Qian, Keduo; Kuo, Reen-Yun; Chen, Chin-Ho; Huang, Li; Morris-Natschke, Susan L; Lee, Kuo-Hsiung
2010-04-22
In our continuing study of triterpene derivatives as potent anti-HIV agents, different C-3 conformationally restricted betulinic acid (BA, 1) derivatives were designed and synthesized in order to explore the conformational space of the C-3 pharmacophore. 3-O-Monomethylsuccinyl-betulinic acid (MSB) analogues were also designed to better understand the contribution of the C-3' dimethyl group of bevirimat (2), the first-in-class HIV maturation inhibitor, which is currently in phase IIb clinical trials. In addition, another triterpene skeleton, moronic acid (MA, 3), was also employed to study the influence of the backbone and the C-3 modification toward the anti-HIV activity of this compound class. This study enabled us to better understand the structure-activity relationships (SAR) of triterpene-derived anti-HIV agents and led to the design and synthesis of compound 12 (EC(50): 0.0006 microM), which displayed slightly better activity than 2 as a HIV-1 maturation inhibitor.
Kim, Kyung Ran; Park, Ah-Young; Moon, Hyung Ryong; Chun, Moon Woo; Jeong, Lak Shin
2007-01-01
Novel iso D-2',3'-dideoxythianucleoside derivatives 1-3 were designed and asymmetrically synthesized to search for new anti-HIV agents. Final compounds 1-3 were evaluated against a variety of viruses including HIV-1 and 2. Only cytosine analog 3 showed a potent anti-VSV activity (EC(50) = 9.43 microg/mL). This result implies that iso 2',3'-dideoxy sugar templates might play a role of a sugar surrogate of nucleosides for the development of anti-RNA virus agent.
Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Won-Gil; Chan, Albert H.; Spasov, Krasimir A.
Catechol diethers that incorporate a 7-cyano-2-naphthyl substituent are reported as non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs). Many of the compounds have 1–10 nM potencies toward wild-type HIV-1. An interesting conformational effect allows two unique conformers for the naphthyl group in complexes with HIV-RT. X-ray crystal structures for 4a and 4f illustrate the alternatives.
Gu, Wan-gang; Ip, Denis Tsz-Ming; Liu, Si-jie; Chan, Joseph H; Wang, Yan; Zhang, Xuan; Zheng, Yong-tang; Wan, David Chi-Cheong
2014-04-25
Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 μM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 μM. Compound 15 might supply useful structural information for further anti-HIV agent discovery. Copyright © 2014. Published by Elsevier Ireland Ltd.
Darcis, Gilles; Kula, Anna; Bouchat, Sophie; Fujinaga, Koh; Corazza, Francis; Ait-Ammar, Amina; Delacourt, Nadège; Melard, Adeline; Kabeya, Kabamba; Vanhulle, Caroline; Van Driessche, Benoit; Gatot, Jean-Stéphane; Cherrier, Thomas; Pianowski, Luiz F; Gama, Lucio; Schwartz, Christian; Vila, Jorge; Burny, Arsène; Clumeck, Nathan; Moutschen, Michel; De Wit, Stéphane; Peterlin, B Matija; Rouzioux, Christine; Rohr, Olivier; Van Lint, Carine
2015-07-01
The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs.
Bouchat, Sophie; Fujinaga, Koh; Corazza, Francis; Ait-Ammar, Amina; Delacourt, Nadège; Melard, Adeline; Kabeya, Kabamba; Vanhulle, Caroline; Van Driessche, Benoit; Gatot, Jean-Stéphane; Cherrier, Thomas; Pianowski, Luiz F.; Gama, Lucio; Schwartz, Christian; Vila, Jorge; Burny, Arsène; Clumeck, Nathan; Moutschen, Michel; De Wit, Stéphane; Peterlin, B. Matija; Rouzioux, Christine; Rohr, Olivier; Van Lint, Carine
2015-01-01
The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs. PMID:26225566
Kim, Kyung Ran; Moon, Hyung Ryong; Park, Ah-Young; Chun, Moon Woo; Jeong, Lak Shin
2007-01-01
Novel iso-d-2',3'-dideoxythianucleoside derivatives 1-4 were designed and asymmetrically synthesized as a bioisostere of lamivudine to search for new anti-HIV agents. The information about using sulfur participation occurred on DAST fluorination and Mitsunobu reaction will be of great help in synthesizing sulfur-containing compounds. Final compounds 1-4 were evaluated against HIV-1 and 2, HSV-1 and 2, EMCV, Cox. B3, VSV, FluA (Taiwan), FluA (Johan.), FCV, and FIP. Only cytosine analogue 3 showed a potent anti-VSV activity (EC(50)=9.43microg/mL). This result implies that iso-2',3'-dideoxy sugar templates might play a role of a sugar surrogate of nucleosides for the development of anti-RNA virus agent.
A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoguang; Department of Medical Microbiology, Harbin Medical University, Harbin 150086; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811
Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviralmore » activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.« less
Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua
2017-08-30
Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.
Harakeh, S; Jariwalla, R J
1991-12-01
To elucidate the action of vitamin C on pathogenic human retroviruses, we investigated and compared the effects of noncytoxic concentrations of ascorbic acid (AA), its calcium salt (Ca-ascorbate), and two thiol-based reducing agents [glutathione (GSH) and N-acetyl-L-cysteine (NAC)] against human immunodeficiency virus (HIV)-1 replication in chronically infected T lymphocytes. Ca-ascorbate reduced extracellular HIV reverse transcriptase (RT) activity by about the same magnitude as the equivalent dose of AA. Long-term experiments showed that continuous presence of ascorbate was necessary for HIV suppression. NAC (10 mmol/L) caused less than twofold inhibition of HIV RT and conferred a synergistic effect (approximately eightfold inhibition) when tested simultaneously with AA (0.426 mmol/L). In contrast, nonesterified GSH (less than or equal to 1.838 mmol/L) had no effect on RT concentrations and did not potentiate the anti-HIV effect of AA. These results further support the potent antiviral activity of ascorbate and suggest its therapeutic value in controlling HIV infection in combination with thiols.
Figueras, Antoni; Miralles-Llumà, Rosa; Flores, Ramon; Rustullet, Albert; Busqué, Félix; Figueredo, Marta; Font, Josep; Alibés, Ramon; Maréchal, Jean-Didier
2012-06-01
The present work describes some recent approaches to novel 3-oxabicyclo[3.2.0]heptane-type nucleosides structurally similar to the potent anti-HIV agent stavudine (d4T). To gain knowledge at the molecular level relevant for further synthetic designs, the lack of activity of these compounds was investigated by computational approaches accounting for three main physiological requirements of anti-HIV nucleosides: their drug-likeness, their activation process, and their subsequent interaction with HIV reverse transcriptase (HIV-RT). Our results show that the inclusion of the fused cyclobutane at the 2'- and 3'-positions of the sugar portion provides drug-like compounds. Nonetheless, the presence of this cyclobutane moiety prevents binding orientations consistent with the catalytic activation for at least one of the enzymes known to activate d4T. To the best of our knowledge, this is the first study to explicitly consider the simulation of the entire activation process to rationalize anti-HIV activities. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells
Ordonez, Paula; Kunzelmann, Simone; Groom, Harriet C. T.; Yap, Melvyn W.; Weising, Simon; Meier, Chris; Bishop, Kate N.; Taylor, Ian A.; Stoye, Jonathan P.
2017-01-01
SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs. PMID:28220857
NASA Astrophysics Data System (ADS)
Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun; Li, Peizhen; Tian, Yueli; Zhai, Honglin; Li, Yang
2014-06-01
3,4-Dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine is an antiretroviral agent, which can act against human immunodeficiency virus (HIV) infection, but the mechanism of action of pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives remained ambiguous. In this study, multiple linear regression (MLR) was applied to establish a quite reliable model with the squared correlation coefficient (R2) of 0.8079. We also used chemical information descriptors based on the simplified molecular input line entry system (SMILES) to get a better model with R2 of 0.9086 for the training set, and R2 of 0.8031 for the test set. Molecular docking was utilized to provide more useful information between pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives and HIV-1 protease, such as active site, binding mode and important residues. Molecular dynamics simulation was employed to further validate the docking results. This work may lead to a better understanding of the mechanism of action and aid to design novel and more potent anti-HIV drugs.
Thiazolides Elicit Anti-Viral Innate Immunity and Reduce HIV Replication.
Trabattoni, Daria; Gnudi, Federica; Ibba, Salomè V; Saulle, Irma; Agostini, Simone; Masetti, Michela; Biasin, Mara; Rossignol, Jean-Francois; Clerici, Mario
2016-06-02
Nitazoxanide (Alinia(®), NTZ) and tizoxanide (TIZ), its active circulating metabolite, belong to a class of agents known as thiazolides (TZD) endowed with broad anti-infective activities. TIZ and RM-4848, the active metabolite of RM-5038, were shown to stimulate innate immunity in vitro. Because natural resistance to HIV-1 infection in HIV-exposed seronegative (HESN) individuals is suggested to be associated with strong innate immune responses, we verified whether TIZ and RM-4848 could reduce the in vitro infectiousness of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 20 healthy donors were infected in vitro with HIV-1BaL in the presence/absence of TIZ or RM4848. HIV-1 p24 were measured at different timepoints. The immunomodulatory abilities of TZD were evaluated by the expression of type I IFN pathway genes and the production of cytokines and chemokines. TZD drastically inhibited in vitro HIV-1 replication (>87%). This was associated with the activation of innate immune responses and with the up-regulation of several interferon-stimulated genes (ISGs), including those involved in cholesterol pathway, particularly the cholesterol-25 hydroxylase (CH25H). TZD inhibition of HIV-1 replication in vitro could be due to their ability to stimulate potent and multifaceted antiviral immune responses. These data warrant the exploration of TZD as preventive/therapeutic agent in HIV infection.
Mai, Antonello; Artico, Marino; Rotili, Dante; Tarantino, Domenico; Clotet-Codina, Imma; Armand-Ugón, Mercedes; Ragno, Rino; Simeoni, Silvia; Sbardella, Gianluca; Nawrozkij, Maxim B; Samuele, Alberta; Maga, Giovanni; Esté, José A
2007-11-01
Following the disclosure of dihydro-alkoxy-, dihydro-alkylthio-, and dihydro-alkylamino-benzyl-oxopyrimidines (DABOs, S-DABOs, and NH-DABOs) as potent and selective anti-HIV-1 agents belonging to the non-nucleoside reverse transcriptase inhibitor (NNRTI) class, we report here the synthesis and biological evaluation of a novel series of DABOs bearing a N,N-disubstituted amino group or a cyclic amine at the pyrimidine-C2 position, a hydrogen atom or a small alkyl group at C5 and/or at the benzylic position, and the favorable 2,6-difluorobenzyl moiety at the C6 position (F2-N,N-DABOs). The new compounds were highly active up to the subnanomolar level against both wt HIV-1 and the Y181C mutant and at the submicromolar to nanomolar range against the K103N and Y188L mutant strains. Such derivatives were more potent than S-DABOs, NH-DABOs, and nevirapine and efavirenz were chosen as reference drugs. The higher inhibitor adaptability to the HIV-1 RT non-nucleoside binding site (NNBS) may account for the higher inhibitory effect exerted by the new molecules against the mutated RTs.
Secchi, Massimiliano; Grampa, Valentina; Vangelista, Luca
2018-01-30
Efforts to improve existing anti-HIV-1 therapies or develop preventatives have identified CCR5 as an important target and CCL5 as an ideal scaffold to sculpt potent HIV-1 entry inhibitors. We created novel human CCL5 variants that exhibit exceptional anti-HIV-1 features using recombinant lactobacilli (exploited for live microbicide development) as a screening platform. Protein design, expression and anti-HIV-1 activity flowed in iterative cycles, with a stepwise integration of successful mutations and refinement of an initial CCL5 mutant battery towards the generation of two ultimate CCL5 derivatives, a CCR5 agonist and a CCR5 antagonist with similar anti-HIV-1 potency. The CCR5 antagonist was tested in human macrophages and against primary R5 HIV-1 strains, exhibiting cross-clade low picomolar IC 50 activity. Moreover, its successful combination with several HIV-1 inhibitors provided the ground for conceiving therapeutic and preventative anti-HIV-1 cocktails. Beyond HIV-1 infection, these CCL5 derivatives may now be tested against several inflammation-related pathologies where the CCL5:CCR5 axis plays a relevant role.
Yang, S S; Fliakas-Boltz, V; Bader, J P; Buckheit, R W
1995-10-01
Current thrust in controlling the Acquired Immune Deficiency Syndrome (AIDS) focuses on antiviral drug development targeting the infection and replication of the human immunodeficiency virus (HIV), the causative agent of AIDS. To date, treatment of AIDS has relied on nucleoside reverse transcriptase inhibitors such as AZT, ddI, and ddC, which eventually become ineffective upon the emergence of resistant mutants bearing specific nucleotide substitutions. The Anti-AIDS Drug Screening Program of the NCI conducts and coordinates a high-capacity semi-robotic in vitro screening of synthetic or natural compounds submitted by academic, research and pharmaceutical institutions world-wide. About 10,000 synthetic compounds are screened annually for anti-HIV activity. Confirmed active agents are subjected to in-depth studies on range and mechanism of action. Emerging from this intense screening activity were a number of potentially promising categories of nonnucleoside reverse transcriptase inhibitors (NNRTI) with structural diversity but strong and reproducible anti-HIV activity. Over 2500 active compounds were evaluated for their inhibitory activity against a panel of both laboratory and clinical virus isolates in the appropriate established cell line or fresh human peripheral blood leukocyte and macrophage preparations. Out of these, 40 agents could be placed structurally in nine categories with an additional 16 unique compounds that share the characteristics of NNRTI. These NNRTIs were shown to inhibit reverse transcriptase enzymatically using homopolymeric or ribosomal RNA as templates. NNRTIs demonstrated similarity in their inhibitory pattern against the HIV-1 laboratory strains IIIB and RF, and an AZT-resistant strain; all were inactive against HIV-2. These compounds were further tested against NNRTI-resistant HIV-1 isolates. NNRTI-resistant HIV-1 isolates were selected and characterized with respect to the change(s) in the viral reverse transcriptase nucleotide sequence. Also, differential cross-resistance or sensitivity patterns to NNRTIs were studied in detail among NNRTI-resistant mutants. When tested in combination with AZT, all of the NNRTI's uniformly exhibited synergistic inhibition of HIV-1, suggesting that combination antiviral therapy of NNRTIs with AZT may be therapeutically promising for AIDS treatment.
HIV treatment 2020: what will it look like?
Gulick, Roy
2014-01-01
Currently there are 28 approved antiretroviral drugs in six mechanistic classes, and recommended first-line regimens are highly potent, well tolerated, and as convenient as one pill, once-a-day. How will HIV treatment change by 2020? Over the next few years, we are likely to see potent 2-drug regimens tested head-to-head with standard three-drug regimens, and some of these will likely become standard-of-care. Newer agents with novel drug resistance profiles (e.g. doravirine, an NNRTI) or new mechanisms of action (e.g. BMS 663068, a CD4 attachment inhibitor) will provide virologic activity in patients with drug-resistant viral strains. Comparative studies of current and newer agents such as the investigational prodrug of tenofovir (TAF) will help define less toxic regimens. We will see additional convenient co-formulations developed; with them, we are likely to have second- and even third-line regimens administered one pill, once-daily. Long-acting injectable investigational formulations currently in clinical trials such as rilpivirine LA (administered monthly) and cabotegravir (administered quarterly), and others (including combinations of these agents) could provide additional convenient treatment options. Other novel formulations (e.g. patches, implants, rings) and combinations of antiretrovirals with other kinds of medications (e.g. contraceptives) may be developed and tested. In the developing world, we will see increasing numbers of patients taking potent, well-tolerated convenient first-line and subsequent regimens with the goal of "20 by 20" - 20 million treated people by 2020. Generic formulations of antiretroviral drugs, including combinations, will be increasingly available and used worldwide. With the current appreciation that inflammation and immune activation play an important role in the natural history of treated HIV infection, anti-inflammatory agents will be tested and may supplement (or even be co-formulated with) standard antiretroviral regimens. Recognizing our progress to date, these and other innovations will further improve HIV therapy by 2020.
Arzanol, a Potent mPGES-1 Inhibitor: Novel Anti-Inflammatory Agent
Kothavade, Pankaj S.; Nagmoti, Dnyaneshwar M.; Bulani, Vipin D.; Juvekar, Archana R.
2013-01-01
Arzanol is a novel phloroglucinol α-pyrone, isolated from a Mediterranean plant Helichrysum italicum (Roth) Don ssp. microphyllum which belongs to the family Asteraceae. Arzanol has been reported to possess a variety of pharmacological activities. However, anti-inflammatory, anti-HIV, and antioxidant activities have been studied in some detail. Arzanol has been reported to inhibit inflammatory transcription factor NFκB activation, HIV replication in T cells, releases of IL-1β, IL-6, IL-8, and TNF-α, and biosynthesis of PGE2 by potentially inhibiting mPGES-1 enzyme. Diversity of mechanisms of actions of arzanol may be useful in treatment of disease involving these inflammatory mediators such as autoimmune diseases and cancer. This review presents comprehensive information on the chemistry, structure-activity relationship, and pharmacological activities of arzanol. In addition this review discusses recent developments and the scope for future research in these aspects. PMID:24198734
Heterocyclic N-Oxides – An Emerging Class of Therapeutic Agents
Mfuh, Adelphe M.; Larionov, Oleg V.
2016-01-01
Heterocyclic N-oxides have emerged as potent compounds with anticancer, antibacterial, antihypertensive, antiparasitic, anti-HIV, anti-inflammatory, herbicidal, neuroprotective, and procognitive activities. The N-oxide motif has been successfully employed in a number of recent drug development projects. This review surveys the emergence of this scaffold in the mainstream medicinal chemistry with a focus on the discovery of the heterocyclic N-oxide drugs, N-oxide-specific mechanisms of action, drug-receptor interactions and synthetic avenues to these compounds. As the first review on this subject that covers the developments since 1950s to date, it is expected that it will inspire wider implementation of the heterocyclic N-oxide motif in the rational design of new medicinal agents. PMID:26087764
NASA Astrophysics Data System (ADS)
Duan, Lingxun; Bagasra, Omar; Laughlin, Mark A.; Oakes, Joseph W.; Pomerantz, Roger J.
1994-05-01
Human immunodeficiency virus type 1 (HIV-1) has a complex life cycle, which has made it a difficult target for conventional therapeutic modalities. A single-chain antibody moiety, directed against the HIV-1 regulatory protein Rev, which rescues unspliced viral RNA from the nucleus of infected cells, has now been developed. This anti-Rev single-chain construct (SFv) consists of both light and heavy chain variable regions of an anti-Rev monoclonal antibody, which, when expressed intracellularly within human cells, potently inhibits HIV-1 replication. This intracellular SFv molecule is demonstrated to specifically antagonize Rev function. Thus, intracellular SFv expression, against a retroviral regulatory protein, may be useful as a gene therapeutic approach to combat HIV-1 infections.
Wan, Zheng-Yong; Tao, Yuan; Wang, Ya-Feng; Mao, Tian-Qi; Yin, Hong; Chen, Fen-Er; Piao, Hu-Ri; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe
2015-08-01
A novel series of etravirine-VRX-480773 hybrids were designed using structure-guided molecular hybridization strategy and fusing the pharmacophore templates of etravirine and VRX-480773. The anti-HIV-1 activity and cytotoxicity was evaluated in MT-4 cell cultures. The most active hybrid compound in this series, N-(2-chlorophenyl)-2-((4-(4-cyano-2,6-dimethylphenoxy)pyrimidin-2-yl)thio)acetamide 3d (EC50=0.24 , SI>1225), was more potent than delavirdine (EC50=0.66 μM, SI>67) in the anti-HIV-1 in vitro cellular assay. Studies of structure-activity relationships established a correlation between anti-HIV activity and the substitution pattern of the acetanilide group. Copyright © 2015 Elsevier Ltd. All rights reserved.
Imidazopyridine-5,6,7,8-tetrahydro-8-quinolinamine derivatives with potent activity against HIV-1.
Gudmundsson, Kristjan S; Boggs, Sharon D; Catalano, John G; Svolto, Angilique; Spaltenstein, Andrew; Thomson, Michael; Wheelan, Pat; Jenkinson, Stephen
2009-11-15
Synthesis of several novel imidazopyridine-5,6,7,8-tetrahydro-8-quinolinamine derivatives with potent activity against HIV are described. Synthetic approaches allowing for variation of the substitution pattern are outlined and resulting changes in antiviral activity and pharmacokinetics are highlighted. Several compounds with low nanomolar anti-HIV activity and oral bioavailability are described.
Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation
Abdel-Mohsen, Mohamed; Chavez, Leonard; Tandon, Ravi; Chew, Glen M.; Deng, Xutao; Danesh, Ali; Keating, Sheila; Lanteri, Marion; Samuels, Michael L.; Hoh, Rebecca; Sacha, Jonah B.; Norris, Philip J.; Niki, Toshiro; Shikuma, Cecilia M.; Hirashima, Mitsuomi; Deeks, Steven G.; Ndhlovu, Lishomwa C.; Pillai, Satish K.
2016-01-01
Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies. PMID:27253379
Moreno, Silvia; Sepúlveda-Crespo, Daniel; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Ma Ángeles
2017-10-01
Novel third-generation polyanionic carbosilane dendrons with sulfonate or carboxylate end-groups and functionalized with a DO3A ligand at the focal point, and their corresponding copper complexes, have been prepared as antiviral compounds to prevent HIV-1 infection. The topology enables the compound to have an excellent chelating agent, DO3A, while keeping anionic peripheral groups for a therapeutic action. In this study, the cytotoxicity and anti-HIV-1 abilities of carboxylate- (5) or sulfonate-terminated (6) dendrons containing DO3A and their copper complexes (7 or 8) were evaluated. All compounds showed low cytotoxicity and demonstrated potent and broad-spectrum anti-HIV-1 activity in vitro. We also assessed the mode of antiviral action on the inhibition of HIV-1 through a panel of different in vitro antiviral assays. Our results show that copper-free dendron 6 protects the epithelial monolayer from short-term cell disruption. Copper-free dendrons 5 and 6 exert anti-HIV-1 activity at an early stage of the HIV-1 lifecycle by binding to the envelope glycoproteins of HIV-1 and by interacting with the CD4 cell receptor and blocking the binding of gp120 to CD4, and consequently HIV-1 entry. These findings show that copper-free dendrons 5 and 6 have a high potency against HIV-1 infection, confirming their non-specific ability and suggesting that these compounds deserve further study as potential candidate microbicides to prevent HIV-1 transmission. Copyright © 2017 Elsevier B.V. All rights reserved.
Silvestri, Romano; Artico, Marino
2005-01-01
Indolyl aryl sulfones (IASs) are a potent class of NNRTIs developed from L-737,126, a lead agent discovered by Merck AG. IAS derivatives are endowed with inhibitory activities against wt HIV-1 in the low nanomolar concentration range. Introduction of two methyl groups at positions 3 and 5 of the phenyl ring of the aryl sulfonyl moiety furnished IAS derivatives such as 5-chloro- or 5-bromo-3-[(3,5-dimethylphenyl)sulfonyl]indole-2-carboxyamide, which showed very potent and selective anti-HIV-1 activity against some mutants carrying NNRTI resistant mutations at positions 103 and 181 of the reverse transcriptase. IAS derivatives bearing 2-hydroxyethylcarboxyamide or 2-hydroxyethylcarboxyhydrazide groups at position 2 of the indole nucleus were more active than L-737,126 against the K103N-Y181C double mutant. A great improvement of antiviral activity against wt HIV-1 and resistant mutants was obtained by coupling 1-3 simple amino acids, such as glycine and alanine, in sequence, with the 3-[(3,5-dimethylphenyl)sulfonyl]-1H-indole-2-carbonyl moiety. The transformation of the chain terminus into amide or hydrazide, produced short peptides with high selectivity and potent activity against wt HIV-1, and the viral mutants Y181C, K103N-Y181C and EFV(R). IAS having two halogen atoms at the indole showed potent inhibitory activity against the Y181C and the EFV(R) resistant mutant strains. In particular, the introduction of a fluorine atom at position 4 of the indole ring notably contributed to improve the antiviral activities against both wt and the related resistant mutants. 5-Nitro-IASs were highly active against wt HIV-1 and exhibited low cytotoxicity. Experimental data highlighted the class IAS derivatives as promising candidates for clinical trials.
Synthesis and potent in vitro activity of novel 1H-benzimidazoles as anti-MRSA agents.
Karataş, Hacer; Alp, Mehmet; Yildiz, Sulhiye; Göker, Hakan
2012-08-01
A new class of 1H-benzimidazolecarboxamidines was synthesized and evaluated for in vitro antibacterial and antifungal activities, including drug-resistant bacterial strains. The most potent compound (32) has the same ratio of anti-MRSA activity as Vancomycin (minimal inhibitory concentrations value 0.78 μg/mL). The mechanism of action for 1H-benzimidazolecarboxamidine appears to be different from existing antibacterial agents. These compounds have potential for development as a new class of potent anti-MRSA agent. © 2012 John Wiley & Sons A/S.
Swartz, Talia H; Esposito, Anthony M; Durham, Natasha D; Hartmann, Boris M; Chen, Benjamin K
2014-10-01
Human immunodeficiency virus type 1 (HIV-1) infection is chronic and presently still incurable. Antiretroviral drugs effectively suppress replication; however, persistent activation of inflammatory pathways remains a key cause of morbidity. Recent studies proposed that purinergic signaling is required for HIV-1 infection. Purinergic receptors are distributed throughout a wide variety of tissue types and detect extracellular ATP as a danger signal released from dying cells. We have explored how these pathways are involved in the transmission of HIV-1 from cell to cell through virological synapses. Infection of CD4+ T lymphocytes with HIV-1 in the presence of an inhibitor of P2X receptors effectively inhibited HIV-1 infection through both cell-free and cell-to-cell contact in a dose-dependent manner. Inhibition of direct cell-to-cell infection did not affect the formation of virological synapses or the subsequent cell-to-cell transfer of HIV-1. During both cell-free and cell-to-cell CD4+ T lymphocyte infection, purinergic antagonists blocked infection at the level of viral membrane fusion. During cell-to-cell transmission, we observed CXCR4 colocalization with the newly internalized virus particles within target lymphocytes and found that the purinergic antagonists did not impair the recruitment of the coreceptor CXCR4 to the site of Gag internalization in the target cell. In a screen of a library of purinergic antagonists, we found that the most potent inhibitors of HIV-1 fusion were those that target P2X receptors, while P2Y-selective receptor antagonists or adenosine receptor antagonists were ineffective. Our results suggest that P2X receptors may provide a therapeutic target and that purinergic antagonists may have potent activity against viral infection of CD4+ T lymphocytes by both cell-free and cell-to-cell transmission. This study identifies purinergic antagonists to be potent inhibitors of HIV-1 cell-free and cell-to-cell-mediated infection and provides a stepwise determination of when these compounds inhibit HIV-1 infection. These data provide a rationale for the development of novel antiretroviral therapies that have a dual role in both direct antiviral activity and the reduction of HIV-associated inflammation. Purinergic antagonists are shown here to have equivalent efficacy in inhibiting HIV infection via cell-free and cell-to-cell infection, and it is shown that purinergic receptors could provide an attractive therapeutic anti-HIV target that might avoid resistance by targeting a host signaling pathway that potently regulates HIV infection. The high-throughput screen of HIV-1 fusion inhibitors further defines P2X-selective compounds among the purinergic compounds as being the most potent HIV entry inhibitors. Clinical studies on these drugs for other inflammatory indications suggest that they are safe, and thus, if developed for use as anti-HIV agents, they could reduce both HIV replication and HIV-related inflammation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Famiglini, Valeria; La Regina, Giuseppe; Coluccia, Antonio; Pelliccia, Sveva; Brancale, Andrea; Maga, Giovanni; Crespan, Emmanuele; Badia, Roger; Riveira-Muñoz, Eva; Esté, José A; Ferretti, Rosella; Cirilli, Roberto; Zamperini, Claudio; Botta, Maurizio; Schols, Dominique; Limongelli, Vittorio; Agostino, Bruno; Novellino, Ettore; Silvestri, Romano
2014-12-11
We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.
Roy, Upal; Chakravarty, Geetika; Honer Zu Bentrup, Kerstin; Mondal, Debasis
2009-01-01
The ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of HIV-1 protease inhibitors (HPIs), e.g. saquinavir. Increased expression of several ABC-transporters, especially P-gp and MRP2, are observed in multidrug resistant (MDR) tumor cells and on HIV-1 infected lymphocytes. In addition, due to their apical expression on vascular endothelial barriers, both P-gp and MRP2 are of crucial importance towards dictating drug access into sequestered tissues. However, although a number of P-gp inhibitors are currently in clinical trials, possible inhibitors of MRP2 are not being thoroughly investigated. The experimental leukotriene receptor antagonist (LTRA), MK-571 is known to be a potent inhibitor of MRP transporters. Using the MRP2 over-expressing cell line, MDCKII-MRP2, we evaluated whether the clinically approved LTRAs, e.g. montelukast (Singulair™) and zafirlukast (Accolate™), can similarly suppress MRP2-mediated efflux. We compared the efficacy of increasing concentrations (20-100 μM) of MK-571, montelukast, and zafirlukast, in suppressing the efflux of calcein-AM, a fluorescent MRP substrate, and the radiolabeled [3H-] drugs, taxol and saquinavir. Montelukast was the most potent inhibitor (p<0.01) of MRP2-mediated efflux of all three substrates. Montelukast also increased (p<0.01) the duration of intracellular retention of both taxol and saquinavir. More than 50% of the drugs were retained in cells even after 90 mins post removal of montelukast from the medium. Our findings implicate that montelukast, a relatively safe anti-asthmatic agent, may be used as an adjunct therapy to suppress the efflux of taxol and saquinavir from MRP2 overexpressing cells. PMID:19952419
Yamaguchi, Koushi; Honda, Mitsuo; Ikigai, Hajime; Hara, Yukihiko; Shimamura, Tadakatsu
2002-01-01
Epigallocatechin gallate (EGCg), the major tea catechin, is known as a potent anti-bacterial agent. In addition, anti-tumor promoting, anti-inflammatory, anti-oxidative and antiviral activities have been reported. In the present study, we investigated possible anti-human immunodeficiency virus type-1 (HIV-1) activity of EGCg and its mechanisms of action in the viral life cycle. EGCg impinges on each step of the HIV life cycle. Thus, destruction of the viral particles, viral attachment to cells, post-adsorption entry into cells, reverse transcription (RT), viral production from chronically-infected cells, and the level of expression of viral mRNA, were analyzed using T-lymphoid (H9) and monocytoid (THP-1) cell systems, and antiviral protease activity was measured using a cell-free assay. Inhibitory effects of EGCg on specific binding of the virions to the cellular surfaces and changes in the steady state viral regulation (mRNA expression) due to EGCg were not observed. However, EGCg had a destructive effect on the viral particles, and post-adsorption entry and RT in acutely infected monocytoid cells were significantly inhibited at concentrations of EGCg greater than 1 microM, and protease kinetics were suppressed at a concentration higher than 10 microM in the cell-free study. Viral production by THP-1 cells chronically-infected with HIV-1 was also inhibited in a dose-dependent manner and the inhibitory effect was enhanced by liposome modification of EGCg. As expected, increased viral mRNA production was observed in lipopolysaccharide (LPS)-activated chronically HIV-1-infected cells. This production was significantly inhibited by EGCg treatment of THP-1 cells. In contrast, production of HIV-1 viral mRNA in unstimulated or LPS-stimulated T-lymphoid cells (H9) was not inhibited by EGCg. Anti-HIV viral activity of EGCg may thus result from an interaction with several steps in the HIV-1 life cycle.
Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus.
Salehi, Bahare; Kumar, Nanjangud V Anil; Şener, Bilge; Sharifi-Rad, Mehdi; Kılıç, Mehtap; Mahady, Gail B; Vlaisavljevic, Sanja; Iriti, Marcello; Kobarfard, Farzad; Setzer, William N; Ayatollahi, Seyed Abdulmajid; Ata, Athar; Sharifi-Rad, Javad
2018-05-14
Since the beginning of the epidemic, human immunodeficiency virus (HIV) has infected around 70 million people worldwide, most of whom reside is sub-Saharan Africa. There have been very promising developments in the treatment of HIV with anti-retroviral drug cocktails. However, drug resistance to anti-HIV drugs is emerging, and many people infected with HIV have adverse reactions or do not have ready access to currently available HIV chemotherapies. Thus, there is a need to discover new anti-HIV agents to supplement our current arsenal of anti-HIV drugs and to provide therapeutic options for populations with limited resources or access to currently efficacious chemotherapies. Plant-derived natural products continue to serve as a reservoir for the discovery of new medicines, including anti-HIV agents. This review presents a survey of plants that have shown anti-HIV activity, both in vitro and in vivo.
Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus
Şener, Bilge; Sharifi-Rad, Mehdi; Kılıç, Mehtap; Mahady, Gail B.; Vlaisavljevic, Sanja; Kobarfard, Farzad; Setzer, William N.; Ayatollahi, Seyed Abdulmajid; Ata, Athar
2018-01-01
Since the beginning of the epidemic, human immunodeficiency virus (HIV) has infected around 70 million people worldwide, most of whom reside is sub-Saharan Africa. There have been very promising developments in the treatment of HIV with anti-retroviral drug cocktails. However, drug resistance to anti-HIV drugs is emerging, and many people infected with HIV have adverse reactions or do not have ready access to currently available HIV chemotherapies. Thus, there is a need to discover new anti-HIV agents to supplement our current arsenal of anti-HIV drugs and to provide therapeutic options for populations with limited resources or access to currently efficacious chemotherapies. Plant-derived natural products continue to serve as a reservoir for the discovery of new medicines, including anti-HIV agents. This review presents a survey of plants that have shown anti-HIV activity, both in vitro and in vivo. PMID:29757986
Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages.
Ma, Tong-Cui; Zhou, Run-Hong; Wang, Xu; Li, Jie-Liang; Sang, Ming; Zhou, Li; Zhuang, Ke; Hou, Wei; Guo, De-Yin; Ho, Wen-Zhe
2016-10-13
The Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, is known to have anti-inflammatory effect in both in vitro and in vivo systems. Macrophages play a key role in inflammation and immune activation, which is implicated in HIV disease progression. Here, we investigated the effect of BBI on HIV infection of peripheral blood monocyte-derived macrophages. We demonstrated that BBI could potently inhibit HIV replication in macrophages without cytotoxicity. Investigation of the mechanism(s) of BBI action on HIV showed that BBI induced the expression of IFN-β and multiple IFN stimulated genes (ISGs), including Myxovirus resistance protein 2 (Mx2), 2',5'-oligoadenylate synthetase (OAS-1), Virus inhibitory protein (viperin), ISG15 and ISG56. BBI treatment of macrophages also increased the expression of several known HIV restriction factors, including APOBEC3F, APOBEC3G and tetherin. Furthermore, BBI enhanced the phosphorylation of IRF3, a key regulator of IFN-β. The inhibition of IFN-β pathway by the neutralization antibody to type I IFN receptor (Anti-IFNAR) abolished BBI-mediated induction of the anti-HIV factors and inhibition of HIV in macrophages. These findings that BBI could activate IFN-β-mediated signaling pathway, initialize the intracellular innate immunity in macrophages and potently inhibit HIV at multiple steps of viral replication cycle indicate the necessity to further investigate BBI as an alternative and cost-effective anti-HIV natural product.
Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis.
Uchio, Eiichi; Fuchigami, Aki; Kadonosono, Kazuaki; Hayashi, Akio; Ishiko, Hiroaki; Aoki, Koki; Ohno, Shigeaki
2007-09-01
Around one million people are affected by adenoviral keratoconjunctivitis a year in Japan, and it is recognized as one of the major pathogens of ophthalmological nosocomial infection worldwide. Although cidofovir can be used systemically for immunocompromised patients with disseminated adenoviral infection, no specific anti-adenoviral agent has been established for the treatment of adenoviral infection. We evaluated the anti-adenoviral effect of anti-HIV (human immunodeficiency virus) agents in this study. Five anti-HIV agents (zalcitabine, stavudine, nevirapine, indinavir and amprenavir) were subjected to in vitro evaluation. A549 cells were used for viral cell culture, and adenovirus serotypes 3, 4, 8, 19 and 37 were used. After calculating CC(50) (50% cytotoxic concentration) of each agent by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, we cultured adenovirus with the agents for seven days and quantitatively measured extracted adenoviral DNA by real-time PCR. Among the anti-HIV drugs, zalcitabine and stavudine, both nucleoside reverse transcriptase inhibitors, showed significant anti-adenoviral activity. In contrast, nevirapine, a non-nucleoside reverse transcriptase inhibitor, and indinavir and amprenavir, which are both protease inhibitors, were ineffective against adenovirus. These results indicate that zalcitabine and stavudine are possible candidates for the local and systemic treatment of adenoviral infection, and the anti-adenoviral effect might depend on the pharmacological properties of anti-HIV agents. The chemical properties on the clinical safety for systemic and local application need to be determined in order to for these drugs to be accepted for the treatment of adenovirus in clinical settings.
Sudbeck, Elise A.; Mao, Chen; Vig, Rakesh; Venkatachalam, T. K.; Tuel-Ahlgren, Lisa; Uckun, Fatih M.
1998-01-01
Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM. PMID:9835518
Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi
2015-02-01
A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure-activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi
2015-01-01
Background A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. Methods A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Results Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure–activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. Conclusion The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. PMID:26149262
2014-01-01
Background Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 such as T20 (Enfuvirtide) and C34 are potent viral fusion inhibitors. We have recently found that two N-terminal residues (Met115 and Thr116) of CHR peptides form a unique M-T hook structure that can greatly enhance the binding and anti-HIV activity of inhibitors. Here, we applied two M-T hook residues to optimize SC29EK, an electrostatically constrained peptide inhibitor with a potent anti-HIV activity. Results The resulting peptide MT-SC29EK showed a dramatically increased binding affinity and could block the six-helical bundle (6-HB) formation more efficiently. As expected, MT-SC29EK potently inhibited HIV-1 entry and infection, especially against those T20- and SC29EK-resistant HIV-1 variants. More importantly, MT-SC29EK and its short form (MT-SC22EK) suffered from the difficulty to induce HIV-1 resistance during the in vitro selection, suggesting their high genetic barriers to the development of resistance. Conclusions Our studies have verified the M-T hook structure as a vital strategy to design novel HIV-1 fusion inhibitors and offered an ideal candidate for clinical development. PMID:24884671
[Epidemiology of HIV infection in the world and in France].
Semaille, Caroline; Lot, Florence
2006-05-15
All continents are affected by HIV at various degrees and the situation of Africa is certainly one of the most serious with HIV prevalence over 20% in Austral Africa, and accounting for half of all HIV cases in the world. Eastern Europe has been recently affected by HIV mainly among IDU. In Asia, the spread of epidemic on general population follows HIV transmission linked to drug use and commercial sex. Similar trends have been observed in Western Europe: relapse of safer sex among men wich have sex with men (MSM) with new HIV contamination, decrease of HIV transmission among drug users and increase of new HIV diagnosis among heterosexuals originating from countries with high prevalence of HIV/AIDS, notably sub-Saharan Africa. Since the introduction of potent anti-retroviral agents in 1996, the numbers of AIDS cases and mortality due to AIDS have sharply decreased in Western Europe. The number of new HIV diagnosis in 2004 is around 7 000 cases in France. The two mostly affected populations in 2003-2004 are homosexuals and sub-Saharan Africans. The harm reduction policies conducted has markedly reduced HIV transmission among injecting drug users.
Dual-acting stapled peptides target both HIV-1 entry and assembly
2013-01-01
Background Previously, we reported the conversion of the 12-mer linear and cell-impermeable peptide CAI to a cell-penetrating peptide NYAD-1 by using an i,i + 4 hydrocarbon stapling technique and confirmed its binding to the C-terminal domain (CTD) of the HIV-1 capsid (CA) protein with an improved affinity (Kd ~ 1 μM) compared to CAI (Kd ~ 15 μM). NYAD-1 disrupts the formation of both immature- and mature-like virus particles in in vitro and cell-based assembly assays. In addition, it displays potent anti-HIV-1 activity in cell culture against a range of laboratory-adapted and primary HIV-1 isolates. Results In this report, we expanded the study to i,i + 7 hydrocarbon-stapled peptides to delineate their mechanism of action and antiviral activity. We identified three potent inhibitors, NYAD-36, -66 and -67, which showed strong binding to CA in NMR and isothermal titration calorimetry (ITC) studies and disrupted the formation of mature-like particles. They showed typical α-helical structures and penetrated cells; however, the cell penetration was not as efficient as observed with the i,i + 4 peptides. Unlike NYAD-1, the i,i + 7 peptides did not have any effect on virus release; however, they impaired Gag precursor processing. HIV-1 particles produced in the presence of these peptides displayed impaired infectivity. Consistent with an effect on virus entry, selection for viral resistance led to the emergence of two mutations in the gp120 subunit of the viral envelope (Env) glycoprotein, V120Q and A327P, located in the conserved region 1 (C1) and the base of the V3 loop, respectively. Conclusion The i,i + 7 stapled peptides derived from CAI unexpectedly target both CA and the V3 loop of gp120. This dual-targeted activity is dependent on their ability to penetrate cells as well as their net charge. This mechanistic revelation will be useful in further modifying these peptides as potent anti-HIV-1 agents. PMID:24237936
Hossion, Abugafar M L; Otsuka, Nao; Kandahary, Rafiya K; Tsuchiya, Tomofusa; Ogawa, Wakano; Iwado, Akimasa; Zamami, Yoshito; Sasaki, Kenji
2010-09-01
A series of novel quercetin diacylglucosides were designed and first synthesized by Steglich esterification on the basis of MRSA strains inhibiting natural compound A. The in vitro inhibition of different multi-drug resistant bacterial strains and Escherichia coli DNA gyrase B was investigated. In the series, compound 10h was up to 128-fold more potent against vancomycin-resistant enterococci and more effective than A, which represents a promising new candidate as a potent anti-MRSA and anti-VRE agent. Copyright 2010. Published by Elsevier Ltd.
Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification
Garg, Himanshu; Joshi, Anjali
2016-01-01
Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy. PMID:26800572
Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification.
Garg, Himanshu; Joshi, Anjali
2016-05-01
Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy.
NASA Astrophysics Data System (ADS)
Briz, Verónica; Sepúlveda-Crespo, Daniel; Diniz, Ana Rita; Borrego, Pedro; Rodes, Berta; de La Mata, Francisco Javier; Gómez, Rafael; Taveira, Nuno; Muñoz-Fernández, Mª Ángeles
2015-08-01
The development of topical microbicide formulations for vaginal delivery to prevent HIV-2 sexual transmission is urgently needed. Second- and third-generation polyanionic carbosilane dendrimers with a silicon atom core and 16 sulfonate (G2-S16), napthylsulfonate (G2-NS16) and sulphate (G3-Sh16) end-groups have shown potent and broad-spectrum anti-HIV-1 activity. However, their antiviral activity against HIV-2 and mode of action have not been probed. Cytotoxicity, anti-HIV-2, anti-sperm and antimicrobial activities of dendrimers were determined. Analysis of combined effects of triple combinations with tenofovir and raltegravir was performed by using CalcuSyn software. We also assessed the mode of antiviral action on the inhibition of HIV-2 infection through a panel of different in vitro antiviral assays: attachment, internalization in PBMCs, inactivation and cell-based fusion. Vaginal irritation and histological analysis in female BALB/c mice were evaluated. Our results suggest that G2-S16, G2-NS16 and G3-Sh16 exert anti-HIV-2 activity at an early stage of viral replication inactivating the virus, inhibiting cell-to-cell HIV-2 transmission, and blocking the binding of gp120 to CD4, and the HIV-2 entry. Triple combinations with tenofovir and raltegravir increased the anti-HIV-2 activity, consistent with synergistic interactions (CIwt: 0.33-0.66). No vaginal irritation was detected in BALB/c mice after two consecutive applications for 2 days with 3% G2-S16. Our results have clearly shown that G2-S16, G2-NS16 and G3-Sh16 have high potency against HIV-2 infection. The modes of action confirm their multifactorial and non-specific ability, suggesting that these dendrimers deserve further studies as potential candidate microbicides to prevent vaginal/rectal HIV-1/HIV-2 transmission in humans.
Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents
NASA Astrophysics Data System (ADS)
Wang, Jinfeng; Zhang, Lin; Pan, Xiaoyan; Dai, Bingling; Sun, Ying; Li, Chuansheng; Zhang, Jie
2017-03-01
Recently, we have identified a biphenyl-aryl urea incorporated with salicylaldoxime (BPS-7) as an anti-angiogenesis agent. Herein, we disclosed a series of novel anti-angiogenesis agents with BPS-7 as lead compound through combining diarylureas with N-pyridin-2-ylcyclopropane carboxamide. Several title compounds exhibited simultaneous inhibition effects against three pro-angiogenic RTKs (VEGFR-2, TIE-2 and EphB4). Some of them displayed potent anti-proliferative activity against human vascular endothelial cell (EA.hy926). In particular, two potent compounds (CDAU-1 and CDAU-2) could be considered as promising anti-angiogenesis agents with triplet inhibition profile. The biological evaluation and molecular docking results indicate that N-pyridin-2-ylcyclopropane carboxamide could serve as a hinge-binding group (HBG) for the discovery of multi-target anti-angiogenesis agents. CDAU-2 also exhibited promising anti-angiogenic potency in a tissue model for angiogenesis.
Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents
Wang, Jinfeng; Zhang, Lin; Pan, Xiaoyan; Dai, Bingling; Sun, Ying; Li, Chuansheng; Zhang, Jie
2017-01-01
Recently, we have identified a biphenyl-aryl urea incorporated with salicylaldoxime (BPS-7) as an anti-angiogenesis agent. Herein, we disclosed a series of novel anti-angiogenesis agents with BPS-7 as lead compound through combining diarylureas with N-pyridin-2-ylcyclopropane carboxamide. Several title compounds exhibited simultaneous inhibition effects against three pro-angiogenic RTKs (VEGFR-2, TIE-2 and EphB4). Some of them displayed potent anti-proliferative activity against human vascular endothelial cell (EA.hy926). In particular, two potent compounds (CDAU-1 and CDAU-2) could be considered as promising anti-angiogenesis agents with triplet inhibition profile. The biological evaluation and molecular docking results indicate that N-pyridin-2-ylcyclopropane carboxamide could serve as a hinge-binding group (HBG) for the discovery of multi-target anti-angiogenesis agents. CDAU-2 also exhibited promising anti-angiogenic potency in a tissue model for angiogenesis. PMID:28332573
Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman
2009-03-01
A new class of novel bis-benzimidazole diamidine compounds have been synthesized and evaluated for in vitro antibacterial activities, including drug-resistant bacterial strains. Anti-MRSA and anti-VRE activities of the most potent compound 1 were more active than Vancomycin. The mechanism of action for this class of compounds appears to be different from existing antibiotics. Bis-benzimidazole diamidine compounds have potential for further investigation as a new class of potent anti-MRSA and anti-VRE agents.
Priya, R; Sumitha, Rajendrarao; Doss, C George Priya; Rajasekaran, C; Babu, S; Seenivasan, R; Siva, R
2015-10-01
Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug likeness score of the standard anti HIV drug zidovudine. Results from simulation analysis revealed that toddanol RT complex is more stable than toddanone RT complex inferring toddanol as a potential anti HIV drug molecule. Abbreviations used: HIV: Human immunodeficiency virus, HIV 1 RT: HIV 1 reverse transcriptase, RNase H: Ribonuclease H, MD: Molecular dynamics, PDB: Protein databank, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation.
Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman
2009-08-15
A series of dicationic diaryl ethers have been synthesized and evaluated for in vitro antibacterial activities, including drug resistant bacterial strains. Most of these compounds have shown potent antibacterial activities. Several compounds, such as piperidinyl and thiomorpholinyl compounds 9e and 9l, improved the antimicrobial selectivity and kept potent anti-MRSA and anti-VRE activity. The most potent bis-indole diphenyl ether 19 exhibited anti-MRSA MIC value of 0.06 microg/mL and enhanced antimicrobial selectivity.
Antiviral properties of deazaadenine nucleoside derivatives.
Vittori, S; Dal Ben, D; Lambertucci, C; Marucci, G; Volpini, R; Cristalli, G
2006-01-01
Viral infections have menaced human beings since time immemorial, and even today new viral strains that cause lethal diseases are being discovered with alarming frequency. One major example is HIV, the etiological agent of AIDS, which spread up in the last two decades. Very recently, other virus based diseases such as avian flu have spread fear around the world, and hemorrhagic fevers from central Africa serious threaten human health because of their very deadly effects. New antiviral agents are still greatly needed to counter these menaces. Many scientists are involved in this field of research, and many of the recently discovered effective antiviral compounds are nucleoside analogues. Among those derivatives, deazapurine nucleoside analogues have demonstrated potent inhibitory effect of viral replication. This review reports on recently generated data from preparing and testing deazapurine nucleoside derivatives as inhibitors in virus replication systems. Although most of the reported data have been produced in antiHIV, antiHCMV, and antiHSV biological testing, very recently other new important fields of application have been discovered, all in topical subjects of strong interest. In fact, deazapurine nucleosides have been found to be active as chemotherapeutics for some veterinary systemic viral infections, for which no antiviral drugs are licensed yet. Furthermore, they demonstrated efficacy in the inhibition of Hepatitis C virus replication. Finally, these compounds showed high potency as virucides against Ebola Virus, curing Ebola infected mice with a single dose administration.
Gao, Ping; Sun, Lin; Zhou, Junsu; Li, Xiao; Zhan, Peng; Liu, Xinyong
2016-09-01
In recent years, a variety of new synthetic methodologies and concepts have been proposed in the search for new pharmaceutical lead structures and optimization. Notably, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach has drawn great attention and has become a powerful tool for the generation of privileged medicinal skeletons in the discovery of anti-HIV agents. This is due to the high degree of reliability, complete specificity (chemoselectivity and regioselectivity), mild conditions, and the biocompatibility of the reactants. Herein, the authors describe the progress thus far on the discovery of novel anti-HIV agents via the CuAAC click chemistry-based approach. CuAAC click chemistry is a proven protocol for synthesizing triazole products which could serve as basic pharmacophores, act as replacements of traditional scaffold or substituent modification, be a linker of dual-target or dual-site inhibitors and more for the discovery of novel anti-HIV agents. What's more, it also provides convenience and feasibility for dynamic combinatorial chemistry and in situ screening. It is envisioned that click chemistry will draw more attention and make more contributions in anti-HIV drug discovery in the future.
Anti-HIV Drugs Decrease the Expression of Matrix Metalloproteinases in Astrocytes and Microglia
ERIC Educational Resources Information Center
Liuzzi, G. M.; Mastroianni, C. M.; Latronico, T.; Mengoni, F.; Fasano, A.; Lichtner, M.; Vullo, V.; Riccio, P.
2004-01-01
The introduction of potent antiretroviral drugs for the treatment of patients with human immunodeficiency virus (HIV) infection has dramatically reduced the prevalence of HIV-associated neurological disorders. Such diseases can be mediated by proteolytic enzymes, i.e. matrix metalloproteinases (MMPs) and, in particular gelatinases, released from…
Non-Specific Microbicide Product Development: Then and Now
Romano, Joseph W.; Robbiani, Melissa; Doncel, Gustavo F.; Moench, Thomas
2015-01-01
Despite the identification of HIV-1 as the etiological agent responsible for AIDS nearly 30 years ago, a sterilizing vaccine capable of preventing transmission of the virus remains elusive. In response to struggles on the vaccine development front, significant effort has been devoted to preventing the transmission of HIV with alternative products, technologies, and strategies. One of the early alternative HIV prevention strategies was microbicides, which are topical products that can be used to prevent sexual transmission of HIV either vaginally or rectally. First generation microbicide products were designed to be simple gel formulations comprised of readily available active agents that were inexpensive and broadly active (i.e., non-specific). Unfortunately, despite the clinical investigation of multiple product concepts satisfying these requirements, none were shown to be efficacious in pivotal trials. More recently, microbicide and oral prevention strategies involving highly specific and potent anti-retroviral (ARV) drugs have shown to be efficacious in trials. Although building on these successes continues, these products have a number of issues including potential toxicity with long term use, selection of HIV resistance, and cost. Further, all of the original justifications for non-specific microbicide products remain valid. This review provides a brief history of non-specific microbicide development, outlines the evolution to, and limitations of, ARV based microbicides, and summarizes the current activity on non-specific microbicide product development. PMID:22264041
Imokawa, Genji; Ishida, Koichi
2014-01-01
Few anti-pigmenting agents have been designed and developed according to their known hyperpigmentation mechanisms and corresponding intracellular signaling cascades. Most anti-pigmenting agents developed so far are mechanistically involved in the interruption of constitutional melanogenic mechanisms by which skin color is maintained at a normal and unstimulated level. Thus, owing to the difficulty of confining topical application to a specific hyperpigmented skin area, potent anti-pigmenting agents capable of attenuating the natural unstimulated pigmentation process have the risk of leading to hypopigmentation. Since intracellular signaling pathways within melanocytes do not function substantially in maintaining normal skin color and are activated only by environmental stimuli such as UV radiation, specifically down-regulating the activation of melanogenesis to the constitutive level would be an appropriate strategy to develop new potent anti-pigmenting agents with a low risk of hypopigmentation. In this article, we review the hyperpigmentation mechanisms and intracellular signaling pathways that lead to the stimulation of melanogenesis. We also discuss a screening and evaluation system to select candidates for new anti-melanogenic substances by focusing on inhibitors of endothelin-1 or stem cell factor-triggered intracellular signaling cascades. From this viewpoint, we show that extracts of the herbs Withania somnifera and Melia toosendan and the natural chemicals Withaferin A and Astaxanthin are new candidates for potent anti-pigmenting substances that avoid the risk of hypopigmentation. PMID:24823877
Farrow, Blake; Hsueh, Connie L.; Deyle, Kaycie M.; Kim, Jocelyn T.; Lai, Bert T.; Heath, James R.
2013-01-01
We report on a method to improve in vitro diagnostic assays that detect immune response, with specific application to HIV-1. The inherent polyclonal diversity of the humoral immune response was addressed by using sequential in situ click chemistry to develop a cocktail of peptide-based capture agents, the components of which were raised against different, representative anti-HIV antibodies that bind to a conserved epitope of the HIV-1 envelope protein gp41. The cocktail was used to detect anti-HIV-1 antibodies from a panel of sera collected from HIV-positive patients, with improved signal-to-noise ratio relative to the gold standard commercial recombinant protein antigen. The capture agents were stable when stored as a powder for two months at temperatures close to 60oC. PMID:24116098
NASA Astrophysics Data System (ADS)
Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.
2014-09-01
Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.
D’huys, Thomas; Petrova, Mariya I.; Lebeer, Sarah; Snoeck, Robert; Andrei, Graciela; Schols, Dominique
2015-01-01
Objectives Lignosulfonic acid (LA), a low-cost lignin-derived polyanionic macromolecule, was extensively studied for its anti-HIV and anti-HSV activity in various cellular assays, its mechanism of viral inhibition and safety profile as potential microbicide. Results LA demonstrated potent inhibitory activity of HIV replication against a wide range of R5 and X4 HIV strains and prevented the uptake of HIV by bystander CD4+ T cells from persistently infected T cells in vitro (IC50: 0.07 – 0.34 μM). LA also inhibited HSV-2 replication in vitro in different cell types (IC50: 0.42 – 1.1 μM) and in rodents in vivo. Furthermore, LA neutralized the HIV-1 and HSV-2 DC-SIGN-mediated viral transfer to CD4+ T cells (IC50: ∼1 μM). In addition, dual HIV-1/HSV-2 infection in T cells was potently blocked by LA (IC50: 0.71 μM). No antiviral activity was observed against the non-enveloped viruses Coxsackie type B4 and Reovirus type 1. LA is defined as a HIV entry inhibitor since it interfered with gp120 binding to the cell surface of T cells. Pretreatment of PBMCs with LA neither increased expression levels of cellular activation markers (CD69, CD25 and HLA-DR), nor enhanced HIV-1 replication. Furthermore, we found that LA had non-antagonistic effects with acyclovir, PRO2000 or LabyA1 (combination index (CI): 0.46 – 1.03) in its anti-HSV-2 activity and synergized with tenofovir (CI: 0.59) in its anti-HIV-1 activity. To identify mechanisms of LA resistance, we generated in vitro a mutant HIV-1 NL4.3LAresistant virus, which acquired seven mutations in the HIV-1 envelope glycoproteins: S160N, V170N, Q280H and R389T in gp120 and K77Q, N113D and H132Y in gp41. Additionally, HIV-1 NL4.3LAresistant virus showed cross-resistance with feglymycin, enfuvirtide, PRO2000 and mAb b12, four well-described HIV binding/fusion inhibitors. Importantly, LA did not affect the growth of vaginal Lactobacilli strains. Conclusion Overall, these data highlight LA as a potential and unique low-cost microbicide displaying broad anti-HIV and anti-HSV activity. PMID:26132818
Ashok, Penta; Chander, Subhash; Smith, Terry K; Sankaranarayanan, Murugesan
2018-04-25
Molecular hybridization is a ligand based drug design approach is well known recent medicinal chemistry to design anti-parasitic agents. In the present study, we have designed a series of (1-phenyl-9H-pyrido [3,4-b]indol-3-yl) (4-phenylpiperazin-1-yl)methanone derivatives using molecular hybridization approach. Designed analogues were evaluated for cytotoxicity and inhibition activity against Leishmania infantum and Leishmania donovani. Among these reported analogues 7b, 7d, 7e, 7f and 7m displayed potent inhibition of both L. infantum and L. donovani. Compounds 7i and 7k exhibited selective potent inhibition of L. donovani. Especially, compounds 7e and 7k showed most potent anti-leishmanial activity against L. infantum and L. donovani respectively. Anti-leishmanial activity of these compounds is comparable with standard drugs miltefosine and pentamidine. SAR studies revealed that, electron donating group substitution on phenyl ring recommended for potent anti-leishmanial activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Priya, R.; Sumitha, Rajendrarao; Doss, C. George Priya; Rajasekaran, C.; Babu, S.; Seenivasan, R.; Siva, R.
2015-01-01
Background: Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. Objective: For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. Materials and Methods: In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). Results: The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. Conclusion: The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. SUMMARY In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug likeness score of the standard anti HIV drug zidovudine. Results from simulation analysis revealed that toddanol RT complex is more stable than toddanone RT complex inferring toddanol as a potential anti HIV drug molecule. Abbreviations used: HIV: Human immunodeficiency virus, HIV 1 RT: HIV 1 reverse transcriptase, RNase H: Ribonuclease H, MD: Molecular dynamics, PDB: Protein databank, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation. PMID:26929575
Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency.
Bournazos, Stylianos; Gazumyan, Anna; Seaman, Michael S; Nussenzweig, Michel C; Ravetch, Jeffrey V
2016-06-16
Broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) suppress viremia in animal models of HIV-1 and humans. To achieve potent activity without the emergence of viral escape mutants, co-administration of different bNAbs is necessary to target distinct epitopes essential for viral fitness. Here, we report the development of bispecific anti-Env neutralizing antibodies (biNAbs) with potent activity. Synergistic activity of biNAbs was achieved by combining an engineered hinge domain of IgG3 to increase Fab domain flexibility necessary for hetero-bivalent binding to the Env trimer while retaining the functional properties of the IgG1-Fc. Compared to unmodified biNAbs, hinge domain variants exhibited substantially improved neutralization activity, with particular combinations showing evidence of synergistic neutralization potency in vitro and enhanced in vivo therapeutic activity in HIV-1-infected humanized mice. These findings suggest innovative strategies for generating biNAbs with enhanced neutralization breadth and potency, representing ideal candidate molecules for the control of HIV-1 infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Optimization of the central linker of dicationic bis-benzimidazole anti-MRSA and anti-VRE agents.
Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman
2009-07-01
A series of bis-benzimidazole diamidine compounds containing different central linkers has been synthesized and evaluated for in vitro antibacterial activities, including drug-resistant bacterial strains. Seven compounds have shown potent antibacterial activities. The anti-MRSA and anti-VRE activities of compound 1h were more potent than that of the lead compound 1a and vancomycin.
Mesquita, Pedro M M; Rastogi, Rachna; Segarra, Theodore J; Teller, Ryan S; Torres, N Merna; Huber, Ashley M; Kiser, Patrick F; Herold, Betsy C
2012-07-01
A safe and effective topical prevention strategy will likely require sustained delivery of potent antiviral drugs and a delivery system that simultaneously maximizes drug distribution and overcomes the behavioural challenges related to adherence. Activity against HIV and herpes simplex virus (HSV) would be advantageous, given the epidemiological link between the two pathogens. We hypothesize that tenofovir disoproxil fumarate (tenofovir DF), a prodrug of tenofovir, may be more potent than tenofovir and ideal for sustained intravaginal ring (IVR) delivery. The anti-HIV and anti-HSV activity of tenofovir and tenofovir DF were assessed in cell and explant models. Cumulative tenofovir DF release and stability from polyether urethane (PEU), ethylene-co-vinyl acetate (EVA) and silicone IVRs were compared, and the activity and safety of drug released were evaluated in cervical explants and in a polarized dual-chamber model. Tenofovir DF inhibited HIV and HSV at ≈ 100-fold lower concentrations than tenofovir and retained activity in the presence of semen. PEU rings delivered >1 mg/day of tenofovir DF for 30 days. Pre-treatment of cervical explants with 10 μg/mL tenofovir DF or eluants from PEU minirings resulted in >90% inhibition of HIV and reduced HSV-2 yields by 2.5 log. Tenofovir DF and eluants did not prevent cell growth or polarization, or have any deleterious effects on an epithelial barrier. The findings support the development of a PEU tenofovir DF ring, which may provide potent and sustained protection against HIV and HSV.
Wang, Lai-Xi; Heredia, Alonso; Song, Haijing; Zhang, Zhaojun; Yu, Biao; Davis, Charles; Redfield, Robert
2004-10-01
Resveratrol is a natural product with diverse biological activities. We have previously reported that resveratrol possesses potent synergistic inhibitory activity against human immunodeficiency virus (HIV)-1 infection in combination with nucleoside analogs (Heredia et al. 2000. J Acquir Immune Defic Syndr 25:246-255). As a part of our program in developing resveratrol as a component for anti-HIV chemotherapy, we describe in this article the characterization, chemical synthesis, and biological effects of the human metabolites of resveratrol. We found that resveratrol was metabolized in humans into two metabolites, which were characterized as resveratrol-3-O- and 4'-O-glucuronides. For further biological studies, we reported two simple, alternative methods for the synthesis of the metabolites. The cytotoxic and antiviral activities of resveratrol and its metabolites were compared in cell culture experiments using human peripheral blood mononuclear cells. Whereas resveratrol was cytotoxic at > or =30 microM, no cytotoxicity was observed for the metabolites at concentrations as high as 300 microM. However, resveratrol showed strong synergistic anti-HIV activity with didanosine at 10 microM, but no synergistic effects were observed for either of the metabolites at up to 300 microM. Nevertheless, the in vitro activity of the metabolites (resveratrol glucuronides) may not necessarily reflect their in vivo function, given the fact that the ubiquitously existing human beta-glucuronidase could convert the metabolites back to resveratrol locally or systematically in vivo. The present studies have implications for future development of resveratrol and/or its derivatives as a chemotherapeutic agent. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association
Yin, Jun; Heo, Jun Hyeok; Hwang, Yoon Jeong; Le, Thi Tam; Lee, Min Won
2016-07-07
Adina rubella Hance (AR), a plant native to Korea, has been used as traditional medicine for dysentery, eczema, intoxication, and external hemorrhages. Previous phytochemical studies of AR have reported several components, including terpenoids, phenolics, and alkaloids. The current study evaluated the anti-oxidative and anti-inflammatory activities and 5α-reductase inhibition of isolated compounds of AR leaves to find a potential therapeutic agent for benign prostatic hypertrophy (BPH). Repeated chromatographic isolation of an 80% acetone extract of AR leaves yielded seven phenolic compounds: caffeic acid (1), chlorogenic acid (2), methyl chlorogenate (3), quercetin-3-rutinoside (4), kaempferol-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (5), hyperoside (6), and grandifloroside (7). Compound 7 is a novel compound in AR. Caffeoyl derivatives 1-3 and 7 showed good anti-oxidative activities. In particular, caffeic acid (1) and grandifloroside (7) showed potent anti-inflammatory activities, and 7 also exhibited potent inhibitory activity against TNF-α and 5α-reductase. Our results show that the extract and grandifloroside (7) from leaves of AR might be developed as a source of potent anti-oxidative and anti-inflammatory agents and therapeutic agent for BPH.
Costi, Roberta; Métifiot, Mathieu; Esposito, Francesca; Cuzzucoli Crucitti, Giuliana; Pescatori, Luca; Messore, Antonella; Scipione, Luigi; Tortorella, Silvano; Zinzula, Luca; Novellino, Ettore; Pommier, Yves; Tramontano, Enzo; Marchand, Christophe; Di Santo, Roberto
2013-11-14
The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.
Hartman, Tracy L; Yang, Lu; Buckheit, Robert W
2011-12-01
Structure-activity relationship evaluation of seventy-four 2,4(1H,3H)-pyrimidinedione derivatives identified seven lead compounds based on anti-HIV-1 potency, extended range of action to include HIV-2, virus entry inhibition, reverse transcriptase inhibition, and lack of cytotoxicity to human cells. The selected pyrimidinedione congeners are highly active inhibitors of HIV-1 with EC(50) values ranging from 0.6 to 2 nM in CEM-SS cells infected with laboratory derived viruses, 11-20 nM in fresh human PBMCs infected with subtype B (HT/92/599) virus, and 2-7 nM in PBMCs infected with the clinical subtype C (ZA/97/003) virus. Combination antiviral assays were performed using the laboratory adapted RF strain of HIV-1 in CEM-SS cells and with a clade B and C low passage clinical isolate in fresh human peripheral mononuclear cells and the compound interactions were analyzed using MacSynergy II. The seven pyrimidinedione compounds resulted in additive to synergistic interactions in combination with entry and fusion inhibitors, nonnucleoside and nucleoside reverse transcriptase inhibitors, and the protease inhibitors. No evidence of antagonistic antiviral activity or synergistic cytotoxicity was detected with the combinations of compounds tested. The dual mechanism of action of the pyrimidinediones resulting in inhibition of both virus entry and reverse transcription suggests excellent potential of these lead pyrimidinediones as candidates for combination therapy with other approved HIV inhibitors of varying mechanism of action. Copyright © 2011. Published by Elsevier B.V.
Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents.
Won, Shen-Jeu; Liu, Cheng-Tsung; Tsao, Lo-Ti; Weng, Jing-Ru; Ko, Horng-Huey; Wang, Jih-Pyang; Lin, Chun-Nan
2005-01-01
In an effort to develop potent anti-inflammatory and cancer chemopreventive agents, a series of chalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with suitable aromatic aldehyde or prepared with appropriate dihydrochalcone reacted with appropriate alkyl bromide or prepared in one-pot procedure involving acetophenone and convenient aromatic aldehyde using ultrasonic agitation on basic alumina. The synthesized products were tested for their inhibitory effects on the activation of mast cells, neutrophils, macrophages, and microglial cells. The potent inhibitors of NO production in macrophages and microglial cells were further evaluated for their in vitro cytotoxic effects against several human cancer cell lines. 2'-Hydroxychalcones 1-3, and 2',5'-dihydroxychalcone 7 exhibited potent inhibitory effects on the release of beta-glucuronidase or lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB). Two 2'-hydroxychalcones (1 and 3) showed potent inhibitory effects on superoxide anion generation in rat neutrophils in response to fMLP/CB. The previously reported chalcone, 5, 6, and 12, exhibited potent inhibitory effect on NO production in lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-activated N9 microglial cells or in LPS-activated RAW 264.7 macrophage-like cells. The potent inhibitors 5, 6, and 12 of NO production in macrophages or microglial cells revealed significant or marginal cytotoxic effects against several human cancer lines. Compound 12 manifested potent selective cytotoxicity against human MCF-7 cells and caused cell death by apoptosis. The present results demonstrated that 1-3, and 7 have anti-inflammatory effects and 5, 6, and 12 are potential anti-inflammatory and cancer chemopreventive agents.
Inhibition of HIV-1 by curcumin A, a novel curcumin analog
Kumari, Namita; Kulkarni, Amol A; Lin, Xionghao; McLean, Charlee; Ammosova, Tatiana; Ivanov, Andrey; Hipolito, Maria; Nekhai, Sergei; Nwulia, Evaristus
2015-01-01
Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities. PMID:26366056
Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives.
Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek
2015-08-28
In recent years, widespread outbreak of numerous infectious diseases across the globe has created havoc among the population. Particularly, the inhabitants of tropical and sub-tropical regions are mainly affected by these pathogens. Several natural and (semi) synthetic chalcones deserve the credit of being potential anti-infective candidates that inhibit various parasitic, malarial, bacterial, viral, and fungal targets like cruzain-1/2, trypanopain-Tb, trans-sialidase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, falcipain-1/2, β-hematin, topoisomerase-II, plasmepsin-II, lactate dehydrogenase, protein kinases (Pfmrk and PfPK5), and sorbitol-induced hemolysis, DEN-1 NS3, H1N1, HIV (Integrase/Protease), protein tyrosine phosphatase A/B (Ptp-A/B), FtsZ, FAS-II, lactate/isocitrate dehydrogenase, NorA efflux pump, DNA gyrase, fatty acid synthase, chitin synthase, and β-(1,3)-glucan synthase. In this review, a comprehensive study (from Jan. 1982 to May 2015) of the structural features of anti-infective chalcones, their mechanism of actions (MOAs) and structure activity relationships (SARs) have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-infective agents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
The synergistic effect of maltose enhances the anti-melanogenic activity of acarbose.
Bin, Bum-Ho; Kim, Sung Tae; Bhin, Jinhyuk; Byoun, Kyounghee; Lee, Tae Ryong; Cho, Eun-Gyung
2017-04-01
Melanocytes play an important role in maintaining epidermal homeostasis by producing melanin and protecting the skin from harmful environmental factors. However, excessive up- or down-regulation of melanin production often causes hyper- or hypo-pigmented disorders, respectively, which affect the patient's quality of life. Therefore, various strategies for modulating melanin levels have been developed by the pharmaceutical and cosmetic industries. We reported previously that voglibose, which is a well-known anti-hyperglycemic agent, could be used as an anti-melanogenic agent by inhibiting α-glucosidase activity and reducing tyrosinase protein levels. Of the other representative anti-hyperglycemic agents, acarbose showed less anti-melanogenic activity despite its potent anti-hyperglycemic efficacy. In this study, we report that acarbose exhibited considerable anti-melanogenic activity when melanocytes were co-treated with acarbose and a digestible sugar, such as maltose. Simultaneous treatment with maltose augmented the inhibitory effect of acarbose on α-glucosidase activity by enhancing its stability under physiological conditions, leading to the down-regulation of tyrosinase. These results suggest that the co-treatment of anti-hyperglycemic agents with hydrolysable sugars may be a useful tool for reducing glucosidase-associated melanogenesis as a potent sugar-based anti-melanogenic regimen.
Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash
2010-06-01
In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies.
Sarkar, Fazlul H.; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash
2011-01-01
In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies. PMID:20345353
Use of 2'-spirocyclic ethers in HCV nucleoside design.
Du, Jinfa; Chun, Byoung-Kwon; Mosley, Ralph T; Bansal, Shalini; Bao, Haiying; Espiritu, Christine; Lam, Angela M; Murakami, Eisuke; Niu, Congrong; Micolochick Steuer, Holly M; Furman, Phillip A; Sofia, Michael J
2014-03-13
Conformationally restricted 2'-spironucleosides and their prodrugs were synthesized as potential anti-HCV agents. Although the replicon activity of the new agents containing pyrimidine bases was modest, the triphosphate of a 2'-oxetane cytidine analogue demonstrated potent intrinsic biochemical activity against the NS5B polymerase, with IC50 = 8.48 μM. Activity against NS5B bearing the S282T mutation was reduced. Phosphoramidate prodrugs of a 2'-oxetane 2-amino-6-O-methyl-purine nucleoside demonstrated potent anti-HCV activity in vitro, and the corresponding triphosphate retained similar potent activity against both wild-type and S282T HCV NS5B polymerase.
Liu, Jinbing; Wu, Fengyan; Chen, Changhong
2015-11-15
Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Shijing; Zhou, Rihong; Sun, Fumou; Li, Renjie; Wang, Min; Wu, Min
2017-11-28
The anti-human Delta-like 4 (DLL4) monoclonal antibody MMGZ01 has a high affinity to hrDLL4 and arrests the DLL4-mediated human umbilical vein endothelial cell (HUVEC) phenotype, promotes immature vessels, and effectively reduces breast cancer cell growth in vivo. To develop a much more effective therapy, we conjugated MMGZ01 with two small-molecule cytotoxic agents, i.e., monomethyl auristatin E (MMAE) and doxorubicin (DOX), with different linkers to generate antibody-drug conjugates (ADCs), i.e., MMGZ01-vc-MMAE (named MvM03) and MMGZ01-GMBS-DOX (named MGD03), that are more potent therapeutic agents than naked antibody therapeutic agents. The produced anti-DLL4 ADCs can be effectively directed against DLL4 and internalized. Then, the release of MMAE or DOX into the cytosol can induce G2/M or G0/G1 phase growth arrest and cell death through the induction of apoptosis. In vitro, MvM03 was highly potent and selective against DLL4 cell lines. The anti-DLL4 ADCs, particularly MvM03, showed more potent anti-tumour activity than Docetaxel, which is an inhibitor of the depolymerisation of microtubules, in two xenograft breast cancer tumour models. Our findings indicate that anti-DLL4 ADCs have promising potential as an effective therapy for breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Bogers, Willy M.; Oostermeijer, Herman; Mooij, Petra; Koopman, Gerrit; Verschoor, Ernst J.; Davis, David; Ulmer, Jeffrey B.; Brito, Luis A.; Cu, Yen; Banerjee, Kaustuv; Otten, Gillis R.; Burke, Brian; Dey, Antu; Heeney, Jonathan L.; Shen, Xiaoying; Tomaras, Georgia D.; Labranche, Celia; Montefiori, David C.; Liao, Hua-Xin; Haynes, Barton; Geall, Andrew J.; Barnett, Susan W.
2015-01-01
Self-amplifying messenger RNA (mRNA) of positive-strand RNA viruses are effective vectors for in situ expression of vaccine antigens and have potential as a new vaccine technology platform well suited for global health applications. The SAM vaccine platform is based on a synthetic, self-amplifying mRNA delivered by a nonviral delivery system. The safety and immunogenicity of an HIV SAM vaccine encoding a clade C envelope glycoprotein formulated with a cationic nanoemulsion (CNE) delivery system was evaluated in rhesus macaques. The HIV SAM vaccine induced potent cellular immune responses that were greater in magnitude than those induced by self-amplifying mRNA packaged in a viral replicon particle (VRP) or by a recombinant HIV envelope protein formulated with MF59 adjuvant, anti-envelope binding (including anti-V1V2), and neutralizing antibody responses that exceeded those induced by the VRP vaccine. These studies provide the first evidence in nonhuman primates that HIV vaccination with a relatively low dose (50 µg) of formulated self-amplifying mRNA is safe and immunogenic. PMID:25234719
Dong, Yizhou; Shi, Qian; Pai, Huei-Chen; Peng, Chieh-Yu; Pan, Shiow-Lin; Teng, Che-Ming; Nakagawa-Goto, Kyoko; Yu, Donglei; Liu, Yi-Nan; Wu, Pei-Chi; Bastow, Kenneth F.; Morris-Natschke, Susan L.; Brossi, Arnold; Lang, Jing-Yu; Hsu, Jennifer L.; Hung, Mien-Chie; Lee, Eva Y.-H. P.; Lee, Kuo-Hsiung
2010-01-01
Neo-tanshinlactone (1) and its previously reported analogs, such as 2, are potent and selective in vitro anti-breast cancer agents. The synthetic pathway to 2 was optimized from seven to five steps, with a better overall yield. Structure–activity relationships studies on these compounds revealed some key molecular determinants for this family of anti-breast agents. Several derivatives (19-21 and 24) exerted potent and selective anti-breast cancer activity with IC50 values of 0.3, 0.2, 0.1 and 0.1 μg/mL, respectively, against the ZR-75-1 cell lines. Compound 24 was two- to three-fold more potent than 1 against SK-BR-3 and ZR-75-1. Importantly, 21 exhibited high selectivity; it was 23 times more active against ZR-75-1 than MCF-7. Compound 20 had an approximately 12-fold ratio of SK-BR-3/MCF-7 selectivity. In addition, analog 2 showed potent activity against a ZR-75-1 xenograft model, but not PC-3 and MDA-MB-231 xenografts, as well as high selectivity against breast cancer cell line compared with normal breast tissue-derived cell lines. Further development of lead compounds 19-21 and 24 as clinical trial candidates is warranted. PMID:20148565
HIV therapy by a combination of broadly neutralizing antibodies in humanized mice.
Klein, Florian; Halper-Stromberg, Ariel; Horwitz, Joshua A; Gruell, Henning; Scheid, Johannes F; Bournazos, Stylianos; Mouquet, Hugo; Spatz, Linda A; Diskin, Ron; Abadir, Alexander; Zang, Trinity; Dorner, Marcus; Billerbeck, Eva; Labitt, Rachael N; Gaebler, Christian; Marcovecchio, Paola; Incesu, Reha-Baris; Eisenreich, Thomas R; Bieniasz, Paul D; Seaman, Michael S; Bjorkman, Pamela J; Ravetch, Jeffrey V; Ploss, Alexander; Nussenzweig, Michel C
2012-12-06
Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy, the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals.
Bardhi, Ariola; Wu, Yanling; Chen, Weizao; Li, Wei; Zhu, Zhongyu; Zheng, Jian Hua; Wong, Hing; Jeng, Emily; Jones, Jennifer; Ochsenbauer, Christina; Kappes, John C.; Dimitrov, Dimiter S.; Ying, Tianlei
2017-01-01
ABSTRACT Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. PMID:28794022
Bardhi, Ariola; Wu, Yanling; Chen, Weizao; Li, Wei; Zhu, Zhongyu; Zheng, Jian Hua; Wong, Hing; Jeng, Emily; Jones, Jennifer; Ochsenbauer, Christina; Kappes, John C; Dimitrov, Dimiter S; Ying, Tianlei; Goldstein, Harris
2017-10-15
Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. Copyright © 2017 American Society for Microbiology.
Fuchs, Sebastian P; Desrosiers, Ronald C
2016-01-01
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized. PMID:28197421
Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).
Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B
Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.
Sepúlveda-Crespo, Daniel; Lorente, Raquel; Leal, Manuel; Gómez, Rafael; De la Mata, Francisco J; Jiménez, José Luis; Muñoz-Fernández, M Ángeles
2014-04-01
Polyanionic carbosilane dendrimers represent opportunities to develop new anti-HIV microbicides. Dendrimers and antiretrovirals (ARVs) acting at different stages of HIV replication have been proposed as compounds to decrease new HIV infections. Thus, we determined the potential use of our G2-STE16 carbosilane dendrimer in combination with other carbosilane dendrimers and ARVs for the use as topical microbicide against HIV-1. We showed that these combinations obtained 100% inhibition and displayed a synergistic profile against different HIV-1 isolates in our model of TZM.bl cells. Our results also showed their potent activity in the presence of an acidic vaginal or seminal fluid environment and did not activate an inflammatory response. This study is the first step toward exploring the use of different anionic carbosilane dendrimers in combination and toward making a safe microbicide. Therefore, our results support further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicide. This paper describes the first steps toward the use of anionic carbosilane dendrimers in combination with antivirals to address HIV-1, paving the way to further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicides. © 2014.
Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities
NASA Astrophysics Data System (ADS)
Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi
2016-01-01
APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.
Smith, Anton A. A.; Zuwala, Kaja; Kryger, Mille B. L.; Wohl, Benjamin M.; Guerrero-Sanchez, Carlos; Tolstrup, Martin; Postma, Almar
2015-01-01
Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) represent tremendous healthcare burdens with a large proportion of patients hosting the two viruses at the same time. An altered hepatic function and immunity as well as cross-interference of drugs make treatment of co-infection increasingly challenging. Herein we report the first design of macromolecular prodrugs (MP) with concurrent success in fighting HIV and alleviating hepatitis (liver inflammation). To achieve this, polymer compositions were systematically screened in a broad range of molar mass and content of ribavirin – a broad spectrum antiviral agent. For the first time, we report that ribavirin is efficacious in fighting HIV and in the form of MP, the treatment is safe, both in terms of lack of association of ribavirin with red blood cells and lack of toxicity upon cellular internalization. The lead polymer compositions were also potent in anti-inflammatory assays with relevance to viral hepatitis – thus making up formulations with potential for treatment of co-infection with HIV and HCV. PMID:28580095
Vaginal concentrations of lactic acid potently inactivate HIV
Aldunate, Muriel; Tyssen, David; Johnson, Adam; Zakir, Tasnim; Sonza, Secondo; Moench, Thomas; Cone, Richard; Tachedjian, Gilda
2013-01-01
Objectives When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). Methods HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. Results l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. Conclusions l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV. PMID:23657804
Yu, Donglei; Wild, Carl T; Martin, David E; Morris-Natschke, Susan L; Chen, Chin-Ho; Allaway, Graham P; Lee, Kuo-Hsiung
2005-06-01
Although HIV infection is now primarily treated with reverse transcriptase and protease inhibitors, HIV therapy must look toward new drugs with novel mechanism(s) of action to both improve efficacy and address the growing problem of drug resistance. Using natural products as a source of biologically active compounds, our drug discovery program has successfully optimised the natural product betulinic acid to the first-in-class maturation inhibitor 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (DSB). DSB's unique viral target has been identified as a late step in Gag processing. Specifically, it inhibits the cleavage of the capsid precursor, CA-SP1, resulting in a block to the processing of mature capsid protein leading to a defect in viral core condensation. DSB represents a unique class of anti-HIV compounds that inhibit virus maturation and provide additional opportunities for anti-HIV therapy. In this review, the discovery of DSB and its mode of action are summarised. Anti-AIDS Agents part 64. For part 63 in the series, see YU D, LEE KH: Recent progress and prospects on plant-derived anti-HIV agents and analogs. In: Medicinal Chemistry of Bioactive Natural Products. XT Liang, WS Fang (Eds), Wiley, New York, USA (2005) (In Press).
Callies, Oliver; Bedoya, Luis M; Beltrán, Manuela; Muñoz, Alejandro; Calderón, Patricia Obregón; Osorio, Alex A; Jiménez, Ignacio A; Alcamí, José; Bazzocchi, Isabel L
2015-05-22
As a part of our investigation into new anti-HIV agents, we report herein the isolation, structure elucidation, and biological activity of six new (1-6) and 20 known (7-26) pentacyclic lupane-type triterpenoids from the stem of Cassine xylocarpa and root bark of Maytenus cuzcoina. Their stereostructures were elucidated on the basis of spectroscopic and spectrometric methods, including 1D and 2D NMR techniques. To gain a more complete understanding of the structural requirements for anti-HIV activity, derivatives 27-48 were prepared by chemical modification of the main secondary metabolites. Sixteen compounds from this series displayed inhibitory effects of human immunodeficiency virus type 1 replication with IC50 values in the micromolar range, highlighting compounds 12, 38, and 42 (IC50 4.08, 4.18, and 1.70 μM, respectively) as the most promising anti-HIV agents.
Khalifa, Nagy M; Al-Omar, Mohamed A
2014-11-12
A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity.
Khalifa, Nagy M.; Al-Omar, Mohamed A.
2014-01-01
A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity. PMID:25397597
Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin
2017-01-01
Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities.
Huang, Boshi; Kang, Dongwei; Zhan, Peng; Liu, Xinyong
2015-12-01
The search for additional drugs to treat HIV infection is a continuing effort due to the emergence and spread of HIV strains resistant to nearly all current drugs. The recent literature reveals that fragment-based drug design/discovery (FBDD) has become an effective alternative to conventional high-throughput screening strategies for drug discovery. In this critical review, the authors describe the state of the art in FBDD strategies for the discovery of anti-HIV drug-like compounds. The article focuses on fragment screening techniques, direct fragment-based design and early hit-to-lead progress. Rapid progress in biophysical detection and in silico techniques has greatly aided the application of FBDD to discover candidate agents directed at a variety of anti-HIV targets. Growing evidence suggests that structural insights on key proteins in the HIV life cycle can be applied in the early phase of drug discovery campaigns, providing valuable information on the binding modes and efficiently prompting fragment hit-to-lead progression. The combination of structural insights with improved methodologies for FBDD, including the privileged fragment-based reconstruction approach, fragment hybridization based on crystallographic overlays, fragment growth exploiting dynamic combinatorial chemistry, and high-speed fragment assembly via diversity-oriented synthesis followed by in situ screening, offers the possibility of more efficient and rapid discovery of novel drugs for HIV-1 prevention or treatment. Though the use of FBDD in anti-HIV drug discovery is still in its infancy, it is anticipated that anti-HIV agents developed via fragment-based strategies will be introduced into the clinic in the future.
Yoo, Su Jeong; Kim, Hea Ok; Lim, Yoongho; Kim, Jeongmin; Jeong, Lak Shin
2002-01-01
Novel (2R,4R)- and (2S,4S)-iso dideoxynucleosides with exocyclic methylene have been designed and synthesized, based on the lead BMS-200475 (3) which exhibited potent anti-HBV activity. For the synthesis of D types of (2R,4R)-nucleosides, L-xylose was converted to the key intermediate 14. The intermediate 14 was converted to the uracil derivative 4a and the cytosine derivative 4b. Compound 14 was also converted to the purine derivatives such as adenine derivative 4c, hypoxanthine derivative 4d, and guanine derivative 4e. The corresponding L types of (2S,4S)-enantiomers were more efficiently synthesized from the commercially available 1,2-isopropylidene-D-xylose (20) than the synthetic method used in the synthesis of (2R,4R)-nucleosides. The key intermediate 25 was converted to the pyrimidine analogues 5a and 5b and the purine derivatives 5c, 5d, and 5e using the similar method used in the preparation of 4c, 4d, and 4e. The synthesized final (2R,4R)- and (2S,4S)-nucleosides were tested against several viruses such as HIV-1, HSV-1, HSV-2, HCMV and HBV. (2R,4R)-Adenine analogue 4c exhibited potent anti-HBV activity (EC(50)=1.5 microM in 2.2.15 cells) among compounds tested, while (2R,4R)-uracil derivative 4a was the most active against HCMV among compounds tested and (2R,4R)-adenine derivative 4c was found to be moderately active against the same virus. However, the corresponding (2S,4S)-isomers were found to be totally inactive against all tested viruses. Both (2R,4R)-adenine derivative 4c and (2S,4S)-adenine analogue 5c were totally resistant to the adenosine deaminase like iso-ddA (1). From the molecular modeling study the hydroxymethyl side chains of BMS-200475 (3) and 4c were almost overlapped, indicating that 4c may be suitable for phosphorylation by cellular kinases like the lead 3, but some discrepancy between two bases was observed, indicating why 4c is less potent against HBV than 3. It is concluded that discovery of (2R,4R)-adenine analogue 4c as potent anti-HBV agent suggested that the sugar moiety of this series can be regarded as a novel template for the development of new anti-HBV agent and oxygen atom can be acted as a bioisostere of C-OH.
Synthesis of 5-thiodidehydropyranylcytosine derivatives as potential anti-HIV agents.
Yoshimura, Yuichi; Yamazaki, Yoshiko; Saito, Yukako; Natori, Yoshihiro; Imamichi, Tomozumi; Takahata, Hiroki
2011-06-01
As a part of our ongoing efforts to identify new anti-HIV agents, a 5'-thiopyrano-nucleoside derivative 4, designed based on 4'-thioD4C 1 and cyclohexenylnucleoside 3, was synthesized. The dihydrothiopyran skeleton of 4 was constructed by the ring closing metathesis of 21 which was synthesized from but-2-yne-1,4-diol. After converting the protecting group from MOM to TBS followed by oxidation, a Pummerer-type thioglycosylation reaction of 24 with persilylated uracil gave the desired 5-thiodihydrothiopyranyluracils 25 and 26 as a mixture of anomers. The conversion of 25 to a cytosine derivative and subsequent deprotection gave a 5-thiodidehydropyranosylcytosine derivative 4 in good yield. The anti-HIV activity of 4 was also evaluated. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ssemwanga, Deogratius; Doria-Rose, Nicole A; Redd, Andrew D; Shiakolas, Andrea R; Longosz, Andrew F; Nsubuga, Rebecca N; Mayanja, Billy N; Asiki, Gershim; Seeley, Janet; Kamali, Anatoli; Ransier, Amy; Darko, Samuel; Walker, Michael P; Bruno, Daniel; Martens, Craig; Douek, Daniel; Porcella, Stephen F; Quinn, Thomas C; Mascola, John R; Kaleebu, Pontiano
2018-04-23
This report describes the identification of a genetically confirmed linked heterosexual human immunodeficiency virus (HIV) superinfection (HIV-SI) in a woman with chronic HIV infection who acquired a second strain of the virus from her husband. Serum neutralizing antibody (NAb) responses against their homologous and heterologous viruses, including the superinfecting strain, in the woman and her husband were examined before and after onset of HIV-SI. The woman displayed a moderately potent and broad anti-HIV NAb response prior to superinfection but did not possess NAb activity against the superinfecting strain. This case highlights the unique potential of linked HIV-SI studies to examine natural protection from HIV infection.
Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw
2014-01-01
Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.
Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe
2008-01-01
The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381
Wei, Zhi-Yu; Chi, Ke-Qiang; Wang, Ke-Si; Wu, Jie; Liu, Li-Ping; Piao, Hu-Ri
2018-06-01
Ursolic acid derivatives containing oxadiazole, triazolone, and piperazine moieties were synthesized in an attempt to develop potent anti-inflammatory agents. Structures of the synthesized compounds were elucidated by 1 H NMR, 13 C NMR, and HRMS. Most of the synthesized compounds showed pronounced anti-inflammatory effects at 100 mg/kg. In particular, compound 11b, which displayed the most potent anti-inflammatory activity of all of the compounds prepared, with 69.76% inhibition after intraperitoneal administration, was more potent than the reference drugs indomethacin and ibuprofen. The cytotoxicity of the compounds was also assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and no compounds showed any appreciable cytotoxic activity (IC 50 >100 μmol/L). Furthermore, molecular docking studies of the synthesized compounds were performed to rationalize the obtained biological results. Overall, the results indicate that compound 11b could be a therapeutic candidate for the treatment of inflammation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rosenwirth, B; Billich, A; Datema, R; Donatsch, P; Hammerschmid, F; Harrison, R; Hiestand, P; Jaksche, H; Mayer, P; Peichl, P
1994-01-01
(Me-Ile-4)cyclosporin (SDZ NIM 811) is a 4-substituted cyclosporin which is devoid of immunosuppressive activity but retains full capacity for binding to cyclophilin and exhibits potent anti-human immunodeficiency virus type 1 (HIV-1) activity. SDZ NIM 811 selectively inhibits HIV-1 replication in T4 lymphocyte cell lines, in a monocytic cell line, and in HeLa T4 cells. Furthermore, its antiviral activity against laboratory strains and against clinical isolates from geographically distinct regions in primary T4 lymphocytes and in primary monocytes (50% inhibitory concentration = 0.011 to 0.057 micrograms/ml) was demonstrated. SDZ NIM 811 does not inhibit proviral gene expression or virus-specific enzyme functions, either free or bound to cyclophilin. The compound does not influence CD4 expression or inhibit fusion between virus-infected and uninfected cells. SDZ NIM 811 was, however, found to block formation of infectious particles from chronically infected cells. Oral administration to mice, rats, dogs, and monkeys resulted in levels in blood considerably exceeding the drug concentration, which completely blocked virus replication in primary cells. SDZ NIM 811 caused changes of toxicity parameters in rats to a smaller degree than cyclosporine (formerly cyclosporin A). Thus, the potent and selective anti-HIV-1 activity of SDZ NIM 811 and its favorable pharmacokinetic behavior together with its lower nephrotoxicity than that of cyclosporine make this compound a promising candidate for development as an anti-HIV drug. PMID:7527198
Rosenwirth, B; Billich, A; Datema, R; Donatsch, P; Hammerschmid, F; Harrison, R; Hiestand, P; Jaksche, H; Mayer, P; Peichl, P
1994-08-01
(Me-Ile-4)cyclosporin (SDZ NIM 811) is a 4-substituted cyclosporin which is devoid of immunosuppressive activity but retains full capacity for binding to cyclophilin and exhibits potent anti-human immunodeficiency virus type 1 (HIV-1) activity. SDZ NIM 811 selectively inhibits HIV-1 replication in T4 lymphocyte cell lines, in a monocytic cell line, and in HeLa T4 cells. Furthermore, its antiviral activity against laboratory strains and against clinical isolates from geographically distinct regions in primary T4 lymphocytes and in primary monocytes (50% inhibitory concentration = 0.011 to 0.057 micrograms/ml) was demonstrated. SDZ NIM 811 does not inhibit proviral gene expression or virus-specific enzyme functions, either free or bound to cyclophilin. The compound does not influence CD4 expression or inhibit fusion between virus-infected and uninfected cells. SDZ NIM 811 was, however, found to block formation of infectious particles from chronically infected cells. Oral administration to mice, rats, dogs, and monkeys resulted in levels in blood considerably exceeding the drug concentration, which completely blocked virus replication in primary cells. SDZ NIM 811 caused changes of toxicity parameters in rats to a smaller degree than cyclosporine (formerly cyclosporin A). Thus, the potent and selective anti-HIV-1 activity of SDZ NIM 811 and its favorable pharmacokinetic behavior together with its lower nephrotoxicity than that of cyclosporine make this compound a promising candidate for development as an anti-HIV drug.
Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands.
Sancineto, Luca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Manfroni, Giuseppe; Corazza, Gianmarco; Cecchetti, Violetta; Marcello, Alessandro; Daelemans, Dirk; Pannecouque, Christophe; Tabarrini, Oriana
2014-09-01
It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives. Copyright © 2014 Elsevier Ltd. All rights reserved.
Buitendijk, Maarten; Eszterhas, Susan K; Howell, Alexandra L
2014-05-01
Innate immune responses to microbial pathogens are initiated following the binding of ligand to specific pattern recognition receptors. Each pattern recognition receptor, which includes members of the Toll-like receptor (TLR) family, is specific for a particular type of pathogen associated molecular pattern ensuring that the organism can respond rapidly to a wide range of pathogens including bacteria, viruses, and fungi. We studied the extent to which agonists to endosomal TLR could induce anti-HIV-1 activity in peripheral blood mononuclear cells (PBMCs). When agonists to TLR3, TLR7, TLR8 and TLR9 were added prior to infection with HIV-1, they significantly reduced infection of peripheral blood mononuclear cells. Interestingly, agonists to TLR8 and TLR9 were highly effective at blocking HIV replication even when added as late as 48 h or 72 h, respectively, after HIV-1 infection, indicating that the anti-viral effect was durable and long lasting. Analysis of the induction of anti-viral genes after agonist activation of TLR indicated that all of the agonists induced expression of the type I interferons and interferon stimulated genes, although to variable levels that depended on the agonist used. Interestingly, only the agonist to TLR9, ODN2395 DNA, induced expression of type II interferon and the anti-HIV proteins Apobec3G and SAMHD1. By blocking TLR activity using an inhibitor to the MyD88 adaptor protein, we demonstrated that, at least for TLR8 and TLR9, the anti-HIV activity was not entirely mediated by TLR activation, but likely by the activation of additional anti-viral sensors in HIV target cells. These findings suggest that agonists to the endosomal TLR function to induce expression of anti-HIV molecules by both TLR-mediated and non-TLR-mediated mechanisms. Moreover, the non-TLR-mediated mechanisms induced by these agonists could potentially be exploited to block HIV-1 replication in recently HIV-exposed individuals.
Thiazoline peptides and a tris-phenethyl urea from Didemnum molle with anti-HIV activity.
Lu, Zhenyu; Harper, Mary Kay; Pond, Christopher D; Barrows, Louis R; Ireland, Chris M; Van Wagoner, Ryan M
2012-08-24
As part of our screening for anti-HIV agents from marine invertebrates, the MeOH extract of Didemnum molle was tested and showed moderate in vitro anti-HIV activity. Bioassay-guided fractionation of a large-scale extract allowed the identification of two new cyclopeptides, mollamides E and F (1 and 2), and one new tris-phenethyl urea, molleurea A (3). The absolute configurations were established using the advanced Marfey's method. The three compounds were evaluated for anti-HIV activity in both an HIV integrase inhibition assay and a cytoprotective cell-based assay. Compound 2 was active in both assays with IC(50) values of 39 and 78 μM, respectively. Compound 3 was active only in the cytoprotective cell-based assay, with an IC(50) value of 60 μM.
Discovery of 3,4-dihydropyrimidin-2(1H)-ones with inhibitory activity against HIV-1 replication.
Kim, Junwon; Park, Changmin; Ok, Taedong; So, Wonyoung; Jo, Mina; Seo, Minjung; Kim, Youngmi; Sohn, Jeong-Hun; Park, Youngsam; Ju, Moon Kyeong; Kim, Junghwan; Han, Sung-Jun; Kim, Tae-Hee; Cechetto, Jonathan; Nam, Jiyoun; Sommer, Peter; No, Zaesung
2012-03-01
3,4-Dihydropyrimidin-2(1H)-ones (DHPMs) were selected and derivatized through a HIV-1 replication assay based on GFP reporter cells. Compounds 14, 25, 31, and 36 exhibited significant inhibition of HIV-1 replication with a good safety profile. Chiral separation of each enantiomer by fractional crystallization showed that only the S enantiomer retained anti-HIV activity. Compound (S)-40, a novel and potent DHPM analog, could serve as an advanced lead for further development and the determination of the mechanism of action. Copyright © 2012 Elsevier Ltd. All rights reserved.
Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).
Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko
2009-01-01
Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.
Potent Oncolytic Herpes Simplex Virus for the Therapy of Advanced Prostate Cancer
2007-07-01
are clearly needed to improve this situation. Conditionally replicating (oncolytic) viruses offer unique features as anticancer agents . In this funded...RESEARCH ACCOMPLISHMENTS • Both in vitro and in vivo studies show that the fusogenic oncolytic HSVs are potent antitumor agents against either primary...of fusogenic oncolytic HSVs in the presence of host’s anti -HSV immunity. • Co-administration of fusogenic oncolytic HSV-based virotherapy with
Potent D-peptide inhibitors of HIV-1 entry
Welch, Brett D.; VanDemark, Andrew P.; Heroux, Annie; Hill, Christopher P.; Kay, Michael S.
2007-01-01
During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS. PMID:17942675
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju
2013-03-07
Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistantmore » mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.« less
Isolation of HIV-1-Neutralizing Mucosal Monoclonal Antibodies from Human Colostrum
Friedman, James; Alam, S. Munir; Shen, Xiaoying; Xia, Shi-Mao; Stewart, Shelley; Anasti, Kara; Pollara, Justin; Fouda, Genevieve G.; Yang, Guang; Kelsoe, Garnett; Ferrari, Guido; Tomaras, Georgia D.; Haynes, Barton F.; Liao, Hua-Xin
2012-01-01
Background Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. Methods We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). Results The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. Conclusions These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces. PMID:22624058
Szaniawski, Matthew A; Spivak, Adam M; Cox, James E; Catrow, Jonathan L; Hanley, Timothy; Williams, Elizabeth S C P; Tremblay, Michel J; Bosque, Alberto; Planelles, Vicente
2018-05-15
Macrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted. IMPORTANCE Our experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved changes in phosphorylation status but not in protein levels. Phosphorylation of SAMHD1 in macrophages occurred at least in part via CDK1. Tyrosine kinase inhibitors similarly induced SAMHD1 dephosphorylation, which protects macrophages from HIV-1 in a SAMHD1-dependent manner. SAMHD1 is a critical restriction factor regulating HIV-1 infection of macrophages. Copyright © 2018 Szaniawski et al.
Cole, Amy L; Hossain, Sandra; Cole, Alex M; Phanstiel, Otto
2016-06-15
A series of chalcone, flavone, coumaranone and other flavonoid compounds were screened for their anti HIV-1 activity in two cell culture models using TZM-bl and PM1 cells. Within the systems evaluated, the most promising compounds contained either an α- or β-hydroxy-carbonyl motif within their structure (e.g., 8 and 9). Efficacious substituents were identified and used to design new HIV inhibitors with increased potency and lower cytotoxicity. Of the scaffolds evaluated, specific chalcones were found to provide the best balance between anti-HIV potency and low host cell toxicity. Chalcone 8l was shown to inhibit different clinical isolates of HIV in a dose-dependent manner (e.g., IC50 typically⩽5μM). Inhibition of HIV infection experiments using TZM-bl cells demonstrated that chalcone 8l and flavonol 9c had IC50 values of 4.7μM and 10.4μM, respectively. These insights were used to design new chalcones 8o and 8p. Rewardingly, chalcones 8o and 8p (at 10μM) each gave >92% inhibition of viral propagation without impacting PM1 host cell viability. Inhibition of viral propagation significantly increased (60-90%) when PM1 cells were pre-incubated with chalcone 8o, but not with the related flavonol 9c. These results suggested that chalcone 8o may be of value as both a HIV prophylactic and therapy. In summary, O-benzyl-substituted chalcones were identified as promising anti-HIV agents for future investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kurapati, Kesava Rao V.; Atluri, Venkata S.; Samikkannu, Thangavel; Garcia, Gabriella; Nair, Madhavan P. N.
2016-01-01
As the threat of Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS) persists to rise, effective drug treatments are required to treat the infected people. Even though combination antiretroviral therapy (cART) provides stable viral suppression, it is not devoid of undesirable side effects, especially in persons undergoing long-term treatment. The present therapy finds its limitations in the emergence of multidrug resistance and accordingly finding new drugs and novel targets is the need of the hour to treat the infected persons and further to attack HIV reservoirs in the body like brain, lymph nodes to achieve the ultimate goal of complete eradication of HIV and AIDS. Natural products such as plant-originated compounds and plant extracts have enormous potential to become drug leads with anti-HIV and neuroprotective activity. Accordingly, many research groups are exploring the biodiversity of the plant kingdom to find new and better anti-HIV drugs with novel mechanisms of action and for HIV-associated neurocognitive disorders (HAND). The basic challenge that still persists is to develop viral replication-targeted therapy using novel anti-HIV compounds with new mode of action, accepted toxicity and less resistance profile. Against this backdrop, the World Health Organization (WHO) suggested the need to evaluate ethno-medicines for the management of HIV/AIDS. Consequently, there is need to evaluate traditional medicine, particularly medicinal plants and other natural products that may yield effective and affordable therapeutic agents. Although there are a good number of reports on traditional uses of plants to treat various diseases, knowledge of herbal remedies used to manage HIV/AIDS and HAND are scanty, vague and not well documented. In this review, plant substances showing a promising action that is anti-HIV and HAND will be explored along with what they interact. Since some plant substances are also known to modulate several cellular factors which are also involved in the replication of HIV and hence their role as potential candidates will be discussed. HIV/AIDS being an exceptional epidemic, demands an exceptional approach and that forms very much focus for the current review. PMID:26793166
Vidal, Vincent; Potterat, Olivier; Louvel, Séverine; Hamy, François; Mojarrab, Mahdi; Sanglier, Jean-Jacques; Klimkait, Thomas; Hamburger, Matthias
2012-03-23
Despite the existence of an extended armamentarium of effective synthetic drugs to treat HIV, there is a continuing need for new potent and affordable drugs. Given the successful history of natural product based drug discovery, a library of close to one thousand plant and fungal extracts was screened for antiretroviral activity. A dichloromethane extract of the aerial parts of Daphne gnidium exhibited strong antiretroviral activity and absence of cytotoxicity. With the aid of HPLC-based activity profiling, the antiviral activity could be tracked to four daphnane derivatives, namely, daphnetoxin (1), gnidicin (2), gniditrin (3), and excoecariatoxin (4). Detailed anti-HIV profiling revealed that the pure compounds were active against multidrug-resistant viruses irrespective of their cellular tropism. Mode of action studies that narrowed the site of activity to viral entry events suggested a direct interference with the expression of the two main HIV co-receptors, CCR5 and CXCR4, at the cell surface by daphnetoxin (1).
Potent influenza A virus entry inhibitors targeting a conserved region of hemagglutinin.
Lin, Dongguo; Luo, Yinzhu; Yang, Guang; Li, Fangfang; Xie, Xiangkun; Chen, Daiwei; He, Lifang; Wang, Jingyu; Ye, Chunfeng; Lu, Shengsheng; Lv, Lin; Liu, Shuwen; He, Jian
2017-11-15
Influenza A viruses (IAVs) induce acute respiratory disease and cause significant morbidity and mortality throughout the world. With the emergence of drug-resistant viral strains, new and effective anti-IAV drugs with different modes of action are urgently needed. In this study, by conjugating cholesterol to the N-terminus of the short peptide KKWK, a lipopeptide named S-KKWK was created. The anti-IAV test indicated that S-KKWK and its derivatives displayed potent antiviral activities against a broad variety of influenza A viral strains including oseltamivir-resistant strains and clinically relevant isolates with IC 50 values ranging from 0.7 to 3.0µM. An extensive mechanistic study showed that these peptides functioned as viral "entry blockers" by inhibiting the conformational rearrangements of HA2 subunit, thereby interrupting the fusion of virus-host cell membranes. Significantly, a computer-aided docking simulation and protein sequence alignment identified conserved residues in the stem region of HA2 as the possible binding site of S-KKWK, which may be employed as a potential drug target for designing anti-IAVs with a broad-spectrum of activity. By targeting this region, a potent anti-IAV agent was subsequently created. In addition, the anti-IAV activity of S-KKWK was assessed by experiments with influenza A virus-infected mice, in which S-KKWK reduced the mortality of infected animals and extended survival time significantly. Overall, in addition to providing a strategy for designing broad-spectrum anti-IAV agents, these results indicate that S-KKWK and its derivatives are prospective candidates for potent antivirals. Copyright © 2017 Elsevier Inc. All rights reserved.
Song, Zhuang; Chen, Cai-Ping; Liu, Jun; Wen, Xiaoan; Sun, Hongbin; Yuan, Haoliang
2016-11-29
A novel class of (2E)-(2-oxo-1, 2-dihydro-3H-indol-3-ylidene)acetate derivatives were designed and synthesized as potent anti-proliferative agents. Most of these compounds showed potent anti-proliferative activity against some tumor cell lines, including SK-BR-3, MDA-MB-231, HCT-116, SW480, Ovcar-3, HL-60, Saos-2 and HepG2. Compounds 8c and 11h were identified as the most potent ones, while HL-60, HCT116 and MDA-MB-231 were the most sensitive cell lines. Mechanistic study revealed that compound 8c enhanced reactive oxygen species level by inhibiting TrxR and then induced apoptosis by activating apoptosis proteins, bax and cleaved-caspase 3 in HCT116 cells. Preliminary SAR analysis indicated that modifications of the double bond and ester group made great effects on the anti-proliferative activity. Our findings suggested that it was worth further studies on the antitumor potency of (2E)-(2-oxo-1, 2-dihydro-3H-indol-3-ylidene)acetates. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers.
Rivero-Buceta, Eva; Carrero, Paula; Casanova, Elena; Doyagüez, Elisa G; Madrona, Andrés; Quesada, Ernesto; Peréz-Pérez, María Jesús; Mateos, Raquel; Bravo, Laura; Mathys, Leen; Noppen, Sam; Kiselev, Evgeny; Marchand, Christophe; Pommier, Yves; Liekens, Sandra; Balzarini, Jan; Camarasa, María José; San-Félix, Ana
2015-12-01
The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly α-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes α-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Exploiting Large-Scale Drug-Protein Interaction Information for Computational Drug Repurposing
2014-06-20
other anti- HIV drugs, even though it is not approved as a mono- therapy for HIV. Surprisingly, two statins, atorvastatin and lovastatin, scored among...infected persons. Amprenavir 19.6 For treatment of HIV-1 infection in combination with other antiretroviral agents. Atorvastatin 19.3 For
HIV-1 vaccine strategies utilizing viral vectors including antigen- displayed inoviral vectors.
Hassapis, Kyriakos A; Kostrikis, Leondios G
2013-12-01
Antigen-presenting viral vectors have been extensively used as vehicles for the presentation of antigens to the immune system in numerous vaccine strategies. Particularly in HIV vaccine development efforts, two main viral vectors have been used as antigen carriers: (a) live attenuated vectors and (b) virus-like particles (VLPs); the former, although highly effective in animal studies, cannot be clinically tested in humans due to safety concerns and the latter have failed to induce broadly neutralizing anti-HIV antibodies. For more than two decades, Inoviruses (non-lytic bacterial phages) have also been utilized as antigen carriers in several vaccine studies. Inoviral vectors are important antigen-carriers in vaccine development due to their ability to present an antigen on their outer architecture in many copies and to their natural high immunogenicity. Numerous fundamental studies have been conducted, which have established the unique properties of antigen-displayed inoviral vectors in HIV vaccine efforts. The recent isolation of new, potent anti-HIV broadly neutralizing monoclonal antibodies provides a new momentum in this emerging technology.
Abacavir, an anti-HIV-1 drug, targets TDP1-deficient adult T cell leukemia.
Tada, Kohei; Kobayashi, Masayuki; Takiuchi, Yoko; Iwai, Fumie; Sakamoto, Takashi; Nagata, Kayoko; Shinohara, Masanobu; Io, Katsuhiro; Shirakawa, Kotaro; Hishizawa, Masakatsu; Shindo, Keisuke; Kadowaki, Norimitsu; Hirota, Kouji; Yamamoto, Junpei; Iwai, Shigenori; Sasanuma, Hiroyuki; Takeda, Shunichi; Takaori-Kondo, Akifumi
2015-04-01
Adult T cell leukemia (ATL) is an aggressive T cell malignancy caused by human T cell leukemia virus type 1 (HTLV-1) and has a poor prognosis. We analyzed the cytotoxic effects of various nucleoside analog reverse transcriptase inhibitors (NRTIs) for HIV-1 on ATL cells and found that abacavir potently and selectively kills ATL cells. Although NRTIs have minimal genotoxicities on host cells, the therapeutic concentration of abacavir induced numerous DNA double-strand breaks (DSBs) in the chromosomal DNA of ATL cells. DSBs persisted over time in ATL cells but not in other cell lines, suggesting impaired DNA repair. We found that the reduced expression of tyrosyl-DNA phosphodiesterase 1 (TDP1), a repair enzyme, is attributable to the cytotoxic effect of abacavir on ATL cells. We also showed that TDP1 removes abacavir from DNA ends in vitro. These results suggest a model in which ATL cells with reduced TDP1 expression are unable to excise abacavir incorporated into genomic DNA, leading to irreparable DSBs. On the basis of the above mechanism, we propose abacavir as a promising chemotherapeutic agent for ATL.
Tang, Jun; Jones, Stacey A; Jeffrey, Jerry L; Miranda, Sonia R; Galardi, Cristin M; Irlbeck, David M; Brown, Kevin W; McDanal, Charlene B; Johns, Brian A
2017-06-15
A new class of betulin-derived α-keto amides was identified as HIV-1 maturation inhibitors. Through lead optimization, GSK8999 was identified with IC 50 values of 17nM, 23nM, 25nM, and 8nM for wild type, Q369H, V370A, and T371A respectively. When tested in a panel of 62 HIV-1 isolates covering a diversity of CA-SP1 genotypes including A, AE, B, C, and G using a PBMC based assay, GSK8999 was potent against 57 of 62 isolates demonstrating an improvement over the first generation maturation inhibitor BVM. The data disclosed here also demonstrated that the new α-keto amide GSK8999 has a mechanism of action consistent with inhibition of the proteolytic cleavage of CA-SP1. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis and anti-inflammatory effect of chalcones and related compounds.
Hsieh, H K; Lee, T H; Wang, J P; Wang, J J; Lin, C N
1998-01-01
Mast cell and neutrophil degranulations are the important players in inflammatory disorders. Combined with potent inhibition of chemical mediators released from mast cells and neutrophil degranulations, it could be a promising anti-inflammatory agent. 2',5'-Dihydroxychalcone has been reported as a potent chemical mediator and cyclooxygenase inhibitor. In an effort to continually develop potent anti-inflammatory agents, a novel series of chalcone, 2'- and 3'-hydroxychalcones, 2',5'-dihydroxychalcones and flavanones were continually synthesized to evaluate their inhibitory effects on the activation of mast cells and neutrophils and the inhibitory effect on phlogist-induced hind-paw edema in mice. A series of chalcones and related compounds were prepared by Claisen-Schmidt condensation of appropriate acetophenones with appropriate aromatic aldehyde and the anti-inflammatory activities of these synthetic compounds were studied on inhibitory effects on the activation of mast cells and neutrophils. Some chalcones showed strong inhibitory effects on the release of beta-glucuronidase and histamine from rat peritoneal mast cells stimulated with compound 48/80. Almost all chalcones and 4'-hydroxyflavanone exhibited potent inhibitory effects on the release of beta-glucuronidase and lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP). Some chalcones showed potent inhibitory effects on superoxide formation of rat neutrophils stimulated with fMLP/cytochalasin B (CB) or phorbol myristate acetate (PMA). 2',3-Dihydroxy-, 2',5'-dihydroxy-4-chloro-, and 2',5'-dihydroxychalcone showed remarkable inhibitory effects on hind-paw edema induced by polymyxin B in normal as well as in adrenalectomized mice. These results indicated that the anti-inflammatory effects of these compounds were mediated, at least partly, through the suppression of chemical mediators released from mast cells and neutrophils.
HIV-1 Therapy with Monoclonal Antibody 3BNC117 Elicits Host Immune Responses against HIV-1
Schoofs, Till; Klein, Florian; Braunschweig, Malte; Kreider, Edward F.; Feldmann, Anna; Nogueira, Lilian; Oliveira, Thiago; Lorenzi, Julio C. C.; Parrish, Erica H.; Learn, Gerald H.; West, Anthony P.; Bjorkman, Pamela J.; Schlesinger, Sarah J.; Seaman, Michael S.; Czartoski, Julie; McElrath, M. Juliana; Pfeifer, Nico; Hahn, Beatrice H.; Caskey, Marina; Nussenzweig, Michel C.
2016-01-01
3BNC117 is a broad and potent anti-HIV-1 neutralizing antibody that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 impacts host antibody responses in viremic subjects. In comparison to untreated controls that showed little change in their neutralizing activity over a six-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1. PMID:27199429
Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies
Schanz, Merle; Reynell, Lucy; Günthard, Huldrych F.; Rusert, Peter; Trkola, Alexandra
2012-01-01
HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo. PMID:22496655
Pailee, Phanruethai; Kuhakarn, Chutima; Sangsuwan, Chanyapat; Hongthong, Sakchai; Piyachaturawat, Pawinee; Suksen, Kanoknetr; Jariyawat, Surawat; Akkarawongsapat, Radeekorn; Limthongkul, Jitra; Napaswad, Chanita; Kongsaeree, Palangpon; Prabpai, Samran; Jaipetch, Thaworn; Pohmakotr, Manat; Tuchinda, Patoomratana; Reutrakul, Vichai
2018-03-01
Eleven previously undescribed compounds, including four benzophenones (garciosones A-D), four xanthones (garciosones E-H) and three biphenyls (garciosines A-C), along with eighteen known compounds were isolated from the stems, leaves and twigs of Garcinia speciosa Wall. (Clusiaceae). Their structures were established by extensive spectroscopic analysis. For garciosines A-C, the structures were confirmed by single crystal X-ray diffraction analysis. Most of the isolated compounds were evaluated for their cytotoxic activity and anti-HIV-1 activity using the syncytium inhibition assay and HIV-1 reverse transcriptase (RT) assay. The known compounds, 4,6,3',4'-tetrahydroxy-2-methoxybenzophenone and macluraxanthone, displayed significant cytotoxic activity with the ED 50 in the range of 1.85-11.76 μM. 1,5-Dihydroxyxanthone exhibited the most potent anti-HIV activity against syncytium formation with EC 50 < 17.13 μM (SI > 25.28) and 2-(3,3-dimethylallyl)-1,3,7-trihydroxyxanthone was the most active compound in the HIV-1 reverse transcriptase assay with IC 50 value of 58.24 μM. Structure-activity relationship of some isolated compounds were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Docking analysis of gallic acid derivatives as HIV-1 protease inhibitors.
Singh, Anjali; Pal, Tapan Kumar
2015-01-01
HIV-1 Protease (HIV-1 PR) enzymes are essential for accurate assembly and maturation of infectious HIV retroviruses. The significant role of HIV-1 protease in viral replication has made it a potential drug target. In the recent past, phytochemical Gallic Acid (GA) derivatives have been screened for protease inhibitor activity. The present work aims to design and evaluate potential GA-based HIV-1 PR phytoinhibitors by docking approach. The ligands were prepared by ChemDraw and docking was performed in HEX software. In this present study, one of the GA analogues (GA4) emerged as a potent drug candidate for HIV-1 PR inhibition, and docking results showed it to be comparable with anti-HIV drugs, darunavir and amprenavir. The GA4 derivative provided a lead for designing more effective HIV-1 PR inhibitors.
Lu, Xueyi; Yang, Jiapei; Kang, Dongwei; Gao, Ping; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong
2018-05-01
By means of structure-based molecular hybridization strategy, a series of novel diarylpyri(mi)dine derivatives targeting the entrance channel of HIV-1 reverse transcriptase (RT) were designed, synthesized and evaluated as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs). Encouragingly, all the tested compounds showed good activities against wild-type (WT) HIV-1 (IIIB) with EC 50 in the range of 1.36 nM-29 nM, which is much better than those of nevirapine (NVP, EC 50 = 125.42 nM) and azidothymidine (AZT, EC 50 = 11.36 nM). Remarkably, these compounds also displayed effective activity against the most of the single and double-mutated HIV-1 strains with low EC 50 values, which is comparable to the control drugs. Besides, these compounds were also exhibited favorable enzymatic inhibitory activity. Moreover, preliminary structure-activity relationships (SARs) and molecular modeling study were investigated and discussed in detail. Unexpectedly, four diarylpyrimidines yielded moderate anti-HIV-2 activities. To our knowledge, this is rarely reported that diarylpyrimidine-based NNRTIs have potent activity against both HIV-1 and HIV-2 in cell culture. Copyright © 2018 Elsevier Ltd. All rights reserved.
Song, Ming-Xia; Deng, Xian-Qing; Li, Ya-Ru; Zheng, Chang-Ji; Hong, Lan; Piao, Hu-Ri
2014-10-01
Herein, we report the design, syntheses and in vitro anti-microbial activity of two series of rhodanines with chalcone moiety. Anti-microbial tests showed that some of the synthesized compounds exhibited good inhibition (MIC = 1-8 µg/mL) against multi-drug-resistant Gram-positive organisms, including methicillin resistant and quinolone-resistant Staphylococcus aureus, in which the compound 4g was found to be the most potent with minimum inhibitory concentration (MIC) value of 1 µg/mL against two methicillin-resistant S. aureus.
Tian, Ye; Du, Deping; Rai, Diwakar; Wang, Liu; Liu, Huiqing; Zhan, Peng; De Clercq, Erik; Pannecouque, Christophe; Liu, Xinyong
2014-04-01
In our continuous efforts to identify novel potent HIV-1 NNRTIs, a novel class of 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives were rationally designed, synthesized and evaluated for their anti-HIV activities in MT4 cell cultures. Biological results showed that most of the tested compounds displayed excellent activity against wild-type HIV-1 with a wide range of EC50 values from 5.98 to 0.07μM. Among the active compounds, 5a was found to be the most promising analogue with an EC50 of 0.07μM against wild-type HIV-1 and very high selectivity index (SI, 3999). Compound 5a was more effective than the reference drugs nevirapine (by 2-fold) and delavirdine (by 2-fold). In order to further confirm their binding target, an HIV-1 RT inhibitory assay was also performed. Furthermore, SAR analysis among the newly synthesized compounds was discussed and the binding mode of the active compound 5a was rationalized by molecular modeling studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fraietta, Joseph A.; Mueller, Yvonne M.; Lozenski, Karissa L.; Ratner, Deena; Boesteanu, Alina C.; Hancock, Aidan S.; Lackman-Smith, Carol; Zentner, Isaac J.; Chaiken, Irwin M.; Chung, Suhman; LeGrice, Stuart F. J.; Snyder, Beth A.; Mankowski, Marie K.; Jones, Natalie M.; Hope, Jennifer L.; Gupta, Phalguni; Anderson, Sharon H.; Wigdahl, Brian
2014-01-01
In the absence of universally available antiretroviral (ARV) drugs or a vaccine against HIV-1, microbicides may offer the most immediate hope for controlling the AIDS pandemic. The most advanced and clinically effective microbicides are based on ARV agents that interfere with the earliest stages of HIV-1 replication. Our objective was to identify and characterize novel ARV-like inhibitors, as well as demonstrate their efficacy at blocking HIV-1 transmission. Abasic phosphorothioate 2′ deoxyribose backbone (PDB) oligomers were evaluated in a variety of mechanistic assays and for their ability to inhibit HIV-1 infection and virus transmission through primary human cervical mucosa. Cellular and biochemical assays were used to elucidate the antiviral mechanisms of action of PDB oligomers against both lab-adapted and primary CCR5- and CXCR4-utilizing HIV-1 strains, including a multidrug-resistant isolate. A polarized cervical organ culture was used to test the ability of PDB compounds to block HIV-1 transmission to primary immune cell populations across ectocervical tissue. The antiviral activity and mechanisms of action of PDB-based compounds were dependent on oligomer size, with smaller molecules preventing reverse transcription and larger oligomers blocking viral entry. Importantly, irrespective of molecular size, PDBs potently inhibited virus infection and transmission within genital tissue samples. Furthermore, the PDB inhibitors exhibited excellent toxicity and stability profiles and were found to be safe for vaginal application in vivo. These results, coupled with the previously reported intrinsic anti-inflammatory properties of PDBs, support further investigations in the development of PDB-based topical microbicides for preventing the global spread of HIV-1. PMID:25224013
Kim, H-Y; Choi, G J; Lee, H B; Lee, S-W; Lim, H K; Jang, K S; Son, S W; Lee, S O; Cho, K Y; Sung, N D; Kim, J-C
2007-03-01
To isolate endophytic fungi from vegetable plants and examine their in vivo anti-oomycete activity against Phytophthora infestans in tomato plants. Endophytic fungi were isolated from surface-sterilized plant tissues and anti-oomycete activity was measured by in vivo assay using tomato seedlings. Endophytic fungi showing potent anti-oomycete activity were identified by morphological characteristics and nuclear ribosomal ITS1-5.8S-ITS2 sequence analysis. A total of 152 isolates were obtained from 66 healthy tissue samples of cucumber, red pepper, tomato, pumpkin and Chinese cabbage and the fermentation broths of 23 isolates showed potent in vivo anti-oomycete activity against tomato late blight with control values over 90%. The Fusarium oxysporum strain EF119, which was isolated from roots of red pepper, showed the most potent disease control efficacy against tomato late blight. In dual-culture tests, it inhibited the growth of Pythium ultimum, P. infestans and Phytophthora capsici. Among endophytic fungi isolated from healthy tissues of vegetable plants, F. oxysporum EF119 showed the most potent in vivo anti-oomycete activity against tomato late blight and in vitro anti-oomycete activity against several oomycete pathogens. Endophytic fungi showing anti-oomycete activity in vitro and in vivo may be used as biocontrol agents particularly of tomato late blight.
Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C.
Ghimire, Dibya; Timilsina, Uddhav; Srivastava, Tryambak Pratap; Gaur, Ritu
2017-03-02
HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics.
NASA Astrophysics Data System (ADS)
Serio, D.; Rizvi, T. A.; Cartas, M.; Kalyanaraman, V. S.; Weber, I. T.; Koprowski, H.; Srinivasan, A.
1997-04-01
Effective antiviral agents will be of great value in controlling virus replication and delaying the onset of HIV-1-related disease symptoms. Current therapy involves the use of antiviral agents that target the enzymatic functions of the virus, resulting in the emergence of resistant viruses to these agents, thus lowering their effectiveness. To overcome this problem, we have considered the idea of developing novel agents from within HIV-1 as inhibitors of virus replication. The specificity of the Vpr protein for the HIV-1 virus particle makes it an attractive molecule for the development of antiviral agents targeting the events associated with virus maturation. We have generated chimeric Vpr proteins containing HIV-1-specific sequences added to the C terminus of Vpr. These sequences correspond to nine cleavage sites of the Gag and Gag-Pol precursors of HIV-1. The chimeric Vpr constructs were introduced into HIV-1 proviral DNA to assess their effect on virus infectivity using single- and multiple-round replication assays. The virus particles generated exhibited a variable replication pattern depending on the protease cleavage site used as a fusion partner. Interestingly, the chimeric Vpr containing the cleavage sequences from the junction of p24 and p2, 24/2, completely abolished virus infectivity. These results show that chimeric proteins generated from within HIV-1 have the ability to suppress HIV-1 replication and make ideal agents for gene therapy or intracellular immunization to treat HIV-1 infection.
Speck-Planche, Alejandro; Kleandrova, Valeria V; Luan, Feng; Cordeiro, M Natália D S
2012-08-01
The discovery of new and more potent anti-cancer agents constitutes one of the most active fields of research in chemotherapy. Colorectal cancer (CRC) is one of the most studied cancers because of its high prevalence and number of deaths. In the current pharmaceutical design of more efficient anti-CRC drugs, the use of methodologies based on Chemoinformatics has played a decisive role, including Quantitative-Structure-Activity Relationship (QSAR) techniques. However, until now, there is no methodology able to predict anti-CRC activity of compounds against more than one CRC cell line, which should constitute the principal goal. In an attempt to overcome this problem we develop here the first multi-target (mt) approach for the virtual screening and rational in silico discovery of anti-CRC agents against ten cell lines. Here, two mt-QSAR classification models were constructed using a large and heterogeneous database of compounds. The first model was based on linear discriminant analysis (mt-QSAR-LDA) employing fragment-based descriptors while the second model was obtained using artificial neural networks (mt-QSAR-ANN) with global 2D descriptors. Both models correctly classified more than 90% of active and inactive compounds in training and prediction sets. Some fragments were extracted from the molecules and their contributions to anti-CRC activity were calculated using mt-QSAR-LDA model. Several fragments were identified as potential substructural features responsible for the anti-CRC activity and new molecules designed from those fragments with positive contributions were suggested and correctly predicted by the two models as possible potent and versatile anti-CRC agents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zheng, Xiaofan; Ding, Wei; Li, Gan; Wu, Yaling; Wu, Danxiao; Zhu, Hong; He, Ji; Wang, Bin; Zhao, Longyou; Zhu, Faming; Lv, Hangjun
2015-01-01
Background The high prevalence of hepatitis B and C viruses (HBV and HCV), paralleling the growing epidemic of human immunodeficiency virus (HIV) and Treponema pallidum (TP) infections in the general population, poses a great threat to blood safety in China. This study investigated the prevalence of serological markers for causative agents of transfusion-transmissible infections (TTI), i.e. HBV, HCV, HIV and TP, among volunteer blood donors in five cities/regions of Zhejiang Province, China. Material and methods We investigated whole blood and apheresis donations collected at the Blood Services in five cities/regions in Zhejiang Province between January 1, 2006 and December 31, 2012. Two rounds of serological testing were performed for HBsAg, anti-HCV, anti-HIV1/2 and anti-TP using different kits. The rates of serological positivity were calculated and further analysis was performed to examine the association between donors’ characteristics and seroprevalence. Results Of the 1,615,120 donations, approximately 40% came from first-time donors and 60% from repeat donors. The overall seroprevalence rates of HBV, HCV, HIV and TP were 0.51%, 0.25%, 0.15% and 0.52%, respectively. The overall prevalences of HCV and HIV remained relatively steady, whereas the prevalence of TP increased sharply after 2010. However, the prevalence of TTI agents varied among volunteer blood donors in different cities/regionsand demographic groups. Discussion We collected data on the seroprevalence of TTI agents among volunteer blood donors. Although the risk of TTI is low in China compared to that in some developing countries, sensitive screening methods and recruitment of regular donors are still very important for blood safety and availability. PMID:26192780
Zheng, Xiaofan; Ding, Wei; Li, Gan; Wu, Yaling; Wu, Danxiao; Zhu, Hong; He, Ji; Wang, Bin; Zhao, Longyou; Zhu, Faming; Lv, Hangjun
2015-07-01
The high prevalence of hepatitis B and C viruses (HBV and HCV), paralleling the growing epidemic of human immunodeficiency virus (HIV) and Treponema pallidum (TP) infections in the general population, poses a great threat to blood safety in China. This study investigated the prevalence of serological markers for causative agents of transfusion-transmissible infections (TTI), i.e. HBV, HCV, HIV and TP, among volunteer blood donors in five cities/regions of Zhejiang Province, China. We investigated whole blood and apheresis donations collected at the Blood Services in five cities/regions in Zhejiang Province between January 1, 2006 and December 31, 2012. Two rounds of serological testing were performed for HBsAg, anti-HCV, anti-HIV1/2 and anti-TP using different kits. The rates of serological positivity were calculated and further analysis was performed to examine the association between donors' characteristics and seroprevalence. Of the 1,615,120 donations, approximately 40% came from first-time donors and 60% from repeat donors. The overall seroprevalence rates of HBV, HCV, HIV and TP were 0.51%, 0.25%, 0.15% and 0.52%, respectively. The overall prevalences of HCV and HIV remained relatively steady, whereas the prevalence of TP increased sharply after 2010. However, the prevalence of TTI agents varied among volunteer blood donors in different cities/regions and demographic groups. We collected data on the seroprevalence of TTI agents among volunteer blood donors. Although the risk of TTI is low in China compared to that in some developing countries, sensitive screening methods and recruitment of regular donors are still very important for blood safety and availability.
Rotili, Dante; Tarantino, Domenico; Artico, Marino; Nawrozkij, Maxim B; Gonzalez-Ortega, Emmanuel; Clotet, Bonaventura; Samuele, Alberta; Esté, José A; Maga, Giovanni; Mai, Antonello
2011-04-28
Here, we describe a novel small series of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that combine peculiar structural features of diarylpyrimidines (DAPYs) and dihydro-alkoxy-benzyl-oxopyrimidines (DABOs). These DAPY-DABO hybrids (1-4) showed a characteristic SAR profile and a nanomolar anti-HIV-1 activity at both enzymatic and cellular level. In particular, the two compounds 4d and 2d, with a (sub)nanomolar activity against wild-type and clinically relevant HIV-1 mutant strains, were selected as lead compounds for next optimization studies.
2002-05-01
Antiretroviral research presented recently at the 9th Conference on Retroviruses and Opportunistic Infections demonstrates that investigators and pharmaceutical companies continue to strive for the next highly potent and easily tolerated anti-HIV drug. Among the new approaches are entry inhibitor drug and second-generation non-nucleoside reverse transcriptase inhibitors. New studies also looked into potency against multidrug-resistant virus and medication regimens that are simpler to take and have fewer side effects.
2011-01-01
Background Acquired immunodeficiency syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV), is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects. PMID:22078030
Luo, Wen; Wang, Ting; Hong, Chen; Yang, Ya-Chen; Chen, Ying; Cen, Juan; Xie, Song-Qiang; Wang, Chao-Jie
2016-10-21
A new series of 4-dimethylamine flavonoid derivatives were designed and synthesized as potential multifunctional anti-Alzheimer agents. The inhibition of cholinesterase activity, self-induced β-amyloid (Aβ) aggregation, and antioxidant activity by these derivatives was investigated. Most of the compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. A Lineweaver-Burk plot and molecular modeling study showed that these compounds targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. The derivatives showed potent self-induced Aβ aggregation inhibition and peroxyl radical absorbance activity. Moreover, compound 6d significantly protected PC12 neurons against H2O2-induced cell death at low concentrations. Thus, these compounds could become multifunctional agents for further development for the treatment of AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Identification of potent maturation inhibitors against HIV-1 clade C.
Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J; Wild, Carl T; Freed, Eric O; Gaur, Ritu
2016-06-06
Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic.
Antimalarial activity of HIV-1 protease inhibitor in chromone series.
Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn
2014-12-01
Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. Copyright © 2014 Elsevier Inc. All rights reserved.
Barroso-González, Jonathan; El Jaber-Vazdekis, Nabil; García-Expósito, Laura; Machado, José-David; Zárate, Rafael; Ravelo, Ángel G.; Estévez-Braun, Ana; Valenzuela-Fernández, Agustín
2009-01-01
The existence of drug-resistant human immunodeficiency virus (HIV) viruses in patients receiving antiretroviral treatment urgently requires the characterization and development of new antiretroviral drugs designed to inhibit resistant viruses and to complement the existing antiretroviral strategies against AIDS. We assayed several natural or semi-synthetic lupane-type pentacyclic triterpenes in their ability to inhibit HIV-1 infection in permissive cells. We observed that the 30-oxo-calenduladiol triterpene, compound 1, specifically impaired R5-tropic HIV-1 envelope-mediated viral infection and cell fusion in permissive cells, without affecting X4-tropic virus. This lupane derivative competed for the binding of a specific anti-CCR5 monoclonal antibody or the natural CCL5 chemokine to the CCR5 viral coreceptor with high affinity. 30-Oxo-calenduladiol seems not to interact with the CD4 antigen, the main HIV receptor, or the CXCR4 viral coreceptor. Our results suggest that compound 1 is a specific CCR5 antagonist, because it binds to the CCR5 receptor without triggering cell signaling or receptor internalization, and inhibits RANTES (regulated on activation normal T cell expressed and secreted)-mediated CCR5 internalization, intracellular calcium mobilization, and cell chemotaxis. Furthermore, compound 1 appeared not to interact with β-chemokine receptors CCR1, CCR2b, CCR3, or CCR4. Thereby, the 30-oxo-calenduladiol-associated anti-HIV-1 activity against R5-tropic virus appears to rely on the selective occupancy of the CCR5 receptor to inhibit CCR5-mediated HIV-1 infection. Therefore, it is plausible that the chemical structure of 30-oxo-calenduladiol or other related dihydroxylated lupane-type triterpenes could represent a good model to develop more potent anti-HIV-1 molecules to inhibit viral infection by interfering with early fusion and entry steps in the HIV life cycle. PMID:19386595
Zabihollahi, Rezvan; Pooshang Bagheri, Kamran; Keshavarz, Zohreh; Motevalli, Fatemeh; Bahramali, Golnaz; Siadat, Seyed Davar; Momen, Seyed Bahman; Shahbazzadeh, Delavar; Aghasadeghi, Mohammad Reza
2016-11-01
During the recent years, significant progress has been achieved on development of novel anti-viral drugs. Natural products are assumed as the potential sources of novel anti-viral drugs; therefore, there are some previous studies reporting the anti-viral compounds from venomous animals. Based on the significant value for tracing of non-toxic anti-viral agents from natural resources, this study was aimed to investigate the anti-viral activity of some HPLC purified fractions derived from the venom of Iranian scorpion, Hemiscorpius lepturus, against human immunodeficiency virus 1 (HIV-1) and herpes simplex virus 1 (HSV-1). H. Lepturus crude venom was subjected to reverse phase HPLC analysis to determine its active components precisely where four dominant fractions obtained at retention time of 156-160 minutes. The phospholipase A2 and hemolytic activities of the purified fractions were first evaluated. Then the anti-viral activity was measured using single cycle HIV (NL4-3) replication and HSV (KOS) plaque reduction assays. The H. lepturus crude venom inhibited HIV replication by 73% at the concentration of 200 µg/ml, while it did not show significant anti-HSV activity. It also inhibited the cell-free viral particles in a virucidal assay, while it showed no toxicity for the target cells in a proliferation assay. The four HPLC fractions purified from H. lepturus inhibited HIV with IC50 of 20 µg/ml. H. lepturus venom contains components with considerable anti-HIV activity insofar as it has virucidal activity that offers a novel therapeutic approach against HIV infection. Our results suggest a promising pilot for anti-HIV drug discovery with H. lepturus scorpion venom.
Angajala, Kishore Kumar; Vianala, Sunitha; Macha, Ramesh; Raghavender, M; Thupurani, Murali Krishna; Pathi, P J
2016-01-01
Nonsteroidal anti-inflammatory drugs are of vast therapeutic benefit in the treatment of different types of inflammatory conditions. 1,2,3-Triazoles and their derivatives have a wide range of applications as anti-bacterial, anti-fungal, anti-tubercular, cytostatic, anti-HIV, anti-allergic, anti-neoplastic and anti-inflammatory (AI) agents. Considering the individual biological and medicinal importance of ibuprofen and 1,2,3-triazoles, we wanted to explore novel chemical entities based on ibuprofen and triazole moieties towards their biological significance. Click chemistry has utilized as an ideal strategy to prepare novel ibuprofen-based 1,4-disubstituted 1,2,3-triazole containing molecules. These compounds were screened for their in vivo AI activity, among all the synthesized analogues 13o was shown potent effect than the reference AI drug ibuprofen at the same concentration (10 mg/kg body weight). Compounds 13l, 13g, 13c, 13k, 13i, 13n, 13m and 13j were shown significant AI activity. These triazole analogues were also screened for their bactericidal profile. Compounds 13c, 13i, 13l and 13o exhibited considerable bactericidal activity against gram positive and gram negative strains. In addition to this, molecular docking studies were also carried out into cyclooxygenase-2 active site to predict the affinity and orientation of these novel compounds (13a-q). In summary, we have designed and synthesized 1,2,3-triazole analogues of ibuprofen in good yields using Click chemistry approach. AI and bactericidal activities of these compounds were evaluated and shown remarkable results.
Draft Genome Sequence of Bacillus velezensis GF610, a Producer of Potent Anti-Listeria Agents
Gerst, Michelle M.; Dudley, Edward G.; Xiaoli, Lingzi
2017-01-01
ABSTRACT Bacillus velezensis GF610 was isolated from soil in Illinois, USA, and found to produce amyloliquecidin GF610, a potent two-component antimicrobial peptide. We report here the GF610 strain draft genome sequence, which contains 4.29 Mb and an overall GC content of 45.91%. PMID:29025938
Zhang, Xing-Jie; Lu, Li-He; Wang, Rui-Rui; Wang, Yue-Ping; Luo, Rong-Hua; Cong Lai, Christopher; Yang, Liu-Meng; He, Yan-Ping; Zheng, Yong-Tang
2013-01-01
6-(cyclohexylmethyl)-5-ethyl-2-((2-oxo-2-phenylethyl)thio)pyrimidin-4(3H)-one (DB-02) is a member of the newly reported synthetic anti-HIV-1 compounds dihydro-aryl/alkylsulfanyl-cyclohexylmethyl-oxopyrimidines, S-DACOs. In vitro anti-HIV-1 activity and resistance profile studies have suggested that DB-02 has very low cytotoxicity (CC50>1mM) to cell lines and peripheral blood mononuclear cells (PBMCs). It displays potent anti-HIV-1 activity against laboratory adapted strains and primary isolated strains including different subtypes and tropism strains (EC50s range from 2.40 to 41.8 nM). Studies on site-directed mutagenesis, genotypic resistance profiles revealed that V106A was the major resistance contributor for the compound. Molecular docking analysis showed that DB-02 located in the hydrophobic pocket with interactions of Lys101, Val106, Leu234, His235. DB-02 also showed non-antagonistic effects to four approved antiretroviral drugs. All studies indicated that DB-02 would be a potential NNRTI with low cytotoxicity and improved activity. PMID:24282600
Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention.
Kismet, Kemal; Akay, M Turan; Abbasoglu, Osman; Ercan, Aygün
2004-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used therapeutic agents in the treatment of pain, inflammation and fever. They may also have a role in the management of cancer prevention, Alzheimer's disease and prophylaxis against cardiovascular disease. These drugs act primarily by inhibiting cyclooxygenase enzyme, which has two isoforms, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Selective COX-2 inhibitors provide potent anti-inflammatory and analgesic effects without the side effects of gastric and renal toxicity and inhibition of platelet function. Celecoxib is a potent COX-2 inhibitor being developed for the treatment of rheumatoid arthritis and osteoarthritis. Chemoprevention is the use of pharmacological or natural agents to prevent, suppress, interrupt or reverse the process of carcinogenesis. For this purpose, celecoxib is being used for different cancer types. The effects of NSAIDs on tumor growth remain unclear, but are most likely to be multifocal. In this article, we reviewed COX-2 selectivity, the pharmacological properties of celecoxib, the use of celecoxib for cancer prevention and the mechanisms of chemoprevention.
Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M
1996-09-01
The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues.
Cytotoxic and Anti-HIV Phenanthroindolizidine Alkaloids from Cryptocarya chinensis
Wu, Tian-Shung; Su, Chung-Ren; Lee, Kuo-Hsiung
2013-01-01
Bioassay-guided fractionation of the cytotoxic ethanol extract of Cryptocarya chinensis has led to the isolation of 11 compounds, including two phenanthroindolizidine alkaloids [(−)-antofine (1) and dehydroantofine (2)], five pavine alkaloids (3–7), and four proaporphine alkaloids (8–11). The structures of the isolated compounds were determined by means of NMR spectroscopic methods, and supported by HRMS and optical rotation data. Compounds 1 and 2 showed cytotoxic activity against four cancer cell lines, L1210, P388, A549, and HCT-8, with 1 being the most potent against A549 and HCT-8 with EC50 values of 0.002 and 0.001 μg/mL, respectively. In addition, 2 is first reported to exhibit significant anti-HIV activity. PMID:22816292
Selva, Kevin J; Kent, Stephen J; Parsons, Matthew S
2017-01-28
Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.
Ferreira, Victor H.; Mueller, Kristen; Kaushic, Charu
2015-01-01
Inflammation is a known mechanism that facilitates HIV acquisition and the spread of infection. In this study, we evaluated whether curcumin, a potent and safe anti-inflammatory compound, could be used to abrogate inflammatory processes that facilitate HIV-1 acquisition in the female genital tract (FGT) and contribute to HIV amplification. Primary, human genital epithelial cells (GECs) were pretreated with curcumin and exposed to HIV-1 or HIV glycoprotein 120 (gp120), both of which have been shown to disrupt epithelial tight junction proteins, including ZO-1 and occludin. Pre-treatment with curcumin prevented disruption of the mucosal barrier by maintaining ZO-1 and occludin expression and maintained trans-epithelial electric resistance across the genital epithelium. Curcumin pre-treatment also abrogated the gp120-mediated upregulation of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL)-6, which mediate barrier disruption, as well as the chemokines IL-8, RANTES and interferon gamma-induced protein-10 (IP-10), which are capable of recruiting HIV target cells to the FGT. GECs treated with curcumin and exposed to the sexually transmitted co-infecting microbes HSV-1, HSV-2 and Neisseria gonorrhoeae were unable to elicit innate inflammatory responses that indirectly induced activation of the HIV promoter and curcumin blocked Toll-like receptor (TLR)-mediated induction of HIV replication in chronically infected T-cells. Finally, curcumin treatment resulted in significantly decreased HIV-1 and HSV-2 replication in chronically infected T-cells and primary GECs, respectively. All together, our results suggest that the use of anti-inflammatory compounds such as curcumin may offer a viable alternative for the prevention and/or control of HIV replication in the FGT. PMID:25856395
Bacterial flagellin—a potent immunomodulatory agent
Hajam, Irshad A; Dar, Pervaiz A; Shahnawaz, Imam; Jaume, Juan Carlos; Lee, John Hwa
2017-01-01
Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests. PMID:28860663
Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents.
Chander, Subhash; Tang, Cheng-Run; Penta, Ashok; Wang, Ping; Bhagwat, Deepak P; Vanthuyne, Nicolas; Albalat, Muriel; Patel, Payal; Sankpal, Sanskruti; Zheng, Yong-Tang; Sankaranarayanan, Murugesan
2018-09-01
In the current study, twenty-two compounds based upon 3-hydroxy-3-(2-oxo-2-phenylethyl)indolin-2-one nucleus were designed, synthesized and in vitro evaluated for HIV-1 RT inhibition and anti-HIV-1 activity. Compounds 3d, 5c and 5e demonstrated encouraging potency against RT enzyme as well as HIV-1 in low micromolar to nanomolar concentration with good to excellent safety index. Structure activity relationship studies revealed that halogens such as bromo or chloro at 5th the position of oxindole ring remarkably enhanced the potency against RT. Moreover, methoxy or chloro groups at the ortho position of phenyl ring also significantly favored RT inhibition activity. Seven compounds (3b, 3c, 3d, 3e, 5b, 5c and 5e) with better anti-HIV-1 potency were tested against the mutant HIV-1 K103N strain . The putative binding mode, as well as interaction patterns of the best active compound 5c with wild HIV-1 RT were studied via docking studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Zhenyu; Cao, Yuan; Zhan, Peng; Pannecouque, Christophe; Balzarini, Jan; Clercq, Erik De; Shen, Yuemao; Liu, Xinyong
2013-11-01
A series of novel 1,2,4-triazole thioacetanilide derivatives has been designed, synthesized and evaluated for their anti-HIV activities in MT-4 cells. Half of these compounds showed moderate to potent activities against wild-type HIV-1 with an EC50 ranging from 38.0 μM to 4.08 µM. Among them, 2-(4-(2-fluorobenzyl)-5-isopropyl-4H-1,2,4-triazol- 3-ylthio)-N-(2-nitrophenyl)acetamide 7d was identified as the most promising compound (EC50 = 4.26 µM, SI = 49). However, no compound was active against HIV-2. The preliminary structure-activity relationships among the newly synthesized congeners are discussed.
Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo.
Zhai, Lei; Sun, Nan; Han, Zhe; Jin, Hai-chao; Zhang, Bo
Osteosarcoma (OS) remains one deadly disease for many affected patients. The search for novel and more efficient anti-OS agents is urgent. In the current study, we demonstrated that liposome-packed C6 ceramide exerted potent cytotoxic effect against established (U2OS and MG-63 lines) and primary human OS cells. Meanwhile, the liposomal C6 (ceramide) induced caspase-mediated apoptotic death in OS cells. Liposomal C6 was significantly more potent than conventional free C6 in inhibiting OS cells, yet it was safe to non-cancerous bone cells (primary murine osteoblasts or human MLO-Y4 osteocytic cells). At the signaling level, we showed that liposomal C6 potently inhibited Akt activation in OS cells. Further studies revealed that a low dose of liposomal C6 dramatically sensitized the in vitro anti-OS activity of two conventional chemodrugs: methotrexate (MTX) and doxorubicin. In vivo, intravenous injection of liposomal C6 inhibited Akt activation and suppressed U2OS xenograft growth in nude mice without causing apparent toxicities. Meanwhile, when given at a low-dose (5 mg/kg body weight), liposomal C6 dramatically sensitized MTX's anti-U2OS activity in vivo. Collectively, our data demonstrate that liposomal C6 exerts potent anti-tumor activity in preclinical OS models. Copyright © 2015 Elsevier Inc. All rights reserved.
Advanced Drug-Delivery Systems of Curcumin for Cancer Chemoprevention
Bansal, Shyam S.; Goel, Mehak; Aqil, Farrukh; Vadhanam, Manicka V.; Gupta, Ramesh C.
2011-01-01
From ancient times, chemopreventive agents have been used to treat/prevent several diseases, including cancer. They are found to elicit a spectrum of potent responses including anti-inflammatory, anti-oxidant, anti-proliferative, anti-carcinogenic, and anti-angiogenic activity in various cell culture and some animal studies. Research over the past four decades has shown that chemopreventives affect a number of proteins involved in various molecular pathways that regulate inflammatory and carcinogenic responses in a cell. Various enzymes, transcription factors, receptors, and adhesion proteins are also affected by chemopreventives. Although, these natural compounds have shown significant efficacy in cell-culture studies, they elicited limited efficacy in various clinical studies. Their introduction into the clinical setting is hindered largely by their poor solubility, rapid metabolism, or a combination of both, ultimately resulting in poor bioavailability upon oral administration. Therefore, to circumvent these limitations and to ease their transition to clinics, alternate strategies should be explored. Drug delivery systems such as nanoparticles, liposomes, microemulsions, and polymeric implantable devices are emerging as one of the viable alternatives that have been demonstrated to deliver therapeutic concentrations of various potent chemopreventives such as curcumin, ellagic acid, green tea polyphenols, and resveratrol into the systemic circulation. In this review article, we have attempted to provide a comprehensive outlook for these delivery approaches, using curcumin as a model agent, and discussed future strategies to enable the introduction of these highly potent chemopreventives into a physician’s armamentarium. PMID:21546540
Wei, Shu-Chen; Lin, Young-Sun; Tsao, Po-Nien; Wu-Tsai, Jyy-Ji; Wu, C H Herbert; Wong, Jau-Min
2004-08-01
The adenomatous polyposis coli (APC) and mismatch repair (MMR) pathways are both involved in the tumorigenesis of hereditary colorectal cancers. Chemoprevention focuses on the APC pathway in the absence of information concerning MMR targets. This study compared the anticancer effects of sulindac, celecoxib, curcumin, and nifedipine in MMR-deficient cell lines, in order to determine the most appropriate chemopreventive agent for long-term use in patients with hereditary colorectal cancer. Five human colorectal cell lines (SW480, HCT116, LoVo, SW48, and HCT15) and an endometrial cancer cell line (HEC-1-A) were used for susceptibility testing. Tests included assays for growth inhibition, cell-cycle arrest, and apoptosis. Sulindac, celecoxib, curcumin, and nifedipine all displayed dose- and time-dependent anti-proliferation activities. Celecoxib was the most effective anti-proliferative agent, and increased the G0/G1 phase proportion in the cell cycle after treatment more significantly than the other agents in all cell lines. Curcumin displayed a more potent apoptosis-inducing activity than the other agents in treated cells. The tested drugs were effective against colorectal and endometrial cancer cell lines. Celecoxib is more potent with fewer side effects than sulindac. Nifedipine's observed chemopreventive efficacy may complement its known therapeutic application in patients with hypertension.
Chan, Emma; Schaller, Torsten; Eddaoudi, Ayad; Zhan, Hong; Tan, Choon Ping; Jacobsen, Marianne; Thrasher, Adrian J; Towers, Greg J; Qasim, Waseem
2012-11-01
TRIM5α (tripartite motif-containing protein-5, isoform α)-cyclophilin A fusion proteins are anti-human immunodeficiency virus (HIV) restriction factors that have evolved in certain nonhuman primates over millions of years and protect against HIV and related viruses. Restriction by TRIM5αCypA is potent and highly resistant to viral escape by mutation and, in combination with a suitable gene delivery platform, offers the possibility of novel therapeutic approaches against HIV. Here we report that lentiviral vector delivery of human mimics of TRIM5α-cyclophilin A (TRIM5CypA) fusion proteins afforded robust and durable protection against HIV-1, but resulted in downregulation of host cell antiviral responses mediated by endogenous TRIM5α. We found that substitution of TRIM5α RING, B-box, and coiled-coil domains with similar domains from a related TRIM protein, TRIM21, produced a novel and equally potent inhibitor of HIV-1. Both TRIM5CypA and TRIM21CypA inhibited transduction by HIV-1-derived viral vectors and prevented propagation of replication-competent HIV-1 in human cell lines and in primary human T cells. Restriction factor-modified T cells exhibited preferential survival in the presence of wild-type HIV. Restriction was dependent on proteasomal degradation and was reversed in the presence of the cyclophilin inhibitor cyclosporin. Importantly, TRIM21CypA did not disturb endogenous TRIM5α-mediated restriction of gammaretroviral infection. Furthermore, endogenous TRIM21 antiviral activity was assessed by measuring inhibition of adenovirus-antibody complexes and was found to be preserved in all TRIMCypA-modified groups. We conclude that lentivirus-mediated expression of the novel chimeric restriction factor TRIM21CypA provides highly potent protection against HIV-1 without loss of normal innate immune TRIM activity.
Novel β-amyloid aggregation inhibitors possessing a turn mimic.
Hamada, Yoshio; Miyamoto, Naoko; Kiso, Yoshiaki
2015-04-01
Amyloid β peptide, the main component of senile plaques found in the brain of Alzheimer disease (AD) patients, is a molecular target for AD therapeutic intervention. A number of potential AD therapeutics have been reported, including inhibitors of β-secretase, γ-secretase, and Aβ aggregation, and anti-amyloid agents, such as neprilysin, insulin degrading enzyme (IDE), and Aβ antibodies. Recently, we reported potent small-sized β-secretase (BACE1) inhibitors, which could serve as anti-AD drugs. However AD is a progressive disorder, where dementia symptoms gradually worsen over several decades, and therefore may require many years to get cured. One possible way to achieve a greater therapeutic effect is through simultaneous administration of multiple drugs, similar to those used in Highly Active Anti-Retroviral Therapy (HAART) used to treat AIDS. In order to overcome AD, we took a drug discovery approach to evaluate, novel β-amyloid aggregation inhibitors. Previously, we reported that a tong-type compound possessing a turn mimic as the inhibitor of HIV-1 protease dimerization. Oligomerized amyloid β peptides contain a turn structure within the molecule. Here, we designed and synthesized novel β-amyloid aggregation inhibitors with a turn-mimic template, based on the turn conformer of the oligomerized amyloid β peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony; Perros, Manos
2005-01-01
Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 μM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS. PMID:16251317
Novel treatments for inflammatory bowel disease
Lee, Hyo Sun; Park, Soo-Kyung; Park, Dong Il
2018-01-01
Increased understanding of the immunopathology of inflammatory bowel disease (IBD) has led to the development of targeted therapies and has unlocked a new era in IBD treatment. The development of treatment options aimed at a variety of pathological mechanisms offers new hope for customized therapies. Beyond anti-tumor necrosis factor agents, selective lymphocyte trafficking inhibitors have been proposed as potent drugs for IBD. Among these, vedolizumab has recently been approved for both Crohn’s disease and ulcerative colitis. Numerous other agents for IBD treatment are currently under investigation, including Janus kinase inhibitors, anti-mucosal vascular addressin cell adhesion molecule-1 agents, an anti-SMAD7 antisense oligonucleotide, an anti-interleukin-12/23 monoclonal antibody, and a sphingosine-1-phosphate receptor-1 selective agonist. These agents will likely expand the treatment options available for the management of IBD patients in the future. In this review, we discuss the efficacy and safety of novel agents currently under investigation in IBD clinical trials. PMID:29223139
Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene
Chan, Chi N.; Trinité, Benjamin
2017-01-01
ABSTRACT HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. PMID:28652233
Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene.
Chan, Chi N; Trinité, Benjamin; Levy, David N
2017-09-01
HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. Copyright © 2017 American Society for Microbiology.
Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs
Wang, Guangshun
2013-01-01
Antimicrobial peptides (AMPs), small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1) or methicillin-resistant Staphylococcus aureus (MRSA). While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells. PMID:24276259
Nawrozkij, Maxim B; Rotili, Dante; Tarantino, Domenico; Botta, Giorgia; Eremiychuk, Alexandre S; Musmuca, Ira; Ragno, Rino; Samuele, Alberta; Zanoli, Samantha; Armand-Ugón, Mercedes; Clotet-Codina, Imma; Novakov, Ivan A; Orlinson, Boris S; Maga, Giovanni; Esté, José A; Artico, Marino; Mai, Antonello
2008-08-14
A series of dihydro-alkylthio-benzyl-oxopyrimidines (S-DABOs) bearing a 2-aryl-2-oxoethylsulfanyl chain at pyrimidine C2, an alkyl group at C5, and a 2,6-dichloro-, 2-chloro-6-fluoro-, and 2,6-difluoro-benzyl substitution at C6 (oxophenethyl- S-DABOs, 6-8) is here described. The new compounds showed low micromolar to low nanomolar (in one case subnanomolar) inhibitory activity against wt HIV-1. Against clinically relevant HIV-1 mutants (K103N, Y181C, and Y188L) as well as in enzyme (wt and K103N, Y181I, and L100I mutated RTs) assays, compounds carrying an ethyl/ iso-propyl group at C5 and a 2,6-dichloro-/2-chloro-6-fluoro-benzyl moiety at C6 were the most potent derivatives, also characterized by low fold resistance ratio. Interestingly, the structure-activity relationship (SAR) data drawn from this DABO series are more related to HEPT than to DABO derivatives. These findings were at least in part rationalized by the description of a fair superimposition between the 6-8 and TNK-651 (a HEPT analogue) binding modes in both WT and Y181C RTs.
La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W
2000-01-01
We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-α production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-α expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-α is concerned, CC-3052 significantly reduced TNF-α mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-α production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-α is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-α may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-α and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents. PMID:10606973
La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W
2000-01-01
We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-alpha production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-alpha expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-alpha is concerned, CC-3052 significantly reduced TNF-alpha mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-alpha production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-alpha is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-alpha may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-alpha and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents.
Miller, Elizabeth; Spadaccia, Meredith; Sabado, Rachel; Chertova, Elena; Bess, Julian; Trubey, Charles Mac; Holman, Rose Marie; Salazar, Andres; Lifson, Jeffrey; Bhardwaj, Nina
2015-01-03
Therapeutic interventions for HIV-1 that successfully augment adaptive immunity to promote killing of infected cells may be a requisite component of strategies to reduce latent cellular reservoirs. Adoptive immunotherapies utilizing autologous monocyte-derived dendritic cells (DCs) that have been activated and antigen loaded ex vivo may serve to circumvent defects in DC function that are present during HIV infection in order to enhance adaptive immune responses. Here we detail the clinical preparation of DCs loaded with autologous aldrithiol-2 (AT-2)-inactivated HIV that have been potently activated with the viral mimic, Polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose (Poly-ICLC). HIV is first propagated from CD4+ T cells from HIV-infected donors and then rendered non-replicative by chemical inactivation with aldrithiol-2 (AT-2), purified, and quantified. Viral inactivation is confirmed through measurement of Tat-regulated β-galactosidase reporter gene expression following infection of TZM-bl cells. In-process testing for sterility, mycoplasma, LPS, adventitious agents, and removal of AT-2 is performed on viral preparations. Autologous DCs are generated and pulsed with autologous AT-2-inactivated virus and simultaneously stimulated with Poly-ICLC to constitute the final DC vaccine product. Phenotypic identity, maturation, and induction of HIV-specific adaptive immune responses are confirmed via flow cytometric analysis of DCs and cocultured autologous CD4+ and CD8+ T cells. Lot release criteria for the DC vaccine have been defined in accordance with Good Manufacturing Practice (GMP) guidelines. The demonstrated feasibility of this approach has resulted in approval by the FDA for investigational use in antiretroviral (ART) suppressed individuals. We discuss how this optimized DC formulation may enhance the quality of anti-HIV adaptive responses beyond what has been previously observed during DC immunotherapy trials for HIV infection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Xiaofang; Hu, Xinxin; Wu, Yanbin; Liu, Yonghua; Bian, Cong; Nie, Tongying; You, Xuefu; Hu, Laixing
2017-02-15
A series of 4,4'-bis-[2-(6-N-substituted-amidino)indolyl] diphenyl ether have been synthesized and tested for their in vitro antibacterial activity including a range of Gram-positive and Gram-negative pathogens and cytotoxicity. Most of these compounds have mainly shown anti-Gram positive bacteria activities especially against drug resistant bacterial strains MRSA, MRSE and VRE. The anti-MRSA and anti-MRSE activities of compound 7a and 7j were more potent than that of the lead compound 2, levofloxacin and vancomycin. Interestingly, 7j had greatly improved anti negative bacterial activity, especially for the producing NDM-1 Klebsiella pneumonia strain and less toxic than that of the lead compound 2. Copyright © 2017 Elsevier Ltd. All rights reserved.
de Brito, Monique Araújo; Rodrigues, Carlos Rangel; Cirino, José Jair Vianna; de Alencastro, Ricardo Bicca; Castro, Helena Carla; Albuquerque, Magaly Girão
2008-08-01
A series of 74 dihydroalkoxybenzyloxopyrimidines (DABOs), a class of highly potent non-nucleoside reverse transcriptase inhibitors (NNRTIs), was retrieved from the literature and studied by comparative molecular field analysis (CoMFA) in order to derive three-dimensional quantitative structure-activity relationship (3D-QSAR) models. The CoMFA study has been performed with a training set of 59 compounds, testing three alignments and four charge schemes (DFT, HF, AM1, and PM3) and using defaults probe atom (Csp (3), +1 charge), cutoffs (30 kcal.mol (-1) for both steric and electrostatic fields), and grid distance (2.0 A). The best model ( N = 59), derived from Alignment 1 and PM3 charges, shows q (2) = 0.691, SE cv = 0.475, optimum number of components = 6, r (2) = 0.930, SEE = 0.226, and F-value = 115.544. The steric and electrostatic contributions for the best model were 43.2% and 56.8%, respectively. The external predictive ability (r (2) pred = 0.918) of the resultant best model was evaluated using a test set of 15 compounds. In order to design more potent DABO analogues as anti-HIV/AIDS agents, attention should be taken in order to select a substituent for the 4-oxopyrimidine ring, since, as revealed by the best CoMFA model, there are a steric restriction at the C2-position, a electron-rich group restriction at the C6-position ( para-substituent of the 6-benzyl group), and a steric allowed region at the C5-position.
Novel quercetin glycosides as potent anti-MRSA and anti-VRE agents.
Hossion, Abugafar M L; Sasaki, Kenji
2013-12-01
Each year in the United States, at least 2 million people become infected with bacteria that are resistant to antibiotics and at least 23,000 people die each year as a direct result of these infections (Threat report 2013). Vancomycin is an FDA approved antibiotic and is growing importance in the treatment of hospital infections, with particular emphasis on its value to fight against methicillin-resistant Staphylococcus aureus (MRSA). The increasing use of vancomycin to treat infections caused by the Gram-positive MRSA in the 1970s selected for drug-resistant enterococci, less potent than staphylococci but opportunistic in the space vacated by other bacteria and in patients with compromised immune systems. The dramatic rise of antibiotic-resistant bacteria over the past two decades has stressed the need for completely novel classes of antibacterial agents. This paper reports the recent patent review on the strategy for finding novel quercetinglycoside type antibacterial agents against vancomycin-resistant bacterial strains.
Suryadevara, Praveen Kumar; Racherla, Kishore Kumar; Olepu, Srinivas; Norcross, Neil R.; Tatipaka, Hari Babu; Arif, Jennifer A.; Planer, Joseph D.; Lepesheva, Galina; Verlinde, Christophe L. M. J.; Buckner, Frederick S.; Gelb, Michael H.
2014-01-01
New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50<1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T.cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate. PMID:24120539
Hall, I H; Chen, S Y; Rajendran, K G; Sood, A; Spielvogel, B F; Shih, J
1994-01-01
The amine-carboxyborane derivatives were shown to be effective antineoplastic/cytotoxic agents with selective activity against single-cell and solid tumors derived from murine and human leukemias, lymphomas, sarcomas, and carcinomas. The agents inhibited DNA and RNA synthesis in preference to protein synthesis in L1210 lymphoid leukemia cells. Inosine-monophosphate dehydrogenase apparently is a target site of the compounds; similar effects on phosphoribosyl-pyrophosphate amido transferase, orotidine-monophosphate decarboxylase, and both nucleoside and nucleotide kinases were observed. Deoxyribonucleotide pool levels were reduced in the cells; DNA strand scission was observed with the agents. In rodents, the amine carboxyboranes were potent hypolipidemic agents, lowering both serum cholesterol and triglyceride concentrations, in addition to lowering cholesterol content of very low-density lipoprotein and low-density lipoprotein (LDL) and elevating high-density lipoprotein (HDL) cholesterol concentrations. De novo regulatory enzymes involved in lipid synthesis were also inhibited (e.g., hypocholesterolemic 3-hydroxy-3-methyl-Coenzyme A reductase, acyl-Coenzyme A cholesterol acyltransferase, and sn-glycerol-3-phosphate acyltransferase). Concurrently, the agents modulated LDL and HDL receptor binding, internalization, and degradation, so that less cholesterol was delivered to the plaques and more broken down from esters and conducted to the liver for biliary excretion. Tissue lipids in the aorta wall of the rat were reduced and fewer atherosclerotic morphologic lesions were present in quail aortas after treatment with the agents. Cholesterol resorption from the rat intestine was reduced in the presence of drug. Genetic hyperlipidemic mice demonstrated the same types of reduction after treatment with the agents. The agents would effectively lower lipids in tissue based on the inhibition of regulatory enzymes in pigs. These findings should help improve domestic meat supplies from fowl and pigs. The amine-carboxyboranes were effective anti-inflammatory agents against septic shock, induced edema, pleurisy, and chronic arthritis at 2.5 to 8 mg/kg. Lysosomal and proteolytic enzyme activities were also inhibited. More significantly, the agents were dual inhibitors of prostaglandin cyclooxygenase and 5'-lipoxygenase activities. These compounds also affected cytokine release and white cell migration. Subsequent studies showed that the amine-carboxyboranes were potent anti-osteoporotic agents reducing calcium resorption as well as increasing calcium and proline incorporation into mouse pup calvaria and rat UMR-106 collagen. PMID:7889876
Burliaeva, E V; Tarkhov, A E; Burliaev, V V; Iurkevich, A M; Shvets, V I
2002-01-01
Searching of new anti-HIV agents is still crucial now. In general, researches are looking for inhibitors of certain HIV's vital enzymes, especially for reverse transcriptase (RT) inhibitors. Modern generation of anti-HIV agents represents non-nucleoside reverse transcriptase inhibitors (NNRTIs). They are much less toxic than nucleoside analogues and more chemically stable, thus being slower metabolized and emitted from the human body. Thus, search of new NNRTIs is actual today. Synthesis and study of new anti-HIV drugs is very expensive. So employment of the activity prediction techniques for such a search is very beneficial. This technique allows predicting the activities for newly proposed structures. It is based on the property model built by investigation of a series of known compounds with measured activity. This paper presents an approach of activity prediction based on "structure-activity" models designed to form a hypothesis about probably activity interval estimate. This hypothesis formed is based on structure descriptor domains, calculated for all energetically allowed conformers for each compound in the studied sef. Tetrahydroimidazobenzodiazipenone (TIBO) derivatives and phenylethyltiazolyltiourea (PETT) derivatives illustrated the predictive power of this method. The results are consistent with experimental data and allow to predict inhibitory activity of compounds, which were not included into the training set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamata, Masakazu, E-mail: masa3k@ucla.edu; Kim, Patrick Y.; Ng, Hwee L.
Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To testmore » this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.« less
Patel, Rahul V; Keum, Young-Soo; Park, Se Won
2014-01-01
The chemistry and an extensive spectrum of biological activities of s-triazines have been examined since several decades and this heterocyclic core has received emerging consensus. This article aims to summarize recent advances (2000-2013) made towards the discovery of antimicrobial, antituberculosis, anti-HIV and antimalarial agents holding 1,3,5-triazine ring as a nucleus with the substitution of several types of nucleophiles. Molecular patterns associated with particular potency have been identified targeting several Gram-positive and Gram-negative bacteria and some fungal species, mycobacterium tuberculosis H37Rv, HIV type I and HIV type II, particularly, HIV-1I IIB and HIV- 1ROD strains as well as a variety of P. falciparum malarial strains as chloroquine-resistant K1, chloroquine-susceptible NF54, chloroquine-sensitive 3D7, P. falciparum (D6 clone), P. falciparum (W2 clone), cycloguanil-resistant FCR-3, chloroquine sensitive RKL2. The report will be of considerable interest to gain useful information for the furtherance of drug discovery with extended 1,3,5-triazine designs.
Lein, B
1995-12-01
Several immune-based HIV therapy studies presented at the Interscience Conference on Antimicrobial Agents Chemotherapy (ICAAC) are summarized. These studies involve the following therapies: HIV-IT, a gene therapy approach to augmenting the body's anti-HIV responses; interferon-alpha n3, a new formulation of alpha interferon with fewer toxicities; transfer of immune responses from one individual to another, also called passive immune therapy; and interleukin-2 (IL-2) in combination with protease inhibitors.
Synthesis of different types of alkoxy fullerene derivatives from chlorofullerene C60Cl6.
Khakina, Ekaterina A; Kraevaya, Ol'ga A; Popova, Maria L; Peregudov, Alexander S; Troyanov, Sergey I; Chernyak, Alexander V; Martynenko, Vyacheslav M; Kulikov, Alexander V; Schols, Dominique; Troshin, Pavel A
2017-01-25
We report novel synthetic routes for facile preparation of highly functionalized fullerene derivatives C 60 (OR) 5 X (X = H, Cl, Br), C 60 (OR) 4 O and C 60 (OR) 2 from chlorofullerene C 60 Cl 6 . The first water-soluble fullerene compound bearing residues of 3-oxypropanoic acid demonstrated a potent anti-HIV activity.
Fuwa, Haruhiko; Sato, Mizuho
2017-10-20
Neopeltolide, an antiproliferative marine macrolide, is known to specifically inhibit complex III of the mitochondrial electron transport chain (mETC). However, details of the biological mode-of-action(s) remain largely unknown. This work demonstrates potent cytotoxic activity of synthetic neopeltolide analogue, 8,9-dehydroneopeltolide (8,9-DNP), against starved human pancreatic adenocarcinoma PANC-1 cells and human non-small cell lung adenocarcinoma A549 cells. 8,9-DNP induced rapid dissipation of the mitochondrial membrane potential and depletion of intracellular ATP level in nutrient-deprived medium. Meanwhile, in spite of mTOR inhibition under starvation conditions, impairment of cytoprotective autophagy was observed as the lipidation of LC3-I to form LC3-II and the degradation of p62 were suppressed. Consequently, cells were severely deprived of energy sources and underwent necrotic cell death. The autophagic flux inhibited by 8,9-DNP could be restored by glucose, and this eventually rescued cells from necrotic death. Thus, 8,9-DNP is a potent anti-austerity agent that impairs mitochondrial ATP synthesis and cytoprotective autophagy in starved tumor cells.
Sato, Mizuho
2017-01-01
Neopeltolide, an antiproliferative marine macrolide, is known to specifically inhibit complex III of the mitochondrial electron transport chain (mETC). However, details of the biological mode-of-action(s) remain largely unknown. This work demonstrates potent cytotoxic activity of synthetic neopeltolide analogue, 8,9-dehydroneopeltolide (8,9-DNP), against starved human pancreatic adenocarcinoma PANC-1 cells and human non-small cell lung adenocarcinoma A549 cells. 8,9-DNP induced rapid dissipation of the mitochondrial membrane potential and depletion of intracellular ATP level in nutrient-deprived medium. Meanwhile, in spite of mTOR inhibition under starvation conditions, impairment of cytoprotective autophagy was observed as the lipidation of LC3-I to form LC3-II and the degradation of p62 were suppressed. Consequently, cells were severely deprived of energy sources and underwent necrotic cell death. The autophagic flux inhibited by 8,9-DNP could be restored by glucose, and this eventually rescued cells from necrotic death. Thus, 8,9-DNP is a potent anti-austerity agent that impairs mitochondrial ATP synthesis and cytoprotective autophagy in starved tumor cells. PMID:29053565
The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro.
Ortega, Joseph T; Suárez, Alirica I; Serrano, Maria L; Baptista, Jani; Pujol, Flor H; Rangel, Hector R
2017-10-12
Plant extracts are sources of valuable compounds with biological activity, especially for the anti-proliferative activity against pathogens or tumor cells. Myricetin is a flavonoid found in several plants that has been described as an inhibitor of Human immunodeficiency virus type 1 (HIV-1) through its action against the HIV reverse transcriptase, but myricetin derivatives have not been fully studied. The aim of this study was to evaluate the anti-HIV-1 activity of glycosylated metabolites obtained from Marcetia taxifolia and derived from myricetin: myricetin rhamnoside and myricetin 3-(6-rhamnosylgalactoside). Compounds were obtained from organic extracts by maceration of aerial parts of M. taxifolia. All biological assays were performed in the MT4 cell line. Antiviral activity was measured as inhibition of p24 and reverse transcriptase with a fluorescent assay. Both flavonoids have antiviral activity in vitro, with an EC50 of 120 µM for myricetin 3-rhamnoside (MR) and 45 µM for myricetin 3-(6-rhamnosylgalactoside) (MRG), both significantly lower than the EC50 of myricetin (230 µM). Although both compounds inhibited the reverse transcriptase activity, with an IC50 of 10.6 µM for MR and 13.8 µM for MRG, myricetin was the most potent, with an IC50 of 7.6 µM, and an inhibition greater than 80%. Molecular docking approach showed correlation between the free energy of binding with the assays of enzyme inhibition. The results suggest that glycosylated moiety might enhance the anti-HIV-1 activity of myricetin, probably by favoring the internalization of the flavonoid into the cell. The inhibition of the HIV-1 reverse transcriptase is likely responsible for the antiviral activity.
Ignat'eva, G A; Maksiutov, A Z; L'vov, V L; Kolobov, A A; Ignat'ev, T I
2011-01-01
The short multiepitopic synthetic peptides from the sequences of hypervariable area of V3-loope of gp120 of HIV don't induce anti-peptides antibodies production in mice themselves. We prepared the potent immunogen by noncovalent conjugations of the multitude peptides with pure peptidoglycans from cell wall of Salmonella typhi. The sera from immunized mice have the anti-peptides antibody titers (3-5) x 10(5) in ELISA, as high as Freund's adjuvant is of use.
Ogino, Masaki; Fukui, Seiji; Nakada, Yoshihisa; Tokunoh, Ryosuke; Itokawa, Shigekazu; Kakoi, Yuichi; Nishimura, Satoshi; Sanada, Tsukasa; Fuse, Hiromitsu; Kubo, Kazuki; Wada, Takeo; Marui, Shogo
2011-01-01
Acyl-CoA: cholesterol acyltransferase (ACAT) is an intracellular enzyme that catalyzes cholesterol esterification. ACAT inhibitors are expected to be potent therapeutic agents for the treatment of atherosclerosis. A series of potent ACAT inhibitors based on an (4-phenylcoumarin)acetanilide scaffold was identified. Evaluation of the structure-activity relationships of a substituent on this scaffold, with an emphasis on improving the pharmacokinetic profile led to the discovery of 2-[7-chloro-4-(3-chlorophenyl)-6-methyl-2-oxo-2H-chromen-3-yl]-N-[4-chloro-2-(trifluoromethyl)phenyl]acetamide (23), which exhibited potent ACAT inhibitory activity (IC50=12 nM) and good pharmacokinetic profile in mice. Compound 23 also showed regressive effects on atherosclerotic plaques in apolipoprotein (apo)E knock out (KO) mice at a dose of 0.3 mg/kg per os (p.o.).
Weller, Stephen; Radomski, Kristine M.; Lou, Yu; Stein, Daniel S.
2000-01-01
Abacavir (formerly 1592U89) is a carbocyclic nucleoside analog with potent anti-human immunodeficiency virus (anti-HIV) activity when administered alone or in combination with other antiretroviral agents. The population pharmacokinetics and pharmacodynamics of abacavir were investigated in 41 HIV type 1 (HIV-1)-infected, antiretroviral naive adults with baseline CD4+ cell counts of ≥100/mm3 and plasma HIV-1 RNA levels of >30,000 copies/ml. Data for analysis were obtained from patients who received randomized, blinded monotherapy with abacavir at 100, 300, or 600 mg twice-daily (BID) for up to 12 weeks. Plasma abacavir concentrations from sparse sampling were analyzed by standard population pharmacokinetic methods, and the effects of dose, combination therapy, gender, weight, and age on parameter estimates were investigated. Bayesian pharmacokinetic parameter estimates were calculated to determine the peak concentration of abacavir in plasma (Cmax) and the area under the concentration-time curve from time zero to infinity (AUC0–∞) for individual subjects. The pharmacokinetics of abacavir were dose proportional over the 100- to 600-mg dose range and were unaffected by any covariates. No significant correlations were observed between the incidence of the five most common adverse events (headache, nausea, diarrhea, vomiting, and malaise or fatigue) and AUC0–∞. A significant correlation was observed between Cmax and nausea by categorical analysis (P = 0.019), but this was of borderline significance by logistic regression (odds ratio, 1.45; 95% confidence interval, 0.95 to 2.32). The log10 time-averaged AUC0–∞ minus baseline (AAUCMB) values for HIV-1 RNA and CD4+ cell count correlated significantly with Cmax and AUC0–∞, but with better model fits for AUC0–∞. The increase in AAUCMB values for CD4+ cell count plateaued early for drug exposures that were associated with little change in AAUCMB values for plasma HIV-1 RNA. There was less than a 0.4 log10 difference over 12 weeks in the HIV-1 RNA levels with the doubling of the abacavir AUC0–∞ from 300 to 600 mg BID dosing. In conclusion, pharmacodynamic modeling supports the selection of abacavir 300 mg twice-daily dosing. PMID:10898675
Chinsembu, Kazhila C
2009-01-01
Many people with Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) in Namibia have access to antiretroviral drugs but some still use traditional medicines to treat opportunistic infections and offset side-effects from antiretroviral medication. Namibia has a rich biodiversity of indigenous plants that could contain novel anti-HIV agents. However, such medicinal plants have not been identified and properly documented. Various ethnomedicines used to treat HIV/AIDS opportunistic infections have not been scientifically validated for safety and efficacy. These limitations are mostly attributable to the lack of collaboration between biomedical scientists and traditional healers. This paper presents a five-step contextual model for initiating collaboration with Namibian traditional healers in order that candidate plants that may contain novel anti-HIV agents are identified, and traditional medicines used to treat HIV/AIDS opportunistic infections are subjected to scientific validation. The model includes key structures and processes used to initiate collaboration with traditional healers in Namibia; namely, the National Biosciences Forum, a steering committee with the University of Namibia (UNAM) as the focal point, a study tour to Zambia and South Africa where other collaborative frameworks were examined, commemorations of the African Traditional Medicine Day (ATMD), and consultations with stakeholders in north-eastern Namibia. Experiences from these structures and processes are discussed. All traditional healers in north-eastern Namibia were willing to collaborate with UNAM in order that their traditional medicines could be subjected to scientific validation. The current study provides a framework for future collaboration with traditional healers and the selection of candidate anti-HIV medicinal plants and ethnomedicines for scientific testing in Namibia. PMID:19852791
Wang, Liu; Tian, Ye; Chen, Wenmin; Liu, Hong; Zhan, Peng; Li, Dongyue; Liu, Huiqing; De Clercq, Erik; Pannecouque, Christophe; Liu, Xinyong
2014-10-06
Guided by crystal structures of HIV-1 RT/DAPY complex and molecular modeling studies, a series of novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives were rationally designed via structure-based core refining approach, synthesized through the readily accessible synthetic methods and evaluated for their anti-HIV activities in MT-4 cells. Preliminary biological evaluation indicated that most of the compounds exhibited marked inhibitory activity against the wild-type HIV-1 IIIB. Particularly, compound 7n was the most potent inhibitor against wild-type and K103N/Y181C double resistant mutant strain of HIV-1, possessing EC50 values of 0.02 μM and 7.6 μM, respectively, which were much better than or similar to nevirapine (NVP, EC50 = 0.15 μM, 2.9 μM) and delavirdine (DLV, EC50 = 0.07 μM, >36 μM). Besides, some other compounds, 5b, 7c, 7e, 7f, and 7m, were also endowed with favorable anti-HIV-1 potency (EC50 = 0.07, 0.05, 0.05, 0.07, and 0.05 μM, respectively), which were better than or similar to those of NVP and DLV, suggesting a high potential to further develop this type of bridgehead nitrogen heterocycle as a novel class of NNRTIs with improved antiviral efficacy and resistance profile. The selected compound, 7i, was found moderately inhibitory towards RT (IC50 = 0.39 μM), which was higher than for ETV (IC50 = 0.56 μM). Preliminary structure-activity relationships (SARs) and molecular modeling of these new analogues were detailed in this manuscript. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model.
Sato, Kei; Takeuchi, Junko S; Misawa, Naoko; Izumi, Taisuke; Kobayashi, Tomoko; Kimura, Yuichi; Iwami, Shingo; Takaori-Kondo, Akifumi; Hu, Wei-Shau; Aihara, Kazuyuki; Ito, Mamoru; An, Dong Sung; Pathak, Vinay K; Koyanagi, Yoshio
2014-10-01
Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo.
Torriani, F J; Freeman, W R; Macdonald, J C; Karavellas, M P; Durand, D M; Jeffrey, D D; Meylan, P R; Schrier, R D
2000-01-28
To determine predictors of clinical relapse of cytomegalovirus (CMV) end-organ disease in a cohort of 17 HIV-infected patients with healed and treated CMV retinitis (CMVR) who responded to HAART with an increase in CD4 cell counts to above 70 cells/mm3 and discontinued CMV maintenance therapy (MT). Seventeen patients were monitored for reactivation of retinitis. The CD4 cell counts, HIV RNA and peripheral blood mononuclear cell (PBMC) lymphoproliferative assays to CMV at 3 month intervals were compared between patients with and without reactivation of CMVR. Positive lymphoproliferative responses were defined as a stimulation index of 3 or greater. Five out of 17 (29%) patients experienced a recurrence of CMVR a mean of 14.5 months after stopping CMV MT and between 8 days and 10 months after CD4 cell counts fell below 50 cells/mm3. Median CD4 cell counts and plasma HIV RNA at reactivation were 37 cells/mm3 and 5.3 log10 copies/ml. Three patients recurred at a previously active site of the retina, one had contralateral CMVR, and one a recurrence of retinitis and pancreatitis simultaneously. Mean lymphoproliferative responses to CMV were 2.4 in patients with reactivation versus 21.0 stimulation index (SI) in patients without reactivation (P= 0.01). A model incorporating four variables (CD4 cell counts and HIV RNA at maintenance discontinuation, highest CD4 cell count, nadir HIV RNA and median lymphoproliferative responses) identified correctly 88% of patients with and without reactivation. CMV disease recurs after virological and immunological failure of HAART if CD4 cell counts drop below 50. In this situation, anti-CMV agents should be resumed before clinical reactivation ensues, because of the risk of contralateral retinal involvement and systemic disease.
Crystal Structure of HIV-1 Primary Receptor CD4 i Complex with a Potent Antiviral Antibody
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, M.M.; Hong, X.; Seaman, M.S.
2010-06-18
Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 {angstrom} resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalentmore » forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.« less
Suryadevara, Praveen Kumar; Racherla, Kishore Kumar; Olepu, Srinivas; Norcross, Neil R; Tatipaka, Hari Babu; Arif, Jennifer A; Planer, Joseph D; Lepesheva, Galina I; Verlinde, Christophe L M J; Buckner, Frederick S; Gelb, Michael H
2013-12-01
New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50 <1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T. cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pierra, Claire; Amador, Agnès; Benzaria, Samira; Cretton-Scott, Erika; D'Amours, Marc; Mao, John; Mathieu, Steven; Moussa, Adel; Bridges, Edward G; Standring, David N; Sommadossi, Jean-Pierre; Storer, Richard; Gosselin, Gilles
2006-11-02
In our search for new therapeutic agents against chronic hepatitis C, a ribonucleoside analogue, 2'-C-methylcytidine, was discovered to be a potent and selective inhibitor in cell culture of a number of RNA viruses, including the pestivirus bovine viral diarrhea virus, a surrogate model for hepatitis C virus (HCV), and three flaviviruses, namely, yellow fever virus, West Nile virus, and dengue-2 virus. However, pharmacokinetic studies revealed that 2'-C-methylcytidine suffers from a low oral bioavailability. To overcome this limitation, we have synthesized the 3'-O-l-valinyl ester derivative (dihydrochloride form, valopicitabine, NM283) of 2'-C-methylcytidine. We detail herein for the first time the chemical synthesis and physicochemical characteristics of this anti-HCV prodrug candidate, as well as a comparative study of its pharmacokinetic parameters with those of its parent nucleoside analogue, 2'-C-methylcytidine.
A new series of HAPs as anti-HBV agents targeting at capsid assembly.
Yang, Xiu-yan; Xu, Xiao-qian; Guan, Hua; Wang, Li-li; Wu, Qin; Zhao, Guo-ming; Li, Song
2014-09-01
A series of novel Heteroaryldihydropyrimidines (HAPs) derivatives were designed and synthesized as potent inhibitors of HBV capsid assembly. These compounds were prepared from efforts to optimize an earlier series of HAPs, and compounds Mo1, Mo7, Mo8, Mo10, Mo12, and Mo13 demonstrated potent inhibition of HBV DNA replication at submicromolar range. Copyright © 2014. Published by Elsevier Ltd.
Henao-Mejia, Jorge; Góez, Yenny; Patiño, Pablo; Rugeles, Maria T
2006-06-01
Since the human immunodeficiency virus was identified as etiological agent of the acquired immunodeficiency syndrome, great advances have been accomplished in the therapeutic field leading to reduced morbidity and mortality among infected patients. However, the high mutation rate of the viral genome generates strains resistant to multiple drugs, pointing to the importance of finding new therapeutic targets. Among the HIV structural genes, the POL gene codes for three essential enzymes: reverse transcriptase, protease, and integrase; nineteen of the twenty drugs currently approved by the Food and Drug Administration to treat this viral infection, inhibit the reverse transcriptase and the protease. Although intense research has been carried out in this area during the last 10 years, HIV integrase inhibitors are not yet approved for clinical use; however the fact that presence of this enzyme is a sine qua non for a productive HIV life cycle joined to its unique properties makes it a promissory target for anti-HIV therapy. Many compounds have been claimed to inhibit integrase in vitro; however, few of them have proven to have antiviral activity and low cytotoxicity in cell systems. Diketoacid derivatives are the most promising integrase inhibitors so far reported. Initially discovered independently by Shionogi & Co. and the Merck Research Laboratories, these compounds are highly specific for the integrase with potent antiviral activity in vitro and in vivo, and low cytotoxicity in cell cultures. Some of these compounds have recently entered clinical trials. Due to the high relevance of integrase inhibitors, and specifically of diketoacid derivatives, we review the latest findings and patents in this important field of research.
Plasmids encoding therapeutic agents
Keener, William K [Idaho Falls, ID
2007-08-07
Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.
Novel targets for HIV therapy.
Greene, Warner C; Debyser, Zeger; Ikeda, Yasuhiro; Freed, Eric O; Stephens, Edward; Yonemoto, Wes; Buckheit, Robert W; Esté, José A; Cihlar, Tomas
2008-12-01
There are currently 25 drugs belonging to 6 different inhibitor classes approved for the treatment of human immunodeficiency virus (HIV) infection. However, new anti-HIV agents are still needed to confront the emergence of drug resistance and various adverse effects associated with long-term use of antiretroviral therapy. The 21st International Conference on Antiviral Research, held in April 2008 in Montreal, Canada, therefore featured a special session focused on novel targets for HIV therapy. The session included presentations by world-renowned experts in HIV virology and covered a diverse array of potential targets for the development of new classes of HIV therapies. This review contains concise summaries of discussed topics that included Vif-APOBEC3G, LEDGF/p75, TRIM 5alpha, virus assembly and maturation, and Vpu. The described viral and host factors represent some of the most noted examples of recent scientific breakthroughs that are opening unexplored avenues to novel anti-HIV target discovery and validation, and should feed the antiretroviral drug development pipeline in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Tatsunori; Yamamoto, Norio; Department of General Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
The development of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus (HIV) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. One such target is the interaction between Vpr, one of the accessory gene products of HIV-1 and Importin {alpha}, which is crucial, not only for the nuclear import of Vpr, but also for HIV-1 replication in macrophages. We have identified a potential parent compound, hematoxylin, which suppresses Vpr-Importin {alpha} interaction, thereby inhibiting HIV-1 replication in a Vpr-dependent manner. Analysis by real-time PCR demonstrated that hematoxylin specificallymore » inhibited nuclear import step of pre-integration complex. Thus, hematoxylin is a new anti-HIV-1 inhibitor that targets the nuclear import of HIV-1 via the Vpr-Importin {alpha} interaction, suggesting that a specific inhibitor of the interaction between viral protein and the cellular factor may provide a new strategy for HIV-1 therapy.« less
Pomalidomide is nonteratogenic in chicken and zebrafish embryos and nonneurotoxic in vitro
Mahony, Chris; Erskine, Lynda; Niven, Jennifer; Greig, Nigel H.; Figg, William Douglas; Vargesson, Neil
2013-01-01
Thalidomide and its analog, Lenalidomide, are in current use clinically for treatment of multiple myeloma, complications of leprosy and cancers. An additional analog, Pomalidomide, has recently been licensed for treatment of multiple myeloma, and is purported to be clinically more potent than either Thalidomide or Lenalidomide. Using a combination of zebrafish and chicken embryos together with in vitro assays we have determined the relative anti-inflammatory activity of each compound. We demonstrate that in vivo embryonic assays Pomalidomide is a significantly more potent anti-inflammatory agent than either Thalidomide or Lenalidomide. We tested the effect of Pomalidomide and Lenalidomide on angiogenesis, teratogenesis, and neurite outgrowth, known detrimental effects of Thalidomide. We found that Pomalidomide, displays a high degree of cell specificity, and has no detectable teratogenic, antiangiogenic or neurotoxic effects at potent anti-inflammatory concentrations. This is in marked contrast to Thalidomide and Lenalidomide, which had detrimental effects on blood vessels, nerves, and embryonic development at anti-inflammatory concentrations. This work has implications for Pomalidomide as a treatment for conditions Thalidomide and Lenalidomide treat currently. PMID:23858438
Putting copper into action: copper-impregnated products with potent biocidal activities.
Borkow, Gadi; Gabbay, Jeffrey
2004-11-01
Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria.
Structure-Activity Relationships of Acyclic Selenopurine Nucleosides as Antiviral Agents.
Sahu, Pramod K; Umme, Tamima; Yu, Jinha; Kim, Gyudong; Qu, Shuhao; Naik, Siddhi D; Jeong, Lak Shin
2017-07-12
A series of acyclic selenopurine nucleosides 3a - f and 4a - g were synthesized based on the bioisosteric rationale between oxygen and selenium, and then evaluated for antiviral activity. Among the compounds tested, seleno-acyclovir ( 4a ) exhibited the most potent anti-herpes simplex virus (HSV)-1 (EC 50 = 1.47 µM) and HSV-2 (EC 50 = 6.34 µM) activities without cytotoxicity up to 100 µM, while 2,6-diaminopurine derivatives 4e - g exhibited significant anti-human cytomegalovirus (HCMV) activity, which is slightly more potent than the guanine derivative 4d , indicating that they might act as prodrugs of seleno-ganciclovir ( 4d ).
Wu, Jianzhang; Wu, Shoubiao; Shi, Lingyi; Zhang, Shanshan; Ren, Jiye; Yao, Song; Yun, Di; Huang, Lili; Wang, Jiabing; Li, Wulan; Wu, Xiaoping; Qiu, Peihong; Liang, Guang
2017-01-05
The nuclear factor-kappa B (NF-κB) signaling pathway has been targeted for the therapy of various cancers, including lung cancer. EF24 was considered as a potent inhibitor of NF-κB signaling pathway. In this study, a series of asymmetric EF24 analogues were synthesized and evaluated for their anti-cancer activity against three lung cancer cell lines (A549, LLC, H1650). Most of the compounds exhibited good anti-tumor activity. Among them, compound 81 showed greater cytotoxicity than EF24. Compound 81 also possessed a potent anti-migration and anti-proliferative ability against A549 cells in a concentration-dependent manner. Moreover, compound 81 induced lung cancer cells death by inhibiting NF-κB signaling pathway, and activated the JNK-mitochondrial apoptotic pathway by increasing reactive oxygen species (ROS) generation resulting in apoptosis. In summary, compound 81 is a valuable candidate for anti-lung cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Zhang, Da-Wei; Zhao, Ming-Ming; Chen, Juan; Li, Chao; Guo, Shun-Xing
2013-05-01
A total of 52 endophytic fungi were isolated from roots and stems of Tibetan medicinal plant Phlomis younghusbandii Mukerjee. These fungal isolates were molecularly identified based on ITS sequnces and 28S sequences distributed to 12 genera, including Phoma, Chaetosphaeronema, Fusarium and Leptosphaeria, etc. Among them, the dominant genus was Phoma. Extracts of all strains were evaluated for anti-HIV-1 integrase activity by using soluable integrase expressed in E. coli BL21 (DE3). The results showed that seven samples from five fungal endophytes PHY-24, PHY-38, PHY-40, PHY-51, PHY-53, which belonged to genus Chaetosphaeronema, inhibited strand transfer reaction catalyzed by HIV-1 integrase with IC50 values, of 6.60, 5.20, 2.86, 7.86, 4.47, 4.56 and 3.23 microg x mL(-1) respectively. In conclusion, the endophytic fungi of Phlomis younghusbandii Mukerjee are valuable for further screening anti-HIV-1 integrase agents.
Li, Ya-Ru; Li, Chao; Liu, Jia-Chun; Guo, Meng; Zhang, Tian-Yi; Sun, Liang-Peng; Zheng, Chang-Ji; Piao, Hu-Ri
2015-11-15
Three series of 1,3-diaryl pyrazole derivatives bearing aminoguanidine or furan-2-carbohydrazide moieties have been synthesized, characterized and evaluated for antibacterial and anti-inflammatory activities. Most of the synthesized compounds showed potent inhibition of several Gram-positive bacterial strains (including multidrug-resistant clinical isolates) and Gram-negative bacterial strains with minimum inhibitory concentration values in the range of 1-64 μg/mL. Compounds 6g, 6l and 7l presented the most potent inhibitory activity against Gram-positive bacteria (e.g. Staphylococcus aureus 4220), Gram-negative bacteria (e.g. Escherichia coli 1924) and the fungus, Candida albicans 7535, with minimum inhibitory concentration values of 1 or 2 μg/mL. Compared with previous studies, these compounds exhibited a broad spectrum of inhibitory activity. Furthermore, compound 7l showed the greatest anti-inflammatory activity (93.59% inhibition, 30 min after intraperitoneal administration), which was more potent than the reference drugs ibuprofen and indomethacin. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer
2007-06-01
to demonstrate that fusogenic oncolytic HSVs are a potent anti -tumor agent for advanced ovarian cancer; 2) to prove that fusogenic oncolytic HSVs...oncolytic herpes simplex virus (HSV) can significantly enhance the anti -tumor effect of the virus. Three specific aims have been proposed and they are: 1...have the same safety profile as their non-fusogenic counterparts; 3) to explore novel delivery strategies that can evade host’s anti -viral immunity
Li, Wenxin; Li, Xiao; De Clercq, Erik; Zhan, Peng; Liu, Xinyong
2015-09-18
The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of the clinically used anti-HIV drugs. Therefore, the discovery of novel and effective NNRTIs is still an extremely primary mission. Arylthioacetanilide family is one of the highly active HIV-1 NNRTIs against wide-type (WT) HIV-1 and a wide range of drug-resistant mutant strains. Especially, VRX-480773 and RDEA806 have been chosen as candidates for further clinical studies. In this article, we review the discovery and development of the arylthioacetanilides, and, especially, pay much attention to the structural modifications, SARs conclusions and molecular modeling. Moreover, several medicinal chemistry strategies to overcome drug resistance involved in the optimization process of arylthioacetanilides are highlighted, providing valuable clues for further investigations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Sadraeian, M.; Tsutae, F. M.; Moreira, H. H. T.; Araujo, A. P. U.; Guimarães, F. E. G.; Pincus, S. H.
2015-06-01
Pulchellin is a type 2 of ribosome-inactivating proteins isolated from some seeds significantly growing in Brazil. It is a potent agent to inhibit the protein synthesis in cancer cells and also HIV-infected cells. Pulchellin can be conjugated to HIV monoclonal antibodies to specifically target the HIV-infected cells. To analyze the protein synthesis inhibition by Pulchellin, the intracellular localization of the immunoconjugate should be compared to Pulchellin. In this case, the intracellular trafficking of this protein in cells can be determined by confocal microscopy. In our study, we utilized Pulchellin to construct HIV monoclonal antibody-conjugated Pulchellin A chain in order to target HIV-infected lymphocyte cells. Afterward the conjugation was labeled with the superior Alexa Fluor 488 dye. As a subsequent step, we are interested in studying the intracellular trafficking pathway of this novel conjugation in HIV-infected cells by confocal microscopy. Moreover, possible quantitative methods for fluorescent labeling of the immunoconjugate during confocal microscopy will be investigated.
Chioua, Mourad; Sucunza, David; Soriano, Elena; Hadjipavlou-Litina, Dimitra; Alcázar, Alberto; Ayuso, Irene; Oset-Gasque, María Jesús; González, María Pilar; Monjas, Leticia; Rodríguez-Franco, María Isabel; Marco-Contelles, José; Samadi, Abdelouahid
2012-01-12
We report the synthesis, theoretical calculations, the antioxidant, anti-inflammatory, and neuroprotective properties, and the ability to cross the blood-brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as potential agents for stroke treatment. The majority of nitrones compete with DMSO for hydroxyl radicals, and most of them are potent lipoxygenase inhibitors. Cell viability-related (MTT assay) studies clearly showed that nitrones 1-3 and 10 give rise to significant neuroprotection. When compounds 1-11 were tested for necrotic cell death (LDH release test) nitrones 1-3, 6, 7, and 9 proved to be neuroprotective agents. In vitro evaluation of the BBB penetration of selected nitrones 1, 2, 10, and 11 using the PAMPA-BBB assay showed that all of them cross the BBB. Permeable quinoline nitrones 2 and 3 show potent combined antioxidant and neuroprotective properties and, therefore, can be considered as new lead compounds for further development in specific tests for potential stroke treatment.
Chen, Yilin; Cass, Shelley L; Kutty, Samuel K; Yee, Eugene M H; Chan, Daniel S H; Gardner, Christopher R; Vittorio, Orazio; Pasquier, Eddy; Black, David StC; Kumar, Naresh
2015-11-15
Phenoxodiol, an analogue of the isoflavone natural product daidzein, is a potent anti-cancer agent that has been investigated for the treatment of hormone dependent cancers. This molecular scaffold was reacted with different primary amines and secondary amines under different Mannich conditions to yield either benzoxazine or aminomethyl substituted analogues. These processes enabled the generation of a diverse range of analogues that were required for structure-activity relationship (SAR) studies. The resulting Mannich bases exhibited prominent anti-proliferative effects against SHEP neuroblastoma and MDA-MB-231 breast adenocarcinoma cell lines. Further cytotoxicity studies against MRC-5 normal lung fibroblast cells showed that the isoflavene analogues were selective towards cancer cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Murugan, Ravichandran N; Jacob, Binu; Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu
2013-01-01
Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.
Suzuki, Takayoshi; Kasuya, Yuki; Itoh, Yukihiro; Ota, Yosuke; Zhan, Peng; Asamitsu, Kaori; Nakagawa, Hidehiko; Okamoto, Takashi; Miyata, Naoki
2013-01-01
To find histone deacetylase 3 (HDAC3)-selective inhibitors, a series of 504 candidates was assembled using "click chemistry", by reacting nine alkynes bearing a zinc-binding group with 56 azide building blocks in the presence of Cu(I) catalyst. Screening of the 504-member triazole library against HDAC3 and other HDAC isozymes led to the identification of potent and selective HDAC3 inhibitors T247 and T326. These compounds showed potent HDAC3 inhibition with submicromolar IC50s, whereas they did not strongly inhibit other isozymes. Compounds T247 and T326 also induced a dose-dependent selective increase of NF-κB acetylation in human colon cancer HCT116 cells, indicating selective inhibition of HDAC3 in the cells. In addition, these HDAC3-selective inhibitors induced growth inhibition of cancer cells, and activated HIV gene expression in latent HIV-infected cells. These findings indicate that HDAC3-selective inhibitors are promising candidates for anticancer drugs and antiviral agents. This work also suggests the usefulness of the click chemistry approach to find isozyme-selective HDAC inhibitors.
Actinomycin D binding mode reveals the basis for its potent HIV-1 and cancer activity
NASA Astrophysics Data System (ADS)
Paramanathan, Thayaparan; Vladescu, Ioana D.; McCauley, Micah J.; Rouzina, Ioulia; Williams, Mark C.
2011-03-01
Actinomycin D (ActD) is one of the most studied antibiotics, which has been used as an anti-cancer agent and also shown to inhibit HIV reverse transcription. Initial studies with ActD established that it intercalates double stranded DNA (dsDNA). However, recent studies have shown that ActD binds with even higher affinity to single stranded DNA (ssDNA). In our studies we use optical tweezers to stretch and hold single dsDNA molecule at constant force in the presence of varying ActD concentrations until the binding reaches equilibrium. The change in dsDNA length upon ActD binding measured as a function of time yields the rate of binding in addition to the equilibrium lengthening of DNA. The results suggest extremely slow kinetics, on the order of several minutes and 0.52 +/- 0.06 μ M binding affinity. Holding DNA at constant force while stretching and relaxing suggests that ActD binds to two single strands that are close to each other rather than to pure dsDNA or ssDNA. This suggests that biological activity of ActD that contributes towards the inhibition of cellular replication is due to its ability to bind at DNA bubbles during RNA transcription, thereby stalling the transcription process.
Microwave-assisted synthesis and anti-YFV activity of 2,3-diaryl-1,3-thiazolidin-4-ones.
Sriram, Dharmarajan; Yogeeswari, Perumal; Kumar, T G Ashok
2005-09-01
The purpose of this study was to prepare several 1,3-thaizolidin-4-ones bearing variously substituted diaryl ring at C-2 and N-3 positions and evaluate them for their anti-YFV activity. Several 1,3-thaizolidin-4-ones were prepared by reacting substituted benzaldehyde with equimolar amount of an appropriate substituted aromatic amine in the presence of an excess of mercaptoacetic acid in toluene utilizing microwave irradiation. The synthesized compounds were also evaluated for their inhibitory effects on the replication of YFV in green monkey kidney (Vero) cells (ATCC CCL81), by means of a cytopathic effect reduction assay. The compound DS1 emerged as the most potent anti-YFV agent with EC50 of 6.9 microM and CC50 more than 100 microM making it more potent than ribavirin. 2,3-diaryl-1,3-thiazolidin-4-ones possess anti-YFV potency.
FV-100: the most potent and selective anti-varicella zoster virus agent reported to date.
Migliore, Marco
2010-01-05
Bicyclic aryl furano pyrimidines represent the most potent anti-varicella zoster virus (VZV) agents reported to date. Lead compounds have 50% effective concentration (EC(50)) values in vitro that are in the subnanomolar range and selectivity index values that exceed 1 million. They have an absolute requirement for VZV thymidine kinase and most likely act as their phosphate forms. Some structural modification (such as aryl substitution in the base moiety) is tolerated, whereas little sugar modification is acceptable. The Cf1743 compound has proved to be significantly more potent than all reference anti-VZV compounds, as measured either by inhibition of infectious virus particles and/or viral DNA production; however, the high lipophilicity and very low water solubility of this compound gives poor oral bioavailability (<14%). Use of the modified cyclodextrin captisol and the synthesis of the 5'-monophosphate prodrug of Cf1743 has significantly improved water solubility, but does not give any enhancement in oral bioavailability. By contrast, the synthesis of the ether series does not give any further improvement in terms of solubility. The most promising prodrug to emerge to date is the hydrochloric salt of the 5'-valyl-ester, designated as FV-100. Its uptake into cells has been studied using fluorescent microscopy and biological assays, which have indicated that the compound is efficiently taken up by the cells after a short period of incubation.
Hu, Shuang; Neff, Charles Preston; Kumar, Dipu Mohan; Habu, Yuichiro; Akkina, Sarah R; Seki, Takahiro; Akkina, Ramesh
2017-01-15
While HIV-2 is a causative agent for AIDS in addition to the better studied HIV-1, there is currently no suitable animal model for experimental studies for HIV-2 infection and evaluating promising drugs in vivo. Here we evaluated humanized mice for their susceptibility to HIV-2 infection and tested a single-pill three drug formulation of anti-retrovirals (NRTIs abacavir and lamivudine, integrase inhibitor dolutegravir) (trade name, Triumeq R ). Our results showed that hu-mice are susceptible to HIV-2 infection showing persistent viremia and CD4 T cell loss, key hallmarks of AIDS pathogenesis. Oral drug treatment led to full viral suppression and protection from CD4 T cell depletion. Cessation of therapy resulted in viral rebound and CD4 T cell loss. These proof-of-concept studies establish the utility of hu-mice for evaluating HIV-2 pathogenesis in more detail in the future, testing novel therapies and providing pre-clinical efficacy data of a three drug combination to treat HIV-2 infections. Copyright © 2016. Published by Elsevier Inc.
Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV.
De Clercq, Erik
2009-04-01
In 2008, 25 years after the human immunodeficiency virus (HIV) was discovered as the then tentative aetiological agent of acquired immune deficiency syndrome (AIDS), exactly 25 anti-HIV compounds have been formally approved for clinical use in the treatment of AIDS. These compounds fall into six categories: nucleoside reverse transcriptase inhibitors (NRTIs: zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine); nucleotide reverse transcriptase inhibitors (NtRTIs: tenofovir); non-nucleoside reverse transcriptase inhibitors (NNRTIs: nevirapine, delavirdine, efavirenz and etravirine); protease inhibitors (PIs: saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir); cell entry inhibitors [fusion inhibitors (FIs: enfuvirtide) and co-receptor inhibitors (CRIs: maraviroc)]; and integrase inhibitors (INIs: raltegravir). These compounds should be used in drug combination regimens to achieve the highest possible benefit, tolerability and compliance and to diminish the risk of resistance development.
Arshad, Laiba; Haque, Md Areeful; Abbas Bukhari, Syed Nasir; Jantan, Ibrahim
2017-04-01
Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.
Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control.
Soper, Andrew; Kimura, Izumi; Nagaoka, Shumpei; Konno, Yoriyuki; Yamamoto, Keisuke; Koyanagi, Yoshio; Sato, Kei
2017-01-01
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4 + T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo
Freund, Natalia T.; Horwitz, Joshua A.; Nogueira, Lilian; Sievers, Stuart A.; Scharf, Louise; Scheid, Johannes F.; Gazumyan, Anna; Liu, Cassie; Velinzon, Klara; Goldenthal, Ariel; Sanders, Rogier W.; Moore, John P.; Bjorkman, Pamela J.; Seaman, Michael S.; Walker, Bruce D.; Klein, Florian; Nussenzweig, Michel C.
2015-01-01
The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans. PMID:26516768
Trivedi, Rajiv; Rami Reddy, E; Kiran Kumar, Ch; Sridhar, B; Pranay Kumar, K; Srinivasa Rao, M
2011-07-01
A simple and efficient synthetic approach toward a series of chiral aryl boronate esters, starting from D-xylose, as anti-microbial agents, is described herein. Minimum inhibitory concentration and zone of inhibition revealed that these derivatives exhibit potent anti-bacterial and anti-fungal properties. Herein, we report the first anti-microbial activity of this class of compounds. All products have been characterized by NMR ((1)H, (13)C and (11)B), IR, elemental and mass spectral study. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yi; Han, Gye Won; Abagyan, Ruben
CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokinemore » interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.« less
Intra-Prostate Cancer Vaccine Inducer
2006-02-01
analyzed by flowcytometry for Ii and MHC class II expression. The active constructs were used for the Ii suppression in the experiments planned in...care guidelines under an approved protocol. Cell lines and antibodies Green monkey kidney COS cells (#CRL-1650), cultured in RPMI-1640 medium with...AIDS vaccine protection in rhesus monkeys . J Virol 2004;78(14):7490-7. 12. Letvin NL, Montefiori DC, Yasutomi Y, et al. Potent, protective anti-HIV
Eldehna, Wagdy M; Almahli, Hadia; Al-Ansary, Ghada H; Ghabbour, Hazem A; Aly, Mohamed H; Ismael, Omnia E; Al-Dhfyan, Abdullah; Abdel-Aziz, Hatem A
2017-12-01
Treatment of patients with triple-negative breast cancer (TNBC) is challenging due to the absence of well- defined molecular targets and the heterogeneity of such disease. In our endeavor to develop potent isatin-based anti-proliferative agents, we utilized the hybrid-pharmacophore approach to synthesize three series of novel isatin-based hybrids 5a-h, 10a-h and 13a-c, with the prime goal of developing potent anti-proliferative agents toward TNBC MDA-MB-231 cell line. In particular, compounds 5e and 10g were the most active hybrids against MDA-MB-231 cells (IC 50 = 12.35 ± 0.12 and 12.00 ± 0.13 μM), with 2.37- and 2.44-fold increased activity than 5-fluorouracil (5-FU) (IC 50 = 29.38 ± 1.24 μM). Compounds 5e and 10g induced the intrinsic apoptotic mitochondrial pathway in MDA-MB-231; evidenced by the reduced expression of the anti-apoptotic protein Bcl-2, the enhanced expression of the pro-apoptotic protein Bax and the up-regulated active caspase-9 and caspase-3 levels. Furthermore, 10g showed significant increase in the percent of annexin V-FITC positive apoptotic cells from 3.88 to 31.21% (8.4 folds compared to control).
Antiviral Effects of Saffron and its Major Ingredients.
Soleymani, Sepehr; Zabihollahi, Rezvan; Shahbazi, Sepideh; Bolhassani, Azam
2018-01-01
The lack of an effective vaccine against viral infections, toxicity of the synthetic anti-viral drugs and the generation of resistant viral strains led to discover novel inhibitors. Recently, saffron and its compounds were used to treat different pathological conditions. In this study, we tested the anti-HSV-1 and anti-HIV-1 activities of Iranian saffron extract and its major ingredients including crocin and picrocrocin as well as cytotoxicity in vitro. The data showed that the aqueous saffron extract was not active against HIV-1 and HSV-1 virions at certain doses (i.e., a mild activity), but crocin and picrocrocin indicated significant anti-HSV-1 and also anti-HIV-1 activities. Crocin inhibited the HSV replication at before and after entry of virions into Vero cells. Indeed, crocin carotenoid suppressed HSV penetration in the target cells as well as disturbed virus replication after entry into the cells. Picrocrocin was also effective for inhibiting virus entry and also its replication. This monoterpen aldehyde showed higher anti-HSV effects after virus penetrating in the cells. Generally, these sugar-containing compounds extracted from saffron showed to be effective antiherpetic drug candidates. The recent study is the first report suggesting antiviral activities for saffron extract and its major ingredients. Crocin and picrocrocin could be a promising anti-HSV and anti-HIV agent for herbal therapy against viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Identification of a candidate therapeutic autophagy–inducing peptide
Shoji-Kawata, Sanae; Sumpter, Rhea; Leveno, Matthew; Campbell, Grant R.; Zou, Zhongju; Kinch, Lisa; Wilkins, Angela D.; Sun, Qihua; Pallauf, Kathrin; MacDuff, Donna; Huerta, Carlos; Virgin, Herbert W.; Helms, J. Bernd; Eerland, Ruud; Tooze, Sharon A.; Xavier, Ramnik; Lenschow, Deborah J.; Yamamoto, Ai; King, David; Lichtarge, Olivier; Grishin, Nick V.; Spector, Stephen A.; Kaloyanova, Dora V.; Levine, Beth
2013-01-01
The lysosomal degradation pathway of autophagy has a crucial role in defence against infection, neurodegenerative disorders, cancer and ageing. Accordingly, agents that induce autophagy may have broad therapeutic applications. One approach to developing such agents is to exploit autophagy manipulation strategies used by microbial virulence factors. Here we show that a peptide, Tat–beclin 1—derived from a region of the autophagy protein, beclin 1, which binds human immunodeficiency virus (HIV)-1 Nef—is a potent inducer of autophagy, and interacts with a newly identified negative regulator of autophagy, GAPR-1 (also called GLIPR2). Tat–beclin 1 decreases the accumulation of polyglutamine expansion protein aggregates and the replication of several pathogens (including HIV-1) in vitro, and reduces mortality in mice infected with chikungunya or West Nile virus. Thus, through the characterization of a domain of beclin 1 that interacts with HIV-1 Nef, we have developed an autophagy-inducing peptide that has potential efficacy in the treatment of human diseases. PMID:23364696
Topical Prophylaxis for HIV Prevention in Women: Becoming a Reality
Verma, Natasha A.; Lee, Anna C.; Herold, Betsy C.
2011-01-01
Strategies to protect against sexual transmission of HIV include the development of products formulated for topical application, which limit the toxicities associated with systemic oral pre-exposure prophylaxis. Following several clinical trial failures, attention is now focused on antiretroviral (ARV) agents. Highly potent ARV topical formulations provide a female-controlled, targeted, and feasible option for HIV prevention. A recently completed tenofovir gel trial was the first to demonstrate significant protection against HIV acquisition. Topical ARVs have the advantage of delivering high concentration of drug at the site of transmission of HIV, with low systemic absorption. Sustained-release formulations, such as intravaginal rings, will likely improve adherence and can be designed to provide controlled and continuous delivery of ARV combinations. Further studies to test alternative dosing strategies and pharmacokinetic/pharmacodynamic relationships in the genital tract will provide valuable information as the field strives to improve upon the promising tenofovir gel trial results. PMID:21424725
Karim, Q Abdool; Baxter, C; Karim, S Abdool
2014-10-01
There is an urgent need for technologies to prevent sexual acquisition of HIV infection in young women in sub-Saharan Africa. After two decades of 11 pivotal trials of seven products, anti-retroviral-based topical microbicides are showing promise. Building on the CAPRISA 004 trial findings, several trials of new anti-viral agents, novel delivery mechanisms and combination/multipurpose products that address challenges of adherence and meet the sexual and reproductive health needs of men and women, including preventing HIV infection, are underway. © 2014 Royal College of Obstetricians and Gynaecologists.
Antiviral Activity of Trappin-2 and Elafin In Vitro and In Vivo against Genital Herpes
Drannik, Anna G.; Nag, Kakon; Sallenave, Jean-Michel
2013-01-01
Serine protease inhibitor elafin (E) and its precursor, trappin-2 (Tr), have been associated with mucosal resistance to HIV-1 infection. We recently showed that Tr/E are among principal anti-HIV-1 molecules in cervicovaginal lavage (CVL) fluid, that E is ∼130 times more potent than Tr against HIV-1, and that Tr/E inhibited HIV-1 attachment and transcytosis across human genital epithelial cells (ECs). Since herpes simplex virus 2 (HSV-2) is a major sexually transmitted infection and risk factor for HIV-1 infection and transmission, we assessed Tr/E contribution to defense against HSV-2. Our in vitro studies demonstrated that pretreatment of endometrial (HEC-1A) and endocervical (End1/E6E7) ECs with human Tr-expressing adenovirus (Ad/Tr) or recombinant Tr/E proteins before or after HSV-2 infection resulted in significantly reduced virus titers compared to those of controls. Interestingly, E was ∼7 times more potent against HSV-2 infection than Tr. Conversely, knockdown of endogenous Tr/E by small interfering RNA (siRNA) significantly increased HSV-2 replication in genital ECs. Recombinant Tr and E reduced viral attachment to genital ECs by acting indirectly on cells. Further, lower viral replication was associated with reduced secretion of proinflammatory interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) and decreased NF-κB nuclear translocation. Additionally, protected Ad/Tr-treated ECs demonstrated enhanced interferon regulatory factor 3 (IRF3) nuclear translocation and increased antiviral IFN-β in response to HSV-2. Lastly, in vivo studies of intravaginal HSV-2 infection in Tr-transgenic mice (Etg) showed that despite similar virus replication in the genital tract, Etg mice had reduced viral load and TNF-α in the central nervous system compared to controls. Collectively, this is the first experimental evidence highlighting anti-HSV-2 activity of Tr/E in female genital mucosa. PMID:23637403
HIV enhancing activity of semen impairs the antiviral efficacy of microbicides
Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan
2015-01-01
Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483
Rosenberg, Yvonne; Sack, Markus; Montefiori, David; Forthal, Donald; Mao, Lingjun; -Abanto, Segundo Hernandez; Urban, Lori; Landucci, Gary; Fischer, Rainer; Jiang, Xiaoming
2013-01-01
Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs) has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT) of simian/human immunodeficiency virus (SHIV) in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6PΔ140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01) or a single chain antibody construct (m9), for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production. PMID:23533588
Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S; Moncla, Bernard; Sarafianos, Stefan G; Parniak, Michael A; Rohan, Lisa C
2015-09-01
EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission.
Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas
2013-01-01
Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents. PMID:24205049
Niyyati, Maryam; Dodangeh, Samira; Lorenzo-Morales, Jacob
2016-01-01
Acanthamoeba keratitis (AK) is a sight-threating infection of the cornea that mostly affects contact lens wearers. Until now, AK treatment remains very difficult due to the existence of a highly resistant cyst stage in the life cycle of Acanthamoeba which is extremely resistant to most of the available anti-amoebic compounds. Moreover, current treatment of AK is usually based in the combination of various therapeutic agents such as polyhexamethylene biguanide or chlorhexidine and propamidine isethionate. However, all the mentioned compounds have also showed toxic side effects on human keratocytes and presented poor cysticidal effect at the concentrations currently used in the established AK treatments. Nowadays, the elucidation of novel compounds with antimicrobial and anticancer properties from plant and herbs with medicinal properties have encouraged researchers to evaluate plants as a source of new molecules with anti-trophozoite and cysticidal effects. Thus, in recent years, many natural products have been reported to present potent anti-Acanthamoeba properties with good selectivity and minimal toxic effects. Therefore, the chemical drugs currently used for AK treatment, their drawbacks as well as the current research in medicinal plants as a source of potent anti-Acanthamoeba compounds are described in this review. PMID:28243287
Wiktor, Maciej; Hartley, Oliver; Grzesiek, Stephan
2013-01-01
RANTES (CCL5) is a chemokine that recruits immune cells to inflammatory sites by interacting with the G-protein coupled receptor CCR5, which is also the primary coreceptor used together with CD4 by HIV to enter and infect target cells. Ligands of CCR5, including chemokines and chemokine analogs, are capable of blocking HIV entry, and studies of their structures and interactions with CCR5 will be key to understanding and optimizing HIV inhibition. The RANTES derivative 5P12-RANTES is a highly potent HIV entry inhibitor that is being developed as a topical HIV prevention agent (microbicide). We have characterized the structure and dynamics of 5P12-RANTES by solution NMR. With the exception of the nine flexible N-terminal residues, 5P12-RANTES has the same structure as wild-type RANTES but unlike the wild-type, does not dimerize via its N-terminus. To prepare the ground for interaction studies with detergent-solubilized CCR5, we have also investigated the interaction of RANTES and 5P12-RANTES with various commonly used detergents. Both RANTES variants are stable in Cymal-5, DHPC, Anzergent-3-12, dodecyltrimethylammonium chloride, and a DDM/CHAPS/CHS mixture. Fos-Cholines, dodecyldimethylglycine, and sodium dodecyl-sulfate denature both RANTES variants at low pH, whereas at neutral pH the stability is considerably higher. The onset of Fos-Choline-12-induced denaturation and the denatured state were characterized by circular dichroism and NMR. The detergent interaction starts below the critical micelle concentration at a well-defined mixed hydrophobic/positive surface region of the chemokine, which overlaps with the dimer interface. An increase of Fos-Choline-12 concentration above the critical micelle concentration causes a transition to a denatured state with a high α-helical content. PMID:24314089
Deoxypodophyllotoxin: a promising therapeutic agent from herbal medicine.
Khaled, Meyada; Jiang, Zhen-Zhou; Zhang, Lu-Yong
2013-08-26
Recently, biologically active compounds isolated from plants used in herbal medicine have been the center of interest. Deoxypodophyllotoxin (DPT), structurally closely related to the lignan podophyllotoxin, is a potent antitumor and anti-inflammatory agent. However, DPT has not been used clinically yet. Also, DPT from natural sources seems to be unavailable. Hence, it is important to establish alternative resources for the production of such lignan; especially that it is used as a precursor for the semi-synthesis of the cytostatic drugs etoposide phosphate and teniposide. The update paper provides an overview of DPT as an effective anticancer natural compound and a leader for cytotoxic drugs synthesis and development in order to highlight the gaps in our knowledge and explore future research needs. The present review covers the literature available from 1877 to 2012. The information was collected via electronic search using Chinese papers and the major scientific databases including PubMed, Sciencedirect, Web of Science and Google Scholar using the keywords. All abstracts and full-text articles reporting database on the history and current status of DPT were gathered and analyzed. Plants containing DPT have played an important role in traditional medicine. In light of the in vitro pharmacological investigations, DPT is a high valuable medicinal agent that has anti-tumor, anti-proliferative, anti-inflammatory and anti-allergic properties. Further, DPT is an important precursor for the cytotoxic aryltetralin lignan, podophyllotoxin, which is used to obtain semisynthetic derivatives like etoposide and teniposide used in cancer therapy. However, most studies have focused on the in vitro data. Therefore, DPT has not been used clinically yet. DPT has emerged as a potent chemical agent from herbal medicine. Therefore, in vivo studies are needed to carry out clinical trials in humans and enable the development of new anti-cancer agents. In addition, DPT from commercial sources seems to be unavailable due to its rarity from natural sources and cumbersome extraction procedures. Hence, it is important to establish alternative, cost-effective and renewable resources, such plant cell cultures and (semi-) synthesis strategies for the production of DPT. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Bansal, Yogita; Silakari, Om
2014-11-01
Polyfunctional compounds comprise a novel class of therapeutic agents for treatment of multifactorial diseases. The present study reports a series of benzimidazole-non-steroidal anti-inflammatory drugs (NSAIDs) conjugates (1-10) as novel polyfunctional compounds synthesized in the presence of orthophosphoric acid. The compounds were evaluated for anti-inflammatory (carageenan-induced paw edema model), immunomodulatory (direct haemagglutination test and carbon clearance index models), antioxidant (in vitro and in vivo) and for ulcerogenic effects. Each of the compound has retained the anti-inflammatory activity of the corresponding parent NSAID while exhibiting significantly reduced gastric ulcers. Additionally, the compounds are found to possess potent immunostimulatory and antioxidant activities. The compound 8 was maximally potent (antibody titre value 358.4 ± 140.21, carbon clearance index 0.053 ± 0.002 and antioxidant EC50 value 0.03 ± 0.006). These compounds, exhibiting such multiple pharmacological activities, can be taken as lead for the development of potent drugs for the treatment of chronic multifactorial diseases involving inflammation, immune system modulation and oxidative stress such as cancers. The Lipinski's parameters suggested the compounds to be bear drug like properties.
Modulation of HIV replication in monocyte derived macrophages (MDM) by steroid hormones.
Devadas, Krishnakumar; Biswas, Santanu; Ragupathy, Viswanath; Lee, Sherwin; Dayton, Andrew; Hewlett, Indira
2018-01-01
Significant sex specific differences in the progression of HIV/AIDS have been reported. Several studies have implicated steroid hormones in regulating host factor expression and modulating HIV transmission and replication. However, the exact mechanism exerted by steroid hormones estrogen and progesterone in the regulation of HIV-1 replication is still unclear. Results from the current study indicated a dose dependent down regulation of HIV-1 replication in monocyte derived macrophages pre-treated with high concentrations of estrogen or progesterone. To elucidate the molecular mechanisms associated with the down regulation of HIV-1 replication by estrogen and progesterone we used PCR arrays to analyze the expression profile of host genes involved in antiviral responses. Several chemokines, cytokines, transcription factors, interferon stimulated genes and genes involved in type-1 interferon signaling were down regulated in cells infected with HIV-1 pre-treated with high concentrations of estrogen or progesterone compared to untreated HIV-1 infected cells or HIV-1 infected cells treated with low concentrations of estrogen or progesterone. The down regulation of CXCL9, CXCL10 and CXCL11 chemokines and IL-1β, IL-6 cytokines in response to high concentrations of estrogen and progesterone pre-treatment in HIV-1 infected cells was confirmed at the protein level by quantitating chemokine and cytokine concentrations in the culture supernatant. These results demonstrate that a potent anti-inflammatory response is mediated by pre-treatment with high concentrations of estrogen and progesterone. Thus, our study suggests a strong correlation between the down-modulation of anti-viral and pro-inflammatory responses mediated by estrogen and progesterone pre-treatment and the down regulation of HIV-1 replication. These findings may be relevant to clinical observations of sex specific differences in patient populations and point to the need for further investigation.
Nicolaou, K C; Pulukuri, Kiran Kumar; Rigol, Stephan; Buchman, Marek; Shah, Akshay A; Cen, Nicholas; McCurry, Megan D; Beabout, Kathryn; Shamoo, Yousif
2017-11-08
An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.
NASA Astrophysics Data System (ADS)
Lee, Dongwon; Bae, Soochan; Hong, Donghyun; Lim, Hyungsuk; Yoon, Joo Heung; Hwang, On; Park, Seunggyu; Ke, Qingen; Khang, Gilson; Kang, Peter M.
2013-07-01
The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) as a novel I/R-targeted nanotherapeutic agent. PVAX was designed to incorporate VA and H2O2-responsive peroxalate ester linkages covalently in its backbone. PVAX nanoparticles therefore degrade and release VA, which is able to reduce the generation of ROS, and exert anti-inflammatory and anti-apoptotic activity. In hind-limb I/R and liver I/R models in mice, PVAX nanoparticles specifically reacted with overproduced H2O2 and exerted highly potent anti-inflammatory and anti-apoptotic activities that reduced cellular damages. Therefore, PVAX nanoparticles have tremendous potential as nanotherapeutic agents for I/R injury and H2O2-associated diseases.
Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone
Jin, Xia
2015-01-01
ABSTRACT Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. IMPORTANCE Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. PMID:26223636
Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone.
Jin, Xia; McGrath, Michael S; Xu, Hua
2015-11-01
Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A B cell follicle sanctuary permits persistent productive SIV infection in elite controllers
Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A.; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I.; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W.; Axthelm, Michael K.; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M.; Edlefsen, Paul T.; Piatak, Michael; Estes, Jacob D.; Lifson, Jeffrey D.; Picker, Louis J.
2014-01-01
Chronic phase HIV/SIV replication is reduced by as much as 10,000-fold in elite controllers (EC) compared to typical progressors, but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here, we show that productive SIV infection in rhesus monkey EC is strikingly restricted to follicular helper CD4+ T cells (TFH), suggesting that while the potent SIV-specific CD8+ T cells of these monkeys can effectively clear productive infection from extra-follicular sites, their relative exclusion from B cell follicles limits elimination of infected TFH. Indeed, CD8+ lymphocyte depletion of EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH, with TFH restriction resuming upon CD8+ T cell recovery. Thus, B cell follicles constitute sanctuaries for persistent SIV replication in the presence of potent anti-viral CD8+ T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy. PMID:25599132
Hepatitis E virus co-infection in HIV-infected patients in Foggia and Naples in southern Italy.
Scotto, Gaetano; Grisorio, Benvenuto; Filippini, Pietro; Ferrara, Sergio; Massa, Salvatore; Bulla, Fabio; Martini, Salvatore; Filippini, Alberico; Tartaglia, Alessandra; Lo Muzio, Lorenzo; Fazio, Vincenzina
2015-01-01
Hepatitis E virus (HEV) infection represents an emerging infection in developed countries and is thought to be a zoonotic infection. It has recently been described as a new causative agent of acute and chronic hepatitis in immunosuppressed subjects, including HIV-infected patients. The aim of this study was to assess the sero-virological prevalence of HEV in HIV patients and in the general population as control group. A prospective and observational cohort study was carried out in two hospitals in southern Italy. The seroprevalence of HEV was determined in a cohort of 959 subjects, 509 (53%) of whom were HIV-positive patients and 450 were from the general population. Serum samples were tested for anti-HEV antibodies; repeatedly positive results were confirmed by a Western blot assay. In positive patients HEV RNA and genotypes were also determined. A total of 46 (4.8%) of the 959 serum samples examined were reactive to anti-HEV Ig and confirmed by Western blotting. The prevalence of HEV antibodies (IgG and/or IgM) was 2.7% in the control group and 6.7% in HIV-infected patients. Anti-HEV IgM was found in 6/46 (13.0%) of the anti-HEV Ig-positive serum samples, in 5/34 HIV patients and in 1/12 of the general population. No HIV-infected patient presented chronic hepatitis with HEV infection alone. This study indicates a higher circulation of HEV in HIV-infected patients, whereas a low prevalence of HEV antibodies in the general Italian population was shown. Chronic hepatitis with HEV alone was absent, while it was present in subjects with HIV-HEV, co-infected with hepatitis B virus (HBV) and/or hepatitis C virus (HCV).
Castelo-Branco, Frederico Silva; de Lima, Evanoel Crizanto; Domingos, Jorge Luiz de Oliveira; Pinto, Angelo C; Lourenço, Maria Cristina S; Gomes, Karen Machado; Costa-Lima, Mariana Marques; Araujo-Lima, Carlos Fernando; Aiub, Claudia Alessandra Fortes; Felzenszwalb, Israel; Costa, Thadeu Estevam M M; Penido, Carmen; Henriques, Maria G; Boechat, Nubia
2018-02-25
Tuberculosis (TB) is one of the leading causes of death worldwide. The emergence of multi-drug resistant strains of Mycobacterium tuberculosis (Mtb) and TB-HIV co-infection are major public health challenges. The anti-TB drugs of first choice were developed more than 4 decades ago and present several adverse effects, making the treatment of TB even more complicated and the development of new chemotherapeutics for this disease imperative. In this work, we synthesized two series of new acylhydrazides and evaluated their activity against different strains of Mtb. Derivatives of isoniazid (INH) showed important anti-Mtb activity, some being more potent than all anti-TB drugs of first choice. Moreover, three compounds proved to be more potent than INH against resistant Mtb. The Ames test showed favorable results for two of these substances compared to INH, one of which presented expressly lower toxicity to HepG2 cells than that of INH. This result shows that this compound has the potential to overcome one of the main adverse effects of this drug. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Moroni, Marco; Ghezzi, Silvia; Baroli, Paolo; Heltai, Silvia; De Battista, Davide; Pensieroso, Simone; Cavarelli, Mariangela; Dispinseri, Stefania; Vanni, Irene; Pastori, Claudia; Zerbi, Pietro; Tosoni, Antonella; Vicenzi, Elisa; Nebuloni, Manuela; Wong, Kim; Zhao, Hong; McHugh, Sarah; Poli, Guido; Lopalco, Lucia; Scarlatti, Gabriella; Biassoni, Roberto; Mullins, James I; Malnati, Mauro S; Alfano, Massimo
2014-12-05
Understanding the mechanisms by which some individuals are able to naturally control HIV-1 infection is an important goal of AIDS research. We here describe the case of an HIV-1(+) woman, CASE1, who has spontaneously controlled her viremia for the last 14 of her 20 years of infection. CASE1 has been clinically monitored since 1993. Detailed immunological, virological and histological analyses were performed on samples obtained between 2009 and 2011. As for other Elite Controllers, CASE1 is characterized by low to undetectable levels of plasma HIV-1 RNA, peripheral blood mononuclear cell (PBMC) associated HIV-1 DNA and reduced in vitro susceptibility of target cells to HIV-1 infection. Furthermore, a slow rate of virus evolution was demonstrated in spite the lack of assumption of any antiretroviral agent. CASE1 failed to transmit HIV-1 to either her sexual male partner or to her child born by vaginal delivery. Normal values and ratios of T and B cells were observed, along with normal histology of the intestinal mucosa. Attempts to isolate HIV-1 from her PBMC and gut-derived cells were unsuccessful, despite expression of normal cell surface levels of CD4, CCRC5 and CXCR4. CASE1 did not produce detectable anti-HIV neutralizing antibodies in her serum or genital mucosal fluid although she displayed potent T cell responses against HIV-1 Gag and Nef. CASE1 also possessed multiple genetic polymorphisms, including HLA alleles (B*14, B*57, C*06 and C*08.02) and HLA-C single nucleotide polymorphisms (SNPs, rs9264942 C/C and rs67384697 del/del), that have been previously individually associated with spontaneous control of plasma viremia, maintenance of high CD4(+) T cell counts and delayed disease progression. CASE1 has controlled her HIV-1 viremia below the limit of detection in the absence of antiretroviral therapy for more than 14 years and has not shown any sign of immunologic deterioration or disease progression. Co-expression of multiple protective HLA alleles, HLA-C SNPs and strong T cell responses against HIV-1 proteins are the most likely explanation of this very benign case of spontaneous control of HIV-1 disease progression.
Priyadarsini, Ramamurthi Vidya; Manikandan, Palrasu; Kumar, Gurram Harish; Nagini, Siddavaram
2009-05-01
The neem tree has attracted considerable research attention as a rich source of limonoids that have potent antioxidant and anti-cancer properties. The present study was designed to evaluate the chemopreventive potential of the neem limonoids azadirachtin and nimbolide based on in vitro antioxidant assays and in vivo inhibitory effects on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Both azadirachtin and nimbolide exhibited concentration-dependent anti-radical scavenging activity and reductive potential in the order: nimbolide > azadirachtin > ascorbate. Administration of both azadirachtin and nimbolide inhibited the development of DMBA-induced HBP carcinomas by influencing multiple mechanisms including prevention of procarcinogen activation and oxidative DNA damage, upregulation of antioxidant and carcinogen detoxification enzymes and inhibition of tumour invasion and angiogenesis. On a comparative basis, nimbolide was found to be a more potent antioxidant and chemopreventive agent and offers promise as a candidate agent in multitargeted prevention and treatment of cancer.
Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity
NASA Astrophysics Data System (ADS)
Aramwit, Pornanong; Bang, Nipaporn; Ratanavaraporn, Juthamas; Ekgasit, Sanong
2014-02-01
In this study, a `green chemistry' approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO- and NH2 + groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications.
Khloya, Poonam; Kumar, Satish; Kaushik, Pawan; Surain, Parveen; Kaushik, Dhirender; Sharma, Pawan K
2015-03-15
Current Letter presents design, synthesis and biological evaluation of a novel series of pyrazolylthiazole carboxylates 1a-1p and corresponding acid derivatives 2a-2p. All 32 novel compounds were tested for their in vivo anti-inflammatory activity by carrageenan-induced rat paw edema method as well as for in vitro antimicrobial activity. All the tested compounds exhibited excellent AI activity profile. Three compounds 1p (R=Cl, R(1)=Cl), 2c (R=H, R(1)=F) and 2n (R=Cl, R(1)=OCH3) were identified as potent anti-inflammatory agents exhibiting edema inhibition of 93.06-89.59% which is comparable to the reference drug indomethacin (91.32%) after 3h of carrageenan injection while most of the other compounds displayed inhibition ⩾80%. In addition, pyrazolylthiazole carboxylic acids (2a-2p) also showed good antimicrobial profile. Compound 2h (R=OCH3, R(1)=Cl) showed excellent antimicrobial activity (MIC 6.25μg/mL) against both Gram positive bacteria comparable with the reference drug ciprofloxacin (MIC 6.25μg/mL). Copyright © 2015 Elsevier Ltd. All rights reserved.
Novel 3-Nitro-1H-1,2,4-triazole-based Amides and Sulfonamides as Potential anti-Trypanosomal Agents
Papadopoulou, Maria V.; Bloomer, William D.; Rosenzweig, Howard S.; Chatelain, Eric; Kaiser, Marcel; Wilkinson, Shane R.; McKenzie, Caroline; Ioset, Jean-Robert
2012-01-01
A series of novel 3-nitro-1H-1,2,4-triazole-(and in some cases 2-nitro-1H-imidazole)-based amides and sulfonamides were characterized for their in vitro anti-trypanosomal and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against T. cruzi intracellular amastigotes (IC50 ranging from 28 nM to 3.72 μM) without concomitant toxicity to L6 host cells (selectivity 66 to 2782). Twenty three of these active compounds were more potent (up to 58 fold) than the reference drug benznidazole, tested in parallel. In addition, 9 nitrotriazoles which were moderately active (0.5 μM ≤ IC50 < 6.0 μM) against T. b. rhodesiense trypomastigotes, were 5 to 31 fold more active against bloodstream-form T. b. brucei trypomastigotes engineered to overexpress NADH-dependent nitroreductase (TbNTR). Finally, 3 nitrotriazoles displayed a moderate activity against the axenic form of Leishmania donovani. Therefore, 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides are potent anti-trypanosomal agents. PMID:22550999
Bioactivities of anastasia black (Russian sweet pepper).
Shirataki, Yoshiaki; Kawase, Masami; Sakagami, Hiroshi; Nakashima, Hideki; Tani, Satoru; Tanaka, Toru; Sohara, Yoshitaka; Schelz, Zsuzsanna; Molnar, Joseph; Motohashi, Noboru
2005-01-01
Anastasia Black (Russian sweet pepper) of Capsicum annuum L. var. angulosum Mill. (Solanaceae) was successively extracted with hexane, acetone, methanol and 70% methanol, and the extracts were further separated into a total of twenty-three fractions by silica gel or octadecylsilane (ODS; C18) column chromatography. These extracts and fractions were investigated for their cytotoxicity, anti-human immunodeficiency virus (HIV), anti-Helicobacter pylori (H. pylori), urease inhibition and multidrug resistance (MDR) reversal activity. Some fractions of hexane and acetone extracts showed higher cytotoxic activity against three human oral tumor cell lines (squamous cell carcinoma HSC-2, HSC-3, submandibular gland carcinoma HSG) than against three normal human oral cells (gingival fibroblast HGF, pulp cell HPC, periodontal ligament fibroblast HPLF), suggesting a tumor-specific cytotoxic activity. No fractions displayed anti-HIV activity, but some hydrophobic fractions showed higher anti-H. pylori activity, urease inhibition activity and MDR reversal activity. The higher MDR activity of these fractions against MDR gene-transfected L5178 mouse lymphoma T cells may possibly be due to their higher content of carotene or polyphenol. These data suggest that Anastasia Black should be further investigated as a potent supplement for cancer chemotherapy.
Electrospun fibers for the prevention of human immunodeficiency virus
NASA Astrophysics Data System (ADS)
Ball, Cameron
HIV/AIDS education, testing, and treatment have thus far failed to cease the pandemic spread of the HIV virus. HIV prevention is hindered by a lack of protective options beyond the ABC approach of abstinence, being faithful, and using condoms. One approach to address this inadequacy is to develop antiviral products for vaginal or rectal application that provide receptive partner-initiated protection against viral infection during sex. Such products, termed anti-HIV microbicides, can especially empower young women to take control over their sexual health. This work explored a new approach to anti-HIV microbicides: electrospun fibers for the delivery of small-molecule antiretroviral drugs. Electrospun microbicides are nonwoven fabrics made from polymer-based nanofibers. The wide array of polymers available for electrospinning allowed for the incorporation and release of chemically diverse agents. Since electrospun fibers have an extremely high surface area to volume ratio, they serve as excellent delivery systems for rapid drug delivery of both hydrophilic and hydrophobic agents. The flexibility in the design of electrospun fibers afforded by coaxial electrospinning further enabled the formulation of sustained-release microbicides. To demonstrate the power of electrospinning to deliver drugs over multiple timescales, composite microbicide fabrics were created to provide both rapid and sustained drug release from a single device. This work has produced alternative microbicide formulations, while establishing methods for the thorough characterization of these systems and solutions for the needs of people at risk of HIV infection. By addressing problems in both HIV prevention and drug delivery, this work has expanded our capacity to engineer elegant solutions to complex and pressing global health challenges.
Thibault, Vincent; Gaudy-Graffin, Catherine; Colson, Philippe; Gozlan, Joël; Schnepf, Nathalie; Trimoulet, Pascale; Pallier, Coralie; Saune, Karine; Branger, Michel; Coste, Marianne; Thoraval, Francoise Roudot
2013-03-15
Chronic hepatitis B (CHB) is a clinical concern in human immunodeficiency virus (HIV)-infected individuals due to substantial prevalence, difficulties to treat, and severe liver disease outcome. A large nationwide cross-sectional multicentre analysis of HIV-HBV co-infected patients was designed to describe and identify parameters associated with virological and clinical outcome of CHB in HIV-infected individuals with detectable HBV viremia. A multicenter collaborative cross-sectional study was launched in 19 French University hospitals distributed through the country. From January to December 2007, HBV load, genotype, clinical and epidemiological characteristics of 223 HBV-HIV co-infected patients with an HBV replication over 1000 IU/mL were investigated. Patients were mostly male (82%, mean age 42 years). Genotype distribution (A 52%; E 23.3%; D 16.1%) was linked to risk factors, geographic origin, and co-infection with other hepatitis viruses. This genotypic pattern highlights divergent contamination event timelines by HIV and HBV viruses. Most patients (74.7%) under antiretroviral treatment were receiving a drug with anti-HBV activity, including 47% receiving TDF. Genotypic lamivudine-resistance detected in 26% of the patients was linked to duration of lamivudine exposure, age, CD4 count and HIV load. Resistance to adefovir (rtA181T/V) was detected in 2.7% of patients. Advanced liver lesions were observed in 54% of cases and were associated with an older age and lower CD4 counts but not with viral load or genotype. Immune escape HBsAg variants were seldom detected. Despite the detection of advanced liver lesions in most patients, few were not receiving anti-HBV drugs and for those treated with the most potent anti-HBV drugs, persistent replication suggested non-optimal adherence. Heterogeneity in HBV strains reflects epidemiological differences that may impact liver disease progression. These findings are strong arguments to further optimize clinical management and to promote vaccination in HIV-infected patients.
Xiong, Shengwen; Borrego, Pedro; Ding, Xiaohui; Zhu, Yuanmei; Martins, Andreia; Chong, Huihui
2016-01-01
ABSTRACT Human immunodeficiency virus type 2 (HIV-2) has already spread to different regions worldwide, and currently about 1 to 2 million people have been infected, calling for new antiviral agents that are effective on both HIV-1 and HIV-2 isolates. T20 (enfuvirtide), a 36-mer peptide derived from the C-terminal heptad repeat region (CHR) of gp41, is the only clinically approved HIV-1 fusion inhibitor, but it easily induces drug resistance and is not active on HIV-2. In this study, we first demonstrated that the M-T hook structure was also vital to enhancing the binding stability and inhibitory activity of diverse CHR-based peptide inhibitors. We then designed a novel short peptide (23-mer), termed 2P23, by introducing the M-T hook structure, HIV-2 sequences, and salt bridge-forming residues. Promisingly, 2P23 was a highly stable helical peptide with high binding to the surrogate targets derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV). Consistent with this, 2P23 exhibited potent activity in inhibiting diverse subtypes of HIV-1 isolates, T20-resistant HIV-1 mutants, and a panel of primary HIV-2 isolates, HIV-2 mutants, and SIV isolates. Therefore, we conclude that 2P23 has high potential to be further developed for clinical use, and it is also an ideal tool for exploring the mechanisms of HIV-1/2- and SIV-mediated membrane fusion. IMPORTANCE The peptide drug T20 is the only approved HIV-1 fusion inhibitor, but it is not active on HIV-2 isolates, which have currently infected 1 to 2 million people and continue to spread worldwide. Recent studies have demonstrated that the M-T hook structure can greatly enhance the binding and antiviral activities of gp41 CHR-derived inhibitors, especially for short peptides that are otherwise inactive. By combining the hook structure, HIV-2 sequence, and salt bridge-based strategies, the short peptide 2P23 has been successfully designed. 2P23 exhibits prominent advantages over many other peptide fusion inhibitors, including its potent and broad activity on HIV-1, HIV-2, and even SIV isolates, its stability as a helical, oligomeric peptide, and its high binding to diverse targets. The small size of 2P23 would benefit its synthesis and significantly reduce production cost. Therefore, 2P23 is an ideal candidate for further development, and it also provides a novel tool for studying HIV-1/2- and SIV-mediated cell fusion. PMID:27795437
Appendino, Giovanni; Ottino, Michela; Marquez, Nieves; Bianchi, Federica; Giana, Anna; Ballero, Mauro; Sterner, Olov; Fiebich, Bernd L; Munoz, Eduardo
2007-04-01
An acetone extract of Helichrysum italicum ssp. microphyllum afforded the phloroglucinol alpha-pyrone arzanol (1a) as a potent NF-kappaB inhibitor. Arzanol is identical with homoarenol (2a), whose structure should be revised. The phloroglucinol-type structure of arzanol and the 1,2,4-trihydroxyphenyl-type structure of the base-induced fragmentation product of homoarenol could be reconciled in light of a retro-Fries-type fragmentation that triggers a change of the hydroxylation pattern of the aromatic moiety. On the basis of these findings, the structure of arenol, the major constituent of the clinically useful antibiotic arenarin, should be revised from 2b to 1b, solving a long-standing puzzle over its biogenetic derivation. An alpha-pyrone (micropyrone, 7), the monoterpene rac-E-omega-oleoyloxylinalol (10), four known tremetones (9a-d), and the dimeric pyrone helipyrone (8) were also obtained. Arzanol inhibited HIV-1 replication in T cells and the release of pro-inflammatory cytokines in LPS-stimulated primary monocytes, qualifying as a novel plant-derived anti-inflammatory and antiviral chemotype worth further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Guoli; Yao, Guangmin; Zhan, Guanqun
We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis.more » NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.« less
Smart nanoparticles as targeting platforms for HIV infections
NASA Astrophysics Data System (ADS)
Adhikary, Rishi Rajat; More, Prachi; Banerjee, Rinti
2015-04-01
While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.
Smart nanoparticles as targeting platforms for HIV infections.
Adhikary, Rishi Rajat; More, Prachi; Banerjee, Rinti
2015-05-07
While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.
Stepan, George; Tian, Yang; Miller, Michael D.
2015-01-01
Tenofovir alafenamide (TAF) is an investigational oral prodrug of the HIV-1 nucleotide reverse transcriptase inhibitor tenofovir (TFV). Tenofovir disoproxil fumarate (TDF) is another TFV prodrug, widely used for the treatment of HIV-1 infection. TAF is converted mostly intracellularly to TFV and, in comparison to TDF, achieves higher tenofovir diphosphate (TFV-DP) levels in peripheral blood mononuclear cells. As a result, TAF has demonstrated potent anti-HIV-1 activity at lower doses than TDF in monotherapy studies. Here, the in vitro virology profile of TAF was evaluated and compared to that of TDF. TAF displayed potent antiviral activity against all HIV-1 groups/subtypes, as well as HIV-2. TAF exhibited minimal changes in the drug concentration needed to inhibit 50% of viral spread (EC50) upon removal of the prodrug, similar to TDF, demonstrating intracellular antiviral persistence. While TAF and TDF exhibited comparable potencies in the absence of serum pretreatment, TAF maintained activity in the presence of human serum, whereas TDF activity was significantly reduced. This result demonstrates TAF's improved plasma stability over TDF, which is driven by the different metabolic pathways of the two prodrugs and is key to TAF's improved in vivo antiviral activity. The activity of TAF is specific for HIV, as TAF lacked activity against a large panel of human viruses, with the exception of herpes simplex virus 2, where weak TAF antiviral activity was observed, as previously observed with TFV. Finally, in vitro combination studies with antiretroviral drugs from different classes showed additive to synergistic interactions with TAF, consistent with ongoing clinical studies with TAF in fixed-dose combinations with multiple other antiretroviral drugs for the treatment of HIV. PMID:26149992
Wolschendorf, Frank; Duverger, Alexandra; Jones, Jennifer; Wagner, Frederic H; Huff, Jason; Benjamin, William H; Saag, Michael S; Niederweis, Michael; Kutsch, Olaf
2010-09-01
Current antiretroviral therapy (ART) efficiently controls HIV-1 replication but fails to eradicate the virus. Even after years of successful ART, HIV-1 can conceal itself in a latent state in long-lived CD4(+) memory T cells. From this latent reservoir, HIV-1 rebounds during treatment interruptions. Attempts to therapeutically eradicate this viral reservoir have yielded disappointing results. A major problem with previously utilized activating agents is that at the concentrations required for efficient HIV-1 reactivation, these stimuli trigger high-level cytokine gene expression (hypercytokinemia). Therapeutically relevant HIV-1-reactivating agents will have to trigger HIV-1 reactivation without the induction of cytokine expression. We present here a proof-of-principle study showing that this is a possibility. In a high-throughput screening effort, we identified an HIV-1-reactivating protein factor (HRF) secreted by the nonpathogenic bacterium Massilia timonae. In primary T cells and T-cell lines, HRF triggered a high but nonsustained peak of nuclear factor kappa B (NF-kappaB) activity. While this short NF-kappaB peak potently reactivated latent HIV-1 infection, it failed to induce gene expression of several proinflammatory NF-kappaB-dependent cellular genes, such as those for tumor necrosis factor alpha (TNF-alpha), interleukin-8 (IL-8), and gamma interferon (IFN-gamma). Dissociation of cellular and viral gene induction was achievable, as minimum amounts of Tat protein, synthesized following application of a short NF-kappaB pulse, triggered HIV-1 transactivation and subsequent self-perpetuated HIV-1 expression. In the absence of such a positive feedback mechanism, cellular gene expression was not sustained, suggesting that strategies modulating the NF-kappaB activity profile could be used to selectively trigger HIV-1 reactivation.
Husain, Asif; Ahmad, Aftab; Khan, Shah Alam; Asif, Mohd; Bhutani, Rubina; Al-Abbasi, Fahad A.
2015-01-01
The aim of this study was to design and synthesize pharmaceutical agents containing imidazolidine heterocyclic ring in the hope of developing potent, safe and orally active anti-inflammatory agents. A number of substituted-imidazolidine derivatives (3a–k) were synthesized starting from ethylene diamine and aromatic aldehydes. The imidazolidine derivatives (3a–k) were investigated for their anticipated anti-inflammatory, and analgesic activity in Wistar albino rats and Swiss albino mice, respectively. Bioactivity score, molecular and pharmacokinetic properties of the imidazolidine derivatives were calculated by online computer software programs viz. Molinspiration and Osiris property explorer. The results of biological testing indicated that among the synthesized compounds only three imidazolidine derivatives namely 4-[1,3-Bis(2,6-dichlorobenzyl)-2-imidazolidinyl]phenyl-diethylamine (3g), 4-[1,3-Bis(3-hydroxy-4-methoxybenzyl)-2-imidazolidinyl]phenyl-diethylamine (3i) and 4-(1,3-Bis(4-methoxybenzyl)-4-methylimidazolidin-2-yl)-phenyl-diethylamine (3j) possess promising anti-inflammatory and analgesic actions. Additionally these derivatives displayed superior GI safety profile (low severity index) with respect to the positive control, Indomethacin. All synthesized compounds showed promising bioactivity score for drug targets by Molinspiration software. Almost all the compounds were predicted to have very low toxicity risk by Osiris online software. Compound number (3i) emerged as a potential candidate for further research as it obeyed Lipinski’s rule of five for drug likeness, exhibited promising biological activity in-vivo and showed no risk of toxicity in computer aided screening. PMID:26903774
Gautam, Raju; Jachak, Sanjay M; Kumar, Vivek; Mohan, C Gopi
2011-03-15
Stellatin (4), isolated from Dysophylla stellata is a cyclooxygenase (COX) inhibitor. The present study reports the synthesis and biological evaluation of new stellatin derivatives for COX-1, COX-2 inhibitory and anti-inflammatory activities. Eight derivatives showed more pronounced COX-2 inhibition than stellatin and, 17 and 21 exhibited the highest COX-2 inhibition. They also exhibited the significant anti-inflammatory activity in TPA-induced mouse ear edema assay and their anti-inflammatory effects were more than that of stellatin and indomethacin at 0.5mg/ear. The derivatives were further evaluated for antioxidant activity wherein 16 and 17 showed potent free radical scavenging activity against DPPH and ABTS radicals. Molecular docking study revealed the binding orientations of stellatin and its derivatives into the active sites of COX-1 and COX-2 and thereby helps to design the potent inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol
2015-03-01
A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.
Yu, Huifeng; Tudor, Daniela; Alfsen, Annette; Labrosse, Beatrice; Clavel, François; Bomsel, Morgane
2008-01-01
The membrane proximal region (MPR) of the transmembrane subunit, gp41, of the HIV envelope glycoprotein plays a critical role in HIV-1 infection of CD4+ target cells and CD4-independent mucosal entry. It contains continuous epitopes recognized by neutralizing IgG antibodies 2F5, 4E10 and Z13, and is therefore considered to be a promising target for vaccine design. Moreover, some MPR-derived peptides, such as T20 (enfuvirtide), are in clinical use as HIV-1 inhibitors. We have shown that an extended MPR peptide, P5, harbouring the lectin-like domain of gp41 and a calcium-binding site, is implicated in the interaction of HIV with its mucosal receptor. We now investigate the potential antiviral activities of P5 and other such long MPR-derived peptides. Structural studies of gp41 MPR-derived peptides using circular dichroism showed that the peptides P5 (a.a.628–683), P1 (a.a.648–683), P5L (a.a.613–683) and P7 (a.a.613–746) displayed a well-defined α-helical structure. Peptides P5 inhibited HIV-1 envelope mediated cell-cell fusion and infection of peripheral blood mononuclear cells by both X4- and R5-tropic HIV-1 strains, whereas peptides P5 mutated in the calcium binding site or P1 lacked antiviral activity, when P5L blocked cell fusion in contrast to P7. Strikingly, P5 inhibited CD4-dependent infection by T20-resistant R5-tropic HIV-1 variants. Cell-cell fusion studies indicated that the anti-HIV-1 activity of P5, unlike T20, could not be abrogated in the presence of the N-terminal leucine zipper domain (LZ). These results suggested that P5 could serve as a potent fusion inhibitor. PMID:18925934
Zhang, Wei; Hu, Minlu; Shi, Yuan; Gong, Tiantian; Dezzutti, Charlene S.; Moncla, Bernard; Sarafianos, Stefan G.; Parniak, Michael A.; Rohan, Lisa C.
2015-01-01
Purpose EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. Methods Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. Results No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. Conclusions Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission. PMID:25794967
Huleatt, Paul B; Khoo, Mui Ling; Chua, Yi Yuan; Tan, Tiong Wei; Liew, Rou Shen; Balogh, Balázs; Deme, Ruth; Gölöncsér, Flóra; Magyar, Kalman; Sheela, David P; Ho, Han Kiat; Sperlágh, Beáta; Mátyus, Péter; Chai, Christina L L
2015-02-12
To develop novel neuroprotective agents, a library of novel arylalkenylpropargylamines was synthesized and tested for inhibitory activities against monoamine oxidases. From this, a number of highly potent and selective monoamine oxidase B inhibitors were identified. Selected compounds were also tested for neuroprotection in in vitro studies with PC-12 cells treated with 6-OHDA and rotenone, respectively. It was observed that some of the compounds tested yielded a marked increase in survival in PC-12 cells treated with the neurotoxins. This indicates that these propargylamines are able to confer protection against the effects of the toxins and may also be considered as novel disease-modifying anti-Parkinsonian agents, which are much needed for the therapy of Parkinson's disease.
Liu, Zhiguo; Tang, Longguang; Zou, Peng; Zhang, Yali; Wang, Zhe; Fang, Qilu; Jiang, Lili; Chen, Gaozhi; Xu, Zheng; Zhang, Huajie; Liang, Guang
2014-03-03
Curcumin has been shown to possess anti-inflammatory activities but has been limited for its low stability and poor bioavailability. We have previously reported four series of 5-carbon linker-containing mono-carbonyl analogs of curcumin (MACs). In continuation of our ongoing research, we designed and synthesized 33 novel allylated or prenylated MACs here, and evaluated their anti-inflammatory effects in RAW 264.7 macrophages. A majority of them effectively inhibited the LPS-induced expression of TNF-α and IL-6, especially IL-6. The preliminary SAR and quantitative SAR analysis were conducted. Compound 14q is the most potent analog among them, and exhibits significant protection against LPS-induced death in septic mice. Together, these data present a series of new analogs of curcumin as promising anti-inflammatory agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Göker, Hakan; Karaaslan, Cigdem; Püsküllü, Mustafa Orhan; Yildiz, Sulhiye; Duydu, Yalcin; Üstündağ, Aylin; Yalcin, Can Özgür
2016-01-01
A series of novel polyhalogenated 2-phenylbenzimidazoles have been synthesized and evaluated for in vitro antistaphylococcal activity against drug-resistant bacterial strains (methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium. Certain compounds inhibit bacterial growth perfectly. 11 was active than vancomycin (0.78 μg/mL) with the lowest MIC values with 0.19 μg/mL against methicillin-resistant Staphylococcus aureus, 8 and 35 exhibited best inhibitory activity against vancomycin-resistant Enterococcus faecium (1.56 μg/mL). The mechanism of action for this class of compounds appears to be different than clinically used antibiotics. These polyhalogenated benzimidazoles have potential for further investigation as a new class of potent anti-methicillin-resistant Staphylococcus aureus and anti-vancomycin-resistant Enterococcus faecium agents. © 2015 John Wiley & Sons A/S.
Chong, Huihui; Yao, Xue; Qiu, Zonglin; Qin, Bo; Han, Ruiyun; Waltersperger, Sandro; Wang, Meitian; Cui, Sheng; He, Yuxian
2012-01-01
The core structure of HIV-1 gp41 is a stable six-helix bundle (6-HB) folded by its trimeric N- and C-terminal heptad repeats (NHR and CHR). We previously identified that the 621QIWNNMT627 motif located at the upstream region of gp41 CHR plays critical roles for the stabilization of the 6-HB core and peptide CP621–652 containing this motif is a potent HIV-1 fusion inhibitor, however, the molecular determinants underlying the stability and anti-HIV activity remained elusive. In this study, we determined the high-resolution crystal structure of CP621–652 complexed by T21. We find that the 621QIWNNMT627 motif does not maintain the α-helical conformation. Instead, residues Met626 and Thr627 form a unique hook-like structure (denoted as M-T hook), in which Thr627 redirects the peptide chain to position Met626 above the left side of the hydrophobic pocket on the NHR trimer. The side chain of Met626 caps the hydrophobic pocket, stabilizing the interaction between the pocket and the pocket-binding domain. Our mutagenesis studies demonstrate that mutations of the M-T hook residues could completely abolish HIV-1 Env-mediated cell fusion and virus entry, and significantly destabilize the interaction of NHR and CHR peptides and reduce the anti-HIV activity of CP621–652. Our results identify an unusual structural feature that stabilizes the six-helix bundle, providing novel insights into the mechanisms of HIV-1 fusion and inhibition. PMID:22511760
Tseng, Chih-Hua; Tung, Chun-Wei; Wu, Chen-Hsin; Tzeng, Cherng-Chyi; Chen, Yen-Hsu; Hwang, Tsong-Long; Chen, Yeh-Long
2017-06-16
A series of indeno[1,2- c ]quinoline derivatives were designed, synthesized and evaluated for their anti-tuberculosis (anti-TB) and anti-inflammatory activities. The minimum inhibitory concentration (MIC) of the newly synthesized compound was tested against Mycobacterium tuberculosis H 37 R V . Among the tested compounds, ( E )- N '-[6-(4-hydroxypiperidin-1-yl)-11 H -indeno[1,2- c ]quinolin-11-ylidene]isonicotino-hydrazide ( 12 ), exhibited significant activities against the growth of M. tuberculosis (MIC values of 0.96 μg/mL) with a potency approximately equal to that of isoniazid (INH), an anti-TB drug. Important structure features were analyzed by quantitative structure-activity relationship (QSAR) analysis to give better insights into the structure determinants for predicting the anti-TB activity. The anti-inflammatory activity was induced by superoxide anion generation and neutrophil elastase (NE) release using the formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)-activated human neutrophils method. Results indicated that compound 12 demonstrated a potent dual inhibitory effect on NE release and superoxide anion generation with IC 50 values of 1.76 and 1.72 μM, respectively. Our results indicated that compound 12 is a potential lead compound for the discovery of dual anti-TB and anti-inflammatory drug candidates. In addition, 6-[3-(hydroxymethyl)piperidin-1-yl]-9-methoxy-11 H -indeno[1,2- c ]quinolin-11-one ( 4g ) showed a potent dual inhibitory effect on NE release and superoxide anion generation with IC 50 values of 0.46 and 0.68 μM, respectively, and is a potential lead compound for the discovery of anti-inflammatory drug candidates.
Konai, Mohini M; Haldar, Jayanta
2017-04-19
Methicillin-resistant Staphylococcus aureus (MRSA) has developed resistance to antibiotics of last resort such as vancomycin, linezolid, and daptomycin. Additionally, their biofilm forming capability has set an alarming situation in the treatment of bacterial infections. Herein we report the potency of fatty acid comprising lysine conjugates as novel anti-MRSA agents, which were not only capable of killing growing planktonic MRSA at low concentration (MIC = 3.1-6.3 μg/mL), but also displayed potent activity against nondividing stationary phase cells. Furthermore, the conjugates eradicated established biofilms of MRSA. The bactericidal activity of d-lysine conjugated tetradecanoyl analogue (D-LANA-14) is attributed to its membrane disruption against these metabolically distinct cells. In a mouse model of superficial skin infection, D-LANA-14 displayed potent in vivo anti-MRSA activity (2.7 and 3.9 Log reduction at 20 mg/kg and 40 mg/kg, respectively) without showing any skin toxicity even at 200 mg/kg of the compound exposure. Additionally, MRSA could not develop resistance against D-LANA-14 even after 18 subsequent passages, whereas the topical anti-MRSA antibiotic fusidic acid succumbed to rapid resistance development. Collectively, the results suggested that this new class of membrane targeting conjugates bear immense potential to treat MRSA infections over conventional antibiotic therapy.
Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu
2013-01-01
Background Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. Methodology/Principal Findings In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. Conclusion/Significance The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics. PMID:24302996
Gao, Qiong; Yang, Mengbi; Zuo, Zhong
2018-05-01
Arctigenin (AR) and its glycoside, arctiin, are two major active ingredients of Arctium lappa L (A lappa), a popular medicinal herb and health supplement frequently used in Asia. In the past several decades, bioactive components from A lappa have attracted the attention of researchers due to their promising therapeutic effects. In the current article, we aimed to provide an overview of the pharmacology of AR and arctiin, focusing on their anti-inflammatory effects, pharmacokinetics properties and clinical efficacies. Compared to acrtiin, AR was reported as the most potent bioactive component of A lappa in the majority of studies. AR exhibits potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Due to its potent anti-inflammatory effects, AR may serve as a potential therapeutic compound against both acute inflammation and various chronic diseases. However, pharmacokinetic studies demonstrated the extensive glucuronidation and hydrolysis of AR in liver, intestine and plasma, which might hinder its in vivo and clinical efficacy after oral administration. Based on the reviewed pharmacological and pharmacokinetic characteristics of AR, further pharmacokinetic and pharmacodynamic studies of AR via alternative administration routes are suggested to promote its ability to serve as a therapeutic agent as well as an ideal bioactive marker for A lappa.
Hulot, Sandrine L.; Korber, Bette; Giorgi, Elena E.; Vandergrift, Nathan; Saunders, Kevin O.; Balachandran, Harikrishnan; Mach, Linh V.; Lifton, Michelle A.; Pantaleo, Giuseppe; Tartaglia, Jim; Phogat, Sanjay; Jacobs, Bertram; Kibler, Karen; Perdiguero, Beatriz; Gomez, Carmen E.; Esteban, Mariano; Rosati, Margherita; Felber, Barbara K.; Pavlakis, George N.; Parks, Robert; Lloyd, Krissey; Sutherland, Laura; Scearce, Richard; Letvin, Norman L.; Seaman, Michael S.; Alam, S. Munir; Montefiori, David; Liao, Hua-Xin; Haynes, Barton F.
2015-01-01
ABSTRACT An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4+ and CD8+ T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses. PMID:25855741
Bagley, Kenneth C.; Lewis, George K.; Fouts, Timothy R.
2011-01-01
Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques. PMID:21508173
Bagley, Kenneth C; Lewis, George K; Fouts, Timothy R
2011-06-01
Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques.
Bam, Rujuta A.; Willkom, Madeleine; Frey, Christian R.; Tsai, Luong; Stray, Kirsten M.; Yant, Stephen R.; Cihlar, Tomas
2015-01-01
Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4+ T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF. PMID:26503655
Zhu, Jing-Jing; Jiang, Jian-Guo
2018-05-11
Coumarins are fused benzene and pyrone ring systems with a wide spectrum of bioactivities including anti-tumor, anti-inflammation, antiviral and antibacterial effects. In this paper, the current development of coumarins-based drugs is introduced, and their structure-activity relationship is discussed by reviewing the relevant literatures published in the past twenty years. Coumarin molecules can be customized by the target site to prevent systemic side effects by virtue of structural modification. The ortho-phenolic hydroxyl on the benzene ring had remarkable antioxidant and anti-tumor activities. Coumarins with aryl groups at the C-4 position have good activities in anti-HIV, anti-tumor, anti-inflammation and analgesia. C-3 phenylcoumarins have strong anti-HIV and antioxidant effects. Tetracycline pyranocoumarins can significantly inhibit the HIV, osthol structural analogues have antimicrobial activity. Praeruptorin C and its derivatives play an important role in lowering blood pressure and dilating coronary arteries, and khellactone derivatives have significant inhibitory effects on AIDS, cancer and cardiovascular diseases. It is concluded that the specific site on the core structure of coumarin exhibits one or more activities due to the electronic or steric effects of the substituents. This review is designed to be conducive to rational design and development of more active and less toxic agents with a coumarin scaffold. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Oriental herbs as a source of novel anti-androgen and prostate cancer chemopreventive agents.
Lu, Junxuan; Kim, Sung-Hoon; Jiang, Cheng; Lee, HyoJeong; Guo, Junming
2007-09-01
Androgen and androgen receptor (AR) signaling are crucial for the genesis of prostate cancer (PCa), which can often develop into androgen-ligand-independent diseases that are lethal to the patients. Recent studies show that even these hormone-refractory PCa require ligand-independent AR signaling for survival. As current chemotherapy is largely ineffective for PCa and has serious toxic sideeffects, we have initiated a collaborative effort to identify and develop novel, safe and naturally occurring agents that target AR signaling from Oriental medicinal herbs for the chemoprevention and treatment of PCa. We highlight our discovery of decursin from an Oriental formula containing Korean Angelica gigas Nakai (Dang Gui) root as a novel anti-androgen/AR agent. We have identified the following mechanisms to account for the specific anti-AR actions: rapid block of AR nuclear translocation, inhibition of binding of 5alpha-dihydrotestesterone to AR and increased proteasomal degradation of AR protein. Furthermore, decursin lacks the agonist activity of the "pure" anti-androgen bicalutamide and is more potent than bicalutamide in inducing PCa apoptosis. Structure-activity analyses reveal a critical requirement of the side-chain on decursin or its structural isomer decursinol angelate for anti-AR, cell cycle arrest and proapoptotic activities. This work demonstrates the feasibility of using activity-guided fractionation in cell culture assays combined with mechanistic studies to identify novel anti-androgen/ AR agents from complex herbal mixtures.
Chattopadhyay, Mitali; Kodela, Ravinder; Olson, Kenneth R; Kashfi, Khosrow
2012-03-16
Nonsteroidal anti-inflammatory drugs (NSAIDs) are prototypical anti-cancer agents. However, their long-term use is associated with adverse gastrointestinal effects. Recognition that endogenous gaseous mediators, nitric oxide (NO) and hydrogen sulfide (H(2)S) can increase mucosal defense mechanisms has led to the development of NO- and H(2)S-releasing NSAIDs with increased safety profiles. Here we report on a new hybrid, NOSH-aspirin, which is an NO- and H(2)S-releasing agent. NOSH-aspirin inhibited HT-29 colon cancer growth with IC(50)s of 45.5 ± 2.5, 19.7 ± 3.3, and 7.7 ± 2.2 nM at 24, 48, and 72 h, respectively. This is the first NSAID based agent with such high degree of potency. NOSH-aspirin inhibited cell proliferation, induced apoptosis, and caused G(0)/G(1) cell cycle block. Reconstitution and structure-activity studies representing a fairly close approximation to the intact molecule showed that NOSH-aspirin was 9000-fold more potent than the sum of its parts towards growth inhibition. NOSH-aspirin inhibited ovine COX-1 more than ovine COX-2. NOSH-ASA treatment of mice bearing a human colon cancer xenograft caused a reduction in volume of 85%. Taken together, these results demonstrate that NOSH-aspirin has strong anti-cancer potential and merits further evaluation. Copyright © 2012 Elsevier Inc. All rights reserved.
Breast Milk of HIV-Positive Mothers Has Potent and Species-Specific In Vivo HIV-Inhibitory Activity
Wahl, Angela; Baker, Caroline; Spagnuolo, Rae Ann; Stamper, Lisa W.; Fouda, Genevieve G.; Permar, Sallie R.; Hinde, Katie; Kuhn, Louise; Bode, Lars; Aldrovandi, Grace M.
2015-01-01
ABSTRACT Despite the nutritional and health benefits of breast milk, breast milk can serve as a vector for mother-to-child HIV transmission. Most HIV-infected infants acquire HIV through breastfeeding. Paradoxically, most infants breastfed by HIV-positive women do not become infected. This is potentially attributed to anti-HIV factors in breast milk. Breast milk of HIV-negative women can inhibit HIV infection. However, the HIV-inhibitory activity of breast milk from HIV-positive mothers has not been evaluated. In addition, while significant differences in breast milk composition between transmitting and nontransmitting HIV-positive mothers have been correlated with transmission risk, the HIV-inhibitory activity of their breast milk has not been compared. This knowledge may significantly impact the design of prevention approaches in resource-limited settings that do not deny infants of HIV-positive women the health benefits of breast milk. Here, we utilized bone marrow/liver/thymus humanized mice to evaluate the in vivo HIV-inhibitory activity of breast milk obtained from HIV-positive transmitting and nontransmitting mothers. We also assessed the species specificity and biochemical characteristics of milk's in vivo HIV-inhibitory activity and its ability to inhibit other modes of HIV infection. Our results demonstrate that breast milk of HIV-positive mothers has potent HIV-inhibitory activity and indicate that breast milk can prevent multiple routes of infection. Most importantly, this activity is unique to human milk. Our results also suggest multiple factors in breast milk may contribute to its HIV-inhibitory activity. Collectively, our results support current recommendations that HIV-positive mothers in resource-limited settings exclusively breastfeed in combination with antiretroviral therapy. IMPORTANCE Approximately 240,000 children become infected with HIV annually, the majority via breastfeeding. Despite daily exposure to virus in breast milk, most infants breastfed by HIV-positive women do not acquire HIV. The low risk of breastfeeding-associated HIV transmission is likely due to antiviral factors in breast milk. It is well documented that breast milk of HIV-negative women can inhibit HIV infection. Here, we demonstrate, for the first time, that breast milk of HIV-positive mothers (nontransmitters and transmitters) inhibits HIV transmission. We also demonstrate that breast milk can prevent multiple routes of HIV acquisition and that this activity is unique to human milk. Collectively, our results support current guidelines which recommend that HIV-positive women in resource-limited settings exclusively breastfeed in combination with infant or maternal antiretroviral therapy. PMID:26292320
Feng, Lei; Dharmarajan, Venkatasubramanian; Serrao, Erik; Hoyte, Ashley; Larue, Ross C; Slaughter, Alison; Sharma, Amit; Plumb, Matthew R; Kessl, Jacques J; Fuchs, James R; Bushman, Frederic D; Engelman, Alan N; Griffin, Patrick R; Kvaratskhelia, Mamuka
2016-05-20
Allosteric HIV-1 integrase inhibitors (ALLINIs) have recently emerged as a promising class of antiretroviral agents and are currently in clinical trials. In infected cells, ALLINIs potently inhibit viral replication by impairing virus particle maturation but surprisingly exhibit a reduced EC50 for inhibiting HIV-1 integration in target cells. To better understand the reduced antiviral activity of ALLINIs during the early stage of HIV-1 replication, we investigated the competitive interplay between a potent representative ALLINI, BI/D, and LEDGF/p75 with HIV-1 integrase. While the principal binding sites of BI/D and LEDGF/p75 overlap at the integrase catalytic core domain dimer interface, we show that the inhibitor and the cellular cofactor induce markedly different multimerization patterns of full-length integrase. LEDGF/p75 stabilizes an integrase tetramer through the additional interactions with the integrase N-terminal domain, whereas BI/D induces protein-protein interactions in C-terminal segments that lead to aberrant, higher-order integrase multimerization. We demonstrate that LEDGF/p75 binds HIV-1 integrase with significantly higher affinity than BI/D and that the cellular protein is able to reverse the inhibitor induced aberrant, higher-order integrase multimerization in a dose-dependent manner in vitro. Consistent with these observations, alterations of the cellular levels of LEDGF/p75 markedly affected BI/D EC50 values during the early steps of HIV-1 replication. Furthermore, genome-wide sequencing of HIV-1 integration sites in infected cells demonstrate that LEDGF/p75-dependent integration site selection is adversely affected by BI/D treatment. Taken together, our studies elucidate structural and mechanistic details of the interplay between LEDGF/p75 and BI/D during the early stage of HIV-1 replication.
Involvement of Sp1 in butyric acid-induced HIV-1 gene expression.
Imai, Kenichi; Okamoto, Takashi; Ochiai, Kuniyasu
2015-01-01
The ability of human immunodeficiency virus-1(HIV-1) to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs), could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP) was required for butyric acid-induced HIV-1 activation. These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria. © 2015 S. Karger AG, Basel.
Koharudin, Leonardus M I; Kollipara, Sireesha; Aiken, Christopher; Gronenborn, Angela M
2012-09-28
Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ~66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties.
NASA Technical Reports Server (NTRS)
Mccarthy, Bruce G.; Peroutka, Stephen J.
1988-01-01
Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.
Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Li, Zhufang; Zhang, Sharon; Sun, Yongnian; Samanta, Himadri; Terry, Brian; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J; Chen, Jie; Venables, Brian L; Healy, Matthew; Meanwell, Nicholas A; Cockett, Mark; Hanumegowda, Umesh; Regueiro-Ren, Alicia; Krystal, Mark; Dicker, Ira B
2016-07-01
BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat. Copyright © 2016 Nowicka-Sans et al.
Sanna, Cinzia; Rigano, Daniela; Corona, Angela; Piano, Dario; Formisano, Carmen; Farci, Domenica; Franzini, Genni; Ballero, Mauro; Chianese, Giuseppina; Tramontano, Enzo; Taglialatela-Scafati, Orazio; Esposito, Francesca
2018-02-04
During our search for potential templates of HIV-1 reverse transcriptase (RT) and integrase (IN) dual inhibitors, the methanolic extract obtained from aerial parts of Limonium morisianum was investigated. Repeated bioassay-guided chromatographic purifications led to the isolation of the following secondary metabolites: myricetin, myricetin 3-O-rutinoside, myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside, (-)-epigallocatechin 3-O-gallate, tryptamine, ferulic and phloretic acids. The isolated compounds were tested on both HIV-1 RT-associated RNase H and IN activities. Interestingly, (-)-epigallocatechin-3-O-gallate and myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside potently inhibited both enzyme activities with IC 50 values ranging from 0.21 to 10.9 μM. Differently, tryptamine and ferulic acid exhibited a significant inhibition only on the IN strand transfer reaction, showing a selectivity for this viral enzyme. Taken together these results strongly support the potential of this plant as a valuable anti HIV-1 drugs source worthy of further investigations.
Jung, Ji-Eun; Pandit, Santosh; Jeon, Jae-Gyu
2014-01-01
Dryopteris crassirhizoma is a semi-evergreen plant. Previous studies have shown the potential of this plant as an agent for the control of cariogenic biofilms. In this study, the main antibacterial components of the plant were identified by correlating gas chromatography-mass spectrometry data with the antibacterial activity of chloroform and n-hexane fractions and then evaluating the activity of the most potent antibacterial component against Streptococcus mutans UA159 biofilms. The most potent antibacterial component was linoleic acid, a main component of the n-hexane fraction. Linoleic acid reduced viability in a dose dependent manner and reduced biofilm accumulation during initial and mature biofilm formation. Furthermore, when the biofilms were briefly treated with linoleic acid (10 min/treatment, a total of six times), the dry weight of the biofilms was significantly diminished. In addition, the anti-biofilm activity of the n-hexane fraction was similar to that of linoleic acid. These results suggest that the n-hexane fraction of D. crassirhizoma and linoleic acid may be useful for controlling cariogenic biofilms.
Potent Antiarthritic Properties of Phloretin in Murine Collagen-Induced Arthritis.
Wang, Shun-Ping; Lin, Shih-Chao; Li, Shiming; Chao, Ya-Hsuan; Hwang, Guang-Yuh; Lin, Chi-Chen
2016-01-01
In the exploration of potential therapeutic agents for rheumatoid arthritis (RA), DBA/1J mice are used as the RA model of collagen-induced arthritis (CIA). Phloretin, a flavonoid compound extracted from Prunus mandshurica , has been found to exhibit anti-inflammatory activity, making it a potential candidate for treatment of RA. The objective of this study was to evaluate the therapeutic effects of phloretin on CIA mice. CIA mice were dosed daily with phloretin at either 50 or 100 mg/kg among two treatment groups. CIA treated mice showed mitigation of clinical symptoms of RA in addition to reduced inflammation of hind-limbs compared to mice who did not receive phloretin. Histological analysis showed that phloretin suppressed the severity of RA and effectively mitigated joint inflammation and cartilage- and bone-destruction via reducing proinflammatory cytokine productions (TNF- α , IL-6, IL-1 β , and IL-17). This was at least partially mediated by causing inadequate splenocyte activation and proliferation. Moreover, phloretin-treated CIA mice showed decreased oxidative stress and diminished levels of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ) in paw tissues as well as reduced productivity of anti-collagen antibodies in serum. We have concluded that phloretin could be a potent and effective antiarthritis agent, demonstrating anti-inflammatory, antioxidative, and immunomodulatory effects in CIA mice.
NASA Astrophysics Data System (ADS)
Malik, Ruchi; Bunkar, Devendra; Choudhary, Bhanwar Singh; Srivastava, Shubham; Mehta, Pakhuri; Sharma, Manish
2016-10-01
Human semen is principal vehicle for transmission of HIV-1 and other enveloped viruses. Several endogenous peptides present in semen, including a 39-amino acid fragments of prostatic acid phosphatase (PAP248-286) assemble into amyloid fibrils named as semen-derived enhancer of viral infection (SEVI) that promote virion attachment to target cells which dramatically enhance HIV virus infection by up to 105-fold. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound, is the major catechin found in green tea which disaggregates existing SEVI fibers, and inhibits the formation of SEVI fibers. The aim of this study was to screen a number of relevant polyphenols to develop a rational approach for designing PAP248-286 aggregation inhibitors as potential anti-HIV agents. The molecular docking based virtual screening results showed that polyphenolic compounds 2-6 possessed good docking score and interacted well with the active site residues of PAP248-286. Amino acid residues of binding site namely; Lys255, Ser256, Leu258 and Asn265 are involved in binding of these compounds. In silico ADMET prediction studies on these hits were also found to be promising. Polyphenolic compounds 2-6 identified as hits may act as novel leads for inhibiting aggregation of PAP248-286 into SEVI.
NASA Astrophysics Data System (ADS)
Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei
2016-05-01
There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.
Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei
2016-05-05
There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.
Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei
2016-01-01
There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869
Akil, Ayman; Parniak, Michael A.; Dezzuitti, Charlene S.; Moncla, Bernard J.; Cost, Marilyn R.; Li, Mingguang; Rohan, Lisa Cencia
2012-01-01
Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide. PMID:22708075
Akil, Ayman; Parniak, Michael A; Dezzuitti, Charlene S; Moncla, Bernard J; Cost, Marilyn R; Li, Mingguang; Rohan, Lisa Cencia
2011-06-01
Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide.
Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu
2018-01-01
Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.
Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu
2018-01-01
Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO’s anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO’s anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment. PMID:29765324
Efficient Vpu-Mediated Tetherin Antagonism by an HIV-1 Group O Strain
Mack, Katharina; Starz, Kathrin; Sauter, Daniel; Langer, Simon; Bibollet-Ruche, Frederic; Learn, Gerald H.; Stürzel, Christina M.; Leoz, Marie; Plantier, Jean-Christophe; Geyer, Matthias; Hahn, Beatrice H.
2017-01-01
ABSTRACT Simian immunodeficiency viruses (SIVs) use their Nef proteins to counteract the restriction factor tetherin. However, a deletion in human tetherin prevents antagonism by the Nef proteins of SIVcpz and SIVgor, which represent the ape precursors of human immunodeficiency virus type 1 (HIV-1). To promote virus release from infected cells, pandemic HIV-1 group M strains evolved Vpu as a tetherin antagonist, while the Nef protein of less widespread HIV-1 group O strains acquired the ability to target a region adjacent to this deletion. In this study, we identified an unusual HIV-1 group O strain (RBF206) that evolved Vpu as an effective antagonist of human tetherin. While both RBF206 Vpu and Nef exert anti-tetherin activity in transient-transfection assays, mainly Vpu promotes RBF206 release in infected CD4+ T cells. Although mutations distinct from the adaptive changes observed in group M Vpus (M-Vpus) were critical for the acquisition of its anti-tetherin activity, RBF206 O-Vpu potently suppresses NF-κB activation and reduces CD4 cell surface expression. Interestingly, RBF206 Vpu counteracts tetherin in a largely species-independent manner, degrading both the long and short isoforms of human tetherin. Downmodulation of CD4, but not counteraction of tetherin, by RBF206 Vpu was dependent on the cellular ubiquitin ligase machinery. Our data present the first example of an HIV-1 group O Vpu that efficiently antagonizes human tetherin and suggest that counteraction by O-Nefs may be suboptimal. IMPORTANCE Previous studies showed that HIV-1 groups M and O evolved two alternative strategies to counteract the human ortholog of the restriction factor tetherin. While HIV-1 group M switched from Nef to Vpu due to a deletion in the cytoplasmic domain of human tetherin, HIV-1 group O, which lacks Vpu-mediated anti-tetherin activity, acquired a Nef protein that is able to target a region adjacent to the deletion. Here we report an unusual exception, identifying a strain of HIV-1 group O (RBF206) whose Vpu protein evolved an effective antagonism of human tetherin. Interestingly, the adaptive changes in RBF206 Vpu are distinct from those found in M-Vpus and mediate efficient counteraction of both the long and short isoforms of this restriction factor. Our results further illustrate the enormous flexibility of HIV-1 in counteracting human defense mechanisms. PMID:28077643
Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia
NASA Astrophysics Data System (ADS)
Shingai, Masashi; Nishimura, Yoshiaki; Klein, Florian; Mouquet, Hugo; Donau, Olivia K.; Plishka, Ronald; Buckler-White, Alicia; Seaman, Michael; Piatak, Michael; Lifson, Jeffrey D.; Dimitrov, Dimiter; Nussenzweig, Michel C.; Martin, Malcolm A.
2013-11-01
Neutralizing antibodies can confer immunity to primate lentiviruses by blocking infection in macaque models of AIDS. However, earlier studies of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies administered to infected individuals or humanized mice reported poor control of virus replication and the rapid emergence of resistant variants. A new generation of anti-HIV-1 monoclonal antibodies, possessing extraordinary potency and breadth of neutralizing activity, has recently been isolated from infected individuals. These neutralizing antibodies target different regions of the HIV-1 envelope glycoprotein including the CD4-binding site, glycans located in the V1/V2, V3 and V4 regions, and the membrane proximal external region of gp41 (refs 9, 10, 11, 12, 13, 14). Here we have examined two of the new antibodies, directed to the CD4-binding site and the V3 region (3BNC117 and 10-1074, respectively), for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian-human immunodeficiency virus (SHIV)-AD8, which emulates many of the pathogenic and immunogenic properties of HIV-1 during infections of rhesus macaques. Either antibody alone can potently block virus acquisition. When administered individually to recently infected macaques, the 10-1074 antibody caused a rapid decline in virus load to undetectable levels for 4-7days, followed by virus rebound during which neutralization-resistant variants became detectable. When administered together, a single treatment rapidly suppressed plasma viraemia for 3-5weeks in some long-term chronically SHIV-infected animals with low CD4+ T-cell levels. A second cycle of anti-HIV-1 monoclonal antibody therapy, administered to two previously treated animals, successfully controlled virus rebound. These results indicate that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected individuals experiencing immune dysfunction.
Atabey, N; Gao, Y; Yao, Z J; Breckenridge, D; Soon, L; Soriano, J V; Burke, T R; Bottaro, D P
2001-04-27
Hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of cellular targets during development, homeostasis and tissue regeneration. Inappropriate HGF signaling occurs in several human cancers, and the ability of HGF to initiate a program of protease production, cell dissociation, and motility has been shown to promote cellular invasion and is strongly linked to tumor metastasis. Upon HGF binding, several tyrosines within the intracellular domain of its receptor, c-Met, become phosphorylated and mediate the binding of effector proteins, such as Grb2. Grb2 binding through its SH2 domain is thought to link c-Met with downstream mediators of cell proliferation, shape change, and motility. We analyzed the effects of Grb2 SH2 domain antagonists on HGF signaling and observed potent blockade of cell motility, matrix invasion, and branching morphogenesis, with ED(50) values of 30 nm or less, but only modest inhibition of mitogenesis. These compounds are 1000-10,000-fold more potent anti-motility agents than any previously characterized Grb2 SH2 domain antagonists. Our results suggest that SH2 domain-mediated c-Met-Grb2 interaction contributes primarily to the motogenic and morphogenic responses to HGF, and that these compounds may have therapeutic application as anti-metastatic agents for tumors where the HGF signaling pathway is active.
Kume, Kodai; Ikeda, Kazuyo; Kamada, Masaki; Touge, Tetsuo; Deguchi, Kazushi; Masaki, Tsutomu
2013-01-01
A 47-year-old man with HIV infection presented with lower leg dominant dysesthesia, muscle weakness and sensory ataxia of 3 month's duration. Nerve conduction studies (NCS) showed demyelination change in the median and tibial nerves and sensory nerve action potential (SNAP) in the sural nerve was not evoked. Somatosensory evoked potential (SEP) showed the delayed N9 latency. Diagnose of HIV-associated chronic inflammatory demyelinating polyneuropathy (CIDP) was made. Although the CD4 lymphocyte counts were relatively preserved (466/μl), highly active anti-retroviral therapy (HAART) was started according to a new guideline for the use of antiretroviral agents in HIV-1-infected adults and adolescents recommending early initiation of treatment. After six months, HIV1-RNA was not detected and the CD4 lymphocyte counts showed a recovering trend (585/μl). His symptoms had disappeared, except for dysesthesia in the tip of a toe. Repeated NCS demonstrated full recovery from the demyelination and appearance of SNAP in the sural nerve. The improvement of his symptoms and NCS findings has been maintained for two years. Although effectiveness of immunotherapies such as oral prednisone, high-dose immunoglobulins and plasmapheresis have been reported in HIV-associated CIDP, early initiation of HAART may be also important for favorable prognosis in HIV-associated CIDP.
Biological evaluation of benzosuberones.
Behbehani, Haider; Dawood, Kamal M; Farghaly, Thoraya A
2018-01-01
Several natural products containing benzosuberone moiety are clinically reported as anti-tumor agents. Furthermore, several synthetic benzosuberones cited in this review exhibited wide range of theraputic activities such as bacteriostatic, anti-inflammatory, antidepressants and anti-tumor activities. Our recent review provides an overview of the different methods to synthesize the benzosuberones and their extensive biological activities. Areas covered: Thirty-two patents among 130 references are cited in this review that covered the recent inhibitory activities of the benzosuberone scaffolds and their broad area of biological applications up to the first quarter of 2017. The areas covered included anti-inflammatory, antimicrobial, antitumor, selective estrogen receptor, anti-obesity, beta-amyloid production, enzymes and HCV inhibitors in addition to anti-Alzheimer and anti-tuberculosis activities as well as several receptors antagonists. Expert opinion: It is important for medical and pharmaceutical researchers to prepare the first intensive review article concerning the highly biologically active benzosuberone derivatives where they are potent anti-inflammatory, immunosuppressive, antitumor activities and inhibitors of several enzymes. They are useful for treating abnormalities such as sleep disorders, eating disorders and reproductive disorders. Some of these compounds have potential as vascular disrupting agents to selectively target microvessels feeding tumors and some were potential leads for the development of promising therapeutic drugs.
Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang; Liu, Chao; Zhang, Hui
2015-12-01
Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. Copyright © 2015 Elsevier Inc. All rights reserved.
Identification of a D-amino acid decapeptide HIV-1 entry inhibitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggiano, Cesar; Jiang Shibo; Lu Hong
2006-09-08
Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonalmore » antibody and chemokine SDF-1{alpha} to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.« less
Amala, Mathimaran; Rajamanikandan, Sundaraj; Prabhu, Dhamodharan; Surekha, Kanagarajan; Jeyakanthan, Jeyaraman
2018-02-06
Lymphatic filariasis is a debilitating vector borne parasitic disease that infects human lymphatic system by nematode Brugia malayi. Currently available anti-filarial drugs are effective only on the larval stages of parasite. So far, no effective drugs are available for humans to treat filarial infections. In this regard, aspartate semialdehyde dehydrogenase (ASDase) in lysine biosynthetic pathway from Wolbachia endosymbiont Brugia malayi represents an attractive therapeutic target for the development of novel anti-filarial agents. In this present study, molecular modeling combined with molecular dynamics simulations and structure-based virtual screening were performed to identify potent lead molecules against ASDase. Based on Glide score, toxicity profile, binding affinity and mode of interactions with the ASDase, five potent lead molecules were selected. The molecular docking and dynamics results revealed that the amino acid residues Arg103, Asn133, Cys134, Gln161, Ser164, Lys218, Arg239, His246, and Asn321 plays a crucial role in effective binding of Top leads into the active site of ASDase. The stability of the ASDase-lead complexes was confirmed by running the 30 ns molecular dynamics simulations. The pharmacokinetic properties of the identified lead molecules are in the acceptable range. Furthermore, density functional theory and binding free energy calculations were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-filarial agents to combat the pathogenecity of Brugia malayi.
Maddili, Swetha K; Katla, Ramesh; Kannekanti, Vijaya Kumar; Bejjanki, Naveen Kumar; Tuniki, Balaraju; Zhou, Cheng-He; Gandham, Himabindu
2018-04-25
The binding behaviour between calf thymus DNA and synthesized benzothiazolyl triazolium derivatives as potent antimicrobial agents was explored by means of spectroscopic applications together with molecular docking study at the sub-domain IIA, binding site I of human serum albumin (HSA). Most of the synthesized derivatives presented significant antimicrobial inhibition when compared with the clinical Norfloxacin, Chloromycin, and Fluconazole. In particular, compound 5q presented efficient anti-Bacillus subtilis, anti-Escherichia coli, anti-Salmonella typhi, and anti-Psuedomonas aeruginosa activity with low MIC values of 2-8 μg/mL which were relatively superior to the reference drugs. The preliminarily investigation of interaction studies with calf thymus DNA demonstrated that the most active compound 5q could effectively intercalate into DNA to form 5q-DNA complex. Further investigations revealed that human serum albumin could effectively transport compound 5q while molecular modelling studies with good docking score showed that hydrophobic interactions as well as hydrogen bonds played a significant role in the interaction of compound 5q with HSA. In addition, the cytotoxic investigation carried out on four different cancerous cell lines (3 human cell lines and 1 murine cell lines) by MTT assay presented that compound 5n is active against MDA cell lines with IC 50 values less than 100 μg/mL. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Mishra, Chandra Bhushan; Kumari, Shikha; Siraj, Fouzia; Yadav, Rajesh; Kumari, Sweta; Tiwari, Ankit Kumar; Tiwari, Manisha
2018-06-05
Epilepsy is a chronic neurological disorder which affects 65 million worldwide population and characterized by recurrent seizure in epileptic patients. Recently, we reported a novel piperonylpiperazine derivative, BPPU "1-[4-(4-benzo [1,3]dioxol-5-ylmethyl-piperazin-1-yl)- phenyl]-3-phenyl-urea'' as a potent anticonvulsant agent. BPPU has shown excellent anticonvulsant activity in various in-vivo seizure models along with good anti-depressant activity. In this report, we have deeply examined the anti-epileptogenic potential of BPPU in pentylenetetrazole (PTZ) induced kindling model and BPPU effectively reduced seizure episodes in kindled animals upto 35 days. Further, neuroprotective potential of BPPU against PTZ induced neurodegeneration has also been evaluated in hippocampus as well as cortex region by histopathological and immunohistochemical studies. Epileptic patients generally suffer from a range of cognitive impairments. Therefore, the cognition enhancing effect of BPPU was also measured by using well known social recognition test, novel object recognition test, light/dark test and open field test in kindled rat model as well as scopolamine induced memory deficit mice model. Results indicated that BPPU successfully improved cognition deficits in both models. Thus, BPPU appeared as a potent anti-epileptic agent which has also capability to improve cognition decline associated with epilepsy. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Kilaru, Ravendra Babu; Valasani, Koteswara Rao; Yellapu, Nanda Kumar; Osuru, Hari Prasad; Kuruva, Chandra Sekhar; Matcha, Bhaskar; Chamarthi, Naga Raju
2014-09-15
Since inhibitors of mucin onco proteins are potential targets for breast cancer therapy, a series of novel 4-methylthiazole-5-carboxylic acid (1) derivatives 3a-k were synthesized by the reaction of 1 with SOCl2 followed by different bases/alcohols in the presence of triethylamine. Once synthesized and characterized, their binding modes with MUC1 were studied by molecular docking analysis using Aruglab 4.0.1 and QSAR properties were determined using HyperChem. All synthesized compounds were screened for in vitro anti-breast cancer activity against MDA-MB-231 breast adenocarcinoma cell lines by Trypan-blue cell viability assay and MTT methods. Compounds 1, 3b, 3d, 3e, 3i and 3f showed good anti-breast cancer activity. Since 1 and 3d exhibited high potent activity against MDA-MB-231 cell lines, they show could be effective mucin onco protein inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chennamaneni, Snigdha; Yi, Xin; Liu, lili; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin
2014-01-01
Cyclooxygenase-2 (COX-2) inhibitor nimesulide inhibits the proliferation of various types of cancer cells mainly via COX-2 independent mechanisms, which makes it a good lead compound for anti-cancer drug development. In the presented study, a series of new nimesulide analogs were synthesized based on the structure–function analysis generated previously. Some of them displayed very potent anti-cancer activity with IC50s around 100nM to 200nM to inhibit SKBR-3 breast cancer cell growth. CSUOH0901 (NSC751382) from the compound library also inhibits the growth of the 60 cancer cell lines used at National Cancer Institute Developmental therapeutics Program (NCIDTP) with IC50s around 100nM to 500nM. Intraperitoneal injection with a dosage of 5mg/kg/d of CSUOH0901 to nude mice suppresses HT29 colorectal xenograft growth. Pharmacokinetic studies demonstrate the good bioavailability of the compound. PMID:22119125
Pinto, N B; Morais, T C; Carvalho, K M B; Silva, C R; Andrade, G M; Brito, G A C; Veras, M L; Pessoa, O D L; Rao, V S; Santos, F A
2010-08-01
The anti-inflammatory effect of physalin E, a seco-steroid isolated from Physalis angulata L. was evaluated on acute and chronic models of dermatitis induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and oxazolone, respectively, in mouse ear. The changes in ear edema/thickness, production of pro-inflammatory cytokines (TNF-alpha and IFN-gamma), myeloperoxidase (MPO) activity, and histological and immunohistochemical findings were analysed, as indicators of dermal inflammation. Similar to dexamethasone, topically applied Physalin E (0.125; 0.25 and 0.5 mg/ear) potently inhibited the TPA and oxazolone-induced dermatitis, leading to substantial reductions in ear edema/thickness, pro-inflammatory cytokines, and MPO activity. These effects were reversed by mifepristone, a steroid antagonist and confirmed by immunohistochemical and histopathological analysis. The data suggest that physalin E may be a potent and topically effective anti-inflammatory agent useful to treat the acute and chronic skin inflammatory conditions. 2010 Elsevier GmbH. All rights reserved.
Complete Genome Sequence of Escherichia Phage OSYSP
Yesil, Mustafa; Huang, En; Yang, Xu
2017-01-01
ABSTRACT Bacteriophage OSYSP is a new anti-Escherichia coli O157:H7 phage isolated from municipal wastewater in Ohio. OSYSP is potent against enterohemorrhagic E. coli and is a candidate biocontrol agent for food and therapeutic applications. In this paper, we present the important genetic features of this phage based on its complete genome sequence. PMID:29051235
Ohtsu, Yoshihiro; Sasamura, Hiromi; Tanaka, Miho; Tsurumi, Yasuhisa; Yoshimura, Seiji; Takase, Shigehiro; Shibata, Toshihiro; Hino, Motohiro; Nakajima, Hidenori
2005-07-01
FR225654, a novel gluconeogenesis inhibitor, was isolated from the culture broth of Phoma sp. No. 00144 and purified by adsorptive resin and reverse-phase column chromatography. This compound is a potent inhibitor of gluconeogenesis and is a promising candidate of anti-diabetic agent.
Recent developments in therapeutic applications of Cyanobacteria.
Raja, Rathinam; Hemaiswarya, Shanmugam; Ganesan, Venkatesan; Carvalho, Isabel S
2016-05-01
The cyanobacteria (blue-green algae) are photosynthetic prokaryotes having applications in human health with numerous biological activities and as a dietary supplement. It is used as a food supplement because of its richness in nutrients and digestibility. Many cyanobacteria (Microcystis sp, Anabaena sp, Nostoc sp, Oscillatoria sp., etc.) produce a great variety of secondary metabolites with potent biological activities. Cyanobacteria produce biologically active and chemically diverse compounds belonging to cyclic peptides, lipopeptides, fatty acid amides, alkaloids and saccharides. More than 50% of the marine cyanobacteria are potentially exploitable for extracting bioactive substances which are effective in killing cancer cells by inducing apoptotic death. Their role as anti-viral, anti-tumor, antimicrobial, anti-HIV and a food additive have also been well established. However, such products are at different stages of clinical trials and only a few compounds have reached to the market.
Khokra, S L; Khan, S A; Choudhary, D; Hasan, S M; Ahmad, A; Husain, Asif
2016-01-01
Furanone and pyrrolone heterocyclic ring system represent important and interesting classes of bioactive compounds. Medicinal chemists use these heterocycyclic moieties as scaffolds in drug design and discovery. A series of 3-arylidene-5-(naphthalene-2-yl)-furan-2(3H)-ones (2a-j) were synthesized by incorporating pharmacophore of COX-2 inhibitor rofecoxib and naphthyl ring of naproxen as potential non steroidal anti-inflammatory agents. These furanone derivatives were subsequently reacted with dry ammonia gas and benzylamine to furnish corresponding 3-arylidene-5-(naphthlen-2-yl)-1H-pyrrol-2(3H)-ones (3a-e) and 3-arylidene-1-benzyl-5- (naphthalene-2-yl)-1H-pyrrol-2(3H)-ones (4a-e), respectively. The newly prepared heterocyclics were screened for their expected in-vivo biological activities including anti-inflammatory, analgesic and ulcerogenic actions in rodents. The COX-2 inhibitory behavior of synthesized compounds was also assessed via automated docking studies. The chemical structure of the synthesized compounds was characterized by using modern spectroscopic techniques. Result of in-vivo pharmacological studies demonstrated that almost all N-Benzyl-pyrrol-2(3H)-ones (4a-e) showed better anti-inflammatory and analgesic activities in comparison with the other two series of furan-2(3H)-ones and pyrrol- 2(3H)-ones. The moldock score value of the tested compounds was found in the range of -116.66 to -170.328 and was better than the standard drug. Among all the synthesized compounds, only nine compounds (2d, 2g, 2h, 3d, 4a, 4b, 4c, 4d and 4e) exhibited potent anti-inflammatory and analgesic activities with significantly reduced gastrointestinal toxicity in various animal models in comparison to standard drug, diclofenac. Therefore, it is recommended to explore the potential of the synthesized compounds as lead candidates for the development of new therapeutic agents.
Altered Antibody Profiles against Common Infectious Agents in Chronic Disease
Burbelo, Peter D.; Ching, Kathryn H.; Morse, Caryn G.; Alevizos, Ilias; Bayat, Ahmad; Cohen, Jeffrey I.; Ali, Mir A.; Kapoor, Amit; Browne, Sarah K.; Holland, Steven M.; Kovacs, Joseph A.; Iadarola, Michael J.
2013-01-01
Despite the important diagnostic value of evaluating antibody responses to individual human pathogens, antibody profiles against multiple infectious agents have not been used to explore health and disease mainly for technical reasons. We hypothesized that the interplay between infection and chronic disease might be revealed by profiling antibodies against multiple agents. Here, the levels of antibodies against a panel of 13 common infectious agents were evaluated with the quantitative Luciferase Immunoprecipitation Systems (LIPS) in patients from three disease cohorts including those with pathogenic anti-interferon-γ autoantibodies (IFN-γ AAB), HIV and Sjögren’s syndrome (SjS) to determine if their antibody profiles differed from control subjects. The IFN-γ AAB patients compared to controls demonstrated statistically higher levels of antibodies against VZV (p=0.0003), EBV (p=0.002), CMV (p=0.003), and C. albicans (p=0.03), but lower antibody levels against poliovirus (p=0.04). Comparison of HIV patients with blood donor controls revealed that the patients had higher levels of antibodies against CMV (p=0.0008), HSV-2 (p=0.0008), EBV (p=0.001), and C. albicans (p=0.01), but showed decreased levels of antibodies against coxsackievirus B4 (p=0.0008), poliovirus (p=0.0005), and HHV-6B (p=0.002). Lastly, SjS patients had higher levels of anti-EBV antibodies (p=0.03), but lower antibody levels against several enteroviruses including a newly identified picornavirus, HCoSV-A (p=0.004), coxsackievirus B4 (p=0.04), and poliovirus (p=0.02). For the IFN-γ AAB and HIV cohorts, principal component analysis revealed unique antibody clusters that showed the potential to discriminate patients from controls. The results suggest that antibody profiles against these and likely other common infectious agents may yield insight into the interplay between exposure to infectious agents, dysbiosis, adaptive immunity and disease activity. PMID:24312567
Narayanasamy, Prabagaran; Switzer, Barbara L.; Britigan, Bradley E.
2015-01-01
Human immunodeficiency virus (HIV) infection and Mycobacterium tuberculosis (TB) are responsible for two of the major global human infectious diseases that result in significant morbidity, mortality and socioeconomic impact. Furthermore, severity and disease prevention of both infections is enhanced by co-infection. Parallel limitations also exist in access to effective drug therapy and the emergence of resistance. Furthermore, drug-drug interactions have proven problematic during treatment of co-incident HIV and TB infections. Thus, improvements in drug access and simplified treatment regimens are needed immediately. One of the key host cells infected by both HIV and TB is the mononuclear phagocyte (MP; monocyte, macrophage and dendritic cell). Therefore, we hypothesized that one way this can be achieved is through drug-targeting by a nanoformulated drug that ideally would be active against both HIV and TB. Accordingly, we validated macrophage targeted long acting (sustained drug release) gallium (Ga) nanoformulation against HIV-mycobacterium co-infection. The multi-targeted Ga nanoparticle agent inhibited growth of both HIV and TB in the macrophage. The Ga nanoparticles reduced the growth of mycobacterium and HIV for up to 15 days following single drug loading. These results provide a potential new approach to treat HIV-TB co-infection that could eventually lead to improved clinical outcomes. PMID:25744727
Money, Deborah; Tulloch, Karen; Boucoiran, Isabelle; Caddy, Sheila
2014-08-01
This guideline reviews the evidence relating to the care of pregnant women living with HIV and the prevention of perinatal HIV transmission. Prenatal care of pregnancies complicated by HIV infection should include monitoring by a multidisciplinary team with experts in this area. OUTCOMES evaluated include the impact of HIV on pregnancy outcome and the efficacy and safety of antiretroviral therapy and other measures to decrease the risk of vertical transmission. Published literature was retrieved through searches of PubMed and The Cochrane Library in 2012 and 2013 using appropriate controlled vocabulary (HIV, anti-retroviral agents, pregnancy, delivery) and key words (HIV, pregnancy, antiretroviral agents, vertical transmission, perinatal transmission). Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies published in English or French. There were no date restrictions. Searches were updated on a regular basis and incorporated in the guideline to June 2013. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1).
Drug-Eluting Fibers for HIV-1 Inhibition and Contraception
Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A.
2012-01-01
Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract. PMID:23209601
Zhang, Lei; Shi, Lei; Soars, Shafer; Kamps, Joshua; Yin, Hang Hubert
2018-06-05
Excessive NF-κB activation contributes to the pathogenesis of numerous diseases. Small-molecule inhibitors of NF-κB signaling have significant therapeutic potential especially in treating inflammatory diseases and cancers. In this study, we performed a cell-based high-throughput screening to discover novel agents capable of inhibiting NF-κB signaling. Based on two hit scaffolds from the screening, we synthesized 69 derivatives to optimize the potency for inhibition of NF-κB activation, leading to successful discovery of the most potent compound Z9j with over 170-fold enhancement of inhibitory activity. Preliminary mechanistic studies revealed that Z9j inhibited NF-κB signaling via suppression of Src/Syk, PI3K/Akt and IKK/IκB pathways. This novel compound also demonstrated anti-inflammatory and anti-cancer activities, warranting its further development as a potential multifunctional agent to treat inflammatory diseases and cancers.
Yu, Pan; Xia, Chao-Jie; Li, Dong-Dong; Ni, Jun-Jun; Zhao, Lin-Guo; Ding, Gang; Wang, Zhen-Zhong; Xiao, Wei
2018-05-28
Chlorogenic acid (CGA) has been reported to exhibit potent anti-inflammatory activity. However, the development of anti-inflammatory agent based on CGA has not been investigated. In this paper, a series of caffeoyl salicylate compounds derived from CGA were designed, synthesized, and evaluated by LPS-induced nitric oxide synthase inhibition and QRT-PCR technique. Most compounds showed modest activity to inhibit production of nitric oxide (NO) in RAW 264.7 cells induced by lipopolysaccharides (LPS). Among these compounds, QRT-PCR and western blotting results indicated that compounds 6b, 6c, 6f, 6g and D104 that possess 5-member ring or 6-member ring caused a significant inhibition against expression of the iNOS2 in LPS-induced macrophages. In addition, cytotoxic assay displayed most derivatives have good safety in vitro. This new promising scaffold could be further exploited for the development of anti-inflammatory agent in the future. Copyright © 2017. Published by Elsevier B.V.
Hernández-Ledesma, Blanca; Hsieh, Chia-Chien; de Lumen, Ben O
2009-12-18
Oxidative stress and inflammation are two of the most critical factors implicated in carcinogenesis and other degenerative disorders. We have investigated how lunasin, a known anti-cancer seed peptide, affect these factors. This peptide inhibits linoleic acid oxidation and acts as 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenger. Furthermore, using LPS-stimulated RAW 264.7 macrophages, we have demonstrated that lunasin reduces, in a significant dose-dependent manner, the production of reactive oxygen species (ROS) by LPS-induced macrophages. Lunasin also inhibits the release of pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-alpha] and interleukine-6 [IL-6]). On the basis of these potent antioxidant and anti-inflammatory properties, we propose lunasin not only as a cancer preventive and therapeutic agent but also as an agent against other inflammatory-related disorders.
Hippuristanol - A potent steroid inhibitor of eukaryotic initiation factor 4A
Cencic, Regina; Pelletier, Jerry
2016-01-01
ABSTRACT Protein synthesis and its regulatory signaling pathways play essential roles in the initiation and maintenance of the cancer phenotype. Insight obtained over the last 3 decades on the mechanisms regulating translation in normal and transformed cells have revealed that perturbed control in cancer cells may offer an Achilles' heel for the development of novel anti-neoplastic agents. Several small molecule inhibitors have been identified and characterized that target translation initiation – more specifically, the rate-limiting step where ribosomes are recruited to mRNA templates. Among these, hippuristanol, a polyhydroxysteroid from the gorgonian Isis hippuris has been found to inhibit translation initiation by blocking the activity of eukaryotic initiation factor (eIF) 4A, an essential RNA helicase involved in this process. Herein, we highlight the biological properties of this compound, its potential development as an anti-cancer agent, and its use to validate eIF4A as an anti-neoplastic target. PMID:27335721
Monajemi, Mahdis; Woodworth, Claire F; Benkaroun, Jessica; Grant, Michael; Larijani, Mani
2012-04-30
The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G's standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.
Ravindran, D; Ramanathan, S; Arunachalam, K; Jeyaraj, G P; Shunmugiah, K P; Arumugam, V R
2018-06-01
Serratia marcescens is an important multidrug-resistant human pathogen. The pathogenicity of S. marcescens mainly depends on the quorum sensing (QS) mechanism, which regulates the virulence factors production and biofilm formation. Hence, targeting QS mechanism in S. marcescens will ultimately pave the way to combat its pathogenicity. Thus, the present study is intended to evaluate the efficacy of Vetiveria zizanioides root extract-mediated silver nanoparticles (AgNPs) as a potent anti-QS and antibiofilm agent against S. marcescens. The AgNPs were synthesized using V. zizanioides aqueous root extract and the physiochemical properties of V. zizanioides-based AgNPs (VzAgNPs) were evaluated using analytical techniques such as ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, dynamic light scattering and scanning and transmission electron microscopic techniques. VzAgNPs were found to attenuate the QS-dependent virulence factors, namely prodigiosin, protease, lipase, exopolysaccharide productions and biofilm formation of S. marcescens, without inhibiting its growth. Further, the transcriptomic analysis confirmed the down-regulation of QS-dependent genes, which encode for the production of virulence factors and biofilm formation. The current study confirms VzAgNPs as an ideal anti-QS and antibiofilm agent against S. marcescens. This is the first approach that validates the anti-QS and antibiofilm potential of phytosynthesized VzAgNPs against the nosocomial pathogen, S. marcescens. As VzAgNPs exhibits potent antivirulent activities, it could be used to treat hospital-acquired S. marcescens infections. © 2018 The Society for Applied Microbiology.
Immunomodulatory properties of kappa opioids and synthetic cannabinoids in HIV-1 neuropathogenesis.
Hu, Shuxian; Sheng, Wen S; Rock, Robert Bryan
2011-12-01
Anti-retroviral therapy (ART) has had a tremendous impact on the clinical outcomes of HIV-1 infected individuals. While ART has produced many tangible benefits, chronic, long-term consequences of HIV infection have grown in importance. HIV-1-associated neurocognitive disorder (HAND) represents a collection of neurological syndromes that have a wide range of functional cognitive impairments. HAND remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Based upon work in other models of neuroinflammation, kappa opioid receptors (KOR) and synthetic cannabinoids have emerged as having neuroprotective properties and the ability to dampen pro-inflammatory responses of glial cells; properties that may have a positive influence in HIV-1 neuropathogenesis. The ability of KOR ligands to inhibit HIV-1 production in human microglial cells and CD4 T lymphocytes, demonstrate neuroprotection, and dampen chemokine production in astrocytes provides encouraging data to suggest that KOR ligands may emerge as potential therapeutic agents in HIV neuropathogenesis. Based upon findings that synthetic cannabinoids inhibit HIV-1 expression in human microglia and suppress production of inflammatory mediators such as nitric oxide (NO) in human astrocytes, as well as a substantial literature demonstrating neuroprotective properties of cannabinoids in other systems, synthetic cannabinoids have also emerged as potential therapeutic agents in HIV neuropathogenesis. This review focuses on these two classes of compounds and describes the immunomodulatory and neuroprotective properties attributed to each in the context of HIV neuropathogenesis.
Seroprevalence of toxoplasmosis in HIV(+)/AIDS patients in Iran.
Mohraz, Minoo; Mehrkhani, Farhad; Jam, Sara; SeyedAlinaghi, SeyedAhmad; Sabzvari, Duman; Fattahi, Fatemeh; Jabbari, Hossain; Hajiabdolbaghi, Mahboubeh
2011-01-01
Toxoplasma gondii has arisen as an important opportunistic agent especially in the central nervous system and in advanced HIV disease can cause significant morbidity and mortality. This study was carried out to determine the seroprevalence of toxoplasmosis among HIV-positive patients in Iran. Blood samples were collected from 201 HIV-positive patients and anti-toxoplasma antibodies were detected by using conventional ELISA. An antibody titer of >3 IU/ml was considered positive. The majority of studied patients were male (male to female ratio: 5 to 1) with the mean age of 36 ± 1 yrs. The seroprevalence of toxoplasmosis in HIV-positive patients was 49.75%. The mean CD4 count in HIV patients with positive toxoplasma serology was 332.5 ± 22.4 cells/µl. Only 1% of the patients had IgM anti-toxoplasma antibodies and 10% of the patients had clinical toxoplasma encephalitis. The mean CD4 count in this group was 66.4 ± 15.5 cells/µl and there was a significant association between CD4 count and rate of toxoplasma encephalitis (P<0.001). Previous reports suggested that toxoplasma encephalitis could be prevented by appropriate chemoprophylaxis. In view of the relatively high prevalence of toxoplasma infection found among the HIV-infected patients in our study, we suggest that routine screening for toxoplasma should be undertaken for all HIV-infected patients in Iran.
Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents.
Adeyemi, Oluyomi Stephen; Sugi, Tatsuki; Han, Yongmei; Kato, Kentaro
2018-02-01
Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease that affects nearly one-third of the human population. The primary infection can be asymptomatic in healthy individuals but may prove fatal in immunocompromised individuals. Available treatment options for toxoplasmosis patients are limited, underscoring the urgent need to identify and develop new therapies. Non-biased screening of libraries of chemical compounds including the repurposing of well-characterized compounds is emerging as viable approach to achieving this goal. In the present investigation, we screened libraries of natural product and FDA-approved compounds to identify those that inhibited T. gondii growth. We identified 32 new compounds that potently inhibit T. gondii growth. Our findings are new and promising, and further strengthen the prospects of drug repurposing as well as the screening of a wide range of chemical compounds as a viable source of alternative anti-parasitic therapeutic agents.
He, Dong-Xu; Li, Guo-Hong; Gu, Xiao-Ting; Zhang, Liang; Mao, Ai-Qin; Wei, Juan; Liu, De-Quan; Shi, Gui-Yang; Ma, Xin
2016-05-31
Biotransformation by the endophytes of certain plants changes various compounds, and this 'green' chemistry becomes increasingly important for finding new products with pharmacological activity. In this study, polyphyllin VII (PPL7) was biotransformed by endophytes from the medicinal plant Paris polyphylla Smith, var. yunnanensis. This produced a new compound, ZH-2, with pharmacological activity in vitro and in vivo. ZH-2 was more potent than PPL7 in selectively killing more chemoresistant than chemosensitive breast cancer cells. ZH-2 also re-sensitized chemoresistant breast cancer cells, as evidenced by the improved anti-cancer activity of commonly-used chemotherapeutic agent in vitro, in vivo, and in clinical samples. This anti-chemoresistance effect of ZH-2 was associated with inhibiting the epithelial-mesenchymal transition (EMT) pathway. Taken together, our findings are the first one to link biotransformation with a biomedicine. The results provide insights into developing new pharmacologically-active agents via biotransformation by endophytes.
Pyrazole and imidazo[1,2-b]pyrazole derivatives as new potential anti-tuberculosis agents.
Meta, Elda; Brullo, Chiara; Tonelli, Michele; Franzblau, Scott G; Wang, Yuehong; Ma, Rui; Baojie, Wan; Orena, Beatrice Silvia; Pasca, Maria Rosalia; Bruno, Olga
2018-05-23
We screened a large library of differently decorated imidazo-pyrazole and pyrazole derivatives as possible new antitubercular agents and this preliminary screening showed that many compounds are able to totally inhibit Mycobacterium growth (>90 %). Among the most active compounds, we selected some new possible hits based on their similarities and, at the same time, their novelty respect to the pipeline drugs. In order to increase the potency and obtain more information about structure activity relationship (SAR), we design and synthesized three new series of compounds (2a-e, 3a-e, and 4a-l). Performed tests confirmed that both new pyrazoles and imidazo-pyrazoles could represent a new starting point to obtain more potent compounds and further work is now underway to identify the protein targets of this new class of anti-TB agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ding, Xiaohui; Zhang, Xiujuan; Chong, Huihui; Zhu, Yuanmei; Wei, Huamian; Wu, Xiyuan; He, Jinsheng; Wang, Xinquan; He, Yuxian
2017-09-15
The peptide drug enfuvirtide (T20) is the only viral fusion inhibitor used in combination therapy for HIV-1 infection, but it has relatively low antiviral activity and easily induces drug resistance. Emerging studies demonstrate that lipopeptide-based fusion inhibitors, such as LP-11 and LP-19, which mainly target the gp41 pocket site, have greatly improved antiviral potency and in vivo stability. In this study, we focused on developing a T20-based lipopeptide inhibitor that lacks pocket-binding sequence and targets a different site. First, the C-terminal tryptophan-rich motif (TRM) of T20 was verified to be essential for its target binding and inhibition; then, a novel lipopeptide, termed LP-40, was created by replacing the TRM with a fatty acid group. LP-40 showed markedly enhanced binding affinity for the target site and dramatically increased inhibitory activity on HIV-1 membrane fusion, entry, and infection. Unlike LP-11 and LP-19, which required a flexible linker between the peptide sequence and the lipid moiety, addition of a linker to LP-40 sharply reduced its potency, implying different binding modes with the extended N-terminal helices of gp41. Also, interestingly, LP-40 showed more potent activity than LP-11 in inhibiting HIV-1 Env-mediated cell-cell fusion while it was less active than LP-11 in inhibiting pseudovirus entry, and the two inhibitors displayed synergistic antiviral effects. The crystal structure of LP-40 in complex with a target peptide revealed their key binding residues and motifs. Combined, our studies have not only provided a potent HIV-1 fusion inhibitor, but also revealed new insights into the mechanisms of viral inhibition. IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection; however, T20 requires high doses and has a low genetic barrier for resistance, and its inhibitory mechanism and structural basis remain unclear. Here, we report the design of LP-40, a T20-based lipopeptide inhibitor that has greatly improved anti-HIV activity and is a more potent inhibitor of cell-cell fusion than of cell-free virus infection. The binding modes of two classes of membrane-anchoring lipopeptides (LP-40 and LP-11) verify the current fusion model in which an extended prehairpin structure bridges the viral and cellular membranes, and their complementary effects suggest a vital strategy for combination therapy of HIV-1 infection. Moreover, our understanding of the mechanism of action of T20 and its derivatives benefits from the crystal structure of LP-40. Copyright © 2017 American Society for Microbiology.
Lee, Dongwon; Park, Seunggyu; Bae, Soochan; Jeong, Dahee; Park, Minhyung; Kang, Changsun; Yoo, Wooyoung; Samad, Mohammed A; Ke, Qingen; Khang, Gilson; Kang, Peter M
2015-11-13
Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries.
Lee, Dongwon; Park, Seunggyu; Bae, Soochan; Jeong, Dahee; Park, Minhyung; Kang, Changsun; Yoo, Wooyoung; Samad, Mohammed A.; Ke, Qingen; Khang, Gilson; Kang, Peter M.
2015-01-01
Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries. PMID:26563741
Zhang, Lin; Shan, Yuanyuan; Ji, Xingyue; Zhu, Mengyuan; Li, Chuansheng; Sun, Ying; Si, Ru; Pan, Xiaoyan; Wang, Jinfeng; Ma, Weina; Dai, Bingling; Wang, Binghe; Zhang, Jie
2017-01-01
Receptor tyrosine kinases (RTKs), especially VEGFR-2, TIE-2, and EphB4, play a crucial role in both angiogenesis and tumorigenesis. Moreover, complexity and heterogeneity of angiogenesis make it difficult to treat such pathological traits with single-target agents. Herein, we developed two classes of multi-target RTK inhibitors (RTKIs) based on the highly conserved ATP-binding pocket of VEGFR-2/TIE-2/EphB4, using previously reported BPS-7 as a lead compound. These multi-target RTKIs exhibited considerable potential as novel anti-angiogenic and anticancer agents. Among them, QDAU5 displayed the most promising potency and selectivity. It significantly suppressed viability of EA.hy926 and proliferation of several cancer cells. Further investigations indicated that QDAU5 showed high affinity to VEGFR-2 and reduced the phosphorylation of VEGFR-2. We identified QDAU5 as a potent multiple RTKs inhibitor exhibiting prominent anti-angiogenic and anticancer potency both in vitro and in vivo. Moreover, quinazolin-4(3H)-one has been identified as an excellent hinge binding moiety for multi-target inhibitors of angiogenic VEGFR-2, Tie-2, and EphB4. PMID:29285210
Design, Synthesis, and Properties of a Potent Inhibitor of Pseudomonas aeruginosa Deacetylase LpxC.
Piizzi, Grazia; Parker, David T; Peng, Yunshan; Dobler, Markus; Patnaik, Anup; Wattanasin, Som; Liu, Eugene; Lenoir, Francois; Nunez, Jill; Kerrigan, John; McKenney, David; Osborne, Colin; Yu, Donghui; Lanieri, Leanne; Bojkovic, Jade; Dzink-Fox, JoAnn; Lilly, Maria-Dawn; Sprague, Elizabeth R; Lu, Yipin; Wang, Hongming; Ranjitkar, Srijan; Xie, Lili; Wang, Bing; Glick, Meir; Hamann, Lawrence G; Tommasi, Ruben; Yang, Xia; Dean, Charles R
2017-06-22
Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.
Geonnotti, Anthony R; Katz, David F
2006-09-15
Topical microbicides are an emerging HIV/AIDS prevention modality. Microbicide biofunctionality requires creation of a chemical-physical barrier against HIV transmission. Barrier effectiveness derives from properties of the active compound and its delivery system, but little is known about how these properties translate into microbicide functionality. We developed a mathematical model simulating biologically relevant transport and HIV-neutralization processes occurring when semen-borne virus interacts with a microbicide delivery vehicle coating epithelium. The model enables analysis of how vehicle-related variables, and anti-HIV compound characteristics, affect microbicide performance. Results suggest HIV neutralization is achievable with postcoital coating thicknesses approximately 100 mum. Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer. Durable vehicle structures that restrict viral diffusion could provide significant protection. Our findings demonstrate the need to pair potent active ingredients with well-engineered formulation vehicles, and highlight the importance of the dosage form in microbicide effectiveness. Microbicide formulations can function not only as drug delivery vehicles, but also as physical barriers to viral penetration. Total viral neutralization with 100-mum-thin coating layers supports future microbicide use against HIV transmission. This model can be used as a tool to analyze diverse factors that govern microbicide functionality.
Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoli; Liu, Sijie; Wang, Pengfei
Highlights: • The chemotherapeutic drug oxaliplatin reactivates latent HIV-1 in this cell line model of HIV-1 latency. • Reactivation is synergized when oxaliplatin is used in combination with valproic acid. • Oxaliplatin reactivates latent HIV-1 through activation of NF-kB and does not induce T cell activation. - Abstract: Reactivation of latent HIV-1 is a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current agents, identification of new latency activators is urgently required. Using an established model of HIV-1 latency, we examined the effect of Oxaliplatin on latent HIV-1 reactivation. We showed that Oxaliplatin, alonemore » or in combination with valproic acid (VPA), was able to reactivate HIV-1 without inducing global T cell activation. We also provided evidence that Oxaliplatin reactivated HIV-1 expression by inducing nuclear factor kappa B (NF-κB) nuclear translocation. Our results indicated that Oxaliplatin could be a potential drug candidate for anti-latency therapies.« less
Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario
2008-01-01
Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development. PMID:18197976
Small molecule mimics of DFTamP1, a database designed anti-Staphylococcal peptide
Dong, Yuxiang; Lushnikova, Tamara; Golla, Radha M.; Wang, Xiaofang; Wang, Guangshun
2017-01-01
Antimicrobial peptides (AMPs) are important templates for developing new antimicrobial agents. Previously, we developed a database filtering technology that enabled us to design a potent anti-Staphylococcal peptide DFTamP1. Using this same design approach, we now report the discovery of a new class of bis-indole diimidazolines as AMP small molecule mimics. The best compound killed multiple S. aureus clinical strains in both planktonic and biofilm forms. The compound appeared to target bacterial membranes with antimicrobial activity and membrane permeation ability similar to daptomycin. PMID:28011203
Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics
NASA Astrophysics Data System (ADS)
Debnath, Utsab; Verma, Saroj; Jain, Surabhi; Katti, Setu B.; Prabhakar, Yenamandra S.
2013-07-01
CoMFA and CoMSIA based 3D-QSAR of HIV-1 RT wild and mutant (K103, Y181C, and Y188L) inhibitory activities of 4-benzyl/benzoyl pyridin-2-ones followed by protein informatics of corresponding non-nucleoside inhibitors' binding pockets from pdbs 2BAN, 3MED, 1JKH, and 2YNF were analysed to discover consensus features of the compounds for broad-spectrum activity. The CoMFA/CoMSIA models indicated that compounds with groups which lend steric-cum-electropositive fields in the vicinity of C5, hydrophobic field in the vicinity of C3 of pyridone region and steric field in aryl region produce broad-spectrum anti-HIV-1 RT activity. Also, a linker rendering electronegative field between pyridone and aryl moieties is common requirement for the activities. The protein informatics showed considerable alteration in residues 181 and 188 characteristics on mutation. Also, mutants' isoelectric points shifted in acidic direction. The study offered fresh avenues for broad-spectrum anti-HIV-1 agents through designing new molecules seeded with groups satisfying common molecular fields and concerns of mutating residues.
Cellular immunity for prevention and clearance of HIV infection.
Kalams, Spyros A
2003-05-01
Despite the major strides that have been made in HIV therapy with the advent of potent anti-retroviral drugs, these medications are quite expensive and are still not readily available for the vast majority of infected individuals worldwide. Even when available, the long-term toxicities associated with anti-retroviral medications and the frequent emergence of drug-resistance mutations can complicate therapy, making the formulation of effective vaccines imperative. This chapter will review the current state of understanding regarding cell-mediated immune responses that are associated with control of HIV replication. This knowledge has generated sound hypotheses regarding the prospects for augmenting cell-mediated immunity through immune-based therapies. With regard to prophylactic vaccines, it is presently unclear which vaccine-induced immune responses will protect against infection. While much progress has been made in formulating vaccine constructs designed to elicit cell-mediated immune responses, sterilizing immunity is unlikely to be achieved with the current vaccines. However, the ability to control viremia and prevent disease progression in animal infection models looks promising. The ability to measure immune responses has also advanced markedly over the past few years and will allow investigators to more accurately measure the immunogenicity of vaccine constructs, and correlate the magnitude and breadth of these responses with protection.
Tokuda, Haruhiko; Kuroyanagi, Gen; Onuma, Takashi; Enomoto, Yukiko; Doi, Tomoaki; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu
2018-04-01
It has been previously reported that HSP27 is released from platelets in type 2 diabetes mellitus (DM) patients according to phosphorylation. In the present study, we investigated the effect of ristocetin, a glycoprotein (GP)Ib/IX/V activator, on the release of HSP27 and the effect of anti-platelet agents, such as acetylsalicylic acid (ASA), on this release. Forty-six patients with type 2 DM were recruited, and classified into two groups depending on administration of anti-platelet agents, resulting in 31 patients without these agents (control group) and 15 patients with them (anti-platelet group). Ristocetin potently induced the aggregation of platelets in the two groups. Ristocetin-induced changes of the area under the curve of light transmittance and the ratio of the size of platelet aggregates in the anti-platelet group were slightly different from those in the control group. On the other hand, the levels of phosphorylated-HSP27 induced by ristocetin in the platelets from a patient of the anti-platelet group taking ASA were significantly lower than those from a patient of the control group. The levels of HSP27 release from the ristocetin-stimulated platelets were significantly correlated with the levels of phosphorylated-HSP27 in the platelets from patients in the two groups. The levels of HSP27 release and those of platelet-derived growth factor-AB (PDGF-AB) secretion stimulated by ristocetin in the anti-platelet group were lower than those in the control group. In addition, the levels of HSP27 release and those of PDGF-AB secretion stimulated by ADP in the anti-platelet group were lower than those in the control group. These results strongly suggest that anti-platelet agents inhibit the HSP27 release from platelets stimulated by ristocetin but not the aggregation in type 2 DM patients.
Lectins with anti-HIV activity: a review.
Akkouh, Ouafae; Ng, Tzi Bun; Singh, Senjam Sunil; Yin, Cuiming; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Cheung, Randy Chi Fai
2015-01-06
Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.
Loss of PEDF: A Novel Mechanism of Antihormone Resistance in Breast Cancer
2015-10-01
positive control. After overnight incubation at 37°C in 5% CO2, the media-containing virus was removed and replaced with 2 ml complete culture media. After...potently restricts entry and infections by a number of highly pathogenic viruses , including HIV-1, filovirus, and SARS coronavirus [30]. More recently...and MCF-7:5C cells were pretreated with 5 μg/mL anti-IFNAR1/2/MMHAR2 from Millipore, Temecula, CA, USA ( cat # MAB1155) for four hours and then treated
Arabinosylthymine: inhibitor of splenic lymphocyte macromolecular synthesis in vitro.
Barnett, J M; McGowan, J J; Gentry, G A
1979-01-01
The effect of arabinosylthymine on lymphocyte transformation was investigated. Arabinosylthymine was demonstrated not to be cytotoxic for hamster spleen lymphocytes but was found to inhibit the increase in deoxyribonucleic acid and protein synthesis usually observed as a result of mitogen stimulation. These findings suggest that, in addition to being a potent anti-herpesvirus inhibitor, arabinosylthymine is also an immunosuppressive agent. PMID:500206
Kiselyov, Alex S; Semenova, Marina N; Chernyshova, Natalya B; Leitao, Andrei; Samet, Alexandr V; Kislyi, Konstantine A; Raihstat, Mikhail M; Oprea, Tudor; Lemcke, Heiko; Lantow, Margaréta; Weiss, Dieter G; Ikizalp, Nazli N; Kuznetsov, Sergei A; Semenov, Victor V
2010-05-01
A series of novel 1,3,4-oxadiazole derivatives based on structural and electronic overlap with combretastatins have been designed and synthesized. Initially, we tested all new compounds in vivo using the phenotypic sea urchin embryo assay to yield a number of agents with anti-proliferative, anti-mitotic, and microtubule destabilizing activities. The experimental data led to identification of 1,3,4-oxadiazole derivatives with isothiazole (5-8) and phenyl (9-12) pharmacophores featuring activity profiles comparable to that of combretastatins, podophyllotoxin and nocodazole. Cytotoxic effects of the two lead molecules, namely 6 and 12, were further confirmed and evaluated by conventional assays with the A549 human cancer cell line including cell proliferation, cell cycle arrest at the G2/M phase, cellular microtubule distribution, and finally in vitro microtubule assembly with purified tubulin. The modeling results using 3D similarity (ROCS) and docking (FRED) correlated well with the observed activity of the molecules. Docking data suggested that the most potent molecules are likely to target the colchicine binding site. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
BSA nanoparticle loaded atorvastatin calcium--a new facet for an old drug.
Sripriyalakshmi, S; Anjali, C H; George, Priya Doss C; Rajith, B; Ravindran, Aswathy
2014-01-01
Currently, the discovery of effective chemotherapeutic agents poses a major challenge to the field of cancer biology. The present study focuses on enhancing the therapeutic and anti cancer properties of atorvastatin calcium loaded BSA (ATV-BSA) nanoparticles in vitro. BSA-ATV nanoparticles were prepared using desolvation technique. The process parameters were optimized based on the amount of desolvating agent, stabilization conditions as well as the concentration of the cross linker. The anti cancer properties of the protein coated ATV nanoparticles were tested on MiaPaCa-2 cell lines. In vitro release behavior of the drug from the carrier suggests that about 85% of the drug gets released after 72 hrs. Our studies show that ATV-BSA nanoparticles showed specific targeting and enhanced cytotoxicity to MiaPaCa-2 cells when compared to the bare ATV. We hereby propose that the possible mechanism of cellular uptake of albumin bound ATV could be through caveolin mediated endocytosis. Hence our studies open up new facet for an existing cholesterol drug as a potent anti-cancer agent.
Au, Ka-Yee; Wang, Rui-Rui; Wong, Yuen-Ting; Wong, Kam-Bo; Zheng, Yong-Tang; Shaw, Pang-Chui
2014-03-01
Ricin is a type II ribosome-inactivating protein (RIP) that potently inactivates eukaryotic ribosomes by removing a specific adenine residue at the conserved α-sarcin/ricin loop of 28S ribosomal RNA (rRNA). Here, we try to increase the specificity of the enzymatically active ricin A chain (RTA) towards human immunodeficiency virus type 1 (HIV-1) by adding a loop with HIV protease recognition site to RTA. HIV-specific RTA variants were constructed by inserting a peptide with HIV-protease recognition site either internally or at the C-terminal region of wild type RTA. Cleavability of variants by viral protease was tested in vitro and in HIV-infected cells. The production of viral p24 antigen and syncytium in the presence of C-terminal variants was measured to examine the anti-HIV activities of the variants. C-terminal RTA variants were specifically cleaved by HIV-1 protease both in vitro and in HIV-infected cells. Upon proteolysis, the processed variants showed enhanced antiviral effect with low cytotoxicity towards uninfected cells. RTA variants with HIV protease recognition sequence engineered at the C-terminus were cleaved and the products mediated specific inhibitory effect towards HIV replication. Current cocktail treatment of HIV infection fails to eradicate the virus from patients. Here we illustrate the feasibility of targeting an RIP towards HIV-infected cells by incorporation of HIV protease cleavage sequence. This approach may be generalized to other RIPs and is promising in drug design for combating HIV. Copyright © 2013 Elsevier B.V. All rights reserved.
Castro, Edison; Martinez, Zachary S; Seong, Chang-Soo; Cabrera-Espinoza, Andrea; Ruiz, Mauro; Hernandez Garcia, Andrea; Valdez, Federico; Llano, Manuel; Echegoyen, Luis
2016-12-22
HIV-1 maturation can be impaired by altering protease (PR) activity, the structure of the Gag-Pol substrate, or the molecular interactions of viral structural proteins. Here we report the synthesis and characterization of new cationic N,N-dimethyl[70]fulleropyrrolidinium iodide derivatives that inhibit more than 99% of HIV-1 infectivity at low micromolar concentrations. Analysis of the HIV-1 life cycle indicated that these compounds inhibit viral maturation by impairing Gag and Gag-Pol processing. Importantly, fullerene derivatives 2a-c did not inhibit in vitro PR activity and strongly interacted with HIV immature capsid protein in pull-down experiments. Furthermore, these compounds potently blocked infectivity of viruses harboring mutant PR that are resistant to multiple PR inhibitors or mutant Gag proteins that confer resistance to the maturation inhibitor Bevirimat. Collectively, our studies indicate fullerene derivatives 2a-c as potent and novel HIV-1 maturation inhibitors.
Mpousis, Spyros; Thysiadis, Savvas; Avramidis, Nicolaos; Katsamakas, Sotirios; Efthimiopoulos, Spiros; Sarli, Vasiliki
2016-01-27
In search of safe and effective anti-Alzheimer disease agents a series of gallocyanine dyes have been synthesized and evaluated for their ability to inhibit LRPs/DKK1 interactions. Modulation of the interactions between LRPS and DKK1, regulate Wnt signaling pathway and affect Tau phosphorylation. The current efforts resulted in the identification of potent DKK1 inhibitors which are able to inhibit prostaglandin J2-induced tau phosphorylation at serine 396. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi
2004-01-19
Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.
Corona, Angela; di Leva, Francesco Saverio; Rigogliuso, Giuseppe; Pescatori, Luca; Madia, Valentina Noemi; Subra, Frederic; Delelis, Olivier; Esposito, Francesca; Cadeddu, Marta; Costi, Roberta; Cosconati, Sandro; Novellino, Ettore; di Santo, Roberto; Tramontano, Enzo
2016-10-01
HIV-1 integrase (IN) inhibitors are one of the most recent innovations in the treatment of HIV infection. The selection of drug resistance viral strains is however a still open issue requiring constant efforts to identify new anti-HIV-1 drugs. Pyrrolyl diketo acid (DKA) derivatives inhibit HIV-1 replication by interacting with the Mg 2+ cofactors within the HIV-1 IN active site or within the HIV-1 reverse-transcriptase associated ribonuclease H (RNase H) active site. While the interaction mode of pyrrolyl DKAs with the RNase H active site has been recently reported and substantiated by mutagenesis experiments, their interaction within the IN active site still lacks a detailed understanding. In this study, we investigated the binding mode of four pyrrolyl DKAs to the HIV-1 IN active site by molecular modeling coupled with site-directed mutagenesis studies showing that the DKA pyrrolyl scaffold primarily interacts with the IN amino residues P145, Q146 and Q148. Importantly, the tested DKAs demonstrated good effectiveness against HIV-1 Raltegravir resistant Y143A and N155H INs, thus showing an interaction pattern with relevant differences if compared with the first generation IN inhibitors. These data provide precious insights for the design of new HIV inhibitors active on clinically selected Raltegravir resistant variants. Furthermore, this study provides new structural information to modulate IN and RNase H inhibitory activities for development of dual-acting anti-HIV agents. Copyright © 2016 Elsevier B.V. All rights reserved.
Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith
2012-01-01
Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ≥ 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723
C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection.
Barmania, Fatima; Pepper, Michael S
2013-12-01
When HIV was initially discovered as the causative agent of AIDS, many expected to find a vaccine within a few years. This has however proven to be elusive; it has been approximately 30 years since HIV was first discovered, and a suitable vaccine is still not in effect. In 2009, a paper published by Hutter et al. reported on a bone marrow transplant performed on an HIV positive individual using stem cells that were derived from a donor who was homozygous for a mutation in the CCR5 gene known as CCR5 delta-32 (Δ32) (Hütter et al., 2009). The HIV positive individual became HIV negative and remained free of viral detection after transplantation despite having halted anti-retroviral (ARV) treatment. This review will focus on CCR5 as a key component in HIV immunity and will discuss the role of CCR5 in the control of HIV infection.
Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P
2016-09-01
The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.
van de Donk, Niels W. C.J.; Dhimolea, Eugen
2012-01-01
Brentuximab vedotin (SGN-35; Adcetris®) is an anti-CD30 antibody conjugated via a protease-cleavable linker to the potent anti-microtubule agent monomethyl auristatin E (MMAE). Following binding to CD30, brentuximab vedotin is rapidly internalized and transported to lysosomes where MMAE is released and binds to tubulin, leading to cell cycle arrest and apoptosis. Several trials have shown durable antitumor activity with a manageable safety profile in patients with relapsed/refractory Hodgkin lymphoma, systemic anaplastic large cell lymphoma, or primary cutaneous CD30-positive lymphoproliferative disorders. Peripheral sensory neuropathy is a significant adverse event associated with brentuximab vedotin administration. Neuropathy symptoms are cumulative and dose-related. Multiple ongoing trials are currently evaluating brentuximab vedotin alone or in combination with other agents in relapsed/refractory patients, as well as patients with newly diagnosed disease. PMID:22684302
Hussain, Arif; Mohsin, Javeria; Prabhu, Sathyen Alwin; Begum, Salema; Nusri, Qurrat El-Ain; Harish, Geetganga; Javed, Elham; Khan, Munawwar Ali; Sharma, Chhavi
2013-01-01
Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI) <1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.
Hua, J; Scott, R.W.; Diamond, G
2011-01-01
Whereas periodontal disease is ultimately of bacterial etiology, from multispecies biofilms of gram-negative anaerobic microorganisms, much of the deleterious effects are caused by the resultant epithelial inflammatory response. Hence, development of a treatment that combines anti-biofilm antibiotic activity with anti-inflammatory activity would be of great utility. Antimicrobial peptides (AMPs) such as defensins are naturally occurring peptides that exhibit broad-spectrum activity as well as a variety of immunomodulatory activities. Furthermore, bacteria do not readily develop resistance to these agents. However, clinical studies have suggested that they do not represent optimal candidates for exogenous therapeutic agents. Small-molecule mimetics of these AMPs exhibit similar activities to the parent peptides, in addition to having low toxicity, high stability and low cost. To determine whether AMP mimetics have the potential for treatment of periodontal disease, we examined the activity of one mimetic, mPE, against biofilm cultures of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Metabolic assays as well as culture and biomass measurement assays demonstrated that mPE exhibits potent activity against biofilm cultures of both species. Furthermore, as little as 2 µg ml−1 mPE was sufficient to inhibit interleukin-1β-induced secretion of interleukin-8 in both gingival epithelial cells and THP-1 cells. This anti-inflammatory activity is associated with a reduction in activation of nuclear factor-κB, suggesting that mPE can act both as an anti-biofilm agent in an anaerobic environment and as an anti-inflammatory agent in infected tissues. PMID:21040516
Neff, Charles Preston; Zhou, Jiehua; Remling, Leila; Kuruvilla, Jes; Zhang, Jane; Li, Haitang; Smith, David D; Swiderski, Piotr; Rossi, John J; Akkina, Ramesh
2011-01-19
Therapeutic strategies designed to treat HIV infection with combinations of antiviral drugs have proven to be the best approach for slowing the progression to AIDS. Despite this progress, there are problems with viral drug resistance and toxicity, necessitating new approaches to combating HIV-1 infection. We have therefore developed a different combination approach for the treatment of HIV infection in which an RNA aptamer, with high binding affinity to the HIV-1 envelope (gp120) protein and virus neutralization properties, is attached to and delivers a small interfering RNA (siRNA) that triggers sequence-specific degradation of HIV RNAs. We have tested the antiviral activities of these chimeric RNAs in a humanized Rag2(-/-)γc(-/-) (RAG-hu) mouse model with multilineage human hematopoiesis. In this animal model, HIV-1 replication and CD4(+) T cell depletion mimic the situation seen in human HIV-infected patients. Our results show that treatment with either the anti-gp120 aptamer or the aptamer-siRNA chimera suppressed HIV-1 replication by several orders of magnitude and prevented the viral-induced helper CD4(+) T cell decline. In comparison to the aptamer alone, the aptamer-siRNA combination provided more extensive inhibition, resulting in a significantly longer antiviral effect that extended several weeks beyond the last injected dose. The aptamer thus acts as a broad-spectrum HIV-neutralizing agent and an siRNA delivery vehicle. The combined aptamer-siRNA agent provides an attractive, nontoxic therapeutic approach for treatment of HIV infection.
Chen, Chun-Han; Lee, Chia-Hwa; Liou, Jing-Ping; Teng, Che-Ming; Pan, Shiow-Lin
2015-01-01
Upregulation of class I histone deacetylases (HDAC) correlates with poor prognosis in colorectal cancer (CRC) patients. Previous study revealed that (E)-N-hydroxy-3-(1-(4-methoxyphenylsulfonyl)-1,2,3,4-tetrahydroquinolin-6-yl)acrylamide (Compound 11) is a potent and selective class I HDAC inhibitor, exhibited significant anti-proliferative activity in various human cancer cell lines. In current study, we demonstrated that compound 11 exhibited significant anti-proliferative and cytotoxic activity in CRC cells. Notably, compound 11 was less potent than SAHA in inhibiting HDAC6 as evident from the lower expression of acetyl-α-tubulin, suggesting higher selectivity for class I HDACs. Mechanistically, compound 11 induced cell-cycle arrest at the G2/M phase, activated both intrinsic- and extrinsic-apoptotic pathways, altered the expression of Bcl-2 family proteins and exerted a potent inhibitory effect on survival signals (p-Akt, p-ERK) in CRC cells. Moreover, we provide evidence that compound 11 suppressed motility, decreased mesenchymal markers (N-cadherin and vimentin) and increased epithelial marker (E-cadherin) through down-regulation of Akt. The anti-tumor activity and underlying molecular mechanisms of compound 11 were further confirmed using the HCT116 xenograft model in vivo. Our findings provide evidence of the significant anti-tumor activity of compound 11 in a preclinical model, supporting its potential as a novel therapeutic agent for CRC. PMID:26462017
Mehta, Pakhuri; Srivastava, Shubham; Choudhary, Bhanwar Singh; Sharma, Manish; Malik, Ruchi
2017-12-01
Multidrug resistance along with side-effects of available anti-epileptic drugs and unavailability of potent and effective agents in submicromolar quantities presents the biggest therapeutic challenges in anti-epileptic drug discovery. The molecular modeling techniques allow us to identify agents with novel structures to match the continuous urge for its discovery. KCNQ2 channel represents one of the validated targets for its therapy. The present study involves identification of newer anti-epileptic agents by means of a computer-aided drug design adaptive protocol involving both structure-based virtual screening of Asinex library using homology model of KCNQ2 and 3D-QSAR based virtual screening with docking analysis, followed by dG bind and ligand efficiency calculations with ADMET studies, of which 20 hits qualified all the criterions. The best ligands of both screenings with least potential for toxicity predicted computationally were then taken for molecular dynamic simulations. All the crucial amino acid interactions were observed in hits of both screenings such as Glu130, Arg207, Arg210 and Phe137. Robustness of docking protocol was analyzed through Receiver operating characteristic (ROC) curve values 0.88 (Area under curve AUC = 0.87) in Standard Precision and 0.84 (AUC = 0.82) in Extra Precision modes. Novelty analysis indicates that these compounds have not been reported previously as anti-epileptic agents.
Niu, Xiaofeng; Wang, Yu; Li, Weifeng; Zhang, Hailin; Wang, Xiumei; Mu, Qingli; He, Zehong; Yao, Huan
2015-12-01
Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human. Copyright © 2015 Elsevier B.V. All rights reserved.
Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C
2012-01-01
Histone deacetylase inhibitors have emerged as a new class of anti-cancer therapeutics due to their potent anti-proliferative and apoptotic effects in malignant cells. Accumulating evidence is indicating that histone deacetylase inhibitors may also have potential clinical utility in non-oncological applications, including asthma. However, the potential of histone deacetylase inhibitors in asthma remains controversial. For example, the mechanisms of action of the broad-spectrum histone deacetylase inhibitor, Trichostatin A, in animal models of allergic airways disease are conflicting. Further, there is evidence suggesting potential problems associated with histone deacetylase 2 inhibition and conventional glucocorticosteroid therapy. Similarly, disparate findings are emerging following modulation of the class III, sirtuin 1 enzyme. Indeed, it is becoming apparent that the mechanism of action may not be related to histone deacetylase inhibition activity per se. Further, there is only limited evidence that these compounds possess anti-inflammatory effects in models of asthma. In this review, we provide an overview of the biology of the metal-dependent and sirtuin deacetylases in the context of asthma. The controversies surrounding the potential use of histone deacetylase inhibitors in asthma are discussed and future directions involving the investigation of more specific analogues are explored.
Bulgakov, Victor P; Veselova, M V; Tchernoded, G K; Kiselev, K V; Fedoreyev, S A; Zhuravlev, Yu N
2005-06-01
Rabdosiin and related caffeic acid metabolites have been proposed as active pharmacological agents demonstrating potent anti-HIV and antiallergic activities. We transformed Eritrichium sericeum and Lithospermum erythrorhizon seedlings by the rolC gene, which has been recently described as an activator of plant secondary metabolism. Surprisingly, the rolC-transformed cell cultures of both plants yielded two- to threefold less levels of rabdosiin and rosmarinic acid (RA) than respective control cultures. This result establishes an interesting precedent when the secondary metabolites are differently regulated by a single gene. We show that the rolC gene affects production of rabdosiin and RA irrespective of the methyl jasmonate (MeJA)-mediated and the Ca(2+)-dependent NADPH oxidase pathways. Cantharidin, an inhibitor of serine/threonine phosphatases, partly diminishes the rolC-gene inhibitory effect that indicates involvement of the rolC-gene-mediated signal in plant regulatory controls, mediated by protein phosphatases. We also show that the control MeJA-stimulated E. sericeum root culture produces (-)-rabdosiin up to 3.41% dry weight, representing the highest level of this substance for plant cell cultures reported so far.
Role of TIM-4 in exosome-dependent entry of HIV-1 into human immune cells
Sims, Brian; Farrow, Anitra L; Williams, Sparkle D; Bansal, Anju; Krendelchtchikov, Alexandre; Gu, Linlin; Matthews, Qiana L
2017-01-01
Exosomes, 30–200 nm nanostructures secreted from donor cells and internalized by recipient cells, can play an important role in the cellular entry of some viruses. These microvesicles are actively secreted into various body fluids, including blood, urine, saliva, cerebrospinal fluid, and breast milk. We successfully isolated exosomes from human breast milk and plasma. The size and concentration of purified exosomes were measured by nanoparticle tracking, while Western blotting confirmed the presence of the exosomal-associated proteins CD9 and CD63, clathrin, and T cell immunoglobulin and mucin proteins (TIMs). Through viral infection assays, we determined that HIV-1 utilizes an exosome-dependent mechanism for entry into human immune cells. The virus contains high amounts of phosphatidylserine (PtdSer) and may bind PtdSer receptors, such as TIMs. This mechanism is supported by our findings that exosomes from multiple sources increased HIV-1 entry into T cells and macrophages, and viral entry was potently blocked with anti-TIM-4 antibodies. PMID:28740388
Yao, X-D; Omange, R W; Henrick, B M; Lester, R T; Kimani, J; Ball, T B; Plummer, F A; Rosenthal, K L
2014-03-01
Cohort studies of female commercial sex workers (CSWs) in Kenya were among the first to identify highly HIV-1-exposed seronegative (HESN) individuals. As natural resistance is usually mediated by innate immune mechanisms, we focused on determining whether expression and function of innate signaling pathways were altered locally in the genital mucosa of HESN CSWs. Our results demonstrated that selected pattern-recognition receptors (PRRs) were significantly reduced in expression in cervical mononuclear cells (CMCs) from HESN compared with the new HIV-negative (HIV-N) and HIV-positive (HIV-P) groups. Although baseline levels of secreted cytokines were reduced in CMCs of HESN, they were highly stimulated following exposure to ssRNA40 in vitro. Importantly, cervical epithelial cells from HESN also expressed reduced levels of PRRs, but Toll-like receptor 3 (TLR3) and TLR7 as well as nuclear factor-κB and activator protein 1 were highly expressed and activated. Lastly, inflammatory cytokines interleukin (IL)-1β, IL-8, and RANTES (regulated and normal T cell expressed and secreted) were detected at lower levels in cervicovaginal lavage of HESN compared with the HIV-N and HIV-P groups. Overall, our study reveals a local microenvironment of HIV resistance in the genital mucosa consisting of a finely controlled balance of basal immune quiescence with a focused and potent innate anti-viral response critical to resistance to sexual transmission of HIV-1.
2013-01-01
Background Despite progress in the development of combined antiretroviral therapies (cART), HIV infection remains a significant challenge for human health. Current problems of cART include multi-drug-resistant virus variants, long-term toxicity and enormous treatment costs. Therefore, the identification of novel effective drugs is urgently needed. Methods We developed a straightforward screening approach for simultaneously evaluating the sensitivity of multiple HIV gag-pol mutants to antiviral drugs in one assay. Our technique is based on multi-colour lentiviral self-inactivating (SIN) LeGO vector technology. Results We demonstrated the successful use of this approach for screening compounds against up to four HIV gag-pol variants (wild-type and three mutants) simultaneously. Importantly, the technique was adapted to Biosafety Level 1 conditions by utilising ecotropic pseudotypes. This allowed upscaling to a large-scale screening protocol exploited by pharmaceutical companies in a successful proof-of-concept experiment. Conclusions The technology developed here facilitates fast screening for anti-HIV activity of individual agents from large compound libraries. Although drugs targeting gag-pol variants were used here, our approach permits screening compounds that target several different, key cellular and viral functions of the HIV life-cycle. The modular principle of the method also allows the easy exchange of various mutations in HIV sequences. In conclusion, the methodology presented here provides a valuable new approach for the identification of novel anti-HIV drugs. PMID:23286882
Drug-conjugated antibodies for the treatment of cancer
Lambert, John M
2013-01-01
Despite considerable effort, application of monoclonal antibody technology has had only modest success in improving treatment outcomes in patients with solid tumours. Enhancing the cancer cell-killing activity of antibodies through conjugation to highly potent cytotoxic ‘payloads’ to create antibody–drug conjuates (ADCs) offers a strategy for developing anti-cancer drugs of great promise. Early ADCs exhibited side-effect profiles similar to those of ‘classical’ chemotherapeutic agents and their performance in clinical trials in cancer patients was generally poor. However, the recent clinical development of ADCs that have highly potent tubulin-acting agents as their payloads have profoundly changed the outlook for ADC technology. Twenty-five such ADCs are in clinical development and one, brentuximab vedotin, was approved by the FDA in August, 2011, for the treatment of patients with Hodgkin's lymphoma and patients with anaplastic large cell lymphoma, based on a high rate of durable responses in single arm phase II clinical trials. More recently, a second ADC, trastuzumab emtansine, has shown excellent anti-tumour activity with the presentation of results of a 991-patient randomized phase III trial in patients with HER2-positive metastatic breast cancer. Treatment with this ADC (single agent) resulted in a significantly improved progression-free survival of 9.6 months compared with 6.4 months for lapatinib plus capecitabine in the comparator arm and significantly prolonged overall survival. Besides demonstrating excellent efficacy, these ADCs were remarkably well tolerated. Thus these, and other ADCs in development, promise to achieve the long sought goal of ADC technology, that is, of having compounds with high anti-tumour activity at doses where adverse effects are generally mild. PMID:23173552
Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji
2016-02-01
We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).
Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji
2016-04-01
We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and cDNA cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per a litter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide-binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48-1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).
Novel indole sulfides as potent HIV-1 NNRTIs.
Brigg, Siobhan; Pribut, Nicole; Basson, Adriaan E; Avgenikos, Moscos; Venter, Reinhardt; Blackie, Margaret A; van Otterlo, Willem A L; Pelly, Stephen C
2016-03-15
In a previous communication we described a series of indole based NNRTIs which were potent inhibitors of HIV replication, both for the wild type and K103N strains of the virus. However, the methyl ether functionality on these compounds, which was crucial for potency, was susceptible to acid promoted indole assisted SN1 substitution. This particular problem did not bode well for an orally bioavailable drug. Here we describe bioisosteric replacement of this problematic functional group, leading to a series of compounds which are potent inhibitors of HIV replication, and are acid stable. Copyright © 2016 Elsevier Ltd. All rights reserved.
THE USE OF HEXAMETHONIUM IN ARTERIAL HYPERTENSION
Rytand, David A.
1954-01-01
Hexamethonium is a potent anti-hypertensive agent. Its use is associated with prominent and unpleasant side effects, and sometimes with circulatory complications from excessive depressor action. It is suitable for relatively few hypertensive patients, and often fails when renal insufficiency is present. The degree of care required to obtain satisfactory effectiveness is such that the program of treatment becomes too unwieldy for general use. PMID:13150214
USDA-ARS?s Scientific Manuscript database
Recent studies have shown that some flavonoids are modulators for pro-inflammatory cytokine production. In this study, velutin, an unique flavone isolated from the pulp of acai fruit (Euterpe oleracea Mart.), was examined for its effects in reducing lipopolysaccharide-induced pro-inflammatory cytoki...
Kishore, V.; Yarla, N. S.; Zameer, F.; Nagendra Prasad, M. N.; Santosh, M. S.; More, S. S.; Rao, D. G.; Dhananjaya, Bhadrapura Lakkappa
2016-01-01
Andrographis paniculata Nees is an important medicinal plant found in the tropical regions of the world, which has been traditionally used in Indian and Chinese medicinal systems. It is also used as medicinal food. A. paniculata is found to exhibit anti-inflammatory activities; however, its inhibitory potential on inflammatory Group IIA phospholipases A2 (PLA2) and its associated inflammatory reactions are not clearly understood. The aim of the present study is to evaluate the inhibitory/neutralizing potential of ethanolic extract of A. paniculata on the isolated inflammatory PLA2 (VRV-PL-VIIIa) from Daboii rusellii pulchella (belonging to Group IIA inflammatory secretory PLA2 [sPLA2]) and its associated edema-induced activities in Swiss albino mice. A. paniculata extract dose dependently inhibited the Group IIA sPLA2 enzymatic activity with an IC50 value of 10.3 ± 0.5 μg/ml. Further, the extract dose dependently inhibited the edema formation, when co-injected with enzyme indicating that a strong correlation exists between lipolytic and pro-inflammatory activities of the enzyme. In conclusion, results of this study shows that the ethanolic extract of A. paniculata effectively inhibits Group IIA sPLA2 and its associated inflammatory activities, which substantiate its anti-inflammatory properties. The results of the present study warranted further studies to develop bioactive compound (s) in ethanolic extract of A. paniculata as potent therapeutic agent (s) for inflammatory diseases. SUMMARY This study emphasis the anti-inflammatory effect of A. paniculata by inhibiting the inflammatory Group IIA sPLA2 and its associated inflammatory activities such as edema. It was found that there is a strong correlation between lipolytic activity and pro-inflammatory activity inhibition. Therefore, the study suggests that the extract processes potent anti-inflammatory agents, which could be developed as a potential therapeutic agent against inflammatory and related diseases. PMID:27365993
Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo
2015-07-07
Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least hydrophobic lipopeptides, DI-MB-LF11-322 (2,2-dimethylbutanoyl-PFWRIRIRR) and DI-MB-LF11-215, penetrated deep into the biofilm structure and homogenously killed biofilm-forming bacteria. We identified peptides derived from human lactoferricin with potent antimicrobial activity against P. aeruginosa growing either in planktonic or in biofilm mode. Although further structure-activity relationship analyses are necessary to optimize the anti-biofilm activity of these compounds, the results indicate that lactoferricin derived peptides are promising anti-biofilm agents.
Dong, Guang-Zhi; Jeong, Ji Hye; Lee, Yu-Ih; Lee, So Yoon; Zhao, Hui-Yuan; Jeon, Raok; Lee, Hwa Jin; Ryu, Jae-Ha
2017-04-01
Pancreatic cancer is one of the leading causes of cancer, and it has the lowest 5-year survival rates. It is necessary to develop more potent anti-pancreatic cancer drugs to overcome the fast metastasis and resistance to surgery, radiotherapy, chemotherapy, and combinations of these. We have identified several diarylheptanoids as anti-pancreatic cancer agents from Alpinia officinarum (lesser galangal) and Alnus japonica. These diarylheptanoids suppressed cell proliferation and induced the cell cycle arrest of pancreatic cancer cells (PANC-1). Among them, the most potent compounds 1 and 7 inhibited the shh-Gli-FoxM1 pathway and their target gene expression in PANC-1 cells. Furthermore, they suppressed the expression of the cell cycle associated genes that were rescued by the overexpression of exogenous FoxM1. Taken together, (E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (1) from Alpinia officinarum (lesser galangal) and platyphyllenone (7) from Alnus japonica inhibit PANC-1 cell proliferation by suppressing the shh-Gli-FoxM1 pathway, and they can be potential candidates for anti-pancreatic cancer drug development.
Chen, Chun-Liang; Lee, Chia-Chung; Liu, Fei-Lan; Chen, Tsung-Chih; Ahmed Ali, Ahmed Atef; Chang, Deh-Ming; Huang, Hsu-Shan
2016-07-19
Inhibiting osteoclastogenesis is a promising therapeutic target for treating osteoclast-related diseases. Herein, we synthesized a series of modified salicylanilides and their corresponding 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione and 10-phenyldibenzo[b,f][1,4]oxazepin-11(10H)-one derivatives, and investigated the effects of such compounds on RANKL-induced osteoclast formation. Among them, a salicylanilide derivative (A04) and its 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivative (B04) markedly suppressed RANKL-induced osteoclast differentiation and showed no significant cytotoxic effects at doses higher than that required to inhibit osteoclast formation. Both compounds reduced osteoclast formation and bone resorptive activity of osteoclasts in a dose-dependent manner. Further, the anti-osteoclastogenic effects of A04 and B04 may operate through reducing the RANKL-induced nuclear translocation of NFATc1. Accordingly, we present the potent anti-osteoclastogenic compounds A04 and B04 as promising candidates for further optimization as anti-resorptive agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Matralis, Alexios N; Kourounakis, Angeliki P
2014-03-27
Because atherosclerosis is an inflammatory process involving a series of pathological events such as dyslipidemia, oxidative stress, and blood clotting mechanisms, we hereby report the synthesis and evaluation of novel compounds in which antioxidant, anti-inflammatory, and squalene synthase (SQS) inhibitory/hypolipidemic activities are combined in simple molecules through design. The coupling of two different pharmacophores afforded compounds 1-12, whose biological profile was markedly improved compared to those of parent lead structures (i.e., the hypolipidemic 2-hydroxy-2-aryl-(benzo)oxa(or thia)zine and the antioxidant phenothiazine). Most derivatives strongly inhibited in vitro microsomal lipid and LDL peroxidation, exhibiting potent free-radical scavenging activity. They further significantly inhibited SQS activity and showed remarkable antidyslipidemic activity in vivo in animal models of acute and high-fat-induced hyperlipidemia. Finally, several compounds showed anti-inflammatory activity in vitro, inhibiting cycloxygenase (COX-1/2) activity. The multimodal properties of the new compounds and especially their combined antioxidant/SQS/COX inhibitory activity render them interesting lead compounds for further evaluation against atherosclerosis.
Ershun, Zhou; Yunhe, Fu; Zhengkai, Wei; Yongguo, Cao; Naisheng, Zhang; Zhengtao, Yang
2014-04-01
Cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of CEP on a mouse model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms remain to be elucidated. The purpose of the present study was to investigate the effects of CEP on LPS-induced mouse mastitis. The mouse model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. CEP was administered intraperitoneally at 1 h before and 12 h after induction of LPS. The results show that CEP significantly attenuates the infiltration of neutrophils, suppresses myeloperoxidase activity, and reduces the levels of TNF-α, IL-1β, and IL-6 in LPS-induced mouse mastitis. Furthermore, CEP inhibited the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that CEP exerts potent anti-inflammatory effects on LPS-induced mouse mastitis. Accordingly, CEP might be a potential therapeutic agent for mastitis.
Synthesis and exploration of novel curcumin analogues as anti-malarial agents.
Mishra, Satyendra; Karmodiya, Krishanpal; Surolia, Namita; Surolia, Avadhesha
2008-03-15
Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.
Countervailing social network influences on problem behaviors among homeless youth.
Rice, Eric; Stein, Judith A; Milburn, Norweeta
2008-10-01
The impact of countervailing social network influences (i.e., pro-social, anti-social or HIV risk peers) on problem behaviors (i.e., HIV drug risk, HIV sex risk or anti-social behaviors) among 696 homeless youth was assessed using structural equation modeling. Results revealed that older youth were less likely to report having pro-social peers and were more likely to have HIV risk and anti-social peers. A longer time homeless predicted fewer pro-social peers, more anti-social peers, and more HIV risk peers. Heterosexual youth reported fewer HIV risk peers and more pro-social peers. Youth recruited at agencies were more likely to report pro-social peers. Having pro-social peers predicted less HIV sex risk behavior and less anti-social behavior. Having HIV risk peers predicted all problem behavior outcomes. Anti-social peers predicted more anti-social behavior. Once the association between anti-social and HIV risk peers was accounted for independently, having anti-social peers did not independently predict sex or drug risk behaviors.
Griffin, Michael O.; Ceballos, Guillermo; Villarreal, Francisco
2010-01-01
Tetracyclines were developed as a result of the screening of soil samples for antibiotics. The firstt of these compounds, chlortetracycline, was introduced in 1947. Tetracyclines were found to be highly effective against various pathogens including rickettsiae, as well as both gram-positive and gram-negative bacteria, thus becoming the first class of broad spectrum antibiotics. Many other interesting properties, unrelated to their antibiotic activity, have been identified for tetracyclines which have led to widely divergent experimental and clinical uses. For example, tetracyclines are also an effective anti-malarial drug. Minocycline, which can readily cross cell membranes, is known to be a potent anti-apoptotic agent. Another tetracycline, doxycycline is known to exert anti-protease activities. Doxycycline can inhibit matrix metalloproteinases which contribute to tissue destruction activities in diseases such as periodontitis. A large body of literature has provided additional evidence for the “beneficial” actions of tetracyclines, including their ability to act as reactive oxygen species scavengers and anti-inflammatory agents. This review provides a summary of tetracycline’s multiple mechanisms of action as a means to understand their beneficial effects. PMID:20951211
Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; ...
2015-08-19
Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP 3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neithermore » recognized AP 3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP 3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP 3 form a hook-like structure to stabilize interaction between AP 3 and NHR helices. Therefore, AP 3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaojie; Zhu, Yun; Ye, Sheng
Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP 3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neithermore » recognized AP 3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP 3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP 3 form a hook-like structure to stabilize interaction between AP 3 and NHR helices. Therefore, AP 3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less
The successes and failures of HIV drug discovery.
Hashimoto, Chie; Tanaka, Tomohiro; Narumi, Tetsuo; Nomura, Wataru; Tamamura, Hirokazu
2011-10-01
To date, several anti-human immunodeficiency virus (HIV) drugs, including reverse transcriptase inhibitors and protease inhibitors, have been developed and used clinically for the treatment of patients infected with HIV. Recently, novel drugs have been discovered which have different mechanisms of action from those of the above inhibitors, including entry inhibitors and integrase (IN) inhibitors; the clinical use of three of these inhibitors has been approved. Other inhibitors are still in development. This review article summarizes the history of the development of anti-HIV drugs and also focuses on successes in the development of these entry and IN inhibitors, along with looking at exploratory approaches for the development of other inhibitors. Currently used highly active antiretroviral therapy can be subject to a loss of efficacy, due to the emergence of multi-drug resistant (MDR) strains; a change of regimens of the drug combination is required to combat this, along with careful monitoring of the virus and CD4 in the blood, by methods such as cellular tropism testing. In such a situation, entry inhibitors such as CCR5/CXCR4 antagonists, CD4 mimics, fusion inhibitors and IN inhibitors might be optional agents for an expansion of the drug repertoire available to patients at all stages of HIV infection.
Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang
2016-08-26
Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection.
Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang
2016-01-01
Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection. PMID:27562370
Derby, Nina; Aravantinou, Meropi; Kenney, Jessica; Ugaonkar, Shweta R; Wesenberg, Asa; Wilk, Jolanta; Kizima, Larisa; Rodriguez, Aixa; Zhang, Shimin; Mizenina, Olga; Levendosky, Keith; Cooney, Michael L; Seidor, Samantha; Gettie, Agegnehu; Grasperge, Brooke; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, José; Zydowsky, Thomas M; Robbiani, Melissa
2017-12-01
Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.
Increasing the Clinical Potential and Applications of Anti-HIV Antibodies
Hua, Casey K.; Ackerman, Margaret E.
2017-01-01
Preclinical and early human clinical studies of broadly neutralizing antibodies (bNAbs) to prevent and treat HIV infection support the clinical utility and potential of bNAbs for prevention, postexposure prophylaxis, and treatment of acute and chronic infection. Observed and potential limitations of bNAbs from these recent studies include the selection of resistant viral populations, immunogenicity resulting in the development of antidrug (Ab) responses, and the potentially toxic elimination of reservoir cells in regeneration-limited tissues. Here, we review opportunities to improve the clinical utility of HIV Abs to address these challenges and further accomplish functional targets for anti-HIV Ab therapy at various stages of exposure/infection. Before exposure, bNAbs’ ability to serve as prophylaxis by neutralization may be improved by increasing serum half-life to necessitate less frequent administration, delivering genes for durable in vivo expression, and targeting bNAbs to sites of exposure. After exposure and/or in the setting of acute infection, bNAb use to prevent/reduce viral reservoir establishment and spread may be enhanced by increasing the potency with which autologous adaptive immune responses are stimulated, clearing acutely infected cells, and preventing cell–cell transmission of virus. In the setting of chronic infection, bNAbs may better mediate viral remission or “cure” in combination with antiretroviral therapy and/or latency reversing agents, by targeting additional markers of tissue reservoirs or infected cell types, or by serving as targeting moieties in engineered cell therapy. While the clinical use of HIV Abs has never been closer, remaining studies to precisely define, model, and understand the complex roles and dynamics of HIV Abs and viral evolution in the context of the human immune system and anatomical compartmentalization will be critical to both optimize their clinical use in combination with existing agents and define further strategies with which to enhance their clinical safety and efficacy. PMID:29234320
Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Gavalas, Antonios; Rekka, Eleni A
2016-02-01
Novel amides of non steroidal anti-inflammatory drugs (NSAIDs), α-lipoic acid and indole-3-acetic acid with thiomorpholine were synthesised by a simple method and at high yields (60-92%). All the NSAID derivatives highly decreased lipidemic indices in the plasma of Triton treated hyperlipidemic rats. The most potent compound was the indomethacin derivative, which decreased total cholesterol, triglycerides and LDL cholesterol by 73%, 80% and 83%, respectively. They reduced acute inflammation equally or more than most parent acids. Hence, it could be concluded that amides of common NSAIDs with thiomorpholine acquire considerable hypolipidemic potency, while they preserve or augment their anti-inflammatory activity, thus addressing significant risk factors for atherogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Van Gerven, F; Odds, F C
1995-01-01
Bifonazole, clotrimazole, flutrimazole, ketoconazole, miconazole and sertaconazole were tested for their activity against 23 isolates of Malassezia furfur by agar dilution in vitro. Topical formulations of the same agents were evaluated for efficacy against M. furfur skin infections in guinea pigs in vivo. The most potent inhibitor in vitro was ketoconazole (geometric mean minimum inhibitory concentration 0.51 microgram ml-1), followed by bifonazole (8.1 micrograms ml-1), then miconazole (14 micrograms ml-1), clotrimazole (15 micrograms ml-1) and flutrimazole (16 micrograms ml-1), with sertaconazole the least active (52 micrograms ml-1). In animal experiments involving three consecutive days of topical treatments, bifonazole 1% cream, clotrimazole 1% cream, flutrimazole 1% and 2% creams, ketoconazole 2% cream and shampoo and miconazole 2% cream all reduced M. furfur dermatitis lesion severity below that of untreated control animals; however, sertaconazole 2% gel and cream showed no reduction in lesion severity below control. The results confirm that ketoconazole is a more potent inhibitor of M. furfur in vitro than other topical antifungal agents of its class and suggest that sertaconazole is the least effective of such agents among those tested.
Nano-preparation of Andrographis paniculata extract by casein micelle for antidiabetic agent
NASA Astrophysics Data System (ADS)
Arbianti, Rita; Dewi, Veronica; Imansari, Farisa; Hermansyah, Heri; Sahlan, Muhamad
2017-02-01
Side effects caused by oral medications for person with diabetic are the background of the development of alternative treatments by traditional medicine, herbs. Andrographis paniculata (AP) is one of the herbs that is potent to be anti-diabetic agent. The active compound of AP, andrographolide have been examined to have anti-diabetic activity as α-glucosidase enzyme inhibitor. This research aims to encapsulate sambiloto's extract with casein micelle and produce nanoparticles which have anti-diabetic activity as α-glucosidase inhibitor. Extract of AP is encapsulated by casein micelle and made into nano size using sonicator. The dominant active compounds in AP extract coated by casein are andrographolide, neoandrographolide, 14-deoxy-11,12didehydroandrographolide with encapsulation efficiency of 68.83%, 89.15% and 81.69%, the average diameter of the particles is about 120.57 nm and its loading capacity is 28.85%. AP's extract has antidiabetic activity as α-glucosidase inhibitor with percent inhibition of 95%. The morphology of nanoencapsulated AP's extract analyzed by FE-SEM, were similar with casein micelle.
Speck-Planche, Alejandro; Cordeiro, Maria N D S
2015-01-01
Resistance of bacteria to current antibiotics is an alarming health problem. In this sense, Pseudomonas represents a genus of Gram-negative pathogens, which has emerged as one of the most dangerous species causing nosocomial infections. Despite the effort of the scientific community, drug resistant strains of bacteria belonging to Pseudomonas spp. prevail. The high costs associated to drug discovery and the urgent need for more efficient antimicrobial chemotherapies envisage the fact that computeraided methods can rationalize several stages involved in the development of a new drug. In this work, we introduce a chemoinformatic methodology devoted to the construction of a multitasking model for quantitative-structure biological effect relationships (mtk-QSBER). The purpose of this model was to perform simultaneous predictions of anti-Pseudomonas activities and ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties of organic compounds. The mtk-QSBER model was created from a large and heterogeneous dataset (more than 54000 cases) and displayed accuracies higher than 90% in both training and prediction sets. In order to demonstrate the applicability of our mtk-QSBER model, we used the investigational antibacterial drug delafloxacin as a case of study, for which experimental results were recently reported. The predictions performed for many biological effects of this drug exhibited a remarkable convergence with the experimental assays, confirming that our model can serve as useful tool for virtual screening of potent and safer anti-Pseudomonas agents.
Di Pietro, Ornella; Pérez-Areales, F Javier; Juárez-Jiménez, Jordi; Espargaró, Alba; Clos, M Victòria; Pérez, Belén; Lavilla, Rodolfo; Sabaté, Raimon; Luque, F Javier; Muñoz-Torrero, Diego
2014-09-12
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5b-d have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5a-d has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5a-d, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
New anabolic therapies in osteoporosis.
Rubin, Mishaela R; Bilezikian, John P
2003-03-01
Anabolic agents represent an important new advance in the therapy of osteoporosis. Their potential might be substantially greater than the anti-resorptives. Because the anti-resorptives and anabolic agents work by completely distinct mechanisms of action, it is possible that the combination of agents could be significantly more potent than either agent alone. Recent evidence suggests that a plateau in BMD might occur after prolonged exposure to PTH. Anti-resorptive therapy during or after anabolic therapy might prevent this skeletal adaptation. Protocols to consider anabolic agents as intermittent recycling therapy would be of interest. Of all the anabolics, PTH is the most promising. However, there are unanswered questions about PTH. More studies are needed to document an anabolic effect on cortical bone. More large-scale studies are needed to further determine the reduction in nonvertebral fractures with PTH, especially at the hip. In the future, PTH is likely to be modified for easier and more targeted delivery. Oral or transdermal delivery systems may become available. Recently, Gowen et al have described an oral calcilytic molecule that antagonizes the parathyroid cell calcium receptor, thus stimulating the endogenous release of PTH. This approach could represent a novel endogenous delivery system for intermittent PTH administration. Rising expectations that anabolic therapies for osteoporosis will soon play a major role in treating this disease are likely to fuel further studies and the development of even more novel approaches to therapy.
Li, Yu-Sang; Wang, Jun-Xian; Jia, Mei-Mei; Liu, Min; Li, Xiao-Jun; Tang, He-Bin
2012-01-01
As a traditional Chinese medicine, dragon's blood (DB) is widely used in treating various pains for thousands of years due to its potent anti-inflammatory and analgesic effects. In the present study, we observed that intragastric administration of DB at dosages of 0.14, 0.56, and 1.12 g/kg potently inhibited paw edema, hyperalgesia, cyclooxygenase-2 (COX-2) protein expression, or preprotachykinin-A mRNA expression in carrageenan-inflamed or sciatic nerve-injured (chronic constriction injury) rats, respectively. A short-term (15 s or 10 min) pre-exposure of cultured rat dorsal root ganglion (DRG) neurons to DB (0.3, 3, and 30 µg/ml) or its component cochinchinenin B (CB; 0.1, 1, and 10 µM) blocked capsaicin-evoked increases in both the intracellular calcium ion concentration and the substance P release. Moreover, a long-term (180 min) exposure of cultured rat DRG neurons to DB or CB significantly attenuated bradykinin-induced substance P release. These findings indicate that DB exerts anti-inflammatory and analgesic effects by blocking the synthesis and release of substance P through inhibition of COX-2 protein induction and intracellular calcium ion concentration. Therefore, DB may serve as a promising potent therapeutic agent for treatment of chronic pain, and its effective component CB might partly contribute to anti-inflammatory and analgesic effects.
Anti-atherogenic properties of date vs. pomegranate polyphenols: the benefits of the combination.
Rosenblat, Mira; Volkova, Nina; Borochov-Neori, Hamutal; Judeinstein, Sylvie; Aviram, Michael
2015-05-01
Hydrolysable tannin polyphenols in pomegranate and phenolic acids in date fruit and seeds are potent antioxidants and anti-atherogenic agents, and thus, in the present study we investigated the possible benefits of combining them in vivo in atherosclerotic apolipoprotein E KO (E(0)) mice, compared with the individual fruit. In vitro studies revealed that the date seed extract contains more polyphenols than Amari or Hallawi date extracts, and possesses a most impressive free radical scavenging capacity. Similarly, pomegranate juice (PJ), punicalagin, punicalain, gallic acid, and urolithins A and B are very potent antioxidants. E(0) mice consumed 0.5 μmol gallic acid equivalents (GAE) per mouse per day of PJ, Hallawi extract, date seed extract, or a combination for 3 weeks. Consumption of the combination was the most potent treatment, as it decreased serum cholesterol and triglyceride levels, and increased serum paraoxonase 1 (PON1) activity. Consumption of the combination also significantly reduced mouse peritoneal macrophage (MPM) oxidative stress, MPM cholesterol content, and MPM LDL uptake. Finally, the lipid peroxide content in the aortas of the mice significantly decreased, and the PON lactonase activity of the aortas increased after treatment with the combination. We thus conclude that consumption of pomegranate, together with date fruit and date seeds, has the most beneficial anti-atherogenic effects on E(0) mice serum, macrophages, and aortas, probably due to their unique and varied structures.
Impact of Chloroquine on Viral Load in Breast Milk
Semrau, Katherine; Kuhn, Louise; Kasonde, Prisca; Sinkala, Moses; Kankasa, Chipepo; Shutes, Erin; Vwalika, Cheswa; Ghosh, Mrinal; Aldrovandi, Grace; Thea, Donald M.
2006-01-01
Summary The anti-malarial agent chloroquine has activity against HIV. We compared the effect of chloroquine (n = 18) to an anti-malarial agent without known anti-HIV-activity, sulfadoxine-pyrimethamine (n = 12), on breast milk HIV RNA levels among HIV-infected breastfeeding women in Zambia. After adjusting for CD4 count and plasma viral load, chloroquine was associated with a trend towards lower levels of HIV RNA in breast milk compared with sulfadoxine-pyrimethamine (P 0.05). Higher breastmilk viral load was also observed among women receiving presumptive treatment = for symptomatic malaria compared with asymptomatic controls and among controls reporting fever in the prior week. Further research is needed to determine the potential role of chloroquine in prevention of HIV transmission through breastfeeding. Impacte de la chloroquine sur la charge virale dans le lait maternelle La chloroquine, agent antimalarique, a une activité contre le VIH. Nous avons comparé l’effet de la chloroquine à celui d’un autre agent antimalarique, la sulfadoxine-pyrimethamine, dont l’activité sur le VIH n’est pas connue, en mesurant les taux d’ARN de VIH dans le lait maternel de femmes allaitantes infectées par le VIH en Zambie. Après ajustement pour les taux de CD4 et la charge virale dans le plasma, la chloroquine comparée à la sulfadoxine pyrimethamine était associée à une tendance vers des teneurs plus bas en ARN de VIH dans le lait maternel (P = 0,05). Des charges virales plus élevées dans le lait maternel étaient aussi observées chez des femmes recevant un traitement présomptif pour des symptômes de malaria par rapport aux contrôles asymptomatiques et par rapport à des contrôles rapportant de la fièvre durant la première semaine. Des études supplémentaires sont nécessaires pour déterminer le rôle potentiel de la chloroquine dans la prévention de la transmission du VIH par l’allaitement maternel. mots clésVIH, malaria, allaitement maternel, chloroquine, sulfadoxine-pyrimethamine, charge virale du lait maternel, fièvre Impacto de la cloroquina en la carga viral de la leche materna El antimalárico cloroquina tiene actividad frente al VIH. Comparamos el efecto de la cloroquina (n = 18) frente a un antimalárico sin actividad anti-VIH conocida, la sulfadoxina-pirimetamina (n = 12), en los niveles de ARN en la leche materna de mujeres infectadas con VIH, en Zambia. Después de ajustar para recuento de CD4 y la carga viral en plasma, se asoció a la cloroquina con una tendencia hacia menores niveles de ARN del VIH en leche materna, comparado con la sulfadoxina pirimetamina (P = 0.05). También se observó una mayor carga viral en la leche materna de mujeres recibiendo tratamiento presuntivo para malaria sintomática, que en los controles asintomáticos y controles que habáan reportado fiebre la semana anterior. Es necesario realizar más estudios para determinar el papel potencial de la cloroquina en la prevención de la trasmisión de VIH a través de la lactancia materna. palabras claveVIH, malaria, lactancia materna, cloroquina, sulfadoxina pirimetamina, transmisión vertical, leche materna, carga viral, fiebre PMID:16772000
Fujihashi, T; Hara, H; Sakata, T; Mori, K; Higuchi, H; Tanaka, A; Kaji, H; Kaji, A
1995-09-01
Halogenated gomisin J (a derivative of lignan compound), represented by the bromine derivative 1506 [(6R, 7S, S-biar)-4,9-dibromo-3,10-dihydroxy-1,2,11,12-tetramethoxy-6, 7-dimethyl-5,6,7,8- tetrahydrodibenzo[a,c]cyclo-octene], was found to be a potent inhibitor of the cytopathic effects of human immunodeficiency virus type 1 (HIV-1) on MT-4 human T cells (50% effective dose, 0.1 to 0.5 microM). Gomisin J derivatives were active in preventing p24 production from acutely HIV-1-infected H9 cells. The selective indices (toxic dose/effective dose) of these compounds were as high as > 300 in some systems. 1506 was active against 3'-azido-3'-deoxythymidine-resistant HIV-1 and acted synergistically with AZT and 2',3'-ddC. 1506 inhibited HIV-1 reverse transcriptase (RT) in vitro but not HIV-1 protease. From the time-of-addition experiment, 1506 was found to inhibit the early phase of the HIV life cycle. A 1506-resistant HIV mutant was selected and shown to possess a mutation within the RT-coding region (at position 188 [Tyr to Leu]). The mutant RT expressed in Escherichia coli was resistant to 1506 in the in vitro RT assay. Some of the HIV strains resistant to other nonnucleoside HIV-1 RT inhibitors were also resistant to 1506. Comparison of various gomisin J derivatives with gomisin J showed that iodine, bromine, and chlorine in the fourth and ninth positions increased RT inhibitory activity as well as cytoprotective activity.
Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li
2016-02-15
In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Liang; Mao, Ai-Qin; Wei, Juan; Liu, De-Quan; Shi, Gui-Yang; Ma, Xin
2016-01-01
Biotransformation by the endophytes of certain plants changes various compounds, and this ‘green’ chemistry becomes increasingly important for finding new products with pharmacological activity. In this study, polyphyllin VII (PPL7) was biotransformed by endophytes from the medicinal plant Paris polyphylla Smith, var. yunnanensis. This produced a new compound, ZH-2, with pharmacological activity in vitro and in vivo. ZH-2 was more potent than PPL7 in selectively killing more chemoresistant than chemosensitive breast cancer cells. ZH-2 also re-sensitized chemoresistant breast cancer cells, as evidenced by the improved anti-cancer activity of commonly-used chemotherapeutic agent in vitro, in vivo, and in clinical samples. This anti-chemoresistance effect of ZH-2 was associated with inhibiting the epithelial-mesenchymal transition (EMT) pathway. Taken together, our findings are the first one to link biotransformation with a biomedicine. The results provide insights into developing new pharmacologically-active agents via biotransformation by endophytes. PMID:26701723
Structure-Activity Relationships of 6- and 8-Gingerol Analogs as Anti-Biofilm Agents.
Choi, Hyunsuk; Ham, So-Young; Cha, Eunji; Shin, Yujin; Kim, Han-Shin; Bang, Jeong Kyu; Son, Sang-Hyun; Park, Hee-Deung; Byun, Youngjoo
2017-12-14
Pseudomonas aeruginosa is a causative agent of chronic infections in immunocompromised patients. Disruption of quorum sensing circuits is an attractive strategy for treating diseases associated with P. aeruginosa infection. In this study, we designed and synthesized a series of gingerol analogs targeting LasR, a master regulator of quorum sensing networks in P. aeruginosa. Structure-activity relationship studies showed that a hydrogen-bonding interaction in the head section, stereochemistry and rotational rigidity in the middle section, and optimal alkyl chain length in the tail section are important factors for the enhancement of LasR-binding affinity and for the inhibition of biofilm formation. The most potent compound 41, an analog of (R)-8-gingerol with restricted rotation, showed stronger LasR-binding affinity and inhibition of biofilm formation than the known LasR antagonist (S)-6-gingerol. This new LasR antagonist can be used as an early lead compound for the development of anti-biofilm agents to treat P. aeruginosa infections.
Guerra, Aubaneide Batista; Siravenha, Leonardo Quintão; Laurentino, Rogério Valois; Feitosa, Rosimar Neris Martins; Azevedo, Vânia Nakauth; Vallinoto, Antonio Carlos Rosário; Ishak, Ricardo; Machado, Luiz Fernando Almeida
2018-05-16
Prenatal tests are important for prevention of vertical transmission of various infectious agents. The objective of this study was to describe the prevalence of human immunodeficiency virus (HIV), human T-lymphotropic virus (HTLV), hepatitis B virus (HBV), cytomegalovirus (CMV), rubella virus and vaccination coverage against HBV in pregnant adolescents who received care in the city of Belém, Pará, Brazil. A cross-sectional study was performed with 324 pregnant adolescents from 2009 to 2010. After the interview and blood collection, the patients were screened for antibodies and/or antigens against HIV-1/2, HTLV-1/2, CMV, rubella virus and HBV. The epidemiological variables were demonstrated using descriptive statistics with the G, χ 2 and Fisher exact tests. The mean age of the participants was 15.8 years, and the majority (65.4%) had less than 6 years of education. The mean age at first intercourse was 14.4 years, and 60.8% reported having a partner aged between 12 and 14 years. The prevalence of HIV infection was 0.3%, and of HTLV infection was 0.6%. Regarding HBV, 0.6% of the participants had acute infection, 9.9% had a previous infection, 16.7% had vaccine immunity and 72.8% were susceptible to infection. The presence of anti-HBs was greater in adolescent between 12 and 14 years old (28.8%) while the anti-HBc was greater in adolescent between 15 and 18 years old (10.3%). Most of the adolescents presented the IgG antibody to CMV (96.3%) and rubella (92.3%). None of the participants had acute rubella infection, and 2.2% had anti-CMV IgM. This study is the first report of the seroepidemiology of infectious agents in a population of pregnant adolescents in the Northern region of Brazil. Most of the adolescents had low levels of education, were susceptible to HBV infection and had IgG antibodies to CMV and rubella virus. The prevalence of HBV, HIV and HTLV was similar to that reported in other regions of Brazil. However, the presence of these agents in this younger population reinforces the need for good prenatal follow-up and more comprehensive vaccination campaigns against HBV due to the large number of women susceptible to the virus.
Dey, Barna; Berger, Edward A
2015-05-01
Current regimens of combination antiretroviral therapy (cART) offer effective control of HIV infection, with maintenance of immune health and near-normal life expectancy. What will it take to progress beyond the status quo, whereby infectious virus can be eradicated (a 'sterilizing cure') or fully controlled without the need for ongoing cART (a 'functional cure')? On the basis of therapeutic advances in the cancer field, we propose that targeted cytotoxic therapy to kill HIV-infected cells represents a logical complement to cART for achieving an HIV cure. This concept is based on the fact that cART effectively blocks replication of the virus, but does not eliminate cells that are already infected; targeted cytotoxic therapy would contribute precisely this missing component. We suggest that different modalities are suited for curing primary acute versus established chronic infection. For acute infection, relatively short-acting potent agents such as recombinant immunotoxins might prove sufficient for HIV eradication, whereas for chronic infection, a long-lasting (lifelong?) modality is required to maintain full virus control, as might be achieved with genetically modified autologous T cells. We present perspectives for complementing cART with targeted cytotoxic therapy, whereby HIV infection is either eradicated or fully controlled, thereby eliminating the need for lifelong cART.
NASA Astrophysics Data System (ADS)
Shekhar, Karthik; Ruberman, Claire F.; Ferguson, Andrew L.; Barton, John P.; Kardar, Mehran; Chakraborty, Arup K.
2013-12-01
Mutational escape from vaccine-induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus' fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine-induced immune responses to target mutational vulnerabilities of the virus. Spin models have been proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein sequences. These sequences are the product of nonequilibrium viral evolution driven by patient-specific immune responses and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic fitness landscapes? We combined computer simulations and variational theory á la Feynman to show that, in most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of the fitness of mutant viral strains. Our findings are relevant for diverse viruses.
Dalod, Marc; Dupuis, Marion; Deschemin, Jean-Christophe; Sicard, Didier; Salmon, Dominique; Delfraissy, Jean-Francois; Venet, Alain; Sinet, Martine; Guillet, Jean-Gerard
1999-01-01
The ex vivo antiviral CD8+ repertoires of 34 human immunodeficiency virus (HIV)-seropositive patients with various CD4+ T-cell counts and virus loads were analyzed by gamma interferon enzyme-linked immunospot assay, using peptides derived from HIV type 1 and Epstein-Barr virus (EBV). Most patients recognized many HIV peptides, with markedly high frequencies, in association with all the HLA class I molecules tested. We found no correlation between the intensity of anti-HIV CD8+ responses and the CD4+ counts or virus load. In contrast, the polyclonality of anti-HIV CD8+ responses was positively correlated with the CD4+ counts. The anti-EBV responses were significantly less intense than the anti-HIV responses and were positively correlated with the CD4+ counts. Longitudinal follow-up of several patients revealed the remarkable stability of the anti-HIV and anti-EBV CD8+ responses in two patients with stable CD4+ counts, while both antiviral responses decreased in two patients with obvious progression toward disease. Last, highly active antiretroviral therapy induced marked decreases in the number of anti-HIV CD8+ T cells, while the anti-EBV responses increased. These findings emphasize the magnitude of the ex vivo HIV-specific CD8+ responses at all stages of HIV infection and suggest that the CD8+ hyperlymphocytosis commonly observed in HIV infection is driven mainly by virus replication, through intense, continuous activation of HIV-specific CD8+ T cells until ultimate progression toward disease. Nevertheless, highly polyclonal anti-HIV CD8+ responses may be associated with a better clinical status. Our data also suggest that a decrease of anti-EBV CD8+ responses may occur with depletion of CD4+ T cells, but this could be restored by highly active antiretroviral treatment. PMID:10438796
Almeida, Jorge R.; Sauce, Delphine; Price, David A.; Papagno, Laura; Shin, So Youn; Moris, Arnaud; Larsen, Martin; Pancino, Gianfranco; Douek, Daniel C.; Autran, Brigitte; Sáez-Cirión, Asier
2009-01-01
CD8+ T cells are major players in the immune response against HIV. However, recent failures in the development of T cell–based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell–mediated efficacy. CD8+ T cells from HIV-1–infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8+ T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8+ T cells from infected donors. We report that attributes of CD8+ T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8+ T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8+ T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy. PMID:19389882
Almeida, Jorge R; Sauce, Delphine; Price, David A; Papagno, Laura; Shin, So Youn; Moris, Arnaud; Larsen, Martin; Pancino, Gianfranco; Douek, Daniel C; Autran, Brigitte; Sáez-Cirión, Asier; Appay, Victor
2009-06-18
CD8(+) T cells are major players in the immune response against HIV. However, recent failures in the development of T cell-based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell-mediated efficacy. CD8(+) T cells from HIV-1-infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8(+) T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8(+) T cells from infected donors. We report that attributes of CD8(+) T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8(+) T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8(+) T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.
Kapoor, Vidushi; Rai, Rajanikant; Thiyagarajan, Durairaj; Mukherjee, Sandipan; Das, Gopal; Ramesh, Aiyagari
2017-08-04
Zinc-complexing ligands are prospective anti-biofilm agents because of the pivotal role of zinc in the formation of Staphylococcus aureus biofilm. Accordingly, the potential of a thiosemicarbazone (compound C1) and a benzothiazole-based ligand (compound C4) in the prevention of S. aureus biofilm formation was assessed. Compound C1 displayed a bimodal activity, hindering biofilm formation only at low concentrations and promoting biofilm growth at higher concentrations. In the case of C4, a dose-dependent inhibition of S. aureus biofilm growth was observed. Atomic force microscopy analysis suggested that at higher concentrations C1 formed globular aggregates, which perhaps formed a substratum that favored adhesion of cells and biofilm formation. In the case of C4, zinc supplementation experiments validated zinc complexation as a plausible mechanism of inhibition of S. aureus biofilm. Interestingly, C4 was nontoxic to cultured HeLa cells and thus has promise as a therapeutic anti-biofilm agent. The essential understanding of the structure-driven implications of zinc-complexing ligands acquired in this study might assist future screening regimes for identification of potent anti-biofilm agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Current approaches in multiple myeloma and other cancer-related bone diseases].
Engelhardt, M; Kleber, M; Udi, J; Wäsch, R
2012-05-01
Multiple myeloma (MM) ranges second of all hematological malignancies and occurs most commonly in elderly patients. Almost all MM patients develop bone lesions in the course of their disease or have evidence of bone loss at initial diagnosis. Whole-body conventional radiography remains the gold standard in the diagnostic evaluation, albeit computed tomography (CT) and magnetic resonance imaging (MRI) are increasingly used as complementary techniques in the more sensitive detection of osteolytic processes. Bisphosphonates like zoledronate or pamidronate represent the cornerstone therapeutics in osteolytic disease, and are effective supportives to potent anti-myeloma therapies, including novel agents such as the proteasome inhibitor bortezomib or immunomodulatory drugs (IMIDs, e. g. thalidomide or lenalidomide). Several studies are ongoing to investigate the effects of alternative bone-seeking agents and their therapeutic potential for the management of myeloma bone disease, such as denosumab (RANKL-neutralizing antibody), anti-sclerostin (monoclonal antibody, generated against sclerostin) or sotatercept (potent activin-A inhibitor). This review summarizes the most prominent data on myeloma bone disease pathogenesis, the role of imaging techniques as well as therapy and prevention of lytic complications in myeloma which may similarly or equally be true for other bone metastases-inducing solid tumors. © Georg Thieme Verlag KG Stuttgart · New York.
Tietjen, Ian; Ngwenya, Barbara N; Fotso, Ghislain; Williams, David E; Simonambango, Sundana; Ngadjui, Bonaventure T; Andersen, Raymond J; Brockman, Mark A; Brumme, Zabrina L; Andrae-Marobela, Kerstin
2018-01-30
Current HIV therapies do not act on latent cellular HIV reservoirs; hence they are not curative. While experimental latency reversal agents (LRAs) can promote HIV expression in these cells, thereby exposing them to immune recognition, existing LRAs exhibit limited clinical efficacy and high toxicity. We previously described a traditional 3-step medicinal plant regimen used for HIV/AIDS management in Northern Botswana that inhibits HIV replication in vitro. Here we describe use of one component of the regimen that additionally contains novel phorbol esters possessing HIV latency-reversal properties. We sought to document experiences of traditional medicine users, assess the ability of traditional medicine components to reverse HIV latency in vitro, and identify pure compounds that conferred these activities. Experiences of two HIV-positive traditional medicine users (patients) were documented using qualitative interview techniques. Latency reversal activity was assessed using a cell-based model (J-Lat, clone 9.2). Crude plant extracts were fractionated by open column chromatography and reverse-phase HPLC. Compound structures were elucidated using NMR spectroscopy and mass spectrometry. Patients using the 3-step regimen reported improved health over several years despite no reported use of standard HIV therapies. Crude extracts from Croton megalobotrys Müll Arg. ("Mukungulu"), the third component of the 3-step regimen, induced HIV expression in J-lat cells to levels comparable to the known LRA prostratin. Co-incubation with known LRAs and pharmacological inhibitors indicated that the active agent(s) in C. megalobotrys were likely to be protein kinase C (PKC) activator(s). Consistent with these results, two novel phorbol esters (Namushen 1 and 2) were isolated as abundant components of C. megalobotrys and were sufficient to confer HIV latency reversal in vitro. We have identified novel LRAs of the phorbol ester class from a medicinal plant used in HIV/AIDS management. These data, combined with self-reported health effects and previously-described in vitro anti-HIV activities of this traditional 3-step regimen, support the utility of longitudinal observational studies of patients undergoing this regimen to quantify its effects on plasma viral loads and HIV reservoir size in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.
Afonso, João Paulo Junqueira Magalhães; Tomimori, Jane; Michalany, Nilceo Schwery; Nonogaki, Suely; Porro, Adriana Maria
2012-08-01
Among the papular-pruriginous dermatoses related to human immunodeficiency (HIV) infection, two entities remain poorly differentiated leading to confusion in their diagnosis: HIV-related pruritic papular eruption (HIV-PPE or prurigo) and eosinophilic folliculitis (HIV-EF). To establish histopathological and immunohistochemical parameters to differentiate between two conditions associated with HIV infection, the pruritic papular eruption (HIV-PPE) and eosinophilic folliculitis (HIV-EF). Clinically typical HIV-PPE (18 cases) and HIV-EF (10 cases) cases were compared with each other in terms of the following topics: clinical and laboratory features (gender, age, CD4+ cell and eosinophil count), histopathological features (hematoxylin-eosin and toluidine blue staining) and immunohistochemical features (anti-CD1a, anti-CD4, anti-CD7, anti-CD8, anti-CD15, anti-CD20, anti-CD30, anti-CD68/macrophage and anti-S-100 reactions). Among the HIV-EF patients, we found an intense perivascular and diffuse inflammatory infiltration compared with those patients with HIV-PPE. The tissue mast cell count by toluidine staining was higher in the HIV-EF patients, who also presented higher expression levels of CD15 (for eosinophils), CD4 (T helper), and CD7 (pan-T lymphocytes) than the HIV-PPE patients. Only quantitative differences and not qualitative differences were found. These data indicate that HIV-related PPE and EF could possibly be differentiated by histopathological and immunohistochemical findings in addition to clinical characteristics. In fact, these two inflammatory manifestations could be within the spectrum of the same disease because only quantitative, and not qualitative, differences were found. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
2010-01-01
Background Previous reports have shown that peptides derived from the apolipoprotein E receptor binding region and the amphipathic α-helical domains of apolipoprotein AI have broad anti-infective activity and antiviral activity respectively. Lipoproteins and viruses share a similar cell biological niche, being of overlapping size and displaying similar interactions with mammalian cells and receptors, which may have led to other antiviral sequences arising within apolipoproteins, in addition to those previously reported. We therefore designed a series of peptides based around either apolipoprotein receptor binding regions, or amphipathic α-helical domains, and tested these for antiviral and antibacterial activity. Results Of the nineteen new peptides tested, seven showed some anti-infective activity, with two of these being derived from two apolipoproteins not previously used to derive anti-infective sequences. Apolipoprotein J (151-170) - based on a predicted amphipathic alpha-helical domain from apolipoprotein J - had measurable anti-HSV1 activity, as did apolipoprotein B (3359-3367) dp (apoBdp), the latter being derived from the LDL receptor binding domain B of apolipoprotein B. The more active peptide - apoBdp - showed similarity to the previously reported apoE derived anti-infective peptide, and further modification of the apoBdp sequence to align the charge distribution more closely to that of apoEdp or to introduce aromatic residues resulted in increased breadth and potency of activity. The most active peptide of this type showed similar potent anti-HIV activity, comparable to that we previously reported for the apoE derived peptide apoEdpL-W. Conclusions These data suggest that further antimicrobial peptides may be obtained using human apolipoprotein sequences, selecting regions with either amphipathic α-helical structure, or those linked to receptor-binding regions. The finding that an amphipathic α-helical region of apolipoprotein J has antiviral activity comparable with that for the previously reported apolipoprotein AI derived peptide 18A, suggests that full-length apolipoprotein J may also have such activity, as has been reported for full-length apolipoprotein AI. Although the strength of the anti-infective activity of the sequences identified was limited, this could be increased substantially by developing related mutant peptides. Indeed the apolipoprotein B-derived peptide mutants uncovered by the present study may have utility as HIV therapeutics or microbicides. PMID:20298574
Podsakoff, Greg M; Engel, Barbara C; Carbonaro, Denise A; Choi, Chris; Smogorzewska, Elzbieta M; Bauer, Gerhard; Selander, David; Csik, Susan; Wilson, Kathy; Betts, Michael R; Koup, Richard A; Nabel, Gary J; Bishop, Keith; King, Steven; Schmidt, Manfred; von Kalle, Christof; Church, Joseph A; Kohn, Donald B
2005-07-01
Two HIV-1-infected children on antiretroviral therapy were enrolled into a clinical study of retroviral-mediated transfer of a gene that inhibits replication of HIV-1, targeting bone marrow CD34+ hematopoietic stem/progenitor cells. Two retroviral vectors were used, one encoding a "humanized" dominant-negative REV protein (huM10) that is a potent inhibitor of HIV-1 replication and one encoding a nontranslated marker gene (FX) to serve as an internal control for the level of gene marking. Peripheral blood mononuclear cells (PBMC) containing the huM10 gene or FX gene were detected by quantitative PCR at frequencies of approximately 1/10,000 in both subjects for the first 1-3 months following re-infusion of the gene-transduced bone marrow, but then were at or below the limits of detection (<1/1,000,000) at most times over 2 years. In one patient, a reappearance of PBMC containing the huM10 gene, but not the FX gene, occurred concomitant with a rise in the HIV-1 viral load during a period of nonadherence to the antiretroviral regimen. Unique clones of gene-marked PBMC were detected by LAM-PCR during the time of elevated HIV-1 levels. These findings indicate that there was a selective survival advantage for PBMC containing the huM10 gene during the time of increased HIV-1 load.
Natural Immunity to HIV: A Template for Vaccine Strategies.
Fourcade, Lyvia; Poudrier, Johanne; Roger, Michel
2018-04-23
Africa accounts for the majority of global human immunodeficiency virus (HIV) infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN) individuals among African female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4⁺ and CD8⁺ T-cells as well as immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.
Wang, Rubing; Zhang, Xiaojie; Chen, Chengsheng; Chen, Guanglin; Zhong, Qiu; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong
2016-03-03
Thirty (1E,4E,6E)-1,7-diaryl-1,4,6-heptatrien-3-ones, featuring a central linear trienone linker and two identical nitrogen-containing heteroaromatic rings, were designed and synthesized as curcumin-based anticancer agents on the basis of their structural similarity to the enol-tautomer of curcumin, in addition to taking advantage of the possibly enhanced pharmacokinetic profiles contributed by the basic nitrogen-containing heteroaromatic rings. Their cytotoxicity and antiproliferative activity were evaluated towards both androgen-dependent and androgen-independent prostate cancer cell lines, as well as HeLa human cervical cancer cells. Among them, the ten most potent analogues are 5- to 36-fold more potent than curcumin in inhibiting cancer cell proliferation. The acquired structure-activity relationship data indicate (i) that (1E,4E,6E)-1,7-diaryl-1,4,6-heptatrien-3-ones represent a potential scaffold for development of curcumin-based agents with substantially improved cytotoxicity and anti-proliferative effect; and (ii) 1-alkyl-1H-imidazol-2-yl and 1-alkyl-1H-benzo[d]imidazole-2-yl serve as optimal heteroaromatic rings for increased in vitro potency of this scaffold. Two of most potent compounds displayed no apparent cytotoxicity toward MCF-10A normal mammary epithelial cells at 1 μM concentration. Treatment of PC-3 prostate cancer cells with the most potent compound led to appreciable cell cycle arrest at a G1/G0 phase and cell apoptosis induction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Segal, Ehud; Pan, Huaizhong; Benayoun, Liat; Kopečková, Pavla; Shaked, Yuval; Kopeček, Jindčrich; Satchi-Fainaro, Ronit
2015-01-01
Bone neoplasms, such as osteosarcoma, exhibit a propensity for systemic metastases resulting in adverse clinical outcome. Traditional treatment consisting of aggressive chemotherapy combined with surgical resection, has been the mainstay of these malignances. Therefore, bone-targeted non-toxic therapies are required. We previously conjugated the aminobisphosphonate alendronate (ALN), and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer. HPMA copolymer-ALN-TNP-470 conjugate exhibited improved anti-angiogenic and anti-tumor activity compared with the combination of free ALN and TNP-470 when evaluated in a xenogeneic model of human osteosarcoma. The immune system has major effect on toxicology studies and on tumor progression. Therefore, in this manuscript we examined the safety and efficacy profiles of the conjugate using murine osteosarcoma syngeneic model. Toxicity and efficacy evaluation revealed superior anti-tumor activity and decreased organ-related toxicities of the conjugate compared with the combination of free ALN plus TNP-470. Finally, comparative anti-angiogenic activity and specificity studies, using surrogate biomarkers of circulating endothelial cells (CEC), highlighted the advantage of the conjugate over the free agents. The therapeutic platform described here may have clinical translational relevance for the treatment of bone-related angiogenesis-dependent malignances. PMID:21429572
Antiretroviral Agents Effectively Block HIV Replication after Cell-to-Cell Transfer
Permanyer, Marc; Ballana, Ester; Ruiz, Alba; Badia, Roger; Riveira-Munoz, Eva; Gonzalo, Encarna; Clotet, Bonaventura
2012-01-01
Cell-to-cell transmission of HIV has been proposed as a mechanism contributing to virus escape to the action of antiretrovirals and a mode of HIV persistence during antiretroviral therapy. Here, cocultures of infected HIV-1 cells with primary CD4+ T cells or lymphoid cells were used to evaluate virus transmission and the effect of known antiretrovirals. Transfer of HIV antigen from infected to uninfected cells was resistant to the reverse transcriptase inhibitors (RTIs) zidovudine (AZT) and tenofovir, but was blocked by the attachment inhibitor IgGb12. However, quantitative measurement of viral DNA production demonstrated that all anti-HIV agents blocked virus replication with similar potency to cell-free virus infections. Cell-free and cell-associated infections were equally sensitive to inhibition of viral replication when HIV-1 long terminal repeat (LTR)-driven green fluorescent protein (GFP) expression in target cells was measured. However, detection of GFP by flow cytometry may incorrectly estimate the efficacy of antiretrovirals in cell-associated virus transmission, due to replication-independent Tat-mediated LTR transactivation as a consequence of cell-to-cell events that did not occur in short-term (48-h) cell-free virus infections. In conclusion, common markers of virus replication may not accurately correlate and measure infectivity or drug efficacy in cell-to-cell virus transmission. When accurately quantified, active drugs blocked proviral DNA and virus replication in cell-to-cell transmission, recapitulating the efficacy of antiretrovirals in cell-free virus infections and in vivo. PMID:22696642
Structural insights into the mechanisms of drug resistance in HIV-1 protease NL4-3.
Heaslet, Holly; Kutilek, Victoria; Morris, Garrett M; Lin, Ying-Chuan; Elder, John H; Torbett, Bruce E; Stout, C David
2006-03-03
The development of resistance to anti-retroviral drugs targeted against HIV is an increasing clinical problem in the treatment of HIV-1-infected individuals. Many patients develop drug-resistant strains of the virus after treatment with inhibitor cocktails (HAART therapy), which include multiple protease inhibitors. Therefore, it is imperative that we understand the mechanisms by which the viral proteins, in particular HIV-1 protease, develop resistance. We have determined the three-dimensional structure of HIV-1 protease NL4-3 in complex with the potent protease inhibitor TL-3 at 2.0 A resolution. We have also obtained the crystal structures of three mutant forms of NL4-3 protease containing one (V82A), three (V82A, M46I, F53L) and six (V82A, M46I, F53L, V77I, L24I, L63P) point mutations in complex with TL-3. The three protease mutants arose sequentially under ex vivo selective pressure in the presence of TL-3, and exhibit fourfold, 11-fold, and 30-fold resistance to TL-3, respectively. This series of protease crystal structures offers insights into the biochemical and structural mechanisms by which the enzyme can overcome inhibition by TL-3 while recovering some of its native catalytic activity.
Bahashwan, Saleh A.; Fayed, Ahmed A.; Ramadan, Mohamed A.; Amr, Abd El-Galil E.; Al-Harbi, Naif O.
2014-01-01
A series of substituted pyrazole, triazole and thiazole derivatives (2–13) were synthesized from 1-(naphtho[1,2-d]thiazol-2-yl)hydrazine as starting material and evaluated as androgen receptor antagonists and anti-prostate cancer agents. The newly synthesized compounds showed potent androgen receptor antagonists and anti-prostate cancer activities with low toxicity (lethal dose 50 (LD50)) comparable to Bicalutamide as reference drug. The structures of newly synthesized compounds were confirmed by IR, 1H-NMR, 13C-NMR, and MS spectral data and elemental analysis. The detailed synthesis, spectroscopic data, LD50 values and pharmacological activities of the synthesized compounds are reported. PMID:25421248
Autoantibodies and human immunodeficiency viruses infection: a case-control study.
Chretien, P; Monier, J C; Oksman, F; San Marco, M; Escande, A; Goetz, J; Cohen, J; Baquey, A; Humbel, R L; Sibilia, J
2003-01-01
To determine the prevalence of organ-specific and non-specific autoantibodies in HIV-infected patients. A multicentric collaborative case-control study including 105 HIV patients and 100 sex- and age-matched HIV-negative healthy volunteers. Antinuclear, anti-ds DNA, anti-histone, anti-Sm, rheumatoid factor(IgM), anti-beta 2 glycoprotein 1, antineutrophil cytoplasmic, anti-LKM1, anti-LCA1, anti-gastric parietal cell, antiplatelet, anti-intermediate filament, anti-mitotic spindle apparatus, anti-Golgi, anti-ribosome and anti-thyroid autoantibodies were screened in six European laboratories. Only IgG and IgM anticardiolipin, IgG antiplatelet, anti-smooth muscle and anti-thyroglobulin antibodies were statistically more frequent in HIV patients. There was no correlation with the numbers of CD4+ cells except in the case of anti-smooth muscle antibodies. We were unable to find specific autoantibodies such as anti-ds DNA, anti-Sm, AMA, anti-LKM1, anti-LCA1 or anti-beta 2 GP1 antibodies in these patients. Our results indicate that the autoantibody profile of HIV infections is comparable to those of other chronic viral infections. HIV does not seem to be more autoimmunogenic than other viruses.
Lanas, Angel; Chan, Francis K L
2017-08-05
The rapidly declining prevalence of Helicobacter pylori infection and widespread use of potent anti-secretory drugs means peptic ulcer disease has become substantially less prevalent than it was two decades ago. Management has, however, become more challenging than ever because of the threat of increasing antimicrobial resistance worldwide and widespread use of complex anti-thrombotic therapy in the ageing population. Peptic ulcers not associated with H pylori infection or the use of non-steroidal anti-inflammatory drugs are now also imposing substantial diagnostic and therapeutic challenges. This Seminar aims to provide a balanced overview of the latest advances in the pathogenetic mechanisms of peptic ulcers, guidelines on therapies targeting H pylori infection, approaches to treatment of peptic ulcer complications associated with anti-inflammatory analgesics and anti-thrombotic agents, and the unmet needs in terms of our knowledge and management of this increasingly challenging condition. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yatam, Satayanarayana; Gundla, Rambabu; Jadav, Surender Singh; Pedavenkatagari, Narayana reddy; Chimakurthy, Jithendra; Rani B, Namratha; Kedam, Thyagaraju
2018-05-01
Mercapto benzothiazole linked 1,2,4-oxadiazole derivatives were designed (4a-u) as new anti-inflammatory agents using bioisosteric approach and docking studies. The docking results clearly indicated that the compounds 4a-u shown good docking interaction towards COX-2 enzyme. In silico drug-like properties were also calculated for compounds (4a-u) and exhibited significant H-bond acceptor ratio. All compounds were synthesized and biologically evaluated using in vitro COX-1, COX-2 and 5-LOX assays. Compound 4k and 4q (IC50 = 6.8 μM and IC50 = 5.0 μM) found to be potent, selective COX-2 inhibitors and display better anti-inflammatory activity than standard Ibuprofen. Compound 4l and 4e found to be potent inhibitors against 5-LOX (IC50 = 5.1 μM and IC50 = 5.5 μM). The in vivo anti-inflammatory activity studies shown that the compounds 4q and 4k effectively reducing the paw edema volume at 3h and 5h than standard drug Ibuprofen. The DPPH radical scavenging activity provided anti-oxidant activity of compound 4e (IC50 = 25.6 μM) than reference standard Ascorbic acid.
Lowe, HIC; Daley-Beckford, D; Toyang, NJ; Watson, C; Hartley, S; Bryant, J
2014-01-01
Background: Vernonia divaricata is one of five endemic Vernonia species of Jamaica. The ethnomedicinal uses of other species have been established, however, scientific validation of this species has not yet been done and as such this paper is aimed at identifying the anti-cancer activity of V divaricata against leukaemia, breast and prostate cancer cell lines. Methods: Leaves and stems of V divaricata were dried and milled into powder. The crude hexane and methanol extracts of the leaves and stems were obtained and bio-assayed using WST-1 cell proliferation assay against leukaemia, breast and prostate cancer cell lines. Results: The crude hexane and methanol extracts of V divaricata were able to significantly retard the growth of the MCF-7 (breast), HL-60 (leukaemia) and the PC-3 (prostate) cancer cell lines. The crude methanol extract of the stem was the strongest, exhibiting anti-proliferation activity with IC50 values of 10.14, 12.63 and 9.894 μg/ml for the HL-60, MCF-7 and PC-3 cancer cell lines, respectively, with the most potent toward prostate cancer. Conclusion: The medicinal use of V divaricata as an anti-cancer agent was corroborated as the crude hexane and methanol extracts demonstrated potent anti-proliferation activity and as such hold potential for further research and development into a drug to prevent or treat various cancers. PMID:25429469
Dong, Yang-Yang; Zhuang, Yi-Huang; Cai, Wen-Jie; Liu, Yan; Zou, Wen-Bing
2016-11-01
The development of novel anti-pancreatic cancer agents is extremely important. Here, we investigated the anti-pancreatic cancer activity by NPC-26, a novel mitochondrion interfering compound. We showed that NPC-26 was anti-proliferative and cytotoxic to human pancreatic cancer cells, possibly via inducing caspase-9-dependent cell apoptosis. Pharmacological inhibition or shRNA-mediated silence of caspase-9 attenuated NPC-26-induced pancreatic cancer cell death and apoptosis. Further, NPC-26 treatment led to mitochondrial permeability transition pore (mPTP) opening in the cancer cells, which was evidenced by mitochondrial depolarization, ANT-1(adenine nucleotide translocator-1)-Cyp-D (cyclophilin-D) association and oxidative phosphorylation disturbance. mPTP blockers (cyclosporin and sanglifehrin A) or shRNA-mediated knockdown of key mPTP components (Cyp-D and ANT-1) dramatically attenuated NPC-26-induced pancreatic cancer cell apoptosis. Importantly, we showed that NPC-26, at a low concentration, potentiated gemcitabine-induced mPTP opening and subsequent pancreatic cancer cell apoptosis. In vivo, NPC-26 intraperitoneal injection significantly suppressed the growth of PANC-1 xenograft tumors in nude mice. Meanwhile, NPC-26 sensitized gemcitabine-mediated anti-pancreatic cancer activity in vivo. In summary, the results of this study suggest that NPC-26, alone or together with gemcitabine, potently inhibits pancreatic cancer cells possibly via disrupting mitochondrion.
Mucosal immunology of HIV infection.
Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S
2013-07-01
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
In vitro anti-glycation and anti-oxidant properties of synthesized Schiff bases.
Jhaumeer-Laulloo, Sabina; Bhowon, Minu Gupta; Mungur, Shabneez; Mahomoodally, Mohamad Fawzi; Subratty, Anwar Hussein
2012-05-01
A series of mono, bis and mixed Schiff bases (1-7) were synthesised and evaluated for potential anti-glycation and anti-oxidant activities using the bovine serum albumin-glucose assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay respectively. All compounds showed significant (p<0.05) antiglycating activities with IC50 values (4.02x10(-24)±0.1-2.88x10(-1)±1.35 mM) which were lower than the standard positive control aminoguanidine (IC50: 1.51x10(-3)±2.11 mM). Moreover, compounds 1-7 were found to possess significant (p<0.05) DPPH radical scavenging properties with SC50 values (1.31x10(-19)±0.05 to 2.25x10(-1)±1.24 mM) lower than the standard ascorbic acid (SC50: 5.50x10(-3)±2.11 mM). Compound 6 was found to be the most potent anti-glycating molecule (IC50 value: 4.02x10(-24)±0.1 mM) while compound 5 was the most potent anti-oxidant molecule (SC50: 1.31x10(-19)±0.05 mM); both being significantly lower (p<0.05) than the respective positive controls used. The present data showed that the number of phenolic OH together with structural changes influence both the anti-glycation and anti-oxidant observed herein. This study provides for the first time a series of potential template molecules for possible pharmaceutical applications that warrant further investigation as potential anti-glycation and anti-oxidant agents which could be of importance in metabolic diseases including diabetes mellitus.
Saravanan, Govindaraj; Selvam, Theivendren Panneer; Alagarsamy, Veerachamy; Kunjiappan, Selvaraj; Joshi, Shrinivas D; Indhumathy, Murugan; Kumar, Pandurangan Dinesh
2018-05-01
We designed to synthesize a number of 2-(2-(substituted benzylidene) hydrazinyl)-N-(4-((3-(phenyl imino)-3,4-dihydro quinoxalin-2(1 H)-ylidene)amino) phenyl) acetamide S1-S13: with the hope to obtain more active and less toxic anti-microbial and anti-TB agents. A series of novel quinoxaline Schiff bases S1-S13: were synthesized from o-phenylenediamine and oxalic acid by a multistep synthesis. In present work, we are introducing graph theoretical analysis to identify drug target. In the connection of graph theoretical analysis, we utilised KEGG database and Cytoscape software. All the title compounds were evaluated for their in-vitro anti-microbial activity by using agar well diffusion method at three different concentration levels (50, 100 and 150 µg/ml). The MIC of the compounds was also determined by agar streak dilution method. The identified study report through graph theoretical analysis were highlights that the key virulence factor for pathogenic mycobacteria is a eukaryotic-like serine/threonine protein kinase, termed PknG. All compounds were found to display significant activity against entire tested bacteria and fungi. In addition the synthesized scaffolds were screened for their in vitro antituberculosis (anti-TB) activity against Mycobacterium tuberculosis (Mtb) strain H 37 Ra using standard drug Rifampicin. A number of analogs found markedly potent anti-microbial and anti-TB activity. The relationship between the functional group variation and the biological activity of the evaluated compounds were well discussed. The observed study report was showing that the compound S6: (4-nitro substitution) exhibited most potent effective anti-microbial and anti-TB activity out of various tested compounds. © Georg Thieme Verlag KG Stuttgart · New York.
G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.
Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela
2015-09-22
Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.
Alafeefy, Ahmed M; Bakht, Mohammed A; Ganaie, Majid A; Ansarie, Mohd N; El-Sayed, Nahed N; Awaad, Amani S
2015-01-15
A series of certain novel Schiff bases as fenamate isosteres (VI:a-k) were synthesized to locate analgesic, anti-inflammatory agent with minimal ulcerogenic potential. The structures of the newly synthesized compounds were elucidated on the basis of their elemental analysis as well as IR, and NMR and mass spectroscopic data. All the compounds were evaluated for their anti-inflammatory activity by carrageenan induced paw oedema method. The compounds possessing good anti-inflammatory activity were further tested for analgesic, ulcerogenic, lipid peroxidation potentials and liver toxicity. Compounds (VI-c), (VI-f), (VI-h) and (VI-i) showed the best anti-inflammatory and significant analgesic activities at doses comparable to that of the standard drug Indomethacin. However, compounds (VI-c) and (VI-f) could be considered the most potent anti-inflammatory and analgesic molecules with maximum reduction in gastro-intestinal ulceration with no hepatocyte necrosis or liver degeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Investigation of 4-amino-5-alkynylpyrimidine-2(1H)-ones as anti-mycobacterial agents.
Garg, Gaurav; Pande, Milind; Agrawal, Ambika; Li, Jie; Kumar, Rakesh
2016-04-15
In vitro anti-mycobacterial activities of novel 4-amino-5-alkynylpyrimidine-2(1H)-ones were investigated. 4-Amino-5-heptynylpyrimidine-2(1H)-one (3) and 4-amino-5-(2-phenylethynyl)pyrimidine-2(1H)-one (7) displayed potent in vitro activity against Mycobacterium bovis and Mycobacterium tuberculosis. Compounds 3 and 7 were also assessed for their in vivo activity in BALB/c mice infected with M. tuberculosis (H37Ra). Both compounds showed promising in vivo efficacy at a dose of 25 mg/kg for 2 weeks. Importantly, compounds 3 and 7 interacted synergistically with the front-line anti-tuberculosis drug isoniazid in vitro and in vivo. These results suggest that this class of compounds has strong anti-mycobacterial potential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin.
Tuli, Hardeep S; Sandhu, Sardul S; Sharma, A K
2014-02-01
An entomopathogenic fungus, Cordyceps sp. has been known to have numerous pharmacological and therapeutic implications, especially, in terms of human health making it a suitable candidate for ethno-pharmacological use. Main constituent of the extract derived from this fungus comprises a novel bio-metabolite called as Cordycepin (3'deoxyadenosine) which has a very potent anti-cancer, anti-oxidant and anti-inflammatory activities. The current review discusses about the broad spectrum potential of Cordycepin including biological and pharmacological actions in immunological, hepatic, renal, cardiovascular systems as well as an anti-cancer agent. The article also reviews the current efforts to delineate the mechanism of action of Cordycepin in various bio-molecular processes. The study will certainly draw the attention of scientific community to improve the bioactivity and production of Cordycepin for its commercial use in pharmacological and medical fields.
Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications
Elsayed, Elsayed A.; El Enshasy, Hesham; Wadaan, Mohammad A. M.; Aziz, Ramlan
2014-01-01
For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents. PMID:25505823
Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?
Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T
2018-06-11
A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.
Repurposing psychiatric drugs as anti-cancer agents.
Huang, Jing; Zhao, Danwei; Liu, Zhixiong; Liu, Fangkun
2018-04-10
Cancer is a major public health problem and one of the leading contributors to the global disease burden. The high cost of development of new drugs and the increasingly severe burden of cancer globally have led to increased interest in the search and development of novel, affordable anti-neoplastic medications. Antipsychotic drugs have a long history of clinical use and tolerable safety; they have been used as good targets for drug repurposing. Being used for various psychiatric diseases for decades, antipsychotic drugs are now reported to have potent anti-cancer properties against a wide variety of malignancies in addition to their antipsychotic effects. In this review, an overview of repurposing various psychiatric drugs for cancer treatment is presented, and the putative mechanisms for the anti-neoplastic actions of these antipsychotic drugs are reviewed. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang
Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded activemore » site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.« less
Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma
Martellini, Julie A.; Cole, Amy L.; Venkataraman, Nitya; Quinn, Gerry A.; Svoboda, Pavel; Gangrade, Bhushan K.; Pohl, Jan; Sørensen, Ole E.; Cole, Alexander M.
2009-01-01
Mucosal surfaces of the reproductive tract as well as their secretions have important roles in preventing sexual transmission of HIV-1. In the current study, the majority of the intrinsic anti-HIV-1 activity of human seminal plasma (SP) was determined to reside in the cationic polypeptide fraction. Antiviral assays utilizing luciferase reporter cells and lymphocytic cells revealed the ability of whole SP to prevent HIV-1 infection, even when SP was diluted 3200-fold. Subsequent fractionation by continuous flow acid-urea (AU)-PAGE and antiviral testing revealed that cationic polypeptides within SP were responsible for the majority of anti-HIV-1 activity. A proteomic approach was utilized to resolve and identify 52 individual cationic polypeptides that contribute to the aggregate anti-HIV-1 activity of SP. One peptide fragment of semenogelin I, termed SG-1, was purified from SP by a multistep chromatographic approach, protein sequenced, and determined to exhibit anti-HIV-1 activity against HIV-1. Anti-HIV-1 activity was transient, as whole SP incubated for prolonged time intervals exhibited a proportional decrease in anti-HIV-1 activity that was directly attributed to the degradation of semenogelin I peptides. Collectively, these results indicate that the cationic polypeptide fraction of SP is active against HIV-1, and that semenogelin-derived peptides contribute to the intrinsic anti-HIV-1 activity of SP.—Martellini, J. A., Cole, A. C., Venkataraman, N., Quinn, G. A., Svoboda, P., Gangrade, B. K., Pohl, J., Sørensen, O. E., Cole, A. M. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. PMID:19487309
Vargas, Jose Ignacio; Jensen, Daniela; Sarmiento, Valeska; Peirano, Felipe; Acuña, Pedro; Fuster, Felipe; Soto, Sabrina; Ahumada, Rodrigo; Huilcaman, Marco; Bruna, Mario; Jensen, Werner; Fuster, Francisco
2016-04-01
HBV-HIV coinfection is prevalent. Frequently, anti-HBc is the only serological marker of HBV, which can be indicative of HBV resolved infection, when found together with anti-HBs reactivity; or present as "isolated anti-HBc," related to HBV occult infection with presence of detectable DNA HBV, more prevalent in HIV-positive individuals. Regional data about this condition are scarce. Anti-HBc rapid test has been used as screening, but its performance has not been described in HIV-positive patients. The aim of this study was determine prevalence of anti-HBc in HIV-positive patients, serological pattern of HBV resolved infection and isolated anti-HBc, evaluating presence of HBV occult infection. Assess anti-HBc rapid test compared to ECLIA. Methods included measurement of anti-HBc and anti-HBs in HIV-positive patients with negative HBsAg. Serum HBV DNA quantification and HBV booster vaccination to "isolated anti-HBc" individuals. Detection of anti-HBc by rapid test and ECLIA. In 192 patients, prevalence of anti-HBc was 42.7% (82/192); associated to male gender, drug use, men-sex-men, positive-VDRL, and longer time HIV diagnosis. 34.4% (66/192) had presence of anti-HBs, mean titers of 637 ui/ml. Isolated anti-HBc in 8.3% (16/192), associated to detectable HIV viral load and no-use of HAART; in them, HBV DNA was undetectable, and 60% responded to HBV vaccination booster. Anti-HBc rapid test showed low sensibility (32.9%) compared to ECLIA. These results show that prevalence of anti-HBc in HIV-positive individuals is high, in most cases accompanied with anti-HBs as HBV resolved infection. Low prevalence of "isolated anti-HBc," with undetectable HBV DNA, and most had anamnestic response to HBV vaccination; suggest low possibility of occult HBV infection. Anti-HBc rapid test cannot be recommended as screening method for anti-HBc. © 2015 Wiley Periodicals, Inc.
Reactivation of latent HIV-1 by new semi-synthetic ingenol esters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandeló José, Diego; Bartholomeeusen, Koen; Delveccio da Cunha, Rodrigo
The ability of HIV to establish long-lived latent infection is mainly due to transcriptional silencing of viral genome in resting memory T lymphocytes. Here, we show that new semi-synthetic ingenol esters reactivate latent HIV reservoirs. Amongst the tested compounds, 3-caproyl-ingenol (ING B) was more potent in reactivating latent HIV than known activators such as SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. ING B activated PKC isoforms followed by NF-κB nuclear translocation. As virus reactivation is dependent on intact NF-κB binding sites in the LTR promoter region ING B, we have shown that. ING B was able to reactivate virus transcriptionmore » in primary HIV-infected resting cells up to 12 fold and up to 25 fold in combination with SAHA. Additionally, ING B promoted up-regulation of P-TEFb subunits CDK9/Cyclin T1. The role of ING B on promoting both transcription initiation and elongation makes this compound a strong candidate for an anti-HIV latency drug combined with suppressive HAART. - Highlights: • 3-caproyl-ingenol (ING B) reactivates latent HIV better than SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. • ING B promotes PKC activation and NF-kB translocation to the nucleus. • ING B activates virus transcription of B and non-B subtypes of HIV-1. • ING B activates HIV transcription in infected primary resting CD4+ T cells. • ING B induces higher levels of P-TEFb components in human primary cells.« less
The Role of Resveratrol in Cancer Therapy
Ko, Jeong-Hyeon; Sethi, Gautam; Um, Jae-Young; Shanmugam, Muthu K; Arfuso, Frank; Kumar, Alan Prem; Bishayee, Anupam; Ahn, Kwang Seok
2017-01-01
Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent. PMID:29194365
The Development of Antimicrobial α-AApeptides that Suppress Pro-inflammatory Immune Responses
Padhee, Shruti; Smith, Christina; Wu, Haifan; Li, Yaqiong; Manoj, Namitha; Qiao, Qiao; Khan, Zoya; Cao, Chuanhai
2014-01-01
Herein we describe the development of a new class of antimicrobial and anti-infective peptidomimetics – cyclic lipo-α-AApeptides. They have potent and broad-spectrum antibacterial activity against a range of clinically relevant pathogens, including both multidrug-resistant Gram-positive and Gram-negative bacteria. Fluorescence microscopy suggests that cyclic lipo-α-AApeptides kill bacteria by disrupting bacterial membranes, possibly through a mechanism similar to that of cationic host defense peptides (HDPs). Furthermore, the cyclic lipo-α-AApeptide can mimic cationic host-defense peptides by antagonizing Toll-Like Receptor 4 (TLR4) signaling responses and suppressing pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). Our results suggest that by mimicking host-defense peptides (HDPs), cyclic lipo-α-AApeptides may emerge to be a new class of antibiotic agents through direct bacteria killing, as well as novel anti-infective agents through immunomodulation. PMID:24677440
Biological Activities of Fusarochromanone: a Potent Anti-cancer Agent
2014-09-03
experiments to more fully elucidate the detailed mechanism underlying this favorable feature of FC101. Like most other bioactive natural flavonoids , FC101...tribution, metabolism, and elimination of compounds in blood and tissues over time. FC101 is a flavonoid , and over 4,000 natural compounds have been... Flavonoids generally bind tightly to serum proteins (e.g., serum albumin) and thus substantial amounts are inaccessible to the desired bio- logical targets
Largazole as a Novel and Selective Anti-Breast Cancer Agent. Addendum
2013-12-01
largazole ketone (K), largazole macrocycle (M), and seco-largazole (S) were tested in an in vitro p27 ubiquitination assay (Figure 2b). We also...inhibitors affect p27 ubiquitination. We observed that largazole (L), largazole ketone (K), and largazole ester (E) inhibited the ligation of...largazole is not required for inhibition, because the ketone and ester analogues were equally potent in blocking p27 ubiquitination. In addition, E1
Subasinghage, Anusha P; Conlon, J Michael; Hewage, Chandralal M
2010-04-01
Peptide XT-7 (GLLGP(5)LLKIA(10)AKVGS(15)NLL.NH(2)) is a cationic, leucine-rich peptide, first isolated from skin secretions of the frog, Silurana tropicalis (Pipidae). The peptide shows potent, broad-spectrum antimicrobial activity but its therapeutic potential is limited by haemolytic activity (LC(50)=140 microM). The analogue [G4K]XT-7, however, retains potent antimicrobial activity but is non-haemolytic (LC(50)>500 microM). In order to elucidate the molecular basis for this difference in properties, the three dimensional structures of XT-7 and the analogue have been investigated by proton NMR spectroscopy and molecular modelling. In aqueous solution, both peptides lack secondary structure. In a 2,2,2-trifluoroethanol (TFE-d(3))-H(2)O mixed solvent system, XT-7 is characterised by a right handed alpha-helical conformation between residues Leu(3) and Leu(17) whereas [G4K]XT-7 adopts a more restricted alpha-helical conformation between residues Leu(6) and Leu(17). A similar conformation for XT-7 in 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micellular media was observed with a helical segment between Leu(3) and Leu(17). However, differences in side chain orientations restricting the hydrophilic residues to a smaller patch resulted in an increased hydrophobic surface relative to the conformation in TFE-H(2)O. Molecular modelling of the structures obtained in our study demonstrates the amphipathic character of the helical segments. It is proposed that the marked decrease in haemolytic activity produced by the substitution Gly(4)-->Lys in XT-7 arises from a decrease in both helicity and hydrophobicity. These studies may facilitate the development of potent but non-toxic anti-infective agents based upon the structure of XT-7. Copyright 2009 Elsevier B.V. All rights reserved.
Dual functional bioactive-peptide, AIMP1-derived peptide (AdP), for anti-aging.
Kim, Jina; Kang, Sujin; Kwon, HanJin; Moon, HoSang; Park, Min Chul
2018-06-19
Human skin aging is caused by several factors, such as UV irradiation, stress, hormone, and pollution. Wrinkle formation and skin pigmentation are representative features of skin aging. Although EGF and arbutin are used as anti-wrinkle and skin whitening agents, respectively, they have adverse effects on skin. When more cosmeceutical ingredients are added to cosmetic product, adverse effects are also accumulated. For these reasons, multifunctional and safe cosmetic ingredients are in demand. The aim of the present study is to investigate the novel anti-aging agents, AIMP1-derived peptide (AdP, INCI name: sh-oligopeptide-5/sh-oligopeptide SP) for cosmetic products. To assess the anti-wrinkle effect of AdP, collagen type I synthesis and fibroblast proliferation were determined on human fibroblasts. The anti-wrinkle effect of AdP was examined by ELISA and cell titer glo assay. To assess the whitening, melanin content and tyrosinase activity were determined on melanocytes. The whitening effect of AdP was examined by melanin measurement and enzyme activity assay. The safety of AdP was determined by cytotoxicity and immunogenicity, CCK-8 and TNF-α ELISA assay, respectively. AdP treatment induced the collagen type I synthesis and fibroblast proliferation. Also, AdP treatment inhibited melanin synthesis by regulating tyrosinase activity. The anti-aging effect of AdP is more potent than EGF and albutin. AdP did not show adverse effects. These results show that AdP can be dual functional and safe cosmeceutical agent to prevent skin aging. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amano, Masayuki; Miguel Salcedo-Gómez, Pedro; Yedidi, Ravikiran S.
We report that GRL-09510, a novel HIV-1 protease inhibitor (PI) containing a newly-generated P2-crown-tetrahydrofuranylurethane (Crwn-THF), a P2'-methoxybenzene, and a sulfonamide isostere, is highly active against laboratory and primary clinical HIV-1 isolates (EC50: 0.0014–0.0028 μM) with minimal cytotoxicity (CC50: 39.0 μM). Similarly, GRL-09510 efficiently blocked the replication of HIV-1NL4-3 variants, which were capable of propagating at high-concentrations of atazanavir, lopinavir, and amprenavir (APV). GRL-09510 was also potent against multi-drug-resistant clinical HIV-1 variants and HIV-2ROD. Under the selection condition, where HIV-1NL4-3 rapidly acquired significant resistance to APV, an integrase inhibitor raltegravir, and a GRL-09510 congener (GRL-09610), no variants highly resistant against GRL-09510more » emerged over long-term in vitro passage of the virus. Crystallographic analysis demonstrated that the Crwn-THF moiety of GRL-09510 forms strong hydrogen-bond-interactions with HIV-1 protease (PR) active-site amino acids and is bulkier with a larger contact surface, making greater van der Waals contacts with PR than the bis-THF moiety of darunavir. The present data demonstrate that GRL-09510 has favorable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants, that the newly generated P2-Crwn-THF moiety confers highly desirable anti-HIV-1 potency. The use of the novel Crwn-THF moiety sheds lights in the design of novel PIs.« less
Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize.
Adams, Stephen R; Yang, Howard C; Savariar, Elamprakash N; Aguilera, Joe; Crisp, Jessica L; Jones, Karra A; Whitney, Michael A; Lippman, Scott M; Cohen, Ezra E W; Tsien, Roger Y; Advani, Sunil J
2016-10-04
Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery.
Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize
Adams, Stephen R.; Yang, Howard C.; Savariar, Elamprakash N.; Aguilera, Joe; Crisp, Jessica L.; Jones, Karra A.; Whitney, Michael A.; Lippman, Scott M.; Cohen, Ezra E. W.; Tsien, Roger Y.; Advani, Sunil J.
2016-01-01
Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery. PMID:27698471
Rajasekaran, Ganesan; Kim, Eun Young; Shin, Song Yub
2017-05-01
Although the human-derived antimicrobial peptide (AMP) LL-37 has potent antimicrobial and anti-inflammatory activities, its therapeutic application is limited by its low cell selectivity and high production cost due to its large size. To overcome these problems, we tried to develop novel LL-37-derived short α-helical AMPs with improved cell selectivity and without a significant loss of anti-inflammatory activity relative to that of parental LL-37. Using amino acid substitution, we designed and synthesized a series of FK13 analogs based on the sequence of the 13-meric short FK13 peptide (residues 17-29 of LL-37) that has been identified as the region responsible for the antimicrobial activity of LL-37. Among the designed FK13 analogs, FK-13-a1 and FK-13-a7 showed high cell selectivity and retained the anti-inflammatory activity. The therapeutic index (a measure of cell selectivity) of FK-13-a1 and FK-13-a7 was 6.3- and 2.3-fold that of parental LL-37, respectively. Furthermore, FK-13-a1 and FK-13-a7 displayed more potent antimicrobial activity against antibiotic-resistant bacteria including MRSA, MDRPA, and VREF, than did LL-37. In addition, FK-13-a1 and FK-13-a7 exhibited greater synergistic effects with chloramphenicol against MRSA and MDRPA and were more effective anti-biofilm agents against MDRPA than LL-37 was. Moreover, FK-13-a1 and FK-13-a7 maintained their activities in the presence of physiological salts and human serum. SYTOX green uptake, membrane depolarization and killing kinetics revealed that FK13-a1 and FK13-a7 kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Taken together, our results suggest that FK13-a1 and FK13-a7 can be developed as novel antimicrobial/anti-inflammatory agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Cancer therapies in HIV cure research.
Rasmussen, Thomas A; Anderson, Jenny L; Wightman, Fiona; Lewin, Sharon R
2017-01-01
This article provides an overview of anticancer therapies in various stages of clinical development as potential interventions to target HIV persistence. Epigenetic drugs developed for cancer have been investigated in vitro, ex vivo and in clinical trials as interventions aimed at reversing HIV latency and depleting the amount of virus that persists on antiretroviral therapy. Treatment with histone deacetylase inhibitors induced HIV expression in patients on antiretroviral therapy but did not reduce the frequency of infected cells. Other interventions that may accelerate the decay of latently infected cells, in the presence or absence of latency-reversing therapy, are now being explored. These include apoptosis-promoting agents, nonhistone deacetylase inhibitor compounds to reverse HIV latency and immunotherapy interventions to enhance antiviral immunity such as immune checkpoint inhibitors and Toll-like receptor agonists. A curative strategy in HIV will likely need to both reduce the amount of virus that persists on antiretroviral therapy and improve anti-HIV immune surveillance. Although we continue to explore advances in the field of oncology including cancer immunotherapy, there are major differences in the risk-benefit assessment between HIV-infected individuals and patients with malignancies. Drug development specifically targeting HIV persistence will be the key to developing effective interventions with an appropriate safety profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Feng; Zhang, Junsong; Zhang, Yijun
Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-boxmore » of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.« less
The preclinical evaluation of TIC10/ONC201 as an anti-pancreatic cancer agent.
Zhang, Qiangbo; Wang, Hong; Ran, Lin; Zhang, Zongli; Jiang, Runde
2016-08-05
Here we evaluated the potential anti-pancreatic cancer activity by TIC10/ONC201, a first-in-class small-molecule inducer of tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL). The in vitro results showed that TIC10 induced potent cytotoxic and cytostatic activities in several human pancreatic cancer cell lines (Panc-1, Mia-PaCa2, AsPC-1 or L3.6). TIC10 activated both extrinsic (TRAIL-caspase-8-dependent) and endogenous/mitochondrial (caspase-9-dependent) apoptosis pathways in the pancreatic cancer cells. Molecularly, we showed that TIC10 inhibited Akt-Erk activation, yet induced TRAIL expression in pancreatic cancer cells. Significantly, TIC10, at a relatively low concentration, sensitized gemcitabine-induced growth inhibition and apoptosis against pancreatic cancer cells. Further, TIC10 and gemcitabine synergistically inhibited Panc-1 xenograft growth in SCID mice. The combination treatment also significantly improved mice survival. In addition, Akt-Erk in-activation and TRAIL/cleaved-caspase-8 induction were observed in TIC10-treated Panc-1 xenografts. Together, the preclinical results of the study demonstrate the potent anti-pancreatic cancer activity by TIC10, or with gemcitabine. Copyright © 2016 Elsevier Inc. All rights reserved.
Benaim, Gustavo; Hernandez-Rodriguez, Vanessa; Mujica-Gonzalez, Sheira; Plaza-Rojas, Lourdes; Silva, May Li; Parra-Gimenez, Nereida; Garcia-Marchan, Yael; Paniz-Mondolfi, Alberto; Uzcanga, Graciela
2012-07-01
Amiodarone, a commonly used antiarrhythmic, is also a potent and selective anti-Trypanosoma cruzi agent. Dronedarone is an amiodarone derivative in which the 2,5-diiodophenyl moiety of the parental drug has been replaced with an unsubstituted phenyl group aiming to eliminate the thyroid toxicity frequently observed with amiodarone treatment. Dronedarone has been approved by the Food and Drug Administration (FDA), and its use as a safe antiarrhythmic has been extensively documented. We show here that dronedarone also has potent anti-T. cruzi activity, against both extracellular epimastigotes and intracellular amastigotes, the clinically relevant form of the parasite. The 50% inhibitory concentrations against both proliferative stages are lower than those previously reported for amiodarone. The mechanism of action of dronedarone resembles that of amiodarone, as it induces a large increase in the intracellular Ca(2+) concentration of the parasite, which results from the release of this ion from intracellular storage sites, including a direct effect of the drug on the mitochondrial electrochemical potential, and through alkalinization of the acidocalcisomes. Our results suggest a possible future repurposed use of dronedarone for the treatment of Chagas' disease.
Bioactive compounds in bee propolis for drug discovery
NASA Astrophysics Data System (ADS)
Kumazawa, Shigenori
2018-02-01
Propolis is a natural resinous product collected by honeybees. It has been used in folk medicine since ancient times because of its numerous biological properties such as antioxidant, antimicrobial, anti-cancer, and anti-inflammatory activities. Studies of the chemical composition of propolis have demonstrated that its compositional variability depends on the source plant. We have studied the chemistry and biological activities of various types of propolis from Apis mellifera. The studies of propolis collected in Brazil, Japan, Korea, the Solomon Island and Senegal are summarized. Brazilian green propolis contained high levels of artepillin C (3,5-diprenyl-4-hydroxycinnamic acid), which has a potent apoptosis-inducing agent as well as an angiogenesis inhibitor. The several phenolic compounds with potent antibacterial activity in Brazilian red propolis were found. The propolis from Okinawa, Japan, contained some prenylflavonoids with antioxidant and antimicrobial activities. The propolis from the Solomon Islands and Hawaii have the same compounds as Okinawan propolis. The propolis from Jeju Island, Korea had the promotion effect on nerve growth factor (NGF) secretion in human glioblastoma T98G cells. The compounds isolated from Senegalese propolis showed high anti-inflammatory activity due to their inhibition of the liposaccharide (LPS)-induced expression of inducible NO synthase (iNOS).
Anti-Helicobacter pylori activity of anacardic acids from Amphipterygium adstringens.
Castillo-Juárez, Israel; Rivero-Cruz, Fausto; Celis, Heliodoro; Romero, Irma
2007-10-08
Amphipterygium adstringens (Schltdl.) Standl. (Anacardiaceae) is widely used in traditional Mexican medicine for the treatment of gastritis and ulcers. In this work, we studied the anti-Helicobacter pylori activity of its bark, this Gram-negative bacterium is considered the major etiological agent of chronic active gastritis and peptic ulcer disease, and it is linked to gastric carcinoma. From a bio-guided assay of the fractions obtained form a continuous Soxhlet extraction of the bark, we identified that petroleum ether fraction had significant antimicrobial activity against Helicobacter pylori. From this fraction, we isolated an anacardic acids mixture and three known triterpenes: masticadienonic acid; 3alpha-hydroxymasticadienonic acid; 3-epi-oleanolic; as well as the sterol beta-sitosterol. Only the anacardic acids mixture exhibits a potent dose-dependent antibacterial activity (MIC=10 microg/ml in broth cultures). It is enriched in saturated alkyl phenolic acids (C15:0, C16:0, C17:0 C19:0) which represents a novel source of these compounds with potent anti-Helicobacter pylori activity. The promising use of anacardic acids and Amphipterygium adstringens bark in the development of an integral treatment of Helicobacter pylori diseases is discussed.
Inhibition of HIV Fusion with Multivalent Gold Nanoparticles
Bowman, Mary-Catherine; Ballard, T. Eric; Ackerson, Christopher J.; Feldheim, Daniel L.; Margolis, David M.; Melander, Christian
2010-01-01
The design and synthesis of a multivalent gold nanoparticle therapeutic is presented. SDC-1721, a fragment of the potent HIV inhibitor TAK-779, was synthesized and conjugated to 2.0 nm diameter gold nanoparticles. Free SDC-1721 had no inhibitory effect on HIV infection; however, the (SDC-1721)-gold nanoparticle conjugates displayed activity comparable to that of TAK-779. This result suggests that multivalent presentation of small molecules on gold nanoparticle surfaces can convert inactive drugs into potent therapeutics. PMID:18473457
Savarino, Andrea; Pistello, Mauro; D'Ostilio, Daniela; Zabogli, Elisa; Taglia, Fabiana; Mancini, Fabiola; Ferro, Stefania; Matteucci, Donatella; De Luca, Laura; Barreca, Maria Letizia; Ciervo, Alessandra; Chimirri, Alba; Ciccozzi, Massimo; Bendinelli, Mauro
2007-01-01
Background Treatment of feline immunodeficiency virus (FIV) infection has been hampered by the absence of a specific combination antiretroviral treatment (ART). Integrase strand transfer inhibitors (INSTIs) are emerging as a promising new drug class for HIV-1 treatment, and we evaluated the possibility of inhibiting FIV replication using INSTIs. Methods Phylogenetic analysis of lentiviral integrase (IN) sequences was carried out using the PAUP* software. A theoretical three-dimensional structure of the FIV IN catalytic core domain (CCD) was obtained by homology modeling based on a crystal structure of HIV-1 IN CCD. The interaction of the transferred strand of viral DNA with the catalytic cavity of FIV IN was deduced from a crystal structure of a structurally similar transposase complexed with transposable DNA. Molecular docking simulations were conducted using a genetic algorithm (GOLD). Antiviral activity was tested in feline lymphoblastoid MBM cells acutely infected with the FIV Petaluma strain. Circular and total proviral DNA was quantified by real-time PCR. Results The calculated INSTI-binding sites were found to be nearly identical in FIV and HIV-1 IN CCDs. The close similarity of primate and feline lentivirus IN CCDs was also supported by phylogenetic analysis. In line with these bioinformatic analyses, FIV replication was efficiently inhibited in acutely infected cell cultures by three investigational INSTIs, designed for HIV-1 and belonging to different classes. Of note, the naphthyridine carboxamide INSTI, L-870,810 displayed an EC50 in the low nanomolar range. Inhibition of FIV integration in situ was shown by real-time PCR experiments that revealed accumulation of circular forms of FIV DNA within cells treated with L-870,810. Conclusion We report a drug class (other than nucleosidic reverse transcriptase inhibitors) that is capable of inhibiting FIV replication in vitro. The present study helped establish L-870,810, a compound successfully tested in human clinical trials, as one of the most potent anti-FIV agents ever tested in vitro. This finding may provide new avenues for treating FIV infection and contribute to the development of a small animal model mimicking the effects of ART in humans. PMID:17971219
CD25 Preselective Anti-HIV Vectors for Improved HIV Gene Therapy
Kalomoiris, Stefanos; Lawson, Je'Tai; Chen, Rachel X.; Bauer, Gerhard; Nolta, Jan A.
2012-01-01
Abstract As HIV continues to be a global public health problem with no effective vaccine available, new and innovative therapies, including HIV gene therapies, need to be developed. Due to low transduction efficiencies that lead to low in vivo gene marking, therapeutically relevant efficacy of HIV gene therapy has been difficult to achieve in a clinical setting. Methods to improve the transplantation of enriched populations of anti-HIV vector-transduced cells may greatly increase the in vivo efficacy of HIV gene therapies. Here we describe the development of preselective anti-HIV lentiviral vectors that allow for the purification of vector-transduced cells to achieve an enriched population of HIV-resistant cells. A selectable protein, human CD25, not normally found on CD34+ hematopoietic progenitor cells (HPCs), was incorporated into a triple combination anti-HIV lentiviral vector. Upon purification of cells transduced with the preselective anti-HIV vector, safety was demonstrated in CD34+ HPCs and in HPC-derived macrophages in vitro. Upon challenge with HIV-1, improved efficacy was observed in purified preselective anti-HIV vector-transduced macrophages compared to unpurified cells. These proof-of-concept results highlight the potential use of this method to improve HIV stem cell gene therapy for future clinical applications. PMID:23216020
Paskaleva, Elena E; Lin, Xudong; Li, Wen; Cotter, Robin; Klein, Michael T; Roberge, Emily; Yu, Er K; Clark, Bruce; Veille, Jean-Claude; Liu, Yanze; Lee, David Y-W; Canki, Mario
2006-01-01
Background The high rate of HIV-1 mutation and increasing resistance to currently available antiretroviral (ART) therapies highlight the need for new antiviral agents. Products derived from natural sources have been shown to inhibit HIV-1 replication during various stages of the virus life cycle, and therefore represent a potential source of novel therapeutic agents. To expand our arsenal of therapeutics against HIV-1 infection, we investigated aqueous extract from Sargassum fusiforme (S. fusiforme) for ability to inhibit HIV-1 infection in the periphery, in T cells and human macrophages, and for ability to inhibit in the central nervous system (CNS), in microglia and astrocytes. Results S. fusiforme extract blocked HIV-1 infection and replication by over 90% in T cells, human macrophages and microglia, and it also inhibited pseudotyped HIV-1 (VSV/NL4-3) infection in human astrocytes by over 70%. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5)-tropic HIV-1, was dose dependant and long lasting, did not inhibit cell growth or viability, was not toxic to cells, and was comparable to inhibition by the nucleoside analogue 2', 3'-didoxycytidine (ddC). S. fusiforme treatment blocked direct cell-to-cell infection spread. To investigate at which point of the virus life cycle this inhibition occurs, we infected T cells and CD4-negative primary human astrocytes with HIV-1 pseudotyped with envelope glycoprotein of vesicular stomatitis virus (VSV), which bypasses the HIV receptor requirements. Infection by pseudotyped HIV-1 (VSV/NL4-3) was also inhibited in a dose dependant manner, although up to 57% less, as compared to inhibition of native NL4-3, indicating post-entry interferences. Conclusion This is the first report demonstrating S. fusiforme to be a potent inhibitor of highly productive HIV-1 infection and replication in T cells, in primary human macrophages, microglia, and astrocytes. Results with VSV/NL4-3 infection, suggest inhibition of both entry and post-entry events of the virus life cycle. Absence of cytotoxicity and high viability of treated cells also suggest that S. fusiforme is a potential source of novel naturally occurring antiretroviral compounds that inhibit HIV-1 infection and replication at more than one site of the virus life cycle. PMID:16725040
Meira, Cássio S; Dos Santos Filho, José Maurício; Sousa, Caroline C; Anjos, Pâmela S; Cerqueira, Jéssica V; Dias Neto, Humberto A; da Silveira, Rafael G; Russo, Helena M; Wolfender, Jean-Luc; Queiroz, Emerson F; Moreira, Diogo R M; Soares, Milena B P
2018-05-01
4-(Nitrophenyl)hydrazone derivatives of N-acylhydrazone were synthesized and screened for suppress lymphocyte proliferation and nitrite inhibition in macrophages. Compared to an unsubstituted N-acylhydrazone, active compounds were identified within initial series when hydroxyl, chloride and nitro substituents were employed. Structure-activity relationship was further developed by varying the position of these substituents as well as attaching structurally-related substituents. Changing substituent position revealed a more promising compound series of anti-inflammatory agents. In contrast, an N-methyl group appended to the 4-(nitrophenyl)hydrazone moiety reduced activity. Anti-inflammatory activity of compounds is achieved by modulating IL-1β secretion and prostaglandin E2 synthesis in macrophages and by inhibiting calcineurin phosphatase activity in lymphocytes. Compound SintMed65 was advanced into an acute model of peritonitis in mice, where it inhibited the neutrophil infiltration after being orally administered. In summary, we demonstrated in great details the structural requirements and the underlying mechanism for anti-inflammatory activity of a new family of hydrazone-N-acylhydrazone, which may represent a valuable medicinal chemistry direction for the anti-inflammatory drug development in general. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kaur, Gurmeet; Kiziltepe, Tanyel; Anderson, Kenneth C.; Kutok, Jeffery L.; Jia, Lee; Boucher, Kenneth M.; Saavedra, Joseph E.; Keefer, Larry K.; Shami, Paul J.
2009-01-01
Glutathione S-Transferases (GST) play an important role in multidrug resistance and are upregulated in multiple cancers. We have designed a prodrug class that releases NO on metabolism by GST. O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent anti-neoplastic activity. We studied the effect of JS-K on angiogenesis. JS-K inhibited the proliferation of HUVEC’s with a 50% inhibitory concentration (IC50) of 0.432, 0.466, and 0.505 µM at 24, 48, and 72 hours, respectively. In the cord formation assay, JS-K led to a decrease in the number of cord junctions and cord length with an IC50 of 0.637 and 0.696 µM, respectively. JS-K inhibited cell migration at 5 hours using VEGF as a chemoattractant. Migration inhibition occurred with an IC50 of 0.493 µM. In the chick aortic ring assay using VEGF or FGF-b for vessel growth stimulation, 0.5 µM JS-K completely inhibited vessel growth. JS-K inhibited tumor angiogenesis in vivo in NIH III mice implanted subcutaneously with OPM1 multiple myeloma cells. JS-K is a potent inhibitor of angiogenesis in vitro and tumor vessel growth in vivo. As such, it establishes a new class of anti-neoplastic agents that target the malignant cells directly as well as their microenvironment. PMID:20723011
Drusano, G. L.; D’Argenio, D. Z.; Symonds, W.; Bilello, P. A.; McDowell, J.; Sadler, B.; Bye, A.; Bilello, J. A.
1998-01-01
The use of combinations of anti-human immunodeficiency virus (anti-HIV) agents targeted to different molecular targets will most likely result in increased viral suppression and may also delay or prevent the emergence of resistant HIV strains. The purpose of the present study was to develop information on the in vitro anti-HIV activities of combinations of the reverse transcriptase inhibitor 1592U89 and the protease inhibitor 141W94 to help guide the choice of dosages in clinical trials. Triplicate in vitro dose-response matrices were prepared with MT-2 cells infected with HIV type 1 (HIV-1) strain IIIB. In order to account for the effects of protein binding, tissue culture medium with 10% fetal bovine serum was supplemented with the human serum proteins α1 acid glycoprotein (1 mg/ml) and albumin (40 mg/ml). The three-dimensional drug interaction surface for 1592U89 and 141W94 was constructed with the program MacSynergy II. As analyzed relative to a Bliss Independence null reference model, this combination was synergistic, with volumes of synergy exceeding 100 (99% confidence). Analysis of the data set with a fully parametric form of an equation for the quantitation of drug interaction developed by Greco et al. (W. R. Greco, G. Bravo, and J. C. Parsons, Pharmacol. Rev. 47:331–385, 1995) resulted in an interaction term statistically significantly greater than 0.0, indicating true synergy. Both methods concur that this combination is significantly synergistic. These data, with favorable findings from phase I/II trials for each drug alone, suggest that the combination of 1592U89 plus 141W94 should be further evaluated in clinical trials. PMID:9736527
Maury, Wendy; Price, Jason P; Brindley, Melinda A; Oh, ChoonSeok; Neighbors, Jeffrey D; Wiemer, David F; Wills, Nickolas; Carpenter, Susan; Hauck, Cathy; Murphy, Patricia; Widrlechner, Mark P; Delate, Kathleen; Kumar, Ganesh; Kraus, George A; Rizshsky, Ludmila; Nikolau, Basil
2009-01-01
Background Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated. Results Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material. Conclusion Through bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents. PMID:19594941
Advances in antiplatelet therapy for acute coronary syndromes.
Contractor, Hussain; Ruparelia, Neil
2012-07-01
Admissions to emergency care centres with acute coronary syndromes remain one of the principal burdens on healthcare systems in the Western world. Early pharmacological treatment in these patients is crucial, lessening the impact on both morbidity and mortality, with the cornerstone of management being antiplatelet agents. While aspirin and clopidogrel have been the drugs of choice for nearly a decade, an array of newer, more potent antiplatelet agents are now available or in late stage development. Data are rapidly gathering suggesting these agents have superior anti-ischaemic properties, improving patient outcomes, but that for some agents increased vigilance and appropriate patient selection may be necessary to guard against bleeding complications. In this review, the authors aim to deliver an overview of the changing field of antiplatelet therapy and provide information about the relative risks and benefits of these newer agents, many of which will be entering widespread clinical use imminently.
Zhang, Qiu; Liu, Xiaojun; Li, Xiue; Li, Changlong; Zhou, Hongyu; Yan, Bing
2013-01-01
Glioblastoma is the most lethal brain cancer. In spite of intensive therapy, the prognosis of patients with glioblastoma is very poor. To discover novel therapeutic agents, we screened a combinatorial compound library containing 372 thiazolidinone compounds using U87MG human glioblastoma cells. (2E,5Z)-5-(2-hydroxybenzylidene)-2-((4-phenoxyphenyl)imino) thiazolidin-4-one (HBPT) was identified as the most potent anti-glioblastoma compound. HBPT inhibits U87MG human glioblastoma cell proliferation with an IC50 of 20 μM, which is almost 5-fold more potent than temozolomide (a widely used drug for treating malignant glioma in the clinic). Mechanistic investigation demonstrated that HBPT is a novel microtubule-depolymerizing agent, which arrests cancer cells at the G2/M phase of the cell cycle and induces cell apoptosis. In the mouse U87MG xenograft model, HBPT elicits a robust tumor inhibitory effect. More importantly, no obvious toxicity was observed for HBPT therapy in animal experiments. These findings indicate that HBPT has the potential to be developed as a novel agent for the treatment of glioblastoma. [Supplementary Tables: available only at http://dx.doi.org/10.1254/jphs.13064FP].
Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1
Gao, Yong; Wijewardhana, Chanuka; Mann, Jamie F. S.
2018-01-01
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting. PMID:29541072
Li, Jingfen; Yin, Yong; Wang, Lisheng; Liang, Pengyun; Li, Menghua; Liu, Xu; Wu, Lichuan; Yang, Hua
2016-11-23
In this study, a new series of 16 methyl salicylate derivatives bearing a piperazine moiety were synthesized and characterized. The in vivo anti-inflammatory activities of target compounds were investigated against xylol-induced ear edema and carrageenan-induced paw edema in mice. The results showed that all synthesized compounds exhibited potent anti-inflammatory activities. Especially, the anti-inflammatory activities of compounds M15 and M16 were higher than that of aspirin and even equal to that of indomethacin at the same dose. In addition, the in vitro cytotoxicity activities and anti-inflammatory activities of four target compounds were performed in RAW264.7 macrophages, and compound M16 was found to significantly inhibit the release of lipopolysaccharide (LPS)-induced interleukin (IL)-6 and tumor necrosis factor (TNF)-α in a dose-dependent manner. In addition, compound M16 was found to attenuate LPS induced cyclooxygenase (COX)-2 up-regulation. The current preliminary study may provide information for the development of new and safe anti-inflammatory agents.
A Comparative Study on the Cost of New Antibiotics and Drugs of Other Therapeutic Categories
Falagas, Matthew E.; Fragoulis, Konstantinos N.; Karydis, Ioannis
2006-01-01
Background Drug treatment is becoming more expensive due to the increased cost for the introduction of new drugs, and there seems to be an uneven distribution of medication cost for different therapeutic categories. We hypothesized that the cost of new antimicrobial agents may differ from that of other therapeutic categories and this may play a role in the stagnation of development of new antibiotics. Methodology/Principal Findings We performed a pharmaco-economical comparative analysis of the drug cost of treatment for new agents introduced in the United States drug market in various therapeutic categories. We calculated the drug cost (in US dollars) of a ten-day treatment of all new drugs approved by the FDA during the period between January 1997 and July 2003, according to the 2004 Red Book Pharmacy's Fundamental Reference. New anti-neoplastic agents were found to be the most expensive drugs in comparison to all other therapeutic categories, with a median ten-day drug-treatment cost of US$848 compared to the median ten-day drug-treatment costs of all other categories ranging from US$29 to US$301. On the other hand, new antimicrobial drugs were found to be much less expensive, with a median ten-day drug-treatment cost of US$137 and $US85 for all anti-microbial agents and for anti-microbial agents excluding anti-HIV medications, respectively. Conclusions/Significance The drug-treatment cost of new medications varies considerably by different therapeutic categories. This fact may influence industry decisions regarding the development of new drugs and may play a role in the shortage of new antimicrobial agents in the fight against the serious problem of antimicrobial resistance. PMID:17183637
A comparative study on the cost of new antibiotics and drugs of other therapeutic categories.
Falagas, Matthew E; Fragoulis, Konstantinos N; Karydis, Ioannis
2006-12-20
Drug treatment is becoming more expensive due to the increased cost for the introduction of new drugs, and there seems to be an uneven distribution of medication cost for different therapeutic categories. We hypothesized that the cost of new antimicrobial agents may differ from that of other therapeutic categories and this may play a role in the stagnation of development of new antibiotics. We performed a pharmaco-economical comparative analysis of the drug cost of treatment for new agents introduced in the United States drug market in various therapeutic categories. We calculated the drug cost (in US dollars) of a ten-day treatment of all new drugs approved by the FDA during the period between January 1997 and July 2003, according to the 2004 Red Book Pharmacy's Fundamental Reference. New anti-neoplastic agents were found to be the most expensive drugs in comparison to all other therapeutic categories, with a median ten-day drug-treatment cost of US$848 compared to the median ten-day drug-treatment costs of all other categories ranging from US$29 to US$301. On the other hand, new antimicrobial drugs were found to be much less expensive, with a median ten-day drug-treatment cost of US$137 and $US85 for all anti-microbial agents and for anti-microbial agents excluding anti-HIV medications, respectively. The drug-treatment cost of new medications varies considerably by different therapeutic categories. This fact may influence industry decisions regarding the development of new drugs and may play a role in the shortage of new antimicrobial agents in the fight against the serious problem of antimicrobial resistance.
Withaferin-A—A Natural Anticancer Agent with Pleitropic Mechanisms of Action
Lee, In-Chul; Choi, Bu Young
2016-01-01
Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A. PMID:26959007
Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action.
Lee, In-Chul; Choi, Bu Young
2016-03-04
Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A.
Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review.
Sowndhararajan, Kandhasamy; Deepa, Ponnuvel; Kim, Minju; Park, Se Jin; Kim, Songmun
2018-06-11
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb). In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.
Pitavastatin is a potent anti-inflammatory agent in the rat paw model of acute inflammation.
Qadir, Farida; Alam, Syed Mahboob; Siddiqi, Abeer Qamar; Kamran, Afshan
2014-11-01
Statins are used extensively as anti-hyperlipidemic agents. In addition to curtailing cholesterol synthesis they have been found to have multiple actions unrelated to cholesterol lowering "the pleiotropic effects," which includes inhibition of inflammation. We aimed at investigating the effect of pitavastatin a 3rd generation statin, in suppressing acute inflammation in rat paw edema model. Male Sprague-Dawley rats were randomly assigned to one of five groups (n=8): Control, indomethacin and pitavastatin (0.2mg/kg, 0.4mg/kg, 0.8mg/kg) treated. 1hour following treatment, inflammation was induced by sub-planter injection of egg albumin into the hind paw. Anti-inflammatory effect was evaluated by measurement of edema formation every half hour for three hours, assessment of polymorphonuclear leukocyte (PMNL) infiltration and measurement of tissue damage in skin biopsies. Ascending doses of pitavastatin were found to attenuate these parameters. The lowest dose of pitavastatin (0.2mg/kg) was found to significantly reduce edema volume, PMNL infiltration and tissue damage. The efficacy of the smallest dose was found comparable to indomethacin.
TOXOPLASMA AND VIRAL ANTIBODIES AMONG HIV PATIENTS AND INMATES IN CENTRAL JAVA, INDONESIA.
Sari, Yulia; Haryati, Sri; Raharjo, Irvan; Prasetyo, Afiono Agung
2015-11-01
In Indonesia, Toxoplasma and its associations with blood-borne viruses have been poorly studied. In order to study the association between anti-Toxoplasma antibodies and blood-borne viral antibodies, blood samples from 497 participants (375 inmates from four prisons in Central Java, Indonesia and 122 HIV patients at a Voluntary Counseling and Testing Clinic in Surakarta, Indonesia) were tested for serological markers of Toxoplasma, human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV) and human T-lymphotropic virus types I and II (HTLV-1/2). Anti-Toxoplasma IgG and IgM positivity rates were 41.6% and 3.6%, respectively. One point two percent of participants was positive for both anti-Toxoplasma IgG and IgM antibodies. Sixteen point five percent, 11.3%, 2.6% and 2.8% of participants were positive for anti- Toxoplasma IgG combined with anti-HCV antibodies, anti-Toxoplasma IgG combined with anti-HIV antibodies, anti-Toxoplasma IgM combined with anti-HIV antibodes and anti-Toxoplasma IgG combined with both anti-HIV and anti-HCV antibodies, respectively. Anti-Toxoplasma IgM seropositivity was associated with anti-HIV (aOR = 4.3; 95% CI: 1.112-16.204, p = 0.034). Anti-Toxoplasma IgG antibodies were associated with anti-HCV (aOR = 2.8; 95% CI: 1.749-4.538, p < 0.001) and history of injection drug use (aOR = 3.1; 95% CI: 1.905-5.093, p < 0.001). In conclusion, we recommend patients with HIV, HCV infection and injection drug users should be screened for Toxoplasma infection in Indonesia.
Biological Activities of Aerial Parts Extracts of Euphorbia characias
Pisano, Maria Barbara; Cosentino, Sofia; Viale, Silvia; Spanò, Delia; Corona, Angela; Esposito, Francesca; Tramontano, Enzo; Montoro, Paola; Tuberoso, Carlo Ignazio Giovanni; Medda, Rosaria; Pintus, Francesca
2016-01-01
The aim of the present study was to evaluate antioxidant, antimicrobial, anti-HIV, and cholinesterase inhibitory activities of aqueous and alcoholic extracts from leaves, stems, and flowers of Euphorbia characias. The extracts showed a high antioxidant activity and were a good source of total polyphenols and flavonoids. Ethanolic extracts from leaves and flowers displayed the highest inhibitory activity against acetylcholinesterase and butyrylcholinesterase, showing potential properties against Alzheimer's disease. Antimicrobial assay showed that leaves and flowers extracts were active against all Gram-positive bacteria tested. The ethanolic leaves extract appeared to have the strongest antibacterial activity against Bacillus cereus with MIC value of 312.5 μg/mL followed by Listeria monocytogenes and Staphylococcus aureus that also exhibited good sensitivity with MIC values of 1250 μg/mL. Moreover, all the extracts possessed anti-HIV activity. The ethanolic flower extract was the most potent inhibitor of HIV-1 RT DNA polymerase RNA-dependent and Ribonuclease H with IC50 values of 0.26 and 0.33 μg/mL, respectively. The LC-DAD metabolic profile showed that ethanolic leaves extract contains high levels of quercetin derivatives. This study suggests that Euphorbia characias extracts represent a good source of natural bioactive compounds which could be useful for pharmaceutical application as well as in food system for the prevention of the growth of food-borne bacteria and to extend the shelf-life of processed foods. PMID:27314007
Ramana Reddy, M. V.; Mallireddigari, Muralidhar R.; Pallela, Venkat R.; Cosenza, Stephen C.; Billa, Vinay K.; Akula, Balaiah; Venkata Subbaiah, D. R. C.; Bharathi, E. Vijaya; Padgaonkar, Amol; Lv, Hua; Gallo, James M.; Reddy, E. Premkumar
2013-01-01
A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-Amino-4-methoxyphenyl)-2-(2′,4′,6′-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used anti-mitotic agents. Mechanistic studies indicate that 6t and some other analogs disrupted microtubule formation, formation of mitotic spindles and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin indicating its binding site on tubulin. PMID:23750455
Human antibodies and fusion proteins as HIV-1 therapeutic | NCI Technology Transfer Center | TTC
Available for licensing from the NCI are novel human anti-HIV-1 domain antibodies and their fusion proteins for anti-HIV-1 antibodies and anti-retroviral as therapeutics and/or preventatives for infection by different HIV-1 strains.
Testing for Human Immunodeficiency Virus
... level of HIV is high. • Take anti-HIV drugs during labor and delivery as needed. • Give an anti-HIV drug to ... and the baby can be given anti-HIV drugs in the first few days after delivery. These precautions can greatly decrease the risk of ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, Mitali; Kodela, Ravinder; Olson, Kenneth R.
Highlights: Black-Right-Pointing-Pointer NOSH-aspirin is the first dual acting NO and H{sub 2}S releasing hybrid. Black-Right-Pointing-Pointer Its IC{sub 50} for cell growth inhibition is in the low nano-molar range. Black-Right-Pointing-Pointer Structure-activity studies show that the sum of the parts does not equal the whole. Black-Right-Pointing-Pointer NOSH-aspirin reduced tumor growth by 85% in mice bearing a colon cancer xenograft. -- Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) are prototypical anti-cancer agents. However, their long-term use is associated with adverse gastrointestinal effects. Recognition that endogenous gaseous mediators, nitric oxide (NO) and hydrogen sulfide (H{sub 2}S) can increase mucosal defense mechanisms has led to the developmentmore » of NO- and H{sub 2}S-releasing NSAIDs with increased safety profiles. Here we report on a new hybrid, NOSH-aspirin, which is an NO- and H{sub 2}S-releasing agent. NOSH-aspirin inhibited HT-29 colon cancer growth with IC{sub 50}s of 45.5 {+-} 2.5, 19.7 {+-} 3.3, and 7.7 {+-} 2.2 nM at 24, 48, and 72 h, respectively. This is the first NSAID based agent with such high degree of potency. NOSH-aspirin inhibited cell proliferation, induced apoptosis, and caused G{sub 0}/G{sub 1} cell cycle block. Reconstitution and structure-activity studies representing a fairly close approximation to the intact molecule showed that NOSH-aspirin was 9000-fold more potent than the sum of its parts towards growth inhibition. NOSH-aspirin inhibited ovine COX-1 more than ovine COX-2. NOSH-ASA treatment of mice bearing a human colon cancer xenograft caused a reduction in volume of 85%. Taken together, these results demonstrate that NOSH-aspirin has strong anti-cancer potential and merits further evaluation.« less
Desale, Swapnil S; Raja, Srikumar M; Kim, Jong Oh; Mohapatra, Bhopal; Soni, Kruti S; Luan, Haitao; Williams, Stetson H; Bielecki, Timothy A; Feng, Dan; Storck, Matthew; Band, Vimla; Cohen, Samuel M; Band, Hamid; Bronich, Tatiana K
2015-06-28
ErbB2-driven breast cancers constitute 20-25% of the cases diagnosed within the USA. The humanized anti-ErbB2 monoclonal antibody, Trastuzumab (Herceptin™; Genentech), with chemotherapy is the current standard of treatment. Novel agents and strategies continue to be explored, given the challenges posed by Trastuzumab-resistance development in most patients. The HSP90 inhibitor, 17-allylaminodemethoxygeldanamycin (17-AAG), which induces ErbB2 degradation and attenuates downstream oncogenic signaling, is one such agent that showed significant promise in early phase I and II clinical trials. Its low water solubility, potential toxicities and undesirable side effects observed in patients, partly due to the Cremophor-based formulation, have been discouraging factors in the advancement of this promising drug into clinical use. Encapsulation of 17-AAG into polymeric nanoparticle formulations, particularly in synergistic combination with conventional chemotherapeutics, represents an alternative approach to overcome these problems. Herein, we report an efficient co-encapsulation of 17-AAG and doxorubicin, a clinically well-established and effective modality in breast cancer treatment, into biodegradable and biocompatible polypeptide-based nanogels. Dual drug-loaded nanogels displayed potent cytotoxicity in a breast cancer cell panel and exerted selective synergistic anticancer activity against ErbB2-overexpressing breast cancer cell lines. Analysis of ErbB2 degradation confirmed efficient 17-AAG release from nanogels with activity comparable to free 17-AAG. Furthermore, nanogels containing both 17-AAG and doxorubicin exhibited superior antitumor efficacy in vivo in an ErbB2-driven xenograft model compared to the combination of free drugs. These studies demonstrate that polypeptide-based nanogels can serve as novel nanocarriers for encapsulating 17-AAG along with other chemotherapeutics, providing an opportunity to overcome solubility issues and thereby exploit its full potential as an anti-cancer agent. Copyright © 2015 Elsevier B.V. All rights reserved.
Multitarget molecular hybrids of cinnamic acids.
Peperidou, Aikaterini; Kapoukranidou, Dorothea; Kontogiorgis, Christos; Hadjipavlou-Litina, Dimitra
2014-12-02
In an attempt to synthesize potential new multitarget agents, 11 novel hybrids incorporating cinnamic acids and paracetamol, 4-/7-hydroxycoumarin, benzocaine, p-aminophenol and m-aminophenol were synthesized. Three hybrids-2e, 2a, 2g-and 3b were found to be multifunctional agents. The hybrid 2e derived from the phenoxyphenyl cinnamic acid and m-acetamidophenol showed the highest lipoxygenase (LOX) inhibition and analgesic activity (IC50 = 0.34 μΜ and 98.1%, whereas the hybrid 3b of bromobenzyloxycinnamic acid and hymechromone exhibited simultaneously good LOX inhibitory activity (IC50 = 50 μΜ) and the highest anti-proteolytic activity (IC50= 5 μΜ). The hybrid 2a of phenyloxyphenyl acid with paracetamol showed a high analgesic activity (91%) and appears to be a promising agent for treating peripheral nerve injuries. Hybrid 2g which has an ester and an amide bond presents an interesting combination of anti-LOX and anti-proteolytic activity. The esters were found very potent and especially those derived from paracetamol and m-acetamidophenol. The amides follow. Based on 2D-structure-activity relationships it was observed that both steric and electronic parameters play major roles in the activity of these compounds. Molecular docking studies point to the fact that allosteric interactions might govern the LOX-inhibitor binding.
In vitro and in vivo antiviral activity of 2'-fluorinated arabinosides of 5-(2-haloalkyl)uracil.
Rosenwirth, B; Streicher, W; De Clercq, E; Wanek, E; Schwarz, W; Griengl, H
1987-06-01
5-(2-Fluoroethyl)-2'-deoxyuridine (FEDU), its 2'-fluoroarabinofuranosyl analog (FEFAU) and the 2'-fluoroarabinofuranosyl analog (CEFAU) of the potent anti-herpesvirus compound 5-(2-chloroethyl)-2'-deoxyuridine (CEDU) were evaluated for activity against herpes simplex virus type 1 (HSV-1) and HSV-2 in vitro and in vivo. FEDU, FEFAU and CEFAU proved to be potent and selective anti-herpesvirus agents in vitro. Their potency is evident from their low minimum inhibitory concentrations for HSV-1 and HSV-2, and their selectivity is attested by the marginal inhibition of cell proliferation at relatively high concentrations, and by the high concentrations at which DNA-, RNA- or protein synthesis in normal uninfected host cells is inhibited. Their activity spectrum is broader than that of CEDU: in addition to being highly effective against HSV-1 replication, these derivatives, in particular FEFAU, inhibit HSV-2 replication at concentrations comparable to acyclovir (ACV). In the systemic and cutaneous HSV-1 infection models in mice, FEDU, FEFAU and CEFAU were markedly less potent than CEDU in suppressing the development of lesions and in reducing the mortality rate. In HSV-2 infections in mice and in guinea pigs FEDU, FEFAU and CEFAU were virtually ineffective. CEDU, however, exerted a protective effect in these animal models, albeit at relatively high concentrations.
Mabkhot, Yahia Nasser; Kaal, Nahed Ahmed; Alterary, Seham; Al-Showiman, Salim S; Barakat, Assem; Ghabbour, Hazem A; Frey, Wolfgang
2015-05-14
Ethyl 5-acetyl-4-methyl-2-(phenylamino)thiophene-3-carboxylate (2) and there derivatives 3a-c, 4, 6a-c and 9a-f were synthesized. The structure of compound 2 was deduced by 1H-NMR, 13C-NMR, FT-IR, MS, microanalysis, and single-crystal X-ray crystallography. The compound crystallized in the monoclinic system, with space group P21/c and cell coordinates a = 8.5752(16) Å, b = 21.046(4) Å, c = 8.2941(12) Å, β = 101.131(6)°, V = 1468.7(4) Å3, and Z = 4. Compounds 2, 3a-c, 4, 5a-c and 9a-f were subjected into in vitro antimicrobial activity tests. Compounds 3a and 3c were more potent than standard drug amphotericin B, showing MIC values of 23.8 ± 0.42 and 24.3 ± 0.68, respectively, against Aspergillus fumigatus while the standard drug MIC was 23.7 ± 0.1. Compound 3c was also more potent (MIC 24.8 ± 0.64) than the standard drug amphotericin B (MIC 19.7 ± 0.2) against Syncephalastrum racemosum. Compounds 4 and 9f also showed promising anti-microbial activity. Molecular modeling was performed for the most active compounds.
Neglected disease - african sleeping sickness: recent synthetic and modeling advances.
Paliwal, Sarvesh K; Verma, Ankita Narayan; Paliwal, Shailendra
2011-01-01
Human African Trypanosomiasis (HAT) also called sleeping sickness is caused by subspecies of the parasitic hemoflagellate Trypanosoma brucei that mostly occurs in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which have been developed more than 30 years ago, have undesirable toxic side effects and most of them show drug-resistance. Though development of new anti-trypanosomal drugs seems to be a priority area research in this area has lagged far behind. The given review mainly focus upon the recent synthetic and computer based approaches made by various research groups for the development of newer anti-trypanosomal analogues which may have improved efficacy and oral bioavailability than the present ones. The given paper also attempts to investigate the relationship between the various physiochemical parameters and anti-trypanosomal activity that may be helpful in development of potent anti-trypanosomal agents against sleeping sickness.
Padhye, Subhash; Ahmad, Aamir; Oswal, Nikhil; Sarkar, Fazlul H
2009-01-01
Garcinol, harvested from Garcinia indica, has traditionally been used in tropical regions and appreciated for centuries; however its biological properties are only beginning to be elucidated. There is ample data to suggest potent antioxidant properties of this compound which have been used to explain most of its observed biological activities. However, emerging evidence suggests that garcinol could be useful as an anti-cancer agent, and it is increasingly being realized that garcinol is a pleiotropic agent capable of modulating key regulatory cell signaling pathways. Here we have summarized the progress of our current research knowledge on garcinol and its observed biological activities. We have also provided an explanation of observed properties based on its chemical structure and provided an insight into the structure and properties of chalcones, the precursors of garcinol. The available data is promising but more detailed investigations into the various properties of this compound, particularly its anti-cancer activity are urgently needed, and it is our hope that this review will stimulate further research for elucidating and appreciating the value of this nature's wonder agent. PMID:19725977
Padhye, Subhash; Ahmad, Aamir; Oswal, Nikhil; Sarkar, Fazlul H
2009-09-02
Garcinol, harvested from Garcinia indica, has traditionally been used in tropical regions and appreciated for centuries; however its biological properties are only beginning to be elucidated. There is ample data to suggest potent antioxidant properties of this compound which have been used to explain most of its observed biological activities. However, emerging evidence suggests that garcinol could be useful as an anti-cancer agent, and it is increasingly being realized that garcinol is a pleiotropic agent capable of modulating key regulatory cell signaling pathways. Here we have summarized the progress of our current research knowledge on garcinol and its observed biological activities. We have also provided an explanation of observed properties based on its chemical structure and provided an insight into the structure and properties of chalcones, the precursors of garcinol. The available data is promising but more detailed investigations into the various properties of this compound, particularly its anti-cancer activity are urgently needed, and it is our hope that this review will stimulate further research for elucidating and appreciating the value of this nature's wonder agent.
HDAC inhibition induces HIV-1 protein and enables immune-based clearance following latency reversal
Wu, Guoxin; Swanson, Michael; Talla, Aarthi; Graham, Donald; Strizki, Julie; Gorman, Daniel; Barnard, Richard J.O.; Blair, Wade; Søgaard, Ole S.; Tolstrup, Martin; Østergaard, Lars; Rasmussen, Thomas A.; Sekaly, Rafick-Pierre; Archin, Nancie M.; Hazuda, Daria J.; Howell, Bonnie J.
2017-01-01
Promising therapeutic approaches for eradicating HIV include transcriptional activation of provirus from latently infected cells using latency-reversing agents (LRAs) and immune-mediated clearance to purge reservoirs. Accurate detection of cells capable of producing viral antigens and virions, and the measurement of clearance of infected cells, is essential to assessing therapeutic efficacy. Here, we apply enhanced methodology extending the sensitivity limits for the rapid detection of subfemtomolar HIV gag p24 capsid protein in CD4+ T cells from ART-suppressed HIV+ individuals, and we show viral protein induction following treatment with LRAs. Importantly, we demonstrate that clinical administration of histone deacetylase inhibitors (HDACis; vorinostat and panobinostat) induced HIV gag p24, and ex vivo stimulation produced sufficient viral antigen to elicit immune-mediated cell killing using anti-gp120/CD3 bispecific antibody. These findings extend beyond classical nucleic acid endpoints, which are confounded by the predominance of mutated, defective proviruses and, of paramount importance, enable assessment of cells making HIV protein that can now be targeted by immunological approaches. PMID:28814661
Li, Ming-Hui; Zhou, Yi-Han; Luo, Quan; Li, Ze-Sheng
2010-04-01
The unimolecular G-quadruplex structures of d(GGGTGGGTGGGTGGGT) (G1) and d(GTGGTGGGTGGGTGGGT) (G2) are known as the potent nanomolar HIV-1 integrase inhibitors, thus investigating the 3D structures of the two sequences is significant for structure-based rational anti-HIV drug design. In this research, based on the experimental data of circular dichroism (CD) spectropolarimetry and electrospray ionization mass spectrometry (ESI-MS), the initial models of G1 and G2 were constructed by molecular modeling method. The modeling structures of G1 and G2 are intramolecular parallel-stranded quadruplex conformation with three guanine tetrads. Particularly, the structure of G2 possesses a T loop residue between the first and the second G residues that are the component of two adjacent same-stranded G-tetrad planes. This structure proposed by us has a very novel geometry and is different from all reported G-quadruplexes. The extended (35 ns) molecular dynamic (MD) simulations for the models indicate that the G-quadruplexes maintain their structures very well in aqueous solution whether the existence of K(+) or NH (4) (+) in the central channel. Furthermore, we perform 500 ns MD simulations for the models in the gas phase. The results show that all the ion-G-quadruplex complexes are maintained during the whole simulations, despite the large magnitude of phosphate-phosphate repulsions. The gas phase MD simulations provide a good explanation to ESI-MS experiments. Our 3D structures for G1 and G2 will assist in understanding geometric formalism of G-quadruplex folding and may be helpful as a platform for rational anti-HIV drug design.
Summaries from the Eleventh Annual Houston Conference on AIDS in America.
1999-07-01
A number of significant papers from the Eleventh Annual Houston Conference on AIDS in America are summarized. Topics include the current concepts in pathogenesis of HIV infection, the use of anti-HIV therapies, and drug interactions in HIV treatment. A session on HIV disease in children focused on the epidemiology and prevention of vertical transmission with Zidovudine, when to initiate therapy, and options for children who have failed current therapies. Studies using immune-based therapy have shown promise in treating HIV disease. New data from a study with sargramostim, an investigational agent for opportunistic infection prophylaxis, shows that the drug reduces viral loads and delays time to treatment failure. Pentafuside (T-20), the first of a new class of HIV drugs, fusion inhibitors, has been found to be safe and effective against HIV, although drug resistance may be associated with its use. Other sessions summarized progress in clearing HIV from viral reservoirs, the ethics of HIV research support from the drug industry and drug marketing, and a review of immune reconstitution studies among people on antiretroviral therapy. Sam Avrett of the AIDS Vaccine Advocacy Coalition (AVAC) summarized in his session the characteristics of a successful HIV vaccine and the need to have more people involved in vaccine advocacy as a means to ending the epidemic. Contact information is provided.
Mannich Bases: An Important Pharmacophore in Present Scenario
Sharma, Neha; Kajal, Anu; Saini, Vipin
2014-01-01
Mannich bases are the end products of Mannich reaction and are known as beta-amino ketone carrying compounds. Mannich reaction is a carbon-carbon bond forming nucleophilic addition reaction and is a key step in synthesis of a wide variety of natural products, pharmaceuticals, and so forth. Mannich reaction is important for the construction of nitrogen containing compounds. There is a number of aminoalkyl chain bearing Mannich bases like fluoxetine, atropine, ethacrynic acid, trihexyphenidyl, and so forth with high curative value. The literature studies enlighten the fact that Mannich bases are very reactive and recognized to possess potent diverse activities like anti-inflammatory, anticancer, antifilarial, antibacterial, antifungal, anticonvulsant, anthelmintic, antitubercular, analgesic, anti-HIV, antimalarial, antipsychotic, antiviral activities and so forth. The biological activity of Mannich bases is mainly attributed to α, β-unsaturated ketone which can be generated by deamination of hydrogen atom of the amine group. PMID:25478226
Evaluation of Biological Activity of Mastic Extracts Based on Chemotherapeutic Indices
SUZUKI, RYUICHIRO; SAKAGAMI, HIROSHI; AMANO, SHIGERU; FUKUCHI, KUNIHIKO; SUNAGA, KATSUYOSHI; KANAMOTO, TAISEI; TERAKUBO, SHIGEMI; NAKASHIMA, HIDEKI; SHIRATAKI, YOSHIAKI; TOMOMURA, MINEKO; MASUDA, YOSHIKO; YOKOSE, SATOSHI; TOMOMURA, AKITO; WATANABE, HIROFUMI; OKAWARA, MASAKI; MATAHIRA, YOSHIHARU
2017-01-01
Background: Most previous mastic investigators have not considered its potent cytotoxicity that may significantly affect the interpretation of obtained data. In the present study, we re-evaluated several biological activities of mastic extracts, based on chemotherapeutic indexes. Materials and Methods: Pulverized mastic gum was extracted with n-hexane and then with ethyl acetate or independently with methanol or n-butanol. Tumor specificity (TS) of the extracts was determined by their cytotoxicity against human malignant and non-malignant cells. Antibacterial activity was determined by their cytotoxicity against bacteria and normal oral cells. Antiviral activity was determined by their protection of viral infection and cytotoxic activity. Cytochrome P-450 (CYP) 3A4 activity was measured by β-hydroxylation of testosterone. Results: Ethyl acetate extract showed slightly higher tumor specificity (TS=2.6) and one order higher antibacterial activity (selectivity index (SI)=0.813) than other extracts (TS=1.4-2.5; SI=0.030-0.063). All extracts showed no anti-human immunodeficiency virus (HIV) activity, but some anti-herpes simplex virus (HSV) activity, which was masked by potent cytotoxicity. They showed strong inhibitory activity against CYP3A4. Conclusion: Ethyl acetate extraction following the removal of cytotoxic and CYP3A4 inhibitory substances by n-hexane can enhance antitumor and antibacterial activity of mastic. PMID:28652425
HIVsirDB: a database of HIV inhibiting siRNAs.
Tyagi, Atul; Ahmed, Firoz; Thakur, Nishant; Sharma, Arun; Raghava, Gajendra P S; Kumar, Manoj
2011-01-01
Human immunodeficiency virus (HIV) is responsible for millions of deaths every year. The current treatment involves the use of multiple antiretroviral agents that may harm patients due to their toxic nature. RNA interference (RNAi) is a potent candidate for the future treatment of HIV, uses short interfering RNA (siRNA/shRNA) for silencing HIV genes. In this study, attempts have been made to create a database HIVsirDB of siRNAs responsible for silencing HIV genes. HIVsirDB is a manually curated database of HIV inhibiting siRNAs that provides comprehensive information about each siRNA or shRNA. Information was collected and compiled from literature and public resources. This database contains around 750 siRNAs that includes 75 partially complementary siRNAs differing by one or more bases with the target sites and over 100 escape mutant sequences. HIVsirDB structure contains sixteen fields including siRNA sequence, HIV strain, targeted genome region, efficacy and conservation of target sequences. In order to facilitate user, many tools have been integrated in this database that includes; i) siRNAmap for mapping siRNAs on target sequence, ii) HIVsirblast for BLAST search against database, iii) siRNAalign for aligning siRNAs. HIVsirDB is a freely accessible database of siRNAs which can silence or degrade HIV genes. It covers 26 types of HIV strains and 28 cell types. This database will be very useful for developing models for predicting efficacy of HIV inhibiting siRNAs. In summary this is a useful resource for researchers working in the field of siRNA based HIV therapy. HIVsirDB database is accessible at http://crdd.osdd.net/raghava/hivsir/.
Bender Ignacio, Rachel A; Perti, Tara; Magaret, Amalia S; Rajagopal, Sharanya; Stevens, Claire E; Huang, Meei-Li; Selke, Stacy; Johnston, Christine; Marrazzo, Jeanne; Wald, Anna
2015-12-15
Tenofovir is a potent anti-human immunodeficiency virus (HIV) agent that decreased risk of herpes simplex virus type 2 (HSV-2) acquisition in HIV pre-exposure prophylaxis trials. Whether tenofovir has utility in established HSV-2 disease is unclear. We randomized immunocompetent women with symptomatic HSV-2 infection to oral tenofovir disoproxil fumarate (TDF)/placebo vaginal gel, oral placebo/tenofovir (TFV) vaginal gel, or double placebo (ratio 2:2:1) in a one-way cross-over trial. Women collected genital swabs twice daily for HSV PCR during 4-week lead-in and 5-week treatment phases. The primary intent-to-treat end point was within-person comparison of genital HSV shedding and lesion rates. 64 women completed the lead-in phase and were randomized. Neither TDF nor TFV gel decreased overall shedding or lesion rate in the primary analysis; TFV gel decreased quantity of HSV DNA by -0.50 (-0.86-0.13) log10 copies/mL. In the per-protocol analysis, TDF reduced shedding (relative risk [RR] = 0.74, P = .006) and lesion rates (RR = 0.75, P = .032); quantity of virus shed decreased by 0.41 log10 copies/mL. Oral TDF modestly decreased HSV shedding and lesion rate, and quantity of virus shed when used consistently. Vaginal TFV gel decreased quantity of virus shed by 60%. In contrast to effects on HSV-2 acquisition, tenofovir is unlikely to provide clinically meaningful reductions in the frequency of HSV shedding or genital lesions. NCT01448616. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sakagami, Hiroshi; Asano, Kazuhito; Satoh, Kazue; Takahashi, Keiso; Kobayashi, Masaki; Koga, Noriko; Takahashi, Hitomi; Tachikawa, Rieko; Tashiro, Tadamasa; Hasegawa, Akihiko; Kurihara, Kaeko; Ikarashi, Takeshi; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Watanabe, Satoru; Nakamura, Wataru
2007-01-01
Anti-stress and anti-HIV activity of mulberry juice were separated by centrifugation. The anti-stress activity was enriched in the supernatant fraction whereas the anti-HIV activity in the precipitate fraction. Oral administration of the supernatant fraction significantly reduced the elevated plasma level of lipid peroxide in mice loaded with water immersion restraint stress. The kinetic study revealed that the anti-stress activity was maintained for 4 hours after cessation of the administration of mulberry juice. The lignin fraction in the precipitate fraction scavenged superoxide and hydroxyl radicals more efficiently than other fractions, in a synergistic fashion with sodium ascorbate. Anti-HIV activity of mulberry juice was concentrated in the lignin fraction, whereas blueberry juice, which has no precipitating fibrous materials, did not show anti-HIV activity. The present study suggests the functionality of mulberry juice as an alternative medicine.
Park, Chung Mu; Cho, Chung Won; Song, Young Sun
2014-04-01
Anti-inflammatory and anti-oxidative activities of polysaccharides from Taraxacum officinale (TOP 1 and 2) were analyzed in RAW 264.7 cells. First, lipopolysaccharide (LPS) was applied to identify anti-inflammatory activity of TOPs, which reduced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. TOPs treatment inhibited phosphorylation of inflammatory transcription factor, nuclear factor (NF)κB, and its upstream signaling molecule, PI3K/Akt. Second, cytoprotective potential of TOPs against oxidative stress was investigated via heme oxygenase (HO)-1 induction. HO-1, one of phase II enzymes shows antioxidative activity, was potently induced by TOPs treatment, which was in accordance with the nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOPs treatment phosphorylated PI3K/Akt with slight activation of c-Jun NH2-terminal kinase (JNK). TOPs-mediated HO-1 induction protected macrophage cells from oxidative stress-induced cell death, which was confirmed by SnPP and CoPP (HO-1 inhibitor and inducer, respectively). Consequently, TOPs potently inhibited NFκB-mediated inflammation and accelerated Nrf2-mediated antioxidative potential through the modulation of PI3K/Akt pathway, which would contribute to their promising strategy for novel anti-inflammatory and anti-oxidative agents. Copyright © 2014. Published by Elsevier Ltd.
Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms.
Ellithey, Mona S; Lall, Namrita; Hussein, Ahmed A; Meyer, Debra
2014-02-25
Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the medicinal potential of crude extracts of these marine organisms.
Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms
2014-01-01
Background Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. Methods The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Results Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). Conclusion The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the medicinal potential of crude extracts of these marine organisms. PMID:24568567
Jang, Se-Eun; Ryu, Kwon-Ryeol; Park, Sung-Hwan; Chung, Suna; Teruya, Yuto; Han, Myung Joo; Woo, Je-Tae; Kim, Dong-Hyun
2013-11-01
Nobiletin and tangeretin are polymethoxy flavonoids that are abundantly present in the pericarp of Citrus unshiu (family Rutaceae) and the fruit of Citrus depressa (family Rutaceae). They exhibit various biological activities, including anti-inflammatory and anti-asthmatic effects. To evaluate the anti-allergic effects of nobiletin and tangeretin, we measured their inhibitory effects in histamine- or compound 48/80-induced scratching behavioral mice. Nobiletin and tangeretin potently inhibited scratching behavior, as well as histamine-induced vascular permeability. Furthermore, they inhibited the expression of the allergic cytokines, IL-4 and TNF-α as well as the activation of their transcription factors NF-κB, AP-1 and p38 in histamine-stimulated skin tissues. They also inhibited the expression of IL-4 and TNF-α and the activation of NF-κB and c-jun in PMA-stimulated RBL-2H3 cells. Furthermore, nobiletin and tangeretin inhibited protein kinase C (PKC) activity and the IgE-induced degranulation of RBL-2H3 cells. These agents showed potent anti-histamine effect through the Magnus test when guinea pig ileum was used. Based on these results, nobiletin and tangeretin may ameliorate scratching behavioral reactions by inhibiting the action of histamine as well as the activation of the transcription factors NF-κB and AP-1 via PKC. © 2013.
Wagner, Marc C.E.
2011-01-01
Extracellular adenosine triphosphate (eATP) is a potent molecule that has the capacity to modulate various aspects of cell functions including gene expression. This element of modulation is essential to the role of ATP as a therapeutic agent. The hypothesis presented is that ATP can have an important impact on the treatment of HIV infection. This is supported in part by published research, although a much greater role for ATP is suggested than prior authors ever thought possible. ATP has the ability to enhance the immune system and could thus improve the host’s own defense mechanisms to eradicate the virus-infected cells and restore normal immune function. This could provide effective therapy when used in conjunction with highly active antiretroviral therapies (HAART) to eliminate the latently infected cells. The key lies in applying ATP through the methodology described. This article presents a strategy for using ATP therapeutically along with background evidence to substantiate the importance of using ATP in the treatment of HIV infection. PMID:21675943
Sepúlveda-Crespo, Daniel; de la Mata, Francisco J; Gómez, Rafael; Muñoz-Fernández, Mª A
2018-05-17
Infection with human immunodeficiency virus type 1 (HIV-1) continues to be a global public health issue, especially in low-resource countries. Sexual transmission is responsible for the majority of HIV-1 infections worldwide. Women are more susceptible to HIV-1 acquisition than men and represent nearly 50% of the HIV-infected population. Topical vaginal microbicides that act at the earlier stages of infection offer a prevention strategy to reduce the acquisition of HIV-1. Dendrimers are nano-sized, radially symmetric molecules with a well-defined and monodisperse structure consisting of tree-like arms or branches. We perform a TZM.bl cell line-based screening of two families of carbosilane dendrimers (6 nanocompounds: G1-S12P, G2-S24P, G3-S48P, G1-C12P, G2-C24P and G3-C48P) that we have previously synthesized, containing 12, 24 or 48 sulfonate (or carboxylate) end-groups and a polyphenolic core. This work shows that second- and third-generation sulfonate-ended carbosilane dendrimers with a polyphenolic core (G2-S24P and G3-S48P, respectively) display low cytotoxicity (CC50 > 300 μM) with virucidal anti-R5-HIV-1 activity (EC50 < 50 nM; therapeutic index >6000) causing irreversible HIV-1 inactivation (80-90%) by loss of HIV-1 RNA (40%), gp120 shedding (70-80%) and p24 capsid protein release (45-60%). Herein, we demonstrate that sulfonate end-groups and a flexible scaffold from carbosilane dendrimers strongly influence their properties acting as potent virucides.
Schader, Susan M; Colby-Germinario, Susan P; Schachter, Jordana R; Xu, Hongtao; Wainberg, Mark A
2011-08-24
To evaluate the candidate antiretroviral microbicide compounds, dapivirine (DAP) and tenofovir (TFV), alone and in combination against the transmission of wild-type and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 from different subtypes. We determined single-drug efficacy of the RTIs, DAP and TFV, against subtype B and non-B wild-type and NNRTI-resistant HIV-1 in vitro. To assess breadth of activity, compounds were tested alone and in combination against wild-type and NNRTI-resistant subtype C primary HIV-1 isolates and complimentary clonal HIV-1 from subtypes B, C and CRF02_AG to control for viral variation. Early infection was quantified by counting light units emitted from TZM-bl cells less than 48-h postinfection. Combination ratios were based on drug inhibitory concentrations (IC(50)s) and combined effects were determined by calculating combination indices. Both candidate microbicide antiretrovirals demonstrated potent anti-NNRTI-resistant HIV-1 activity in vitro, albeit the combination protected better than the single-drug treatments. Of particular interest, the DAP with TFV combination exhibited synergy (50% combination index, CI(50) = 0.567) against subtype C NNRTI-resistant HIV-1, whereas additivity (CI(50) = 0.987) was observed against the wild-type counterpart from the same patient. The effect was not compounded by the presence of subdominant viral fractions, as experiments using complimentary clonal subtype C wild-type (CI(50) = 0.968) and NNRTI-resistant (CI(50) = 0.672) HIV-1, in lieu of the patient quasispecies, gave similar results. This study supports the notion that antiretroviral drug combinations may retain antiviral activity against some drug-resistant HIV-1 despite subtype classification and quasispecies diversity.
In vitro cholinesterase inhibitory activity of some plants used in Iranian traditional medicine.
Saeedi, Mina; Babaie, Khatereh; Karimpour-Razkenari, Elahe; Vazirian, Mahdi; Akbarzadeh, Tahmineh; Khanavi, Mahnaz; Hajimahmoodi, Mannan; Shams Ardekani, Mohammad Reza
2017-11-01
In this study, in vitro evaluation of cholinesterase inhibitory (ChEI) activity of various plants including betel nuts (Areca catechu L.), clove buds (Syzygium aromaticum L.), aerial parts of dodder (Cuscuta chinensis Lam.), common polypody rhizomes (Polypodium vulgare L.) and turpeth roots (Ipomoea turpethum R. Br.) which were recommended for the treatment of AD symptoms in Iranian Traditional Medicine (ITM) is reported. Among them, aqueous extract of A. catechu L. was found as the most potent anti-AChE (IC 50 = 32.00 μg/mL) and anti-BChE (IC 50 = 48.81 ± 0.1200 μg/mL) agent.
Uc-Cachón, Andrés Humberto; Borges-Argáez, Rocío; Said-Fernández, Salvador; Vargas-Villarreal, Javier; González-Salazar, Francisco; Méndez-González, Martha; Cáceres-Farfán, Mirbella; Molina-Salinas, Gloria María
2014-02-01
The recent emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) Mycobacterium tuberculosis (MTB) strains have further complicated the control of tuberculosis (TB). There is an urgent need of new molecules candidates to be developed as novel, active, and less toxic anti-tuberculosis (anti-TB) drugs. Medicinal plants have been an excellent source of leads for the development of drugs, particularly as anti-infective agents. In previous studies, the non-polar extract of Diospyros anisandra showed potent anti-TB activity, and three monomeric and five dimeric naphthoquinones have been obtained. In this study, we performed bioguided chemical fractionation and the isolation of eight naphthoquinones from D. anisandra and their evaluation of anti-TB and cytotoxic activities against mammalian cells. The n-hexane crude extract from the stem bark of the plant was obtained by maceration and liquid-liquid fractionation. The isolation of naphthoquinones was carried out by chromatographic methods and identified by gas chromatography and mass spectroscopy data analysis. Anti-TB activity was evaluated against two strains of MTB (H37Rv) susceptible to all five first-line anti-TB drugs and a clinical isolate that is resistant to these medications (pan-resistant, CIBIN 99) by measuring the minimal inhibitory concentration (MIC). Cytotoxicity of naphthoquinones was estimated against two mammalian cells, Vero line and primary cultures of human peripheral blood mononuclear (PBMC) cells, and their selectivity index (SI) was determined. Plumbagin and its dimers maritinone and 3,3'-biplumbagin showed the strongest activity against both MTB strains (MIC = 1.56-3.33 μg/mL). The bioactivity of maritinone and 3,3'-biplumbagin were 32 times more potent than rifampicin against the pan-resistant strain, and both dimers showed to be non-toxic against PBMC and Vero cells. The SI of maritinone and 3,3'-biplumbagin on Vero cells was 74.34 and 194.11 against sensitive and pan-resistant MTB strains, respectively. Maritinone and 3,3'-biplumbagin possess a very interesting potential for development as new drugs against M. tuberculosis, mainly resistant profile strains. Copyright © 2013 Elsevier Ltd. All rights reserved.