or macrophages. We believe that BiTE® antibody constructs recognizing HIV gp120 could be a very valuable strategy for a cure of HIV in combination with cART and compounds, which reverse latency. Copyright © 2018 American Society for Microbiology.

  15. Factors associated with hepatitis C infection among patients with skin diseases.

    PubMed

    Luksamijarulkul, Pipat; Chantavoraluk, Somjai

    2013-12-01

    The present study attempted to assess factors associated with positive anti-HCV among patients with skin diseases. A retrospective analysis of 3,496 subjects' history profiles from the HCV antibody surveillance projects performed from 2000 to 2007. Only 150 subject profiles with skin diseases were included in the analysis of factors associated with positive anti-HCV Patient profiles including socio-demographic parameters, the main risk behavior or risk exposure, types of skin diseases, anti-HIV status, and results of anti-HCV were analyzed using Chi-square test or Fisher's exact test. Results revealed that only 10 from 150 studied patients (6.7%) were positive for anti-HCV antibody. Patient profiles including socio-demographic parameters, the main risk behavior or risk exposure, types of skin diseases, and anti-HIV status among patients with or without anti-HCV were compared and analyzed to assess factors associated with positive anti-HCV. It was found that patient's income, types of skin disease, and anti-HIV status were significantly associated with positive anti-HCV among this group, p = 0.0240, p = 0.0053 and p = 0.0462, respectively. This analysis found three studied factors including patient's income, types of skin disease, and anti-HIV status to be significantly associated with HCV infection in patients with skin diseases. However, a large-scale work should be done to confirm the present study.

  16. A survey of bloodborne viruses and associated risk behaviours in Greek prisons.

    PubMed

    Malliori, M; Sypsa, V; Psichogiou, M; Touloumi, G; Skoutelis, A; Tassopoulos, N; Hatzakis, A; Stefanis, C

    1998-02-01

    To determine HIV and hepatitis infection prevalence and correlates with risk behaviour. Cross-sectional study: voluntary, anonymous HIV, hepatitis (HCV, HBV and HDV) surveillance and questionnaire on risk factors. Korydallos Prison, Athens and Ag. Stefanos Prison, Patra, Greece. Of 544 drug users imprisoned for drug related offences, all completed the questionnaire and 533 blood samples were collected. HIV (by anti-HIV-1), HCV (by anti-HCV), HBV (by anti-HBc, HBsAg) and HDV (by anti-HDV) prevalence. Data on demography, legal status, drug use, sharing of injecting equipment. Of the 544 drug users, 375 (68.9%) had injected drugs (IDUs) at some time, 35% of whom had injected whilst in that prison. Of the 533 blood samples tested, one was positive for anti-HIV-1 (0.19%), 310 for anti-HCV (58.2%), 306/531 (57.6%) for anti-HBc, 34/527 (6.5%) for HBsAg and 12/527 (2.3%) for anti-HDV. Prevalence rates for IDUs only were 0.27% for HIV-1, 80.6% for hepatitis C, 62.7% for hepatitis B and 3.3% for hepatitis D. Ninety-two per cent of IDUs injecting in prison shared needles, indicating that IDUs inject less but share more during incarceration. Multiple logistic regression revealed needle-sharing as the most important risk factor for HCV infection in IDUs. Prior knowledge of a positive hepatitis result did not appear to inhibit IDUs from practising risky behaviours in prison. The epidemic of hepatitis B and C among imprisoned IDUs identified by this study constitutes a major public health problem. Prevention programmes, such as counselling, HBV vaccination, community-based methadone maintenance treatment and syringe exchange schemes, are necessary in order to prevent a further spread.

  17. 5-Alkyl-6-benzyl-2-(2-oxo-2-phenylethylsulfanyl)pyrimidin-4(3H)-ones, a series of anti-HIV-1 agents of the dihydro-alkoxy-benzyl-oxopyrimidine family with peculiar structure-activity relationship profile.

    PubMed

    Nawrozkij, Maxim B; Rotili, Dante; Tarantino, Domenico; Botta, Giorgia; Eremiychuk, Alexandre S; Musmuca, Ira; Ragno, Rino; Samuele, Alberta; Zanoli, Samantha; Armand-Ugón, Mercedes; Clotet-Codina, Imma; Novakov, Ivan A; Orlinson, Boris S; Maga, Giovanni; Esté, José A; Artico, Marino; Mai, Antonello

    2008-08-14

    A series of dihydro-alkylthio-benzyl-oxopyrimidines (S-DABOs) bearing a 2-aryl-2-oxoethylsulfanyl chain at pyrimidine C2, an alkyl group at C5, and a 2,6-dichloro-, 2-chloro-6-fluoro-, and 2,6-difluoro-benzyl substitution at C6 (oxophenethyl- S-DABOs, 6-8) is here described. The new compounds showed low micromolar to low nanomolar (in one case subnanomolar) inhibitory activity against wt HIV-1. Against clinically relevant HIV-1 mutants (K103N, Y181C, and Y188L) as well as in enzyme (wt and K103N, Y181I, and L100I mutated RTs) assays, compounds carrying an ethyl/ iso-propyl group at C5 and a 2,6-dichloro-/2-chloro-6-fluoro-benzyl moiety at C6 were the most potent derivatives, also characterized by low fold resistance ratio. Interestingly, the structure-activity relationship (SAR) data drawn from this DABO series are more related to HEPT than to DABO derivatives. These findings were at least in part rationalized by the description of a fair superimposition between the 6-8 and TNK-651 (a HEPT analogue) binding modes in both WT and Y181C RTs.

  18. Short communication: Anti-HIV-1 envelope immunoglobulin Gs in blood and cervicovaginal samples of Beninese commercial sex workers.

    PubMed

    Batraville, Laurie-Anne; Richard, Jonathan; Veillette, Maxime; Labbé, Annie-Claude; Alary, Michel; Guédou, Fernand; Kaufmann, Daniel E; Poudrier, Johanne; Finzi, Andrés; Roger, Michel

    2014-11-01

    Characterization of the immune correlates of protection against HIV infection is crucial for the development of preventive strategies. This study examined HIV-1 envelope (Env) glycoproteins, specifically immunoglobulin G (IgG), in systemic and mucosal compartments of female Beninese commercial sex workers (CSWs). Samples of 23 HIV-1-positive and 20 highly exposed HIV-1-seronegative (HESN) CSWs were studied. HIV-1 Env-specific IgG detection in sera and cervicovaginal lavages (CVLs) from the study population was done by cell-based ELISA. The HIV neutralizing activity was evaluated with a neutralization assay. The HIV-1-specific antibody-dependent cellular cytotoxicity (ADCC) response of the cohort was measured with a FACS-based assay evaluating the ADCC-mediated elimination of gp120-coated target cells. No anti-HIV-1 Env-specific IgG neutralizing or ADCC activities were detected in samples from HESN CSWs. Samples from HIV-1-infected CSWs presented ADCC activity in both sera and CVLs. Anti-Env IgG from sera and CVLs from HIV-1-infected CSWs preferentially recognized Env in its CD4-bound conformation. HIV-1-infected CSWs have ADCC-mediating IgG that preferentially recognizes Env in its CD4-bound conformation at the mucosal site.

  19. Design, Synthesis, Biological Evaluation, and X-ray Studies of HIV-1 Protease Inhibitors with Modified P2′ Ligands of Darunavir

    PubMed Central

    Fyvie, W. Sean; Brindisi, Margherita; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2018-01-01

    The structure-based design, synthesis, and biological evaluation of a series of nonpeptidic HIV-1 protease inhibitors with rationally designed P2′ ligands are described. The inhibitors are designed to enhance backbone binding interactions, particularly at the S2′ subsite. Synthesis of inhibitors was carried out efficiently. The stereochemistry of alcohol functionalities of the P2′ ligands was set by asymmetric reduction of the corresponding ketone using (R,R)- or (S,S)-Noyori catalysts. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 3g and 3h showed enzyme Ki values of 27.9 and 49.7 pM and antiviral activity of 6.2 and 3.9 nM, respectively. These inhibitors also remained quite potent against darunavir-resistant HIV-1 variants. An X-ray structure of inhibitor 3g in complex with HIV-1 protease revealed key interactions in the S2′ subsite. PMID:29110408

  20. Molecular Gymnastics: Mechanisms of HIV-1 Resistance to CCR5 Antagonists and Impact on Virus Phenotypes.

    PubMed

    Roche, Michael; Borm, Katharina; Flynn, Jacqueline K; Lewin, Sharon R; Churchill, Melissa J; Gorry, Paul R

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters host cells through the binding of its envelope glycoproteins (Env) to the host cell receptor CD4 and then subsequent binding to a chemokine coreceptor, either CCR5 or CXCR4. CCR5 antagonists are a relatively recent class addition to the armamentarium of anti-HIV-1 drugs. These compounds act by binding to a hydrophobic pocket formed by the transmembrane helices of CCR5 and altering the conformation of the extracellular domains, such that they are no longer recognized by Env. Maraviroc is the first drug within this class to be licenced for use in HIV-1 therapy regimens. HIV resistance to CCR5 antagonists occurs either through outgrowth of pre-existing CXCR4-using viruses, or through acquisition of the ability of CCR5-using HIV-1 to use the antagonist bound form of CCR5. In the latter scenario, the mechanism underlying resistance is through complex alterations in the way that resistant Envs engage CCR5. These significant changes are unlikely to occur without consequence to the viral entry phenotype and may also open up new avenues to target CCR5 antagonist resistant viruses. This review discusses the mechanism of action of CCR5 antagonists, how HIV resistance to CCR5 antagonists occurs, and the subsequent effects on Env function.

  1. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1),more » an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection.« less

  2. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents.

    PubMed

    Won, Shen-Jeu; Liu, Cheng-Tsung; Tsao, Lo-Ti; Weng, Jing-Ru; Ko, Horng-Huey; Wang, Jih-Pyang; Lin, Chun-Nan

    2005-01-01

    In an effort to develop potent anti-inflammatory and cancer chemopreventive agents, a series of chalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with suitable aromatic aldehyde or prepared with appropriate dihydrochalcone reacted with appropriate alkyl bromide or prepared in one-pot procedure involving acetophenone and convenient aromatic aldehyde using ultrasonic agitation on basic alumina. The synthesized products were tested for their inhibitory effects on the activation of mast cells, neutrophils, macrophages, and microglial cells. The potent inhibitors of NO production in macrophages and microglial cells were further evaluated for their in vitro cytotoxic effects against several human cancer cell lines. 2'-Hydroxychalcones 1-3, and 2',5'-dihydroxychalcone 7 exhibited potent inhibitory effects on the release of beta-glucuronidase or lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB). Two 2'-hydroxychalcones (1 and 3) showed potent inhibitory effects on superoxide anion generation in rat neutrophils in response to fMLP/CB. The previously reported chalcone, 5, 6, and 12, exhibited potent inhibitory effect on NO production in lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-activated N9 microglial cells or in LPS-activated RAW 264.7 macrophage-like cells. The potent inhibitors 5, 6, and 12 of NO production in macrophages or microglial cells revealed significant or marginal cytotoxic effects against several human cancer lines. Compound 12 manifested potent selective cytotoxicity against human MCF-7 cells and caused cell death by apoptosis. The present results demonstrated that 1-3, and 7 have anti-inflammatory effects and 5, 6, and 12 are potential anti-inflammatory and cancer chemopreventive agents.

  3. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.

    PubMed

    Song, Anran; Yu, Haiqing; Wang, Changyuan; Zhu, Xingqi; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Searching for safe and effective treatments for HIV infection is still a great challenge worldwide in spite of the 27 marketed anti-HIV drugs and the powerful highly active antiretroviral therapy (HAART). As a promising prospect for generation of new HIV therapy drugs, multiple ligands (MDLs) were greatly focused on recently due to their lower toxicity, simplified dosing and patient adherence than single-target drugs. Till now, by disrupting two active sites or steps of HIV replications, a number of HIV dual inhibitors, such as CD4-gssucap120 inhibitors, CXCR4-gp20 inhibitors, RT-CXCR4 inhibitors, RT-protease inhibitors, RT-integrase inhibitors, and RTassociated functions inhibitors have been identified. Generally, these dual inhibitors were discovered mainly through screening approaches and design strategies. Of these compounds, the molecules bearing small skeletons exhibited strong anti-HIV activity and aroused great attention recently. Reviewing the progress of the dual small-molecule HIV inhibitors from the point of view of their scaffolds and discovery strategies will provide valuable information for producing more effective anti-HIV drugs. In this regard, novel dual small-molecule HIV inhibitors were illustrated, and their discovery paradigms as the major contents were also summarized in this manuscript.

  4. Design and Synthesis of Piperazine Sulfonamide Cores Leading to Highly Potent HIV-1 Protease Inhibitors.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Schulz, Jurgen; Wiscount, Catherine M; Holloway, M Katharine; Loughran, H Marie; Manikowski, Jesse J; Su, Hua-Poo; Bennett, David J; Chang, Lehua; Chu, Xin-Jie; Crespo, Alejandro; Dwyer, Michael P; Keertikar, Kartik; Morriello, Gregori J; Stamford, Andrew W; Waddell, Sherman T; Zhong, Bin; Hu, Bin; Ji, Tao; Diamond, Tracy L; Bahnck-Teets, Carolyn; Carroll, Steven S; Fay, John F; Min, Xu; Morris, William; Ballard, Jeanine E; Miller, Michael D; McCauley, John A

    2017-12-14

    Using the HIV-1 protease binding mode of MK-8718 and PL-100 as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to MK-8718 .

  5. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bungard, Christopher J.; Williams, Peter D.; Ballard, Jeanine E.

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  6. Naphthoquinone Derivatives Exert Their Antitrypanosomal Activity via a Multi-Target Mechanism

    PubMed Central

    Mazet, Muriel; Perozzo, Remo; Bergamini, Christian; Prati, Federica; Fato, Romana; Lenaz, Giorgio; Capranico, Giovanni; Brun, Reto; Bakker, Barbara M.; Michels, Paul A. M.; Scapozza, Leonardo; Bolognesi, Maria Laura; Cavalli, Andrea

    2013-01-01

    Background and Methodology Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED50 of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A multitarget profile for this compound is easily conceivable, because quinones, as natural products, serve plants as potent defense chemicals with an intrinsic multifunctional mechanism of action. To disclose such a multitarget profile of B6, we exploited a chemical proteomics approach. Principal Findings A functionalized congener of B6 was immobilized on a solid matrix and used to isolate target proteins from Trypanosoma brucei lysates. Mass analysis delivered two enzymes, i.e. glycosomal glycerol kinase and glycosomal glyceraldehyde-3-phosphate dehydrogenase, as potential molecular targets for B6. Both enzymes were recombinantly expressed and purified, and used for chemical validation. Indeed, B6 was able to inhibit both enzymes with IC50 values in the micromolar range. The multifunctional profile was further characterized in experiments using permeabilized Trypanosoma brucei cells and mitochondrial cell fractions. It turned out that B6 was also able to generate oxygen radicals, a mechanism that may additionally contribute to its observed potent trypanocidal activity. Conclusions and Significance Overall, B6 showed a multitarget mechanism of action, which provides a molecular explanation of its promising anti-trypanosomatid activity. Furthermore, the forward chemical genetics approach here applied may be viable in the molecular characterization of novel multitarget ligands. PMID:23350008

  7. Prevalence and trends of markers of hepatitis B virus, hepatitis C virus and human Immunodeficiency virus in Argentine blood donors

    PubMed Central

    2014-01-01

    Background Transfusion-transmitted infections are a major problem associated with blood transfusion. The aim of this study was to determine prevalence and trends of HBV, HCV and HIV in blood donors in Argentina. Methods A retrospective study was carried out in blood donors of 27 transfusion centers covering the whole country over a period of eight years (2004-2011). Serologic screening assays for HBsAg, anti-HBc, anti-HCV, and anti-HIV were performed in all centers and nucleic acid amplification testing (NAT) was performed in 2 out of the 27 centers. Results The 2,595,852 samples tested nationwide from 2004 to 2011 showed that the prevalence of HBsAg decreased from 0.336% to 0.198% (p < 0.0001), that of anti-HBc from 2.391% to 2.007% (p < 0.0001), that of anti-HCV from 0.721% to 0.460%, (p < 0.0001) and that of anti-HIV from 0.208% to 0.200 (p = 0.075). The prevalence of HBV, HCV and HIV was unevenly distributed among the different regions of the country. Two out of 74,838 screening- negative samples were positive in NAT assays (1 HIV-RNA and 1 HCV-RNA); moreover, HBV-DNA, HCV-RNA and HIV-RNA were detected in 60.29, 24.54 and 66.67% of screening-positive samples of the corresponding assays. As regards donors age, positive HBV-DNA and HCV-RNA donors were significantly older than healthy donors (46.6, 50.5 and 39.5 y respectively, p < 0.001). Conclusions Argentina has a low prevalence of HBsAg, anti-HCV and anti-HIV in blood donors, with a decreasing trend for HBsAg, anti-HBc and anti-HCV but not for anti-HIV over the last 8 years. The uneven distribution of transfusion-transmitted infections prevalence among the different regions of the country highlights the need to implement regional awareness campaigns and prevention. The discrepancy between samples testing positive for screening assays and negative for NAT assays highlights the problem of blood donors who test repeatedly reactive in screening assays but are not confirmed as positive upon further testing. The uneven distribution of age between healthy donors and NAT-positive donors could be related to changes in risks of these pathogens in the general population and might be attributed to a longer exposure to transmission risk factors in elderly people. PMID:24755089

  8. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate☆

    PubMed Central

    Kim, Hae-Suk; Quon, Michael J.; Kim, Jeong-a

    2014-01-01

    Green tea is rich in polyphenol flavonoids including catechins. Epigallocatechin 3-gallate (EGCG) is the most abundant and potent green tea catechin. EGCG has been extensively studied for its beneficial health effects as a nutriceutical agent. Based upon its chemical structure, EGCG is often classified as an antioxidant. However, treatment of cells with EGCG results in production of hydrogen peroxide and hydroxyl radicals in the presence of Fe (III). Thus, EGCG functions as a pro-oxidant in some cellular contexts. Recent investigations have revealed many other direct actions of EGCG that are independent from anti-oxidative mechanisms. In this review, we discuss these novel molecular mechanisms of action for EGCG. In particular, EGCG directly interacts with proteins and phospholipids in the plasma membrane and regulates signal transduction pathways, transcription factors, DNA methylation, mitochondrial function, and autophagy to exert many of its beneficial biological actions. PMID:24494192

  9. Assessment of hepatitis B virus and hepatitis C virus infections and associated risk factors in HIV infected patients at Debretabor hospital, South Gondar, Northwest Ethiopia

    PubMed Central

    Balew, Melashu; Moges, Feleke; Yismaw, Gizachew; Unakal, Chandrashekhar

    2014-01-01

    Objective To assess hepatitis B and hepatitis C virus infections and associated risk factors among HIV infected patients at Debretabor hospital. Methods A cross-sectional study was conducted among HIV/AIDS patients attending Debretabor hospital from February to April, 2012. Venous blood samples were collected from study participants for HBsAg and anti HCV antibody tests. Bivariate and multivariate analyses were used to identify associated variables with HBsAg and anti HCV positivity. Variables having P<0.05 was taken as statistically significant association. Results From a total of 395 HIV infected patients included in this study, 234 (59.2%) were females and 161 (40.8%) males with mean (±SD) age of 36.31 (±9.91) years. The prevalence of HBsAg and anti HCV antibody was 6.1% and 1.3%, respectively. In multivariate analysis, multiple sexual partner (AOR=8.1, 95% CI=1.8-33.97) and history of opportunistic infections (AOR=3.17, 95% CI=1.3-7.7) were statistically associated with HBsAg positivity. History of blood transfusion (AOR=5.61, 95% CI= 1.03-36.59) was associated with presence of anti-HCV antibody. Conclusions The prevalence of HBsAg and anti HCV antibodies in HIV coinfected patients was intermediate. However, it is relevant for HIV infected patients since viral hepatitis co-infections in HIV patients can cause multiple complications. Therefore, routine HBV and HCV screening with reliable diagnostic markers need to be carried out for close monitoring and better management in HIV patients.

  10. Discovery of BMS-955176, a Second Generation HIV-1 Maturation Inhibitor with Broad Spectrum Antiviral Activity.

    PubMed

    Regueiro-Ren, Alicia; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J; Chen, Jie; Venables, Brian L; Zhu, Juliang; Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Terry, Brian; Samanta, Himadri; Zhang, Sharon; Li, Zhufang; Beno, Brett R; Huang, Xiaohua S; Rahematpura, Sandhya; Parker, Dawn D; Haskell, Roy; Jenkins, Susan; Santone, Kenneth S; Cockett, Mark I; Krystal, Mark; Meanwell, Nicholas A; Hanumegowda, Umesh; Dicker, Ira B

    2016-06-09

    HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.

  11. Novel β-amyloid aggregation inhibitors possessing a turn mimic.

    PubMed

    Hamada, Yoshio; Miyamoto, Naoko; Kiso, Yoshiaki

    2015-04-01

    Amyloid β peptide, the main component of senile plaques found in the brain of Alzheimer disease (AD) patients, is a molecular target for AD therapeutic intervention. A number of potential AD therapeutics have been reported, including inhibitors of β-secretase, γ-secretase, and Aβ aggregation, and anti-amyloid agents, such as neprilysin, insulin degrading enzyme (IDE), and Aβ antibodies. Recently, we reported potent small-sized β-secretase (BACE1) inhibitors, which could serve as anti-AD drugs. However AD is a progressive disorder, where dementia symptoms gradually worsen over several decades, and therefore may require many years to get cured. One possible way to achieve a greater therapeutic effect is through simultaneous administration of multiple drugs, similar to those used in Highly Active Anti-Retroviral Therapy (HAART) used to treat AIDS. In order to overcome AD, we took a drug discovery approach to evaluate, novel β-amyloid aggregation inhibitors. Previously, we reported that a tong-type compound possessing a turn mimic as the inhibitor of HIV-1 protease dimerization. Oligomerized amyloid β peptides contain a turn structure within the molecule. Here, we designed and synthesized novel β-amyloid aggregation inhibitors with a turn-mimic template, based on the turn conformer of the oligomerized amyloid β peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Diketo acids derivatives as integrase inhibitors: the war against the acquired immunodeficiency syndrome.

    PubMed

    Henao-Mejia, Jorge; Góez, Yenny; Patiño, Pablo; Rugeles, Maria T

    2006-06-01

    Since the human immunodeficiency virus was identified as etiological agent of the acquired immunodeficiency syndrome, great advances have been accomplished in the therapeutic field leading to reduced morbidity and mortality among infected patients. However, the high mutation rate of the viral genome generates strains resistant to multiple drugs, pointing to the importance of finding new therapeutic targets. Among the HIV structural genes, the POL gene codes for three essential enzymes: reverse transcriptase, protease, and integrase; nineteen of the twenty drugs currently approved by the Food and Drug Administration to treat this viral infection, inhibit the reverse transcriptase and the protease. Although intense research has been carried out in this area during the last 10 years, HIV integrase inhibitors are not yet approved for clinical use; however the fact that presence of this enzyme is a sine qua non for a productive HIV life cycle joined to its unique properties makes it a promissory target for anti-HIV therapy. Many compounds have been claimed to inhibit integrase in vitro; however, few of them have proven to have antiviral activity and low cytotoxicity in cell systems. Diketoacid derivatives are the most promising integrase inhibitors so far reported. Initially discovered independently by Shionogi & Co. and the Merck Research Laboratories, these compounds are highly specific for the integrase with potent antiviral activity in vitro and in vivo, and low cytotoxicity in cell cultures. Some of these compounds have recently entered clinical trials. Due to the high relevance of integrase inhibitors, and specifically of diketoacid derivatives, we review the latest findings and patents in this important field of research.

  13. 1,2,3,4-Tetrahydroisoquinolines as inhibitors of HIV-1 integrase and human LEDGF/p75 interaction.

    PubMed

    George, Anu; Gopi Krishna Reddy, Alavala; Satyanarayana, Gedu; Raghavendra, Nidhanapati K

    2018-06-01

    Alkaloids are a class of organic compounds with a wide range of biological properties, including anti-HIV activity. The 1,2,3,4-tetrahydroisoquinoline is a ubiquitous structural motif of many alkaloids. Using a short and an efficient route for synthesis, a series of 1,2,3,4-tetrahydroisoquinolines/isoquinolines was developed. These compounds have been analysed for their ability to inhibit an important interaction between HIV-1 integrase enzyme (IN) and human LEDGF/p75 protein (p75) which assists in the viral integration into the active genes. A lead compound 6d is found to inhibit the LEDGF/p75-IN interaction in vitro with an IC 50 of ~10 μm. Molecular docking analysis of the isoquinoline 6d reveals its interactions with the LEDGF/p75-binding residues of IN. Based on an order of addition experiment, the binding of 6d or LEDGF/p75 to IN is shown to be mutually exclusive. Also, the activity of 6d in vitro is found to be unaffected by the presence of a non-specific DNA. As reported earlier for the inhibitors of LEDGF/p75-IN interaction, 6d exhibits a potent inhibition of both the early and late stages of HIV-1 replication. Compound 6d differing from the known inhibitors in the chemical moieties and interactions with CCD could potentially be explored further for developing small molecule inhibitors of LEDGF/p75-IN interaction having a higher potency. © 2018 John Wiley & Sons A/S.

  14. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters.

    PubMed

    Nancolas, Bethany; Guo, Lili; Zhou, Rong; Nath, Kavindra; Nelson, David S; Leeper, Dennis B; Blair, Ian A; Glickson, Jerry D; Halestrap, Andrew P

    2016-04-01

    Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitizing tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, whereas indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). In the present study, we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki2.5 μM) and co-operatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevisoocytes with K0.5 and Hill coefficient values of 36-40 μM and 1.65-1.85 respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~ 7 μM) than other substrates including glutamate (IC50~ 20 μM). In isolated DB-1 melanoma cells 1-10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output whereas increasing intracellular [L-lactate] > 5-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND onL-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate (CHC). © 2016 Authors; published by Portland Press Limited.

  15. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity.

    PubMed

    Huang, Tuxiong; Li, Shan; Li, Guangchao; Tian, Yuan; Wang, Haiying; Shi, Lianfa; Perez-Cordon, Gregorio; Mao, Li; Wang, Xiaoning; Wang, Jufang; Feng, Hanping

    2014-01-01

    Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.

  16. PEGylated bilirubin nanoparticle as an anti-oxidative and anti-inflammatory demulcent in pancreatic islet xenotransplantation.

    PubMed

    Kim, Min Jun; Lee, Yonghyun; Jon, Sangyong; Lee, Dong Yun

    2017-07-01

    Transplanted islets suffer hypoxic stress, which leads to nonspecific inflammation. This is the major cause of islet graft failure during the early stage of intrahepatic islet transplantation. Although bilirubin has shown potent anti-oxidative and anti-inflammatory functions, its clinical applications have been limited due to its insolubility and short half-life. To overcome this problem, novel amphiphilic bilirubin nanoparticles are designed. Hydrophilic poly(ethylene glycol) (PEG) is conjugated to the hydrophobic bilirubin molecule. Then, the PEG-bilirubin conjugates form nanoparticles via self-assembly, i.e., so-called to BRNPs. BRNPs can protect islet cells not only from chemically induced oxidative stress by scavenging reactive oxygen species molecules, but also from activated macrophages by suppressing cytokine release. Importantly, in vivo experiments demonstrate that BRNP treatment can dramatically and significantly prolong islet graft survival compared to bilirubin treatment. In addition, immunohistochemical analysis shows BRNPs have potent anti-oxidative and anti-inflammatory capabilities. Collectively, novel BRNPs can be a new potent remedy for successful islet transplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. l-2',3'-Didehydro-2',3'-dideoxy-3'-fluoronucleosides: synthesis, anti-HIV activity, chemical and enzymatic stability, and mechanism of resistance.

    PubMed

    Chong, Youhoon; Gumina, Giuseppe; Mathew, Judy S; Schinazi, Raymond F; Chu, Chung K

    2003-07-17

    As antiviral nucleosides containing a 2',3'-unsaturated sugar moiety with 2'-fluoro substitution are endowed with increased stabilization of the glycosyl bond, it was of interest to investigate the influence of the fluorine atom at the 3'-position. Various pyrimidine and purine L-3'-fluoro-2',3'-unsaturated nucleosides were synthesized from their precursors, L-3',3'-difluoro-2',3'-dideoxy nucleosides, by elimination of hydrogen fluoride. In the L-3',3'-difluoro-2',3'-dideoxy nucleoside series, cytidine 16 and 5-fluorocytidine 18 analogues showed modest antiviral activity (EC(50) 11.5 and 8.8 microM, respectively) when evaluated against HIV-1 in human peripheral blood mononuclear (PBM) cells. In the 2',3'-unsaturated series, L-3'-fluoro-2',3'-didehydro-2',3'-dideoxycytidine 24 and 5-fluorocytidine 26 showed highly potent antiviral activity (EC(50) 0.089 and 0.018 microM, respectively) without significant cytotoxicity. The guanosine analogue 48 showed only marginal anti-HIV activity with some cytotoxicity (EC(50) 38.5 microM, and IC(50) 17.4, 58.4, 36.5 microM in PBM, CEM, and Vero cells, respectively). The cytidine 24 and 5-fluorocytidine 26 analogues, however, showed significantly decreased antiviral activity against the clinically important lamivudine-resistant variants (HIV-1(M184V)). Molecular modeling studies demonstrated that the 3'-fluoro atom of the L-3'-fluoro-2',3'-unsaturated nucleoside is within the hydrogen bonding distance with the amide backbone of Asp185, which favors the binding of the nucleoside triphosphate to the wild-type RT. This favorable binding mode, however, cannot be maintained when the triphosphate of 3'-fluoro 2',3'-unsaturated nucleoside binds to the active site of M184V RT because the bulky side chain of Val184 occupies the space needed for the nucleotide. The biological results suggest that, in addition to the sugar conformation, the base moiety may also play a role in their interaction with the M184V RT.

  18. Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT

    PubMed Central

    Checker, Rahul; Sandur, Santosh K.; Sharma, Deepak; Patwardhan, Raghavendra S.; Jayakumar, S.; Kohli, Vineet; Sethi, Gautam; Aggarwal, Bharat B.; Sainis, Krishna B.

    2012-01-01

    Background Ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B) activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells) and AP-1(activator protein-1), is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects. Methodology/Principal Findings The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent. Conclusions/Significance The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders. PMID:22363615

  19. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach.

    PubMed

    Gao, Ping; Sun, Lin; Zhou, Junsu; Li, Xiao; Zhan, Peng; Liu, Xinyong

    2016-09-01

    In recent years, a variety of new synthetic methodologies and concepts have been proposed in the search for new pharmaceutical lead structures and optimization. Notably, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach has drawn great attention and has become a powerful tool for the generation of privileged medicinal skeletons in the discovery of anti-HIV agents. This is due to the high degree of reliability, complete specificity (chemoselectivity and regioselectivity), mild conditions, and the biocompatibility of the reactants. Herein, the authors describe the progress thus far on the discovery of novel anti-HIV agents via the CuAAC click chemistry-based approach. CuAAC click chemistry is a proven protocol for synthesizing triazole products which could serve as basic pharmacophores, act as replacements of traditional scaffold or substituent modification, be a linker of dual-target or dual-site inhibitors and more for the discovery of novel anti-HIV agents. What's more, it also provides convenience and feasibility for dynamic combinatorial chemistry and in situ screening. It is envisioned that click chemistry will draw more attention and make more contributions in anti-HIV drug discovery in the future.

  20. Anti-retroviral Status and HIV Transmission Risk Behaviors are Associated with Age, Time Since Diagnosis, and Psychosocial Factors Among Women Living with HIV/AIDS Enrolling in the WILLOW Intervention at Community-Based Organizations.

    PubMed

    Williams, Weston O; Griffin, Tanesha; Uhl, Gary

    2018-01-01

    Safe sexual behaviors and anti-retroviral use help prevent HIV transmission. In this cross-sectional study, we assessed correlates of anti-retroviral (ART) status and transmission risk (a constructed variable) among a convenience sample of n = 1041 HIV-positive women (pre-intervention) enrolled in an evidence-based intervention at four CBOs. Multinomial logistic regression models were used. Younger women and those diagnosed with HIV in the last 5 years more often reported that they had not been prescribed ART. Self-reported non-adherence to ART was less frequently reported among women who were older, had a higher HIV knowledge, and those with attitudes/beliefs supportive of condom use. The highest-risk transmission group (condomless sex with HIV-negative/unknown partner and not prescribed or non-adherent to ART) was associated with younger age, attitudes/beliefs less supportive of condom use, and low self-efficacy discussing condom use. Our findings inform HIV prevention efforts among similar populations of HIV-positive women enrolled in interventions at CBOs.

Top