Action potential properties are gravity dependent
NASA Astrophysics Data System (ADS)
Meissner, Klaus; Hanke, Wolfgang
2005-06-01
The functional properties of neuronal tissue critically depend on cellular composition and intercellular comunication. A basic principle of such communication found in various types of neurons is the generation of action potentials (APs). These APs depend on the presence of voltage gated ion channels and propagate along cellular processes (e.g. axons) towards target neurons or other cells. It has already been shown that the properties of ion channels depend on gravity. To discover whether the properties of APs also depend on gravity, we examined the propagation of APs in earthworms (invertebrates) and isolated nerve fibres (i.e. bundles of axons) from earthworms under conditions of micro- and macro-gravity. In a second set of experiments we could verify our results on rat axons (vertebrates). Our experiments carried out during two parabolic flight campaigns revealed that microgravity slows AP propagation velocity and macrogravity accelerates the transmission of action potentials. The relevance for live-science related questions is considerable, taking into account that altered gravity conditions might affect AP velocity in man during space flight missions.
Liu, Ping; Ge, Qian; Chen, Bojun; Salkoff, Lawrence; Kotlikoff, Michael I; Wang, Zhao-Wen
2011-01-01
Although the neuromuscular system of C. elegans has been studied intensively, little is known about the properties of muscle action potentials (APs). By combining mutant analyses with in vivo electrophysiological recording techniques and Ca2+ imaging, we have established the fundamental properties and molecular determinants of body-wall muscle APs. We show that, unlike mammalian skeletal muscle APs, C. elegans muscle APs occur in spontaneous trains, do not require the function of postsynaptic receptors, and are all-or-none overshooting events, rather than graded potentials as has been previously reported. Furthermore, we show that muscle APs depend on Ca2+ entry through the L-type Ca2+ channel EGL-19 with a contribution from the T-type Ca2+ channel CCA-1. Both the Shaker K+ channel SHK-1 and the Ca2+/Cl−-gated K+ channel SLO-2 play important roles in controlling the speed of membrane repolarization, the amplitude of afterhyperpolarization (AHP) and the pattern of AP firing; SLO-2 is also important in setting the resting membrane potential. Finally, AP-elicited elevations of [Ca2+]i require both EGL-19 and the ryanodine receptor UNC-68. Thus, like mammalian skeletal muscle, C. elegans body-wall myocytes generate all-or-none APs, which evoke Ca2+ release from the sarcoplasmic reticulum (SR), although the specific ion channels used for AP upstroke and repolarization differ. PMID:21059759
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption. PMID:28919852
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells.
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na + entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na + entry efficiency of somatic AP. Activating inward Ca 2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca 2+ -activated outward K + current in dendrites, however, decreases Na + entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na + influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.
NASA Astrophysics Data System (ADS)
Srivastava, Ruby
2018-01-01
The electronic and optoelectronic properties of [A.2AP(w)/A*.2AP(WC)/C.2AP(w)/C*.2AP(WC)/C.A(w)/ C*.A(WC)]-Au8 metal-mismatch nucleobase complexes are investigated by means of density functional theory and time-dependent methods. We selected these mispairs as 2-aminopurine (2AP) produces incorporation errors when binding with cytosine (C) into the wobble (w) C.2AP(w) mispair, and is tautomerised into Watson-Crick (WC)-like base mispair C*.2AP(WC) and less effectively produces A.2AP(w)/A*.2AP(WC) mispairs. The vertical ionisation potential, vertical electron affinity, hardness and electrophilicity index of these complexes have also been discussed. The modifications of energy levels and charge density distributions of the frontier orbitals are also analysed. The absorption spectra of these complexes lie in the visible region, which suggests their application in fluorescent-bio imaging. The mechanism of cooperativity effect is studied by molecular orbital potential (MEP), atoms-in-molecules (AIM) and natural bond orbital analyses. Most metalated pairs have smaller HOMO-LUMO band gaps than the isolated mismatch nucleobases which suggest interesting consequences for electron transfer through DNA duplexes.
Acquired pellicle as a modulator for dental erosion.
Vukosavljevic, Dusa; Custodio, William; Buzalaf, Marilia A R; Hara, Anderson T; Siqueira, Walter L
2014-06-01
Dental erosion is a multifactorial condition that can result in the loss of tooth structure and function, potentially increasing tooth sensitivity. The exposure of enamel to acids from non-bacterial sources is responsible for the progression of erosion. These erosive challenges are counteracted by the anti-erosive properties of the acquired pellicle (AP), an integument formed in vivo as a result of selective adsorption of salivary proteins on the tooth surface, containing also lipids and glycoproteins. This review provides an in-depth discussion regarding how the physical structure of the AP, along with its composition, contributes to AP anti-erosive properties. The physical properties that contribute to AP protective nature include pellicle thickness, maturation time, and site of development. The pellicle contains salivary proteins embedded within its structure that demonstrate anti-erosive properties; however, rather than individual proteins, protein-protein interactions play a fundamental role in the protective nature of the AP. In addition, dietary and synthetic proteins can modify the pellicle, enhancing its protective efficiency against dental erosion. The salivary composition of the AP and its corresponding protein-profile may be employed as a diagnostic tool, since it likely contains salivary biomarkers for oral diseases that initiate at the enamel surface, including dental erosion. Finally, by modifying the composition and structure of the AP, this protein integument has the potential to be used as a target-specific treatment option for oral diseases related to tooth demineralization. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Das, Arya; Ali, Sk Musharaf
2018-02-21
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
NASA Astrophysics Data System (ADS)
Das, Arya; Ali, Sk. Musharaf
2018-02-01
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
NASA Astrophysics Data System (ADS)
Cang, Chunlei; Aranda, Kimberly; Ren, Dejian
2014-09-01
Action potentials (APs) are fundamental cellular electrical signals. The genesis of short APs lasting milliseconds is well understood. Ultra-long APs (ulAPs) lasting seconds to minutes also occur in eukaryotic organisms, but their biological functions and mechanisms of generation are largely unknown. Here, we identify TPC3, a previously uncharacterized member of the two-pore channel protein family, as a new voltage-gated Na+ channel (NaV) that generates ulAPs, and that establishes membrane potential bistability. Unlike the rapidly inactivating NaVs that generate short APs in neurons, TPC3 has a high activation threshold, activates slowly and does not inactivate—three properties that help generate long-lasting APs and guard the membrane against unintended perturbation. In amphibian oocytes, TPC3 forms a channel similar to channels induced by depolarization and sperm entry into eggs. TPC3 homologues are present in plants and animals, and they may be important for cellular processes and behaviours associated with prolonged membrane depolarization.
Bugana, Marco; Severi, Stefano; Sobie, Eric A.
2014-01-01
Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP). The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD) antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz) and fast (2 Hz) rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of AP duration rate dependence, and illustrates a strategy for the design of potentially beneficial antiarrhythmic drugs. PMID:24675446
Cummins, Megan A; Dalal, Pavan J; Bugana, Marco; Severi, Stefano; Sobie, Eric A
2014-03-01
Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP). The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD) antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz) and fast (2 Hz) rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of AP duration rate dependence, and illustrates a strategy for the design of potentially beneficial antiarrhythmic drugs.
Peinkofer, Gabriel; Burkert, Karsten; Urban, Katja; Krausgrill, Benjamin; Hescheler, Jürgen; Saric, Tomo; Halbach, Marcel
2016-10-01
Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPS-CMs) are promising candidates for cell therapy, drug screening, and developmental studies. It is known that iPS-CMs possess immature electrophysiological properties, but an exact characterization of their developmental stage and subtype differentiation is hampered by a lack of knowledge of electrophysiological properties of native CMs from different developmental stages and origins within the heart. Thus, we sought to systematically investigate action potential (AP) properties of native murine CMs and to establish a database that allows classification of stem cell-derived CMs. Hearts from 129S2PasCrl mice were harvested at days 9-10, 12-14, and 16-18 postcoitum, as well as 1 day, 3-4 days, 1-2 weeks, 3-4 weeks, and 6 weeks postpartum. AP recordings in left and right atria and at apical, medial, and basal left and right ventricles were performed with sharp glass microelectrodes. Measurements revealed significant changes in AP morphology during pre- and postnatal murine development and significant differences between atria and ventricles, enabling a classification of developmental stage and subtype differentiation of stem cell-derived CMs based on their AP properties. For iPS-CMs derived from cell line TiB7.4, a typical ventricular phenotype was demonstrated at later developmental stages, while there were electrophysiological differences from atrial as well as ventricular native CMs at earlier stages. This finding supports that iPS-CMs can develop AP properties similar to native CMs, but points to differences in the maturation process between iPS-CMs and native CMs, which may be explained by dissimilar conditions during in vitro differentiation and in vivo development.
Song, Yuanlong; Zhang, Miaomiao; Tao, Xiaoqing; Xu, Zifen; Zheng, Yunjie; Zhu, Minjie; Zhang, Liangpin; Qiao, Jinhan; Gao, Linlin
2018-01-19
The dissociated dorsal root ganglion (DRG) neurons with or without culture were widely used for investigation of their electrophysiological properties. The culture procedures, however, may alter the properties of these neurons and the effects are not clear. In the present study, we recorded the action potentials (AP) and the voltage-gated Na + , K + , and Ca 2+ currents with patch clamp technique and measured the mRNA of Nav1.6-1.9 and Cav2.1-2.2 with real-time PCR technique from acutely dissociated and 1-day (1-d) cultured DRG neurons. The effects of the nerve growth factor (NGF) on the expression of Nav1.6-1.9 and Cav2.1-2.2 were evaluated. The neurons were classified as small (DRG-S), medium (DRG-M), and large (DRG-L), according to their size frequency distribution pattern. We found 1-d culture increased the AP size but reduced the excitability, and reduced the voltage-gated Na + and Ca 2+ currents and their corresponding mRNA expression in all types of neurons. The lack of NGF in the culture medium may contribute to the reduced Na + and Ca 2+ current, as the application of NGF recovered some of the reduced transcripts (Nav1.9, Cav2.1, and Cav2.2). 1-d culture showed neuron-type specific effects on some of the AP properties: it increased the maximum AP depolarizing rate (MDR) and hyperpolarized the resting membrane potential (RP) in DRG-M and DRG-L neurons, but slowed the maximum AP repolarizing rate (MRR) in DRG-S neurons. In conclusion, the 1-d cultured neurons had different properties with those of the acutely dissociated neurons, and lack of NGF may contribute to some of these differences.
Wu, Shaowei; Fu, Xiong; Brennan, Margaret A.; Brennan, Charles S.; Chun, Chen
2016-01-01
Abrus cantoniensis (Hance) is a popular Chinese vegetable consumed as a beverage, soup or folk medicine. To fully exploit the potential of the polysaccharide in Abrus cantoniensis, nine polysaccharide fractions of Abrus cantoniensis were isolated and purified (AP-AOH30-1, AP-AOH30-2, AP-AOH80-1, AP-AOH80-2, AP-ACl-1, AP-ACl-2, AP-ACl-3, AP-H and AP-L). Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography (GC) were used to characterize these Abrus polysaccharides fractions (APF). In vitro anti-tumor and immunomodulatory activities were also investigated and compared using the rank-sum ratio (RSR) method. Results demonstrated significant differences in the structure and bioactivities among APF, which were associated to the process used for their purification. Among the APF, AP-ACl-3 yield was 613.5 mg/kg of product and consisted of rhamnose (9.8%), arabinose (8.9%), fructose (3.0%), galactose (9.9%), glucose (4.3%), galacturonic acid (3.0%) and glucuronic acid (61.1%) with a molecular weight of 4.4 × 104 Da. Furthermore, AP-ACl-3 exhibited considerable bioactivities significantly preventing the migration of MCF-7 cells and stimulating lymphocyte proliferation along with nitric oxide (NO) production of peritoneal macrophages. AP-ACl-3 could be explored as a novel potential anti-tumor and immunomodulatory agent. PMID:27058538
Action potential propagation recorded from single axonal arbors using multi-electrode arrays.
Tovar, Kenneth R; Bridges, Daniel C; Wu, Bian; Randall, Connor; Audouard, Morgane; Jang, Jiwon; Hansma, Paul K; Kosik, Kenneth S
2018-04-11
We report the presence of co-occurring extracellular action potentials (eAPs) from cultured mouse hippocampal neurons among groups of planar electrodes on multi-electrode arrays (MEAs). The invariant sequences of eAPs among co-active electrode groups, repeated co-occurrences and short inter-electrode latencies are consistent with action potential propagation in unmyelinated axons. Repeated eAP co-detection by multiple electrodes was widespread in all our data records. Co-detection of eAPs confirms they result from the same neuron and allows these eAPs to be isolated from all other spikes independently of spike sorting algorithms. We averaged co-occurring events and revealed additional electrodes with eAPs that would otherwise be below detection threshold. We used these eAP cohorts to explore the temperature sensitivity of action potential propagation and the relationship between voltage-gated sodium channel density and propagation velocity. The sequence of eAPs among co-active electrodes 'fingerprints' neurons giving rise to these events and identifies them within neuronal ensembles. We used this property and the non-invasive nature of extracellular recording to monitor changes in excitability at multiple points in single axonal arbors simultaneously over several hours, demonstrating independence of axonal segments. Over several weeks, we recorded changes in inter-electrode propagation latencies and ongoing changes in excitability in different regions of single axonal arbors. Our work illustrates how repeated eAP co-occurrences can be used to extract physiological data from single axons with low electrode density MEAs. However, repeated eAP co-occurrences leads to over-sampling spikes from single neurons and thus can confound traditional spike-train analysis.
Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates
Sengupta, Biswa; Stemmler, Martin; Laughlin, Simon B.; Niven, Jeremy E.
2010-01-01
The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost. PMID:20617202
Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.
Sengupta, Biswa; Stemmler, Martin; Laughlin, Simon B; Niven, Jeremy E
2010-07-01
The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na(+) and K(+) currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin-Huxley model of the squid axon, optimizing the kinetics or number of Na(+) and K(+) channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost.
Krieger, Patrik; de Kock, Christiaan P. J.; Frick, Andreas
2017-01-01
Layer 5 (L5) is a major neocortical output layer containing L5A slender-tufted (L5A-st) and L5B thick-tufted (L5B-tt) pyramidal neurons. These neuron types differ in their in vivo firing patterns, connectivity and dendritic morphology amongst other features, reflecting their specific functional role within the neocortical circuits. Here, we asked whether the active properties of the basal dendrites that receive the great majority of synaptic inputs within L5 differ between these two pyramidal neuron classes. To quantify their active properties, we measured the efficacy with which action potential (AP) firing patterns backpropagate along the basal dendrites by measuring the accompanying calcium transients using two-photon laser scanning microscopy in rat somatosensory cortex slices. For these measurements we used both “artificial” three-AP patterns and more complex physiological AP patterns that were previously recorded in anesthetized rats in L5A-st and L5B-tt neurons in response to whisker stimulation. We show that AP patterns with relatively few APs (3APs) evoke a calcium response in L5B-tt, but not L5A-st, that is dependent on the temporal pattern of the three APs. With more complex in vivo recorded AP patterns, the average calcium response was similar in the proximal dendrites but with a decay along dendrites (measured up to 100 μm) of L5B-tt but not L5A-st neurons. Interestingly however, the whisker evoked AP patterns—although very different for the two cell types—evoke similar calcium responses. In conclusion, although the effectiveness with which different AP patterns evoke calcium transients vary between L5A-st and L5B-tt cell, the calcium influx appears to be tuned such that whisker-evoked calcium transients are within the same dynamic range for both cell types. PMID:28744201
Hu, Hua; Jonas, Peter
2014-01-01
Fast-spiking, parvalbumin-expressing GABAergic interneurons/basket cells (BCs) play a key role in feedforward and feedback inhibition, gamma oscillations, and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. Here, we examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ~20 μm from the soma, and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na+ conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block indicated that low axonal Na+ conductance density was sufficient for reliability, but high Na+ density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na+ channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching, and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing. PMID:24657965
Nantajit, Danupon; Jetawattana, Suwimol; Suriyo, Tawit; Grdina, David J; Satayavivad, Jutamaad
2017-07-01
One of the most concerning side effects of exposure to radiation are the carcinogenic risks. To reduce the negative effects of radiation, both cytoprotective and radioprotective agents have been developed. However, little is known regarding their potential for suppressing carcinogenesis. Andrographis paniculata , a plant, with multiple medicinal uses that is commonly used in traditional medicine, has three major constituents known to have cellular antioxidant activity: andrographolide (AP1); 14-deoxy-11,12-didehydroandrographolide (AP3); and neoandrographolide (AP4). In our study, we tested these elements for their radioprotective properties as well as their anti-neoplastic effects on transformation using the BALB/3T3 cell model. All three compounds were able to reduce radiation-induced DNA damage. However, AP4 appeared to have superior radioprotective properties compared to the other two compounds, presumably by protecting mitochondrial function. The compound was able to suppress radiation-induced cellular transformation through inhibition of STAT3. Treatment with AP4 also reduced expressions of MMP-2 and MMP-9. These results suggest that AP4 could be further studied and developed into an anti-transformation/carcinogenic drug as well as a radioprotective agent.
Fraser, James A; Huang, Christopher L-H; Pedersen, Thomas H
2011-07-01
Activation of skeletal muscle fibers requires rapid sarcolemmal action potential (AP) conduction to ensure uniform excitation along the fiber length, as well as successful tubular excitation to initiate excitation-contraction coupling. In our companion paper in this issue, Pedersen et al. (2011. J. Gen. Physiol. doi:10.1085/jgp.201010510) quantify, for subthreshold stimuli, the influence upon both surface conduction velocity and tubular (t)-system excitation of the large changes in resting membrane conductance (G(M)) that occur during repetitive AP firing. The present work extends the analysis by developing a multi-compartment modification of the charge-difference model of Fraser and Huang to provide a quantitative description of the conduction velocity of actively propagated APs; the influence of voltage-gated ion channels within the t-system; the influence of t-system APs on ionic homeostasis within the t-system; the influence of t-system ion concentration changes on membrane potentials; and the influence of Phase I and Phase II G(M) changes on these relationships. Passive conduction properties of the novel model agreed with established linear circuit analysis and previous experimental results, while key simulations of AP firing were tested against focused experimental microelectrode measurements of membrane potential. This study thereby first quantified the effects of the t-system luminal resistance and voltage-gated Na(+) channel density on surface AP propagation and the resultant electrical response of the t-system. Second, it demonstrated the influence of G(M) changes during repetitive AP firing upon surface and t-system excitability. Third, it showed that significant K(+) accumulation occurs within the t-system during repetitive AP firing and produces a baseline depolarization of the surface membrane potential. Finally, it indicated that G(M) changes during repetitive AP firing significantly influence both t-system K(+) accumulation and its influence on the resting membrane potential. Thus, the present study emerges with a quantitative description of the changes in membrane potential, excitability, and t-system ionic homeostasis that occur during repetitive AP firing in skeletal muscle.
Synthesis and properties of ApA analogues with shortened phosphonate internucleotide linkage.
Králíková, Sárka; Buděšínský, Miloš; Barvík, Ivan; Masojídková, Milena; Točík, Zdeněk; Rosenberg, Ivan
2011-01-01
A complete series of the 2 '-5 ' and 3 '-5 ' regioisomeric types of r(ApA) and 2 '-d(ApA) analogues with the α-hydroxy-phosphonate C3 '-O-P-CH(OH)-C4 ″ internucleotide linkage, isopolar but non-isosteric with the phosphodiester one, were synthesized and their hybridization properties with polyU studied. Due to the chirality on the 5 '-carbon atom of the modified internucleotide linkage bearing phosphorus and hydroxy moieties, each regioisomeric type of ApA dimer is split into epimeric pairs. To examine the role of the 5 '-hydroxyl of the α-hydroxy-phosphonate moiety during hybridization, the appropriate r(ApA) analogues with 3 '(2 ')-O-P-CH(2)-C4 ″ linkage lacking the 5 '-hydroxyl were synthesized. Nuclear magnetic resonance (NMR) spectroscopy study on the conformation of the modified sugar-phosphate backbone, along with the hybridization measurements, revealed remarkable differences in the stability of complexes with polyU, depending on the 5 '-carbon atom configuration. Potential usefulness of the α-hydroxy-phosphonate linkage in modified oligoribonucleotides is discussed.
Electrophysiological characteristics of IB4-negative TRPV1-expressing muscle afferent DRG neurons.
Lin, Yi-Wen; Chen, Chih-Cheng
2015-01-01
Muscle afferent neurons that express transient receptor potential vanilloid type I (TRPV1) are responsible for muscle pain associated with tissue acidosis. We have previously found that TRPV1 of isolectin B4 (IB4)-negative muscle nociceptors plays an important role in the acid-induced hyperalgesic priming and the development of chronic hyperalgesia in a mouse model of fibromyalgia. To understand the electrophysiological properties of the TRPV1-expressing muscle afferent neurons, we used whole-cell patch clamp recording to study the acid responsiveness and action potential (AP) configuration of capsaicin-sensitive neurons innervating to gastrocnemius muscle. Here we showed that IB4-negative TRPV1-expressing muscle afferent neurons are heterogeneous in terms of cell size, resting membrane potential, AP configuration, tetrodotoxin (TTX)-resistance, and acid-induced current (I acid), as well as capsaicin-induced current (I cap). TRPV1-expressing neurons were all acid-sensitive and could be divided into two acid-sensitive groups depending on an acid-induced sustained current (type I) or an acid-induced biphasic ASIC3-like current (type II). Type I TRPV1-expressing neurons were distinguishable from type II TRPV1-expressing neurons in AP overshoot, after-hyperpolarization duration, and all I acid parameters, but not in AP threshold, TTX-resistance, resting membrane potential, and I cap parameters. These differential biophysical properties of TRPV1-expressing neurons might partially annotate their different roles involved in the development and maintenance of chronic muscle pain.
Gurtu, S; Smith, P A
1988-02-01
1. The active and passive membrane properties of neurons in the lower lumbar (L6, L7) or sacral (S1) dorsal root ganglia from golden hamsters were examined in vitro by means of conventional intracellular recording techniques. Data were collected from neurons exhibiting action potentials (AP) of 70 mV or more in amplitude. 2. Cells with axonal conduction velocities (CV) greater than 20 m/s were termed fast-A-cells, those with CVs between 2.5 and 20 m/s were termed A-delta-cells, and those with CVs less than 1 m/s were termed C-cells. 3. Fast-A-cells usually exhibited short-duration APs (2.51 +/- 0.41 ms, n = 19) followed by short (less than 50 ms) afterhyperpolarizations (AHPs). C-cells usually exhibited long-duration APs (10.5 +/- 0.69 ms, n = 18) followed by long-duration AHPs (much greater than 50 ms). The characteristics of APs in A-delta-cells (AP mean duration 3.34 +/- 0.42 ms, n = 32) were intermediate between those of fast-A- and C-cells. Long AHPs (duration much greater than 50 ms) were manifest in 43.8% of A-delta-cells. 4. A time-dependent sag in hyperpolarizing electrotonic potentials (rectification) was found in 68.8% of fast-A-cells, 45.5% of A-delta-cells, and 62.5% of C-cells. 5. To examine neuronal properties 1-6 wk after transection of the sciatic nerve (axotomy), cells were reclassified as SAP (short action potential) cells and LAP (long action potential) cells. Cells in the SAP category had AP durations less than 5 ms and included all fast-A-cells and the majority of A-delta-cells. The LAP category included cells with AP durations greater than 8 ms contained only C-cells. 6. Axotomy failed to decrease the CV of LAP cells or A-delta-cells in the SAP group. The CV of LAP cells may have increased (P less than 0.05), whereas that of SAP cells was unchanged. 7. The duration of the AP and AHP of SAP cells were slightly increased (0.1 greater than P greater than 0.05), whereas AP and AHP duration of LAP cells were unchanged after axotomy. AHP amplitudes of all cell types tended to be smaller (0.1 greater than P greater than 0.05). Axotomy did not alter the resting membrane potential or reduce the incidence of rectification in any cell type. 8. Invasion of the soma by axonally evoked APs was impeded in all cell types after axotomy even though a decrease (P less than 0.05) in rheobase of SAP cells occurred.(ABSTRACT TRUNCATED AT 400 WORDS)
Fardet, Anthony; Rock, Edmond
2018-06-01
The antioxidant potential (AP) is an important nutritional property of foods, as increased oxidative stress is involved in most diet-related chronic diseases. In dairy products, the protein fraction contains antioxidant activity, especially casein. Other antioxidants include: antioxidant enzymes; lactoferrin; conjugated linoleic acid; coenzyme Q10; vitamins C, E, A and D3; equol; uric acid; carotenoids; and mineral activators of antioxidant enzymes. The AP of dairy products has been extensively studied in vitro, with few studies in animals and human subjects. Available in vivo studies greatly differ in their design and objectives. Overall, on a 100 g fresh weight-basis, AP of dairy products is close to that of grain-based foods and vegetable or fruit juices. Among dairy products, cheeses present the highest AP due to their higher protein content. AP of milk increases during digestion by up to 2·5 times because of released antioxidant peptides. AP of casein is linked to specific amino acids, whereas β-lactoglobulin thiol groups play a major role in the AP of whey. Thermal treatments such as ultra-high temperature processing have no clear effect on the AP of milk. Raw fat-rich milks have higher AP than less fat-rich milk, because of lipophilic antioxidants. Probiotic yoghurts and fermented milks have higher AP than conventional yoghurt and milk because proteolysis by probiotics releases antioxidant peptides. Among the probiotics, Lactobacillus casei/acidophilus leads to the highest AP. The data are insufficient for cheese, but fermentation-based changes appear to make a positive impact on AP. In conclusion, AP might participate in the reported dairy product-protective effects against some chronic diseases.
4-aminopyridine, a Kv channel antagonist, prevents apoptosis of rat cerebellar granule neurons.
Hu, Chang-Long; Liu, Zheng; Zeng, Xi-Min; Liu, Zi-Qiang; Chen, Xian-Hua; Zhang, Zhi-Hong; Mei, Yan-Ai
2006-09-01
Compelling evidence indicates that excessive potassium (K+) efflux and intracellular K+ depletion are the key early steps in apoptosis. Previously, we reported that apoptosis of cerebellar granule neurons induced by incubation in low-K+ (5 mM) and serum-free medium was associated with an increase in A-type transient inactivation of K+ channel current (IA) amplitude and modulation of channels' gating properties. Here, we showed that a classic K+ channel blocker, 4-aminopyradine (4-AP), significantly inhibited IA amplitude in a concentration-dependent manner (reduction of current by 10 microM and 10 mM 4-AP was 11.4+/-1.3% and 72.2+/-3.3%, respectively). Moreover, 4-AP modified the steady-state activation and inactivation kinetics of IA channels, such that the activation and inactivation curves were shifted to the right about 20 mV and 17 mV, respectively. Fluorescence staining showed that 4-AP dramatically increased the viability of cells undergoing apoptosis in a dose-dependent manner. That is, while 5 mM 4-AP was present, cell viability was 84.9+/-5.2%. Consistent with the cell viability analysis, internucleosomal DNA fragmentation by gel electrophoresis analysis showed that 5 mM 4-AP also protected against neuronal apoptosis. Furthermore, 4-AP significantly inhibited cytochrome c release and caspase-3 activity induced by low-K+/serum-free incubation. Finally, current-clamp analysis indicated that 5 mM 4-AP did not significantly depolarize the membrane potential. These results suggest that 4-AP has robust neuroprotective effects on apoptotic granule cells. The neuroprotective effect of 4-AP is likely not due to membrane depolarization, but rather that 4-AP may modulate the gating properties of IA channels in an anti-apoptotic manner.
Impact of ionic current variability on human ventricular cellular electrophysiology.
Romero, Lucía; Pueyo, Esther; Fink, Martin; Rodríguez, Blanca
2009-10-01
Abnormalities in repolarization and its rate dependence are known to be related to increased proarrhythmic risk. A number of repolarization-related electrophysiological properties are commonly used as preclinical biomarkers of arrhythmic risk. However, the variability and complexity of repolarization mechanisms make the use of cellular biomarkers to predict arrhythmic risk preclinically challenging. Our goal is to investigate the role of ionic current properties and their variability in modulating cellular biomarkers of arrhythmic risk to improve risk stratification and identification in humans. A systematic investigation into the sensitivity of the main preclinical biomarkers of arrhythmic risk to changes in ionic current conductances and kinetics was performed using computer simulations. Four stimulation protocols were applied to the ten Tusscher and Panfilov human ventricular model to quantify the impact of +/-15 and +/-30% variations in key model parameters on action potential (AP) properties, Ca(2+) and Na(+) dynamics, and their rate dependence. Simulations show that, in humans, AP duration is moderately sensitive to changes in all repolarization current conductances and in L-type Ca(2+) current (I(CaL)) and slow component of the delayed rectifier current (I(Ks)) inactivation kinetics. AP triangulation, however, is strongly dependent only on inward rectifier K(+) current (I(K1)) and delayed rectifier current (I(Kr)) conductances. Furthermore, AP rate dependence (i.e., AP duration rate adaptation and restitution properties) and intracellular Ca(2+) and Na(+) levels are highly sensitive to both I(CaL) and Na(+)/K(+) pump current (I(NaK)) properties. This study provides quantitative insights into the sensitivity of preclinical biomarkers of arrhythmic risk to variations in ionic current properties in humans. The results show the importance of sensitivity analysis as a powerful method for the in-depth validation of mathematical models in cardiac electrophysiology.
Physiological time-series analysis: what does regularity quantify?
NASA Technical Reports Server (NTRS)
Pincus, S. M.; Goldberger, A. L.
1994-01-01
Approximate entropy (ApEn) is a recently developed statistic quantifying regularity and complexity that appears to have potential application to a wide variety of physiological and clinical time-series data. The focus here is to provide a better understanding of ApEn to facilitate its proper utilization, application, and interpretation. After giving the formal mathematical description of ApEn, we provide a multistep description of the algorithm as applied to two contrasting clinical heart rate data sets. We discuss algorithm implementation and interpretation and introduce a general mathematical hypothesis of the dynamics of a wide class of diseases, indicating the utility of ApEn to test this hypothesis. We indicate the relationship of ApEn to variability measures, the Fourier spectrum, and algorithms motivated by study of chaotic dynamics. We discuss further mathematical properties of ApEn, including the choice of input parameters, statistical issues, and modeling considerations, and we conclude with a section on caveats to ensure correct ApEn utilization.
Lin, Zhenhao; Xing, Wenlu; Gao, Chuanyu; Wang, Xianpei; Qi, Datun; Dai, Guoyou; Zhao, Wen; Yan, Ganxin
2018-01-26
Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (I K ) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. I K and AP were recorded by the whole-cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3-kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (I K s ) in a concentration-dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P =0.001; 12.73±0.34 versus 9.05±1.20, n=5, P =0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P =0.021). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, eliminated these VEGF-induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (I K r ), resting membrane potential, AP amplitude, or maximal velocity of depolarization. VEGF inhibited I K s in a concentration-dependent manner through a phosphatidylinositol 3-kinase-mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Berrios, A; Brink, D; del Castillo, J; Smith, D S
1985-01-01
Brief (2-5 msec) electrical pulses applied to the primary spines of the sea urchin Diadema antillarum elicit graded action potentials (ap's). These ap's can be attributed to the electrical activity of a set of 14-21 bundles of neurites, each comprising 1000 processes near the spine base and tapering towards the spine tip. The shape of the ap's varies from a simple diphasic deflection to a complex waveform with 6 or more components. Peak-to-peak amplitude is less than 1mV. The ap's are conducted at a uniform speed of ca. 27 cm/sec. The ap's are not affected by tetrodotoxin (1 microgram/ml) and continue to be produced in Na-free artificial sea water (ASW). The amplitude of the ap's is greatly reduced or totally abolished in Ca-free ASW. However, some electrical activity may continue in the absence of external Ca, due to release of Ca2+ ions from the calcium carbonate crystals of the spine shaft. Replacing the Ca content of ASW by barium ions causes an irreversible blockade of the ap's. Spines equilibrated with ASW containing Sr2+ ions instead of Ca2+ produce ap's of increased amplitude (up to X 2). The ap's are blocked by La3+, Co2+, Cd2+ (2-5 mM) and by the organic Ca channel blocker Bepridil (2 mM). We conclude that the spinal ap's are due to the summation of Ca spikes produced by the activation of Ca channels which are blocked by barium and have a high affinity for, or permeability to Sr vs Ca.
Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.
2017-12-01
The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.
2018-01-01
Electrical restitution (ER) is a major determinant of repolarization stability and, under fast pacing rate, it reveals memory properties of the cardiac action potential (AP), whose dynamics have never been fully elucidated, nor their ionic mechanisms. Previous studies have looked at ER mainly in terms of changes in AP duration (APD) when the preceding diastolic interval (DI) changes and described dynamic conditions where this relationship shows hysteresis which, in turn, has been proposed as a marker of short-term AP memory and repolarization stability. By means of numerical simulations of a non-propagated human ventricular AP, we show here that measuring ER as APD versus the preceding cycle length (CL) provides additional information on repolarization dynamics which is not contained in the companion formulation. We focus particularly on fast pacing rate conditions with a beat-to-beat variable CL, where memory properties emerge from APD vs CL and not from APD vs DI and should thus be stored in APD and not in DI. We provide an ion-currents characterization of such conditions under periodic and random CL variability, and show that the memory stored in APD plays a stabilizing role on AP repolarization under pacing rate perturbations. The gating kinetics of L-type calcium current seems to be the main determinant of this safety mechanism. We also show that, at fast pacing rate and under otherwise identical pacing conditions, a periodically beat-to-beat changing CL is more effective than a random one in stabilizing repolarization. In summary, we propose a novel view of short-term AP memory, differentially stored between systole and diastole, which opens a number of methodological and theoretical implications for the understanding of arrhythmia development. PMID:29494628
Collision of two action potentials in a single excitable cell.
Fillafer, Christian; Paeger, Anne; Schneider, Matthias F
2017-12-01
It is a common incident in nature, that two waves or pulses run into each other head-on. The outcome of such an event is of special interest, because it allows conclusions about the underlying physical nature of the pulses. The present experimental study dealt with the head-on meeting of two action potentials (AP) in a single excitable plant cell (Chara braunii internode). The membrane potential was monitored with multiple sensors along a single excitable cell. In control experiments, an AP was excited electrically at either end of the cell cylinder. Subsequently, stimuli were applied simultaneously at both ends of the cell in order to generate two APs that met each other head-on. When two action potentials propagated into each other, the pulses did not penetrate but annihilated (N=26 experiments in n=10 cells). APs in excitable plant cells did not penetrate upon meeting head-on. In the classical electrical model, this behavior is specifically attributed to relaxation of ion channel proteins. From an acoustic point of view, annihilation can be viewed as a result of nonlinear material properties (e.g. a phase change). The present results suggest that APs in excitable animal and plant cells belong to a similar class of nonlinear phenomena. Intriguingly, other excitation waves in biology (intracellular waves, cortical spreading depression, etc.) also annihilate upon collision and are thus expected to follow the same underlying principles as the observed action potentials. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; ...
2015-08-19
Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP 3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neithermore » recognized AP 3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP 3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP 3 form a hook-like structure to stabilize interaction between AP 3 and NHR helices. Therefore, AP 3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaojie; Zhu, Yun; Ye, Sheng
Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP 3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neithermore » recognized AP 3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP 3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP 3 form a hook-like structure to stabilize interaction between AP 3 and NHR helices. Therefore, AP 3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less
2010-11-01
estimate the pharmacokinetics of potential drugs (Horning and Klamt 2005). QSPR/ QSARs also have potential applications in the fuel science field...group contribution methods, and (2) quantitative structure-property/activity relationships (QSPR/ QSAR ). The group contribution methods are primarily...development of QSPR/ QSARs is the identification of the ap- propriate set of descriptors that allow the desired attribute of the compound to be adequately
Booth, Clair A; Brown, Jonathan T; Randall, Andrew D
2014-01-01
A t(1;11) balanced chromosomal translocation transects the Disc1 gene in a large Scottish family and produces genome-wide linkage to schizophrenia and recurrent major depressive disorder. This study describes our in vitro investigations into neurophysiological function in hippocampal area CA1 of a transgenic mouse (DISC1tr) that expresses a truncated version of DISC1 designed to reproduce aspects of the genetic situation in the Scottish t(1;11) pedigree. We employed both patch-clamp and extracellular recording methods in vitro to compare intrinsic properties and synaptic function and plasticity between DISC1tr animals and wild-type littermates. Patch-clamp analysis of CA1 pyramidal neurons (CA1-PNs) revealed no genotype dependence in multiple subthreshold parameters, including resting potential, input resistance, hyperpolarization-activated ‘sag’ and resonance properties. Suprathreshold stimuli revealed no alteration to action potential (AP) waveform, although the initial rate of AP production was higher in DISC1tr mice. No difference was observed in afterhyperpolarizing potentials following trains of 5–25 APs at 50 Hz. Patch-clamp analysis of synaptic responses in the Schaffer collateral commissural (SC) pathway indicated no genotype-dependence of paired pulse facilitation, excitatory postsynaptic potential summation or AMPA/NMDA ratio. Extracellular recordings also revealed an absence of changes to SC synaptic responses and indicated input–output and short-term plasticity were also unaltered in the temporoammonic (TA) input. However, in DISC1tr mice theta burst-induced long-term potentiation was enhanced in the SC pathway but completely lost in the TA pathway. These data demonstrate that expressing a truncated form of DISC1 affects intrinsic properties of CA1-PNs and produces pathway-specific effects on long-term synaptic plasticity. PMID:24712988
Connelly, William M; Crunelli, Vincenzo; Errington, Adam C
2017-05-24
Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca 2+ -imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that "tonic"' and low-threshold-spike (LTS) "burst" APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons. SIGNIFICANCE STATEMENT In most neurons, action potentials (APs) initiate in the axosomatic region and propagate into the dendritic tree to provide a retrograde signal that conveys information about the level of cellular output to the locations that receive most input: the dendrites. In thalamocortical and thalamic reticular nucleus neurons, the site of AP generation and the true extent of backpropagation remain unknown. Using patch-clamp recordings, this study measures dendritic propagation of APs directly in these neurons. In either cell type, high-frequency low-threshold spike burst or lower-frequency tonic APs undergo substantial voltage attenuation as they spread into the dendritic tree. Therefore, backpropagating spikes in these cells can only influence signaling in the proximal part of the dendritic tree. Copyright © 2017 Connelly et al.
Coatings and Biodegradable and Bioabsorbable Films
2006-09-01
Properties Properties (Latex) Properties (Paint) M1. 726-39 Sodium lauryl sulfate 2.27 phi Control APS Viscous caossy, some Acceptablecracks, fo a y" l...SS 726-49 Sodium laufyl sulfate 2.17 phr Control APS Viscous, foamy Cracks in film Foam SIS 726-51 Sodium lauryl sulfate 2.17 phi Control APS Crashed...Not Formulated Not Formulated SS 726-35 Sodium lauryl sulfate 2.17 phr Control APS Acceptable Glossy with some Unusually foamy ________ _______fo am
L.-H. Huang, Christopher; Fraser, James A.
2011-01-01
Skeletal muscle activation requires action potential (AP) initiation followed by its sarcolemmal propagation and tubular excitation to trigger Ca2+ release and contraction. Recent studies demonstrate that ion channels underlying the resting membrane conductance (GM) of fast-twitch mammalian muscle fibers are highly regulated during muscle activity. Thus, onset of activity reduces GM, whereas prolonged activity can markedly elevate GM. Although these observations implicate GM regulation in control of muscle excitability, classical theoretical studies in un-myelinated axons predict little influence of GM on membrane excitability. However, surface membrane morphologies differ markedly between un-myelinated axons and muscle fibers, predominantly because of the tubular (t)-system of muscle fibers. This study develops a linear circuit model of mammalian muscle fiber and uses this to assess the role of subthreshold electrical properties, including GM changes during muscle activity, for AP initiation, AP propagation, and t-system excitation. Experimental observations of frequency-dependent length constant and membrane-phase properties in fast-twitch rat fibers could only be replicated by models that included t-system luminal resistances. Having quantified these resistances, the resulting models showed enhanced conduction velocity of passive current flow also implicating elevated AP propagation velocity. Furthermore, the resistances filter passive currents such that higher frequency current components would determine sarcolemma AP conduction velocity, whereas lower frequency components excite t-system APs. Because GM modulation affects only the low-frequency membrane impedance, the GM changes in active muscle would predominantly affect neuromuscular transmission and low-frequency t-system excitation while exerting little influence on the high-frequency process of sarcolemmal AP propagation. This physiological role of GM regulation was increased by high Cl− permeability, as in muscle endplate regions, and by increased extracellular [K+], as observed in working muscle. Thus, reduced GM at the onset of exercise would enhance t-system excitation and neuromuscular transmission, whereas elevated GM after sustained activity would inhibit these processes and thereby accentuate muscle fatigue. PMID:21670208
AP reclamation and reuse in RSRM propellant
NASA Technical Reports Server (NTRS)
Miks, Kathryn F.; Harris, Stacey A.
1995-01-01
A solid propellant ingredient reclamation pilot plant has been evaluated at the Strategic Operations of Thiokol Corporation, located in Brigham City, Utah. The plant produces AP wet cake (95 percent AP, 5 percent water) for recycling at AP vendors. AP has been obtained from two standard propellant binder systems (PBAN and HTPB). Analytical work conducted at Thiokol indicates that the vendor-recrystallized AP meets Space Shuttle propellant specification requirements. Thiokol has processed 1-, 5-, and 600-gallon propellant mixes with the recrystallized AP. Processing, cast, cure, ballistic, mechanical, and safety properties have been evaluated. Phillips Laboratory static-test-fired 70-pound and 800-pound BATES motors. The data indicate that propellant processed with reclaimed AP has nominal properties.
Sahle, Fitsum F; Metz, Hendrik; Wohlrab, Johannes; Neubert, Reinhard H H
2013-02-01
To improve the solubility and penetration of Ceramide AP (CER [AP]) into the stratum corneum that potentially restores the barrier function of aged and affected skin. CER [AP] microemulsions (MEs) were formulated using lecithin, Miglyol® 812 (miglyol) and water-1,2 pentandiol (PeG) mixture as amphiphilic, oily and hydrophilic components, respectively. The nanostructure of the MEs was revealed using electrical conductivity, differential scanning calorimeter (DSC) and electron paramagnetic resonance (EPR) techniques. Photon correlation spectroscopy (PCS) was used to measure the sizes and shape of ME droplets. The release and penetration of the CER into the stratum corneum was investigated in vitro using a multi-layer membrane model. The MEs exhibited excellent thermodynamic stability (>2 years) and loading capacity (0.5% CER [AP]). The pseudo-ternary phase diagrams of the MEs were obtained and PCS results showed that the droplets are spherical in shape and bigger in size. In vitro investigations showed that the MEs exhibited excellent rate and extent of release and penetration. Stable lecithin-based CER [AP] MEs that significantly enhance the solubility and penetration of CER [AP] into the stratum corneum were developed. The MEs also have better properties than the previously reported polyglycerol fatty acid surfactant-based CER [AP] MEs.
Diversity of layer 5 projection neurons in the mouse motor cortex
Oswald, Manfred J.; Tantirigama, Malinda L. S.; Sonntag, Ivo; Hughes, Stephanie M.; Empson, Ruth M.
2013-01-01
In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function. PMID:24137110
Pathak, Dhruba; Guan, Dongxu
2016-01-01
The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for long-distance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451–465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826–836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014–2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes. PMID:26864770
[Achievements and problems of modern trials of antihypertensive drugs].
Kobalava, Zh D; Kotovskaia, Iu V
2011-01-01
Most important value of lowering of substantially elevated arterial pressure (AP) for improvement of outcomes in patients with arterial hypertension (AH) was convincingly confirmed by large truly placebo controlled randomized clinical trials (RCT) with the use of mainly diuretics, and/or beta-adrenoblockers in the 60-80ths. Later comparative RCT confirmed equal antihypertensive efficacy of 5 main drug classes relative to AP level in brachial artery. In this review we discuss merit of auxiliary class-specific properties of antihypertensive agents potentially affecting prognosis besides AP lowering. We also discuss problems related to decline of significance of quantitative criteria of AH and consideration of AP level in general context of cardiovascular risk; problems of external validity of RCT; extrapolation of RCT results obtained in patients with complicated AH and very high cardiovascular risk on young patients with uncomplicated AH; significance of hard and surrogate end points.
Konovalova, Mariya V; Markov, Pavel A; Durnev, Eugene A; Kurek, Denis V; Popov, Sergey V; Varlamov, Valery P
2017-02-01
Today, there is a need for the development of biomaterials with novel properties for biomedical purposes. The biocompatibility of materials is a key factor in determining its possible use in biomedicine. In this study, composite cryogels were obtained based on pectin and chitosan using ionic cryotropic gelation. For cryogel preparation, apple pectin (AP), Heracleum L. pectin (HP), and chitosan samples with different physical and chemical characteristics were used. The properties of pectin-chitosan cryogels were found to depend on the structural features and physicochemical characteristics of the pectin and chitosan within them. The addition of chitosan to cryogels can increase their mechanical strength, cause change in surface morphology, increase the degradation time, and enhance adhesion to biological tissues. Cryogels based on AP were less immunogenic when compared with cryogels from HP. Cryogels based on AP and HP were hemocompatible and the percentage of red blood cells hemolysis was less than 5%. Unlike cryogels based on HP, which exhibited moderate cytotoxicity, cryogels based on AP exhibited light cytotoxicity. Based on the results of low immunogenicity, light cytotoxicity data as well as a low level of hemolysis of composite cryogels based on AP and chitosan are biocompatible and can potentially be used in biomedicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 547-556, 2017. © 2016 Wiley Periodicals, Inc.
ParamAP: Standardized Parameterization of Sinoatrial Node Myocyte Action Potentials.
Rickert, Christian; Proenza, Catherine
2017-08-22
Sinoatrial node myocytes act as cardiac pacemaker cells by generating spontaneous action potentials (APs). Much information is encoded in sinoatrial AP waveforms, but both the analysis and the comparison of AP parameters between studies is hindered by the lack of standardized parameter definitions and the absence of automated analysis tools. Here we introduce ParamAP, a standalone cross-platform computational tool that uses a template-free detection algorithm to automatically identify and parameterize APs from text input files. ParamAP employs a graphic user interface with automatic and user-customizable input modes, and it outputs data files in text and PDF formats. ParamAP returns a total of 16 AP waveform parameters including time intervals such as the AP duration, membrane potentials such as the maximum diastolic potential, and rates of change of the membrane potential such as the diastolic depolarization rate. ParamAP provides a robust AP detection algorithm in combination with a standardized AP parameter analysis over a wide range of AP waveforms and firing rates, owing in part to the use of an iterative algorithm for the determination of the threshold potential and the diastolic depolarization rate that is independent of the maximum upstroke velocity, a parameter that can vary significantly among sinoatrial APs. Because ParamAP is implemented in Python 3, it is also highly customizable and extensible. In conclusion, ParamAP is a powerful computational tool that facilitates quantitative analysis and enables comparison of sinoatrial APs by standardizing parameter definitions and providing an automated work flow. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Antifouling Activity of Synthetic Alkylpyridinium Polymers Using the Barnacle Model
Piazza, Veronica; Dragić, Ivanka; Sepčić, Kristina; Faimali, Marco; Garaventa, Francesca; Turk, Tom; Berne, Sabina
2014-01-01
Polymeric alkylpyridinium salts (poly-APS) isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera) sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite) as a model (cyprids and II stage nauplii larvae) in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC50) after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC50: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L) than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC50 of 4.83 and 1.86 mg/L. PMID:24699112
Leote, Joao; Pereira, Pedro; Cabib, Christopher; Cipullo, Federica; Valls-Sole, Josep
2016-06-01
Low-intensity electrical stimuli of digital nerves may generate a double peak potential (DPp), composed of a cathodal (caAP) and an anodal (anAP) potential in orthodromic recordings. We studied the effects on caAP and anAP of stimuli of variable intensity, duration, and frequency. We also applied a conditioning stimulus to study potential differences in recovery time. The anAP was obtained in 33 of 40 healthy subjects (82.5%) and 4 of 20 patients with various types of sensory neuropathies (20%). Changes in stimulus duration and intensity had reciprocal effects on the amplitude of the anAP and the caAP. There were significant differences in recovery time between caAP and anAP after a conditioning stimulus. The caAP and anAP are 2 interdependent waveforms generated by different effects of the same stimulus over axons at the verge of depolarization. Muscle Nerve 53: 897-905, 2016. © 2015 Wiley Periodicals, Inc.
The angular power spectrum of dust-obscured galaxies and its impact on Sunyaev Zel'dovich studies
NASA Astrophysics Data System (ADS)
Montaña, A. A.; Sanchez-Argüelles, D. O.; Hughes, D. H.; Wilson, G. W.; Gaztañaga, E.
2011-10-01
In this work we measure the angular power spectrum (APS) of the population of (sub-)millimetric galaxies (SMGs) using 1.1 mm wavelength observations obtained with the AzTEC camera on the Atacama Submillimeter Telescope Experiment (ASTE) and the James Clerk Maxwell Telescope (JCMT). The sample of survey fields allows us to compare the properties of the APS of the (sub-)mm galaxy population towards unbiased and potentially overdense regions of the Universe. Furthermore, our measurements provide a strong constraint to the impact that the SMGs have on the APS of the primary and secondary CMB anisotropies, which are being measured by the new generation of arcminute resolution SZE experiments at millimeter wavelengths.
Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes.
Yuan, W; Ginsburg, K S; Bers, D M
1996-01-01
1. Fundamental properties of Ca2+ channel currents in rat and rabbit ventricular myocytes were measured using whole cell voltage clamp. 2. In rat, as compared with rabbit myocytes, Ca2+ channel current (ICa) was half-activated at about 10 mV more negative potential, decayed slower, was half-inactivated (in steady state) at about 5 mV more positive potential, and recovered faster from inactivation. 3. These features result in a larger steady-state window current in rat, and also suggest that under comparable voltage clamp conditions, including action potential (AP) clamp, more Ca2+ influx would be expected in rat myocytes. 4. Ca2+ channel current carried by Na+ and Cs+ in the absence of divalent ions (Ins) also activated at more negative potential and decayed more slowly in rat. 5. The reversal potential for Ins was 6 mV more positive in rabbit, consistent with a larger permeability ratio (PNa/PCs) in rabbit than in rat. ICa also reversed at slightly more positive potentials in rabbit (such that PCa/PCs might also be higher). 6. Ca2+ influx was calculated by integration of ICa evoked by voltage clamp pulses (either square pulses or pulses based on recorded rabbit or rat APs). For a given clamp waveform, the Ca2+ influx was up to 25% greater in rat, as predicted from the fundamental properties of ICa and Ins. 7. However, the longer duration of the AP in rabbit myocytes compensated for the difference in influx, such that the integrated Ca2+ influx via ICa in response to the species-appropriate waveform was about twice as large as that seen in rat. PMID:8799895
Toulmé, Estelle; Soto, Florentina; Garret, Maurice; Boué-Grabot, Eric
2006-02-01
Although P2X receptors within the central nervous system mediate excitatory ATP synaptic transmission, the identity of central ATP-gated channels has not yet been elucidated. P2X(4), the most widely expressed subunit in the brain, was previously shown to undergo clathrin-dependent constitutive internalization by direct interaction between activator protein (AP)2 adaptors and a tyrosine-based sorting signal specifically present in the cytosolic C-terminal tail of mammalian P2X(4) sequences. In this study, we first used internalization-deficient P2X(4) receptor mutants to show that suppression of the endocytosis motif significantly increased the apparent sensitivity to ATP and the ionic permeability of P2X(4) channels. These unique properties, observed at low channel density, suggest that interactions with AP2 complexes may modulate the function of P2X(4) receptors. In addition, ivermectin, an allosteric modulator of several receptor channels, including mammalian P2X(4), did not potentiate the maximal current of internalization-deficient rat or human P2X(4) receptors. We demonstrated that binding of ivermectin onto wild-type P2X(4) channels increased the fraction of plasma membrane P2X(4) receptors, whereas surface expression of internalization-deficient P2X(4) receptors remained unchanged. Disruption of the clathrin-mediated endocytosis with the dominant-negative mutants Eps15 or AP-50 abolished the ivermectin potentiation of wild-type P2X(4) channel currents. Likewise, ivermectin increased the membrane fraction of nicotinic alpha7 acetylcholine (nalpha7ACh) receptors and the potentiation of acetylcholine current by ivermectin was suppressed when the same dominant-negative mutants were expressed. These data showed that potentiation by ivermectin of both P2X(4) and nalpha7ACh receptors was primarily caused by an increase in the number of cell surface receptors resulting from a mechanism dependent on clathrin/AP2-mediated endocytosis.
Decreased allopregnanolone levels in cerebrospinal fluid obtained during status epilepticus.
Meletti, Stefano; Lucchi, Chiara; Monti, Giulia; Giovannini, Giada; Bedin, Roberta; Trenti, Tommaso; Rustichelli, Cecilia; Biagini, Giuseppe
2017-02-01
Neuroactive steroids are increasingly considered as relevant modulators of neuronal activity. Especially allopregnanolone (AP) and pregnenolone sulfate (PS) have been shown to possess, respectively, anticonvulsant or proconvulsant properties. In view of the potential role of these steroids, we aimed at evaluating AP and PS levels in cerebrospinal fluid (CSF) and blood samples obtained from patients with status epilepticus (SE). To this purpose, we enrolled 41 patients affected by SE and 41 subjects investigated for nonepileptic neurologic disorders. Liquid chromatographic procedures coupled with electrospray tandem mass spectrometry and routine laboratory investigations were performed. Significantly lower AP levels were found in the CSF of patients affected by SE (-30%; p < 0.05, Mann-Whitney test). Notably, AP was not detectable in 28 of 41 patients affected by SE (p < 0.01 vs. controls, Fisher's exact test). In serum, AP levels did not differ in the two considered groups. Conversely, PS was present at similar levels in the investigated groups. Finally, differences in AP levels could not be explained by a variation in CSF albumin content. These findings indicate that AP is defective in the CSF of patients affected by SE. This phenomenon was not dependent on carriers for steroids, such as albumin. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Effects of Artemisia Princeps Supplementation on Bone Metabolism in Ovariectomized Rats.
Cho, H-J; Kim, J-W; Ju, S-Y; Park, Y-K
2016-01-01
The aim of this study was to investigate the effects of Artemisia princeps (AP) extract on bone metabolism and its potential role in the prevention of osteoporosis in ovariectomized rats. Twenty-six female Sprague-Dawley rats were divided into five groups and treated as follows: sham-operated control group (SHAM); ovariectomized control group (OVX), ovariectomized group treated by gavage with 10 mg/kg/day alendronate (ALEN); ovariectomized group treated by gavage with 100 mg/kg/day Artemisia princeps (AP100); ovariectomized group treated by gavage with 300 mg/kg/day Artemisia princeps (AP300). Treatment of ovariectomized rats with AP extracts for 15 weeks prevented the reduction in bone thickness and trabecular bone mineral density caused by urinary Ca and Cr excretion, and also prevented the increase in bone turnover by maintaining the serum Ca/P ratio. As a result, the microarchitecture of the trabecular bone and cortical bone after ovariectomy was markedly improved by administration of AP extracts. In conclusion, AP prevented bone loss and osteoclast activity associated with high bone turnover in ovariectomized rats by controlling the serum Ca/P ratio and through anti-inflammatory and anti-oxidant properties. Our data implicate AP as a promising therapeutic option for the improvement of postmenopausal osteoporosis.
Sánchez, Carlos; Corrias, Alberto; Bueno-Orovio, Alfonso; Davies, Mark; Swinton, Jonathan; Jacobson, Ingemar; Laguna, Pablo; Pueyo, Esther; Rodríguez, Blanca
2012-03-01
Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na(+)/K(+) pump current (G(NaK)) as well as conductances of inward rectifier potassium current (G(K1)) and fast inward sodium current (G(Na)). G(NaK) plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). G(K1) controls DF through modulation of AP, APD restitution, RP, and CV. G(Na) is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na(+)/K(+) pump current in determining human atrial electrophysiology.
Benchmarking electrophysiological models of human atrial myocytes
Wilhelms, Mathias; Hettmann, Hanne; Maleckar, Mary M.; Koivumäki, Jussi T.; Dössel, Olaf; Seemann, Gunnar
2013-01-01
Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits. PMID:23316167
NASA Astrophysics Data System (ADS)
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin; Li, Huiyan; Che, Yanqiu
2017-06-01
Spike-frequency adaptation (SFA) mediated by various adaptation currents, such as voltage-gated K+ current (IM), Ca2+-gated K+ current (IAHP), or Na+-activated K+ current (IKNa), exists in many types of neurons, which has been shown to effectively shape their information transmission properties on slow timescales. Here we use conductance-based models to investigate how the activation of three adaptation currents regulates the threshold voltage for action potential (AP) initiation during the course of SFA. It is observed that the spike threshold gets depolarized and the rate of membrane depolarization (dV/dt) preceding AP is reduced as adaptation currents reduce firing rate. It is indicated that the presence of inhibitory adaptation currents enables the neuron to generate a dynamic threshold inversely correlated with preceding dV/dt on slower timescales than fast dynamics of AP generation. By analyzing the interactions of ionic currents at subthreshold potentials, we find that the activation of adaptation currents increase the outward level of net membrane current prior to AP initiation, which antagonizes inward Na+ to result in a depolarized threshold and lower dV/dt from one AP to the next. Our simulations demonstrate that the threshold dynamics on slow timescales is a secondary effect caused by the activation of adaptation currents. These findings have provided a biophysical interpretation of the relationship between adaptation currents and spike threshold.
Romero, Lucía; Carbonell, Beatriz; Trenor, Beatriz; Rodríguez, Blanca; Saiz, Javier; Ferrero, José M
2011-10-01
Several mathematical models of rabbit ventricular action potential (AP) have been proposed to investigate mechanisms of arrhythmias and excitation-contraction coupling. Our study aims at systematically characterizing how ionic current properties modulate the main cellular biomarkers of arrhythmic risk using two widely-used rabbit ventricular models, and comparing simulation results using the two models with experimental data available for rabbit. A sensitivity analysis of AP properties, Ca²⁺ and Na⁺ dynamics, and their rate dependence to variations (±15% and ±30%) in the main transmembrane current conductances and kinetics was performed using the Shannon et al. (2004) and the Mahajan et al. (2008a,b) AP rabbit models. The effects of severe transmembrane current blocks (up to 100%) on steady-state AP and calcium transients, and AP duration (APD) restitution curves were also simulated using both models. Our simulations show that, in both virtual rabbit cardiomyocytes, APD is significantly modified by most repolarization currents, AP triangulation is regulated mostly by the inward rectifier K⁺ current (I(K1)) whereas APD rate adaptation as well as [Na⁺](i) rate dependence is influenced by the Na⁺/K⁺ pump current (I(NaK)). In addition, steady-state [Ca²⁺](i) levels, APD restitution properties and [Ca²⁺](i) rate dependence are strongly dependent on I(NaK), the L-Type Ca²⁺ current (I(CaL)) and the Na⁺/Ca²⁺ exchanger current (I(NaCa)), although the relative role of these currents is markedly model dependent. Furthermore, our results show that simulations using both models agree with many experimentally-reported electrophysiological characteristics. However, our study shows that the Shannon et al. model mimics rabbit electrophysiology more accurately at normal pacing rates, whereas Mahajan et al. model behaves more appropriately at faster rates. Our results reinforce the usefulness of sensitivity analysis for further understanding of cellular electrophysiology and validation of cardiac AP models. Copyright © 2011 Elsevier Ltd. All rights reserved.
Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng
2014-01-01
Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.
Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng
2014-01-01
Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research. PMID:25268141
Ohashi, Toru; Nishino, Hirohito; Arai, Yoko; Hyodo, Makoto; Takatsu, Mitsuharu
2009-04-01
This study was aimed to elucidate the diagnostic significance of the summating potential (SP)-action potential (AP) ratio and the AP latency difference between condensation and rarefaction clicks (AP con-rar difference) in Meniere's disease. The AP and SP were recorded transtympanically in 67 patients with definite Meniere's disease. The SP/AP ratio and the AP con-rar difference were assessed in terms of 1) their interrelationship, 2) their relationship to hearing level, and 3) the rate of occurrence of abnormal values according to the stages of Meniere's disease. No correlation was found between the SP/AP ratio and the AP con-rar difference. Neither the SP/AP ratio in general nor the AP con-rar difference was correlated with the hearing level. However, enhanced values of the SP/AP ratio (0.35 or higher) were moderately correlated with the hearing level (r = 0.51), and their occurrence rate was 55.2%. An increased AP con-rar difference (0.13 ms or longer) was not correlated with the hearing level, and its occurrence rate was 50.2%; it appeared most frequently at stage 3 (p <0.05). An enhanced SP/AP ratio might not always indicate the presence of endolymphatic hydrops associated with an increase in endolymphatic pressure. An increased AP con-rar difference might reflect the presence of a biased basilar membrane resulting from an increased endolymphatic pressure, and hence it is diagnostically essential to simultaneously evaluate the SP/AP ratio and the AP con-rar difference.
Recording temperature affects the excitability of mouse superficial dorsal horn neurons, in vitro.
Graham, B A; Brichta, A M; Callister, R J
2008-05-01
Superficial dorsal horn (SDH) neurons in laminae I-II of the spinal cord play an important role in processing noxious stimuli. These neurons represent a heterogeneous population and are divided into various categories according to their action potential (AP) discharge during depolarizing current injection. We recently developed an in vivo mouse preparation to examine functional aspects of nociceptive processing and AP discharge in SDH neurons and to extend investigation of pain mechanisms to the genetic level of analysis. Not surprisingly, some in vivo data obtained at body temperature (37 degrees C) differed from those generated at room temperature (22 degrees C) in spinal cord slices. In the current study we examine how temperature influences SDH neuron properties by making recordings at 22 and 32 degrees C in transverse spinal cord slices prepared from L3-L5 segments of adult mice (C57Bl/6). Patch-clamp recordings (KCH(3)SO(4) internal) were made from visualized SDH neurons. At elevated temperature all SDH neurons had reduced input resistance and smaller, briefer APs. Resting membrane potential and AP afterhyperpolarization amplitude were temperature sensitive only in subsets of the SDH population. Notably, elevated temperature increased the prevalence of neurons that did not discharge APs during current injection. These reluctant firing neurons expressed a rapid A-type potassium current, which is enhanced at higher temperatures and thus restrains AP discharge. When compared with previously published whole cell recordings obtained in vivo (37 degrees C) our results suggest that, on balance, in vitro data collected at elevated temperature more closely resemble data collected under in vivo conditions.
Bhushan, Shashi; Kakkar, Vandita; Pal, Harish Chandra; Mondhe, D M; Kaur, Indu Pal
2016-01-25
AP9-cd, a novel lignan composition from Cedrus deodara has significant anticancer potential, and to further enhance its activity, it was lucratively encumbered into solid lipid nanoparticles (SLNs). These nanoparticles were formulated by micro-emulsion technique with 70% drug trap competence. AP9-cd-SLNs were regular, solid, globular particles in the range of 100-200 nm, which were confirmed by electron microscopic studies. Moreover, AP9-cd-SLNs were found to be stable for up to six months in terms of color, particle size, zeta potential, drug content and entrapment. AP9-cd-SLNs have 30-50% higher cytotoxic and apoptotic potential than the AP9-cd alone. The augmented anticancer potential of AP9-cd-SLNs was observed in cytotoxic IC50 value, apoptosis signaling cascade and in Ehrlich ascites tumor (EAT) model. AP9-cd-SLNs induce apoptosis in Molt-4 cells via both intrinsic and extrinsic pathway. Moreover, the dummy nanoparticles (SLNs without AP9-cd) did not have any cytotoxic effect in cancer as well as in normal cells. Consequently, SLNs of AP9-cd significantly augment the apoptotic and antitumor potential of AP9-cd. The present study provides a podium for ornamental the remedial latent via novel delivery systems like solid lipid nanoparticles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.
Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C
2016-08-05
Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. © 2016 The Authors.
Bamdad, Fatemeh; Bark, Seonghee; Kwon, Chul Hee; Suh, Joo-Won; Sunwoo, Hoon
2017-06-07
β-lactoglobulin hydrolysates (BLGH) have shown antioxidant, antihypertensive, antimicrobial, and opioid activity. In the current study, an innovative combination of high hydrostatic pressure and enzymatic hydrolysis (HHP-EH) was used to increase the yield of short bioactive peptides, and evaluate the anti-inflammatory and antioxidant properties of the BLGH produced by the HHP-EH process. BLG was enzymatically hydrolyzed by different proteases at an enzyme-to-substrate ratio of 1:100 under HHP (100 MPa) and compared with hydrolysates obtained under atmospheric pressure (AP-EH at 0.1 MPa). The degree of hydrolysis (DH), molecular weight distribution, and the antioxidant and anti-inflammatory properties of hydrolysates in chemical and cellular models were evaluated. BLGH obtained under HHP-EH showed higher DH than the hydrolysates obtained under AP-EH. Free radical scavenging and the reducing capacity were also significantly stronger in HHP-BLGH compared to AP-BLGH. The BLGH produced by alcalase (Alc) (BLG-Alc) showed significantly higher antioxidant properties among the six enzymes examined in this study. The anti-inflammatory properties of BLG-HHP-Alc were observed in lipopolysaccharide-stimulated macrophage cells by a lower level of nitric oxide production and the suppression of the synthesis of pro-inflammatory cytokines. Peptide sequencing revealed that 38% of the amino acids in BLG-HHP-Alc are hydrophobic and aromatic residues, which contribute to its anti-inflammatory properties. Enzymatic hydrolysis of BLG under HHP produces a higher yield of short bioactive peptides with potential antioxidant and anti-inflammatory effects.
Lee, Yi-Chen; Cheng, Chun-Wen; Lee, Huei-Jane; Chu, Huei-Chuien
2017-11-01
Indomethacin is a nonsteroid anti-inflammatory drug (NSAID) that is used to alleviate pain and inflammation in clinical medicine. Previous studies indicated that NSAIDs can cause gastrointestinal mucosal complications, and it is associated with mucosal lipid peroxidation and oxidative damage. Based on the evidences, decreasing oxidative stress may be an ideal therapeutic strategy for preventing gastrointestinal ulcer. Apple (Rosaceae Malus sp.) is one of the most commonly consumed fruits worldwide. The abundant polyphenolic constituents have received increasing attention for decades. In both in vivo and in vitro studies, the reports showed that apple polyphenol (AP) seems to provide an indirect antioxidant protection by activating cellular antioxidant enzymes to defend against oxidative stress. To address this issue and develop AP into a healthy improvement supplement, we studied the effect and potential mechanisms of AP in indomethacin-treated animal. The results showed AP can decelerate the gastric lesion, significantly suppress lipid peroxidation, increase the level of glutathione and the activity of catalase, and regulate the MAPK signaling proteins. These findings imply that AP protects the gastric mucosa from indomethacin-caused lesions and the protection is at least partially attributable to its antioxidative properties. This alternative medical function of AP may be a safe and effective intervention for preventing indomethacin-induced gastric complications.
Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi
2012-08-01
The apsA and apsB genes encoding family M1 aminopeptidases were identified in the industrial fungus Aspergillus oryzae. The apsB was transcriptionally up-regulated up to 2.5-fold in response to the deprivation of nitrogen or carbon sources in growth media, while up-regulation of apsA was less significant. The encoded proteins were bacterially expressed and purified to characterize their enzymatic properties. ApsA and ApsB were optimally active at pH 7.0 and 35 °C and stable at pH ranges of 6-10 and 4-10, respectively, up to 40 °C. The enzymes were inhibited by bestatin and EDTA, as has been reported for family M1 aminopeptidases that characteristically contain a zinc-binding catalytic motif. Both enzymes preferentially liberated N-terminal lysine, which is an essential amino acid and an important additive to animal feed. Enzymes that efficiently release N-terminal lysine from peptides could be useful for food and forage industries. Examination of the reactivity toward peptide substrate of varying length revealed that ApsB exhibited broader substrate specificity than ApsA although the reactivity of ApsB decreased as the length of peptide substrate decreased.
Wilmes, Katharina Anna; Schleimer, Jan-Hendrik; Schreiber, Susanne
2017-04-01
Inhibition is known to influence the forward-directed flow of information within neurons. However, also regulation of backward-directed signals, such as backpropagating action potentials (bAPs), can enrich the functional repertoire of local circuits. Inhibitory control of bAP spread, for example, can provide a switch for the plasticity of excitatory synapses. Although such a mechanism is possible, it requires a precise timing of inhibition to annihilate bAPs without impairment of forward-directed excitatory information flow. Here, we propose a specific learning rule for inhibitory synapses to automatically generate the correct timing to gate bAPs in pyramidal cells when embedded in a local circuit of feedforward inhibition. Based on computational modeling of multi-compartmental neurons with physiological properties, we demonstrate that a learning rule with anti-Hebbian shape can establish the required temporal precision. In contrast to classical spike-timing dependent plasticity of excitatory synapses, the proposed inhibitory learning mechanism does not necessarily require the definition of an upper bound of synaptic weights because of its tendency to self-terminate once annihilation of bAPs has been reached. Our study provides a functional context in which one of the many time-dependent learning rules that have been observed experimentally - specifically, a learning rule with anti-Hebbian shape - is assigned a relevant role for inhibitory synapses. Moreover, the described mechanism is compatible with an upregulation of excitatory plasticity by disinhibition. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Bang, L. T.; Long, B. D.; Othman, R.
2014-01-01
The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, and inductively coupled plasma (ICP) techniques were used to characterize the formation of CO3Ap and Si-CO3Ap. The results revealed that the silicate (SiO4 4−) and carbonate (CO3 2−) ions competed to occupy the phosphate (PO4 3−) site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap. At 750°C heat-treatment temperature, the diametral tensile strengths (DTS) of Si-CO3Ap and CO3Ap were about 10.8 ± 0.3 and 11.8 ± 0.4 MPa, respectively. PMID:24723840
Wang, Tao; Liu, Qian; Zhou, Lin; Yuan, Jin Bo; Lin, Xixi; Zeng, Rong; Liang, Xiaonan; Zhao, Jinmin; Xu, Jiake
2015-11-17
Osteoporosis is a debilitating skeletal disorder with an increased risk of low-energy fracture, which commonly occurs among postmenopausal women. Andrographolide (AP), a natural product isolated from Andrographis paniculata, has been found to have anti-inflammatory, anti-cancer, anti-asthmatic, and neuro-protective properties. However, its therapeutic effect on osteoporosis is unknown. In this study, an ovariectomy (OVX) mouse model was used to evaluate the therapeutic effects of AP on post-menopausal osteoporosis by using micro-computed tomography (micro-CT). Bone marrow-derived osteoclast culture was used to examine the inhibitory effect of AP on osteoclastogenesis. Real time PCR was employed to examine the effect of AP on the expression of osteoclast marker genes. The activities of transcriptional factors NF-κB and NFATc1 were evaluated using a luciferase reporter assay, and the IκBα protein level was analyzed by Western blot. We found that OVX mice treated with AP have greater bone volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) compared to vehicle-treated OVX mice. AP inhibited RANKL-induced osteoclastogenesis, the expression of osteoclast marker genes including cathepsin K (Ctsk), TRACP (Acp5), and NFATc1, as well as the transcriptional activities of NF-κB and NFATc1. In conclusion, our results suggest that AP inhibits estrogen deficiency-induced bone loss in mice via the suppression of RANKL-induced osteoclastogensis and NF-κB and NFATc1 activities and, thus, might have therapeutic potential for osteoporosis.
Amatrudo, Joseph M.; Weaver, Christina M.; Crimins, Johanna L.; Hof, Patrick R.; Rosene, Douglas L.; Luebke, Jennifer I.
2012-01-01
Whole-cell patch-clamp recordings and high-resolution 3D morphometric analyses of layer 3 pyramidal neurons in in vitro slices of monkey primary visual cortex (V1) and dorsolateral granular prefrontal cortex (dlPFC) revealed that neurons in these two brain areas possess highly distinctive structural and functional properties. Area V1 pyramidal neurons are much smaller than dlPFC neurons, with significantly less extensive dendritic arbors and far fewer dendritic spines. Relative to dlPFC neurons, V1 neurons have a significantly higher input resistance, depolarized resting membrane potential and higher action potential (AP) firing rates. Most V1 neurons exhibit both phasic and regular-spiking tonic AP firing patterns, while dlPFC neurons exhibit only tonic firing. Spontaneous postsynaptic currents are lower in amplitude and have faster kinetics in V1 than in dlPFC neurons, but are no different in frequency. Three-dimensional reconstructions of V1 and dlPFC neurons were incorporated into computational models containing Hodgkin-Huxley and AMPA- and GABAA-receptor gated channels. Morphology alone largely accounted for observed passive physiological properties, but led to AP firing rates that differed more than observed empirically, and to synaptic responses that opposed empirical results. Accordingly, modeling predicts that active channel conductances differ between V1 and dlPFC neurons. The unique features of V1 and dlPFC neurons are likely fundamental determinants of area-specific network behavior. The compact electrotonic arbor and increased excitability of V1 neurons support the rapid signal integration required for early processing of visual information. The greater connectivity and dendritic complexity of dlPFC neurons likely support higher level cognitive functions including working memory and planning. PMID:23035077
Vydyanathan, Amaresh; Wu, Zi-Zhen; Chen, Shao-Rui; Pan, Hui-Lin
2005-06-01
Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between isolectin B4 (IB4)-positive and -negative DRG neurons. Whole cell voltage- and current-clamp recordings were performed on acutely dissociated small DRG neurons of rats. The total Kv current density was significantly higher in IB+-positive than that in IB(4)-negative neurons. Also, 4-aminopyridine (4-AP) produced a significantly greater reduction in Kv currents in IB4-positive than in IB4-negative neurons. In contrast, IB4-negative neurons exhibited a larger proportion of tetraethylammonium-sensitive Kv currents. Furthermore, IB4-positive neurons showed a longer latency of firing and required a significantly larger amount of current injection to evoke action potentials. 4-AP significantly decreased the latency of firing and increased the firing frequency in IB4-positive but not in IB4-negative neurons. Additionally, IB4-positive neurons are immunoreactive to Kv1.4 but not to Kv1.1 and Kv1.2 subunits. Collectively, this study provides new information that 4-AP-sensitive A-type Kv currents are mainly present in IB4-positive DRG neurons and preferentially dampen the initiation of action potentials of this subpopulation of nociceptors. The difference in the density of A-type Kv currents contributes to the distinct electrophysiological properties of IB4-positive and -negative DRG neurons.
Theis, Anne-Kathrin; Rózsa, Balázs; Katona, Gergely; Schmitz, Dietmar; Johenning, Friedrich W
2018-01-01
The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca 2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs) propagate back into the dendritic tree and activate voltage gated Ca 2+ channels (VGCCs). For spines, this global mode of spine Ca 2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs) result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca 2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca 2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T- and R-type VGCCs were the dominant depolarization-associated Ca 2+ conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs) measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca 2+ influx, the amount of EPSP mediated Ca 2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.
Lecompte, S; Abou-Samra, M; Boursereau, R; Noel, L; Brichard, S M
2017-07-01
Persistent inflammation exacerbates the progression of Duchenne muscular dystrophy (DMD). The hormone, adiponectin (ApN), which is decreased in the metabolic syndrome, exhibits anti-inflammatory properties on skeletal muscle and alleviates the dystrophic phenotype of mdx mice. Here, we investigate whether ApN retains its anti-inflammatory action in myotubes obtained from DMD patients. We unravel the underlying mechanisms by studying the secretome and the early events of ApN. Primary cultures of myotubes from DMD and control patients were treated or not by ApN after an inflammatory challenge. Myokines secreted in medium were identified by cytokine antibody-arrays and ELISAs. The early events of ApN signaling were assessed by abrogating selected genes. ApN retained its anti-inflammatory properties in both dystrophic and control myotubes. Profiling of secretory products revealed that ApN downregulated the secretion of two pro-inflammatory factors (TNFα and IL-17A), one soluble receptor (sTNFRII), and one chemokine (CCL28) in DMD myotubes, while upregulating IL-6 that exerts some anti-inflammatory effects. These changes were explained by pretranslational mechanisms. Earlier events of the ApN cascade involved AdipoR1, the main receptor for muscle, and the AMPK-SIRT1-PGC-1α axis leading, besides alteration of the myokine profile, to the upregulation of utrophin A (a dystrophin analog). ApN retains its beneficial properties in dystrophic muscles by activating the AdipoR1-AMPK-SIRT1-PGC-1α pathway, thereby inducing a shift in the secretion of downstream myokines toward a less inflammatory profile while upregulating utrophin. ApN, the early events of the cascade and downstream myokines may be therapeutic targets for the management of DMD.
Liu, Aiqin; Jennings, Louise M; Ingham, Eileen; Fisher, John
2015-09-18
The successful development of early-stage cartilage and meniscus repair interventions in the knee requires biomechanical and biotribological understanding of the design of the therapeutic interventions and their tribological function in the natural joint. The aim of this study was to develop and validate a porcine knee model using a whole joint knee simulator for investigation of the tribological function and biomechanical properties of the natural knee, which could then be used to pre-clinically assess the tribological performance of cartilage and meniscal repair interventions prior to in vivo studies. The tribological performance of standard artificial bearings in terms of anterior-posterior (A/P) shear force was determined in a newly developed six degrees of freedom tribological joint simulator. The porcine knee model was then developed and the tribological properties in terms of shear force measurements were determined for the first time for three levels of biomechanical constraints including A/P constrained, spring force semi-constrained and A/P unconstrained conditions. The shear force measurements showed higher values under the A/P constrained condition (predominantly sliding motion) compared to the A/P unconstrained condition (predominantly rolling motion). This indicated that the shear force simulation model was able to differentiate between tribological behaviours when the femoral and tibial bearing was constrained to slide or/and roll. Therefore, this porcine knee model showed the potential capability to investigate the effect of knee structural, biomechanical and kinematic changes, as well as different cartilage substitution therapies on the tribological function of natural knee joints. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Roach, Shane M.; Song, Dong; Berger, Theodore W.
2012-01-01
Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947
NASA Astrophysics Data System (ADS)
Rebollo, Francisco J.; Jesús Moral García, Francisco
2016-04-01
Soil apparent electrical conductivity (ECa) is one of the simplest, least expensive soil measurements that integrates many soil properties affecting crop productivity, including, for instance, soil texture, water content, and cation exchange capacity. The ECa measurements obtained with a 3100 Veris sensor, operating in both shallow (0-30 cm), ECs, and deep (0-90 cm), ECd, mode, can be used as an additional and essential information to be included in a probabilistic model, the Rasch model, with the aim of quantifying the overall soil fertililty potential in an agricultural field. This quantification should integrate the main soil physical and chemical properties, with different units. In this work, the formulation of the Rasch model integrates 11 soil properties (clay, silt and sand content, organic matter -OM-, pH, total nitrogen -TN-, available phosphorus -AP- and potassium -AK-, cation exchange capacity -CEC-, ECd, and ECs) measured at 70 locations in a field. The main outputs of the model include a ranking of all soil samples according to their relative fertility potential and the unexpected behaviours of some soil samples and properties. In the case study, the considered soil variables fit the model reasonably, having an important influence on soil fertility, except pH, probably due to its homogeneity in the field. Moreover, ECd, ECs are the most influential properties on soil fertility and, on the other hand, AP and AK the less influential properties. The use of the Rasch model to estimate soil fertility potential (always in a relative way, taking into account the characteristics of the studied soil) constitutes a new application of great practical importance, enabling to rationally determine locations in a field where high soil fertility potential exists and establishing those soil samples or properties which have any anomaly; this information can be necessary to conduct site-specific treatments, leading to a more cost-effective and sustainable field management. Furthermore, from the measures of soil fertility potential at sampled locations, estimates can be computed using, for instance, a geostatistical algorithm, and these estimates can be utilized to map soil fertility potential and delineate with a rational basis the management zones in the field. Keywords: Rasch model; soil management; soil electrical conductivity; probabilistic algorithm.
Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.
Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin
2017-01-01
The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (I Ca,L ) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). I Ca,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased I Ca,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced I Ca,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, I Ca,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Martinez-Espinosa, Pedro L.; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming
2014-01-01
Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing. PMID:25267913
NASA Astrophysics Data System (ADS)
Xiong, Jiaqing; Jiao, Chenlu; Xu, Sijun; Tao, Jin; Zhang, Desuo; Lin, Hong; Chen, Yuyue
2015-06-01
Ice-bath self-assembly was employed to fabricate the GO/AP-MCC/CS aerogel based on natural materials. The components are amphiprotic microcrystalline cellulose (AP-MCC), chitosan (CS), and graphene oxide (GO), which act as the main framework, auxiliary framework and adhesive, respectively. The results of characterization determines the components form the GO/AP-MCC/CS aerogel according to chemical interactions. The mechanical properties depend largely on the mass ratio of AP-MCC/CS, which can be regulated by controlling the contents of AP-MCC and CS. The resultant GO/AP-MCC/CS aerogel was observed possessing three-dimensional (3D) interpenetrating porous networks with wrinkled structure on the inner wall, which provide a good encapsulation capacity for the guest molecules. As expected, owing to the amphiprotic properties and large specific surface area, GO/AP-MCC/CS aerogel exhibits high-efficiency load capacity for both anionic (CR) and cationic azo molecules (MB), which can reach up to about 132.2 mg/g for CR and 123.2 mg/g for MB, respectively.
Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F; Buss, Eric W; Richter, Hannah; Oh, M Matthew; Nicholson, Daniel A; Disterhoft, John F
2015-09-23
Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29-32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K(+) channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. Significance statement: Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with faster action potential repolarization through enhanced expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the cell bodies of CA3 pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/3513206-13$15.00/0.
Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F.; Buss, Eric W.; Richter, Hannah; Oh, M. Matthew
2015-01-01
Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29–32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K+ channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. SIGNIFICANCE STATEMENT Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with faster action potential repolarization through enhanced expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the cell bodies of CA3 pyramidal neurons. PMID:26400949
Artim-Esen, Bahar; Smoktunowicz, Natalia; McDonnell, Thomas; Ripoll, Vera M; Pericleous, Charis; Mackie, Ian; Robinson, Eifion; Isenberg, David; Rahman, Anisur; Ioannou, Yiannis; Chambers, Rachel C; Giles, Ian
2017-09-07
Factor (F) Xa reactive IgG isolated from patients with antiphospholipid syndrome (APS) display higher avidity binding to FXa with greater coagulant effects compared to systemic lupus erythematosus (SLE) non APS IgG. FXa signalling via activation of protease-activated receptors (PAR) leads to increased intracellular calcium (Ca 2+ ). Therefore, we measured alterations in Ca 2+ levels in human umbilical vein endothelial cells (HUVEC) following FXa-mediated PAR activation and investigated whether FXa reactive IgG from patients with APS or SLE/APS- alter these responses. We observed concentration-dependent induction of Ca 2+ release by FXa that was potentiated by APS-IgG and SLE/APS- IgG compared to healthy control subjects' IgG, and FXa alone. APS-IgG and SLE/APS- IgG increased FXa mediated NFκB signalling and this effect was fully-retained in the affinity purified anti-FXa IgG sub-fraction. Antagonism of PAR-1 and PAR-2 reduced FXa-induced Ca 2+ release. Treatment with a specific FXa inhibitor, hydroxychloroquine or fluvastatin significantly reduced FXa-induced and IgG-potentiated Ca 2+ release. In conclusion, PAR-1 and PAR-2 are involved in FXa-mediated intracellular Ca 2+ release in HUVEC and FXa reactive IgG from patients with APS and/or SLE potentiate this effect. Further work is required to explore the potential use of IgG FXa reactivity as a novel biomarker to stratify treatment with FXa inhibitors in these patients.
NASA Astrophysics Data System (ADS)
Kleinfelder, S.; Li, S.; Bieser, F.; Gareus, R.; Greiner, L.; King, J.; Levesque, J.; Matis, H. S.; Oldenburg, M.; Ritter, H. G.; Retiere, F.; Rose, A.; Schweda, K.; Shabetai, A.; Sichtermann, E.; Thomas, J. H.; Wieman, H. H.; Bichsel, H.
2006-09-01
A vertex detector that can measure particles with charm or bottom quarks would dramatically expand the physics capability of the STAR detector at RHIC. To accomplish this, we are proposing to build the Heavy Flavor Tracker (HFT) using 2×2 cm Active Pixels Sensors (APS). Ten of these APS chips will be arranged on a ladder (0.28% of a radiation length) at radii of 1.5 and at 5.0 cm. We have examined several properties of APS chips, so that we can characterize the performance of this detector. Using 1.5 GeV/ c electrons, we have measured the charge collected and compared it to the expected charge. To achieve high efficiency, we have considered two different cluster finding algorithms and found that the choice of algorithm is dependent on noise level. We have demonstrated that a Scanning Electron Microscope can probe properties of an APS chip. In particular, we studied several position resolution algorithms. Finally, we studied the properties of pixel pitches from 5 to 30 μm.
Propellant development for the Advanced Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Landers, L. C.; Stanley, C. B.; Ricks, D. W.
1991-01-01
The properties of a propellant developed for the NASA Advanced Solid Rocket Motor (ASRM) are described in terms of its composition, performance, and compliance to NASA specifications. The class 1.3 HTPB/AP/A1 propellant employs an ester plasticizer and the content of ballistic solids is set at 88 percent. Ammonia evolution is prevented by the utilization of a neutral bonding agent which allows continuous mixing. The propellant also comprises a bimodal AP blend with one ground fraction, ground AP of at least 20 microns, and ferric oxide to control the burning rate. The propellant's characteristics are discussed in terms of tradeoffs in AP particle size and the types of Al powder, bonding agent, and HTPB polymer. The size and shape of the ballistic solids affect the processability, ballistic properties, and structural properties of the propellant. The revised baseline composition is based on maximizing the robustness of in-process viscosity, structural integrity, and burning-rate tailoring range.
Mediation of the vasoactive properties of diadenosine tetraphosphate via various purinoceptors.
van der Giet, M; Jankowski, J; Schlüter, H; Zidek, W; Tepel, M
1998-12-01
The vasoactive properties of P1,P4-diadenosine tetraphosphate (Ap4A) were studied by measuring the effects of perfusion pressure of a rat isolated perfused kidney. The vasoconstrictive response to Ap4A was mediated to a large extent to a P2X receptor which could be shown by inhibition with pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium. The remaining vasoconstriction of Ap4A could be blocked by a 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A1 receptor antagonist In raised tone preparation Ap4A evoked vasodilation when P2 receptors were blocked by suramin. The dilation was not mediated by a P2Y receptor as the effect could not be blocked by suramin. Ap4A induces vasoconstriction via A1 and P2X receptors and vasodilatation via an unidentified receptor which is not a P2Y receptor. Ap4A may play an important role in kidney perfusion and, thus, in blood-pressure control.
French, Christopher R; Zeng, Zhen; Williams, David A; Hill-Yardin, Elisa L; O'Brien, Terence J
2016-02-01
Rapid transmembrane flow of sodium ions produces the depolarizing phase of action potentials (APs) in most excitable tissue through voltage-gated sodium channels (NaV). Macroscopic currents display rapid activation followed by fast inactivation (IF) within milliseconds. Slow inactivation (IS) has been subsequently observed in several preparations including neuronal tissues. IS serves important physiological functions, but the kinetic properties are incompletely characterized, especially the operative timescales. Here we present evidence for an "intermediate inactivation" (II) process in rat hippocampal CA1 neurons with time constants of the order of 100 ms. The half-inactivation potentials (V0.5) of steady-state inactivation curves were hyperpolarized by increasing conditioning pulse duration from 50 to 500 ms and could be described by a sum of Boltzmann relations. II state transitions were observed after opening as well as subthreshold potentials. Entry into II after opening was relatively insensitive to membrane potential, and recovery of II became more rapid at hyperpolarized potentials. Removal of fast inactivation with cytoplasmic papaine revealed time constants of INa decay corresponding to II and IS with long depolarizations. Dynamic clamp revealed attenuation of trains of APs over the 10(2)-ms timescale, suggesting a functional role of II in repetitive firing accommodation. These experimental findings could be reproduced with a five-state Markov model. It is likely that II affects important aspects of hippocampal neuron response and may provide a drug target for sodium channel modulation. Copyright © 2016 the American Physiological Society.
Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons.
Bischofberger, Josef; Geiger, Jörg R P; Jonas, Peter
2002-12-15
The presynaptic Ca2+ signal is a key determinant of transmitter release at chemical synapses. In cortical synaptic terminals, however, little is known about the kinetic properties of the presynaptic Ca2+ channels. To investigate the timing and magnitude of the presynaptic Ca2+ inflow, we performed whole-cell patch-clamp recordings from mossy fiber boutons (MFBs) in rat hippocampus. MFBs showed large high-voltage-activated Ca(2+) currents, with a maximal amplitude of approximately 100 pA at a membrane potential of 0 mV. Both activation and deactivation were fast, with time constants in the submillisecond range at a temperature of approximately 23 degrees C. An MFB action potential (AP) applied as a voltage-clamp command evoked a transient Ca2+ current with an average amplitude of approximately 170 pA and a half-duration of 580 microsec. A prepulse to +40 mV had only minimal effects on the AP-evoked Ca2+ current, indicating that presynaptic APs open the voltage-gated Ca2+ channels very effectively. On the basis of the experimental data, we developed a kinetic model with four closed states and one open state, linked by voltage-dependent rate constants. Simulations of the Ca2+ current could reproduce the experimental data, including the large amplitude and rapid time course of the current evoked by MFB APs. Furthermore, the simulations indicate that the shape of the presynaptic AP and the gating kinetics of the Ca2+ channels are tuned to produce a maximal Ca2+ influx during a minimal period of time. The precise timing and high efficacy of Ca2+ channel activation at this cortical glutamatergic synapse may be important for synchronous transmitter release and temporal information processing.
Althaus, A L; Sagher, O; Parent, J M; Murphy, G G
2015-02-15
Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2-4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model. Copyright © 2015 the American Physiological Society.
Stavrou, Brigitte M; Beck, Caroline; Flores, Nicholas A
2001-01-01
The structural conformation of diadenosine tetraphosphate (Ap4A) and pentaphosphate (Ap5A) has been reported to alter as pH is reduced. As such, it is possible that the cardiac effects of Ap4A and Ap5A vary during acidosis and myocardial ischaemia due to changes in ligand structure, receptor proteins or intracellular signalling. We investigated whether the cardiac electrophysiological and coronary vasomotor effects of Ap4A and Ap5A are preserved under conditions of extracellular acidosis (pH 6.5) and alkalosis (pH 8.5) and whether Ap4A has any electrophysiological or antiarrhythmic effects during ischaemia. Transmembrane right ventricular action potentials, refractory periods and coronary perfusion pressure were recorded from isolated, Langendorff-perfused guinea-pig hearts under constant flow conditions. The effects of 1 nM and 1 μM Ap4A and Ap5A were studied at pH 7.4, 6.5 and 8.5. The effects of 1 μM Ap4A were studied during global low-flow ischaemia and reperfusion. At pH 7.4, Ap4A and Ap5A increased action potential duration (APD95) and refractory period (RP) and reduced coronary perfusion pressure. The electrophysiological effects were absent at pH 6.5 while the reductions in perfusion pressure were attenuated. At pH 8.5, Ap4A increased RP but the effects of Ap4A and Ap5A on perfusion pressure were attenuated. During ischaemia, Ap4A had no antiarrhythmic or electrophysiological effects. These data demonstrate the importance of extracellular pH in influencing the effects of Ap4A and Ap5A on the heart and indicate that any potentially cardioprotective effects of these compounds during normal perfusion at physiological pH are absent during ischaemia. PMID:11588119
A four-component model of the action potential in mouse detrusor smooth muscle cell
Brain, Keith L.; Young, John S.; Manchanda, Rohit
2018-01-01
Background and hypothesis Detrusor smooth muscle cells (DSMCs) of the urinary bladder are electrically connected to one another via gap junctions and form a three dimensional syncytium. DSMCs exhibit spontaneous electrical activity, including passive depolarizations and action potentials. The shapes of spontaneous action potentials (sAPs) observed from a single DSM cell can vary widely. The biophysical origins of this variability, and the precise components which contribute to the complex shapes observed are not known. To address these questions, the basic components which constitute the sAPs were investigated. We hypothesized that linear combinations of scaled versions of these basic components can produce sAP shapes observed in the syncytium. Methods and results The basic components were identified as spontaneous evoked junction potentials (sEJP), native AP (nAP), slow after hyperpolarization (sAHP) and very slow after hyperpolarization (vsAHP). The experimental recordings were grouped into two sets: a training data set and a testing data set. A training set was used to estimate the components, and a test set to evaluate the efficiency of the estimated components. We found that a linear combination of the identified components when appropriately amplified and time shifted replicated various AP shapes to a high degree of similarity, as quantified by the root mean square error (RMSE) measure. Conclusions We conclude that the four basic components—sEJP, nAP, sAHP, and vsAHP—identified and isolated in this work are necessary and sufficient to replicate all varieties of the sAPs recorded experimentally in DSMCs. This model has the potential to generate testable hypotheses that can help identify the physiological processes underlying various features of the sAPs. Further, this model also provides a means to classify the sAPs into various shape classes. PMID:29351282
A four-component model of the action potential in mouse detrusor smooth muscle cell.
Padmakumar, Mithun; Brain, Keith L; Young, John S; Manchanda, Rohit
2018-01-01
Detrusor smooth muscle cells (DSMCs) of the urinary bladder are electrically connected to one another via gap junctions and form a three dimensional syncytium. DSMCs exhibit spontaneous electrical activity, including passive depolarizations and action potentials. The shapes of spontaneous action potentials (sAPs) observed from a single DSM cell can vary widely. The biophysical origins of this variability, and the precise components which contribute to the complex shapes observed are not known. To address these questions, the basic components which constitute the sAPs were investigated. We hypothesized that linear combinations of scaled versions of these basic components can produce sAP shapes observed in the syncytium. The basic components were identified as spontaneous evoked junction potentials (sEJP), native AP (nAP), slow after hyperpolarization (sAHP) and very slow after hyperpolarization (vsAHP). The experimental recordings were grouped into two sets: a training data set and a testing data set. A training set was used to estimate the components, and a test set to evaluate the efficiency of the estimated components. We found that a linear combination of the identified components when appropriately amplified and time shifted replicated various AP shapes to a high degree of similarity, as quantified by the root mean square error (RMSE) measure. We conclude that the four basic components-sEJP, nAP, sAHP, and vsAHP-identified and isolated in this work are necessary and sufficient to replicate all varieties of the sAPs recorded experimentally in DSMCs. This model has the potential to generate testable hypotheses that can help identify the physiological processes underlying various features of the sAPs. Further, this model also provides a means to classify the sAPs into various shape classes.
Zinc Regulation of Aminopeptidase B Involved in Neuropeptide Production
Hwang, Shin-Rong; Hook, Vivian
2009-01-01
Aminopeptidase B (AP-B) is a metallopeptidase that removes basic residues from the N-termini of neuropeptide substrates in secretory vesicles. This study assessed zinc regulation of AP-B activity, since secretory vesicles contain endogenous zinc. AP-B was inhibited by zinc at concentrations typically present in secretory vesicles. Zinc effects were dependent on concentration, incubation time, and the molar ratio of zinc to enzyme. AP-B activity was recovered upon removal of zinc. AP-B with zinc became susceptible to degradation by trypsin, suggesting that zinc alters enzyme conformation. Zinc regulation demonstrates the metallopeptidase property of AP-B. PMID:18571504
NASA Astrophysics Data System (ADS)
Li, Gang; Bai, Weiyang
2018-04-01
Hierarchical flower-like cobalt tetroxide (Co3O4) was successfully synthesized via a facile precipitation method in combination with heat treatment of the cobalt oxalate precursor. The samples were systematically characterized by thermo gravimetric analysis and derivative thermo gravimetric analysis (TGA-DTG), X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and N2 adsorption-desorption measurements. The results indicate that the as-fabricated Co3O4 exhibits uniform flower-like morphologies with diameters of 8-12 μm, which are constructed by one-dimensional nanowires. Furthermore, catalytic effect of this hierarchical porous Co3O4 on ammonium perchlorate (AP) pyrolysis was investigated using differential scanning calorimetry (DSC) techniques. It is found that the pyrolysis temperature of AP shifts 142 °C downward with a 2 wt% addition content of Co3O4. Meanwhile, the addition of Co3O4 results in a dramatic reduction of the apparent activation energy of AP pyrolysis from 216 kJ mol-1 to 152 kJ mol-1, determined by the Kissinger correlation. The results endorse this material as a potential catalyst in AP decomposition.
Differential excitability and modulation of striatal medium spiny neuron dendrites
Day, Michelle; Wokosin, David; Plotkin, Joshua L.; Tian, Xinyoung; Surmeier, D. James
2011-01-01
The loss of striatal dopamine (DA) in Parkinson's disease (PD) models triggers a cell-type specific reduction in the density of dendritic spines in D2 receptor-expressing striatopallidal medium spiny neurons (D2 MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single back-propagating action potentials (bAP) produced more reliable elevations in cytosolic Ca2+ concentration at distal dendritic locations in D2 MSNs than at similar locations in D1 receptor-expressing striatonigral MSNs (D1 MSNs). In both cell types, the dendritic Ca2+ entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K+ channels. Local application of DA depressed dendritic bAP-evoked Ca2+ transients, whereas application of ACh increased these Ca2+ transients in D2 MSNs—but not in D1 MSNs. Following DA depletion, bAP-evoked Ca2+ transients were enhanced in distal dendrites and spines in D2 MSNs. Taken together, these results suggest that normally D2 MSN dendrites are more excitable than those of D1 MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models. PMID:18987196
AP® Potential Predicted by PSAT/NMSQT® Scores Using Logistic Regression. Statistical Report 2014-1
ERIC Educational Resources Information Center
Zhang, Xiuyuan; Patel, Priyank; Ewing, Maureen
2014-01-01
AP Potential™ is an educational guidance tool that uses PSAT/NMSQT® scores to identify students who have the potential to do well on one or more Advanced Placement® (AP®) Exams. Students identified as having AP potential, perhaps students who would not have been otherwise identified, should consider enrolling in the corresponding AP course if they…
Walker, Ann L; Ancellin, Nicolas; Beaufils, Benjamin; Bergeal, Marylise; Binnie, Margaret; Bouillot, Anne; Clapham, David; Denis, Alexis; Haslam, Carl P; Holmes, Duncan S; Hutchinson, Jonathan P; Liddle, John; McBride, Andrew; Mirguet, Olivier; Mowat, Christopher G; Rowland, Paul; Tiberghien, Nathalie; Trottet, Lionel; Uings, Iain; Webster, Scott P; Zheng, Xiaozhong; Mole, Damian J
2017-04-27
Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.
Larkum, M E; Zhu, J J; Sakmann, B
2001-01-01
Double, triple and quadruple whole-cell voltage recordings were made simultaneously from different parts of the apical dendritic arbor and the soma of adult layer 5 (L5) pyramidal neurons. We investigated the membrane mechanisms that support the conduction of dendritic action potentials (APs) between the dendritic and axonal AP initiation zones and their influence on the subsequent AP pattern. The duration of the current injection to the distal dendritic initiation zone controlled the degree of coupling with the axonal initiation zone and the AP pattern. Two components of the distally evoked regenerative potential were pharmacologically distinguished: a rapidly rising peak potential that was TTX sensitive and a slowly rising plateau-like potential that was Cd2+ and Ni2+ sensitive and present only with longer-duration current injection. The amplitude of the faster forward-propagating Na+-dependent component and the amplitude of the back-propagating AP fell into two classes (more distinctly in the forward-propagating case). Current injection into the dendrite altered propagation in both directions. Somatic current injections that elicited single Na+ APs evoked bursts of Na+ APs when current was injected simultaneously into the proximal apical dendrite. The mechanism did not depend on dendritic Na+–Ca2+ APs. A three-compartment model of a L5 pyramidal neuron is proposed. It comprises the distal dendritic and axonal AP initiation zones and the proximal apical dendrite. Each compartment contributes to the initiation and to the pattern of AP discharge in a distinct manner. Input to the three main dendritic arbors (tuft dendrites, apical oblique dendrites and basal dendrites) has a dominant influence on only one of these compartments. Thus, the AP pattern of L5 pyramids reflects the laminar distribution of synaptic activity in a cortical column. PMID:11389204
The Mineral–Collagen Interface in Bone
2015-01-01
The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581
Lu, Ting; Wade, Kirstie; Sanchez, Jason Tait
2017-01-01
ABSTRACT We have previously shown that late-developing avian nucleus magnocellularis (NM) neurons (embryonic [E] days 19–21) fire action potentials (APs) that resembles a band-pass filter in response to sinusoidal current injections of varying frequencies. NM neurons located in the mid- to high-frequency regions of the nucleus fire preferentially at 75 Hz, but only fire a single onset AP to frequency inputs greater than 200 Hz. Surprisingly, NM neurons do not fire APs to sinusoidal inputs less than 20 Hz regardless of the strength of the current injection. In the present study we evaluated intrinsic mechanisms that prevent AP generation to low frequency inputs. We constructed a computational model to simulate the frequency-firing patterns of NM neurons based on experimental data at both room and near physiologic temperatures. The results from our model confirm that the interaction among low- and high-voltage activated potassium channels (KLVA and KHVA, respectively) and voltage dependent sodium channels (NaV) give rise to the frequency-firing patterns observed in vitro. In particular, we evaluated the regulatory role of KLVA during low frequency sinusoidal stimulation. The model shows that, in response to low frequency stimuli, activation of large KLVA current counterbalances the slow-depolarizing current injection, likely permitting NaV closed-state inactivation and preventing the generation of APs. When the KLVA current density was reduced, the model neuron fired multiple APs per sinusoidal cycle, indicating that KLVA channels regulate low frequency AP firing of NM neurons. This intrinsic property of NM neurons may assist in optimizing response to different rates of synaptic inputs. PMID:28481659
Hardy, M E L; Lawrence, C L; Standen, N B; Rodrigo, G C
2006-01-01
Potential-sensitive dyes have primarily been used to optically record action potentials (APs) in whole heart tissue. Using these dyes to record drug-induced changes in AP morphology of isolated cardiac myocytes could provide an opportunity to develop medium throughout assays for the pharmaceutical industry. Ideally, this requires that the dye has a consistent and rapid response to membrane potential, is insensitive to movement, and does not itself affect AP morphology. We recorded the AP from isolated adult guinea-pig ventricular myocytes optically using di-8-ANEPPS in a single-excitation dual-emission ratiometric system, either separately in electrically field stimulated myocytes, or simultaneously with an electrical AP recorded with a patch electrode in the whole-cell bridge mode. The ratio of di-8-ANEPPS fluorescence signal was calibrated against membrane potential using a switch-clamp to voltage clamp the myocyte. Our data show that the ratio of the optical signals emitted at 560/620 nm is linearly related to voltage over the voltage range of an AP, producing a change in ratio of 7.5% per 100 mV, is unaffected by cell movement and is identical to the AP recorded simultaneously with a patch electrode. However, the APD90 recorded optically in myocytes loaded with di-8-ANEPPS was significantly longer than in unloaded myocytes recorded with a patch electrode (355.6+/-13.5 vs. 296.2+/-16.2 ms; p<0.01). Despite this effect, the apparent IC50 for cisapride, which prolongs the AP by blocking IKr, was not significantly different whether determined optically or with a patch electrode (91+/-46 vs. 81+/-20 nM). These data show that the optical AP recorded ratiometrically using di-8-ANEPPS from a single ventricular myocyte accurately follows the action potential morphology. This technique can be used to estimate the AP prolonging effects of a compound, although di-8-ANEPPS itself prolongs APD90. Optical dyes require less technical skills and are less invasive than conventional electrophysiological techniques and, when coupled to ventricular myocytes, decreases animal usage and facilitates higher throughput assays.
Clarke, Stephen G.; Scarnati, Matthew S.
2016-01-01
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. PMID:27911759
Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G
2016-11-09
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. Copyright © 2016 the authors 0270-6474/16/3611559-14$15.00/0.
Contribution of the Axon Initial Segment to Action Potentials Recorded Extracellularly.
Teleńczuk, Maria; Brette, Romain; Destexhe, Alain; Teleńczuk, Bartosz
2018-01-01
Action potentials (APs) are electric phenomena that are recorded both intracellularly and extracellularly. APs are usually initiated in the short segment of the axon called the axon initial segment (AIS). It was recently proposed that at the onset of an AP the soma and the AIS form a dipole. We study the extracellular signature [the extracellular AP (EAP)] generated by such a dipole. First, we demonstrate the formation of the dipole and its extracellular signature in detailed morphological models of a reconstructed pyramidal neuron. Then, we study the EAP waveform and its spatial dependence in models with axonal AP initiation and contrast it with the EAP obtained in models with somatic AP initiation. We show that in the models with axonal AP initiation the dipole forms between somatodendritic compartments and the AIS, and not between soma and dendrites as in the classical models. The soma-dendrites dipole is present only in models with somatic AP initiation. Our study has consequences for interpreting extracellular recordings of single-neuron activity and determining electrophysiological neuron types, but also for better understanding the origins of the high-frequency macroscopic extracellular potentials recorded in the brain.
Chéreau, Ronan; Saraceno, G Ezequiel; Angibaud, Julie; Cattaert, Daniel; Nägerl, U Valentin
2017-02-07
Axons convey information to nearby and distant cells, and the time it takes for action potentials (APs) to reach their targets governs the timing of information transfer in neural circuits. In the unmyelinated axons of hippocampus, the conduction speed of APs depends crucially on axon diameters, which vary widely. However, it is not known whether axon diameters are dynamic and regulated by activity-dependent mechanisms. Using time-lapse superresolution microscopy in brain slices, we report that axons grow wider after high-frequency AP firing: synaptic boutons undergo a rapid enlargement, which is mostly transient, whereas axon shafts show a more delayed and progressive increase in diameter. Simulations of AP propagation incorporating these morphological dynamics predicted bidirectional effects on AP conduction speed. The predictions were confirmed by electrophysiological experiments, revealing a phase of slowed down AP conduction, which is linked to the transient enlargement of the synaptic boutons, followed by a sustained increase in conduction speed that accompanies the axon shaft widening induced by high-frequency AP firing. Taken together, our study outlines a morphological plasticity mechanism for dynamically fine-tuning AP conduction velocity, which potentially has wide implications for the temporal transfer of information in the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loginova, Y.F.; Dezhurov, S.V.; Zherdeva, V.V.
Highlights: Black-Right-Pointing-Pointer New QDs coated with combination of polythiol ligands and silica shell were synthesized. Black-Right-Pointing-Pointer We examine the QDs stability in digestive tract of mice after per os administration. Black-Right-Pointing-Pointer The polymer/silica shell prevents QDs degradation and fluorescence quenching in vivo. -- Abstract: CdSe-core, ZnS-capped semiconductor quantum dots (QDs) are of great potential for biomedical applications. However, applications in the gastrointestinal tract for in vivo imaging and therapeutic purposes are hampered by their sensitivity to acidic environments and potential toxicity. Here we report the use of coatings with a combination of polythiol ligands and silica shell (QDs PolyT-APS) tomore » stabilize QDs fluorescence under acidic conditions. We demonstrated the stability of water-soluble QDs PolyT-APS both in vitro, in strong acidic solutions, and in vivo. The biodistribution, stability and photoluminescence properties of QDs in the gastrointestinal tract of mice after per os administration were assessed. We demonstrated that QDs coated with current traditional materials - mercapto compounds (QDs MPA) and pendant thiol group (QDs PolyT) - are not capable of protecting QDs from chemically induced degradation and surface modification. Polythiol ligands and silica shell quantum dots (QDs PolyT-APS) are suitable for biological and biomedical applications in the gastrointestinal tract.« less
Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction.
Troupes, Constantine D; Wallner, Markus; Borghetti, Giulia; Zhang, Chen; Mohsin, Sadia; von Lewinski, Dirk; Berretta, Remus M; Kubo, Hajime; Chen, Xiongwen; Soboloff, Jonathan; Houser, Steven
2017-07-07
Pathological increases in cardiac afterload result in myocyte hypertrophy with changes in myocyte electrical and mechanical phenotype. Remodeling of contractile and signaling Ca 2+ occurs in pathological hypertrophy and is central to myocyte remodeling. STIM1 (stromal interaction molecule 1) regulates Ca 2+ signaling in many cell types by sensing low endoplasmic reticular Ca 2+ levels and then coupling to plasma membrane Orai channels to induce a Ca 2+ influx pathway. Previous reports suggest that STIM1 may play a role in cardiac hypertrophy, but its role in electrical and mechanical phenotypic alterations is not well understood. To define the contributions of STIM1-mediated Ca 2+ influx on electrical and mechanical properties of normal and diseased myocytes, and to determine whether Orai channels are obligatory partners for STIM1 in these processes using a clinically relevant large animal model of hypertrophy. Cardiac hypertrophy was induced by slow progressive pressure overload in adult cats. Hypertrophied myocytes had increased STIM1 expression and activity, which correlated with altered Ca 2 + -handling and action potential (AP) prolongation. Exposure of hypertrophied myocytes to the Orai channel blocker BTP2 caused a reduction of AP duration and reduced diastolic Ca 2+ spark rate. BTP2 had no effect on normal myocytes. Forced expression of STIM1 in cultured adult feline ventricular myocytes increased diastolic spark rate and prolonged AP duration. STIM1 expression produced an increase in the amount of Ca 2+ stored within the sarcoplasmic reticulum and activated Ca 2+ /calmodulin-dependent protein kinase II. STIM1 expression also increased spark rates and induced spontaneous APs. STIM1 effects were eliminated by either BTP2 or by coexpression of a dominant negative Orai construct. STIM1 can associate with Orai in cardiac myocytes to produce a Ca 2+ influx pathway that can prolong the AP duration and load the sarcoplasmic reticulum and likely contributes to the altered electromechanical properties of the hypertrophied heart. © 2017 American Heart Association, Inc.
Bamdad, Fatemeh; Shin, Seulki Hazel; Suh, Joo-Won; Nimalaratne, Chamila; Sunwoo, Hoon
2017-04-10
Casein-derived peptides are shown to possess radical scavenging and metal chelating properties. The objective of this study was to evaluate novel anti-inflammatory properties of casein hydrolysates (CH) produced by an eco-friendly process that combines high hydrostatic pressure with enzymatic hydrolysis (HHP-EH). Casein was hydrolysed by different proteases, including flavourzyme (Fla), savinase (Sav), thermolysin (Ther), trypsin (Try), and elastase (Ela) at 0.1, 50, 100, and 200 MPa pressure levels under various enzyme-to-substrate ratios and incubation times. Casein hydrolysates were evaluated for the degree of hydrolysis (DH), molecular weight distribution patterns, and anti-inflammatory properties in chemical and cellular models. Hydrolysates produced using HHP-EH exhibited higher DH values and proportions of smaller peptides compared to atmospheric pressure-enzymatic hydrolysis (AP-EH). Among five enzymes, Fla-digested HHP-EH-CH (HHP-Fla-CH) showed significantly higher antioxidant properties than AP-Fla-CH. The anti-inflammatory properties of HHP-Fla-CH were also observed by significantly reduced nitric oxide and by the suppression of the synthesis of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed that 59% of the amino acids of the peptides in HHP-Fla-CH were composed of proline, valine, and leucine, indicating the potential anti-inflammatory properties. In conclusion, the HHP-EH method provides a promising technology to produce bioactive peptides from casein in an eco-friendly process.
Thrombopoietin as Early Biomarker of Disease Severity in Patients With Acute Pancreatitis.
Lupia, Enrico; Pigozzi, Luca; Pivetta, Emanuele; Bosco, Ornella; Vizio, Barbara; Loiacono, Maria; Lucchiari, Manuela; Battista, Stefania; Morello, Fulvio; Moiraghi, Corrado; Mengozzi, Giulio; Montrucchio, Giuseppe
2017-02-01
To study the concentrations of thrombopoietin (TPO), a growth factor recently involved in the pathogenesis of experimental acute pancreatitis (AP), and its potential role as an early diagnostic and prognostic biomarker in patients with AP. Thrombopoietin was measured in 44 AP patients, 18 patients with nonpancreatic acute abdominal pain, and 18 healthy volunteers. Acute pancreatitis severity was classified on the basis of the 2012 International Atlanta Symposium on Acute Pancreatitis criteria. Thrombopoietin levels did not differ between AP patients and control subjects, whereas these were higher in patients with moderately severe or severe AP compared with those with mild AP. Receiver operating characteristic curve analysis of TPO for severe AP diagnosis showed an area under the curve of 0.80. A cutoff value of 31.48 pg/mL showed the highest sensitivity, allowing to rule out severe AP when TPO was lower, whereas TPO higher than 98.23 pg/mL was associated with severe AP with high specificity (93.5%). Furthermore, TPO levels were greater in AP patients developing organ dysfunction or sepsis and in nonsurvivors compared with survivors. Our data provide the first evidence for TPO as potential early prognostic biomarker in AP patients. High TPO levels at hospital admission may predict organ dysfunction, sepsis, and fatal outcome in AP patients.
In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe
Zhao, Menglong; Dong, Lili; Liu, Zhuang; Yang, Shuohui
2018-01-01
Background Glypican-3 (GPC3) is highly expressed in most of the hepatocellular carcinomas (HCCs), even in small HCCs. It may be used as a potential biomarker for early detection of HCC. The aptamer is a promising targeting agent with unique advantages over antibody. This study was to introduce a novel GPC3 specific aptamer (AP613-1), to verify its specific binding property in vitro, and to evaluate its targeting efficiency in vivo by performing near-infrared (NIR) fluorescence imaging on an HCC xenograft model. Methods AP613-1 was generated from the systematic evolution of ligands by exponential enrichment. Flow cytometry and aptamer-based immunofluorescence imaging were performed to verify the binding affinity of AP613-1 to GPC3 in vitro. NIR Fluorescence images of nude mice with unilateral (n=12) and bilateral (n=4) subcutaneous xenograft tumors were obtained. Correlation between the tumor fluorescence intensities in vivo and ex vivo was analyzed. Results AP613-1 could specifically bind to GPC3 in vitro. In vivo and ex vivo tumors, fluorescence intensities were in excellent correlation (P<0.001, r=0.968). The fluorescence intensity is significantly higher in tumors given Alexa Fluor 750 (AF750) labeled AP613-1 than in those given AF750 labeled initial ssDNA library both in vivo (P<0.001) and ex vivo (P=0.022). In the mice with bilateral subcutaneous tumors injected with AF750 labeled AP613-1, Huh-7 tumors showed significantly higher fluorescence intensities than A549 tumors both in vivo (P=0.016) and ex vivo (P=0.004). Conclusions AP613-1 displays a specific binding affinity to GPC3 positive HCC. Fluorescently labeled AP613-1 could be used as an imaging probe to subcutaneous HCC in xenograft models. PMID:29675356
Fluorescence and physical properties of the organic salt 2-chloro-4-nitrobenzoate-3-ammonium-phenol
NASA Astrophysics Data System (ADS)
Mani, Rajaboopathi; Rietveld, Ivo B.; Nicolaï, Béatrice; Varadharajan, Krishnakumar; Louhi-Kultanen, Marjatta; Narasimhan, Surumbarkuzhali
2015-09-01
Organic salt 2-chloro-4-nitrobenzoate (CNBA-) 3-ammonium-phenol (AP+) exhibits fluorescence at 338 nm in solution and frontier molecular orbitals generated from TDDFT calculations indicate that the ground state and the excited state are physically separated on AP+ and CNBA-. The crystal structure and physical-chemical properties of the CNBA- · AP+ were investigated using X-ray single crystal and powder diffraction, SEM, FTIR, UV-Vis-NIR, and fluorescence spectrometry. X-ray diffraction demonstrates that the two molecules are linked via N+-H⋯O- ammonium-carboxylate interactions, as expected considering their interaction propensities. Proton transfer has been confirmed by FTIR analysis. The melting point of CNBA- · AP+ was observed at 186 °C, which is higher than pure CNBA (140 °C) or AP (120 °C). The observation of a spatially separated HOMO and LUMO possessing a narrow ΔEST = 73.3 meV and an emission in the blue region is promising as an alternative method for the production of OLED materials.
Scullion, Sarah; Brown, Jon T.; Randall, Andrew D.
2015-01-01
ABSTRACT Accumulation of beta‐amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ‐overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2–5 h treatment with an oligomeric preparation of synthetic human Aβ 1–42 peptide. Whole cell current clamp recordings were compared between Aβ‐(500 nM) and vehicle‐(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub‐threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated “sag”. Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra‐threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after‐hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:25515596
Yi, Yinhui; Zhu, Gangbing; Wu, Xiangyang; Wang, Kun
2016-03-15
Owing to the similar characteristics and physiochemical property of 2-aminophenol (2-AP) and 4-aminophenol (4-AP), the highly sensitive simultaneous electrochemical determination of 2- and 4-AP is a great challenge. In this paper, by electropolymerizing β-cyclodextrin (β-CD) and l-arginine (l-Arg) on the surface of carbon nanotubes@graphene nanoribbons (CNTs@GNRs) core-shell heterostructure, a P-β-CD-l-Arg/CNTs@GNRs nanohybrid modified electrode was prepared successfully, and it could exhibit the synergetic effects of β-CD (high host-guest recognition and enrichment ability), l-Arg (excellent electrocatalytic activity) and CNTs@GNRs (prominent electrochemical properties and large surface area), the P-β-CD-l-Arg/CNTs@GNRs modified electrode was used in the electrochemical determination of 2- and 4-AP, the results demonstrated that the highly sensitive and simultaneous determination of 2- and 4-AP is successfully achieved and the modified electrode has a linear response range of 25.0-1300.0 nM for both 2- and 4-AP, and the detection limits of 2- and 4-AP obtained in this work are 6.2 and 3.5 nM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ningning; He, Cuicui; Liu, Jianbing
2014-11-15
Three Fe{sub 2}O{sub 3} particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe{sub 2}O{sub 3} thermites using ultrasonic mixing. The properties of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe{sub 2}O{sub 3} thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparisonmore » to those of Fe{sub 2}O{sub 3}. The results show that the Al/Fe{sub 2}O{sub 3} thermites are better than Fe{sub 2}O{sub 3} in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe{sub 2}O{sub 3} particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe{sub 2}O{sub 3} and the corresponding thermite is attributed to the large specific surface area of Fe{sub 2}O{sub 3}. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe{sub 2}O{sub 3} particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications. - Graphical abstract: Effects of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} have been compared for the first time by analyzing combustion properties of formulations containing them, suggesting their potential application in AP/HTPB composite propellant systems. - Highlights: • Three Fe{sub 2}O{sub 3} particles with different morphologies (polyhedral, oval and granular) were prepared by the hydrothermal method. • Thermal behaviors of thermites Al/Fe{sub 2}O{sub 3} are studied upon DSC data. • Effects of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} on the combustion properties of the AP/HTPB composite propellant are first investigated.« less
Cardiac tissue slices: preparation, handling, and successful optical mapping.
Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian
2015-05-01
Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.
Cardiac tissue slices: preparation, handling, and successful optical mapping
Wang, Ken; Lee, Peter; Mirams, Gary R.; Sarathchandra, Padmini; Borg, Thomas K.; Gavaghan, David J.; Kohl, Peter
2015-01-01
Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands (“fibers”) in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. PMID:25595366
Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Bhat, Sheeraz Ahmad; Ahmad, Shabbir
2018-01-01
Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.
Pustovit, Ksenia B; Kuzmin, Vladislav S; Abramochkin, Denis V
2016-03-01
Diadenosine polyphosphates (Ap(n)As) are endogenously produced molecules which have been identified in various tissues of mammalian organism, including myocardium. Ap(n)As contribute to the blood clotting and are also widely accepted as regulators of blood vascular tone. Physiological role of Ap(n)As in cardiac muscle has not been completely elucidated. The present study aimed to investigate the effects of diadenosine tetra- (Ap4A) and penta- (Ap5A) polyphosphates on contractile function and action potential (AP) waveform in rat supraventricular and ventricular myocardium. We have also demonstrated the effects of A4pA and Ap5A in myocardial sleeves of pulmonary veins (PVs), which play a crucial role in genesis of atrial fibrillation. APs were recorded with glass microelectrodes in multicellular myocardial preparations. Contractile activity was measured in isolated Langendorff-perfused rat hearts. Both Ap4A and Ap5A significantly reduced contractility of isolated Langendorff-perfused heart and produced significant reduction of AP duration in left and right auricle, interatrial septum, and especially in right ventricular wall myocardium. Ap(n)As also shortened APs in rat pulmonary veins and therefore may be considered as potential proarrhythmic factors. Cardiotropic effects of Ap4A and Ap5A were strongly antagonized by selective blockers of P2 purine receptors suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), while P1 blocker DPCPX was not effective. We conclude that Ap(n)As may be considered as new class of endogenous cardioinhibitory compounds. P2 purine receptors play the central role in mediation of Ap4A and Ap5A inhibitory effects on electrical and contractile activity in different regions of the rat heart.
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.
2017-04-01
Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).
Materials Degradation in the Jovian Radiation Environment
NASA Technical Reports Server (NTRS)
Miloshevsky, Gennady; Caffrey, Jarvis A.; Jones, Jonathan E.; Zoladz, Thomas F.
2017-01-01
The radiation environment of Jupiter represents a significant hazard for Europa Lander deorbit stage components, and presents a significant potential mission risk. The radiolytic degradation of ammonium perchlorate (AP) oxidizer in solid propellants may affect its properties and performance. The Monte Carlo code MONSOL was used for modeling of laboratory experiments on the electron irradiation of propellant samples. An approach for flattening dose profiles along the depth of irradiated samples is proposed. Depth-dose distributions produced by Jovian electrons in multi-layer slabs of materials are calculated. It is found that the absorbed dose in a particular slab is significantly affected by backscattered electrons and photons from neighboring slabs. The dose and radiolytic decomposition of AP crystals are investigated and radiation-induced chemical yields and weight percent of radical products are reported.
Tracking individual action potentials throughout mammalian axonal arbors.
Radivojevic, Milos; Franke, Felix; Altermatt, Michael; Müller, Jan; Hierlemann, Andreas; Bakkum, Douglas J
2017-10-09
Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.
Luco, Sophie; Delmas, Olivier; Vidalain, Pierre-Olivier; Tangy, Frédéric; Weil, Robert; Bourhy, Hervé
2012-01-01
NF-κB transcription factors are crucial for many cellular processes. NF-κB is activated by viral infections to induce expression of antiviral cytokines. Here, we identified a novel member of the human NF-κB family, denoted RelAp43, the nucleotide sequence of which contains several exons as well as an intron of the RelA gene. RelAp43 is expressed in all cell lines and tissues tested and exhibits all the properties of a NF-κB protein. Although its sequence does not include a transactivation domain, identifying it as a class I member of the NF-κB family, it is able to potentiate RelA-mediated transactivation and stabilize dimers comprising p50. Furthermore, RelAp43 stimulates the expression of HIAP1, IRF1, and IFN-β - three genes involved in cell immunity against viral infection. It is also targeted by the matrix protein of lyssaviruses, the agents of rabies, resulting in an inhibition of the NF-κB pathway. Taken together, our data provide the description of a novel functional member of the NF-κB family, which plays a key role in the induction of anti-viral innate immune response.
Vidalain, Pierre-Olivier; Tangy, Frédéric; Weil, Robert; Bourhy, Hervé
2012-01-01
NF-κB transcription factors are crucial for many cellular processes. NF-κB is activated by viral infections to induce expression of antiviral cytokines. Here, we identified a novel member of the human NF-κB family, denoted RelAp43, the nucleotide sequence of which contains several exons as well as an intron of the RelA gene. RelAp43 is expressed in all cell lines and tissues tested and exhibits all the properties of a NF-κB protein. Although its sequence does not include a transactivation domain, identifying it as a class I member of the NF-κB family, it is able to potentiate RelA-mediated transactivation and stabilize dimers comprising p50. Furthermore, RelAp43 stimulates the expression of HIAP1, IRF1, and IFN-β - three genes involved in cell immunity against viral infection. It is also targeted by the matrix protein of lyssaviruses, the agents of rabies, resulting in an inhibition of the NF-κB pathway. Taken together, our data provide the description of a novel functional member of the NF-κB family, which plays a key role in the induction of anti-viral innate immune response. PMID:23271966
Wu, Qi; Henry, James L
2009-01-01
Background Clinical data on osteoarthritis (OA) suggest widespread changes in sensory function that vary during the progression of OA. In previous studies on a surgically-induced animal model of OA we have observed that changes in structure and gene expression follow a variable trajectory over the initial days and weeks. To investigate mechanisms underlying changes in sensory function in this model, the present electrophysiological study compared properties of primary sensory nociceptive neurons at one and two months after model induction with properties in naïve control animals. Pilot data indicated no difference in C- or Aδ-fiber associated neurons and therefore the focus is on Aβ-fiber nociceptive neurons. Results At one month after unilateral derangement of the knee by cutting the anterior cruciate ligament and removing the medial meniscus, the only changes observed in Aβ-fiber dorsal root ganglion (DRG) neurons were in nociceptor-like unresponsive neurons bearing a hump on the repolarization phase; these changes consisted of longer half width, reflecting slowed dynamics of AP genesis, a depolarized Vm and an increased AP amplitude. At two months, changes observed were in Aβ-fiber high threshold mechanoreceptors, which exhibited shorter AP duration at base and half width, shorter rise time and fall time, and faster maximum rising rate/maximum falling rate, reflecting accelerated dynamics of AP genesis. Conclusion These data indicate that Aβ nociceptive neurons undergo significant changes that vary in time and occur later than changes in structure and in nociceptive scores in this surgically induced OA model. Thus, if changes in Aβ-fiber nociceptive neurons in this model reflect a role in OA pain, they may relate to mechanisms underlying pain associated with advanced OA. PMID:19785765
Browne, Geoffrey R; Rutherfurd, Ian D
2017-02-01
Both public health, and the health of the natural environment, are affected by policy decisions made across portfolios as diverse as finance, planning, transport, housing, education, and agriculture. A response to the interdependent character of public health has been the "health in all policies" (HiAP) approach. With reference to parallels between health and environment, this paper argues that lessons from HiAP are useful for creating a new integrated environmental management approach termed "environment in all polices" (EiAP). This paper covers the theoretical foundations of HiAP, which is based on an understanding that health is strongly socially determined. The paper then highlights how lessons learned from HiAP's implementation in Finland, California, and South Australia might be applied to EiAP. It is too early to learn from evaluations of HiAP, but it is apparent that there is no single tool kit for its application. The properties that are likely to be necessary for an effective EiAP approach include a jurisdiction-specific approach, ongoing and strong leadership from a central agency, independent analysis, and a champion. We then apply these properties to Victoria (Australia) to demonstrate how EiAP might work. We encourage further exploration of the feasibility of EiAP as an approach that could make explicit the sometimes surprising environmental implications of a whole range of strategic policies. Citation: Browne GR, Rutherfurd ID. 2017. The case for "environment in all policies": lessons from the "health in all policies" approach in public health. Environ Health Perspect 125:149-154; http://dx.doi.org/10.1289/EHP294.
An Excel‐based implementation of the spectral method of action potential alternans analysis
Pearman, Charles M.
2014-01-01
Abstract Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro‐arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T‐wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. PMID:25501439
Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred
2008-04-09
The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics.
Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred
2008-01-01
The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics. PMID:18398478
E6AP is Required for Human Papillomavirus type 16 E6 to Cause Cervical Cancer in Mice
Shai, Anny; Pitot, Henry C.; Lambert, Paul F.
2010-01-01
High-risk human papillomaviruses cause certain anogenital and head and neck cancers. E6, one of three potent HPV oncogenes that contribute to the development of these malignancies, is a multifunctional protein with many biochemical activities. Among these activities are its ability to bind and inactivate the cellular tumor suppressor p53, induce expression of telomerase, and bind to various other proteins including Bak, E6BP1, E6TP1, and proteins that contain PDZ domains such as hScrib and hDlg. Many of these activities are thought to contribute to E6’s role in carcinogenesis. E6’s interaction with many of these cellular proteins, including p53, leads to their destabilization. This property is mediated at least in part through E6’s ability to recruit the ubiquitin ligase, E6AP into complexes with these cellular proteins resulting in their ubiquitin–mediated degradation by the proteasome. In this study, we address the requirement for E6AP in mediating E6's acute and oncogenic phenotypes, including induction of epithelial hyperplasia, abrogation of DNA damage response and induction of cervical cancer. Loss of E6AP had no discernable effect on E6's ability to induce hyperplasia or abrogate DNA damage responses, akin to what we had earlier observed in the mouse epidermis. Nevertheless, in cervical carcinogenesis studies, there was a complete loss of E6’s oncogenic potential in mice nulligenic for E6AP. Thus, E6AP is absolutely required for E6 to cause cervical cancer. PMID:20530688
NASA Astrophysics Data System (ADS)
Waki, Hiroyuki; Kitamura, Takeshi; Kobayashi, Akira
2009-12-01
The mechanical properties of a MCrAlY coating significantly influence the initiation of cracks in the superalloy substrate under thermomechanical-fatigue conditions. Previous studies have developed a convenient method for evaluating the mechanical properties of sprayed coatings by lateral compression of a circular tube coating. This method does not need chucking, and manufacturing the free-standing coating is quite straightforward. In this study, the mechanical properties of the free-standing CoNiCrAlY coatings prepared using low-pressure plasma spraying (LPPS), high-velocity oxyfuel (HVOF) spraying, and atmospheric plasma spraying (APS) were systematically measured with the lateral compression method at room temperature through to 920 °C. The effect of postspray thermal treatments, in vacuum and in air, on the mechanical properties was investigated in the 400 to 1100 °C temperature range. It was found that high-temperature thermal treatment in air was effective in increasing the bending strength and Young’s modulus. It was especially effective on the APS coatings, which were produced using powders with average size 60 μm, and on HVOF coating, whose bending strengths increased by approximately three times. On the contrary, the enhancement in the LPPS and APS coatings produced with powders 21 μm in size was found to be approximately 1.6 times.
NASA Astrophysics Data System (ADS)
Atilgan, A.; Yurdakul, Ş.; Erdogdu, Y.; Güllüoğlu, M. T.
2018-06-01
The spectroscopic (UV-Vis and infrared), structural and some electronic property observations of the 4-acetylpyridine (4-AP) were reported, which are investigated by using some spectral methods and DFT calculations. FT-IR spectra were obtained for 4-AP at room temperature in the region 4000 cm-1- 400 cm-1. In the DFT calculations, the B3LYP functional with 6-311G++G(d,p) basis set was applied to carry out the quantum mechanical calculations. The Fourier Transform Infrared (FT-IR) and FT-Raman spectra were interpreted by using of normal coordinate analysis based on scaled quantum mechanical force field. The present work expands our understanding of the both the vibrational and structural properties as well as some electronic properties of the 4-AP by means of the theoretical and experimental methods.
Powell, Tom; Watkins, Dianne; Kelly, Daniel
2015-01-01
Objectives To explore perceptions of the current practice and future potential of advanced practitioners (APs) from the perspectives of different professional groups in Wales UK. Design A qualitative study consisting of nine focus group interviews. Methods Initially verbatim transcriptions of each focus group interviews were analysed thematically before themes were merged to represent perceptions for the whole data set. Participants Data were gathered from a total of 67 stakeholders—including APs from a variety of professional groups (eg, nursing, physiotherapy, paramedics) as well as managers, workforce developers, educators and medical staff who have a role developing and supporting APs in practice. Results The results are presented in four themes: (1) demand, policy context and future priorities, (2) role clarity and standardisation, (3) agreement and understanding of the role and (4) interprofessional working. The context within which current and future AP roles were considered was influenced by inexorable demands for healthcare and the requirements to meet health policy priorities. Developing AP roles were hampered currently by a lack of shared understanding and ‘joined-up’ working between different groups such as medical practitioners, managers, commissioners and educators. Conclusions For the AP role to flourish more ‘joined-up’ thinking, support and development opportunities are required between APs, managers, senior clinicians, commissioners and educators. Working together to plan and deliver education, innovation and service delivery is of prime importance to meeting ever increasing complex health needs. This will ensure that future APs are adequately prepared and supported to reach their full potential and help deliver necessary innovations in current models of care delivery. PMID:26656024
Li, Qingsong; Zhang, Yafeng; Shi, Lei; Qiu, Huihui; Zhang, Suming; Qi, Ning; Hu, Jianchen; Yuan, Wei; Zhang, Xiaohua; Zhang, Ke-Qin
2018-04-24
Artificial structural colors based on short-range-ordered amorphous photonic structures (APSs) have attracted great scientific and industrial interest in recent years. However, the previously reported methods of self-assembling colloidal nanoparticles lack fine control of the APS coating and fixation on substrates and poorly realize three-dimensional (3D) conformal coatings for objects with irregular or highly curved surfaces. In this paper, atomization deposition of silica colloidal nanoparticles with poly(vinyl alcohol) as the additive is proposed to solve the above problems. By finely controlling the thicknesses of APS coatings, additive mixing of noniridescent structural colors is easily realized. Based on the intrinsic omnidirectional feature of atomization, a one-step 3D homogeneous conformal coating is also readily realized on various irregular or highly curved surfaces, including papers, resins, metal plates, ceramics, and flexible silk fabrics. The vivid coatings on silk fabrics by atomization deposition possess robust mechanical properties, which are confirmed by rubbing and laundering tests, showing great potential in developing an environmentally friendly coloring technique in the textile industry.
Alkaline Phosphatase, an Unconventional Immune Protein.
Rader, Bethany A
2017-01-01
Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer's disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.
Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.
Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B
2017-09-27
Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain. Copyright © 2017 the authors 0270-6474/17/379519-15$15.00/0.
Comparison of Spectral and Scintillation Properties of LuAP:Ce and LuAP:Ce,Sc Single Crystals
NASA Astrophysics Data System (ADS)
Petrosyan, Ashot G.; Derdzyan, Marina; Ovanesyan, Karine; Shirinyan, Grigori; Lecoq, Paul; Auffray, Etiennette; Kronberger, Matthias; Frisch, Benjamin; Pedrini, Christian; Dujardin, Christophe
2009-10-01
Scintillation properties of LuAP:Ce and LuAP:Ce,Sc crystal series were studied under excitation by gamma-rays from a 137Cs source. Both series demonstrated comparable optical quality in terms of underlying absorption at 260 nm, slope of the optical edge and transmission in the range of emission. The light yield of LuAP:Ce crystals measured in 0.2 cm times 0.2 cm times 0.8 cm pixels increases linearly with the Ce concentration reaching at 0.58 at. % 6448 plusmn 322 ph/MeV and 9911 plusmn 496 ph/MeV in the long and in the short directions respectively (the light yield ratio is 65%) and shows no sign of light saturation. The energy resolution is found to depend, among other factors, on the uniformity of Ce concentration within the pixels and is improved to 7.1 plusmn 0.4% (I = 0.2 cm), 9.5 plusmn 0.5% (I = 0.8 cm). Intentional co-doping with Sc + ions was tested and resulted in increase of the Ce distribution coefficient to about 0.3. This enabled to increase the concentration of Ce in LuAP:Ce,Sc crystals up to 0.7 at. %, while conserving high optical quality. In contrast to LuAP:Ce, the light yield in LuAP:Ce,Sc crystals does not increase with Ce concentration, the photo peak being gradually suppressed. The involved mechanisms are discussed basing on measurements of the unit cell volumes, Ce concentration uniformity, x-ray rocking spectra, absorption spectra of pure and variously doped LuAP crystals, and emission spectra under different excitations.
BDNF mRNA abundance regulated by antidromic action potentials and AP-LTD in hippocampus.
Bukalo, Olena; Lee, Philip R; Fields, R Douglas
2016-12-02
Action-potential-induced LTD (AP-LTD) is a form of synaptic plasticity that reduces synaptic strength in CA1 hippocampal neurons firing antidromically during sharp-wave ripples. This firing occurs during slow-wave sleep and quiet moments of wakefulness, which are periods of offline replay of neural sequences learned during encoding sensory information. Here we report that rapid and persistent down-regulation of different mRNA transcripts of the BDNF gene accompanies AP-LTD, and that AP-LTD is abolished in mice with the BDNF gene knocked out in CA1 hippocampal neurons. These findings increase understanding of the mechanism of AP-LTD and the cellular mechanisms of memory consolidation. Published by Elsevier Ireland Ltd.
PAR1 activation affects the neurotrophic properties of Schwann cells.
Pompili, Elena; Fabrizi, Cinzia; Somma, Francesca; Correani, Virginia; Maras, Bruno; Schininà, Maria Eugenia; Ciraci, Viviana; Artico, Marco; Fornai, Francesco; Fumagalli, Lorenzo
2017-03-01
Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR. Copyright © 2017 Elsevier Inc. All rights reserved.
Properties of the calcium-activated chloride current in heart.
Zygmunt, A C; Gibbons, W R
1992-03-01
We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.
Aps and Tep Chemical Characterization: Link Between The Dom and Pom Pools
NASA Astrophysics Data System (ADS)
Gogou, A.; Repeta, D. J.
The ocean inventory of dissolved organic carbon (DOC) is approximately 750 GT, comprising one of the Earth's largest carbon reservoirs on Earth. Despite its potential significance, the mechanisms that lead to DOM production and to spatial and temporal variations of DOM concentration in the world ocean are poorly understood. Chemical characterization studies show that up to 50% of HMW DOM is a structurally well-defined class of acylated polysaccharides (APS), which exhibits novel molecular-level characteris tics. Although APS synthesis occurs in the euphotic zone, a large fraction of the marine inventory of APS (appr. 10-30 GT C), resides in the deep ocean, and is approximately equal in mass to the total marine inventory of particulate organic carbon. While radiocarbon dating of deep sea DOC yields very old apparent ages (4000-6000 ybp), radiocarbon measurements made by our group on individual APS sugars shows that APS in the deep ocean has a radiocarbon value of +56 per mil, equivalent to surface water POC and DIC. This is the first clear evidence for the presence of "young" DOC in the deep ocean. One mechanism that could be important for the rapid removal of APS from surface seawater is physical removal by macroaggregates. To investigate the significance of this mechanism, we studied the chemical composition of surface-active POM (TEP) produced naturally on surface waters and in laboratory experiments, after bubbling of HMW DOM isolated from algal cultures. 1H-NMR spectral properties and molecular-level distribution of neutral sugars in natural and artificially produced TEP closely resembled those observed for cultured and oceanic HMW DOM, while they are significantly different from those of suspended particulate matter in the ocean (Gogou and Repeta, 2000). The results of these experiments provide evidence that POM with similar chemical characteristics to HMW DOM can be produced from algal-derived DOM in the surface ocean.
Kaur, Jaspreet; Nygren, Anders; Vigmond, Edward J
2014-01-01
Fitting parameter sets of non-linear equations in cardiac single cell ionic models to reproduce experimental behavior is a time consuming process. The standard procedure is to adjust maximum channel conductances in ionic models to reproduce action potentials (APs) recorded in isolated cells. However, vastly different sets of parameters can produce similar APs. Furthermore, even with an excellent AP match in case of single cell, tissue behaviour may be very different. We hypothesize that this uncertainty can be reduced by additionally fitting membrane resistance (Rm). To investigate the importance of Rm, we developed a genetic algorithm approach which incorporated Rm data calculated at a few points in the cycle, in addition to AP morphology. Performance was compared to a genetic algorithm using only AP morphology data. The optimal parameter sets and goodness of fit as computed by the different methods were compared. First, we fit an ionic model to itself, starting from a random parameter set. Next, we fit the AP of one ionic model to that of another. Finally, we fit an ionic model to experimentally recorded rabbit action potentials. Adding the extra objective (Rm, at a few voltages) to the AP fit, lead to much better convergence. Typically, a smaller MSE (mean square error, defined as the average of the squared error between the target AP and AP that is to be fitted) was achieved in one fifth of the number of generations compared to using only AP data. Importantly, the variability in fit parameters was also greatly reduced, with many parameters showing an order of magnitude decrease in variability. Adding Rm to the objective function improves the robustness of fitting, better preserving tissue level behavior, and should be incorporated.
Reid, Christopher A; Xu, Shenghong; Williams, David A
2008-01-01
Mossy fibers (axons arising from dentate granule cells) form large synaptic contacts exclusively onto the proximal apical dendrites of CA3 pyramidal neurons. They can generate large synaptic currents that occur in close proximity to the soma. These properties mean that active conductance in the proximal apical dendrite could have a disproportionate influence on CA3 pyramidal neuron excitability. Ni(2+)-sensitive T-type Ca(2+) channels are important modulators of dendritic excitability. Here, we use an optical approach to determine the contribution of Ni(2+) (100 microM)-sensitive Ca(2+) channels to action potential (AP) elicited Ca(2+) flux in the soma, proximal apical and distal apical dendrites. At resting membrane potentials Ni(2+)-sensitive Ca(2+) channels do not contribute to the Ca(2+) signal in the proximal apical dendrite, but do contribute in the other cell regions. Spontaneous release from mossy fiber terminals acting on 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive postsynaptic channels underlies a tonic inhibition of Ni(2+)-sensitive channels. Chelating Zn(2+) with CaEDTA blocks CNQX-sensitive changes in Ca(2+) flux implicating a mechanistic role of this ion in T-type Ca(2+) channel block. To test if this inhibition influenced excitability, progressively larger depolarizing pulses were delivered to CA3 pyramidal neurons. CNQX significantly reduced the size of the depolarizing step required to generate APs and increased the absolute number of APs per depolarizing step. This change in AP firing was completely reversed by the addition of Ni(2+). This mechanism may reduce the impact of T-type Ca(2+) channels in a region where large synaptic events are common.
Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D
2008-02-01
Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.
An Excel-based implementation of the spectral method of action potential alternans analysis.
Pearman, Charles M
2014-12-01
Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. © 2014 The Author. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Pustovit, K B; Abramochkin, D V
2016-04-01
Effects of nucleotide polyphosphate compounds (nicotinamide adenine dinucleotide, NAD(+); diadenosine tetraphosphate, Ap4A) on the confi guration of action potentials were studied in isolated preparations of guinea pig sinoatrial node and right atrial appendage (auricle). In the working myocardium, NAD(+) and Ap4A in concentrations of 10(-5) and 10(-4) M had no effect on resting potential, but significantly reduced the duration of action potentials; the most pronounced decrease was found at 25% repolarization. In the primary pacemaker of the sinoatrial node, both concentrations of NAD(+) and Ap4A induced hyperpolarization and reduction in the rate of slow diastolic depolarization, but significant slowing of the sinus rhythm was produced by these substances only in the concentration of 10(-4) M. Moreover, AP shortening and marked acceleration of AP upstroke were observed in the pacemaker myocardium after application of polyphosphates. Comparative analysis of the effects of NAD(+) and Ap4A in the working and pacemaker myocardium drove us to a hypothesis on inhibitory effects of these substances on L-type calcium current accompanied by stimulation of one or several potassium currents, which induce enhancement of repolarization and hyperpolarization of membranes probably mediated by the activation of purine receptors.
Bobbert, Peter; Schlüter, Hartmut; Schultheiss, Heinz Peter; Reusch, Hans Peter
2008-05-15
Depending on the number of phosphate groups, diadenosine polyphosphates (ApnA, Ap3A, Ap4A, Ap5A and Ap6A) differ in properties such as proliferation, apoptosis, vasoconstriction and vasodilatation of vascular smooth muscle cells (VSMCs). Possible signaling pathways leading to effects such as proliferation are still unknown. This study examined the proliferative effects of diadenosine polyphosphates on VSMCs and their intracellular pathways. Proliferation of VSMCs was measured by the cell count and [(3)H] thymidine incorporation. Phosphorylation of the MAP kinases ERK1/2 was determined by Western blotting. Single-cell [Ca(2+)](i) measurements were done to determine the influence of [Ca(2+)](i) on intracellular signaling. Stress fiber formation was assessed by fluorescence microscopy to detect an influence of G alpha(12). Ap3A and Ap4A, but not Ap5A or Ap6A, were shown to increase proliferation of VSMCs by activating P2Y receptors, which leads to stimulation of the Ras-Raf-MEK-ERK1/2 cascade. Ap3A- and Ap4A-induced activation of the MAP kinases ERK1/2 was dependent on a signaling pathway that included the EGF receptor, PKC, PLCbeta and the increase of [Ca(2+)](i). In conclusion, Ap3A and Ap4A, but not Ap5A or Ap6A, induce proliferation of VSMCs by a signaling pathway that begins with activation of P2Y receptors and leads to stimulation of the MAP kinases ERK1/2.
Lees, G.
1996-01-01
1. Aminopyridines have been used as beneficial symptomatic treatments in a variety of neurological conditions including multiple sclerosis but have been associated with considerable toxicity in the form of abdominal pain, paraesthesias and (rarely) convulsions. 2. Extracellular and intracellular recording was used to characterize action potentials in rat sciatic nerves and dorsal roots and the effects of 4-aminopyridine (4-AP). 3. In sciatic nerve trunks, 1 mM 4-AP produced pronounced after potentials at room temperature secondary to regenerative firing in affected axons (5-10 spikes per stimulus). At physiological temperatures, after potentials (2-3 spikes) were greatly attenuated in peripheral axons. 4. 4-AP evoked more pronounced and prolonged after discharges in isolated dorsal roots at 37 degrees C (3-5.5 mV and 80-100 ms succeeded by a smaller inhibitory/depolarizing voltage shift) which were used to assess the effects of anticonvulsants. 5. Phenytoin, carbamazepine and lamotrigine dose-dependently reduced the area of 4-AP-induced after potentials at 100 and 320 microM but the amplitude of compound action potentials (evoked at 0.5 Hz) was depressed in parallel. 6. The tonic block of sensory action potentials by all three drugs (at 320 microM) was enhanced by high frequency stimulation (5-500 Hz). 7. The lack of selectivity of these frequency-dependent Na+ channel blockers for burst firing compared to low-frequency spikes, is discussed in contrast to their effects on 4-AP-induced seizures and paroxysmal activity in CNS tissue (which is associated with large and sustained depolarizing plateau potentials). 8. In conclusion, these in vitro results confirm the marked sensitivity of sensory axons to 4-AP (the presumptive basis for paraesthesias). Burst firing was not preferentially impaired at relatively high concentrations suggesting that anticonvulsants will not overcome the toxic peripheral actions of 4-AP in neurological patients. PMID:8821551
Enzymatic characterization of a class II lysyl-tRNA synthetase, LysS, from Myxococcus xanthus.
Oka, Manami; Takegawa, Kaoru; Kimura, Yoshio
2015-08-01
Lysyl-tRNA synthetases efficiently produce diadenosine tetraphosphate (Ap4A) from lysyl-AMP with ATP in the absence of tRNA. We characterized recombinant class II lysyl-tRNA synthetase (LysS) from Myxococcus xanthus and found that it is monomeric and requires Mn(2+) for the synthesis of Ap4A. Surprisingly, Zn(2+) inhibited enzyme activity in the presence of Mn(2+). When incubated with ATP, Mn(2+), lysine, and inorganic pyrophosphatase, LysS first produced Ap4A and ADP, then converted Ap4A to diadenosine triphosphate (Ap3A), and finally converted Ap3A to ADP, the end product of the reaction. Recombinant LysS retained Ap4A synthase activity without lysine addition. Additionally, when incubated with Ap4A (minus pyrophosphatase), LysS converted Ap4A mainly ATP and AMP, or ADP in the presence or absence of lysine, respectively. These results demonstrate that M. xanthus LysS has different enzymatic properties from class II lysyl-tRNA synthetases previously reported. Copyright © 2015 Elsevier Inc. All rights reserved.
Functional properties of granule cells with hilar basal dendrites in the epileptic dentate gyrus.
Kelly, Tony; Beck, Heinz
2017-01-01
The maturation of adult-born granule cells and their functional integration into the network is thought to play a key role in the proper functioning of the dentate gyrus. In temporal lobe epilepsy, adult-born granule cells in the dentate gyrus develop abnormally and possess a hilar basal dendrite (HBD). Although morphological studies have shown that these HBDs have synapses, little is known about the functional properties of these HBDs or the intrinsic and network properties of the granule cells that possess these aberrant dendrites. We performed patch-clamp recordings of granule cells within the granule cell layer "normotopic" from sham-control and status epilepticus (SE) animals. Normotopic granule cells from SE animals possessed an HBD (SE + HBD + cells) or not (SE + HBD - cells). Apical and basal dendrites were stimulated using multiphoton uncaging of glutamate. Two-photon Ca 2+ imaging was used to measure Ca 2+ transients associated with back-propagating action potentials (bAPs). Near-synchronous synaptic input integrated linearly in apical dendrites from sham-control animals and was not significantly different in apical dendrites of SE + HBD - cells. The majority of HBDs integrated input linearly, similar to apical dendrites. However, 2 of 11 HBDs were capable of supralinear integration mediated by a dendritic spike. Furthermore, the bAP-evoked Ca 2+ transients were relatively well maintained along HBDs, compared with apical dendrites. This further suggests an enhanced electrogenesis in HBDs. In addition, the output of granule cells from epileptic tissue was enhanced, with both SE + HBD - and SE + HBD + cells displaying increased high-frequency (>100 Hz) burst-firing. Finally, both SE + HBD - and SE + HBD + cells received recurrent excitatory input that was capable of generating APs, especially in the absence of feedback inhibition. Taken together, these data suggest that the enhanced excitability of HBDs combined with the altered intrinsic and network properties of granule cells collude to promote excitability and synchrony in the epileptic dentate gyrus. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Na+ current in presynaptic terminals of the crayfish opener cannot initiate action potentials.
Lin, Jen-Wei
2016-01-01
Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings did detect Na(+) current (INa) in most terminals. The INa exhibited a high threshold and fast activation rate. Local perfusion of Na(+)-free saline showed that terminal INa contributed to AP waveform by slightly accelerating the rising phase and increasing the peak amplitude. These findings suggest that terminal INa functions to "touch up" but not to generate APs. Copyright © 2016 the American Physiological Society.
Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J
2014-01-01
The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models-of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells-to investigate the relative effects of reducing two important voltage-gated Ca currents-the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action.
Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J.
2014-01-01
The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models—of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells—to investigate the relative effects of reducing two important voltage-gated Ca currents—the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action. PMID:25360118
Li, Kun; Yan, Tiebin; You, Liming; Xie, Sumei; Li, Yun; Tang, Jie; Wang, Yingmin; Gao, Yan
2018-02-01
To examine the psychometric properties of the International Classification of Functioning, Disability and Health (ICF) set for spinal cord injury nursing (ICF-SCIN) using Rasch analysis. A total of 140 spinal cord injury patients were recruited between December 2013 and March 2014 through convenience sampling. Nurses used the components body functions (BF), body structures (BS), and activities and participation (AP) of the ICF-SCIN to rate the patients' functioning. Rasch analysis was performed using RUMM 2030 software. In each component, categories were rescored from 01234 to 01112 because of reversed thresholds. Nine testlets were created to overcome local dependency. Four categories which fit to the Rasch model poorly were deleted. After modification, the components BF, BS, and AP showed good fit to the Rasch model with a Bonferroni-adjusted significant level (χ 2 = 86.29, p = 0.006; χ 2 = 22.44, p = 0.130; χ 2 = 39.92, p = 0.159). The person separation indices (PSIs) for the three components were 0.80, 0.54, and 0.97, respectively. No differential item functioning (DIF) was detected across age, gender, or educational level. The fit properties of the ICF set were satisfactory after modifications. The ICF-SCIN has the potential as a nursing assessment instrument for measuring the functioning of patients with spinal cord injury. Implications for rehabilitation The International Classification of Functioning, Disability and Health (ICF) set for spinal cord injury nursing contains a group of categories which can reflect the functioning of spinal cord injury patients from the perspective of nurses. The components body functions (BF), body structures (BS), and activities and participation (AP) of the ICF set for spinal cord injury achieved the fit to the Rasch model through rescoring, generating testlets, and deleting categories with poor fit. The ICF set for spinal cord injury nursing (ICF-SCIN) has the potential to be used as a clinical nursing assessment tool in measuring the functioning of patients with spinal cord injury.
1991-01-01
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time- dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes. PMID:1865177
Kubuš, Peter; Vít, Pavel; Gebauer, Roman A; Materna, Ondřej; Janoušek, Jan
2014-04-01
Data on the results and clinical effect of an invasive risk stratification strategy in asymptomatic young patients with the Wolff-Parkinson-White electrocardiographic pattern are scarce. Eighty-five consecutive patients aged<18 years with a Wolff-Parkinson-White pattern and persistent preexcitation at maximum exercise undergoing invasive risk stratification were retrospectively studied. Adverse accessory pathway (AP) properties were defined according to currently consented criteria as any of the following: shortest preexcited RR interval during atrial fibrillation/rapid atrial pacing≤250 ms (or antegrade effective refractory period≤250 ms if shortest preexcited RR interval was not available) or inducible atrioventricular re-entrant tachycardia. Age at evaluation was median 14.9 years. Eighty-two patients had a structurally normal heart and 3 had hypertrophic cardiomyopathy. A single manifest AP was present in 80, 1 manifest and 1 concealed AP in 4, and 2 manifest APs in 1 patient. Adverse AP properties were present in 32 of 85 patients (37.6%) at baseline and in additional 16 of 44 (36.4%) after isoproterenol. Ablation was performed in 41 of these 48 patients. Ablation was deferred in the remaining 7 for pathway proximity to the atrioventricular node. In addition, 18 of the low-risk patients were ablated based on patient/parental decision. Adverse AP properties at baseline were exhibited by 37.6% of the evaluated patients with an asymptomatic Wolff-Parkinson-White preexcitation persisting at peak exercise. Isoproterenol challenge yielded additional 36.4% of those tested at higher risk. Ablation was performed in a total of 69.4% of patients subjected to invasive risk stratification.
Investigation on partially coherent vector beams and their propagation and focusing properties.
Hu, Kelei; Chen, Ziyang; Pu, Jixiong
2012-11-01
The propagation and focusing properties of partially coherent vector beams including radially polarized and azimuthally polarized (AP) beams are theoretically and experimentally investigated. The beam profile of a partially coherent radially or AP beam can be shaped by adjusting the initial spatial coherence length. The dark hollow, flat-topped, and Gaussian beam spots can be obtained, which will be useful in trapping particles. The experimental observations are consistent with the theoretical results.
Tong, Wing-Chiu; Tribe, Rachel M.; Smith, Roger; Taggart, Michael J.
2014-01-01
The electrical excitability of uterine smooth muscle cells is a key determinant of the contraction of the organ during labor and is manifested by spontaneous, periodic action potentials (APs). Near the end of term, APs vary in shape and size reflecting an ability to change the frequency, duration and amplitude of uterine contractions. A recent mathematical model quantified several ionic features of the electrical excitability in uterine smooth muscle cells. It replicated many of the experimentally recorded uterine AP configurations but its limitations were evident when trying to simulate the long-duration bursting APs characteristic of labor. A computational parameter search suggested that delayed rectifying K+ currents could be a key model component requiring improvement to produce the longer-lasting bursting APs. Of the delayed rectifying K+ currents family it is of interest that KCNQ and hERG channels have been reported to be gestationally regulated in the uterus. These currents exhibit features similar to the broadly defined uterine I K1 of the original mathematical model. We thus formulated new quantitative descriptions for several I KCNQ and I hERG. Incorporation of these currents into the uterine cell model enabled simulations of the long-lasting bursting APs. Moreover, we used this modified model to simulate the effects of different contributions of I KCNQ and I hERG on AP form. Our findings suggest that the alterations in expression of hERG and KCNQ channels can potentially provide a mechanism for fine tuning of AP forms that lends a malleability for changing between plateau-like and long-lasting bursting-type APs as uterine cells prepare for parturition. PMID:25474527
Chevaleyre, Vivien; Murray, Karl D.; Piskorowski, Rebecca A.
2017-01-01
Abstract The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotransmission between CA1 and CA2 PNs. In the present study, we used multiplex fluorescence immunolabeling of mouse brain sections, and whole-cell recordings in acute mouse brain slices, to define the role of heterogeneous expression of Kv2 family Kv channels in CA1 versus CA2 pyramidal cell excitability. Our results show that the somatodendritic delayed rectifier Kv channel subunits Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have region-specific differences in expression in PNs, with the highest expression levels in CA1, a sharp decrease at the CA1-CA2 boundary, and significantly reduced levels in CA2 neurons. PNs in CA1 exhibit a robust contribution of Guangxitoxin-1E-sensitive Kv2-based delayed rectifier current to AP shape and after-hyperpolarization potential (AHP) relative to that seen in CA2 PNs. Our results indicate that robust Kv2 channel expression confers a distinct pattern of intrinsic excitability to CA1 PNs, potentially contributing to their different roles in hippocampal network function. PMID:28856240
Interaction between macrocyclic nickel complexes and the nucleotides GMP, AMP and ApG.
Liu, Yangzhong; Sletten, Einar
2003-01-15
Reactions between the nucleotides GMP, AMP and ApG and the complexes Ni(tren), Ni(cyclam) and NiCR in aqueous solution have been monitored by (1)H, (15)N NMR and UV spectroscopy. The three nickel complexes display different properties in reactions with nucleotides. Ni(tren) which has a pseudo-octahedral coordination geometry was shown to bind to all three nucleotides. Ni(cyclam) and NiCR, both with four nitrogen atoms in a square planar arrangement are not able to bind to nucleotides efficiently because of steric hindrance. Oxidation of Ni(cyclam) by KHSO(5) to produce trivalent Ni(III)(cyclam) improves the coordination capacity, while oxidation of NiCR does not produce a similar effect. The nucleotides interact with trivalent nickel complexes to different extent. Ni(III)CR is seen to oxidize GMP gradually but does not affect AMP significantly. Ni(III)(cyclam), on the other hand, does not oxidize either GMP or AMP at the 1:1 concentration of oxidant used. This result is probably due to the lower redox potential of Ni(cyclam). ApG binds less efficiently to the Ni complexes but is easier oxidized than the mononucleotides.
Jones, Scott L; To, Minh-Son; Stuart, Greg J
2017-10-23
Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction.
Diadenosine tetraphosphate (Ap4A) and triphosphate (Ap3A) signaling of human sperm motility.
Chan, P J; Su, B C; Tredway, D R
1991-01-01
The ubiquitous dinucleotide polyphosphate, diadenosine tetraphosphate (Ap4A), has been shown to be a signal molecule for DNA replication in mammalian cells. In this study, Ap4A and a related compound, diadenosine triphosphate (Ap3A), were tested for possible signaling functions in human spermatozoa. A computerized automated semen analyzer was used to detect changes in spermatozoa motility parameters. Cryopreserved-thawed donor spermatozoa were washed and incubated in 0.1 mM Ap4A, 0.1 mM Ap3A, or control medium. The data indicated that both Ap4A and Ap3A decreased the percentage of motile spermatozoa after 4 or more hours of incubation in vitro. The two dinucleotide polyphosphates caused an increase in the amplitude of lateral spermatozoa head displacement parameter only at the start of incubation. The other spermatozoa kinematic parameters were unaffected. No opposing ying-yang dual actions of Ap4A to Ap3A were seen. From the results, Ap4A and Ap3A were observed to be potential inhibitory signals of spermatozoa motility after prolonged exposure.
Electrophysiological mechanisms of sophocarpine as a potential antiarrhythmic agent.
Yang, Zhi-fang; Li, Ci-zhen; Wang, Wei; Chen, Ying-min; Zhang, Ying; Liu, Yuan-mou; Wang, Hong-wei
2011-03-01
To examine the electrophysiological effects of sophocarpine on action potentials (AP) and ionic currents of cardiac myocytes and to compare some of these effects with those of amiodarone. Langendorff perfusion set-up was used in isolated guinea pig heart, and responses to sophocarpine were monitored using electrocardiograph. Conventional microelectrode, voltage clamp technique and perforated patch were employed to record fast response AP (fAP), slow response AP (sAP) and ionic currents in guinea pig papillary muscle or rabbit sinus node cells. Tachyarrhythmia produced by isoprenaline (15 μmol/L) could be reversed by sophocarpine (300 μmol/L). Sophocarpine (10 μmol/L) decreased the amplitude by 4.0%, maximal depolarization velocity (V(max)) of the fAP by 24.4%, and Na(+) current (I(Na)) by 18.0%, while it prolonged the effective refractory period (ERP) by 21.1%. The same concentration of sophocarpine could also decrease the amplitude and V(max) of the sAP, by 26.8% and 25.7%, respectively, and attenuated the Ca(2+) current (I(CaL)) and the K(+) tail current substantially. Comparison of sophocarpine with amiodarone demonstrated that both prolonged the duration and the ERP of fAP and sAP, both decreased the amplitude and V(max) of the fAP and sAP, and both slowed the automatic heart rate. Sophocarpine could reverse isoprenaline-induced arrhythmia and inhibit I(Na), I(CaL), and I(Kr) currents. The electrophysiological effects of sophocarpine are similar to those of amiodarone, which might be regarded as a prospective antiarrhythmic agent.
Tanaka, Yasutaka; Ueno, Yuji; Miyamoto, Nobukazu; Shimada, Yoshiaki; Tanaka, Ryota; Hattori, Nobutaka; Urabe, Takao
2013-01-01
The purpose of the present study was to evaluate the contributions of embolic etiologies, patent foramen ovale (PFO) and atrial septal aneurysm (ASA) to the pathogenesis of ischemic stroke in patients with antiphospholipid syndrome (APS). We performed transesophageal echocardiography (TEE) examination for consecutive stroke patients who had been diagnosed with APS (APS group) to detect potential embolic sources. APS was diagnosed based on the modified Sapporo criteria. The control stroke group comprised age- and sex-matched cryptogenic stroke patients undergoing TEE. We assessed and compared the clinical characteristics and TEE findings between stroke patients with APS and control stroke groups. Among 582 patients, nine patients (nine women; mean age, 50 ± 18 years) were classified into the APS group. In 137 patients undergoing TEE, 41 age-matched female stroke patients were recruited to the control stroke group. Prevalences of PFO and ASA were significantly higher in the APS group than in the control stroke group (89 vs. 41 %, p = 0.027; 67 vs. 20 %, p = 0.015, respectively). Multiple logistic regression analysis showed that PFO (odds ratio (OR), 13.71; 95 % confidence interval (CI), 1.01-185.62; p = 0.049) and ASA (OR, 8.06; 95 % CI, 1.17-55.59; p = 0.034) were independently associated with the APS group. PFO and ASA were strongly associated with the APS group, and could thus represent potential embolic sources in ischemic stroke patients with APS.
Schweizer, Patrick A; Darche, Fabrice F; Ullrich, Nina D; Geschwill, Pascal; Greber, Boris; Rivinius, Rasmus; Seyler, Claudia; Müller-Decker, Karin; Draguhn, Andreas; Utikal, Jochen; Koenen, Michael; Katus, Hugo A; Thomas, Dierk
2017-10-16
Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10-12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70-90 beats/min) and were triggered by spontaneous Ca 2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN.
Bertilsson, Sara; Kalaitzakis, Evangelos
2015-10-01
To assess the use of acute pancreatitis (AP)-associated drugs in patients with AP, the relation between sales of these drugs and the incidence of AP, and the potential impact on AP severity and recurrence. All patients with incident AP between 2003 and 2012, in a well-defined area, were retrospectively identified. Data regarding AP etiology, severity, and recurrence and use of AP-associated drugs were extracted from medical records. Drugs were classified according to an evidence-based classification system. Annual drug sales data were obtained from the Swedish drug administration service. Overall, 1457 cases of incident AP were identified. Acute pancreatitis-associated drug users increased from 32% in 2003 to 51% in 2012, reflecting increasing user rates in the general population. The incidence of AP increased during the study period but was not related to AP-associated drug user rates (P > 0.05). Recurrent AP occurred in 23% but was unrelated to AP-associated drug use (P > 0.05). In logistic regression analysis, after adjustment for comorbidity, AP-associated drug use was not related to AP severity (P > 0.05). Use of AP-associated drugs is increasingly frequent in patients with AP. However, it does not have any major impact on the observed epidemiological changes in occurrence, severity, or recurrence of AP.
Activation of the Arabidopsis B class homeotic genes by APETALA1.
Ng, M; Yanofsky, M F
2001-04-01
Proper development of petals and stamens in Arabidopsis flowers requires the activities of APETALA3 (AP3) and PISTILLATA (PI), whose transcripts can be detected in the petal and stamen primordia. Localized expression of AP3 and PI requires the activities of at least three genes: APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO). It has been proposed that UFO provides spatial cues and that LFY specifies competence for AP3 and PI expression in the developing flower. To understand the epistatic relationship among AP1, LFY, and UFO in regulating AP3 and PI expression, we generated two versions of AP1 that have strong transcriptional activation potential. Genetic and molecular analyses of transgenic plants expressing these activated AP1 proteins show that the endogenous AP1 protein acts largely as a transcriptional activator in vivo and that AP1 specifies petals by regulating the spatial domains of AP3 and PI expression through UFO.
Advances in Bacterial Methionine Aminopeptidase Inhibition
Helgren, Travis R.; Wangtrakuldee, Phumvadee; Staker, Bart L.; Hagen, Timothy J.
2016-01-01
Methionine aminopeptidases (MetAPs) are metalloenzymes that cleave the N-terminal methionine from newly synthesized peptides and proteins. These MetAP enzymes are present in bacteria, and knockout experiments have shown that MetAP activity is essential for cell life, suggesting that MetAPs are good antibacterial drug targets. MetAP enzymes are also present in the human host and selectivity is essential. There have been significant structural biology efforts and over 65 protein crystal structures of bacterial MetAPs are deposited into the PDB. This review highlights the available crystallographic data for bacterial MetAPs. Structural comparison of bacterial MetAPs with human MetAPs highlights differences that can lead to selectivity. In addition, this review includes the chemical diversity of molecules that bind and inhibit the bacterial MetAP enzymes. Analysis of the structural biology and chemical space of known bacterial MetAP inhibitors leads to a greater understanding of this antibacterial target and the likely development of potential antibacterial agents. PMID:26268344
Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Takahashi, Hidekazu; Uo, Motohiro
2018-01-01
This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii) 1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased. PMID:29854774
Wada, Takahiro; Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Ueno, Toshiaki; Takahashi, Hidekazu; Uo, Motohiro
2018-01-01
This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii) 1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased.
Tuluc, Petronel; Kern, Georg; Obermair, Gerald J; Flucher, Bernhard E
2007-06-26
L-type Ca(2+) currents determine the shape of cardiac action potentials (AP) and the magnitude of the myoplasmic Ca(2+) signal, which regulates the contraction force. The auxiliary Ca(2+) channel subunits alpha(2)delta-1 and beta(2) are important regulators of membrane expression and current properties of the cardiac Ca(2+) channel (Ca(V)1.2). However, their role in cardiac excitation-contraction coupling is still elusive. Here we addressed this question by combining siRNA knockdown of the alpha(2)delta-1 subunit in a muscle expression system with simulation of APs and Ca(2+) transients by using a quantitative computer model of ventricular myocytes. Reconstitution of dysgenic muscle cells with Ca(V)1.2 (GFP-alpha(1C)) recapitulates key properties of cardiac excitation-contraction coupling. Concomitant depletion of the alpha(2)delta-1 subunit did not perturb membrane expression or targeting of the pore-forming GFP-alpha(1C) subunit into junctions between the outer membrane and the sarcoplasmic reticulum. However, alpha(2)delta-1 depletion shifted the voltage dependence of Ca(2+) current activation by 9 mV to more positive potentials, and it slowed down activation and inactivation kinetics approximately 2-fold. Computer modeling revealed that the altered voltage dependence and current kinetics exert opposing effects on the function of ventricular myocytes that in total cause a 60% prolongation of the AP and a 2-fold increase of the myoplasmic Ca(2+) concentration during each contraction. Thus, the Ca(2+) channel alpha(2)delta-1 subunit is not essential for normal Ca(2+) channel targeting in muscle but is a key determinant of normal excitation and contraction of cardiac muscle cells, and a reduction of alpha(2)delta-1 function is predicted to severely perturb normal heart function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi
APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials,more » recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.« less
Prasannaraj, Govindaraj; Venkatachalam, Perumal
2017-02-01
Nanoparticle based drug delivery can rapidly improves the therapeutic potential of anti-cancer agents. The present study focused to evaluate the hepatoprotective activity of silver nanoparticles (AgNPs) synthesized using aqueous extracts of Andrographis paniculata leaves (ApAgNPs) and Semecarpus anacardium nuts (SaAgNPs) against diethylnitrosamine (DEN) induced liver cancer in mice model. The physico-chemical properties of synthesized AgNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectrum, Zeta potential and Dynamic Light Scattering (DLS) analysis. The surface plasmon resonance (SPR) absorption spectrum revealed a strong peak at 420nm for both SaAgNPs and ApAgNPs. FTIR results exhibited the presence of possible functional groups in the synthesized AgNPs. TEM analysis determined the hexagonal, and spherical shape of the synthesized silver nanoparticles. The XRD and SAED pattern confirmed the crystalline nature and crystalline size of the AgNPs. EDX result clearly showed strong silver signals in the range between 2 and 4keV. Zeta potential measurements indicated a sharp peak at -3.93 and -13.8mV for ApAgNPs and SaAgNPs, respectively. DLS measurement expressed the particle size distribution was 70 and 60nm for ApAgNPs and SaAgNPs, respectively. DEN (20mg/kg b.wt.) was subjected to induce liver cancer in mice for 8weeks and treated with biosynthesized silver nanoparticles. Interestingly, ApAgNPs and SaAgNPs treated DEN induced animal groups show a decreased level of aspartate amino transferase (AST), alanine amino transferase (ALT), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) activity and elevated level of catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and superoxide dismutase (SOD) activity over untreated DEN control animals group. Histopathological investigation reveals decreased fat accumulation, appearance of binucleated cells in nanoparticle treated animals and showed mere normal cells induced by DEN. Argyrophilic nucleolar organiser region (AgNORs) had a significant decrease in number of acidic proteins and mast cells assay showed decrease of metachromatic cells in nanoparticles treated animal groups over control. Present results strongly suggest that biomolecule coated silver nanoparticles exposure showed potential hepatoprotective effect against DEN induced liver cancer and could be used as an effective anticancer nanodrug. Copyright © 2017. Published by Elsevier B.V.
Wu, Xiang Lan; Kim, Jong Ho; Koo, Heebeom; Bae, Sang Mun; Shin, Hyeri; Kim, Min Sang; Lee, Byung-Heon; Park, Rang-Woon; Kim, In-San; Choi, Kuiwon; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Doo Sung
2010-02-17
Herein, we prepared tumor-targeting peptide (AP peptide; CRKRLDRN) conjugated pH-responsive polymeric micelles (pH-PMs) in cancer therapy by active and pH-responsive tumor targeting delivery systems, simultaneously. The active tumor targeting and tumoral pH-responsive polymeric micelles were prepared by mixing AP peptide conjugated PEG-poly(d,l-lactic acid) block copolymer (AP-PEG-PLA) into the pH-responsive micelles of methyl ether poly(ethylene glycol) (MPEG)-poly(beta-amino ester) (PAE) block copolymer (MPEG-PAE). These mixed amphiphilic block copolymers were self-assembled to form stable AP peptide-conjugated and pH-responsive AP-PEG-PLA/MPEG-PAE micelles (AP-pH-PMs) with an average size of 150 nm. The AP-pH-PMs containing 10 wt % of AP-PEG-PLA showed a sharp pH-dependent micellization/demicellization transition at the tumoral acid pH. Also, they presented the pH-dependent drug release profile at the acidic pH of 6.4. The fluorescence dye, TRITC, encapsulated AP-pH-PMs (TRITC-AP-pH-PMs) presented the higher tumor-specific targeting ability in vitro cancer cell culture system and in vivo tumor-bearing mice, compared to control pH-responsive micelles of MPEG-PAE. For the cancer therapy, the anticancer drug, doxorubicin (DOX), was efficiently encapsulated into the AP-pH-PMs (DOX-AP-pH-PMs) with a higher loading efficiency. DOX-AP-pH-PMs efficiently deliver anticancer drugs in MDA-MB231 human breast tumor-bearing mice, resulted in excellent anticancer therapeutic efficacy, compared to free DOX and DOX encapsulated MEG-PAE micelles, indicating the excellent tumor targeting ability of AP-pH-PMs. Therefore, these tumor-targeting peptide-conjugated and pH-responsive polymeric micelles have great potential application in cancer therapy.
Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons
Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.
2015-01-01
Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830
ERIC Educational Resources Information Center
Ewing, Maureen; Wyatt, Jeff
2017-01-01
Historically, AP Potential™ has used PSAT/NMSQT® scores to identify students who are likely to earn a 3 or higher on a specific AP Exam based on research showing moderate to strong relationships between PSAT/NMSQT scores and AP Exam scores (Camara & Millsap, 1998; Ewing, Camara, & Millsap, 2006; Zhang, Patel, & Ewing, 2014a). For most…
Shakespeare, William; Yang, Michael; Bohacek, Regine; Cerasoli, Franklin; Stebbins, Karin; Sundaramoorthi, Raji; Azimioara, Mihai; Vu, Chi; Pradeepan, Selvi; Metcalf, Chester; Haraldson, Chad; Merry, Taylor; Dalgarno, David; Narula, Surinder; Hatada, Marcos; Lu, Xiaode; van Schravendijk, Marie Rose; Adams, Susan; Violette, Shelia; Smith, Jeremy; Guan, Wei; Bartlett, Catherine; Herson, Jay; Iuliucci, John; Weigele, Manfred; Sawyer, Tomi
2000-01-01
Targeted disruption of the pp60src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3′,4′-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 = 0.30 μM for AP22408 and 5.5 μM for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model. PMID:10944210
Cuin, Tracey Ann; Dreyer, Ingo; Michard, Erwan
2018-03-21
Fast responses to an external threat depend on the rapid transmission of signals through a plant. Action potentials (APs) are proposed as such signals. Plant APs share similarities with their animal counterparts; they are proposed to depend on the activity of voltage-gated ion channels. Nonetheless, despite their demonstrated role in (a)biotic stress responses, the identities of the associated voltage-gated channels and transporters remain undefined in higher plants. By demonstrating the role of two potassium-selective channels in Arabidopsis thaliana in AP generation and shaping, we show that the plant AP does depend on similar Kv -like transport systems to those of the animal signal. We demonstrate that the outward-rectifying potassium-selective channel GORK limits the AP amplitude and duration, while the weakly-rectifying channel AKT2 affects membrane excitability. By computational modelling of plant APs, we reveal that the GORK activity not only determines the length of an AP but also the steepness of its rise and the maximal amplitude. Thus, outward-rectifying potassium channels contribute to both the repolarisation phase and the initial depolarisation phase of the signal. Additionally, from modelling considerations we provide indications that plant APs might be accompanied by potassium waves, which prime the excitability of the green cable.
Starr, David E.; Favaro, Marco; Abdi, Fatwa F.; ...
2017-05-18
The development of solar fuel generating materials would greatly benefit from a molecular level understanding of the semiconductor/electrolyte interface and changes in the interface induced by an applied potential and illumination by solar light. Ambient pressure photoelectron spectroscopy techniques with both soft and hard X-rays, AP-XPS and AP-HAXPES respectively, have the potential to markedly contribute to this understanding. In this paper we initially provide two examples of current challenges in solar fuels material development that AP-XPS and AP-HAXPES can directly a ddress. This will be followed by a brief description of the distinguishing and complementary characteristics of soft and hardmore » X-ray AP-XPS and AP-HAXPES and best approaches to achieving monolayer sensitivity in solid/aqueous electrolyte studies. In particular we focus on the detection of surface adsorbed hydroxyl groups in the presence of aqueous hydroxide anions in the electrolyte, a common situation when investigating photoanodes for solar fuel generating applications. Finally, the article concludes by providing an example of a combined AP-XPS and AP-HAXPES study of a semiconductor/aqueous electrolyte interface currently used in water splitting devices specifically the BiVO 4/aqueous potassium phosphate electrolyte interface.« less
Role of ubiquitin and the HPV E6 oncoprotein in E6AP-mediated ubiquitination
Mortensen, Franziska; Schneider, Daniel; Barbic, Tanja; Sladewska-Marquardt, Anna; Kühnle, Simone; Marx, Andreas; Scheffner, Martin
2015-01-01
Deregulation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with three different clinical pictures. Hijacking of E6AP by the E6 oncoprotein of distinct human papillomaviruses (HPV) contributes to the development of cervical cancer, whereas loss of E6AP expression or function is the cause of Angelman syndrome, a neurodevelopmental disorder, and increased expression of E6AP has been involved in autism spectrum disorders. Although these observations indicate that the activity of E6AP has to be tightly controlled, only little is known about how E6AP is regulated at the posttranslational level. Here, we provide evidence that the hydrophobic patch of ubiquitin comprising Leu-8 and Ile-44 is important for E6AP-mediated ubiquitination, whereas it does not affect the catalytic properties of the isolated catalytic HECT domain of E6AP. Furthermore, we show that the HPV E6 oncoprotein rescues the disability of full-length E6AP to use a respective hydrophobic patch mutant of ubiquitin for ubiquitination and that it stimulates E6AP-mediated ubiquitination of Ring1B, a known substrate of E6AP, in vitro and in cells. Based on these data, we propose that E6AP exists in at least two different states, an active and a less active or latent one, and that the activity of E6AP is controlled by noncovalent interactions with ubiquitin and allosteric activators such as the HPV E6 oncoprotein. PMID:26216987
2014-12-01
premature dewetting of crystal surfaces. This is a similar phenomenon to that described by Gocmez, et al. [7] for coarse/fine ratios of AP. That is...they postulated that a greater force is required to dewet fine AP crystals due to a larger surface area/volume ratio and therefore a larger overall...tensile strength. Dewetting of AP crystals from binder during the application of stress creates vacuoles which contribute to total specimen elongation
Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance
2013-09-09
targets with .30cal AP M2 projectile using SPH elements. -Model validation runs were conducted based on the DoP experiments described in reference...effect of material properties on DoP 15. SUBJECT TERMS .30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum 5083, SiC, DoP Expeminets...and ceramic-faced aluminum targets with „30cal AP M2 projectile using SPH elements. □ Model validation runs were conducted based on the DoP
Determining cereal starch amylose content using a dual wavelength iodine binding 96 well plate assay
USDA-ARS?s Scientific Manuscript database
Cereal starch amylose/amylopectin (AM/AP) ratios are critical in functional properties for food and industrial applications. Conventional determination of AM/AP of cereal starches are very time consuming and labor intensive making it very difficult to screen large sample sets. Studying these large...
VizieR Online Data Catalog: LVL SEDs and physical properties (Cook+, 2014)
NASA Astrophysics Data System (ADS)
Cook, D. O.; Dale, D. A.; Johnson, B. D.; van Zee, L.; Lee, J. C.; Kennicutt, R. C.; Calzetti, D.; Staudaher, S. M.; Engelbracht, C. W.
2015-05-01
The LVL sample consists of 258 of our nearest galaxy neighbours reflecting a statistically complete, representative sample of the local Universe. The sample selection and description are detailed in Dale et al. (2009ApJ...703..517D, Cat. J/ApJ/703/517). (1 data file).
Development of a 96-well plate iodine binding assay for amylose content determination
USDA-ARS?s Scientific Manuscript database
Cereal starch amylose/amylopectin (AM/AP) ratios are critical in functional properties for food and industrial applications. Conventional methods for the determination of AM/AP of cereal starches are very time consuming and labor intensive making it very difficult to screen large sample sets. Stud...
NASA Astrophysics Data System (ADS)
Davis, A. B.; Qu, Z.; Emde, C.; Xu, F.; Marshak, A.
2013-12-01
Although the Glory satellite mission failed at launch, the atmospheric observation strategy implemented in its Aerosol Polarization Sensor (APS) is alive and well since it is at least possible that another one will be built and launched. This strategy is based on APS's along-track scanning spectro-polarimetric measurement system that captures the three main Stokes vector elements (I,Q,U) at a large number (>200) viewing directions for 9 wavelengths emanating from a single pixel that is ~7 km in diameter at nadir and stretches into a ~7 x 20 km^2 ellipse at the most oblique views to be considered (~70 degrees). Two cloud cameras (CCs) were also onboard Glory to provide spatial context. If the relatively large APS footprint is cloud-free or fully-cloudy, then a 1D vector radiative transfer (RT) model is adequate for predicting the APS signals and, upon iteration over its input parameters, aerosol and cloud property retrievals are expected to be of high quality. And this level of accuracy is indeed required to make a real breakthrough in climate modeling where the radiative properties of aerosols and clouds remain one of the main sources of uncertainty. However, the CCs will often show that the APS's field-of-view is a spatially complex cloud scene, but where we are mostly interested in the ambient aerosols. Moreover, it is precisely these aerosols in contact with clouds that will influence their microphysical and optical properties, leading to the manifold indirect aerosol effects on the climate system that need to be far better understood in order to improve their representation in climate models. Therefore, the research presented here addresses the challenge of characterizing simultaneously aerosols and clouds in a single APS observation. Access to polarization can, at least in principle, be used to separate clouds and aerosols using the cloud-bow directions that will often be sampled by APS. In practice, however, we need to assess the extent of 3D polarized RT unfolding inside the APS pixel that cannot be estimated using a linear mixture of 1D vector RT (vRT) computations assuming either aerosol or cloud is present. Differences between the 1D vRT-based prediction and simulated APS data derived from a high-fidelity 3D vRT model is what we call "irreducible" 3D RT effects. To this end, we have used the vMYSTIC Monte Carlo 3D vRT model. Based on computations for a typical scene with a 3D cumulus cloud field embedded in a horizontally uniform aerosol, we find that the irreducible 3D vRT effects are in the APS's signal--not its noise--especially if the aerosol burden is significant. The cloud-bow region, which is key to any practical cloud-aerosol unmixing algorithm, is particularly vulnerable. Moreover, the adopted 1D vRT-based forward model is assumed to be very well informed about the actual aerosol/cloud properties, meaning that the predicted irreducible 3D vRT effects are a best-case scenario. In reality, the problem will be far more severe. We will nonetheless describe a promising path toward a mitigation scheme. We will also assess the impact of the 3D vRT damage on the joint aerosol-cloud property retrieval.
Josefsson, Elisabet; Higgins, Judy; Foster, Timothy J; Tarkowski, Andrej
2008-05-21
We have earlier shown that clumping factor A (ClfA), a fibrinogen binding surface protein of Staphylococcus aureus, is an important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P(336) and Y(338), were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP(336)Y(338) mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP(336)Y(338) mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP(336) and Y(338) were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP(336)Y(338) mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP(336)SY(338)A mutant but not with recombinant ClfA, protected against septic death. Our data strongly suggest that the fibrinogen binding activity of ClfA is crucial for the ability of S. aureus to provoke disease manifestations, and that the vaccine potential of recombinant ClfA is improved by removing its ability to bind fibrinogen.
Shai, Anny; Pitot, Henry C; Lambert, Paul F
2010-06-15
High-risk human papillomaviruses (HPV) cause certain anogenital and head and neck cancers. E6, one of three potent HPV oncogenes that contribute to the development of these malignancies, is a multifunctional protein with many biochemical activities. Among these activities are its ability to bind and inactivate the cellular tumor suppressor p53, induce expression of telomerase, and bind to various other proteins, including Bak, E6BP1, and E6TP1, and proteins that contain PDZ domains, such as hScrib and hDlg. Many of these activities are thought to contribute to the role of E6 in carcinogenesis. The interaction of E6 with many of these cellular proteins, including p53, leads to their destabilization. This property is mediated at least in part through the ability of E6 to recruit the ubiquitin ligase E6-associated protein (E6AP) into complexes with these cellular proteins, resulting in their ubiquitin-mediated degradation by the proteasome. In this study, we address the requirement for E6AP in mediating acute and oncogenic phenotypes of E6, including induction of epithelial hyperplasia, abrogation of DNA damage response, and induction of cervical cancer. Loss of E6AP had no discernible effect on the ability of E6 to induce hyperplasia or abrogate DNA damage responses, akin to what we had earlier observed in the mouse epidermis. Nevertheless, in cervical carcinogenesis studies, there was a complete loss of the oncogenic potential of E6 in mice nulligenic for E6AP. Thus, E6AP is absolutely required for E6 to cause cervical cancer.
Differences in postural tremor dynamics with age and neurological disease.
Morrison, Steven; Newell, Karl M; Kavanagh, Justin J
2017-06-01
The overlap of dominant tremor frequencies and similarly amplified tremor observed for Parkinson's disease (PD) and essential tremor (ET) means differentiating between these pathologies is often difficult. As tremor exhibits non-linear properties, employing both linear and non-linear analyses may help distinguish between the tremor dynamics of aging, PD and ET. This study was designed to examine postural tremor in healthy older adults, PD and ET using standard linear and non-linear metrics. Hand and finger postural tremor was recorded in 15 healthy older adults (64 ± 6 years), 15 older individuals with PD (63 ± 6 years), and 10 persons with ET (68 ± 7 years). Linear measures of amplitude, frequency, and between-limb coupling (coherence) were performed. Non-linear measures of regularity (ApEn) and coupling (Cross-ApEn) were also used. Additionally, receiver operating characteristic analyses were performed for those measures that were significantly different between all groups. The results revealed that the linear measures only showed significant differences between the healthy adults and ET/PD persons, but no differences between the two neurological groups. Coherence showed higher bilateral coupling for ET but no differences in inter-limb coupling between PD and healthy subjects. However, ApEn values for finger tremor revealed significant differences between all groups, with tremor for ET persons being more regular (lower ApEn) overall. Similarly, Cross-ApEn results also showed differences between all groups, with ET persons showing strongest inter-limb coupling followed by PD and elderly. Overall, our findings point to the diagnostic potential for non-linear measures of coupling and tremor structure as biomarkers for discriminating between ET, PD and healthy persons.
Wang, Kun; Wang, Wenhang; Ye, Ran; Xiao, Jingdong; Liu, Yaowei; Ding, Junsheng; Zhang, Shaojing; Liu, Anjun
2017-08-01
In order to obtain new reinforcing bio-fillers to improve the physicochemical properties of gelatin-based films, three types of maize starch, waxy maize starch (Ap), normal starch (Ns) and high-amylose starch (Al), were incorporated into gelatin film and the resulting film properties were investigated, focusing on the impact of amylose content. The thickness, opacity and roughness of gelatin film increased depending on the amylose content along with the starch concentration. The effects of the three starches on the mechanical properties of gelatin film were governed by amylose content, starch concentration as well as environmental relative humidity (RH). At 75% RH, the presence of Al and Ns in the gelatin matrix increased the film strength but decreased its elongation, while Ap exhibited an inverse effect. Starch addition decreased the oxygen permeability of the film, with the lowest value at 20% Al and Ns. All starches, notably at 30% content, led to a decrease in the water vapor permeability of the film at 90% RH, especially Ns starch. Furthermore, the starches improved the thermal stability of the film to some extent. Fourier transform infrared spectra indicated that some weak intermolecular interactions such as hydrogen bonding occurred between gelatin and starch. Moreover, a high degree of B-type crystallinity of starch was characterized in Gel-Al film by X-ray diffraction. Tailoring the properties of gelatin film by the incorporation of different types of maize starch provides the potential to extend its applications in edible food packaging. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Berg, Rune W.; Stauning, Marius Tving; Sørensen, Jakob Balslev; Jahnsen, Henrik
2017-04-01
The action potential (AP) is an electrical impulse elicited by depolarization of the neuronal membrane from the resting membrane potential (around -70 mV ). It propagates along the axon, allowing for rapid and distant communication. Recently, it was claimed that two APs traveling in opposite direction will pass unhindered through each other (penetrate) upon collision [Gonzalez-Perez et al.Phys. Rev. X 4, 031047 (2014), 10.1103/PhysRevX.4.031047]. We tested this claim under carefully controlled conditions and found that we cannot reproduce penetration. Instead, APs consistently annihilated upon collision. This is consistent with a vast body of literature.
Decker, Keith F; Heijman, Jordi; Silva, Jonathan R; Hund, Thomas J; Rudy, Yoram
2009-04-01
Computational models of cardiac myocytes are important tools for understanding ionic mechanisms of arrhythmia. This work presents a new model of the canine epicardial myocyte that reproduces a wide range of experimentally observed rate-dependent behaviors in cardiac cell and tissue, including action potential (AP) duration (APD) adaptation, restitution, and accommodation. Model behavior depends on updated formulations for the 4-aminopyridine-sensitive transient outward current (I(to1)), the slow component of the delayed rectifier K(+) current (I(Ks)), the L-type Ca(2+) channel current (I(Ca,L)), and the Na(+)-K(+) pump current (I(NaK)) fit to data from canine ventricular myocytes. We found that I(to1) plays a limited role in potentiating peak I(Ca,L) and sarcoplasmic reticulum Ca(2+) release for propagated APs but modulates the time course of APD restitution. I(Ks) plays an important role in APD shortening at short diastolic intervals, despite a limited role in AP repolarization at longer cycle lengths. In addition, we found that I(Ca,L) plays a critical role in APD accommodation and rate dependence of APD restitution. Ca(2+) entry via I(Ca,L) at fast rate drives increased Na(+)-Ca(2+) exchanger Ca(2+) extrusion and Na(+) entry, which in turn increases Na(+) extrusion via outward I(NaK). APD accommodation results from this increased outward I(NaK). Our simulation results provide valuable insight into the mechanistic basis of rate-dependent phenomena important for determining the heart's response to rapid and irregular pacing rates (e.g., arrhythmia). Accurate simulation of rate-dependent phenomena and increased understanding of their mechanistic basis will lead to more realistic multicellular simulations of arrhythmia and identification of molecular therapeutic targets.
Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines.
Mohammed, M Z; Vyjayanti, V N; Laughton, C A; Dekker, L V; Fischer, P M; Wilson, D M; Abbotts, R; Shah, S; Patel, P M; Hickson, I D; Madhusudan, S
2011-02-15
Modulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy. An industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses. Several specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines. Our study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma.
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M
2016-09-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.
2016-01-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multi-site stimulation and mapping to manipulate actively the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics. PMID:27347837
von Drygalski, A; Ogilvie, A
2000-01-01
Ap4A and other dinucleotides participate in the regulation of hemostasis and blood pressure control. With the exception of two previously reported surface anchored ectoAp4A-hydrolases on bovine aortic endothelial and chromaffine cells, all Ap4A-hydrolases reported are intracellular or freely soluble. We demonstrated that ectoAp4A-hydrolases are present on a broad variety of cell types of different species: rat mesangial, bovine corneal epithelial, human Hep-G2 and peridontal cells. Ectoenzyme properties were evaluated on rat mesangium cells. Chromatography of purified plasma membranes on Sephacel 300 resulted in enrichment of ectoAp4A-hydrolase and in separation from ectoATPase. In contrast to ATPase, Ap4A-hydrolase was stable at room temperature. EctoAp4A-hydrolase also recognized ATP as substrate, and therefore is not highly specific. The molecular weight was 180 kD. Unlike ectoAMPase ectoAp4A-hydrolase was not attached via a glycosyl-phosphatidylinositol (GPI)-moiety. Concentrations of PI-PLC 10-100-fold higher than effective for ectoAMPase cleavage (10-100 mU/ml) plus extensively extended incubation times up to eight hours did not result in cleavage of ectoAp4A-hydrolase. The enzyme ectoAp4A-hydrolase might presage a direction for pharmaceutical manipulation in the control of blood pressure and hemostasis.
Shen, Zhu-Rui; Li, Ya-Li; Liu, Jian-Bin; Chen, Ming-Xia; Hou, Feng; Wang, Li-Qun
2012-03-07
Transparent luminescent bulk nanocomposites of polysiloxane (PSO) embedded with semiconductor nanocrystals (NCs) have been fabricated by the direct dispersion of CdS NCs in alkyl-(poly)siloxane (APS) followed by co-polymerization. The non-polar characteristics of the APS precursor are compatible with the CdS NC surface (oleylamine), which allows the direct dispersion of the CdS NCs without the need of any surfactant exchange. Chemical crosslinking of the NC-APS dispersion via hydrosilylation between Si-H and the vinyl group in APS immobilizes the CdS NCs in the polysiloxane network. Net-shaped three-dimensional bulk transparent polysiloxane/CdS NC composites were obtained by liquid casting of the NC-precursor dispersion and chemical crosslinking. The PSO/CdS NC composites show visible luminescence under ultraviolet excitation and the luminescent color is tunable from blue to red by controlling the NC concentration in the composite. Photoluminescence spectral analyses reveal the origin of the luminescence as being from the defect emission of the CdS NCs (550-900 nm) and an emission from the PSO matrix (380-550 nm). The luminescent spectra covered a wide range from the ultraviolet to the near-infrared region. The luminescence of the PSO/CdS NC nanocomposites was stable without any apparent degradation after exposure to air for a long time. This simple direct dispersion process is feasible for the fabrication of luminescent nanocomposites with useful optical properties for potential applications in optics and photoelectron devices.
Guan, Tuchen; Song, Jian; Wang, Yanan; Guo, Liying; Yuan, Lin; Zhao, Yingding; Gao, Yuan; Lin, Liangru; Wang, Yali; Wei, Jingyan
2017-09-01
To balance the production and decomposition of reactive oxygen species, living organisms have generated antioxidant enzymes and non-enzymatic antioxidant defense systems. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) are two important antioxidant enzymes. Apart from their catalytic functions, they protect each other, resulting in more efficient removal of reactive oxygen species, protection of cells against injury, and maintenance of the normal metabolism of reactive oxygen species. SOD catalyzes the dismutation of the superoxide anion (O 2 •- ) to oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ). H 2 O 2 is then detoxified to water by GPx. In this study, human GPx1 Ser and the Alvinella pompejana SOD (ApSOD) gene were used to design and generate several recombinant proteins with both GPx and SOD activities by combining traditional fusion protein technology, a cysteine auxotrophic expression system, and a single protein production (SPP) system. Among the fusion proteins, Se-hGPx1 Ser -L-ApSOD exhibited the highest SOD and GPx activities. Additional research was conducted to better understand the properties of Se-hGPx1 Ser -L-ApSOD. The synergism of Se-hGPx1 Ser -L-ApSOD was evaluated by using an in vitro model. This research may facilitate future studies on the cooperation and catalytic mechanisms of GPx and SOD. We believe that the bifunctional enzyme has potential applications as a potent antioxidant. Copyright © 2017 Elsevier Inc. All rights reserved.
Scholle, Oliver; Banaschewski, Tobias; Enders, Dirk; Garbe, Edeltraut; Riedel, Oliver
2018-05-16
Children and adolescents with attention-deficit/hyperactivity disorder (ADHD) frequently have comorbidities that are potential indications for antipsychotics (APs). Some studies have suggested that the combined use of methylphenidate (MPH) and APs is increasing in this population group. Longitudinal analyses and in-depth investigations on the substance level are lacking. This study aimed to estimate the cumulative proportion of concomitant AP/MPH use in children and adolescents with ADHD over a follow-up of up to 9 years and to describe patient characteristics stratified by specific AP drug. Based on claims data, concomitant AP/MPH use was identified among 67,595 children and adolescents with ADHD starting MPH treatment between 2005 and 2013. Characteristics and diagnoses-including those indicating appropriateness of AP use according to approved indications and/or guidelines-were examined at the time of first AP/MPH combination therapy. In addition, subsequent use of AP/MPH combination therapy was evaluated. The cumulative proportion of individuals with any AP/MPH combination therapy rose to over 6% within 9 years after initiating MPH. The most frequent APs first used in combination with MPH were risperidone (72%), pipamperone (15%), and tiapride (8%). Percentages of psychiatric hospitalization in the year preceding the first combination therapy with MPH were 33%, 43%, and 19%, respectively. The proportion of individuals with potentially appropriate use was high (>72%) in risperidone/MPH and tiapride/MPH and low (15%) in pipamperone/MPH combination users. Conduct disorders and tic disorders were frequent in users who were prescribed MPH with risperidone and tiapride, respectively. One-quarter of patients with AP/MPH combination therapy were one-time-only combination users. Our study suggests that a considerable proportion of children and adolescents with ADHD receive MPH in combination with APs and that this is a factor not only during the first years of MPH treatment. ADHD guidelines should specify algorithms concerning the use of AP medication.
Cheng, Pai-Shan; Hu, Chao-Chin; Wang, Chau-Jong; Lee, Yean-Jang; Chung, Wei-Chia; Tseng, Tsui-Hwa
2017-02-25
Chemoprevention has been acknowledged as an important and practical strategy for managing cancer. We have previously synthesized morusin, a prenylated flavonoid that exhibits anti-cancer progression activity. In the present study, we evaluated the anti-cancer promotion potential of morusin by using the mouse epidermal JB6 P + cell model. Extensive evidence shows that tumor promotion by phorbol esters is due to the stimulation of reactive oxygen species (ROS). Therefore, the effect of morusin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ROS production was assessed. Noncytotoxic concentrations of morusin were found to dose-dependently reduce TPA-induced ROS production. Moreover, morusin inhibited TPA-induced activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) activation, which can mediate cell proliferation and malignant transformation. Furthermore, morusin inhibited the TPA upregulation of cyclooxygenase 2 (COX-2), which may be regulated by AP-1 and NF-κB. In addition, noncytotoxic concentrations of morusin reduced the TPA-promoted cell growth of JB6 P + cells and inhibited TPA-induced malignant properties, such as cytoskeletal rearrangement and cell migration of JB6 P + cells. Similar to the effects of glutathione (GSH) pretreatment, morusin inhibited TPA-induced expression of N-cadeherin and vimentin, which are malignant cell surface proteins. Finally, morusin treatment dose-dependently suppressed the TPA-induced anchorage-independent cell transformation of JB6 P + cells. In conclusion, our results evidence that morusin possesses anti-cancer promotion potential because of its antioxidant property, which mediates multiple transformation-associated gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes
Lieu, Deborah K.; Fu, Ji-Dong; Chiamvimonvat, Nipavan; Chan Tung, Kelvin W.; McNerney, Gregory P.; Huser, Thomas; Keller, Gordon; Kong, Chi-Wing
2013-01-01
Background Human embryonic stem cells (hESCs) can be efficiently and reproducibly directed into cardiomyocytes (CMs) using stage-specific induction protocols. However, their functional properties and suitability for clinical and other applications have not been evaluated. Methods and Results Here we showed that CMs derived from multiple pluripotent human stem cell lines (hESC: H1, HES2) and types (induced pluripotent stem cell or iPSC) using different in vitro differentiation protocols (embryoid body formation, endodermal induction, directed differentiation) commonly displayed immature, pro-arrhythmic action potential (AP) properties such as high-degree of automaticity, depolarized resting membrane potential (RMP), Phase 4- depolarization and delayed after-depolarization (DAD). Among the panoply of sarcolemmal ionic currents investigated (INa+/ICaL2+/IKr+/INCX+/If+/Ito+/IK1-/IKs-), we pinpointed the lack of the Kir2.1-encoded inwardly rectifying K+ current (IK1) as the single mechanistic contributor to the observed immature electrophysiological properties in hESC-CMs. Forced expression of Kir2.1 in hESC-CMs led to robust expression of Ba2+-sensitive IK1 and more importantly, completely ablated all the pro-arrhythmic AP traits, rendering the electrophysiological phenotype indistinguishable from the adult counterparts. These results provided the first link of a complex developmentally arrested phenotype to a major effector gene, and importantly, further led us to develop a biomimetic culturing strategy for enhancing maturation. Conclusions By providing the environmental cues that are missing in conventional culturing method, this approach did not require any genetic or pharmacological interventions. Our findings can facilitate clinical applications, drug discovery and cardiotoxicity screening by improving the yield, safety and efficacy of derived CMs. PMID:23392582
Mahata, Sutapa; Bharti, Alok C; Shukla, Shirish; Tyagi, Abhishek; Husain, Syed A; Das, Bhudev C
2011-04-15
Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and blocking viral oncoproteins E6 and E7 expression. Inhibition of AP-1 activity by berberine may be one of the mechanisms responsible for the anti-HPV effect of berberine. We propose that berberine is a potentially promising compound for the treatment of cervical cancer infected with HPV.
2017-01-01
Introduction Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. Aim The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. Methods A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. Results The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Conclusion Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to patient risk factors. PMID:29077727
Sultana, Janet; Calabró, Marco; Garcia-Serna, Ricard; Ferrajolo, Carmen; Crisafulli, Concetta; Mestres, Jordi; Trifirò', Gianluca
2017-01-01
Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to patient risk factors.
Kiapour, Ata M.; Fleming, Braden C.; Murray, Martha M.
2017-01-01
Background: Abnormal joint motion has been linked to joint arthrosis after anterior cruciate ligament (ACL) reconstruction. However, the relationships between the graft properties (ie, structural and anatomic) and extent of posttraumatic osteoarthritis are not well defined. Hypotheses: (1) The structural (tensile) and anatomic (area and alignment) properties of the reconstructed graft or repaired ACL correlate with the total cartilage lesion area 1 year after ACL surgery, and (2) side-to-side differences in anterior-posterior (AP) knee laxity correlate with the total cartilage lesion area 1 year postoperatively. Study Design: Controlled laboratory study. Methods: Sixteen minipigs underwent unilateral ACL transection and were randomly treated with ACL reconstruction or bridge-enhanced ACL repair. The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACL or graft, AP knee laxity, and cartilage lesion areas were assessed 1 year after surgery. Results: In the reconstructed group, the normalized graft yield and maximum failure loads, cross-sectional area, sagittal and coronal elevation angles, and side-to-side differences in AP knee laxity at 60° of flexion were associated with the total cartilage lesion area 1 year after surgery (R 2 > 0.5, P < .04). In the repaired group, normalized ACL yield load, linear stiffness, cross-sectional area, and the sagittal and coronal elevation angles were associated with the total cartilage lesion area (R 2 > 0.5, P < .05). Smaller cartilage lesion areas were observed in the surgically treated knees when the structural and anatomic properties of the ligament or graft and AP laxity values were closer to those of the contralateral ACL-intact knee. Reconstructed grafts had a significantly larger normalized cross-sectional area and sagittal elevation angle (more vertical) when compared with repaired ACLs (P < .02). Conclusion: The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACLs or grafts and AP knee laxity in reconstructed knees were associated with the extent of tibiofemoral cartilage damage after ACL surgery. Clinical Relevance: These data highlight the need for novel ACL injury treatments that can restore the structural and anatomic properties of the torn ACL to those of the native ACL in an effort to minimize the risk of early-onset posttraumatic osteoarthritis. PMID:28875154
Kuzmin, Vladislav S; Pustovit, Ksenia B; Abramochkin, Denis V
2016-06-27
Recently, NAD+ has been considered as an essential factor, participating in nerve control of physiological functions and intercellular communication. NAD+ also has been supposed as endogenous activator of P1 and P2 purinoreceptors. Effects of extracellular NAD+ remain poorly investigated in cardiac tissue. This study aims to investigate the effects of extracellular NAD+ in different types of supraventricular and ventricular working myocardium from rat and their potential mechanisms. The standard technique of sharp microelectrode action potential recording in cardiac multicellular preparations was used to study the effects of NAD+. Extracellular NAD+ induced significant changes in bioelectrical activity of left auricle (LA), right auricle (RA), pulmonary veins (PV) and right ventricular wall (RV) myocardial preparations. 10-100 μM NAD+ produced two opposite effects in LA and RA - quickly developing and transient prolongation of action potentials (AP) and delayed sustained AP shortening, which follows the initial positive effect. In PV and RV only AP shortening was observed in response to NAD+ application. In PV preparations AP shortening induced by NAD+ may be considered as a potential proarrhythmic effect. Revealed cardiotropic effects of NAD+ are likely to be mediated by P2 purine receptors, since P1 blocker DPCPX failed to affect them and P2 antagonist suramin abolished NAD + -induced alterations of electrical activity. P2X receptors may be responsible for NAD + -induced short-lasting AP prolongation, while P2Y receptors mediate persistent AP shortening. The latter effect is partially removed by PLC inhibitor U73122 showing the potential involvement of phosphoinositide signaling pathway in mediation of NAD+ cardiotropic effects. Extracellular NAD+ is supposed to be a novel regulator of cardiac electrical activity. P2 receptors represent the main target of NAD+ at least in the rat heart.
Student Drinking-Related Problems in an Urban Campus: Implications for Research and Prevention
ERIC Educational Resources Information Center
Avci, Ozgur; Fendrich, Michael
2010-01-01
Objective: Researchers who study the etiology of college drinking typically employ measures of alcohol-use behaviors as outcomes; however, relatively little is known about the properties of alcohol-related problems (AP). This study aims to develop a single continuous measure of AP. Participants: The sample included 531 undergraduate college…
Characteristics of the starch fine structure and pasting properties of waxy rice during storage.
Huang, Yu-Chan; Lai, Hsi-Mei
2014-01-01
Two waxy rice (TNW1 and TCSW1, exhibiting high and low amylase activity, respectively), were stored at 4 and 17 °C (polished rice) and at room temperature (paddy rice) for 15 months. The fine structure of starch isolated from the aged rice and the pasting properties of starch and rice flour were studied. After storage, the percentage of short amylopectin (AP) chains increased in TNW1, and no uniform changing pattern was observed in the chain-length (CL) distribution of TCSW1. The viscosity of starch isolated from the aged rice increased as the storage temperature and duration increased. We hypothesised that this increase was due to the hydrolysis of AP by endogenous amylase and the generation of small clusters during storage, which caused the simple dissociation of AP and a high swelling degree of starch granules during gelatinisation. Factor analysis of the first two factors associated with the characteristics of viscograms and the CL of AP explained 72% of the total variation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Juan; Sun, Binbin; Bhutto, Muhammad Aqeel; Zhu, Tonghe; Yu, Kui; Bao, Jiayu; Morsi, Yosry; El-Hamshary, Hany; El-Newehy, Mohamed; Mo, Xiumei
2017-03-01
Electrospun nanofibers have gained widespreading interest for tissue engineering application. In the present study, ApF/P(LLA-CL) nanofibrous scaffolds were fabricated via electrospinning. The feasibility of the material as tissue engineering nerve scaffold was investigated in vitro. The average diameter increased with decreasing the blend ratio of ApF to P(LLA-CL). Characterization of 13C NMR and FTIR clarified that there is no obvious chemical bond reaction between ApF and P(LLA-CL). The tensile strength and elongation at break increased with the content increase of P(LLA-CL). The surface hydrophilic property of nanofibrous scaffolds enhanced with the increased content of ApF. Cell viability studies with Schwann cells demonstrated that ApF/P(LLA-CL) blended nanofibrous scaffolds significantly promoted cell growth as compare to P(LLA-CL), especially when the weight ratio of ApF to P(LLA-CL) was 25:75. The present work provides a basis for further studies of this novel nanofibrous material (ApF/P(LLA-CL)) in peripheral nerve tissue repair or regeneration.
DiAs User Interface: A Patient-Centric Interface for Mobile Artificial Pancreas Systems
Keith-Hynes, Patrick; Guerlain, Stephanie; Mize, Benton; Hughes-Karvetski, Colleen; Khan, Momin; McElwee-Malloy, Molly; Kovatchev, Boris P.
2013-01-01
Background Recent in-hospital studies of artificial pancreas (AP) systems have shown promising results in improving glycemic control in patients with type 1 diabetes mellitus. The next logical step in AP development is to conduct transitional outpatient clinical trials with a mobile system that is controlled by the patient. In this article, we present the user interface (UI) of the Diabetes Assistant (DiAs), an experimental smartphone-based mobile AP system, and describe the reactions of a round of focus groups to the UI. This work is an initial inquiry involving a relatively small number of potential users, many of whom had never seen an AP system before, and the results should be understood in that light. Methods We began by considering how the UI of an AP system could be designed to make use of the familiar touch-based graphical UI of a consumer smartphone. After developing a working prototype UI, we enlisted a human factors specialist to perform a heuristic expert analysis. Next we conducted a formative evaluation of the UI through a series of three focus groups with N = 13 potential end users as participants. The UI was modified based upon the results of these studies, and the resulting DiAs system was used in transitional outpatient AP studies of adults in the United States and Europe. Results The DiAs UI was modified based on focus group feedback from potential users. The DiAs was subsequently used in JDRF- and AP@Home-sponsored transitional outpatient AP studies in the United States and Europe by 40 subjects for 2400 h with no adverse events. Conclusions Adult patients with type 1 diabetes mellitus are able to control an AP system successfully using a patient-centric UI on a commercial smartphone in a transitional outpatient environment. PMID:24351168
Regulation of rat mesangial cell growth by diadenosine phosphates.
Heidenreich, S; Tepel, M; Schlüter, H; Harrach, B; Zidek, W
1995-01-01
The newly recognized human endogenous vasoconstrictive dinucleotides, diadenosine pentaphosphate (AP5A) and diadenosine hexaphosphate (AP6A), were tested for growth stimulatory effects in rat mesangial cells (MC). Both AP5A and AP6A stimulated growth in micromolar concentrations. The growth stimulatory effect exceeded that of ATP, alpha,beta-methylene ATP, adenosine 5'-O-(3-thio)triphosphate and UTP. Both diadenosine phosphates potentiated the growth response to platelet-derived growth factor, but not to insulin-like growth factor-1. To further elucidate the site of action in the cell cycle, RNA and protein synthesis were assessed. AP5 and AP6A stimulated protein synthesis, but not RNA formation. Furthermore, both agents increased cytosolic free Ca2+ concentration. It is concluded that AP5A and AP6A may play a regulatory role in MC growth as progression factors and possibly modify MC proliferation in glomerular disease. PMID:7769127
Gonzalez-Reyes, Luis E; Ladas, Thomas P; Chiang, Chia-Chu; Durand, Dominique M
2013-12-01
Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in the peripheral and central nervous systems. The membrane surface expression of TRPV1 is known to occur in neuronal cell bodies and sensory neuron axons. TRPV1 receptors are also expressed in the hippocampus, the main epileptogenic region in the brain. Although, previous studies implicate TRPV1 channels in the generation of epilepsy, suppression of ongoing seizures by TRPV1 antagonists has not yet been attempted. Here, we evaluate the role of TRPV1 channels in the modulation of epileptiform activity as well as the anti-convulsant properties of capsazepine (CZP), an established TRPV1 competitive antagonist, using in vitro and in vivo models. To this end, we used 4-aminopyridine (4-AP) to trigger seizure-like activity. We found that CZP suppressed 4-AP induced epileptiform activity in vitro (10-100μM) and in vivo (50mg/kg s.c.). In contrast, capsaicin enhanced 4-AP induced epileptiform activity in vitro (1-100μM) and triggered bursting activity in vivo (100μM dialysis perfusion), which was abolished by the TRPV1 antagonist CZP. To further investigate the mechanisms of TRPV1 modulation, we studied the effect of capsaicin and CZP on evoked potentials. Capsaicin (1-100μM) and CZP (10-100μM) increased and decreased, respectively, the amplitude of extracellular field evoked potentials in a concentration-dependent manner. Additional in vitro studies showed that the effect of the TRPV1 blocker on evoked potentials was similar whether the response was orthodromic or antidromic, suggesting that the effect involves interference with membrane depolarization on cell bodies and axons. The fact that CZP could act directly on axons was confirmed by decreased amplitude of the compound action potential and by an increased delay of both the antidromic potentials and the axonal response. Histological studies using transgenic mice also show that, in addition to the known neural expression, TRPV1 channels are widely expressed in alvear oligodendrocytes in the hippocampus. Taken together, these results indicate that activation of TRPV1 channels leads to enhanced excitability, while their inhibition can effectively suppress ongoing electrographic seizures. These results support a role for TRPV1 channels in the suppression of convulsive activity, indicating that antagonism of TRPV1 channels particularly in axons may possibly be a novel target for effective acute suppression of seizures. © 2013.
GM2-activator protein: a new biomarker for lung cancer.
Potprommanee, Laddawan; Ma, Haou-Tzong; Shank, Lalida; Juan, Yi-Hsiu; Liao, Wei-Yu; Chen, Shui-Tein; Yu, Chong-Jen
2015-01-01
Effective biomarkers for early diagnosis of lung cancer are needed. A recent study demonstrated that urinary GM2-activator protein (GM2AP) level was increased in lung cancer patients. This study aims to validate the potential application of GM2AP as a biomarker for diagnosis of lung cancer. Serum and urine samples were obtained from 189 participants (133 patients for treatment naive lung cancer, 26 healthy volunteers for urine, and 30 healthy volunteers for serum). GM2AP level was detected by Western blotting and quantified using enzyme-linked immunosorbent assay (ELISA). The GM2AP expression in tumors and nontumor parts of lung tissues from 143 nonsmall cell lung cancers was detected by immunohistochemical stains. There was an 8.11 ± 1.36 folds increase in urine and a 5.41 ± 0.73 folds increase in serum level of GM2AP in lung cancer patients compared with healthy volunteers (p < 0.0001), achieving a 0.89 AUC value in urine and 0.90 AUC value in serum for the receiver-operating characteristic curves. Both serum and urine levels of GM2AP correlated significantly with pathology stages (urine, p = 0.009; serum, p < 0.0001). Using immunohistochemical, positive expression of GM2AP was found at 83.9% of nonsmall cell lung cancers patients and none in normal tissue. The GM2AP expression was significantly correlated with pathology stage (p = 0.0001). Patients with higher GM2AP expression had shorter overall survival (p = 0.045) and disease-free survival (p = 0.049) than lower GM2AP expression. Moreover, the multivariate analysis suggested GM2AP as an independent predictors of disease-free survival and overall survival. Our study demonstrates that GM2AP might serve as potential diagnostic and prognostic biomarkers in patients with lung cancer.
NASA Astrophysics Data System (ADS)
Mahaffey, C.; Reynolds, S.; Davis, C. E.; Lohan, M. C.
2016-02-01
Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low in the surface ocean and limit biological activity. In response to phosphate limitation, organisms produce phosphohydrolytic enzymes, such as alkaline phosphatases (AP), that enable them to utilize the more replete dissolved organic phosphorus (DOP) pool to meet their cellular phosphorus demands. Synthesis of data from the surface ocean from 14 open ocean studies reveals an inverse hyperbolic relationship between phosphate and AP, where AP is significantly induced at phosphate concentrations below 50 nM and DOP concentrations decrease as AP increases. AP activity was significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM). While the phosphate concentration may have a first order control on the rates of AP, we demonstrate that other factors influence AP activity. AP are metalloenzymes and zinc and iron are co-factors of the AP proteins PhoA and PhoX, respectively. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increases the rate of AP. To our knowledge, our results are the first direct field-based evidence that AP activity is limited by zinc in the subtropical ocean. In colonies of nitrogen fixer, Trichodesmium, we found enhanced expression of the phoA gene in a region of elevated zinc concentrations and enhanced expression of the phoX gene in a region of elevated iron concentrations around the intertropical convergence zone. Our study highlights the potential link between the phosphorus cycle and trace metals, specifically zinc and iron, and implies that there is potential for zinc-phosphorus and iron-phosphorus co-limitation in the ocean via AP.
Veerman, Christiaan C.; Zegers, Jan G.; Mengarelli, Isabella; Bezzina, Connie R.
2017-01-01
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for studying inherited cardiac arrhythmias and developing drug therapies to treat such arrhythmias. Unfortunately, until now, action potential (AP) measurements in hiPSC-CMs have been hampered by the virtual absence of the inward rectifier potassium current (IK1) in hiPSC-CMs, resulting in spontaneous activity and altered function of various depolarising and repolarising membrane currents. We assessed whether AP measurements in “ventricular-like” and “atrial-like” hiPSC-CMs could be improved through a simple, highly reproducible dynamic clamp approach to provide these cells with a substantial IK1 (computed in real time according to the actual membrane potential and injected through the patch-clamp pipette). APs were measured at 1 Hz using perforated patch-clamp methodology, both in control cells and in cells treated with all-trans retinoic acid (RA) during the differentiation process to increase the number of cells with atrial-like APs. RA-treated hiPSC-CMs displayed shorter APs than control hiPSC-CMs and this phenotype became more prominent upon addition of synthetic IK1 through dynamic clamp. Furthermore, the variability of several AP parameters decreased upon IK1 injection. Computer simulations with models of ventricular-like and atrial-like hiPSC-CMs demonstrated the importance of selecting an appropriate synthetic IK1. In conclusion, the dynamic clamp-based approach of IK1 injection has broad applicability for detailed AP measurements in hiPSC-CMs. PMID:28867785
The stochastic nature of action potential backpropagation in apical tuft dendrites.
Short, Shaina M; Oikonomou, Katerina D; Zhou, Wen-Liang; Acker, Corey D; Popovic, Marko A; Zecevic, Dejan; Antic, Srdjan D
2017-08-01
In cortical pyramidal neurons, backpropagating action potentials (bAPs) supply Ca 2+ to synaptic contacts on dendrites. To determine whether the efficacy of AP backpropagation into apical tuft dendrites is stable over time, we performed dendritic Ca 2+ and voltage imaging in rat brain slices. We found that the amplitude of bAP-Ca 2+ in apical tuft branches was unstable, given that it varied from trial to trial (termed "bAP-Ca 2+ flickering"). Small perturbations in dendritic physiology, such as spontaneous synaptic inputs, channel inactivation, or temperature-induced changes in channel kinetics, can cause bAP flickering. In the tuft branches, the density of Na + and K + channels was sufficient to support local initiation of fast spikelets by glutamate iontophoresis. We quantified the time delay between the somatic AP burst and the peak of dendritic Ca 2+ transient in the apical tuft, because this delay is important for induction of spike-timing dependent plasticity. Depending on the frequency of the somatic AP triplets, Ca 2+ signals peaked in the apical tuft 20-50 ms after the 1st AP in the soma. Interestingly, at low frequency (<20 Hz), the Ca 2+ peaked sooner than at high frequency, because only the 1st AP invaded tuft. Activation of dendritic voltage-gated Ca 2+ channels is sensitive to the duration of the dendritic voltage transient. In apical tuft branches, small changes in the duration of bAP voltage waveforms cause disproportionately large increases in dendritic Ca 2+ influx (bAP-Ca 2+ flickering). The stochastic nature of bAP-Ca 2+ adds a new perspective on the mechanisms by which pyramidal neurons combine inputs arriving at different cortical layers. NEW & NOTEWORTHY The bAP-Ca 2+ signal amplitudes in some apical tuft branches randomly vary from moment to moment. In repetitive measurements, successful AP invasions are followed by complete failures. Passive spread of voltage from the apical trunk into the tuft occasionally reaches the threshold for local Na + spike, resulting in stronger Ca 2+ influx. During a burst of three somatic APs, the peak of dendritic Ca 2+ in the apical tuft occurs with a delay of 20-50 ms depending on AP frequency. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenig, Xaver; Kovar, Michael; Rubi, Lena
The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologouslymore » expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential source of cardiac arrhythmias. • 18-Methoxycoronaridine has a lower affinity for cardiac ion channels than ibogaine.« less
PSAT Component Scores as a Predictor of Success on AP Exam Performance for Diverse Students
ERIC Educational Resources Information Center
Richardson, Cristianne C.; Gonzalez, Alejandro; Leal, Lonnie; Castillo, Mary Z.; Carman, Carol A.
2016-01-01
While studies have shown the positive effect of the Advanced Placement (AP) program on college readiness, there are still barriers preventing minority and low socioeconomic status (SES) students who possess high academic potential from participating in the opportunity that AP courses offer. One tool that could help identify students for…
Limpitikul, Worawan B.; Dick, Ivy E.; Tester, David J.; Boczek, Nicole J.; Limphong, Pattraranee; Yang, Wanjun; Choi, Myoung Hyun; Babich, Jennifer; DiSilvestre, Deborah; Kanter, Ronald J.; Tomaselli, Gordon F.; Ackerman, Michael J.; Yue, David T.
2017-01-01
Rationale Calmodulinopathies comprise a new category of potentially life-threatening genetic arrhythmia syndromes capable of producing severe long QT syndrome (LQTS) with mutations involving either CALM1, CALM2, or CALM3. The underlying basis of this form of LQTS is a disruption of Ca2+/CaM-dependent inactivation (CDI) of L-type Ca2+ channels (LTCCs). Objective To gain insight into the mechanistic underpinnings of calmodulinopathies and devise new therapeutic strategies for the treatment of this form of LQTS. Methods and Results We generated and characterized the functional properties of iPSC-derived cardiomyocytes (iPSC-CMs) from a patient with D130G-CALM2-mediated LQTS, thus creating a platform with which to devise and test novel therapeutic strategies. The patient-derived iPSC-CMs display (1) significantly prolonged action potentials (APs), (2) disrupted Ca2+ cycling properties, and (3) diminished CDI of LTCCs. Next, taking advantage of the fact that calmodulinopathy patients harbor a mutation in only one of six redundant CaM-encoding alleles, we devised a strategy using CRISPR interference (CRISPRi) to selectively suppress the mutant gene while sparing the wild-type counterparts. Indeed, suppression of CALM2 expression produced a functional rescue in iPSC-CMs with D130G-CALM2, as shown by the normalization of AP duration and CDI following treatment. Moreover, CRISPRi can be designed to achieve selective knockdown of any of the three CALM genes, making it a generalizable therapeutic strategy for any calmodulinopathy. Conclusions Overall, this therapeutic strategy holds great promise for calmodulinopathy patients as it represents a generalizable intervention capable of specifically altering CaM expression and potentially attenuating LQTS-triggered cardiac events, thus initiating a path towards precision medicine. PMID:27765793
Stimulus waveform determines the characteristics of sensory nerve action potentials.
Pereira, Pedro; Leote, João; Cabib, Christopher; Casanova-Molla, Jordi; Valls-Sole, Josep
2016-03-01
In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending. We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase. Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply. Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers. The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying
2015-01-01
Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464
Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release
Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou
2016-01-01
Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946
In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.
Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine
2015-02-25
Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.
Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.
Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki
2012-06-01
DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sun, Qian; Srinivas, Kalyan V; Sotayo, Alaba; Siegelbaum, Steven A
2014-01-01
Synaptic inputs from different brain areas are often targeted to distinct regions of neuronal dendritic arbors. Inputs to proximal dendrites usually produce large somatic EPSPs that efficiently trigger action potential (AP) output, whereas inputs to distal dendrites are greatly attenuated and may largely modulate AP output. In contrast to most other cortical and hippocampal neurons, hippocampal CA2 pyramidal neurons show unusually strong excitation by their distal dendritic inputs from entorhinal cortex (EC). In this study, we demonstrate that the ability of these EC inputs to drive CA2 AP output requires the firing of local dendritic Na+ spikes. Furthermore, we find that CA2 dendritic geometry contributes to the efficient coupling of dendritic Na+ spikes to AP output. These results provide a striking example of how dendritic spikes enable direct cortical inputs to overcome unfavorable distal synaptic locale to trigger axonal AP output and thereby enable efficient cortico-hippocampal information flow. DOI: http://dx.doi.org/10.7554/eLife.04551.001 PMID:25390033
NASA Astrophysics Data System (ADS)
Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer
2017-11-01
New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.
For each dataset a digital object identifier has been issued:
Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002
USDA-ARS?s Scientific Manuscript database
This study evaluated two methods, saline extraction (SE) and conventional acid precipitation (AP), to recover proteins from pennycress (Thlaspi arvense L.) seed meal. SE was done using 0.1 M NaCl at 50ºC while AP involved alkaline extraction (pH 10) first followed by protein precipitation at pH 4. C...
Melatonin potentiates tear secretion induced by diadenosine tetraphosphate in the rabbit.
Hoyle, Charles H V; Peral, Assumpta; Pintor, Jesús
2006-12-15
Diadenosine tetraphosphate (Ap(4)A, 0.03 nmol) applied topically to the cornea of New Zealand white rabbits, evoked an increase in tear secretion of 9.7 +/- 2.60% (N=7). Melatonin (1 nmol) had no significant effect. Application of Ap(4)A in combination with melatonin, evoked a significantly greater increase in tear secretion of 34.2 +/- 5.8% (N=11). This potentiating effect of melatonin was blocked by pretreating the cornea with a topical application of the melatonin receptor antagonist, luzindole (240 nmol). Melatonin combined with Ap(4)A may be useful for treating dry eye conditions.
An Ap-Structure with Finslerian Flavor II:. Torsion, Curvature and Other Objects
NASA Astrophysics Data System (ADS)
Wanas, M. I.; Kamal, Mona M.
An absolute parallelism (AP-) space having Finslerian properties is called FAP-space. This FAP-structure is wider than both conventional AP and Finsler structures. In the present work, more geometric objects as curvature and torsion tensors are derived in the context of this structure. Also second order tensors, usually needed for physical applications, are derived and studied. Furthermore, the anti-curvature and the W-tensor are defined for the FAP-structure. Relations between Riemannian, AP, Finsler and FAP structures are given. These relations facilitate comparison between results of applications carried out in the framework of these structures. We hope that the use of the FAP-structure, in applications may throw some light on some of the problems facing geometric field theories.
A model for studying the energetics of sustained high frequency firing
Morris, Catherine E.
2018-01-01
Regulating membrane potential and synaptic function contributes significantly to the energetic costs of brain signaling, but the relative costs of action potentials (APs) and synaptic transmission during high-frequency firing are unknown. The continuous high-frequency (200-600Hz) electric organ discharge (EOD) of Eigenmannia, a weakly electric fish, underlies its electrosensing and communication. EODs reflect APs fired by the muscle-derived electrocytes of the electric organ (EO). Cholinergic synapses at the excitable posterior membranes of the elongated electrocytes control AP frequency. Based on whole-fish O2 consumption, ATP demand per EOD-linked AP increases exponentially with AP frequency. Continual EOD-AP generation implies first, that ion homeostatic processes reliably counteract any dissipation of posterior membrane ENa and EK and second that high frequency synaptic activation is reliably supported. Both of these processes require energy. To facilitate an exploration of the expected energy demands of each, we modify a previous excitability model and include synaptic currents able to drive APs at frequencies as high as 600 Hz. Synaptic stimuli are modeled as pulsatile cation conductance changes, with or without a small (sustained) background conductance. Over the full species range of EOD frequencies (200–600 Hz) we calculate frequency-dependent “Na+-entry budgets” for an electrocyte AP as a surrogate for required 3Na+/2K+-ATPase activity. We find that the cost per AP of maintaining constant-amplitude APs increases nonlinearly with frequency, whereas the cost per AP for synaptic input current is essentially constant. This predicts that Na+ channel density should correlate positively with EOD frequency, whereas AChR density should be the same across fish. Importantly, calculated costs (inferred from Na+-entry through Nav and ACh channels) for electrocyte APs as frequencies rise are much less than expected from published whole-fish EOD-linked O2 consumption. For APs at increasingly high frequencies, we suggest that EOD-related costs external to electrocytes (including packaging of synaptic transmitter) substantially exceed the direct cost of electrocyte ion homeostasis. PMID:29708986
A novel framework for feature extraction in multi-sensor action potential sorting.
Wu, Shun-Chi; Swindlehurst, A Lee; Nenadic, Zoran
2015-09-30
Extracellular recordings of multi-unit neural activity have become indispensable in neuroscience research. The analysis of the recordings begins with the detection of the action potentials (APs), followed by a classification step where each AP is associated with a given neural source. A feature extraction step is required prior to classification in order to reduce the dimensionality of the data and the impact of noise, allowing source clustering algorithms to work more efficiently. In this paper, we propose a novel framework for multi-sensor AP feature extraction based on the so-called Matched Subspace Detector (MSD), which is shown to be a natural generalization of standard single-sensor algorithms. Clustering using both simulated data and real AP recordings taken in the locust antennal lobe demonstrates that the proposed approach yields features that are discriminatory and lead to promising results. Unlike existing methods, the proposed algorithm finds joint spatio-temporal feature vectors that match the dominant subspace observed in the two-dimensional data without needs for a forward propagation model and AP templates. The proposed MSD approach provides more discriminatory features for unsupervised AP sorting applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Lefkowitz, Jason J; DeCrescenzo, Valerie; Duan, Kailai; Bellve, Karl D; Fogarty, Kevin E; Walsh, John V; ZhuGe, Ronghua
2014-01-01
Adrenal chromaffin cells (ACCs), stimulated by the splanchnic nerve, generate action potentials (APs) at a frequency near 0.5 Hz in the resting physiological state, at times described as ‘rest and digest’. How such low frequency stimulation in turn elicits sufficient catecholamine exocytosis to set basal sympathetic tone is not readily explained by the classical mechanism of stimulus–secretion coupling, where exocytosis is synchronized to AP-induced Ca2+ influx. By using simulated action potentials (sAPs) at 0.5 Hz in isolated patch-clamped mouse ACCs, we show here that less than 10% of all catecholaminergic exocytosis, measured by carbon fibre amperometry, is synchronized to an AP. The asynchronous phase, the dominant phase, of exocytosis does not require Ca2+ influx. Furthermore, increased asynchronous exocytosis is accompanied by an AP-dependent decrease in frequency of Ca2+ syntillas (i.e. transient, focal Ca2+ release from internal stores) and is ryanodine sensitive. We propose a mechanism of disinhibition, wherein APs suppress Ca2+ syntillas, which themselves inhibit exocytosis as they do in the case of spontaneous catecholaminergic exocytosis. PMID:25128575
Silvestre, Ramona A; Rodríguez-Gallardo, Jovita; Egido, Eva M; Marco, José
1999-01-01
Diadenosine triphosphate (AP3A) and diadenosine tetraphosphate (AP4A) are released by various cells (e.g. platelets and chromaffin cells), and may act as extracellular messengers. In pancreatic B-cells, AP3A and AP4A are inhibitors of the ATP-regulated K+ channels, and glucose increases intracellular levels of both substances.We have studied the effect of exogenous AP3A and AP4A on insulin and glucagon secretion by the perfused rat pancreas.AP3A did not significantly modify insulin or glucagon release, whereas AP4A induced a prompt, short-lived insulin response (≈4 fold higher than basal value; P<0.05) in pancreases perfused at different glucose concentrations (3.2, 5.5 or 9 mM). AP4A-induced insulin release was abolished by somatostatin and by diazoxide. These two substances share the capacity to activate ATP-dependent K+ channels, suggesting that these channels are a potential target for AP4A in the B-cell.AP4A stimulated glucagon release at both 3.2 and 5.5 mM glucose. This effect was abolished by somatostatin.The results suggest that extracellular AP4A may play a physiological role in the control of insulin and glucagon secretion. PMID:10516664
Silvestre, R A; Rodríguez-Gallardo, J; Egido, E M; Marco, J
1999-10-01
1. Diadenosine triphosphate (AP3A) and diadenosine tetraphosphate (AP4A) are released by various cells (e.g. platelets and chromaffin cells), and may act as extracellular messengers. In pancreatic B-cells, AP3A and AP4A are inhibitors of the ATP-regulated K+ channels, and glucose increases intracellular levels of both substances. 2. We have studied the effect of exogenous AP3A and AP4A on insulin and glucagon secretion by the perfused rat pancreas. 3. AP3A did not significantly modify insulin or glucagon release, whereas AP4A induced a prompt, short-lived insulin response ( approximately 4 fold higher than basal value; P<0.05) in pancreases perfused at different glucose concentrations (3.2, 5.5 or 9 mM). AP4A-induced insulin release was abolished by somatostatin and by diazoxide. These two substances share the capacity to activate ATP-dependent K+ channels, suggesting that these channels are a potential target for AP4A in the B-cell. 4. AP4A stimulated glucagon release at both 3.2 and 5.5 mM glucose. This effect was abolished by somatostatin. 5. The results suggest that extracellular AP4A may play a physiological role in the control of insulin and glucagon secretion.
Inhibitors of the Diadenosine Tetraphosphate Phosphorylase Rv2613c of Mycobacterium tuberculosis.
Götz, Kathrin H; Hacker, Stephan M; Mayer, Daniel; Dürig, Jan-Niklas; Stenger, Steffen; Marx, Andreas
2017-10-20
The intracellular concentration of diadenosine tetraphospate (Ap 4 A) increases upon exposure to stress conditions. Despite being discovered over 50 years ago, the cellular functions of Ap 4 A are still enigmatic. If and how the varied Ap 4 A is a signal and involved in the signaling pathways leading to an appropriate cellular response remain to be discovered. Because the turnover of Ap 4 A by Ap 4 A cleaving enzymes is rapid, small molecule inhibitors for these enzymes would provide tools for the more detailed study of the role of Ap 4 A. Here, we describe the development of a high-throughput screening assay based on a fluorogenic Ap 4 A substrate for the identification and optimization of small molecule inhibitors for Ap 4 A cleaving enzymes. As proof-of-concept we screened a library of over 42 000 compounds toward their inhibitory activity against the Ap 4 A phosphorylase (Rv2613c) of Mycobacterium tuberculosis (Mtb). A sulfanylacrylonitril derivative with an IC 50 of 260 ± 50 nM in vitro was identified. Multiple derivatives were synthesized to further optimize their properties with respect to their in vitro IC 50 values and their cytotoxicity against human cells (HeLa). In addition, we selected two hits to study their antimycobacterial activity against virulent Mtb to show that they might be candidates for further development of antimycobacterial agents against multidrug-resistant Mtb.
Sun, Deqing; Xue, Aiying; Zhang, Bin; Lou, Haiyan; Shi, Huanying; Zhang, Xiumei
2015-12-01
Acetylpuerarin (AP) is an acetylated derivative of puerarin (PUE). The study aimed to prepare polysorbate 80-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles to improve the permeability of AP across the blood-brain barrier (BBB) and enhance its brain-protective effects. AP-loaded PLGA nanoparticles (AP-PLGA-NPs) were prepared using a solvent diffusion methodology. The NPs were characterized. The pharmacokinetics, tissue distributions and brain-protective effects of AP-PLGA-NPs were evaluated in animals. AP-PLGA-NPs were successfully prepared with a mean particle size of 145.0 nm and a zeta potential of -14.81 mV. The in-vitro release of AP from the PLGA-NPs showed a biphasic release profile. AP was metabolized into PUE in rats. The AUC0-∞ values of AP and PUE for AP-PLGA-NPs were 2.90- and 2.29-fold as great as those for AP solution, respectively. The values of the relative targeting efficiency in the brain were 2.40 and 2.58 for AP and PUE, and the ratios of peak concentration were 1.91 and 1.89 for AP and PUE, respectively. Compared with the crude drug, AP-PLGA-NPs showed better brain-protective effects in rats. Polysorbate 80-coated PLGA-NPs can improve the permeability of AP cross the BBB and enhance its brain-protective effects in rats. © 2015 Royal Pharmaceutical Society.
Pro‐arrhythmic atrial phenotypes in incrementally paced murine Pgc1β −/− hearts: effects of age
Valli, Haseeb; Ahmad, Shiraz; Fraser, James A.; Jeevaratnam, Kamalan
2017-01-01
New Findings What is the central question of this study? Can we experimentally replicate atrial pro‐arrhythmic phenotypes associated with important chronic clinical conditions, including physical inactivity, obesity, diabetes mellitus and metabolic syndrome, compromising mitochondrial function, and clarify their electrophysiological basis? What is the main finding and its importance? Electrocardiographic and intracellular cardiomyocyte recording at progressively incremented pacing rates demonstrated age‐dependent atrial arrhythmic phenotypes in Langendorff‐perfused murine Pgc1β −/− hearts for the first time. We attributed these to compromised action potential conduction and excitation wavefronts, whilst excluding alterations in recovery properties or temporal electrophysiological instabilities, clarifying these pro‐arrhythmic changes in chronic metabolic disease. Atrial arrhythmias, most commonly manifesting as atrial fibrillation, represent a major clinical problem. The incidence of atrial fibrillation increases with both age and conditions associated with energetic dysfunction. Atrial arrhythmic phenotypes were compared in young (12–16 week) and aged (>52 week) wild‐type (WT) and peroxisome proliferative activated receptor, gamma, coactivator 1 beta (Ppargc1b)‐deficient (Pgc1β −/−) Langendorff‐perfused hearts, previously used to model mitochondrial energetic disorder. Electrophysiological explorations were performed using simultaneous whole‐heart ECG and intracellular atrial action potential (AP) recordings. Two stimulation protocols were used: an S1S2 protocol, which imposed extrasystolic stimuli at successively decremented intervals following regular pulse trains; and a regular pacing protocol at successively incremented frequencies. Aged Pgc1β −/− hearts showed greater atrial arrhythmogenicity, presenting as atrial tachycardia and ectopic activity. Maximal rates of AP depolarization (dV/dt max) were reduced in Pgc1β −/− hearts. Action potential latencies were increased by the Pgc1β −/− genotype, with an added interactive effect of age. In contrast, AP durations to 90% recovery (APD90) were shorter in Pgc1β −/− hearts despite similar atrial effective recovery periods amongst the different groups. These findings accompanied paradoxical decreases in the incidence and duration of alternans in the aged and Pgc1β −/− hearts. Limiting slopes of restitution curves of APD90 against diastolic interval were correspondingly reduced interactively by Pgc1β −/− genotype and age. In contrast, reduced AP wavelengths were associated with Pgc1β −/− genotype, both independently and interacting with age, through the basic cycle lengths explored, with the aged Pgc1β −/− hearts showing the shortest wavelengths. These findings thus implicate AP wavelength in possible mechanisms for the atrial arrhythmic changes reported here. PMID:28960529
NASA Astrophysics Data System (ADS)
Nechipadappu, Sunil Kumar; Trivedi, Darshak R.
2017-08-01
Salts of common anti-inflammatory drugs mefenamic acid (MFA), tolfenamic acid (TFA) and naproxen (NPX) with various pyridine derivatives (4-amino pyridine (4AP), 4-dimethylaminopyridine (DMAP) and 2-amino pyridine (2AP)) were synthesized by crystal engineering approach based on the pKa values of API's and the salt former. All the salts were characterized systematically by various spectroscopic methods including FT-IR and 1H NMR and the crystal structure was determined by single-crystal X-ray diffraction techniques (SCXRD). DMAP salt of NPX and 2AP salts of MFA and TFA were not obtained in the salt screening experiments. All the molecular salts exhibited 1:1 molecular stoichiometry in the asymmetric unit and except NPX-2AP salt, all the molecular salts included a water molecule in the crystal lattice. Physicochemical and structural properties between drug-drug molecular salts of MFA-4AP, TFA-4AP and NPX-4AP have been evaluated and it was found that these molecular salts were found to be stable for a time period of six months at ambient condition and further hydration of molecular salts were not observed even at accelerated humid conditions (∼75% RH). It was found that 4AP salts of MFA and TFA and DMAP salts of MFA and TFA are isostructural.
Hannes, Tobias; Wolff, Marie; Doss, Michael Xavier; Pfannkuche, Kurt; Haustein, Moritz; Müller-Ehmsen, Jochen; Sachinidis, Agapios; Hescheler, Jürgen; Khalil, Markus; Halbach, Marcel
2015-01-01
Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs) requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs) of different murine ESC lines. Two wild-type (D3 and R1) and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7) were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP) and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC) promoter. Action potentials (APs) were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Spontaneous AP frequency and AP duration (APD) as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully. © 2015 S. Karger AG, Basel.
An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.
Greenstein, Joseph L; Winslow, Raimond L
2002-01-01
The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca(2+) release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca(2+) uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca(2+) release, and whole-cell phenomena, such as modulation of AP duration by SR Ca(2+) release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca(2+) current is adjusted in accord with the balance between voltage- and Ca(2+)-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments. PMID:12496068
Dark-matter haloes and the M-σ relation for supermassive black holes
NASA Astrophysics Data System (ADS)
Larkin, Adam C.; McLaughlin, Dean E.
2016-10-01
We develop models of two-component spherical galaxies to establish scaling relations linking the properties of spheroids at z = 0 (total stellar masses, effective radii Re and velocity dispersions within Re) to the properties of their dark-matter haloes at both z = 0 and higher redshifts. Our main motivation is the widely accepted idea that the accretion-driven growth of supermassive black holes (SMBHs) in protogalaxies is limited by quasar-mode feedback and gas blow-out. The SMBH masses, MBH, should then be connected to the dark-matter potential wells at the redshift zqso of the blow-out. We specifically consider the example of a power-law dependence on the maximum circular speed in a protogalactic dark-matter halo: M_{BH}∝ V^4_{d,pk}, as could be expected if quasar-mode feedback were momentum-driven. For haloes with a given Vd,pk at a given zqso ≥ 0, our model scaling relations give a typical stellar velocity dispersion σap(Re) at z = 0. Thus, they transform a theoretical MBH-Vd,pk relation into a prediction for an observable MBH-σap(Re) relation. We find the latter to be distinctly non-linear in log-log space. Its shape depends on the generic redshift evolution of haloes in a Λ cold dark matter cosmology and the systematic variation of stellar-to-dark matter mass fraction at z = 0, in addition to any assumptions about the physics underlying the MBH-Vd,pk relation. Despite some clear limitations of the form we use for MBH versus Vd,pk, and even though we do not include any SMBH growth through dry mergers at low redshift, our results for MBH-σap(Re) compare well to data for local early types if we take zqso ˜ 2-4.
Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Rebecca J.; Lewis, Keith M.; Dessiaterik, Yury
2007-09-20
Single scattering albedo (ω) and Angstrom absorption coefficient (αap) values are measured at 405, 532 and 870 nm for aerosols generated during controlled laboratory combustion of twelve wildland fuels. Considerable fuel dependent variation in these optical properties is observed at these wavelengths. Complementary microspectroscopy techniques are used to elucidate spatially resolved local chemical bonding, carbon-to-oxygen atomic ratios, percent of sp2 hybridization (graphitic nature), elemental composition, particle size and morphology. These parameters are compared directly with the corresponding optical properties for each combustion product, facilitating an understanding of the fuel dependent variability observed. Results indicate that combustion products can be dividedmore » into three categories based on chemical, physical and optical properties. Only materials displaying a high degree of sp2 hybridization, with chemical and physical properties characteristic of ‘soot’ or black carbon, exhibit ω and αap values that indicate a high light absorbing capacity.« less
Tomasello, Danielle L; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin
2017-01-01
The Slick (Kcnt2) sodium-activated potassium (K Na ) channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs), we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene-related peptide (CGRP)-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV)-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO) mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs), and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.
Late Na+ current and protracted electrical recovery are critical determinants of the aging myopathy
Signore, Sergio; Sorrentino, Andrea; Borghetti, Giulia; Cannata, Antonio; Meo, Marianna; Zhou, Yu; Kannappan, Ramaswamy; Pasqualini, Francesco; O'Malley, Heather; Sundman, Mark; Tsigkas, Nikolaos; Zhang, Eric; Arranto, Christian; Mangiaracina, Chiara; Isobe, Kazuya; Sena, Brena F.; Kim, Junghyun; Goichberg, Polina; Nahrendorf, Matthias; Isom, Lori L.; Leri, Annarosa; Anversa, Piero; Rota, Marcello
2015-01-01
The aging myopathy manifests itself with diastolic dysfunction and preserved ejection fraction. We raised the possibility that, in a mouse model of physiological aging, defects in electromechanical properties of cardiomyocytes are important determinants of the diastolic characteristics of the myocardium, independently from changes in structural composition of the muscle and collagen framework. Here we show that an increase in the late Na+ current (INaL) in aging cardiomyocytes prolongs the action potential (AP) and influences temporal kinetics of Ca2+ cycling and contractility. These alterations increase force development and passive tension. Inhibition of INaL shortens the AP and corrects dynamics of Ca2+ transient, cell contraction and relaxation. Similarly, repolarization and diastolic tension of the senescent myocardium are partly restored. Thus, INaL offers inotropic support, but negatively interferes with cellular and ventricular compliance, providing a new perspective of the biology of myocardial aging and the aetiology of the defective cardiac performance in the elderly. PMID:26541940
Baheiraei, Nafiseh; Yeganeh, Hamid; Ai, Jafar; Gharibi, Reza; Azami, Mahmoud; Faghihi, Faezeh
2014-11-01
There has been a growing trend towards applying conducting polymers for electrically excitable cells to increase electrical signal propagation within the cell-loaded substrates. A novel biodegradable electroactive polyurethane containing aniline pentamer (AP-PU) was synthesized and fully characterized by spectroscopic methods. To tune the physico-chemical properties and biocompatibility, the AP-PU was blended with polycaprolactone (PCL). The presence of electroactive moieties and the electroactivity behavior of the prepared films were confirmed by UV-visible spectroscopy and cyclic voltammetry. A conventional four probe analysis demonstrated the electrical conductivity of the films in the semiconductor range (~10(-5)S/cm). MTT assays using L929 mouse fibroblast and human umbilical vein endothelial cells (HUVECs) showed that the prepared blend (PB) displayed more cytocompatibility compared with AP-PU due to the introduction of a biocompatible PCL moiety. The in vitro cell culture also confirmed that PB was as supportive as tissue culture plate. The antioxidant activity of the AP-PU was proved using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV-vis spectroscopy. In vitro degradation tests conducted in phosphate-buffered saline, pH7.4 and pH5.5, proved that the films were also biodegradable. The results of this study have highlighted the potential application of this bioelectroactive polyurethane as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger
2012-06-01
Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.
Developing an undue influence screening tool for Adult Protective Services.
Quinn, Mary Joy; Nerenberg, Lisa; Navarro, Adria E; Wilber, Kathleen H
2017-03-01
The study purpose was to develop and pilot an undue influence screening tool for California's Adult Protective Services (APS) personnel based on the definition of undue influence enacted into California law January 1, 2014. Methods included four focus groups with APS providers (n = 33), piloting the preliminary tool by APS personnel (n = 15), and interviews with four elder abuse experts and two APS administrators. Social service literature-including existing undue influence models-was reviewed, as were existing screening and assessment tools. Using the information from these various sources, the California Undue Influence Screening Tool (CUIST) was developed. It can be applied to APS cases and potentially adapted for use by other professionals and for use in other states. Implementation of the tool into APS practice, policy, procedures, and training of personnel will depend on the initiative of APS management. Future work will need to address the reliability and validity of CUIST.
Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi
2017-11-01
We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.
Dahan, Arik; Amidon, Gordon L
2010-02-15
We have recently shown that efflux transport, mediated by multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), is responsible for sulfasalazine low-permeability in the small intestine, thereby enabling its colonic targeting and therapeutic action. The purpose of the present study was to evaluate the potential pharmacokinetic interaction between indomethacin and sulfasalazine, in the mechanism of efflux transporter competition. The concentration-dependent effects of indomethacin on sulfasalazine intestinal epithelial transport were investigated across Caco-2 cell monolayers, in both apical to basolateral (AP-BL) and BL-AP directions. The interaction was then investigated in the in situ single-pass rat jejunal perfusion model. Sulfasalazine displayed 30-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Indomethacin significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport, in a concentration-dependent manner, with IC(50) values of 75 and 196 microM respectively. In the rat model, higher sulfasalazine concentrations resulted in higher intestinal permeability, consistent with saturation of efflux transporter. Without indomethacin, sulfasalazine demonstrated low rat jejunal permeability (vs. metoprolol). Indomethacin significantly increased sulfasalazine P(eff), effectively shifting it from BCS (biopharmaceutics classification system) Class IV to II. In conclusion, the data indicate that concomitant intake of indomethacin and sulfasalazine may lead to increased absorption of sulfasalazine in the small intestine, thereby reducing its colonic concentration and potentially altering its therapeutic effect. Copyright 2009 Elsevier B.V. All rights reserved.
Optical magnetic detection of single-neuron action potentials using quantum defects in diamond
Barry, John F.; Turner, Matthew J.; Schloss, Jennifer M.; Glenn, David R.; Song, Yuyu; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.
2016-01-01
Magnetic fields from neuronal action potentials (APs) pass largely unperturbed through biological tissue, allowing magnetic measurements of AP dynamics to be performed extracellularly or even outside intact organisms. To date, however, magnetic techniques for sensing neuronal activity have either operated at the macroscale with coarse spatial and/or temporal resolution—e.g., magnetic resonance imaging methods and magnetoencephalography—or been restricted to biophysics studies of excised neurons probed with cryogenic or bulky detectors that do not provide single-neuron spatial resolution and are not scalable to functional networks or intact organisms. Here, we show that AP magnetic sensing can be realized with both single-neuron sensitivity and intact organism applicability using optically probed nitrogen-vacancy (NV) quantum defects in diamond, operated under ambient conditions and with the NV diamond sensor in close proximity (∼10 µm) to the biological sample. We demonstrate this method for excised single neurons from marine worm and squid, and then exterior to intact, optically opaque marine worms for extended periods and with no observed adverse effect on the animal. NV diamond magnetometry is noninvasive and label-free and does not cause photodamage. The method provides precise measurement of AP waveforms from individual neurons, as well as magnetic field correlates of the AP conduction velocity, and directly determines the AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector. PMID:27911765
Optical magnetic detection of single-neuron action potentials using quantum defects in diamond.
Barry, John F; Turner, Matthew J; Schloss, Jennifer M; Glenn, David R; Song, Yuyu; Lukin, Mikhail D; Park, Hongkun; Walsworth, Ronald L
2016-12-06
Magnetic fields from neuronal action potentials (APs) pass largely unperturbed through biological tissue, allowing magnetic measurements of AP dynamics to be performed extracellularly or even outside intact organisms. To date, however, magnetic techniques for sensing neuronal activity have either operated at the macroscale with coarse spatial and/or temporal resolution-e.g., magnetic resonance imaging methods and magnetoencephalography-or been restricted to biophysics studies of excised neurons probed with cryogenic or bulky detectors that do not provide single-neuron spatial resolution and are not scalable to functional networks or intact organisms. Here, we show that AP magnetic sensing can be realized with both single-neuron sensitivity and intact organism applicability using optically probed nitrogen-vacancy (NV) quantum defects in diamond, operated under ambient conditions and with the NV diamond sensor in close proximity (∼10 µm) to the biological sample. We demonstrate this method for excised single neurons from marine worm and squid, and then exterior to intact, optically opaque marine worms for extended periods and with no observed adverse effect on the animal. NV diamond magnetometry is noninvasive and label-free and does not cause photodamage. The method provides precise measurement of AP waveforms from individual neurons, as well as magnetic field correlates of the AP conduction velocity, and directly determines the AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector.
2007-07-17
receiving system and NRL’s Automated Processing System (APS) (Martinolich 2005). APS Version 3.4 utilized atmospheric correction algorithms proscribed by... Automated Processing System User’s Guide Version 3.4, edited by N.R. Laboratory. Rabalais, N.N., R.E. Turner, and W.J. Wiseman, Jr. 2002. Hypoxia in the
VizieR Online Data Catalog: Solar analogs and twins rotation by Kepler (do Nascimento+, 2014)
NASA Astrophysics Data System (ADS)
Do Nascimento, J.-D. Jr; Garcia, R. A.; Mathur, S.; Anthony, F.; Barnes, S. A.; Meibom, S.; da Costa, J. S.; Castro, M.; Salabert, D.; Ceillier, T.
2017-03-01
Our sample of 75 stars consists of a seismic sample of 38 from Chaplin et al. (2014, J/ApJS/210/1), 35 additional stars selected from the Kepler Input Catalog (KIC), and 16 Cyg A and B. We selected 38 well-studied stars from the asteroseismic data with fundamental properties, including ages, estimated by Chaplin et al. (2014, J/ApJS/210/1), and with Teff and log g as close as possible to the Sun's value (5200 K < Teff < 6060 K and 3.63 < log g < 4.40). This seismic sample allows a direct comparison between gyro- and seismic-ages for a subset of eight stars. These seismic samples were observed in short cadence for one month each in survey mode. Stellar properties for these stars have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic observations as described by Chaplin et al. (2014, J/ApJS/210/1). The median final quoted uncertainties for the full Chaplin et al. (2014, J/ApJS/210/1) sample were approximately 0.020 dex in log g and 150 K in Teff. (1 data file).
Surface martensitization of Carbon steel using Arc Plasma Sintering
NASA Astrophysics Data System (ADS)
Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin
2018-03-01
In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.
Differential calcium sensitivity in NaV 1.5 mixed syndrome mutants.
Abdelsayed, Mena; Baruteau, Alban-Elouen; Gibbs, Karen; Sanatani, Shubhayan; Krahn, Andrew D; Probst, Vincent; Ruben, Peter C
2017-09-15
SCN5a mutations may express gain-of-function (Long QT Syndrome-3), loss-of-function (Brugada Syndrome 1) or both (mixed syndromes), depending on the mutation and environmental triggers. One such trigger may be an increase in cytosolic calcium, accompanying exercise. Many mixed syndromes mutants, including ∆KPQ, E1784K, 1795insD and Q1909R, are found in calcium-sensitive regions. Elevated cytosolic calcium attenuates gain-of-function properties in ∆KPQ, 1795insD and Q1909R, but not in E1784K. By contrast, elevated cytosolic calcium further exacerbates gain-of-function in E1784K by destabilizing slow inactivation. Action potential modelling, using a modified O'Hara Rudy model, suggests that elevated heart rate rescues action potential duration in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Action potential simulations suggest that E1784K carriers have an increased intracellular sodium-to-calcium ratio under bradycardia and tachycardia conditions. Elevated cytosolic calcium, which is common during high heart rates, ameliorates or exacerbates the mixed syndrome phenotype depending on the genetic signature. Inherited arrhythmias may arise from mutations in the gene for SCN5a, which encodes the cardiac voltage-gated sodium channel, Na V 1.5. Mutants in Na V 1.5 result in Brugada Syndrome (BrS1), Long-QT Syndrome (LQT3) or mixed syndromes (an overlap of BrS1/LQT3). Exercise is a potential arrhythmogenic trigger in mixed syndromes. We aimed to determine the effects of elevated cytosolic calcium, which is common during exercise, in mixed syndrome Na V 1.5 mutants. We used whole-cell patch clamp to assess the biophysical properties of Na V 1.5 wild-type (WT), ∆KPQ, E1784K, 1795insD and Q1909R mutants in human embryonic kidney 293 cells transiently transfected with the Na V 1.5 α subunit (WT or mutants), β1 subunit and enhanced green fluorescent protein. Voltage-dependence and kinetics were measured at cytosolic calcium levels of approximately 0, 500 and 2500 nm. In silico, action potential (AP) model simulations were performed using a modified O'Hara Rudy model. Elevated cytosolic calcium attenuates the late sodium current in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Elevated cytosolic calcium restores steady-state slow inactivation (SSSI) to the WT-form in Q1909R, but depolarized SSSI in E1784K. Our AP simulations showed a frequency-dependent reduction of AP duration in ∆KPQ, 1795insD and Q1909R carriers. In E1784K, AP duration is relatively prolonged at both low and high heart rates, resulting in a sodium overload. Cellular perturbations during exercise may affect BrS1/LQT3 patients differently depending on their individual genetic signature. Thus, exercise may be therapeutic or may be an arrhythmogenic trigger in some SCN5a patients. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Hassinen, Minna; Abramochkin, Denis V; Vornanen, Matti
2014-04-01
Freshwater fishes of north-temperate latitudes adjust electrical excitability of the heart to seasonal temperature changes by changing expression levels of ion channel isoforms. However, little is known about thermal responses of action potential (AP) in the hearts of marine polar fishes. To this end, we examined cardiac AP in the atrial myocardium of the Arctic navaga cod (Eleginus navaga) from the White Sea (Russia) acclimatized to winter (March) and summer (September) seasons. Acute increases in temperature from 4 to 10 °C were associated with increases in heart rate, maximum velocity of AP upstroke and negative resting membrane potential, while duration of AP was shortened in both winter-acclimatized and summer-acclimatized navaga hearts. In winter, there was a compensatory shortening (41.1%) of atrial AP duration and this was associated with a strong increase in transcript expression of Erg K(+) channels, known to produce the rapid component of the delayed rectifier K(+) current, I(Kr). Smaller increases were found in the expression of Kir2.1 channels that produce the inward rectifier K(+) current, I(K1). These findings indicate that the heart of navaga cod has a good acclimatory capacity in electrical excitation of cardiac myocytes, which enables cardiac function in the cold-eurythermal waters of the subarctic White Sea.
Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour.
Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Noble, Denis; Giles, Wayne
2017-11-01
In healthy mammalian hearts the action potential (AP) waveform initiates and modulates each contraction, or heartbeat. As a result, AP height and duration are key physiological variables. In addition, rate-dependent changes in ventricular AP duration (APD), and variations in APD at a fixed heart rate are both reliable biomarkers of electrophysiological stability. Present guidelines for the likelihood that candidate drugs will increase arrhythmias rely on small changes in APD and Q-T intervals as criteria for safety pharmacology decisions. However, both of these measurements correspond to the final repolarization of the AP. Emerging clinical evidence draws attention to the early repolarization phase of the action potential (and the J-wave of the ECG) as an additional important biomarker for arrhythmogenesis. Here we provide a mechanistic background to this early repolarization syndrome by summarizing the evidence that both the initial depolarization and repolarization phases of the cardiac action potential can exhibit distinct time- and voltage-dependent thresholds, and also demonstrating that both can show regenerative all-or-none behaviour. An important consequence of this is that not all of the dynamics of action potential repolarization in human ventricle can be captured by data from single myocytes when these results are expressed as 'repolarization reserve'. For example, the complex pattern of cell-to-cell current flow that is responsible for AP conduction (propagation) within the mammalian myocardium can change APD and the Q-T interval of the electrocardiogram alter APD stability, and modulate responsiveness to pharmacological agents (such as Class III anti-arrhythmic drugs). © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Army and Marine Corps Active Protection System (APS) Efforts
2016-08-30
safe enough for operational use, the benefits of MAPS relative to non-developmental efforts, MAPS’ impacts on NDI APS performance and costs, the Army’s...APSs Effective and Safe Enough for Operational Use? .............................. 24 What are the Benefits of MAPS Relative to Non-Developmental...corrosion—which will also factor into their eventual APS plans. Potential issues for Congress include whether current NDI APSs are effective and
Metabolic fate of fenetylline in rat and man.
Yoshimura, H; Yoshimitsu, T; Yamada, H; Koga, N; Oguri, K
1988-08-01
1. Metabolic fate of 7-[2-(alpha-methylphenylethylamino)ethyl]theophylline hydrochloride (fenetylline) was investigated in male Sprague-Dawley rats and three male volunteers. 2. Six metabolites were identified in the rat urine as amphetamine(AP), p-hydroxy-AP, acetylaminoethyl-theophylline(TP), aminoethyl-TP, hydroxyethyl-TP and carboxymethyl-TP by comparison of their spectral properties and h.p.l.c. and g.l.c. characteristics with those of authentic samples. All these metabolites was also detected in the urine of humans receiving fenetylline. 3. Quantification of these metabolites using h.p.l.c. and g.l.c. showed that carboxymethyl-TP, p-hydroxy-AP and acetylaminoethyl-TP were the major metabolites in 0-24 h rat urine at 13.7%, 11.2% and 9.3% of dose, respectively. In men, carboxymethyl-TP(39-43% dose) and AP(23-33% dose) were the major metabolites in 0-48 h urine. 4. These results suggest that fenetylline metabolism proceeds via oxidative cleavage at two different sites to produce aminoethyl-TP and AP, respectively. The pathway producing AP predominates, in both man and rat, but is more predominant in the former.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Heng Kean
14-Deoxy-11,12-didehydroandrographolide (14-DDA), a major diterpenoid isolated from Andrographis paniculata (Burm.f.) Nees, is known to be cytotoxic and elicits a non-apoptotic cell death in T-47D breast carcinoma cells. In this study, the mechanistic toxicology properties of 14-DDA in T-47D cells were further investigated. 14-DDA is found to induce the formation of endoplasmic reticulum (ER) vacuoles and autophagosomes, with concurrent upregulation of LC3-II in the breast carcinoma cells. It stimulated an increase in cytosolic calcium concentration and caused a collapse in mitochondrial membrane potential in these cells. In addition, both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated.more » DDIT3 knockdown suppressed the formation of both ER vacuoles and autophagosomes, indicating that 14-DDA-induced ER stress and autophagy is dependent on this transcription factor. Collectively, it is possible that GADD45A/p38 MAPK/DDIT3 pathway is involved in the 14-DDA-induced ER-stress-mediated autophagy in T-47D cells. - Highlights: • The mechanistic toxicology properties of 14-DDA in T-47D breast carcinoma cells were investigated. • 14-DDA induces the formation of ER vacuoles and autophagosomes, with concurrent upregulation of LC3-II. • It stimulates an increase in cytosolic calcium concentration and causing collapse in the mitochondrial membrane potential. • Both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. • 4-DDA induces ER stress-mediated autophagy in T-47D cells possibly via GADD45A/p38 MAPK/DDIT3 pathway.« less
Meftahi, Gholamhossein; Ghotbedin, Zohreh; Eslamizade, Mohammad Javad; Hosseinmardi, Narges; Janahmadi, Mahyar
2015-01-01
Objective Resveratrol, a phytoalexin, has a wide range of desirable biological actions. Despite a growing body of evidence indicating that resveratrol induces changes in neu- ronal function, little effort, if any, has been made to investigate the cellular effect of res- veratrol treatment on intrinsic neuronal properties. Materials and Methods This experimental study was performed to examine the acute effects of resveratrol (100 µM) on the intrinsic evoked responses of rat Cornu Ammonis (CA1) pyramidal neurons in brain slices, using whole cell patch clamp re- cording under current clamp conditions. Results Findings showed that resveratrol treatment caused dramatic changes in evoked responses of pyramidal neurons. Its treatment induced a significant (P<0.05) increase in the after hyperpolarization amplitude of the first evoked action potential. Resveratrol-treated cells displayed a significantly broader action potential (AP) when compared with either control or vehicle-treated groups. In addition, the mean instantaneous firing frequency between the first two action potentials was significantly lower in resveratrol-treated neurons. It also caused a significant reduction in the time to maximum decay of AP. The rheobase current and the utilization time were both significantly greater following resveratrol treatment. Neurons exhibited a significantly depolarized voltage threshold when exposed to resveratrol. Conclusion Results provide direct electrophysiological evidence for the inhibitory effects of resveratrol on pyramidal neurons, at least in part, by reducing the evoked neural activity. PMID:26464825
Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors.
Pintor, J.; King, B. F.; Miras-Portugal, M. T.; Burnstock, G.
1996-01-01
1. Adenine dinucleotides (Ap3A, x = 2-6) are naturally-occurring polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. The selectivity and activity of adenine dinucleotides for neuronally-derived recombinant P2 purinoceptors were studied using P2X2 and P2Y1 subtypes expressed in Xenopus oocytes. 2. For the P2Y1 subtype derived from chick brain, Ap3A was equipotent and as active as ATP (EC50 values: 375 +/- 86 nM and 334 +/- 25 nM, respectively). Ap4A was a weak partial agonist and other dinucleotides were inactive as agonists. None of the inactive dinucleotides were antagonists nor modulated the activity of Ap3A and ATP. 3. For the P2X2 subtype derived from rat PC12 cells, Ap4A was as active as ATP but less potent (EC50 values: 15.2 +/- 1 microM and 3.7 +/- 0.7 microM, respectively). Other adenosine dinucleotides were inactive as either agonists or antagonists. 4. Ap5A (1-100 nM) potentiated ATP-responses at the P2X2 subtype, showing an EC50 of 2.95 +/- 0.7 nM for this modulatory effect. Ap5A (10 nM) shifted the concentration-response curves for ATP to the left by one-half log10 unit but did not alter the Hill co-efficient for ATP (nH = 2.1 +/- 0.1). Ap5A (10 nM) failed to potentiate Ap4A-responses but did enhance the efficacy of the P2 purinoceptor antagonist, suramin, by 12 fold at the P2X2 subtype. 5. In conclusion, the results show that ionotropic (P2X2) and metabotropic (P2Y1) ATP receptors which occur in the CNS are activated selectively by naturally-occurring adenine dinucleotides which are known to be released with nucleotides from storage vesicles. The observed potentiation of P2X2-responses by Ap5A, where co-released with ATP by brain synaptosomes, may have a functional bearing in purinergic signalling in the CNS. PMID:8922753
Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud
2013-12-01
The liver isoform of the enzyme alkaline phosphatase (AP) has been used classically as a serum biomarker for hepatic disease states such as hepatitis, steatosis, cirrhosis, drug-induced liver injury, and hepatocellular carcinoma. Recent studies have demonstrated a more general anti-inflammatory role for AP, as it is capable of dephosphorylating potentially deleterious molecules such as nucleotide phosphates, the pathogenic endotoxin lipopolysaccharide (LPS), and the contact clotting pathway activator polyphosphate (polyP), thereby reducing inflammation and coagulopathy systemically. Yet the mechanism underlying the observed increase in liver AP levels in circulation during inflammatory insults is largely unknown. This paper hypothesizes an immunological role for AP in the liver and the potential of this system for damping generalized inflammation along with a wide range of ancillary pathologies. Based on the provided framework, a mechanism is proposed in which AP undergoes transcytosis in hepatocytes from the canalicular membrane to the sinusoidal membrane during inflammation and the enzyme's expression is upregulated as a result. Through a tightly controlled, nucleotide-stimulated negative feedback process, AP is transported in this model as an immune complex with immunoglobulin G by the asialoglycoprotein receptor through the cell and secreted into the serum, likely using the receptor's State 1 pathway. The subsequent dephosphorylation of inflammatory stimuli by AP and uptake of the circulating immune complex by endothelial cells and macrophages may lead to decreased inflammation and coagulopathy while providing an early upstream signal for the induction of a number of anti-inflammatory gene products, including AP itself. © 2013.
Rao, C V; Rivenson, A; Kelloff, G J; Reddy, B S
1995-01-01
The chemopreventive effect of 40 and 80% maximum tolerated dose (MTD) levels of ascorbylpalmitate (AP), carbenoxolone (CBX), dimethylfumarate (DMF) and p-methoxyphenol (p-MP) administrated in the diet before and during initiation and postinitiation phases of azoxymethane (AOM)-induced colon carcinogenesis was studied in male F344 rats. The MTD levels of AP, CBX, DMF and p-MP were determined in male F344 rats and found to be 5000 1500, 1000 and 1000 ppm, respectively, in modified AIN-76A diet. Based on these MTD values, 40 and 80% MTD levels of each agent was tested for their efficacy in color carcinogenesis. At 5 weeks of age, groups of animals were fed the control (modified AIN-76A diet or diets containing 40 and 80% MTD levels of each AP, CBX, DMF and p-MP. At 7 weeks of age, all animals, except those in the vehicle (normal saline)-treated groups, were given two weekly s.c. injections of AOM at a dose rate of 15 mg/kg body weight/week. All groups were continued on their respective dietary regimen until the termination of the experiment 52 weeks after the carcinogen treatment. Colonic tumors were evaluated histopathologically. The results indicate that dietary administration of 40% MTD of AP significantly inhibited multiplicities (tumor/animal) of noninvasive and total (invasive plus noninvasive) adenocarcinoma of the colon (P < 0.05) and 80% MTD of AP significantly inhibited the incidence (% animals with tumors) and the multiplicities of invasive and total adenocarcinomas of the colon (P < 0.01). Dietary CBX at 40 and 80% MTD levels suppressed the incidence and multiplicities of invasive and total adenocarcinomas (P < 0.05 to 0.001) whereas 40 and 80% MTD of DMF and p-MP had significantly inhibited invasive adenocarcinoma incidence and multiplicity (P < 0.05 to 0.001). However, DMF and p-MP had no significant effect on noninvasive and total adenocarcinoma incidence and multiplicity (P > 0.05). These results suggest that AP and CBX possess potential chemopreventive properties against colon cancer.
2011-01-01
Background- Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. Results- We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. Conclusion- These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and blocking viral oncoproteins E6 and E7 expression. Inhibition of AP-1 activity by berberine may be one of the mechanisms responsible for the anti-HPV effect of berberine. We propose that berberine is a potentially promising compound for the treatment of cervical cancer infected with HPV. PMID:21496227
Scott, R. H.; Sweeney, M. I.; Kobrinsky, E. M.; Pearson, H. A.; Timms, G. H.; Pullar, I. A.; Wedley, S.; Dolphin, A. C.
1992-01-01
1. Toxins from invertebrates have proved useful tools for investigation of the properties of ion channels. In this study we describe the actions of arginine polyamine which is believed to be a close analogue of FTX, a polyamine isolated from the American funnel web spider, Agelenopsis aperta. 2. Voltage-activated Ca2+ currents and Ca(2+)-dependent Cl- currents recorded from rat cultured dorsal root ganglion neurones were reversibly inhibited by arginine polyamine (AP; 0.001 to 100 microM). Low voltage-activated T-type Ca2+ currents were significantly more sensitive to AP than high voltage-activated Ca2+ currents. The IC50 values for the actions of AP on low and high voltage-activated Ca2+ currents were 10 nM and 3 microM respectively. AP was equally effective in inhibiting high voltage-activated currents carried by Ba2+, Sr2+ or Ca2+. However, AP-induced inhibition of Ca2+ currents was attenuated by increasing the extracellular Ca2+ concentration from 2 mM to 10 mM. 3. The actions of AP on a Ca(2+)-independent K+ current were more complex, 1 microM AP enhanced this current but 10 microM AP had a dual action, initially enhancing but then inhibiting the K+ current. 4. gamma-Aminobutyric acid-activated Cl- currents were also reversibly inhibited by 1 to 10 microM AP. In contrast N-methyl-D-aspartate currents recorded from rat cultured cerebellar neurones were greatly enhanced by 10 microM AP. 5. We conclude that at a concentration of 10 nM, AP is a selective inhibitor of low threshold T-type voltage-activated Ca2+ currents.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1380382
Characterization of Canna yellow mottle virus in a New Host, Alpinia purpurata, in Hawaii.
Zhang, Jingxin; Dey, Kishore K; Lin, Birun; Borth, Wayne B; Melzer, Michael J; Sether, Diane; Wang, Yanan; Wang, I-Chin; Shen, Huifang; Pu, Xiaoming; Sun, Dayuan; Hu, John S
2017-06-01
Canna yellow mottle virus (CaYMV) is an important badnavirus infecting Canna spp. worldwide. This is the first report of CaYMV in flowering ginger (Alpinia purpurata) in Hawaii, where it is associated with yellow mottling and necrosis of leaves, vein streaking, and stunted plants. We have sequenced CaYMV in A. purpurata (CaYMV-Ap) using a combination of next-generation sequencing and traditional Sanger sequencing techniques. The complete genome of CaYMV-Ap was 7,120 bp with an organization typical of other Badnavirus species. Our results indicated that CaYMV-Ap was present in the episomal form in infected flowering ginger. We determined that this virus disease is prevalent in Hawaii and could potentially have significant economic impact on the marketing of A. purpurata as cut flowers. There is a potential concern that the host range of CaYMV-Ap may expand to include other important tropical plants.
Wang, Xiuxiu; Lan, Yufei; Zhu, Yongfa; Li, Shangshang; Liu, Min; Song, Xinling; Zhao, Huajie; Liu, Weiru; Zhang, Jianjun; Wang, Shouxian; Jia, Le
2018-05-15
The present work was designed to evaluate the antioxidation and hepatoprotective effects of Auricularia cornea var. Li. polysaccharides (APS) and enzymatic-extractable APS (EAPS) on the acute alcohol-induced alcoholic liver diseases (ALD). The in vitro antioxidant activities demonstrated that both APS and EAPS had strong reducing power and potential effects on scavenging reactive oxygen species. The in vivo mice experiments showed that the pretreatment with APS or EAPS showed potential hepatoprotective effects on the ALD possibly by increasing the antioxidant activities, reducing the lipid peroxidation, improving the alcohol metabolism, inhibiting the expression levels of inflammatory mediators and preventing the alcohol-induced histopathological alterations. In addition, the fourier-transform infrared (FT-IR), 1 H and 13 C nuclear magnetic resonance spectroscopy (NMR) and gas chromatography (GC) had been analyzed to obtained the primarily characteristics. The results indicated that abundant xylose and glucose contents probably had potential effects on possessing the bioactivities. The findings suggested that the A. cornea var. Li. might be considered as promising natural resource on exploring clinical drugs for the prevention and treatment with ALD and its complications.
Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats.
Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin
2018-01-01
To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.
Ma, Jie; Jin, Wei-Hua; Wu, Juan; Fan, Kai-Hua
2014-01-01
Increasing evidence has demonstrated that reactive oxygen species (ROS) induces oxidative stress and plays a crucial role in the pathogenesis of acute pancreatitis (AP). Hydrogen-rich saline (HRS), a well-known ROS scavenger, has been shown to possess therapeutic benefit on AP in many animal experiments. Recent findings have indicated that the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome, an intracellular multiprotein complex required for the maturation of interleukin- (IL-) 1β, may probably be a potential target of HRS in the treatment of AP. Therefore, in this study, we evaluated the activation of NLRP3 inflammasome and meanwhile assessed the degree of oxidative stress and inflammatory cascades, as well as the histological alterations in mice suffering from cerulein-induced AP after the treatment of HRS. The results showed that the activation of NLRP3 inflammasome in AP mice was substantially inhibited following the administration of HRS, which was paralleled with the decreased NF-κB activity and cytokines production, attenuated oxidative stress and the amelioration of pancreatic tissue damage. In conclusion, our study has, for the first time, revealed that inhibition of the activation of NLRP3 inflammasome probably contributed to the therapeutic potential of HRS in AP. PMID:25214720
Saleh, A; Picher, M; Kammouni, W; Figarella, C; Merten, M D
1999-11-12
Human submucosal tracheal glands are now believed to play a major role in the physiopathology of cystic fibrosis, a genetic disease in which ATP is used as a therapeutic agent. However, actions of ATP on tracheal gland cells are not well known. ATP binds to P2 receptors and induced secretory leucocyte protease inhibitor (SLPI) secretion through formation of cyclic adenosine monophosphate and mobilization of intracellular [Ca(2+)]. Since diadenosine polyphosphates (ApnA) are also endogenous effectors of P2 receptors, we investigated their effects in a cell line (MM39) of human tracheal gland cells. Diadenosine tetraphosphates (Ap4A) induced significant stimulation (+50+/-12%) of SLPI secretion and to a similar extent to that of ATP (+65+/-10%). No significant effects were observed with diadenosine triphosphate (Ap3A), diadenosine pentaphosphate (Ap5A), ADP and 2-methylthio-adenosine triphosphate (2-MeS-ATP). Since Ap4A was weakly hydrolyzed (<2% of total), and the hydrolysis product was only inosine which is ineffective on cells, this Ap4A effect was not due to Ap4A hydrolysis in ATP and adenosine monophosphate (AMP). A mixture of Ap4A and ATP elicited only partial additive effects on SLPI secretion. ADP was shown to be a potent antagonist of ATP and Ap4A receptors, with IC(50)s of 0.8 and 2 microM, respectively. 2-MeS-ATP also showed antagonistic properties with IC(50)s of 20 and 30 microM for ATP- and Ap4A-receptors, respectively. Single cell intracellular calcium ([Ca(2+)](i)) measurements showed similar transient increases of [Ca(2+)](i) after ATP or Ap4A challenges. ATP desensitized the cell [Ca(2+)](i) responses to ATP and Ap4A, and Ap4A also desensitized the cell response to Ap4A. Nevertheless, Ap4A did not desensitize the cell [Ca(2+)](i) responses to ATP. In conclusion, both P2Y2-ATP-receptors and Ap4A-P2D-receptors seem to be present in tracheal gland cells. Ap4A may only bind to P2D-receptors whilst ATP may bind to both Ap4A- and ATP-receptors.
Thermophysical Property Testing Using Transient Techniques.
1984-06-29
WORDS (Continue on reverse side if necessary and identify by block number) Specific heat HMX carbon/carbon Diffusivity RDX solid propellants Conductivity...energetic materials (AP, " HMX , RDX and HTPB) used in solid rocket fuel to carbon/carbon materials used as rocket nozzles. Studies on AP included single...32 4.1b HMX and RDX ............................35 a 4.2 Carbon/Carbon Materials ...................... 36 5.0 SUMMARY
Mannose-coated gadolinium liposomes for improved magnetic resonance imaging in acute pancreatitis.
Tian, Bing; Liu, Ri; Chen, Shiyue; Chen, Luguang; Liu, Fang; Jia, Guorong; Dong, Yinmei; Li, Jing; Chen, Huaiwen; Lu, Jianping
2017-01-01
Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. The symptoms, treatment, and prognosis of mild and severe AP are different, and severe AP is a potentially life-threatening disease with a high incidence of complications and high mortality rate. Thus, it is urgent to develop an effective approach to reliably discriminate between mild and severe AP. We have developed novel gadolinium-diethylenetriaminepentaacetic (Gd-DTPA)-loaded mannosylated liposomes (named thereafter M-Gd-NL) that preferably target macrophages in AP. The targeting ability of M-Gd-NL toward macrophages in AP and its ability to discriminate between mild and severe AP were evaluated. The liposomes were of desired particle size (~100 nm), Gd-DTPA encapsulation efficiency (~85%), and stability. M-Gd-NL and non-targeted Gd-DTPA-loaded liposomes (Gd-NL) exhibited increased relaxivity compared with Gd-DTPA. Compared with Gd-NL and Gd-DTPA, M-Gd-NL showed increased uptake in macrophages, resulting in increased T 1 imaging ability both in vitro (macrophage cell line) and in vivo (severe AP model). Importantly, M-Gd-NL had the ability to discriminate between mild and severe AP, as reflected by a significantly higher T 1 magnetic resonance imaging signal in severe AP than in mild AP. M-Gd-NL did not show severe organ toxicity in rats. Our data suggest that M-Gd-NL had enhanced magnetic resonance imaging ability by targeting macrophages in AP and good ability to discriminate between mild and severe AP. We believe that M-Gd-NL could shed new light on the diagnosis of AP in the near future.
The electrical properties of auditory hair cells in the frog amphibian papilla.
Smotherman, M S; Narins, P M
1999-07-01
The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.
Size response of an SMPS-APS system to commercial multi-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Lee, Seung-Bok; Lee, Jun-Hyun; Bae, Gwi-Nam
2010-02-01
Carbon nanotubes (CNTs) are representative-engineered nanomaterials with unique properties. The safe production of CNTs urgently requires reliable tools to assess inhalation exposure. In this study, on-line aerosol instruments were employed to detect the release of multi-walled CNTs (MWCNTs) in workplace environments. The size responses of aerosol instruments consisting of both a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) were examined using five types of commercial MWCNTs. A MWCNT solution and powder were aerosolized using atomizing and shaking methods, respectively. Regardless of the phase and purity, the aerosolized MWCNTs showed consistent size distributions with both SMPS and APS. The SMPS and APS measurements revealed a dominant broad peak at approximately 200-400 nm and a distinct narrow peak at approximately 2 μm, respectively. Comparing with field application of the two aerosol instruments, the APS response could be a fingerprint of the MWCNTs in a real workplace environment. A modification of the atomizing method is recommended for the long-term inhalation toxicity studies.
Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder.
Colla, L M; Bertol, C D; Ferreira, D J; Bavaresco, J; Costa, J A V; Bertolin, T E
2017-01-01
This work aimed to evaluate the thermal and photo stability of the antioxidant potential (AP) of the Spirulina platensis biomass. Thermal stability was established at 25ºC, 40ºC and 50ºC for 60 days, in the dark, protected from light. Photo stability was evaluated using UV (15 W, λ = 265 nm) and fluorescent (20 W, 0.16 A, power factor FP > 0.5, 50/60 Hz, 60 lm/w, 1200 lm) light for 90 days in capsules, glass and Petri dishes, at room temperature. The AP of the biomass in these conditions was determined at intervals (every 7 and 30 days in the studies of thermal and photo stability, respectively) using the induction of the oxidation of a lipid system by heat and aeration. In this lipid system, the biomass submitted to degradation was used as an antioxidant. The kinetics of the reaction was determined by the Arrhenius method. Thermal degradation was found to follow zero order kinetics, whereas photo degradation followed first order kinetics. The AP decreased 50% after 50 days at 25°C. At 40°C and 50°C, the AP decreased more than 50% after 35 and 21 days of exposition, respectively. The decrease of the AP of Spirulina was more sensible to UV and fluorescence light. After 30 days of exposition, the AP decreased more than 50% in all storage conditions tested. The antioxidant potential of Spirulina platensis is easily degraded when the biomass is exposed to heat and light, indicating the need for care to be taken in its storage.
Abramochkin, Denis V; Karimova, Viktoria M; Filatova, Tatiana S; Kamkin, Andre
2017-07-01
Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10 -4 M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10 -7 M) or selective GIRK channels blocker tertiapin (10 -6 M) completely abolished all Ap5A effects, while P2 blocker PPADS (10 -4 M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh ). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.
Toib, Amir; Zhang, Chen; Borghetti, Giulia; Zhang, Xiaoxiao; Wallner, Markus; Yang, Yijun; Troupes, Constantine D; Kubo, Hajime; Sharp, Thomas E; Feldsott, Eric; Berretta, Remus M; Zalavadia, Neil; Trappanese, Danielle M; Harper, Shavonn; Gross, Polina; Chen, Xiongwen; Mohsin, Sadia; Houser, Steven R
2017-09-01
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na + and Ca 2+ in the development of HCM, but the role of repolarizing K + currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K + currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K + currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K + channel subunits. In conclusion, decrease in repolarizing K + currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility. NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K + currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy. Copyright © 2017 the American Physiological Society.
AP1S3 Mutations Are Associated with Pustular Psoriasis and Impaired Toll-like Receptor 3 Trafficking
Setta-Kaffetzi, Niovi; Simpson, Michael A.; Navarini, Alexander A.; Patel, Varsha M.; Lu, Hui-Chun; Allen, Michael H.; Duckworth, Michael; Bachelez, Hervé; Burden, A. David; Choon, Siew-Eng; Griffiths, Christopher E.M.; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M.B.; Prins, Christa; Smahi, Asma; Trembath, Richard C.; Fraternali, Franca; Smith, Catherine H.; Barker, Jonathan N.; Capon, Francesca
2014-01-01
Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904
Gao, C; Jokerst, R; Gondipalli, P; Cai, S R; Kennedy, S; Flye, M W; Ponder, K P
1999-12-01
The liver regenerates by replication of differentiated hepatocytes after damage or removal of part of the liver. Although several growth factors and signaling pathways are activated during regeneration, it is unclear as to which of these are essential for hepatocyte replication. We show here that low- (1 mg/kg) and high- (10 mg/kg) dose hepatocyte growth factor (HGF) induced replication of 2.1% and 11.1% of hepatocytes in rats, respectively. Lipopolysaccharide (LPS), an inducer of the acute phase response, augmented hepatocyte replication in response to low- and high-dose HGF by 4- and 2-fold, respectively. HGF alone induced moderate levels of c-Jun-N-terminal kinase (JNK) and p44/p42 mitogen-activated protein kinase (MAPK), resulting in moderate levels of AP-1-DNA binding activity. The combination of LPS + HGF increased JNK and AP-1-DNA binding activity more than levels seen with LPS or HGF alone. The activation of Stat3 that was observed after administration of LPS + HGF, but not HGF alone, could contribute to increased transcription of AP-1 components. Because phosphorylation of the c-Jun component of AP-1 by JNK increases its ability to activate transcription, the AP-1 in hepatocytes from animals treated with LPS + HGF may be more active than in rats treated with LPS or HGF alone. LPS may contribute to hepatocyte replication by potentiating the effect of HGF on the activation of both AP-1-DNA binding and transcriptional activity.
Mechanism for Amplitude Alternans in Electrocardiograms and the Initiation of Spatiotemporal Chaos
NASA Astrophysics Data System (ADS)
Chen, Diandian Diana; Gray, Richard A.; Uzelac, Ilija; Herndon, Conner; Fenton, Flavio H.
2017-04-01
It is widely believed that one major life-threatening transition to chaotic fibrillation occurs via spiral-wave breakup that is preceded by spatiotemporal dispersion of refractoriness due to alternations in the duration of the cardiac action potential (AP). However, recent clinical and experimental evidence suggests that other characteristics of the AP may contribute to, and perhaps drive, this dangerous dynamical instability. To identify the relative roles of AP characteristics, we performed experiments in rabbit hearts under conditions to minimize AP duration dynamics which unmasked pronounced AP amplitude alternans just before the onset of fibrillation. We used a simplified ionic cell model to derive a return map and a stability condition that elucidates a novel underlying mechanism for AP alternans and spiral breakup. We found that inactivation of the sodium current is key to developing amplitude alternans and is directly connected to conduction block and initiation of arrhythmias. Simulations in 2D where AP amplitude alternation led to turbulence confirm our hypothesis.
NASA Astrophysics Data System (ADS)
Cabuk, Mehmet; Gündüz, Bayram
2017-12-01
In this study, polyaniline doped by boric acid (PAni:BA) conducting polymers were chemically synthesized by oxidative polymerization method using (NH4)2S208 (APS) as initiator. Pani:BA conducting polymers were synthesized by using two different APS/aniline molar ratios as 1:1 and 2:1. Their results were compared with PAni doped by HCl (PAni) conducting polymer. Structural properties of the PAni, PAni:BA (1:1) and PAni:BA (2:1) conducting polymers were characterized by using FTIR, SEM, TGA, particle size and apparent density measurements. Effects of doping agents and initiator concentrations on optical properties were investigated in detail. The optoelectronic parameters such as absorption band edge, molar extinction coefficient, direct allowed band gap, refractive index, optical conductance and electrical conductance of the PAni, PAni:BA (1:1) and PAni:BA (2:1) were determined. The absorption band edge and direct allowed band gap of PAni were decreased with doping BA and increasing APS ratio. Also, the refractive index values of the materials were calculated from experimental results and compared with obtained results from Moss, Ravindra, Herve-Vandamme, Reddy and Kumar-Singh relations.
Experimental and Numerical Study of Ammonium Perchlorate Counterflow Diffusion Flames
NASA Technical Reports Server (NTRS)
Smooke, M. D.; Yetter, R. A.; Parr, T. P.; Hanson-Parr, D. M.; Tanoff, M. A.
1999-01-01
Many solid rocket propellants are based on a composite mixture of ammonium perchlorate (AP) oxidizer and polymeric binder fuels. In these propellants, complex three-dimensional diffusion flame structures between the AP and binder decomposition products, dependent upon the length scales of the heterogeneous mixture, drive the combustion via heat transfer back to the surface. Changing the AP crystal size changes the burn rate of such propellants. Large AP crystals are governed by the cooler AP self-deflagration flame and burn slowly, while small AP crystals are governed more by the hot diffusion flame with the binder and burn faster. This allows control of composite propellant ballistic properties via particle size variation. Previous measurements on these diffusion flames in the planar two-dimensional sandwich configuration yielded insight into controlling flame structure, but there are several drawbacks that make comparison with modeling difficult. First, the flames are two-dimensional and this makes modeling much more complex computationally than with one-dimensional problems, such as RDX self- and laser-supported deflagration. In addition, little is known about the nature, concentration, and evolution rates of the gaseous chemical species produced by the various binders as they decompose. This makes comparison with models quite difficult. Alternatively, counterflow flames provide an excellent geometric configuration within which AP/binder diffusion flames can be studied both experimentally and computationally.
Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7‐T MRI
Knösche, Thomas R.
2016-01-01
Abstract Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra‐high‐field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486–3501, 2016. © 2016 Wiley Periodicals, Inc. PMID:27160707
Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings
NASA Astrophysics Data System (ADS)
Borsoi, C.; Zattera, A. J.; Ferreira, C. A.
2016-02-01
Functionalization of cellulose nanowhiskers (CNW) was performed by means of chemical synthesis involving polymerization of polyaniline in emeraldine salt form (PAni SE) in the presence of CNW. Thermal, chemical and morphological samples properties were evaluated. Polymeric coatings were obtained with epoxy, aminopropyltriethoxysilane (APS), CNW and CNW/PAni SE applied on carbon steel with a conversion coating of zirconia (Zr) and the mechanical properties were evaluated. With regard to CNW functionalization the sample was encapsulated with PAni SE as observed by FTIR and morphologic analysis, with decreased thermal stability. Regarding the mechanical properties of CNW and CNW/PAni SE polymeric coatings, improvements in flexibility and hardness properties using the APS and Zr layer were observed. The adherence of polymer coatings improved by the incorporation of CNW and CNW/PAni SE. Through morphological analysis it was observed that CNW shows good dispersion in the polymer matrix without agglomerates formation.
Eriksson, Daniel; Dalin, Frida; Eriksson, Gabriel Nordling; Landegren, Nils; Bianchi, Matteo; Hallgren, Åsa; Dahlqvist, Per; Wahlberg, Jeanette; Ekwall, Olov; Winqvist, Ola; Catrina, Sergiu-Bogdan; Rönnelid, Johan; Hulting, Anna-Lena; Lindblad-Toh, Kerstin; Alimohammadi, Mohammad; Husebye, Eystein S; Knappskog, Per Morten; Rosengren Pielberg, Gerli; Bensing, Sophie; Kämpe, Olle
2018-01-01
Autoimmune polyendocrine syndrome type 1 (APS1) is a monogenic disorder that features autoimmune Addison disease as a major component. Although APS1 accounts for only a small fraction of all patients with Addison disease, early identification of these individuals is vital to prevent the potentially lethal complications of APS1. To determine whether available serological and genetic markers are valuable screening tools for the identification of APS1 among patients diagnosed with Addison disease. We systematically screened 677 patients with Addison disease enrolled in the Swedish Addison Registry for autoantibodies against interleukin-22 and interferon-α4. Autoantibody-positive patients were investigated for clinical manifestations of APS1, additional APS1-specific autoantibodies, and DNA sequence and copy number variations of AIRE. In total, 17 patients (2.5%) displayed autoantibodies against interleukin-22 and/or interferon-α4, of which nine were known APS1 cases. Four patients previously undiagnosed with APS1 fulfilled clinical, genetic, and serological criteria. Hence, we identified four patients with undiagnosed APS1 with this screening procedure. We propose that patients with Addison disease should be routinely screened for cytokine autoantibodies. Clinical or serological support for APS1 should warrant DNA sequencing and copy number analysis of AIRE to enable early diagnosis and prevention of lethal complications. Copyright © 2017 Endocrine Society
Impact of land management on soil structure and soil hydraulic properties
NASA Astrophysics Data System (ADS)
Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna
2010-05-01
Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks values were higher and more variable in the soil profile under the convectional tillage than those in the soil profile under the permanent grass. On the other hand, due to the periodical tillage and consequent soil structure breakdown, the fraction of the large capillary pores were smaller in the Ap horizon of the soil profile under the convectional tillage than that in the Ap horizon of the soil profile under the permanent grass. As result the K (h=-2cm) values measured using the tension infiltrometer in the soil profile under the permanent grass was higher than those in the soil profile under the convectional tillage. However, the fraction of the large capillary pores and K (h=-2cm) values were similar in the Bt1 horizons of both soil profiles. Thus the land management impacted both macropores and matrix pores in the Ap horizon and macropores (prismatic structure and biopores) in the Bt1 horizon. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic (grant No. GA CR 526/08/0434) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. MSM 6046070901).
A global analysis of parenchyma tissue fractions in secondary xylem of seed plants.
Morris, Hugh; Plavcová, Lenka; Cvecko, Patrick; Fichtler, Esther; Gillingham, Mark A F; Martínez-Cabrera, Hugo I; McGlinn, Daniel J; Wheeler, Elisabeth; Zheng, Jingming; Ziemińska, Kasia; Jansen, Steven
2016-03-01
Parenchyma is an important tissue in secondary xylem of seed plants, with functions ranging from storage to defence and with effects on the physical and mechanical properties of wood. Currently, we lack a large-scale quantitative analysis of ray parenchyma (RP) and axial parenchyma (AP) tissue fractions. Here, we use data from the literature on AP and RP fractions to investigate the potential relationships of climate and growth form with total ray and axial parenchyma fractions (RAP). We found a 29-fold variation in RAP fraction, which was more strongly related to temperature than with precipitation. Stem succulents had the highest RAP values (mean ± SD: 70.2 ± 22.0%), followed by lianas (50.1 ± 16.3%), angiosperm trees and shrubs (26.3 ± 12.4%), and conifers (7.6 ± 2.6%). Differences in RAP fraction between temperate and tropical angiosperm trees (21.1 ± 7.9% vs 36.2 ± 13.4%, respectively) are due to differences in the AP fraction, which is typically three times higher in tropical than in temperate trees, but not in RP fraction. Our results illustrate that both temperature and growth form are important drivers of RAP fractions. These findings should help pave the way to better understand the various functions of RAP in plants. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro
2014-03-01
In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). Inmore » order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior comprising 329 C atoms from completely buried residues, whereas that of VAP comprised 264 C atoms, which may maintain the stability of HaAP under low-salt conditions. These characteristics of HaAP may be responsible for its unique functional adaptation permitting activity over a wide range of salt concentrations.« less
Characterization of atherosclerotic plaques by cross-polarization optical coherence tomography
NASA Astrophysics Data System (ADS)
Gubarkova, Ekaterina V.; Dudenkova, Varvara V.; Feldchtein, Felix I.; Timofeeva, Lidia B.; Kiseleva, Elena B.; Kuznetsov, Sergei S.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Vitkin, Alex I.; Gladkova, Natalia D.
2016-02-01
We combined cross-polarization optical coherence tomography (CP OCT) and non-linear microscopy based on second harmonic generation (SHG) and two-photon-excited fluorescence (2PEF) to assess collagen and elastin fibers in the development of the atherosclerotic plaque (AP). The study shows potential of CP OCT for the assessment of collagen and elastin fibers condition in atherosclerotic arteries. Specifically, the additional information afforded by CP OCT, related to birefringence and cross-scattering properties of arterial tissues, may improve the robustness and accuracy of assessment about the microstructure and composition of the plaque for different stages of atherosclerosis.
Toward an Integrative Computational Model of the Guinea Pig Cardiac Myocyte
Gauthier, Laura Doyle; Greenstein, Joseph L.; Winslow, Raimond L.
2012-01-01
The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca2+) release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue level electromechanical function. PMID:22783206
Toward an integrative computational model of the Guinea pig cardiac myocyte.
Gauthier, Laura Doyle; Greenstein, Joseph L; Winslow, Raimond L
2012-01-01
The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous function of influx of Ca(2+) through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca(2+) release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca(2+) and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca(2+) transients, thus influencing tissue level electromechanical function.
Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery.
Guo, Jianwei; Gao, Xiaoling; Su, Lina; Xia, Huimin; Gu, Guangzhi; Pang, Zhiqing; Jiang, Xinguo; Yao, Lei; Chen, Jun; Chen, Hongzhuan
2011-11-01
Targeted delivery of therapeutic nanoparticles in a disease-specific manner represents a potentially powerful technology especially when treating infiltrative brain tumors such as gliomas. We developed a nanoparticulate drug delivery system decorated with AS1411 (Ap), a DNA aptamer specifically binding to nucleolin which was highly expressed in the plasma membrane of both cancer cells and endothelial cells in angiogenic blood vessels, as the targeting ligand to facilitate anti-glioma delivery of paclitaxel (PTX). Ap was conjugated to the surface of PEG-PLGA nanoparticles (NP) via an EDC/NHS technique. With the conjugation confirmed by Urea PAGE and XPS, the resulting Ap-PTX-NP was uniformly round with particle size at 156.0 ± 54.8 nm and zeta potential at -32.93 ± 3.1 mV. Ap-nucleolin interaction significantly enhanced cellular association of nanoparticles in C6 glioma cells, and increased the cytotoxicity of its payload. Prolonged circulation and enhanced PTX accumulation at the tumor site was achieved for Ap-PTX-NP, which eventually obtained significantly higher tumor inhibition on mice bearing C6 glioma xenografts and prolonged animal survival on rats bearing intracranial C6 gliomas when compared with PTX-NP and Taxol(®). The results of this contribution demonstrated the potential utility of AS1411-functionalized nanoparticles for a therapeutic application in the treatment of gliomas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hu, Wenxin; Wang, Qihai; Bi, Ruchang
2005-12-01
Diadenosine tetraphosphate (Ap4A) hydrolase (EC 3.6.1.41) hydrolyzes Ap4A symmetrically in prokaryotes. It plays a potential role in organisms by regulating the concentration of Ap4A in vivo. To date, no three-dimensional structures of proteins with significant sequence homology to this protein have been determined. The 31.3 kDa Ap4A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap4A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Ap4A hydrolase crystals diffract X-rays to 3.26 A and belong to space group P2(1), with unit-cell parameters a = 118.9, b = 54.6, c = 128.5 A, beta = 95.7 degrees.
NASA Astrophysics Data System (ADS)
Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang
2014-02-01
Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 °C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shi, E-mail: sjin@wisc.edu; Institute of Natural Sciences, School of Mathematical Science, MOELSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240; Shu, Ruiwen, E-mail: rshu2@math.wisc.edu
In this paper we consider a kinetic-fluid model for disperse two-phase flows with uncertainty. We propose a stochastic asymptotic-preserving (s-AP) scheme in the generalized polynomial chaos stochastic Galerkin (gPC-sG) framework, which allows the efficient computation of the problem in both kinetic and hydrodynamic regimes. The s-AP property is proved by deriving the equilibrium of the gPC version of the Fokker–Planck operator. The coefficient matrices that arise in a Helmholtz equation and a Poisson equation, essential ingredients of the algorithms, are proved to be positive definite under reasonable and mild assumptions. The computation of the gPC version of a translation operatormore » that arises in the inversion of the Fokker–Planck operator is accelerated by a spectrally accurate splitting method. Numerical examples illustrate the s-AP property and the efficiency of the gPC-sG method in various asymptotic regimes.« less
Korterink, Judith J; Benninga, Marc A; van Wering, Herbert M; Deckers-Kocken, Judith M
2015-04-01
A potential link between small intestinal bacterial overgrowth (SIBO) and abdominal pain-related functional gastrointestinal disorders (AP-FGID) has been suggested by symptom similarities and by the reported prevalence of SIBO in children with irritable bowel syndrome (IBS) and functional AP. The aim of this study is to evaluate the prevalence of SIBO using the glucose hydrogen breath test (GHBT), in a cohort of Dutch children with AP-FGID fulfilling the Rome III criteria, and to identify potential predictors. Children ages 6 to 18 years with AP-FGID fulfilling the Rome III criteria were included. All of the children underwent a GHBT. SIBO was diagnosed if the fasting breath hydrogen concentration was ≥20 ppm or an increase in H2 levels of ≥12 ppm above the baseline value was measured after ingestion of glucose. Gastrointestinal symptoms were collected using a standardised AP questionnaire. A total of 161 Dutch children with AP-FGID were enrolled. Twenty-three patients (14.3%) were diagnosed as having SIBO, as assessed by GHBT; 78% of the children diagnosed as having SIBO had fasting hydrogen levels ≥20 ppm. IBS was significantly more found in children with SIBO compared with children without SIBO (P = 0.001). An altered defecation pattern (ie, change in frequency or form of stool) (P = 0.013), loss of appetite (P = 0.007), and belching (P = 0.023) were significantly more found in children with SIBO compared with those without SIBO. SIBO is present in 14.3% of children presenting with AP-FGID. IBS, altered defecation pattern, loss of appetite, and belching were predictors for SIBO in children with AP-FGID.
Kollarik, M; Sun, H; Herbstsomer, R A; Ru, F; Kocmalova, M; Meeker, S N; Undem, B J
2018-04-15
The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (Na V 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective Na V 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing Na V 1 blocking drugs for topical application to the respiratory tract. The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (Na V 1s). We evaluated the role of TTX-sensitive and TTX-resistant Na V 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel Na V 1.7 along with TTX-resistant Na V 1.8 and Na V 1.9. Tracheal nodose neurons also expressed Na V 1.7 but, less frequently, Na V 1.8 and Na V 1.9. Na V 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other Na V 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in jugular C-fibres was unaffected by TTX, although it was inhibited by Na V 1.8 blocker (PF-01247324) and abolished by combination of TTX and PF-01247324. However, AP conduction in the majority of jugular C-fibres was abolished by TTX. By contrast, both AP initiation and conduction in nodose nociceptors was abolished by TTX or selective Na V 1.7 blockers. Distinction between the effect of a drug with respect to inhibiting AP in the nerve terminals within the airways vs. at conduction sites along the vagus nerve is relevant to therapeutic strategies involving inhaled Na V 1 blocking drugs. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Mishima, Eriko; Sato, Yoko; Nanatani, Kei; Hoshi, Naomi; Lee, Jong-Kook; Schiller, Nina; von Heijne, Gunnar; Sakaguchi, Masao; Uozumi, Nobuyuki
2016-12-01
Voltage-dependent K + (K V ) channels control K + permeability in response to shifts in the membrane potential. Voltage sensing in K V channels is mediated by the positively charged transmembrane domain S4. The best-characterized K V channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K + channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp 72 in S2 and Glu 93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K + channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Almaaytah, Ammar; Zhou, Mei; Wang, Lei; Chen, Tianbao; Walker, Brian; Shaw, Chris
2012-06-01
The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu-->Pro at position 2 and Phe-->Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20 μM and 150 μM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His-->Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5 μM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His-->Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40 μm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means. Copyright © 2012 Elsevier Inc. All rights reserved.
Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter
2013-01-01
The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. PMID:23707769
Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter
2013-12-01
The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Risk Factor Differences in Calcified and Non-Calcified Aortic Plaque: The Framingham Heart Study
Chuang, Michael L.; Gona, Philimon; Oyama-Manabe, Noriko; Manders, Emily S.; Salton, Carol J.; Hoffmann, Udo; Manning, Warren J.; O'Donnell, Christopher J.
2014-01-01
Objective Determine the prevalence and risk factor (RF) correlates of aortic plaque (AP) detected by cardiovascular magnetic resonance (CMR), which mainly shows noncalcified plaques, and by noncontrast computed tomography (CT), which best depicts calcified plaques, in community-dwelling adults. Approach and Results 1016 Framingham Offspring cohort members (64±9y, 474 men) underwent CMR and CT of the aorta. Potential RFs for AP (age; sex; BMI; blood pressure; LDL and HDL cholesterol; fasting glucose; C-reactive protein; prevalent hypertension, diabetes, smoking; use of antihypertensive, diabetes or lipid-lowering drugs) were compared between participants with zero versus nonzero AP by CMR and by CT. Candidate RFs attaining p<0.05 for difference with either imaging modality were entered into multivariable logistic regression models adjusting for age, sex and other RFs. Odds ratios were calculated for modality-specific prevalence of AP. Associations between RFs and continuous measures of AP were assessed using Tobit regression. Prevalences of CMR and CT AP were 49% and 82% respectively. AP burdens by CMR and CT were correlated, r=0.28, p<0.0001. Increasing age and smoking were associated with prevalent AP by both CMR and CT. Additionally, prevalent AP by CMR was associated with female sex and fasting glucose, prevalent AP by CT with hypertension treatment and with adverse lipid profile. Conclusions AP by CMR and CT are both associated with smoking and increasing age, but other risk factors differ between calcified and noncalcified AP. The relative predictive value of AP detected by CMR versus by CT for incident cardiovascular events remains to be determined. PMID:24833796
Scott, R H; Sweeney, M I; Kobrinsky, E M; Pearson, H A; Timms, G H; Pullar, I A; Wedley, S; Dolphin, A C
1992-05-01
1. Toxins from invertebrates have proved useful tools for investigation of the properties of ion channels. In this study we describe the actions of arginine polyamine which is believed to be a close analogue of FTX, a polyamine isolated from the American funnel web spider, Agelenopsis aperta. 2. Voltage-activated Ca2+ currents and Ca(2+)-dependent Cl- currents recorded from rat cultured dorsal root ganglion neurones were reversibly inhibited by arginine polyamine (AP; 0.001 to 100 microM). Low voltage-activated T-type Ca2+ currents were significantly more sensitive to AP than high voltage-activated Ca2+ currents. The IC50 values for the actions of AP on low and high voltage-activated Ca2+ currents were 10 nM and 3 microM respectively. AP was equally effective in inhibiting high voltage-activated currents carried by Ba2+, Sr2+ or Ca2+. However, AP-induced inhibition of Ca2+ currents was attenuated by increasing the extracellular Ca2+ concentration from 2 mM to 10 mM. 3. The actions of AP on a Ca(2+)-independent K+ current were more complex, 1 microM AP enhanced this current but 10 microM AP had a dual action, initially enhancing but then inhibiting the K+ current. 4. gamma-Aminobutyric acid-activated Cl- currents were also reversibly inhibited by 1 to 10 microM AP. In contrast N-methyl-D-aspartate currents recorded from rat cultured cerebellar neurones were greatly enhanced by 10 microM AP. 5. We conclude that at a concentration of 10 nM, AP is a selective inhibitor of low threshold T-type voltage-activated Ca2+ currents. However, at higher concentrations 1-10 microM AP interacts with ion channels or other membrane constituents to produce a variety of actions on both voltage and ligand gated ion channels.
Jones, Graham R D; Albarede, Stephanie; Kesseler, Dagmar; MacKenzie, Finlay; Mammen, Joy; Pedersen, Morten; Stavelin, Anne; Thelen, Marc; Thomas, Annette; Twomey, Patrick J; Ventura, Emma; Panteghini, Mauro
2017-06-27
External Quality Assurance (EQA) is vital to ensure acceptable analytical quality in medical laboratories. A key component of an EQA scheme is an analytical performance specification (APS) for each measurand that a laboratory can use to assess the extent of deviation of the obtained results from the target value. A consensus conference held in Milan in 2014 has proposed three models to set APS and these can be applied to setting APS for EQA. A goal arising from this conference is the harmonisation of EQA APS between different schemes to deliver consistent quality messages to laboratories irrespective of location and the choice of EQA provider. At this time there are wide differences in the APS used in different EQA schemes for the same measurands. Contributing factors to this variation are that the APS in different schemes are established using different criteria, applied to different types of data (e.g. single data points, multiple data points), used for different goals (e.g. improvement of analytical quality; licensing), and with the aim of eliciting different responses from participants. This paper provides recommendations from the European Federation of Laboratory Medicine (EFLM) Task and Finish Group on Performance Specifications for External Quality Assurance Schemes (TFG-APSEQA) and on clear terminology for EQA APS. The recommended terminology covers six elements required to understand APS: 1) a statement on the EQA material matrix and its commutability; 2) the method used to assign the target value; 3) the data set to which APS are applied; 4) the applicable analytical property being assessed (i.e. total error, bias, imprecision, uncertainty); 5) the rationale for the selection of the APS; and 6) the type of the Milan model(s) used to set the APS. The terminology is required for EQA participants and other interested parties to understand the meaning of meeting or not meeting APS.
Ishikawa, Kunio; Arifta, Tya Indah; Hayashi, Koichiro; Tsuru, Kanji
2018-03-26
Carbonate apatite (CO 3 Ap) blocks have attracted considerable attention as an artificial bone substitute material because CO 3 Ap is a component of and shares properties with bone, including high osteoconductivity and replacement by bone similar to autografts. In this study, we fabricated an interconnected porous CO 3 Ap block using α-tricalcium phosphate (TCP) spheres and evaluated the tissue response to this material in a rabbit tibial bone defect model. Interconnected porous α-TCP, the precursor of interconnected porous CO 3 Ap, could not be fabricated directly by sintering α-TCP spheres. It was therefore made via a setting reaction with α-TCP spheres, yielding interconnected porous calcium-deficient hydroxyapatite that was subjected to heat treatment. Immersing the interconnected porous α-TCP in Na-CO 3 -PO 4 solution produced CO 3 Ap, which retained the interconnected porous structure after the dissolution-precipitation reaction. The diametral tensile strength and porosity of the porous CO 3 Ap were 1.8 ± 0.4 MPa and 55% ± 3.2%, respectively. Both porous and dense (control) CO 3 Ap showed excellent tissue response and good osteoconductivity. At 4 weeks after surgery, approximately 15% ± 4.9% of the tibial bone defect was filled with new bone when reconstruction was performed using porous CO 3 Ap; this amount was five times greater than that obtained with dense CO 3 Ap. At 12 weeks after surgery, for porous CO 3 Ap, approximately 47% of the defect was filled with new bone as compared to 16% for dense CO 3 Ap. Thus, the interconnected porous CO 3 Ap block is a promising artificial bone substitute material for the treatment of bone defects caused by large fractures or bone tumor resection. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Nakae, I; Takahashi, M; Takaoka, A; Liu, Q; Matsumoto, T; Amano, M; Sekine, A; Nakajima, H; Kinoshita, M
1996-07-01
Diadenosine tetraphosphate (Ap4A) is an adenine nucleotide with vasodilatory properties. We examined the effects of Ap4A on coronary circulation in comparison with those of adenosine, its metabolite, in anesthetized pigs. Left atrial (LA) infusion of Ap4A at increasing doses of 100, 200, and 300 micrograms/kg/min increased coronary blood flow (CBF) and decreased systemic blood pressure (BP) and coronary vascular resistance (CVR). Ap4A had no effect on large epicardial coronary artery diameter (CoD). Likewise, LA infusion of adenosine at doses of 150 and 300 micrograms/kg/min increased CBF and decreased BP and coronary vascular resistance (CVR) but did not affect CoD. Therefore, the vasodilatory effects of Ap4A and adenosine were predominant in small coronary resistance vessels and negligible in large coronary arteries. Pretreatment with glibenclamide (2 mg/kg, intravenously, i.v.), a specific blocker of ATP-sensitive potassium channels (KATP), attenuated alterations of CBF, BP, and CVR induced by Ap4A and by adenosine. In contrast, treatment with cromakalim (0.5 microgram/kg/min i.v.), an activator of KATP, enhanced the coronary effects of Ap4A and adenosine. Therefore, the opening of KATP in the pig coronary circulation is involved in the in vivo vasodilatory effects of Ap4A and adenosine. Treatment with 8-phenyltheophylline (8-PT, 4 mg/kg i.v.), an adenosine receptor antagonist, suppressed CBF increases induced by Ap4A (20 micrograms/kg/min, intracoronarily, i.c.) and adenosine (5 micrograms/kg/min i.c.) by 68 and 90%, respectively. These findings suggest that the in vivo coronary effects of Ap4A are largely caused by the opening of KATP through rapid degradation to adenosine to activate adenosine receptors.
Schabram, Ina; Eggermann, Thomas; Siegel, Steven J; Gründer, Gerhard; Zerres, Klaus; Vernaleken, Ingo
2013-01-01
The transcription factor AP-2β has been shown to impact clinical and neuropsychological properties. Apparently, it regulates the transcription of genes that code for molecules which are part of the catecholaminergic transmission system. This investigation focuses on possible effects of the transcription factor AP-2β intron 2 polymorphism on cognitive performance parameters. This hypothesis-driven investigation examined the effects and interactions of the transcription factor AP-2β intron 2 polymorphism, the Val158Met catechol-O-methyltransferase (COMT) polymorphism, and the variable number of tandem repeat polymorphism of monoamine oxidase A (MAOA) on cognitive performance parameters within a group of 200 healthy women (age: mean ± SD, 23.93 ± 3.33 years). The AP-2β polymorphism significantly influenced cognitive performance (in particular, the Trail Making Test part B), whereas the MAOA and COMT polymorphisms did not. However, there was an interaction effect of the AP-2β × MAOA × COMT genotypes on the decision bias β of the degraded-stimulus version of the continuous performance task. Only the Val158Met COMT polymorphism showed an influence on personality questionnaires (openness and self-transcendence; NEO Five-Factor Inventory, Temperament and Character Inventory). The transcription factor AP-2β intron 2 polymorphism had more influence on cognition than the MAOA and COMT polymorphisms. Possibly, the AP-2β genotype might influence cognition through pathways other than those that regulate MAOA and COMT transcription. Interactions of transcription factor AP-2β, COMT, and MAOA polymorphisms suggest higher leverage effects of transcription factor AP-2β in subjects with high dopamine availability. Copyright © 2013 S. Karger AG, Basel.
Redshift Properties of MASIV Sources
2010-06-01
34 (CBS, Marcha et a12001, Caccianiga et a12002a) is closest to MASIV however it also has weak (SS.GGH. -lmJy), but only optically bright (R::=;17.5...2001 ApJ, 546, 964 Lovell, J.E .. J, et a1. 2003 AJ, 126, 1699 Lovell, J.E.J, et a1. 2008 ApJ, 689, 108 Marcha , M.J.M, et a1. 2001 lvINRAS, 326, 1455
Detectability of Delaminations in Solid Rocket Motors with Embedded Stress Sensors
2011-10-14
composite grain of hydroxyl-terminated polybutadiene/ammonium perchlorate (HTPB/AP). The insulation layer is ethylene propylene diene monomer ( EPDM ...The temperature-dependent mechanical properties of HTPB/AP and EPDM were obtained from in-house testing at AFRL/RZSM (Edwards AFB). The motor case is...temperature (DBST) sensors and Greg Yandek of AFRL/RZSM for the data collection of EPDM insulation material. Distribution A: Approved for public
Li, Ai; Zhou, Yanan; Jin, Chuan; Song, Wenqin; Chen, Chengbin; Wang, Chunguo
2013-11-01
In Larix and in some crops, heterosis is prevalent and has been widely used in breeding to produce excellent varieties. However, the molecular basis of heterosis in Larix remains ambiguous. LaAP2L1, a member of the AP2/EREBP transcription factor family, has been suggested to be involved in heterosis in Larix hybrids. Here, the function and regulation of LaAP2L1 were further explored. Overexpression of LaAP2L1 led to markedly enlarged organs and heterosis-like traits in Arabidopsis. Fresh weight of leaves was almost twice as great as in vector controls. Likewise, seed yield of 35S::LaAP2L1 individual plants was >200% greater than that of control plants. The enlarged organs and heterosis-like traits displayed by 35S::LaAP2L1 plants were mainly due to enhanced cell proliferation and prolonged growth duration. At the molecular level, LaAP2L1 upregulated the expression of ANT, EBP1, and CycD3;1 and inhibited the expression of ARGOS in 35S::LaAP2L1 plants, suggesting an important molecular role of LaAP2L1 in regulating plant organ development. These findings provide new insights into the formation of heterosis in woody plants and suggest that LaAP2L1 has potential applications in breeding high-yielding crops and energy plants. In addition, 50 AP2/EREBP transcription factors, including LaAP2L1, in Larix were identified by transcriptome sequencing, and phylogenetic analysis was conducted. This provided information that will be important in further revealing the functions of these transcription factors.
Lazewska, D; Guranowski, A
1990-01-01
Synthesis of Sp and Rp diastereomers of Ap4A alpha S has been characterized in two enzymatic systems, the lysyl-tRNA synthetase from Escherichia coli and the Ap4A alpha, beta-phosphorylase from Saccharomyces cerevisiae. The synthetase was able to use both (Sp)ATP alpha S and (Rp)ATP alpha S as acceptors of adenylate thus yielding corresponding monothioanalogues of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S. No dithiophosphate analogue was formed. Relative synthetase velocities of the formation of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S were 1:0.38:0.15, and the computed Km values for (Sp)ATP alpha S and (Rp)ATP alpha S were 0.48 and 1.34 mM, respectively. The yeast Ap4A phosphorylase synthesized (Sp)Ap4A alpha S and (Rp)Ap4A alpha S using adenosine 5'-phosphosulfate (APS) as source of adenylate. The adenylate was accepted by corresponding thioanalogues of ATP. In that system, relative velocities of Ap4A, (Sp)Ap4A alpha S and (Rp)Ap4A alpha S formation were 1:0.15:0.60. The two isomeric phosphorothioate analogues of Ap4A were tested as substrates for the following specific Ap4A-degrading enzymes: (asymmetrical) Ap4A hydrolase (EC 3.6.1.17) from yellow lupin (Lupinus luteus) seeds hydrolyzed each of the analogues to AMP and the corresponding isomer of ATP alpha S; (symmetrical) Ap4A hydrolase (EC 3.6.1.41) from E. coli produced ADP and the corresponding diastereomer of ADP alpha S; and Ap4A phosphorylase (EC 2.7.7.53) from S. cerevisiae cleaved the Rp isomer only at the unmodified end yielding ADP and (Rp)ATP alpha S whereas the Sp isomer was degraded non-specifically yielding a mixture of ADP, (Sp)ADP alpha S, ATP and (Sp)ATP alpha S. For all the Ap4A-degrading enzymes, the Rp isomer of Ap4A alpha S appeared to be a better substrate than its Sp counterpart; stereoselectivity of the three enzymes for the Ap4A alpha S diastereomers is 51, 6 and 2.5, respectively. Basic kinetic parameters of the degradation reactions are presented and structural requirements of the Ap4A-metabolizing enzymes with respect to the potential substrates modified at the Ap4A-P alpha are discussed. PMID:2172926
Accession-dependent action potentials in Arabidopsis.
Favre, Patrick; Greppin, Hubert; Degli Agosti, Robert
2011-05-01
Plant excitability, as measured by the appearance and circulation of action potentials (APs) after biotic and abiotic stress treatments, is a far lesser and more versatile phenomenon than in animals. To examine the genetic basis of plant excitability we used different Arabidopsis thaliana accessions. APs were induced by wounding (W) with a subsequent deposition (D) of 5μL of 1M KCl onto adult leaves. This treatment elicited transient voltage responses (APs) that were detected by 2 extracellular electrodes placed at a distance from the wounding location over an experimental time of 150min. The first electrode (e1) was placed at the end of the petiole and the beginning of the leaf, and the second (e2) electrode was placed on the petiole near the center of the rosette. All accessions (Columbia (Col), Wassilewskija (Ws) and Landsberg erecta (Ler)) responded to the W & D treatment. After W & D treatment was performed on 100 plants for each accession, the number of APs ranged from 0 to 37 (median 8, total 940), 0 to 16 (median 5, total 528) and 0 to 18 (median 2, total 296) in Col, Ws and Ler, respectively. Responding plants (>0 APs) showed significantly different behaviors depending on their accessions of origin (i.e., Col 91, Ws 83 and Ler 76%). Some AP characteristics, such as amplitude and speed of propagation from e1 to e2 (1.28mms(-1)), were the same for all accessions, whereas the average duration of APs was similar in Col and Ws, but different in Ler. Self-sustained oscillations were observed more frequently in Col than Ws and least often in Ler, and the mean oscillation frequency was more rapid in Col, followed by Ws, and was slowest in Ler. In general, Col was the most excitable accession, followed by Ws, and Ler was the least excitable; this corresponded well with voltage elicited action potentials. In conclusion, part of Arabidopsis excitability in AP responses is genetically pre-determined. Copyright © 2010 Elsevier GmbH. All rights reserved.
Poole, Angela Z.; Kitchen, Sheila A.; Weis, Virginia M.
2016-01-01
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions. PMID:27148208
Poole, Angela Z; Kitchen, Sheila A; Weis, Virginia M
2016-01-01
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions.
Stolarz, Maria; Dziubinska, Halina
2017-01-01
Action potentials (APs), i.e., long-distance electrical signals, and circumnutations (CN), i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0–500 mOsm) were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min) and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs) propagating basipetally and acropetally with a velocity of 12–20 cm min−1 were observed. The number of SAPs increased 2–3 times (7–10 SAPs 24 h−1plant−1) in the mild salt stress (160 mOsm NaCl and KCl), compared to the control and strong salt stress (3–4 SAPs 24 h−1 plant−1 in the control and 300 mOsm KCl and NaCl). Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3–24 APs) transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN. PMID:29093722
2013-01-01
Background There is a need for a validated self-assessment questionnaire for cognitive impairment in subjects reporting subjective tinnitus. The objective was to develop a patient-reported outcome measure. Methods This was a prospective, non-interventional, multicultural study. The 30-item “Attention and Performance Self-Assessment Scale” (APSA) was linguistically validated in Germany, Mexico and USA and was analyzed for content and structure. The analysis included descriptive statistics of baseline data, item characteristics, test-retest reliability (intra-class correlation coefficients, ICC), definition of internal consistency (Cronbach’ s alpha), and explorative and confirmatory factor analysis to define the structure of the scale. Correlations with various tinnitus scales and subscales from the Hospital Anxiety and Depression Scale (HADS) were done to estimate convergent validity. Results The data for 211 subjects aged 30 through 60 years, (mean= 48.5 years, SD= 8.3) with mild to moderate tinnitus (mean Tinnitus Handicap Inventory-12 (THI-12) total score 11.2, SD= 5.3) were analyzed. The majority of subjects had sub-clinical scores for anxiety and depression (HADS below 11 points). Sequential principal factor analyses of the APSA resulted in a subscale which included 20 (APS20) of the original 30 items and two correlated subscales (AP-F1, AP-F2) defined by 9 items each. Both factor solutions were confirmed by confirmatory factor analysis. Test retest reliability of the APS20, AP-F1 and AP-F2 (ICC ≥ 0.87) and internal consistency (Cronbach’s alpha ≥ 0.89) are high. APS20 correlated moderately high with HADS (depression: 0.54; anxiety: 0.62) and THI-12 total (0.52). In a few cases, AP-F2 correlated higher than AP-F1 with other scales (e.g. HADS-depression with AP-F1: only 0.46, but AP-F2: 0.59). Conclusions APS20, AP-F1, and AP-F2 have good psychometrical properties. The scales will add value to the assessment of cognitive aspects of quality of life and mental health in the population with subjective tinnitus. The subscales AP-F1 and AP-F2 may be helpful for detecting specific cognitive failures and may be sensitive to different interventional effects. PMID:23714398
Biogeomorphic and pedogenic impact of trees in three soil regions
NASA Astrophysics Data System (ADS)
Pawlik, Łukasz; Šamonil, Pavel
2017-04-01
Vegetation is an important factor of soil formation which together with topography, geology, climate and time modulates chemical and physical soil characteristics. Tree/soils/regolith interaction was recognized in recently uprooted trees and relict treethrow mounds and pits. In our present study we focus on effects of individual standing trees in pedogenesis and biogeomorphic processes. Constant pressure of tree root systems, changing hydric and temperature regime, together with rhizospheric microbes and root mycorrhizal associations may cause multiscale alterations to regolith and soils. We hypothesize different soil chemical properties under old tree stumps compared to unaffected control pedon resulted from affected pedogenetical pathways at the analyzed microsites. The present project highlights changes in soil properties under tree stumps in three different soil regions: Haplic Cambisols (Turbacz Reserve, Gorce Mts., Poland, hereafter HC), Entic Podzols (Zofin Reserve, Novohradske Mts., the Czech Republic, hereafter EP), Albic Podzols (Upper Peninsula, Michigan, USA, hereafter AP). These three regions represent different degrees of soil weathering and leaching. Pedons under fir, beech and hemlock stumps, as well as unaffected control pedons were sampled and laboratory analyzed for several chemical properties; active and exchangeable soil reaction, oxidized carbon, total nitrogen, and various forms of Fe, Al, Mn and Si. At the same time we studied age of the sampled tree stumps, as well as age of their death using radiocarbon technique and dendrochronology. While no effects of the soil-trees interactions can be visible on hillslope surface, we found important evidence of biomechanical activities of tree roots (e.g. root channels) and biochemical changes which add to the discussion about biogeomorphic and pedogenic significance of trees and tree roots as drivers of biomechanical weathering and soil processes in the decadal and centennial time scales. Preliminary results from the first site at Turbacz (fir tree stump) indicate some significant differences with higher amount of Cox, clay and C-THS (carbon content in total humus substances), pHH2O and Fe in the control soil profile as compared to stump soil profiles. Content of various chemical indicators were more homogenous between soil profiles at the second microsite (beech). There were significant differences between soil regions for the following chemical properties: N (nitrogen) (AP vs. EP), Cox (oxidized carbon) (AP vs. EP), C-HA (carbon content in humic acids) (AP vs. HC), C-FA (carbon content in fulvic acids) (AP vs. EP), Fed (crystalline forms of iron) (AP and EP vs. HC).
McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Whitwell, Harry; Elgy, Christine; Ding, Ping; Mahajan, Sumeet; Morgan, Cliff; Griffiths, Mark; Clark, Howard; Madsen, Jens
2015-01-01
The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A(-/-) mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages.
Soares, Júlia Ribeiro; José Tenório de Melo, Edésio; da Cunha, Maura; Fernandes, Kátia Valevski Sales; Taveira, Gabriel Bonan; da Silva Pereira, Lidia; Pimenta, Samy; Trindade, Fernanda Gomes; Regente, Mariana; Pinedo, Marcela; de la Canal, Laura; Gomes, Valdirene Moreira; de Oliveira Carvalho, André
2017-01-01
Plant defensins were discovered at beginning of the 90s'; however, their precise mechanism of action is still unknown. Herein, we studied ApDef 1 -Saccharomyces cerevisiae interaction. ApDef 1 -S. cerevisiae interaction was studied by determining the MIC, viability and death kinetic assays. Viability assay was repeated with hydroxyurea synchronized-yeast and pretreated with CCCP. Plasma membrane permeabilization, ROS induction, chromatin condensation, and caspase activation analyses were assessed through Sytox green, DAB, DAPI and FITC-VAD-FMK, respectively. Viability assay was done in presence of ascorbic acid and Z-VAD-FMK. Ultrastructural analysis was done by electron microscopy. ApDef 1 caused S. cerevisiae cell death and MIC was 7.8μM. Whole cell population died after 18h of ApDef 1 interaction. After 3h, 98.76% of synchronized cell population died. Pretreatment with CCCP protected yeast from ApDef 1 induced death. ApDef 1 -S. cerevisiae interaction resulted in membrane permeabilization, H 2 O 2 increased production, chromatin condensation and caspase activation. Ascorbic acid prevented yeast cell death and membrane permeabilization. Z-VAD-FMK prevented yeast cell death. ApDef 1 -S. cerevisiae interaction caused cell death through cell cycle dependentprocess which requires preserved membrane potential. After interaction, yeast went through uncontrolled ROS production and accumulation, which led to plasma membrane permeabilization, chromatin condensation and, ultimately, cell death by activation of caspase-dependent apoptosis via. We show novel requirements for the interaction between plant defensin and fungi cells, i.e. cell cycle phase and membrane potential, and we indicate that membrane permeabilization is probably caused by ROS and therefore, it would be an indirect event of the ApDef 1 -S. cerevisiae interaction. Copyright © 2016 Elsevier B.V. All rights reserved.
Necroptosis: a potential, promising target and switch in acute pancreatitis.
Wang, Gang; Qu, Feng-Zhi; Li, Le; Lv, Jia-Chen; Sun, Bei
2016-02-01
Pancreatic acinar cell death is the major pathophysiological change in early acute pancreatitis (AP), and the death modalities are important factors determining its progression and prognosis. During AP, acinar cells undergo two major modes of death, including necrosis and apoptosis. Acinar necrosis can lead to intensely local and systemic inflammatory responses, which both induce and aggravate the lesion. Necrosis has long been considered an unregulated, and passive cell death process. Since the effective interventions of necrosis are difficult to perform, its relevant studies have not received adequate attention. Necroptosis is a newly discovered cell death modality characterized by both necrosis and apoptosis, i.e., it is actively regulated by special genes, while has the typical morphological features of necrosis. Currently, necroptosis is gradually becoming an important topic in the fields of inflammatory diseases. The preliminary results from necroptosis in AP have confirmed the existence of acinar cell necroptosis, which may be a potential target for effectively regulating inflammatory injuries and improving its outcomes; however, the functional changes and mechanisms of necroptosis still require further investigation. This article reviewed the progress of necroptosis in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.
Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes.
Björk, Susann; Ojala, Elina A; Nordström, Tommy; Ahola, Antti; Liljeström, Mikko; Hyttinen, Jari; Kankuri, Esko; Mervaala, Eero
2017-01-01
Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP) waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD) parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging) we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and paced beating rates (1, 2 Hz). Cumulating doses of E-4031 produced prolonged APDs, followed by EADs and drug-induced quiescence. These observations were corroborated by patch clamp and contractility measurements. Similar responses, although more modest were seen with the I Ks potassium channel blocker JNJ-303. In conclusion, optogenetic measurements of AP waveforms combined with optical pacing compare well with the patch clamp gold standard. Combined with video motion contractile measurements, optogenetic imaging provides an appealing alternative for electrophysiological screening of human cardiomyocyte responses in pharmacological efficacy and safety testings.
Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes
Björk, Susann; Ojala, Elina A.; Nordström, Tommy; Ahola, Antti; Liljeström, Mikko; Hyttinen, Jari; Kankuri, Esko; Mervaala, Eero
2017-01-01
Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP) waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD) parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging) we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and paced beating rates (1, 2 Hz). Cumulating doses of E-4031 produced prolonged APDs, followed by EADs and drug-induced quiescence. These observations were corroborated by patch clamp and contractility measurements. Similar responses, although more modest were seen with the IKs potassium channel blocker JNJ-303. In conclusion, optogenetic measurements of AP waveforms combined with optical pacing compare well with the patch clamp gold standard. Combined with video motion contractile measurements, optogenetic imaging provides an appealing alternative for electrophysiological screening of human cardiomyocyte responses in pharmacological efficacy and safety testings. PMID:29163220
Setta-Kaffetzi, Niovi; Simpson, Michael A; Navarini, Alexander A; Patel, Varsha M; Lu, Hui-Chun; Allen, Michael H; Duckworth, Michael; Bachelez, Hervé; Burden, A David; Choon, Siew-Eng; Griffiths, Christopher E M; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M B; Prins, Christa; Smahi, Asma; Trembath, Richard C; Fraternali, Franca; Smith, Catherine H; Barker, Jonathan N; Capon, Francesca
2014-05-01
Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Intestinal Fatty Acid Binding Protein as a Marker of Necrosis and Severity in Acute Pancreatitis.
Kupčinskas, Juozas; Gedgaudas, Rolandas; Hartman, Hannes; Sippola, Tomi; Lindström, Outi; Johnson, Colin D; Regnér, Sara
2018-07-01
The aim of this study was to study intestinal fatty acid binding protein (i-FABP) as a potential biomarker in predicting severity of acute pancreatitis (AP). In a prospective multicenter cohort study, plasma levels of i-FABP were measured in 402 patients with AP. Severity of AP was determined based on the 1992 Atlanta Classification. Admission levels of plasma i-FABP were significantly higher in patients with pancreatic necrosis, in patients having systemic complications, in patients treated invasively, in patients treated in the intensive care unit, in patients with severe AP, and in deceased patients. Plasma i-FABP levels on admission yielded an area under curve (AUC) of 0.732 in discriminating patients with or without pancreatic necrosis and AUC of 0.669 in predicting severe AP. Combination of levels of i-FABP and venous lactate on the day of admission showed higher discriminative power in severe AP-AUC of 0.808. Higher i-FABP levels on admission were associated with pancreatic necrosis, systemic complications, and severe AP. Low levels of i-FABP had a high negative predictive value for pancreatic necrosis and severe AP. Combination of levels of i-FABP and venous lactates on admission were superior to either of markers used alone in predicting severe AP.
Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns
NASA Technical Reports Server (NTRS)
Meulemans, Daniel; Bronner-Fraser, Marianne
2002-01-01
The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.
Foebel, Andrea; Ballokova, Anna; Wellens, Nathalie I H; Fialova, Daniela; Milisen, Koen; Liperoti, Rosa; Hirdes, John P
2015-10-19
Use of antipsychotic (AP) medications is high and often inappropriate among institutionalized populations. Little is known about the correlates of new AP drug use following admission to long-term care (LTC) settings. This study investigated the frequency and correlates of new AP drug use among newly admitted LTC residents. This longitudinal, retrospective study used data from the interRAI - Nursing Home Minimum Data Set version 2.0 (MDS 2.0) instrument. Data about demographic, clinical and social characteristics, and medication use, were collected in Ontario, Canada, from 2003-2011 by trained nurses. Residents with complete admission and 3-6 month follow-up data were included (N = 47,768). Multivariate logistic regression analyses, stratified by gender, explored correlates of new AP drug use upon admission to LTC. New AP drug users comprised 7 % of the final cohort. Severe cognitive impairment, dementia, and motor agitation were significantly associated with new AP drug use among both sexes. Additionally, behavioural problems, conflicts with staff and reduced social engagement were strong correlates of new AP drug use. Social factors were as strongly associated with new AP drug use after LTC admission as clinical factors. Strategies to prevent the potential misuse of AP drugs upon LTC admission should consider the social determinants of such prescribing.
Malina, Jaroslav; Scott, Peter; Brabec, Viktor
2015-01-01
Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo–helical ‘flexicate’ complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3]4+ incorporating the common NN–NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo–helical complexes for cancer chemotherapy. PMID:25940617
Synthesis and evaluation of energetic materials
NASA Astrophysics Data System (ADS)
Santhosh, G.
Over the years new generations of propellants and explosives are being developed. High performance and pollution prevention issues have become the subject of interest in recent years. Desired properties of these materials are a halogen-free, nitrogen and oxygen rich molecular composition with high density and a positive heat of formation. The dinitramide anion is a new oxy anion of nitrogen and forms salts with variety of metal, organic and inorganic cations. Particular interest is in ammonium dinitramide (ADN, NH4N(NO 2)2) which is a potentially useful energetic oxidizer. ADN is considered as one of the most promising substitutes for ammonium perchlorate (AP, NH4ClO4) in currently used composite propellants. It is unique among energetic materials in that it has no carbon or chlorine; its combustion products are not detrimental to the atmosphere. Unquestionable advantage of ADN over AP is the significant improvement in the performance of solid rocket motors by 5-15%. The present thesis is centered on the experimental results along with discussion of some of the most pertinent aspects related to the synthesis and characterization of few dinitramide salts. The chemistry, mechanism and kinetics of the formation of dinitramide salts by nitration of deactivated amines are investigated. The evaluation of the thermal and spectral properties along with the adsorption and thermal decomposition characteristics of the dinitramide salts are also explored in this thesis.
Dahan, Arik; Amidon, Gordon L
2009-04-01
To investigate the potential interaction between grapefruit juice (GFJ) and the oral microtubule polymerization inhibitor colchicine, a P-gp and CYP3A4 substrate. Colchicine intestinal epithelial transport was investigated across Caco-2 cell monolayers in both AP-BL and BL-AP directions, in the absence/presence of known P-gp inhibitors (verapamil and quinidine). The concentration-dependent effects of GFJ and its major constituents (6'-7'-dihydroxybergamottin, naringin and naringenin) on colchicine Caco-2 mucosal secretion were examined. The effect of GFJ on colchicine intestinal-permeability was then investigated in-situ in the rat perfusion model, in both jejunum and ileum. Colchicine exhibited 20-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion, which was reduced by verapamil/quinidine. Colchicine AP-BL permeability was increased and BL-AP was decreased by GFJ in a concentration-dependent manner (IC(50) values of 0.75% and 0.46% respectively), suggesting inhibition of efflux transport, rather than metabolizing enzyme. Similar effects obtained following pre-experiment incubation with GFJ, even though the juice was not present throughout the transepithelial study. 6'-7'-Dihydroxybergamottin, naringin and naringenin displayed concentration-dependent inhibition on colchicine BL-AP secretion (IC(50) values of 90, 592 and 11.6 microM respectively). Ten percent GFJ doubled colchicine rat in-situ ileal permeability, and increased 1.5-fold jejunal permeability. The data suggest that GFJ may augment colchicine oral bioavailability. Due to colchicine narrow therapeutic-index and severely toxic side-effects, awareness of this interaction is prudent.
NASA Astrophysics Data System (ADS)
Yuan, Jiang-Lan; Liu, Hui; Kang, Xu; Lv, Zhong; Zou, Guo-Lin
2008-11-01
Apigenin (Ap) and genistein (Ge), a couple of isomeric flavonoids with extensive bioactivities, are the most common dietary ingredients. They have been widely investigated due to their potential therapeutic actions for some diseases. In our work, binding characteristics of Ap and Ge to hemoglobin (Hb) were analyzed with fluorescence spectroscopy, circular dichroism (CD) and UV-vis absorption spectroscopy. The results indicated that Ap and Ge caused strong fluorescence quenching of Hb by static quenching mechanism, but their quenching efficiency and mechanisms were different. The binding site n suggested that there was a single binding site in Hb for Ap and Ge. The results of synchronous fluorescence showed that the microenvironment around Tyr residues of Hb had a slight trend of polarity decreasing, but the polarity around Trp residues increased by adding Ap. Results of CD indicated that the Ap and Ge did not changed the secondary structure of Hb. According to the theory of Förster resonance energy transfer, the binding distance r between Trp 37 and Ap/Ge was predicted to be 3.4 nm and 3.32 nm, respectively. The affinity of Ge toward Hb was higher than that of Ap.
Cao, Wei; Zhang, Yongxue; An, Rui
2006-01-01
The potential of 99mTc labeled P1, P4-di (adenosine-5')-tetraphosphate (Ap4A) for imaging experimental atherosclerotic plaques was evaluated in New Zealand white (NZW) rabbits. To label the 99mTc to Ap4A, stannous tartrate solution was used. 99mTc-Ap4A was purified on a Sephadex G-25 column. The radiochemistry purities of 99mTc-Ap4A were 85% to 91%. Biodistribution study revealed 99mTc-Ap4A cleared from blood rapidly. Thirty min after 99mTc-Ap4A administrated on NZW atherosclerotic rabbits, lesion to blood (target/blood, T/B) ratio was 3.17 +/- 1.27, and lesions to normal (target/non-target, T/NT) ratio was 5.23 +/- 1.87. Shadows of atherosclerotic plaques were clearly visible on radioautographic film. Aortas with atherosclerotic plaques also could be seen on ex vivo gamma camera images. Atherosclerotic abdominal aortas were clearly visible on in vivo images 15 min to 3 h after 99mTc-Ap4A administration. 99mTc-labeled Ap4A can be used for rapid noninvasive detection of experimental atherosclerotic plaque.
Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats
Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin
2018-01-01
AIM To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. METHODS The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies. PMID:29862172
Romero, Lucia; Trenor, Beatriz; Yang, Pei-Chi; Saiz, Javier; Clancy, Colleen E.
2014-01-01
Accurate diagnosis of predisposition to long QT syndrome is crucial for reducing the risk of cardiac arrhythmias. In recent years, drug-induced provocative tests have proved useful to unmask some latent mutations linked to cardiac arrhythmias. In this study we expanded this concept by developing a prototype for a computational provocative screening test to reveal genetic predisposition to acquired Long-QT Syndrome (aLTQS). We developed a computational approach to reveal the pharmacological properties of IKr blocking drugs that are most likely to cause aLQTS in the setting of subtle alterations in IKr channel gating that would be expected to result from benign genetic variants. We used the model to predict the most potentially lethal combinations of kinetic anomalies and drug properties. In doing so, we also implicitly predicted ideal inverse therapeutic properties of K channel openers that would be expected to remedy a specific defect. We systematically performed “in silico mutagenesis” by altering discrete kinetic transition rates of the Fink et al. Markov model of human IKr channels, corresponding to activation, inactivation, deactivation and recovery from inactivation of IKr channels. We then screened and identified the properties of IKr blockers that caused acquired Long QT and therefore unmasked mutant phenotypes for mild, moderate and severe variants. Mutant IKr channels were incorporated into the O’Hara et al. human ventricular action potential (AP) model and subjected to simulated application of a wide variety of IKr-drug interactions in order to identify the characteristics that selectively exacerbate the AP duration (APD) differences between wild-type and IKr mutated cells. Our results show that drugs with disparate affinities to conformation states of the IKr channel are key to amplify variants underlying susceptibility to acquired Long QT Syndrome, an effect that is especially pronounced at slow frequencies. Finally, we developed a mathematical formulation of the M54T MiRP1 latent mutation and simulated a provocative test. In this setting, application of dofetilide dramatically amplified the predicted QT interval duration in the M54T hMiRP1 mutation compared to wild-type. PMID:24631769
Obstetrical APS: is there a place for hydroxychloroquine to improve the pregnancy outcome?
Mekinian, Arsene; Costedoat-Chalumeau, Nathalie; Masseau, Agathe; Tincani, Angela; De Caroli, Sara; Alijotas-Reig, Jaume; Ruffatti, Amelia; Ambrozic, Ales; Botta, Angela; Le Guern, Véronique; Fritsch-Stork, Ruth; Nicaise-Roland, Pascale; Carbonne, Bruno; Carbillon, Lionel; Fain, Olivier
2015-01-01
The use of the conventional APS treatment (the combination of low-dose aspirin and LMWH) dramatically improved the obstetrical prognosis in primary obstetrical APS (OAPS). The persistence of adverse pregnancy outcome raises the need to find other drugs to improve obstetrical outcome. Hydroxychloroquine is widely used in patients with various autoimmune diseases, particularly SLE. Antimalarials have many anti-inflammatory, anti-aggregant and immune-regulatory properties: they inhibit phospholipase activity, stabilize lysosomal membranes, block the production of several pro-inflammatory cytokines and, in addition, impair complement-dependent antigen-antibody reactions. There is ample evidence of protective effects of hydroxychloroquine in OAPS similar to the situation in SLE arising from in vitro studies of pathophysiological working mechanism of hydroxychloroquine. However, the clinical data on the use of hydroxychloroquine in primary APS are lacking and prospective studies are necessary. Copyright © 2014 Elsevier B.V. All rights reserved.
Qu, Jian-Bo; Wan, Xing-Zhong; Zhai, Yan-Qin; Zhou, Wei-Qing; Su, Zhi-Guo; Ma, Guang-Hui
2009-09-11
Using agarose coated gigaporous polystyrene microspheres as a base support, a novel anion exchanger (DEAE-AP) has been developed after functionalization with diethylaminoethyl chloride. The gigaporous structure, static adsorption behavior, and chromatographic properties of DEAE-AP medium were characterized and compared with those of commercially available resin DEAE Sepharose Fast Flow (DEAE-FF). The results implied that there existed some through pores in DEAE-AP microspheres, which effectively reduced resistance to stagnant mobile phase mass transfer by inducing convective flow of mobile phase in the gigapores of medium. As a consequence, the column packed with DEAE-AP exhibited low column backpressure, high column efficiency, high dynamic binding capacity and high protein resolution at high flow velocity up to 2600cm/h. In conclusion, all the results suggested that the gigaporous absorbent is promising for high-speed protein chromatography.
Acute pancreatitis with gradient echo T2*-weighted magnetic resonance imaging
Tang, Meng Yue; Chen, Tian Wu; Huang, Xiao Hua; Li, Xing Hui; Wang, Si Yue; Liu, Nian
2016-01-01
Background To study gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) for normal pancreas and acute pancreatitis (AP). Methods Fifty-one patients without any pancreatic disorders (control group) and 117 patients with AP were recruited. T2* values derived from T2*WI of the pancreas were measured for the two groups. The severity of AP was graded by the magnetic resonance severity index (MRSI) and the Acute Physiology and Chronic Healthy Evaluation II (APACHE II) scoring system. Logistic regression was used to analyze the relationship between the T2* values and AP severity. The usefulness of the T2* value for diagnosing AP and the relationship between the T2* values and the severity of AP were analyzed. Results On GRE-T2*WI, the normal pancreas showed a well-marinated and consistently homogeneous isointensity. Edematous AP, as well as the non-necrotic area in necrotizing AP, showed ill-defined but homogeneous signal intensity. AP with pancreatic hemorrhage showed a decreased T2* value and a signal loss on the signal decay curve. The T2* value of pancreas in the AP group was higher than that of the control group (t=−8.20, P<0.05). The T2* value tended to increase along with the increase in MRSI scores but not with the APACHE II scores (P>0.05). AP was associated with a one standard deviation increment in the T2* value (OR =1.37; 95% CI: 1.216–1.532). Conclusions T2*WI demonstrates a few characteristics of the normal pancreas and AP, which could potentially be helpful for detecting hemorrhage, and contributes to diagnosing AP and its severity. PMID:27190768
Risk factor differences in calcified and noncalcified aortic plaque: the Framingham Heart Study.
Chuang, Michael L; Gona, Philimon; Oyama-Manabe, Noriko; Manders, Emily S; Salton, Carol J; Hoffmann, Udo; Manning, Warren J; O'Donnell, Christopher J
2014-07-01
The objective of this study was to determine the prevalence and risk factor (RF) correlates of aortic plaque (AP) detected by cardiovascular magnetic resonance (CMR), which mainly shows noncalcified plaques, and by noncontrast computed tomography (CT), which best depicts calcified plaques, in community-dwelling adults. A total of 1016 Framingham Heart Study Offspring cohort members (64 ± 9 years; 474 men) underwent CMR and CT of the aorta. Potential RFs for AP (age; sex; body mass index; blood pressure; low-density lipoprotein and high-density lipoprotein cholesterol; fasting glucose; C-reactive protein; prevalent hypertension, diabetes mellitus, smoking; use of antihypertensive, diabetes mellitus, or lipid-lowering drugs) were compared between participants, with zero versus nonzero AP by CMR and by CT. Candidate RFs attaining P<0.05 for difference with either imaging modality were entered into multivariable logistic regression models adjusting for age, sex, and other RFs. Odds ratios were calculated for modality-specific prevalence of AP. Associations between RFs and continuous measures of AP were assessed using Tobit regression. Prevalence of CMR and CT AP was 49% and 82%, respectively. AP burdens by CMR and CT were correlated, r=0.28, P<0.0001. Increasing age and smoking were associated with prevalent AP by both CMR and CT. Additionally, prevalent AP by CMR was associated with female sex and fasting glucose and prevalent AP by CT with hypertension treatment and adverse lipid profile. AP by CMR and CT are both associated with smoking and increasing age, but other RFs differ between calcified and noncalcified AP. The relative predictive value of AP detected by CMR versus by CT for incident cardiovascular events remains to be determined. © 2014 American Heart Association, Inc.
Burioka, Naoto; Cornélissen, Germaine; Halberg, Franz; Kaplan, Daniel T; Suyama, Hisashi; Sako, Takanori; Shimizu, Eiji
2003-01-01
The breath-to-breath variability of respiratory parameters changes with sleep stage. This study investigates any alteration in the approximate entropy (ApEn) of respiratory movement as a gauge of complexity in respiration, by stage of consciousness, in the light of putative brain interactions. Eight healthy men, who were between the ages of 23 and 29 years, were investigated. The signals of chest wall movement and EEG were recorded from 10:30 PM to 6:00 AM. After analog-to-digital conversion, the ApEn of respiratory movement (3 min) and EEG (20 s) were computed. Surrogate data were tested for nonlinearity in the original time series. The most impressive reduction in the ApEn of respiratory movement was associated with stage IV sleep, when the ApEn of the EEG was also statistically significantly decreased. A statistically significant linear relation is found between the ApEn of both variables. Surrogate data indicated that respiratory movement had nonlinear properties during all stages of consciousness that were investigated. Respiratory movement and EEG signals are more regular during stage IV sleep than during other stages of consciousness. The change in complexity described by the ApEn of respiration depends in part on the ApEn of the EEG, suggesting the involvement of nonlinear dynamic processes in the coordination between brain and lungs.
Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7-T MRI.
Kim, Seung-Goo; Knösche, Thomas R
2016-10-01
Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra-high-field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486-3501, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Detectability of Delaminations in Solid Rocket Motors with Embedded Stress Sensors
2012-05-04
thick, respectively. The propellant is a typical HTPB/AP composite grain with an EPDM insulation layer. The temperature-dependent elastic mechanical...properties of HTPB/AP and EPDM were obtained from in-house testing at AFRL/RZSM (Edwards AFB). The motor case is assumed to be a filament-wound...collection of EPDM insulation material. REFERENCES 1 Ruderman, G. A., “Health Management Issues and Strategy for Air Force Missiles,” International
On the Perceptual Subprocess of Absolute Pitch.
Kim, Seung-Goo; Knösche, Thomas R
2017-01-01
Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.
On the Perceptual Subprocess of Absolute Pitch
Kim, Seung-Goo; Knösche, Thomas R.
2017-01-01
Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them. PMID:29085275
Das, Sreemanti; Das, Jayeeta; Samadder, Asmita; Paul, Avijit; Khuda-Bukhsh, Anisur Rahman
2013-12-01
Skin cancer is increasing at an alarming rate and becoming resistant to conventional chemotherapy necessitating improved drug delivery system. We loaded apigenin (Ap), a dietary flavonoid having anti-cancer property, with poly (lactic-co-glycolide) (PLGA) nanoparticles (NAp) to explore if nano-encapsulation could enhance anti-carcinogenic effect against ultra-violet B (UVB) and Benzo(a)pyrene (BaP) induced skin tumor and mitochondrial dysfunction in mice. Particle size, morphology and zeta potential of NAp were determined using dynamic light scattering and atomic force microscopy. Tumor incidence and multiplicity in UVB-BaP induced mice with/without NAp treatment were ascertained and their histolopathological sections and chromosomal aberrations were studied. ROS accumulation and mitochondrial functioning through relevant markers like mitochondrial transmembrane potential were analyzed. Mitochondrial volume changes/swelling, cytochrome c (cyt c) release, mRNA and protein expressions of Apaf-1, bax, bcl-2, cyt c, cleaved caspase-9 and 3 were studied. Results showed that NAp produced better effects than Ap, due to their smaller size, and faster mobility. NAp reduced tissue damage and frequency of chromosomal aberrations, increased ROS accumulation to mediate mitochondrial-apoptosis through modulation of several apoptotic markers and mitochondrial matrix swelling. NAp showed ameliorative potentials in combating skin cancer and therefore has greater prospect of use in therapeutic management of skin cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.
Koh, S D; Ward, S M; Dick, G M; Epperson, A; Bonner, H P; Sanders, K M; Horowitz, B; Kenyon, J L
1999-01-01
We used intracellular microelectrodes to record the membrane potential (Vm) of intact murine colonic smooth muscle. Electrical activity consisted of spike complexes separated by quiescent periods (Vm≈−60 mV). The spike complexes consisted of about a dozen action potentials of approximately 30 mV amplitude. Tetraethylammonium (TEA, 1–10 mM) had little effect on the quiescent periods but increased the amplitude of the action potential spikes. 4-Aminopyridine (4-AP, ⋧ 5 mM) caused continuous spiking.Voltage clamp of isolated myocytes identified delayed rectifier K+ currents that activated rapidly (time to half-maximum current, 11.5 ms at 0 mV) and inactivated in two phases (τf = 96 ms, τs = 1.5 s at 0 mV). The half-activation voltage of the permeability was −27 mV, with significant activation at −50 mV.TEA (10 mM) reduced the outward current at potentials positive to 0 mV. 4-AP (5 mM) reduced the early current but increased outward current at later times (100–500 ms) consistent with block of resting channels relieved by depolarization. 4-AP inhibited outward current at potentials negative to −20 mV, potentials where TEA had no effect.Qualitative PCR amplification of mRNA identified transcripts encoding delayed rectifier K+ channel subunits Kv1.6, Kv4.1, Kv4.2, Kv4.3 and the Kvβ1.1 subunit in murine colon myocytes. mRNA encoding Kv 1.4 was not detected.We find that TEA-sensitive delayed rectifier currents are important determinants of action potential amplitude but not rhythmicity. Delayed rectifier currents sensitive to 4-AP are important determinants of rhythmicity but not action potential amplitude. PMID:10050014
Wang, Kai; Riera, Jorge; Enjieu-Kadji, Herve; Kawashima, Ryuta
2013-07-01
With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing a multicompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. In particular, we applied this framework to model the tufted pyramidal cells of layer 5 (PCL5) in the neocortex. Our model was able to reproduce the decay and delay curves of backpropagating action potentials (APs) in this type of cell with better agreement with experimental data. We used the voltage drops of the extracellular resistances at each compartment to approximate the local field potentials generated by a PCL5 located in close proximity to linear microelectrode arrays. Based on the voltage drops produced by backpropagating APs, we were able to estimate the current multipolar moments generated by a PCL5. By adding external current sources in parallel to the extracellular resistances, we were able to create a sensitivity profile of PCL5 to electric current injections from nearby microelectrodes. In our model for PCL5, the kinetics and spatial profile of each ionic current were determined based on a literature survey, and the geometrical properties of these cells were evaluated experimentally. We concluded that the inclusion of the extracellular space in the compartmental models of neurons as an extra electrotonic medium is crucial for the accurate simulation of both the propagation of the electric potentials along the neuronal dendrites and the neuronal reactivity to an electrical stimulation using external microelectrodes.
Maruta, Michito; Matsuya, Shigeki; Nakamura, Seiji; Ishikawa, Kunio
2011-01-01
Carbonate apatite (CO(3)Ap) foam may be an ideal bone substitute as it is sidelined to cancellous bone with respect to its chemical composition and structure. However, CO(3)Ap foam fabricated using α-tricalcium phosphate foam showed limited mechanical strength. In the present study, feasibility of the fabrication of calcite which could be a precursor of CO(3)Ap was studied. Calcite foam was successfully fabricated by the so-called "ceramic foam" method using calcium hydroxide coated polyurethane foam under CO(2)+O(2) atmosphere. Then the calcite foam was immersed in Na(2)HPO(4) aqueous solution for phase transformation based on dissolution-precipitation reaction. When CaO-free calcite foam was immersed in Na(2)HPO(4) solution, low-crystalline CO(3)Ap foam with 93-96% porosity and fully interconnected porous structure was fabricated. The compressive strength of the foam was 25.6 ± 6 kPa. In light of these results, we concluded that the properties of the precursor foam were key factors for the fabrication of CO(3)Ap foams.
Meenderink, Sebastiaan W F; van Dijk, Pim
2004-06-01
The inner ear of frogs holds two papillae specialized in detecting airborne sound, the amphibian papilla (AP) and the basilar papilla (BP). We measured input-output (I/O) curves of distortion product otoacoustic emissions (DPOAEs) from both papillae, and compared their properties. As in other vertebrates, DPOAE I/O curves showed two distinct segments, separated by a notch or kneepoint. The slope of the low-level segment was conspicuously different between the AP and the BP. For DPOAE I/O curves from the AP, slopes were < or = 1 dB/dB, similar to what is found in mammals, birds and some lizards. For DPOAE I/O curves from the BP these slopes were much steeper (approximately 2 dB/dB). Slopes found at high stimulus levels were similar in the AP and the BP (approximately 2 dB/dB). This quantitative difference between the low-level slopes for DPOAEs from the AP and the BP may signify the involvement of different mechanisms in low-level DPOAE generation for the two papillae, respectively.
Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Mallesh, S.; Prabu, D.; Srinivas, V.
2017-05-01
Magnesium ferrite, MgFe2O4, (MgFO) nanoparticles (NPs) have been synthesized through sol-gel process. Subsequently, as prepared particles were coated with Zinc-oxide (ZnO) layer(s) through ultrasonication process. Thermal stability, structure and magnetic properties of as-prepared (AP) and annealed samples in the temperature range of 350 °C-1200 °C have been investigated. Structural data suggests that AP MgFO NPs and samples annealed below 500 °C in air exhibit stable ferrite phase. However, α-Fe2O3 and a small fraction of MgO secondary phases appear along with ferrite phase on annealing in the temperatures range 500 °C- 1000 °C. This results in significant changes in magnetic moment for AP NPs 0.77 μB increases to 0.92 μB for 1200 °C air annealed sample. The magnetic properties decreased at intermediate temperatures due to the presence of secondary phases. On the other hand, pure ferrite phase could be stabilized with an optimum amount of ZnO coated MgFO NPs for samples annealed in the temperature range 500 °C-1000 °C with improvement in magnetic behavior compared to that of MgFO samples.
Structural modeling and molecular simulation analysis of HvAP2/EREBP from barley.
Pandey, Bharati; Sharma, Pradeep; Tyagi, Chetna; Goyal, Sukriti; Grover, Abhinav; Sharma, Indu
2016-06-01
AP2/ERF transcription factors play a critical role in plant development and stress adaptation. This study reports the three-dimensional ab initio-based model of AP2/EREBP protein of barley and its interaction with DNA. Full-length coding sequence of HvAP2/EREBP gene isolated from two Indian barley cultivars, RD 2503 and RD 31, was used to model the protein. Of five protein models obtained, the one with lowest C-score was chosen for further analysis. The N- and C-terminal regions of HvAP2 protein were found to be highly disordered. The dynamic properties of AP2/EREBP and its interaction with DNA were investigated by molecular dynamics simulation. Analysis of trajectories from simulation yielded the equilibrated conformation between 2-10ns for protein and 7-15ns for protein-DNA complex. We established relationship between DNA having GCC box and DNA-binding domain of HvAP2/EREBP was established by modeling 11-base-pair-long nucleotide sequence and HvAP2/EREBP protein using ab initio method. Analysis of protein-DNA interaction showed that a β-sheet motif constituting amino acid residues THR105, ARG100, ARG93, and ARG83 seems to play important role in stabilizing the complex as they form strong hydrogen bond interactions with the DNA motif. Taken together, this study provides first-hand comprehensive information detailing structural conformation and interactions of HvAP2/EREBP proteins in barley. The study intensifies the role of computational approaches for preliminary examination of unknown proteins in the absence of experimental information. It also provides molecular insight into protein-DNA binding for understanding and enhancing abiotic stress resistance for improving the water use efficiency in crop plants.
Saxena, Vishal; Kim, Minwook; Keah, Niobra M.; Neuwirth, Alexander L.; Stoeckl, Brendan D.; Bickard, Kevin; Restle, David J.; Salowe, Rebecca; Wang, Margaret Ye; Steinberg, David R.
2016-01-01
Cartilage has a poor healing response, and few viable options exist for repair of extensive damage. Hyaluronic acid (HA) hydrogels seeded with mesenchymal stem cells (MSCs) polymerized through UV crosslinking can generate functional tissue, but this crosslinking is not compatible with indirect rapid prototyping utilizing opaque anatomic molds. Methacrylate-modified polymers can also be chemically crosslinked in a cytocompatible manner using ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED). The objectives of this study were to (1) compare APS/TEMED crosslinking with UV crosslinking in terms of functional maturation of MSC-seeded HA hydrogels; (2) generate an anatomic mold of a complex joint surface through rapid prototyping; and (3) grow anatomic MSC-seeded HA hydrogel constructs using this alternative crosslinking method. Juvenile bovine MSCs were suspended in methacrylated HA (MeHA) and crosslinked either through UV polymerization or chemically with APS/TEMED to generate cylindrical constructs. Minipig porcine femoral heads were imaged using microCT, and anatomic negative molds were generated by three-dimensional printing using fused deposition modeling. Molded HA constructs were produced using the APS/TEMED method. All constructs were cultured for up to 12 weeks in a chemically defined medium supplemented with TGF-β3 and characterized by mechanical testing, biochemical assays, and histologic analysis. Both UV- and APS/TEMED-polymerized constructs showed increasing mechanical properties and robust proteoglycan and collagen deposition over time. At 12 weeks, APS/TEMED-polymerized constructs had higher equilibrium and dynamic moduli than UV-polymerized constructs, with no differences in proteoglycan or collagen content. Molded HA constructs retained their hemispherical shape in culture and demonstrated increasing mechanical properties and proteoglycan and collagen deposition, especially at the edges compared to the center of these larger constructs. Immunohistochemistry showed abundant collagen type II staining and little collagen type I staining. APS/TEMED crosslinking can be used to produce MSC-seeded HA-based neocartilage and can be used in combination with rapid prototyping techniques to generate anatomic MSC-seeded HA constructs for use in filling large and anatomically complex chondral defects or for biologic joint replacement. PMID:26871863
Greco, Rosaria; Siani, Francesca; Demartini, Chiara; Zanaboni, Annamaria; Nappi, Giuseppe; Davinelli, Sergio; Scapagnini, Giovanni; Tassorelli, Cristina
2016-01-01
Administration of nitroglycerin (NTG) to rats induces a hyperalgesic condition and neuronal activation of central structures involved in migraine pain. In order to identify therapeutic strategies for migraine pain, we evaluated the anti-nociceptive activity of Andrographis Paniculata (AP), a herbaceous plant, in the hyperalgesia induced by NTG administration in the formalin test. We also analyzed mRNA expression of cytokines in specific brain areas after AP treatment. Male Sprague-Dawley rats were pre-treated with AP extract 30 minutes before NTG or vehicle injection. The data show that AP extract significantly reduced NTG-induced hyperalgesia in phase II of the test, 4 hours after NTG injection. In addition, AP extract reduced IL-6 mRNA expression in the medulla and mesencephalon and also mRNA levels of TNF-alpha in the mesencephalic region. These findings suggest that AP extract may be a potential therapeutic approach in the treatment of general pain, and possibly of migraine. PMID:27027895
Greco, Rosaria; Siani, Francesca; Demartini, Chiara; Zanaboni, Annamaria; Nappi, Giuseppe; Davinelli, Sergio; Scapagnini, Giovanni; Tassorelli, Cristina
2016-01-01
Administration of nitroglycerin (NTG) to rats induces a hyperalgesic condition and neuronal activation of central structures involved in migraine pain. In order to identify therapeutic strategies for migraine pain, we evaluated the anti-nociceptive activity of Andrographis Paniculata (AP), a herbaceous plant, in the hyperalgesia induced by NTG administration in the formalin test. We also analyzed mRNA expression of cytokines in specific brain areas after AP treatment. Male Sprague-Dawley rats were pre-treated with AP extract 30 minutes before NTG or vehicle injection. The data show that AP extract significantly reduced NTG-induced hyperalgesia in phase II of the test, 4 hours after NTG injection. In addition, AP extract reduced IL-6 mRNA expression in the medulla and mesencephalon and also mRNA levels of TNFalpha in the mesencephalic region. These findings suggest that AP extract may be a potential therapeutic approach in the treatment of general pain, and possibly of migraine.
Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam.
Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji
2016-08-23
Carbonate apatite (CO₃Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO₃Ap foam for bone replacement, CO₃Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO₃Ap foam was 74 kPa whereas that of the gelatin-reinforced CO₃Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO₃Ap foam.
Carro, Jesús; Rodríguez, José Félix; Laguna, Pablo; Pueyo, Esther
2011-11-13
In this study, several modifications were introduced to a recently proposed human ventricular action potential (AP) model so as to render it suitable for the study of ventricular arrhythmias. These modifications were driven by new sets of experimental data available from the literature and the analysis of several well-established cellular arrhythmic risk biomarkers, namely AP duration at 90 per cent repolarization (APD(90)), AP triangulation, calcium dynamics, restitution properties, APD(90) adaptation to abrupt heart rate changes, and rate dependence of intracellular sodium and calcium concentrations. The proposed methodology represents a novel framework for the development of cardiac cell models. Five stimulation protocols were applied to the original model and the ventricular AP model developed here to compute the described arrhythmic risk biomarkers. In addition, those models were tested in a one-dimensional fibre in which hyperkalaemia was simulated by increasing the extracellular potassium concentration, [K(+)](o). The effective refractory period (ERP), conduction velocity (CV) and the occurrence of APD alternans were investigated. Results show that modifications improved model behaviour as verified by: (i) AP triangulation well within experimental limits (the difference between APD at 50 and 90 per cent repolarization being 78.1 ms); (ii) APD(90) rate adaptation dynamics characterized by fast and slow time constants within physiological ranges (10.1 and 105.9 s); and (iii) maximum S1S2 restitution slope in accordance with experimental data (S(S1S2)=1.0). In simulated tissues under hyperkalaemic conditions, APD(90) progressively shortened with the degree of hyperkalaemia, whereas ERP increased once a threshold in [K(+)](o) was reached ([K(+)](o)≈6 mM). CV decreased with [K(+)](o), and conduction was blocked for [K(+)](o)>10.4 mM. APD(90) alternans were observed for [K(+)](o)>9.8 mM. Those results adequately reproduce experimental observations. This study demonstrated the value of basing the development of AP models on the computation of arrhythmic risk biomarkers, as opposed to joining together independently derived ion channel descriptions to produce a whole-cell AP model, with the new framework providing a better picture of the model performance under a variety of stimulation conditions. On top of replicating experimental data at single-cell level, the model developed here was able to predict the occurrence of APD(90) alternans and areas of conduction block associated with high [K(+)](o) in tissue, which is of relevance for the investigation of the arrhythmogenic substrate in ischaemic hearts.
Acute physiology and chronic health evaluation (APACHE II) and Medicare reimbursement
Wagner, Douglas P.; Draper, Elizabeth A.
1984-01-01
This article describes the potential for the acute physiology score (APS) of acute physiology and chronic health evaluation (APACHE) II, to be used as a severity adjustment to diagnosis-related groups (DRG's) or other diagnostic classifications. The APS is defined by a relative value scale applied to 12 objective physiologic variables routinely measured on most hospitalized patients shortly after hospital admission. For intensive care patients, APS at admission is strongly related to subsequent resource costs of intensive care for 5,790 consecutive admissions to 13 large hospitals, across and within diagnoses. The APS could also be used to evaluate quality of care, medical technology, and the response to changing financial incentives. PMID:10311080
Hirst, Jennifer; Edgar, James R.; Esteves, Typhaine; Darios, Frédéric; Madeo, Marianna; Chang, Jaerak; Roda, Ricardo H.; Dürr, Alexandra; Anheim, Mathieu; Gellera, Cinzia; Li, Jun; Züchner, Stephan; Mariotti, Caterina; Stevanin, Giovanni; Blackstone, Craig; Kruer, Michael C.; Robinson, Margaret S.
2015-01-01
Adaptor proteins (AP 1–5) are heterotetrameric complexes that facilitate specialized cargo sorting in vesicular-mediated trafficking. Mutations in AP5Z1, encoding a subunit of the AP-5 complex, have been reported to cause hereditary spastic paraplegia (HSP), although their impact at the cellular level has not been assessed. Here we characterize three independent fibroblast lines derived from skin biopsies of patients harbouring nonsense mutations in AP5Z1 and presenting with spastic paraplegia accompanied by neuropathy, parkinsonism and/or cognitive impairment. In all three patient-derived lines, we show that there is complete loss of AP-5 ζ protein and a reduction in the associated AP-5 µ5 protein. Using ultrastructural analysis, we show that these patient-derived lines consistently exhibit abundant multilamellar structures that are positive for markers of endolysosomes and are filled with aberrant storage material organized as exaggerated multilamellar whorls, striated belts and ‘fingerprint bodies’. This phenotype can be replicated in a HeLa cell culture model by siRNA knockdown of AP-5 ζ. The cellular phenotype bears striking resemblance to features described in a number of lysosomal storage diseases (LSDs). Collectively, these findings reveal an emerging picture of the role of AP-5 in endosomal and lysosomal homeostasis, illuminates a potential pathomechanism that is relevant to the role of AP-5 in neurons and expands the understanding of recessive HSPs. Moreover, the resulting accumulation of storage material in endolysosomes leads us to propose that AP-5 deficiency represents a new type of LSDs. PMID:26085577
2012-01-01
Background Alkaline phosphatase (AP) is a ubiquitously expressed enzyme which can neutralize endotoxin as well as adenosine triphosphate (ATP), an endogenous danger signal released during brain injury. In this study we assessed a potential therapeutic role for AP in inhibiting neuroinflammation using three complementary approaches. Methods Mice were immunized to induce experimental autoimmune encephalomyelitis (EAE) and treated with AP for seven days during different phases of disease. In addition, serological assays to determine AP activity, endotoxin levels and endotoxin-reactive antibodies were performed in a cohort of multiple sclerosis (MS) patients and controls. Finally, the expression of AP and related enzymes CD39 and CD73 was investigated in brain tissue from MS patients and control subjects. Results AP administration during the priming phase, but not during later stages, of EAE significantly reduced neurological signs. This was accompanied by reduced proliferation of splenocytes to the immunogen, myelin oligodendrocyte glycoprotein peptide. In MS patients, AP activity and isoenzyme distribution were similar to controls. Although endotoxin-reactive IgM was reduced in primary-progressive MS patients, plasma endotoxin levels were not different between groups. Finally, unlike AP and CD73, CD39 was highly upregulated on microglia in white matter lesions of patients with MS. Conclusions Our findings demonstrate that: 1) pre-symptomatic AP treatment reduces neurological signs of EAE; 2) MS patients do not have altered circulating levels of AP or endotoxin; and 3) the expression of the AP-like enzyme CD39 is increased on microglia in white matter lesions of MS patients. PMID:23231745
Liu, Ke; Surendhran, Kavitha; Nothwehr, Steven F.
2008-01-01
Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Δ cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN. PMID:18508916
Health in All Policies in South Australia: what has supported early implementation?
Delany, Toni; Lawless, Angela; Baum, Frances; Popay, Jennie; Jones, Laura; McDermott, Dennis; Harris, Elizabeth; Broderick, Danny; Marmot, Michael
2016-12-01
Health in All Policies (HiAP) is a policy development approach that facilitates intersectoral responses to addressing the social determinants of health and health equity whilst, at the same time, contributing to policy priorities across the various sectors of government. Given that different models of HiAP have been implemented in at least 16 countries, there is increasing interest in how its effectiveness can be optimized. Much of the existing literature on HiAP remains descriptive, however, and lacks critical, empirically informed analyses of the elements that support implementation. Furthermore, literature on HiAP, and intersectoral action more generally, provides little detail on the practical workings of policy collaborations. This paper contributes empirical findings from a multi-method study of HiAP implementation in South Australia (SA) between 2007 and 2013. It considers the views of public servants and presents analysis of elements that have supported, and impeded, implementation of HiAP in SA. We found that HiAP has been implemented in SA using a combination of interrelated elements. The operation of these elements has provided a strong foundation, which suggests the potential for HiAP to extend beyond being an isolated strategy, to form a more integrated and systemic mechanism of policy-making. We conclude with learnings from the SA experience of HiAP implementation to inform the ongoing development and implementation of HiAP in SA and internationally. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Asmarlaili, S.; Rauf, A.; Hanafiah, D. S.; Sudarno, Y.; Abdi, P.
2018-02-01
The objective of the study was to determine the potential application of sulphate reducing bacteria on acid sulfate soil with different water content in the green house. The research was carried out in the Laboratory and Green House, Faculty of Agriculture, Universitas Sumatera Utara. This research used Randomized Block Design with two treatments factors, ie sulphate reducing bacteria (SRB) isolate (control, LK4, LK6, TSM4, TSM3, AP4, AP3, LK4 + TSM3, LK4 + AP4, LK4 + AP3, LK6 + TSM3, LK6 + AP4, LK6 + AP3, TSM4 + TSM3, TSM4 + AP4, TSM4 + AP3) and water condition (100% field capacity and 110% field capacity). The results showed that application of isolate LK4 + AP4 with water condition 110% field capacity decreased the soil sulphate content (27.38 ppm) significantly after 6 weeks. Application of isolate LK4 + AP3 with water condition 110% field capacity increased soil pH (5.58) after-week efficacy 6. Application of isolate LK4 with water condition 110% field capacity increased plant growth (140 cm; 25.74 g) significantly after week 6. The best treatment was application isolate LK4 with water condition 110% field Capacity (SRB population 2.5x108; soil sulphate content 29.10ppm; soil acidity 4.78; plant height 140cm; plant weight 25.74g).
Fujimoto, Nariaki; Honda, Hiroaki; Kitamura, Shigeyuki
2004-01-01
There has been much discussion concerning endocrine disrupting chemicals suspected of exerting adverse effects in both wildlife and humans. Since the majority of these compounds are estrogenic, a large number of in vitro tests for estrogenic characteristics have been developed for screening purpose. One reliable and widely used method is the reporter gene assay employing estrogen receptors (ERs) and a reporter gene with a cis-acting estrogen responsive element (ERE). Other elements such as AP1 also mediate estrogenic signals and the manner of response could be quite different from that of ERE. Since this has yet to be explored, the ER mediated AP1 activity in response to a series of environmental estrogens was investigated in comparison with ERE findings. All the compounds exhibited estrogenic properties with ERE-luc and their AP1 responses were quite similar. These was one exception, however, p,p'-DDT (1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane) did not exert any AP1-luc activity, while it appeared to be estrogenic at 10(-7) to 10(-5)M with the ERE action. None of the compounds demonstrated ER beta:AP1 activity. These data suggest that significant differences can occur in responses through the two estrogen pathways depending on environmental chemicals.
Wang, Juan; Lu, He Dong; Muḥammad, Umair; Han, Jin Zhi; Wei, Zhao Hui; Lu, Zhao Xin; Bie, Xiao Mei; Lu, Feng Xia
2016-02-01
Artemisia selengensis Turcz (AST) is a perennial herb with therapeutic and economic applications in China. The effects of ultrasound-assisted extraction (UAE) parameters upon extraction yield (EY%), antioxidant and antitumor activities of the polysaccharides extracts were studied by using a factorial design and response surface methodology. The optimal conditions determined were as: ultrasonic power 146 W, extraction time 14.5 min. and extraction temperature 60 °C. The average molecular weights of two homogeneous polysaccharides (APS1 and APS2) purified by DEAE cellulose-52 and Sephadex G-100 column chromatography were 125.4 and 184.1 kDa, respectively. Monosaccharide analysis showed that APS1 and APS2 were composed of five common monomers i.e., galactose, mannose, arabinose, xylose and rhamnose and one different monomer glucose and galacturonic acid respectively, with a most abundant part in molar % of APS1 and APS2 were glucose (83.01 %) and galacturonic acid (48.87 %) while least were xylose (0.80 %) and mannose (1.73 %) respectively. The antioxidant properties were determined by evaluating DPPH, hydroxyl radical scavenging activity and reducing power which indicated both APS1 and APS2 showed strong scavenging activities and anticancer activities on HT-29, BGC823 and antitumor activity on HepG-2. As UAE improved the polysaccharides yield than CSE, meanwhile, no significant difference of polysaccharides chemical compositions. Therefore, the present study suggests that the consumption of AST leaves may beneficial for the treatment of many diseases.
Gibson, John K; Yue, Yimei; Bronson, Jared; Palmer, Cassie; Numann, Randy
2014-01-01
It has been proposed that proarrhythmia assessment for safety pharmacology testing includes the use of human pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) to detect drug-induced changes in cardiac electrophysiology. This study measured the actions of diverse agents on action potentials (AP) and ion currents recorded from hiPSC-CM. During AP experiments, the hiPSC-CM were paced at 1Hz during a baseline period, and when increasing concentrations of test compound were administered at 4-minute intervals. AP parameters, including duration (APD60 and APD90), resting membrane potential, rate of rise, and amplitude, were measured throughout the entire experiment. Voltage clamp experiments with E-4031 and nifedipine were similarly conducted. E-4031 produced a dose-dependent prolongation of cardiac action potential and blocked the hERG/IKr current with an IC50 of 17nM. At 3nM, dofetilide significantly increased APD90. Astemizole significantly increased APD60 and APD90 at 30nM. Terfenadine significantly increased APD90 at concentrations greater than 10nM. Fexofenadine, a metabolite of terfenadine, did not produce any electrophysiologic changes in cardiac action potentials. Flecainide produced a dose-dependent prolongation of the cardiac action potential at 1 and 3μM. Acute exposure to nifedipine significantly decreased APD60 and APD90 and produced a dose-dependent block of calcium current with an IC50 of 0.039μM. Verapamil first shortened APD60 and APD90 in a dose-dependent manner, until a compensating increase in APD90, presumably via hERG blockade, was observed at 1 and 3μM. Following a chronic exposure (20-24h) to clinically relevant levels of pentamidine, a significant increase in action potential duration was accompanied by early afterdepolarizations (EADs). These experiments show the ability of AP measured from hiPSC-CM to record the interactions of various ion channels via AP recording and avoid the limitations of using several single ion channel assays in a noncardiac tissue. Copyright © 2014 Elsevier Inc. All rights reserved.
Macedo, Maria Lígia Rodrigues; Durigan, Roberta Aparecida; da Silva, Desiree Soares; Marangoni, Sérgio; Freire, Maria das Graças Machado; Parra, José Roberto Postali
2010-04-01
Anagasta kuehniella is a polyphagous pest that feeds on a wide variety of stored products. The possible roles suggested for seed proteinase inhibitors include the function as a part of the plant defensive system against pest via inhibition of their proteolytic enzymes. In this study, a trypsin inhibitor (ApTI) was purified from Adenanthera pavonina seed and was tested for insect growth regulatory effect. The chronic ingestion of ApTI did result in a significant reduction in larval survival and weight. Larval and pupal developmental time of larvae fed on ApTI diet at 1% was significantly longer; the larval period was extended by 5 days and pupal period was 10 days longer, therefore delaying by up to 20 days and resulting in a prolonged period of development from larva to adult. As a result, the ApTI diet emergence rate was only 28% while the emergence rate of control larvae was 80%. The percentage of surviving adults (%S) decreased to 62%. The fourth instar larvae reared on a diet containing 1% ApTI showed a decrease in tryptic activity of gut and that no novel proteolytic form resistant to ApTI was induced. In addition, the tryptic activity in ApTI -fed larvae was sensitive to ApTI. These results suggest that ApTI have a potential antimetabolic effect when ingested by A. kuehniella. (c) 2010 Wiley Periodicals, Inc.
Chinese Herbal Medicines Attenuate Acute Pancreatitis: Pharmacological Activities and Mechanisms
Xiang, Hong; Zhang, Qingkai; Qi, Bing; Tao, Xufeng; Xia, Shilin; Song, Huiyi; Qu, Jialin; Shang, Dong
2017-01-01
Acute pancreatitis (AP) is a commonly occurring gastrointestinal disorder. An increase in the annual incidence of AP has been observed, and it causes acute hospitalization and high mortality. The diagnosis and treatment guidelines for AP recommend conservative medical treatments focused on reducing pancreatic secretion and secondary injury, as a primary therapeutic approach. Unfortunately, the existing treatment options have limited impact on the incidence and severity of AP due to the complex and multifaceted pathological process of this disease. In recent decades, Chinese herbal medicines (CHMs) have been used as efficient therapeutic agents to attenuate AP in Asian countries. Despite early cell culture, animal models, and clinical trials, CHMs are capable of interacting with numerous molecular targets participating in the pathogenesis of AP; however, comprehensive, up-to-date communication in this field is not yet available. This review focuses on the pharmacological activities of CHMs against AP in vitro and in vivo and the underlying mechanisms. A computational prediction of few selected and promising plant-derived molecules (emodin, baicalin, resveratrol, curcumin, ligustrazine, and honokiol) to target numerous proteins or networks involved in AP was initially established based on a network pharmacology simulation. Moreover, we also summarized some potential toxic natural products for pancreas in order to more safe and reasonable medication. These breakthrough findings may have important implications for innovative drug research and the future development of treatments for AP. PMID:28487653
Kinase activation through dimerization by human SH2-B.
Nishi, Masahiro; Werner, Eric D; Oh, Byung-Chul; Frantz, J Daniel; Dhe-Paganon, Sirano; Hansen, Lone; Lee, Jongsoon; Shoelson, Steven E
2005-04-01
The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.
Malina, Jaroslav; Scott, Peter; Brabec, Viktor
2015-06-23
Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo-helical 'flexicate' complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3](4+) incorporating the common NN-NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo-helical complexes for cancer chemotherapy. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Structure and Properties of Polymer Interphases
1988-09-30
substrate primed with a dilute aqueous solution of y -aminopropyltriethoxy- silane (’APS), there was little reaction between the primer and adhesive and...of y -aminopropyltriethoxysilane (- Y -APS) at pH 10.4 for one minute, withdrawn, and blown dry with a stream of nitrogen gas. The resulting primer...cm-1 is due to the C= N stretching mode of imine groups formed by oxidation of the amino groups in the primer. The negative peak near 1740 cm is due
Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain
2012-01-01
Background Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG) neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain. Results Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1) depolarized resting membrane potential (RMP); 2) decreased input resistance (Rin); 3) a marked reduction in current threshold (CT) and voltage threshold (TP) of action potential (AP); 4) a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP); and 5) a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone cancer rats. In addiotion, immunofluorescent staining and single-cell reverse-transcriptase PCR revealed that in isolated small DRG neurons, most neurons were IB4-positive, or expressed TRPV1 or CGRP, indicating that most recorded small DRG neurons were nociceptive neurons. Finally, using in vivo behavioral test, we found that blockade of DRG neurons activity by TTX inhibited the tumor-evoked mechanical allodynia and thermal hyperalgesia in bone cancer rats, implicating that the enhanced excitability of primary sensory neurons underlied the development of bone cancer pain. Conclusions Our present results suggest that implantation of tumor cells into the tibial canal in rats induces an enhanced excitability of small-sized DRG neurons that is probably as results of alterations in intrinsic electrogenic properties of these neurons. Therefore, alterations in intrinsic membrane properties associated with the hyperexcitability of primary sensory neurons likely contribute to the peripheral sensitization and tumor-induced hyperalgesia under cancer condition. PMID:22472208
Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew; Walker, Gavin; Scotchford, Colin
2012-01-01
In this study three chemical agents Amino-propyl-triethoxy-silane (APS), sorbitol ended PLA oligomer (SPLA) and Hexamethylene diisocyanate (HDI) were identified to be used as coupling agents to react with the phosphate glass fibre (PGF) reinforcement and the polylactic acid (PLA) polymer matrix of the composite. Composites were prepared with short chopped strand fibres (l = 20 mm, ϕ = 20 µm) in a random arrangement within PLA matrix. Improved, initial composite flexural strength (~20 MPa) was observed for APS treated fibres, which was suggested to be due to enhanced bonding between the fibres and polymer matrix. Both APS and HDI treated fibres were suggested to be covalently linked with the PLA matrix. The hydrophobicity induced by these coupling agents (HDI, APS) helped to resist hydrolysis of the interface and thus retained their mechanical properties for an extended period of time as compared to non-treated control. Approximately 70% of initial strength and 65% of initial modulus was retained by HDI treated fibre composites in contrast to the control, where only ~50% of strength and modulus was retained after 28 days of immersion in PBS at 37 °C. All coupling agent treated and control composites demonstrated good cytocompatibility which was comparable to the tissue culture polystyrene (TCP) control, supporting the use of these materials as coupling agent’s within medical implant devices. PMID:24955744
Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates
Evans, R. C.; Maniar, Y. M.
2013-01-01
The striatum of the basal ganglia demonstrates distinctive upstate and downstate membrane potential oscillations during slow-wave sleep and under anesthetic. The upstates generate calcium transients in the dendrites, and the amplitude of these calcium transients depends strongly on the timing of the action potential (AP) within the upstate. Calcium is essential for synaptic plasticity in the striatum, and these large calcium transients during the upstates may control which synapses undergo plastic changes. To investigate the mechanisms that underlie the relationship between calcium and AP timing, we have developed a realistic biophysical model of a medium spiny neuron (MSN). We have implemented sophisticated calcium dynamics including calcium diffusion, buffering, and pump extrusion, which accurately replicate published data. Using this model, we found that either the slow inactivation of dendritic sodium channels (NaSI) or the calcium inactivation of voltage-gated calcium channels (CDI) can cause high calcium corresponding to early APs and lower calcium corresponding to later APs. We found that only CDI can account for the experimental observation that sensitivity to AP timing is dependent on NMDA receptors. Additional simulations demonstrated a mechanism by which MSNs can dynamically modulate their sensitivity to AP timing and show that sensitivity to specifically timed pre- and postsynaptic pairings (as in spike timing-dependent plasticity protocols) is altered by the timing of the pairing within the upstate. These findings have implications for synaptic plasticity in vivo during sleep when the upstate-downstate pattern is prominent in the striatum. PMID:23843436
Alkaline Phosphatases in the Complex Chronic Kidney Disease-Mineral and Bone Disorders.
Bover, Jordi; Ureña, Pablo; Aguilar, Armando; Mazzaferro, Sandro; Benito, Silvia; López-Báez, Víctor; Ramos, Alejandra; daSilva, Iara; Cozzolino, Mario
2018-02-14
Alkaline phosphatases (APs) remove the phosphate (dephosphorylation) needed in multiple metabolic processes (from many molecules such as proteins, nucleotides, or pyrophosphate). Therefore, APs are important for bone mineralization but paradoxically they can also be deleterious for other processes, such as vascular calcification and the increasingly known cross-talk between bone and vessels. A proper balance between beneficial and harmful activities is further complicated in the context of chronic kidney disease (CKD). In this narrative review, we will briefly update the complexity of the enzyme, including its different isoforms such as the bone-specific alkaline phosphatase or the most recently discovered B1x. We will also analyze the correlations and potential discrepancies with parathyroid hormone and bone turnover and, most importantly, the valuable recent associations of AP's with cardiovascular disease and/or vascular calcification, and survival. Finally, a basic knowledge of the synthetic and degradation pathways of APs promises to open new therapeutic strategies for the treatment of the CKD-Mineral and Bone Disorder (CKD-MBD) in the near future, as well as for other processes such as sepsis, acute kidney injury, inflammation, endothelial dysfunction, metabolic syndrome or, in diabetes, cardiovascular complications. However, no studies have been done using APs as a primary therapeutic target for clinical outcomes, and therefore, AP's levels cannot yet be used alone as an isolated primary target in the treatment of CKD-MBD. Nonetheless, its diagnostic and prognostic potential should be underlined.
Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A.W.; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M.; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J.; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G.; Humeau, Yann; Schenck, Annette; Herault, Yann
2015-01-01
ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2Camk2aCre/0 mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2Camk2aCre/0 mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2Camk2aCre/0 mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2Camk2aCre/0 mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. PMID:26376863
Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A W; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G; Humeau, Yann; Schenck, Annette; Herault, Yann
2015-12-01
ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. © The Author 2015. Published by Oxford University Press.
Glutathione-S-transferase profiles in the emerald ash borer, Agrilus planipennis.
Rajarapu, Swapna Priya; Mittapalli, Omprakash
2013-05-01
The emerald ash borer, Agrilus planipennis Fairmaire is a recently discovered invasive insect pest of ash, Fraxinus spp. in North America. Glutathione-S-transferases (GST) are a multifunctional superfamily of enzymes which function in conjugating toxic compounds to less toxic and excretable forms. In this study, we report the molecular characterization and expression patterns of different classes of GST genes in different tissues and developmental stages plus their specific activity. Multiple sequence alignment of all six A. planipennis GSTs (ApGST-E1, ApGST-E2, ApGST-E3, ApGST-O1, ApGST-S1 and ApGST-μ1) revealed conserved features of insect GSTs and a phylogenetic analysis grouped the GSTs within the epsilon, sigma, omega and microsomal classes of GSTs. Real time quantitative PCR was used to study field collected samples. In larval tissues high mRNA levels for ApGST-E1, ApGST-E3 and ApGST-O1 were obtained in the midgut and Malpighian tubules. On the other hand, ApGST-E2 and ApGST-S1 showed high mRNA levels in fat body and ApGST-μ1 showed constitutive levels in all the tissues assayed. During development, mRNA levels for ApGST-E2 were observed to be the highest in feeding instars, ApGST-S1 in prepupal instars; while the others showed constitutive patterns in all the developmental stages examined. At the enzyme level, total GST activity was similar in all the tissues and developmental stages assayed. Results obtained suggest that A. planipennis is potentially primed with GST-driven detoxification to metabolize ash allelochemicals. To our knowledge this study represents the first report of GSTs in A. planipennis and also in the family of wood boring beetles. Copyright © 2013 Elsevier Inc. All rights reserved.
Spindler, Kurt P.; Murray, Martha M.; Carey, James L.; Zurakowski, David; Fleming, Braden C.
2009-01-01
Many anterior cruciate ligament (ACL) reconstructions have increased laxity postoperatively. We hypothesized that enhancing an ACL graft with a collagen-platelet composite (CPC) would improve knee laxity and graft structural properties. We also hypothesized the platelet concentration in the CPC would affect these parameters. Twelve goats underwent ACL reconstruction with autologous patellar tendon graft. In six goats, a collagen-platelet composite was placed around the graft (CPC group). In the remaining six goats, the collagen scaffold only was used (COLL group). Three goats were excluded due to complications. After 6 weeks in vivo, anterior–posterior (AP) laxity and tensile properties of the ACL reconstructed knees were measured and normalized against the contralateral intact knee. At a knee flexion angle of 30°, the average increase in AP laxity was 40% less in the CPC group than the COLL group (p = 0.045). At 60°, the AP laxity was 30% less in the CPC group, a difference that was close to statistical significance (p = 0.080). No differences were found between treatment groups with respect to the structural properties (p > 0.30). However, there were significant correlations between serum platelet concentration and AP laxity (R2 = 0.643; p = 0.009), maximum load (R2 = 0.691; p = 0.006), and graft stiffness (R2 = 0.840; p < 0.001). In conclusion, use of a CPC to enhance healing of an allograft ACL reconstruction inversely correlated with early sagittal plane laxity and the systemic platelet count was highly predictive of ACL reconstruction graft strength and stiffness at 6 weeks. These findings emphasize the importance of further research on delineating the effect of platelets in treating of ACL injuries. PMID:19009602
Li, Xing-Tai; Zhang, Ya-Kui; Kuang, Hai-Xue; Jin, Feng-Xin; Liu, De-Wen; Gao, Ming-Bo; Liu, Ze; Xin, Xiao-Juan
2012-01-01
The current study was performed to investigate mitochondrial protection and anti-aging activity of Astragalus polysaccharides (APS) and the potential underlying mechanism. Lipid peroxidation of liver and brain mitochondria was induced by Fe2+–Vit C in vitro. Thiobarbituric acid (TBA) colorimetry was used to measure the content of thiobarbituric acid reactive substances (TBARS). Mouse liver mitochondrial permeability transition (PT) was induced by calcium overload in vitro and spectrophotometry was used to measure it. The scavenging activities of APS on superoxide anion (O2•−) and hydroxyl radical (•OH), which were produced by reduced nicotinamide adenine dinucleotide (NADH)—N-Methylphenazonium methyl sulfate (PMS) and hydrogen peroxide (H2O2)–Fe2+ system respectively, were measured by 4-nitrobluetetrazolium chloride (NBT) reduction and Fenton reaction colorimetry respectively. The Na2S2O3 titration method was used to measure the scavenging activities of APS on H2O2. APS could inhibit TBARS production, protect mitochondria from PT, and scavenge O2•−, •OH and H2O2 significantly in a concentration-dependent manner respectively. The back of the neck of mice was injected subcutaneously with D-galactose to induce aging at a dose of 100 mg/kg/d for seven weeks. Moreover, the activities of catalase (CAT), surperoxide dismutase (SOD) and glutathione peroxidase (GPx) and anti-hydroxyl radical which were assayed by using commercial monitoring kits were increased significantly in vivo by APS. According to this research, APS protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial PT and increasing the activities of antioxidases. Therefore, APS has the effect of promoting health. PMID:22408421
The ionic bases of the action potential in isolated mouse cardiac Purkinje cell.
Vaidyanathan, Ravi; O'Connell, Ryan P; Deo, Makarand; Milstein, Michelle L; Furspan, Philip; Herron, Todd J; Pandit, Sandeep V; Musa, Hassan; Berenfeld, Omer; Jalife, José; Anumonwo, Justus M B
2013-01-01
Collecting electrophysiological and molecular data from the murine conduction system presents technical challenges. Thus, only little advantage has been taken of numerous genetically engineered murine models to study excitation through the cardiac conduction system of the mouse. To develop an approach for isolating murine cardiac Purkinje cells (PCs), to characterize major ionic currents and to use the data to simulate action potentials (APs) recorded from PCs. Light microscopy was used to isolate and identify PCs from apical and septal cells. Current and voltage clamp techniques were used to record APs and whole cell currents. We then simulated a PC AP on the basis of our experimental data. APs recorded from PCs were significantly longer than those recorded from ventricular cells. The prominent plateau phase of the PC AP was very negative (≈-40 mV). Spontaneous activity was observed only in PCs. The inward rectifier current demonstrated no significant differences compared to ventricular myocytes (VMs). However, sodium current density was larger, and the voltage-gated potassium current density was significantly less in PCs compared with myocytes. T-type Ca(2+) currents (I(Ca,T)) were present in PCs but not VMs. Computer simulations suggest that I(Ca,T) and cytosolic calcium diffusion significantly modulate AP profile recorded in PCs, as compared to VMs. Our study provides the first comprehensive ionic profile of murine PCs. The data show unique features of PC ionic mechanisms that govern its excitation process. Experimental data and numerical modeling results suggest that a smaller voltage-gated potassium current and the presence of I(Ca,T) are important determinants of the longer and relatively negative plateau phase of the APs. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Klein, Michael G; Shou, Matie; Stohlman, Jayna; Solhjoo, Soroosh; Haigney, Myles; Tidwell, Richard R; Goldstein, Robert E; Flagg, Thomas P; Haigney, Mark C
2017-08-01
The failing heart exhibits an increased arrhythmia susceptibility that is often attributed to action potential (AP) prolongation due to significant ion channel remodeling. The inwardly rectifying K + current (I K1 ) has been reported to be reduced, but its contribution to shaping the AP waveform and cell excitability in the failing heart remains unclear. The purpose of this study was to define the effect of I K1 suppression on the cardiac AP and excitability in the normal and failing hearts. We used electrophysiological and pharmacological approaches to investigate I K1 function in a swine tachy-pacing model of heart failure (HF). Terminal repolarization of the AP (TRAP; the time constant of the exponential fit to terminal repolarization) was markedly prolonged in both myocytes and arterially perfused wedges from animals with HF. TRAP was increased by 54.1% in HF myocytes (P < .001) and 26.2% in HF wedges (P = .014). The increase in TRAP was recapitulated by the potent and specific I K1 inhibitor, PA-6 (pentamidine analog 6), indicating that I K1 is the primary determinant of the final phase of repolarization. Moreover, we find that I K1 suppression reduced the ratio of effective refractory period to AP duration at 90% of repolarization, permitting re-excitation before full repolarization, reduction of AP upstroke velocity, and likely promotion of slow conduction. Using an objective measure of terminal repolarization, we conclude that I K1 is the major determinant of the terminal repolarization time course. Moreover, suppression of I K1 prolongs repolarization and reduces postrepolarization refractoriness without marked effects on the overall AP duration. Collectively, these findings demonstrate how I K1 suppression may contribute to arrhythmogenesis in the failing heart. Published by Elsevier Inc.
Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J
2015-12-07
Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies <1 mm(-1). In addition, the modeling results were used to calculate the image signal-to-noise ratio (SNRi) of microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (~1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.
QSO Emission Lines and the Black Hole-Galaxy Bulge Relation
NASA Astrophysics Data System (ADS)
Shields, G. A.; Gebhardt, K.; Salviander, S.; Wills, B. J.; Yuan, M.; Xie, B.; Dietrich, M.
2002-05-01
Supermassive black holes in galactic nuclei have masses closely related to the properties of the host galaxy bulge. In particular, MBH varies as the fourth power of σ , the stellar velocity dispersion (Tremaine et al. 2002, ApJ in press, and references therein). The origin of the black hole-bulge relation is unknown, although theoretical suggestions abound. An important clue would be provided by knowledge of how the relation has evolved over cosmic time. This requires measurement of black hole masses and galactic potentials at large look-back times, which is difficult to do directly. However, black hole masses may be derived from the continuum luminosity and the widths of the broad Balmer lines of QSOs (e.g., Kaspi et al. 2000, ApJ 533, 631), and σ may be derived from the widths of the narrow [O III] lines (Nelson 2000, ApJ, 544, L91). We have carried out this program for a set of published and unpublished observations of Seyfert galaxies and QSOs. Results for low redshift objects support the use of this method to derive MBH and σ . The few available measurements of high redshift QSOs are consistent little or no change in the MBH-σ relation between the present and redshifts up to z = 3.3, when the universe was only two billion years old. This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658-0177-2001.
Cox, Charlotte; Jolley, Suzanne; Johns, Louise
2016-12-30
Psychological models propose that the amotivational negative symptoms (ANS) of psychosis are influenced by expectations of future events; both anticipatory success (believing one can achieve something, AS) and anticipatory pleasure (mentally pre-creating potential future experiences of enjoyment, AP). Mental imagery manipulations have been shown to change expectations across a range of settings, and may therefore enhance psychological interventions for ANS in people with psychosis. We set out to investigate the impact of a guided imagery manipulation on AS and AP in this group. Forty-two participants with psychosis and ANS completed measures of ANS severity, before random allocation to either a positive or neutral imagery manipulation. AS and AP towards a dart-throwing task were measured before and after the manipulation. Greater ANS severity was associated with lower levels of AS, but not of AP, irrespective of task performance. AS, but not AP, improved during both positive and neutral imagery manipulations, with no effect of imagery type. Anticipatory success is a candidate psychological factor influencing the severity of ANS in psychosis that may be changed by guided imagery manipulation. Imagery interventions are feasible and acceptable for this group: further investigation is needed of their mechanism of action and potential to improve functioning. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P H; Zhao, Chunyan; Dahlman-Wright, Karin
2015-04-10
The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression.
Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P.H.; Zhao, Chunyan; Dahlman-Wright, Karin
2015-01-01
The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression. PMID:25762639
Hamada, Mustafa S.; Goethals, Sarah; de Vries, Sharon I.; Brette, Romain
2016-01-01
In mammalian neurons, the axon initial segment (AIS) electrically connects the somatodendritic compartment with the axon and converts the incoming synaptic voltage changes into a temporally precise action potential (AP) output code. Although axons often emanate directly from the soma, they may also originate more distally from a dendrite, the implications of which are not well-understood. Here, we show that one-third of the thick-tufted layer 5 pyramidal neurons have an axon originating from a dendrite and are characterized by a reduced dendritic complexity and thinner main apical dendrite. Unexpectedly, the rising phase of somatic APs is electrically indistinguishable between neurons with a somatic or a dendritic axon origin. Cable analysis of the neurons indicated that the axonal axial current is inversely proportional to the AIS distance, denoting the path length between the soma and the start of the AIS, and to produce invariant somatic APs, it must scale with the local somatodendritic capacitance. In agreement, AIS distance inversely correlates with the apical dendrite diameter, and model simulations confirmed that the covariation suffices to normalize the somatic AP waveform. Therefore, in pyramidal neurons, the AIS location is finely tuned with the somatodendritic capacitive load, serving as a homeostatic regulation of the somatic AP in the face of diverse neuronal morphologies. PMID:27930291
Wu, Ziqi; Gudur, Madhu S R; Deng, Cheri X
2013-01-01
Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm(2)), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43 ± 1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96 ± 0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89 ± 0.01, n = 13) and change of APA (ROC AUC 0.79 ± 0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction.
Wu, Ziqi; Gudur, Madhu S. R.; Deng, Cheri X.
2013-01-01
Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm2), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43±1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96±0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89±0.01, n = 13) and change of APA (ROC AUC 0.79±0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction. PMID:24349337
QUEST: Qualifying Environmentally Sustainable Technologies
NASA Technical Reports Server (NTRS)
2006-01-01
Over the years, pollution prevention has proven to be a means to comply with environmental regulations, improve product performance and reduce costs. The NASA Acquisition Pollution Prevention (AP2) Program was created to help individual NASA Centers and programs work together to evaluate and adopt environmentally preferable technologies and practices. The AP2 Program accomplishes its mission using a variety of tools such as networking, information/technology exchange and partnering. Due to its extensive network of contacts, the AP2 Program is an excellent resource for finding existing solutions to problems. If no solution is readily known, the AP2 Program works to identify potential solutions and partners for demonstration/ validation projects. Partnering to prevent pollution is a cornerstone of NASA's prime mission and the One NASA Initiative. This annual newsletter highlights some of our program's collaborative efforts. I believe you will discover how the AP2 Program is responsive in meeting the Agency's environmental management strategic plans.
Urban, Kimberly R.; Valentino, Rita J.
2017-01-01
Abstract Stress is implicated in psychiatric illnesses that are characterized by impairments in cognitive functions that are mediated by the medial prefrontal cortex (mPFC). Because sex and age determine stress vulnerability, the effects of repeated social stress occurring during early adolescence, mid-adolescence, or adulthood on the cellular properties of male and female rat mPFC Layer V neurons in vitro were examined. Repeated resident–intruder stress produced age- and sex-specific effects on mPFC intrinsic and synaptic excitability. Mid-adolescents were particularly vulnerable to effects on intrinsic excitability. The maximum number of action potentials (APs) evoked by increasing current intensity was robustly decreased in stressed male and female mid-adolescent rats compared with age-matched controls. These effects were associated with stress-induced changes in AP half-width, amplitude, threshold, and input resistance. Social stress at all ages generally decreased synaptic excitability by decreasing the amplitude of spontaneous excitatory postsynaptic potentials. The results suggest that whereas social stress throughout life can diminish the influence of afferents driving the mPFC, social stress during mid-adolescence additionally affects intrinsic characteristics of mPFC neurons that determine excitability. The depressant effects of social stress on intrinsic and synaptic mPFC neurons may underlie its ability to affect executive functions and emotional responses, particularly during adolescence. PMID:28013234
Urban, Kimberly R; Valentino, Rita J
2017-01-01
Stress is implicated in psychiatric illnesses that are characterized by impairments in cognitive functions that are mediated by the medial prefrontal cortex (mPFC). Because sex and age determine stress vulnerability, the effects of repeated social stress occurring during early adolescence, mid-adolescence, or adulthood on the cellular properties of male and female rat mPFC Layer V neurons in vitro were examined. Repeated resident-intruder stress produced age- and sex-specific effects on mPFC intrinsic and synaptic excitability. Mid-adolescents were particularly vulnerable to effects on intrinsic excitability. The maximum number of action potentials (APs) evoked by increasing current intensity was robustly decreased in stressed male and female mid-adolescent rats compared with age-matched controls. These effects were associated with stress-induced changes in AP half-width, amplitude, threshold, and input resistance. Social stress at all ages generally decreased synaptic excitability by decreasing the amplitude of spontaneous excitatory postsynaptic potentials. The results suggest that whereas social stress throughout life can diminish the influence of afferents driving the mPFC, social stress during mid-adolescence additionally affects intrinsic characteristics of mPFC neurons that determine excitability. The depressant effects of social stress on intrinsic and synaptic mPFC neurons may underlie its ability to affect executive functions and emotional responses, particularly during adolescence. © The Author 2016. Published by Oxford University Press.
Pang, Chun; Sheng, Yu-chen; Jiang, Ping; Wei, Hai; Ji, Li-li
2015-01-01
Chlorogenic acid (CGA), a polyphenolic compound, is abundant in fruits, dietary vegetables, and some medicinal herbs. This study investigated the prevention of CGA against acetaminophen (AP)-induced hepatotoxicity and its engaged mechanisms. CGA reversed the decreased cell viability induced by AP in L-02 cells in vitro. In addition, CGA reduced the AP-induced increased serum levels of alanine/aspartate aminotransferase (ALT/AST) in vivo. The effect of CGA on cytochrome P450 (CYP) enzymatic (CYP2E1, CYP1A2, and CYP3A4) activities showed that CGA caused very little inhibition on CYP2E1 and CYP1A2 enzymatic activities, but not CYP3A4. The measurement of liver malondialdehyde (MDA), reactive oxygen species (ROS), and glutathione (GSH) levels showed that CGA prevented AP-induced liver oxidative stress injury. Further, CGA increased the AP-induced decreased mRNA expression of peroxiredoxin (Prx) 1, 2, 3, 5, 6, epoxide hydrolase (Ephx) 2, and polymerase (RNA) II (DNA directed) polypeptide K (Polr2k), and nuclear factor erythroid-2-related factor 2 (Nrf2). In summary, CGA ameliorates the AP-induced liver injury probably by slightly inhibiting CYP2E1 and CYP1A2 enzymatic properties. In addition, cellular important antioxidant signals such as Prx1, 2, 3, 5, 6, Ephx2, Polr2k, and Nrf2 also contributed to the protection of CGA against AP-induced oxidative stress injury. PMID:26160718
Westfall, T D; McIntyre, C A; Obeid, S; Bowes, J; Kennedy, C; Sneddon, P
1997-05-01
1. The site(s) at which diadenosine 5',5"'-P1,P4-tetraphosphate (AP4A) and diadenosine 5', 5"'-P1,P5-pentaphosphate (AP5A) act to evoke contraction of the guinea-pig isolated vas deferens was studied by use of a series of P2-receptor antagonists and the ecto-ATPase inhibitor 6-N,N-diethyl-D-beta,gamma-dibromomethyleneATP (ARL 67156). 2. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (300 nM - 30 microM), suramin (3-100 microM) and pyridoxal-5'-phosphate (P-5-P) (3-1000 microM) inhibited contractions evoked by equi-effective concentrations of AP5A (3 microM), AP4A (30 microM) and alpha,beta-methyleneATP (alpha,beta-meATP) (1 microM), in a concentration-dependent manner and abolished them at the highest concentrations used. 3. PPADS was more potent than suramin, which in turn was more potent than P-5-P. PPADS inhibited AP5A, AP4A and alpha,beta-meATP with similar IC50 values. No significant difference was found between IC50 values for suramin against alpha,beta-meATP and AP5A or alpha,beta-meATP and AP4A, but suramin was more than 2.5 times more potent against AP4A than AP5A. P-5-P showed the same pattern of antagonism. 4. Desensitization of the P2xi-receptor by alpha,beta-meATP abolished contractions evoked by AP5A (3 microM) and AP4A (30 microM), but had no effect on those elicited by noradrenaline (100 microM). 5. ARL 67156 (100 microM) reversibly potentiated contractions evoked by AP4A (30 microM) by 61%, but caused a small, significant decrease in the mean response to AP5A (3 microM). 6. It is concluded that AP4A and AP5A act at the P2xi-receptor, or a site similar to the P2xi-receptor, to evoke contraction of the guinea-pig isolated vas deferens. Furthermore, the potency of AP4A, but not AP5A, appears to be inhibited by an ecto-enzyme which is sensitive to ARL 67156.
A novel polymorphic cytochrome P450 formed by splicing of CYP3A7 and the pseudogene CYP3AP1.
Rodriguez-Antona, Cristina; Axelson, Magnus; Otter, Charlotta; Rane, Anders; Ingelman-Sundberg, Magnus
2005-08-05
The cytochrome P450 3A7 (CYP3A7) is the most abundant CYP in human liver during fetal development and first months of postnatal age, playing an important role in the metabolism of endogenous hormones, drugs, differentiation factors, and potentially toxic and teratogenic substrates. Here we describe and characterize a novel enzyme, CYP3A7.1L, encompassing the CYP3A7.1 protein with the last four carboxyl-terminal amino acids replaced by a unique sequence of 36 amino acids, generated by splicing of CYP3A7 with CYP3AP1 RNA. The corresponding CYP3A7-3AP1 mRNA had a significant expression in liver, kidney, and gastrointestinal tract, and its presence was found to be tissue-specific and dependent on the developmental stage. Heterologous expression in yeast revealed that CYP3A7.1L was a functional enzyme with a specific activity similar to that of CYP3A7.1 and, in some conditions, a different hydroxylation specificity than CYP3A7.1 using dehydroepiandrosterone as a substrate. CYP3A7.1L was found to be polymorphic due to a mutation at position -6 of the first splicing site of CYP3AP1 (CYP3A7_39256T-->A), which abrogates the pseudogene splicing. This polymorphism had pronounced interethnic differences and was in linkage disequilibrium with other functional polymorphisms described in the CYP3A locus: CYP3A7*2 and CYP3A5*1. Therefore, the resulting CYP3A haplotypes express different sets of enzymes within the population. In conclusion, a novel mechanism, consisting of the splicing of the pseudogene CYP3AP1 to CYP3A7, causes the formation of the novel CYP3A7.1L having a different tissue distribution and functional properties than the parent CYP3A7 enzyme, with possible developmental, physiological, and toxicological consequences.
Moustafa, Mohamed Abdallah Mohamed; Lee, Kyunglee; Taylor, Kyle; Nakao, Ryo; Sashika, Mariko; Shimozuru, Michito; Tsubota, Toshio
2015-12-01
A previously undescribed Anaplasma species (herein referred to as AP-sd) has been detected in sika deer, cattle and ticks in Japan. Despite being highly similar to some strains of A. phagocytophilum, AP-sd has never been detected in humans. Its ambiguous epidemiology and the lack of tools for its specific detection make it difficult to understand and interpret the prevalence of this Anaplasma species. We developed a method for specific detection, and examined AP-sd prevalence in Hokkaido wildlife. Our study included 250 sika deer (Cervus nippon yesoensis), 13 brown bears (Ursus arctos yesoensis) and 252 rodents including 138 (Apodemus speciosus), 45 (Apodemus argenteus), 42 (Myodes rufocanus) and 27 (Myodes rutilus) were collected from Hokkaido island, northern Japan, collected during 2010 to 2015. A 770 bp and 382 bp segment of the 16S rRNA and gltA genes, respectively, were amplified by nested PCR. Results were confirmed by cloning and sequencing of the positive PCR products. A reverse line blot hybridization (RLB) based on the 16S rRNA gene was then developed for the specific detection of AP-sd. The prevalence of AP-sd by nested PCR in sika deer was 51% (128/250). We detected this Anaplasma sp. for the first time in wild brown bears and rodents with a prevalence of 15% (2/13) and 2.4% (6/252), respectively. The sequencing results of the 16S rRNA and gltA gene amplicons were divergent from the selected A. phagocytophilum sequences in GenBank. Using a newly designed AP-sd specific probe for RLB has enabled us to specifically detect this Anaplasma species. Besides sika deer and cattle, wild brown bears and rodents were identified as potential reservoir hosts for AP-sd. This study provided a high throughput molecular method that specifically detects AP-sd, and which can be used to investigate its ecology and its potential as a threat to humans in Japan. Copyright © 2015 Elsevier B.V. All rights reserved.
Experimental and clinical evidence of antioxidant therapy in acute pancreatitis
Esrefoglu, Mukaddes
2012-01-01
Oxidative stress has been shown to play an important role in the pathogenesis of acute pancreatitis (AP). Antioxidants, alone or in combination with conventional therapy, should improve oxidative-stress-induced organ damage and therefore accelerate the rate of recovery. In recent years, substantial amounts of data about the efficiency of antioxidants against oxidative damage have been obtained from experiments with rodents. Some of these antioxidants have been found beneficial in the treatment of AP in humans; however, at present there is insufficient clinical data to support the benefits of antioxidants, alone or in combination with conventional therapy, in the management of AP in humans. Conflicting results obtained from experimental animals and humans may represent distinct pathophysiological mechanisms mediating tissue injury in different species. Further detailed studies should be done to clarify the exact mechanisms of tissue injury in human AP. Herein I tried to review the existing experimental and clinical studies on AP in order to determine the efficiency of antioxidants. The use of antioxidant enriched nutrition is a potential direction of clinical research in AP given the lack of clues about the efficiency and safety of antioxidant usage in patients with AP. PMID:23112545
Dielectric loss property of strong acids doped polyaniline (PANi)
NASA Astrophysics Data System (ADS)
Amalia, Rianti; Hafizah, Mas Ayu Elita; Andreas, Manaf, Azwar
2018-04-01
In this study, strong acid doped polyaniline (PANi) has been successfully fabricated through the chemical oxidative polymerization process with various polymerization times. Nonconducting PANi resulting from the polymerization process at various polymerization times were then doped by a strong acid HClO4 to generate dielectric properties. Ammonium Persulfate (APS) as an initiator was used during Polymerization process to develop dark green precipitates which then called Emeraldine Base Polyaniline (PANi-EB). The PANi-EB was successively doped by strong acid HClO4 with dopant and PANi ratio 10:1 to enhance the electrical conductivity. The conductivity of doped PANi was evaluated by Four Point Probe. Results of evaluation showed that the conductivity values of HClO4 doped PANi were in the range 337-363 mS/cm. The dielectric properties of doped PANi were evaluated by Vector Network Analyzer (VNA) which suggested that an increase in the permittivity value in the conducting PANi. It is concluded that PANi could be a potential candidate for electromagnetic waves absorbing materials.
Effect of desertification on productivity in a desert steppe.
Tang, Zhuangsheng; An, Hui; Deng, Lei; Wang, Yingying; Zhu, Guangyu; Shangguan, Zhouping
2016-06-14
Desertification, one of the most severe types of land degradation in the world, is of great importance because it is occurring, to some degree, on approximately 40% of the global land area and is affecting more than 1 billion people. In this study, we used a space-for-time method to quantify the impact of five different desertification regimes (potential (PD), light (LD), moderate (MD), severe (SD), and very severe (VSD)) on a desert steppe ecosystem in northern China to examine the relationship between the productivity of the vegetation and soil properties and to determine the mechanism underlying the effects of desertification on productivity. Our results showed that the effects of desertification on TP (total phosphorus) and AP (available phosphorus) were not significant, and desertification decreased productivity in the desert steppe as a result of direct changes to soil physical properties, which can directly affect soil chemical properties. Therefore, intensive grassland management to improve soil quality may result in the long-term preservation of ecosystem functions and services.
Effect of desertification on productivity in a desert steppe
Tang, Zhuangsheng; An, Hui; Deng, Lei; Wang, Yingying; Zhu, Guangyu; Shangguan, Zhouping
2016-01-01
Desertification, one of the most severe types of land degradation in the world, is of great importance because it is occurring, to some degree, on approximately 40% of the global land area and is affecting more than 1 billion people. In this study, we used a space-for-time method to quantify the impact of five different desertification regimes (potential (PD), light (LD), moderate (MD), severe (SD), and very severe (VSD)) on a desert steppe ecosystem in northern China to examine the relationship between the productivity of the vegetation and soil properties and to determine the mechanism underlying the effects of desertification on productivity. Our results showed that the effects of desertification on TP (total phosphorus) and AP (available phosphorus) were not significant, and desertification decreased productivity in the desert steppe as a result of direct changes to soil physical properties, which can directly affect soil chemical properties. Therefore, intensive grassland management to improve soil quality may result in the long-term preservation of ecosystem functions and services. PMID:27297202
Biotransformation of potentially persistent alkylphenols in natural seawater.
Lofthus, Synnøve; Almås, Inger K; Evans, Peter; Pelz, Oliver; Brakstad, Odd Gunnar
2016-08-01
Produced water (PW) discharged to the marine environment may contain both natural substances and industrial chemicals that are potentially persistent, bioaccumulating and toxic (PBT). Identification of substances as PBT is dependent upon accurate assessment of biodegradation rates, but these measurements can be impeded where substances exhibit inherently low solubility in water. Examples of substances of this kind include some alkylated phenols (APs). Biotransformation of three APs, suspected to be PBT compounds in PW, was investigated by adopting a new methodology in which they were immobilized to hydrophobic adsorbents submerged in natural seawater. These compounds were not ready biodegradable by conventional screening biochemical oxygen demand (BOD) methods at high concentrations (2 mg/L). However, potential biodegradability for two of the three APs were demonstrated by the immobilization method at low concentrations (appr. 100 μg/L), with biotransformation half-lives <50 days. Thus, standard screening tests should be supplemented by biodegradation methods suited for testing of poorly soluble substances before the persistence of potential PBT substances are defined. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-performance space shuttle auxiliary propellant valve system
NASA Technical Reports Server (NTRS)
Smith, G. M.
1973-01-01
Several potential valve closures for the space shuttle auxiliary propulsion system (SS/APS) were investigated analytically and experimentally in a modeling program. The most promising of these were analyzed and experimentally evaluated in a full-size functional valve test fixture of novel design. The engineering investigations conducted for both model and scale evaluations of the SS/APS valve closures and functional valve fixture are described. Preliminary designs, laboratory tests, and overall valve test fixture designs are presented, and a final recommended flightweight SS/APS valve design is presented.
Pérez-Sánchez, Carlos; Arias-de la Rosa, Iván; Aguirre, María Ángeles; Luque-Tévar, María; Ruiz-Limón, Patricia; Barbarroja, Nuria; Jiménez-Gómez, Yolanda; Ábalos-Aguilera, María Carmen; Collantes-Estévez, Eduardo; Segui, Pedro; Velasco, Francisco; Herranz, María Teresa; Lozano-Herrero, Jesús; Hernandez-Vidal, María Julia; Martínez, Constantino; González-Conejero, Rocío; Radin, Massimo; Sciascia, Savino; Cecchi, Irene; Cuadrado, María José; López-Pedrera, Chary
2018-01-01
We aimed to identify the plasma miRNA profile of antiphospholipid syndrome (APS) patients and to investigate the potential role of specific circulating miRNAs as non-invasive disease biomarkers. Ninety APS patients and 42 healthy donors were recruited. Profiling of miRNAs by PCR-array in plasma of APS patients identified a set of miRNAs differentially expressed and collectively involved in clinical features. Logistic regression and ROC analysis identified a signature of 10 miRNA ratios as biomarkers of disease. In addition, miRNA signature was related to fetal loss, atherosclerosis, and type of thrombosis, and correlated with parameters linked to inflammation, thrombosis, and autoimmunity. Hard clustering analysis differentiated 3 clusters representing different thrombotic risk profile groups. Significant differences between groups for several miRNA ratios were found. Moreover, miRNA signature remained stable over time, demonstrated by their analysis three months after the first sample collection. Parallel analysis in two additional cohorts of patients, including thrombosis without autoimmune disease, and systemic lupus erythematosus without antiphospholipid antibodies, each displayed specific miRNA profiles that were distinct from those of APS patients. In vitro, antiphospholipid antibodies of IgG isotype promoted deregulation in selected miRNAs and their potential atherothrombotic protein targets in monocytes and endothelial cells. Taken together, differentially expressed circulating miRNAs in APS patients, modulated at least partially by antiphospholipid antibodies of IgG isotype, might have the potential to serve as novel biomarkers of disease features and to typify patients’ atherothrombotic status, thus constituting a useful tool in the management of the disease. PMID:29545345
Rioli, Vanessa; Prezoto, Benedito C; Konno, Katsuhiro; Melo, Robson L; Klitzke, Clécio F; Ferro, Emer S; Ferreira-Lopes, Mônica; Camargo, Antonio C M; Portaro, Fernanda C V
2008-05-01
Characterization of the peptide content of venoms has a number of potential benefits for basic research, clinical diagnosis, development of new therapeutic agents, and production of antiserum. Here, we use a substrate-capture assay that employs a catalytically inactive mutant of thimet oligopeptidase (EC 3.4.24.15; EP24.15) to identify novel bioactive peptides in Bothrops jararacussu venom. Of the peptides captured with inactive EP24.15 and identified by mass spectrometry, three were previously identified bradykinin-potentiating peptides (BPP),
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
Letzkus, Johannes J; Kampa, Björn M; Stuart, Greg J
2006-10-11
Previous studies focusing on the temporal rules governing changes in synaptic strength during spike timing-dependent synaptic plasticity (STDP) have paid little attention to the fact that synaptic inputs are distributed across complex dendritic trees. During STDP, propagation of action potentials (APs) back to the site of synaptic input is thought to trigger plasticity. However, in pyramidal neurons, backpropagation of single APs is decremental, whereas high-frequency bursts lead to generation of distal dendritic calcium spikes. This raises the question whether STDP learning rules depend on synapse location and firing mode. Here, we investigate this issue at synapses between layer 2/3 and layer 5 pyramidal neurons in somatosensory cortex. We find that low-frequency pairing of single APs at positive times leads to a distance-dependent shift to long-term depression (LTD) at distal inputs. At proximal sites, this LTD could be converted to long-term potentiation (LTP) by dendritic depolarizations suprathreshold for BAC-firing or by high-frequency AP bursts. During AP bursts, we observed a progressive, distance-dependent shift in the timing requirements for induction of LTP and LTD, such that distal synapses display novel timing rules: they potentiate when inputs are activated after burst onset (negative timing) but depress when activated before burst onset (positive timing). These findings could be explained by distance-dependent differences in the underlying dendritic voltage waveforms driving NMDA receptor activation during STDP induction. Our results suggest that synapse location within the dendritic tree is a crucial determinant of STDP, and that synapses undergo plasticity according to local rather than global learning rules.
ERIC Educational Resources Information Center
Pennacchia, Jodie; Thomson, Pat
2016-01-01
In the English context, complementary alternative provisions (APs) can make specific positive contributions for young people at risk of exclusion from mainstream school. Whilst recognising the potential value of all complementary AP that is carefully selected and of high quality, we problematise the "repair and return" rationale that…
[Role of CD2-associated protein in podocyte differentiation.].
Jiang, Hua-Jun; Chang, Ying; Zhu, Zhong-Hua; Liu, Jian-She; Deng, An-Guo; Zhang, Chun
2008-02-25
To study the cellular changes and the potential role of CD2-associated protein (CD2AP) in podocyte differentiation, conditionally immortalized murine podocyte cell line was cultured in RPMI 1640 medium under permissive condition at 33 °C. After transfection with CD2AP small interfering RNA (siRNA) the cells were shifted to non-permissive condition at 37 °C. Simultaneously, untransfected cells were taken as differentiation control. The podocyte proliferation rate was determined by MTT method. The expressions of CD2AP, WT1, synaptopodin and nephrin mRNAs were examined by RT-PCR. CD2AP, WT1 and nephrin protein expressions were examined by Western blot. The distribution of CD2AP, nephrin, F-actin and tubulin in differentiated and undifferentiated podocytes was detected by laser scanning confocal microscopy. The results showed: (1) CD2AP, WT1 and nephrin were stably expressed in differentiated and undifferentiated podocytes while synaptopodin was only expressed in differentiated podocytes. (2) CD2AP and nephrin mRNA and protein expressions were up-regulated during podocyte differentiation (P<0.05). (3) CD2AP and tubulin were distributed in the cytoplasm and perinulcear region in undifferentiated podocytes, and F-actin was predominantly localized to a cortical belt and paralleled to the cell axis. Under differentiation condition, CD2AP distribution profile was presented as peripheral accumulation, tubulin took on fascicular style and F-actin extended into foot processes in podocytes. CD2AP colocalized with nephrin and F-actin in undifferentiated podocytes. (4) After transfection with CD2AP siRNA, the expression of CD2AP was partially inhibited and cell growth was arrested; Synaptopodin, the differentiation podocyte marker, was apparently down-regulated; The differentiation of podocytes was delayed. The results demonstrate that podocyte differentiation is accompanied by cytoskeleton rearrangement and cell morphology change. CD2AP might play an essential role in podocyte differentiation.
Tian, Mi; Tang, Li; Wu, Yuanyuan; Beddhu, Srinivasan; Huang, Yufeng
2018-06-06
Adiponectin (ApN) is a multifunctional adipokine. However high, rather than low, concentrations of ApN are unexpectedly found in patients with chronic kidney disease (CKD) via an as yet unknown mechanism and the role of ApN in CKD is unclear. We, herein, investigated the effect of ApN overexpression on the progressive renal injury resulted from deoxycorticosterone acetate-salt (DOCA) and angiotensin II (Ang-II) infusion using a transgenic, inducible ApN-overexpressing mouse model. Three groups of mice (wild type receiving no infusion (WT), WT and cyp1a1 ApN transgenic mice (ApN-Tg) receiving DOCA+Ang-II infusion (WT/DOCA+Ang-II and ApN-Tg/DOCA+Ang-II)) were assigned to receive a normal food containing 0.15% of the transgene inducer indol-3-carbinol (I3C) for 3 weeks. The I3C-induced ApN-Tg/DOCA+Ang-II mice, not the WT or WT/DOCA+Ang-II mice, overexpressing ApN in liver resulted in 3.15-fold increases in circulating ApN than non-transgenic controls. Of note, these transgenic mice receiving DOCA+Ang-II infusion were still hypertensive but had much less albuminuria and glomerular and tubulointerstitial fibrosis, which were associated with ameliorated podocyte injury determined by ameliorated podocyte loss and foot process effacement; and alleviated tubular injury determined by ameliorated mRNA overexpression of KIM-1 and NGAL and mRNA decreases of cubilin and megalin in tubular cells, compared with WT/DOCA+Ang-II mice. In addition, renal production of NF-kB-p65, NAPDH oxidase-2 and p47phox, and MAPK-related cellular proliferation, which were induced in WT/DOCA+Ang-II mice, were markedly reduced in ApN-Tg/DOCA+Ang-II mice. These results indicate that elevated ApN in CKD mouse model is renal protective. Enhancing adiponectin production or signaling may have therapeutic potential for CKD.
Kavas, Musa; Kizildogan, Aslihan; Gökdemir, Gökhan; Baloglu, Mehmet Cengiz
2015-01-01
Apetala2-ethylene-responsive element binding factor (AP2-ERF) superfamily with common AP2-DNA binding domain have developmentally and physiologically important roles in plants. Since common bean genome project has been completed recently, it is possible to identify all of the AP2-ERF genes in the common bean genome. In this study, a comprehensive genome-wide in silico analysis identified 180 AP2-ERF superfamily genes in common bean (Phaseolus vulgaris). Based on the amino acid alignment and phylogenetic analyses, superfamily members were classified into four subfamilies: DREB (54), ERF (95), AP2 (27) and RAV (3), as well as one soloist. The physical and chemical characteristics of amino acids, interaction between AP2-ERF proteins, cis elements of promoter region of AP2-ERF genes and phylogenetic trees were predicted and analyzed. Additionally, expression levels of AP2-ERF genes were evaluated by in silico and qRT-PCR analyses. In silico micro-RNA target transcript analyses identified nearly all PvAP2-ERF genes as targets of by 44 different plant species' miRNAs were identified in this study. The most abundant target genes were PvAP2/ERF-20-25-62-78-113-173. miR156, miR172 and miR838 were the most important miRNAs found in targeting and BLAST analyses. Interactome analysis revealed that the transcription factor PvAP2-ERF78, an ortholog of Arabidopsis At2G28550, was potentially interacted with at least 15 proteins, indicating that it was very important in transcriptional regulation. Here we present the first study to identify and characterize the AP2-ERF transcription factors in common bean using whole-genome analysis, and the findings may serve as a references for future functional research on the transcription factors in common bean. PMID:27152109
Zhang, Wen-Feng; Yang, Yan; Li, Xin; Xu, Da-Yan; Yan, Yu-Li; Gao, Qiao; Jia, Ai-Ling; Duan, Ming-Hua
2017-09-15
Angelica sinensis (Oliv) Diels (Apiaceae) is a traditional medicine that has been used for more than 2000 years in China. It exhibits various therapeutic effects including neuroprotective, anti-oxidant, anti-inflammatory, and immunomodulatory activities. Angelica polysaccharides (APs), bioactive constituents of Angelica have been shown to be responsible for these effects; however, the utility of APs for the treatment of glioma and their mechanism of action remain to be elucidated. In this study, we investigated the inhibitory effects of APs on a glioma cell line and their molecular mechanism of action. U251 cells were utilized to confirm the effects of APs on glioma. The human glioblastoma cell line U251 was utilized for both in vitro and in vivo models, in which we tested the effects of APs. Flow cytometry, gene expression analysis, western blotting, and MTT assays were used to elucidate the effects of APs on cell proliferation, cell cycle, and apoptosis. The results demonstrated that APs significantly inhibited the growth and proliferation of U251 cells and induced their apoptosis. Furthermore, APs effectively reduced the expression of several cell cycle regulators: cyclins D1, B, and E. The apoptosis suppressor protein Bcl-2 was also downregulated, and the expression of pro-apoptotic proteins Bax and cleaved-caspase-3 increased. Additionally, APs inhibited the transforming growth factor (TGF)-β signaling pathway and stimulated the expression of E-cadherin, thus prohibiting cell growth. In conclusion, the results indicate that APs attenuate the tumorigenicity of glioma cells and promote their apoptosis by suppressing the TGF-β signaling pathway. The present study therefore provides evidence of the inhibitory effects of APs against glioma progression, and proposes their potential application as alternative therapeutic agents for glioma. Copyright © 2017 Elsevier GmbH. All rights reserved.
Lisiecki, R S; Voigt, H F
1995-08-01
A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.
Rethinking the evaluation and measurement of Health in all policies.
Bauman, Adrian E; King, Lesley; Nutbeam, Don
2014-06-01
Current international attention to Health in all policies (HiAP) has its origins in a more sophisticated understanding of the impact of public policies on health, and a recognition that policies across government have an impact on the social and environmental determinants of health and related inequalities in health. As an emerging field, there has been limited attention focused on comprehensive approaches to the evaluation of HiAP to date, and the research focus around HiAP has mainly examined the processes of cross-sectoral policy development, rather than their health-related impacts or outcomes. The purpose of this paper is to explore issues in assessing the implementation of HiAP and describe an expanded evaluation framework for assessing the potential intermediate and end-point effects of HiAP actions, using a planning logic model for 'complex programs'. This meets the needs of public sector policy-makers who express an interest in understanding the relationship between HiAP and health-related and social outcomes. The paper proposes applying a contribution analysis method to estimate and model the anticipated impacts of HiAP policies on intermediate and longer term outcomes, in advance of empirical studies of these outcomes, and as an innovative input into HiAP and evaluation planning. A broader long-term evaluation framework will enhance the political saliency of HiAP initiatives, especially from governments considering HiAP approaches in financially constrained environments. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ghosh, Pallab; Hsu, Chungyi; Alyamani, Essam J; Shehata, Maher M; Al-Dubaib, Musaad A; Al-Naeem, Abdulmohsen; Hashad, Mahmoud; Mahmoud, Osama M; Alharbi, Khalid B J; Al-Busadah, Khalid; Al-Swailem, Abdulaziz M; Talaat, Adel M
2012-01-01
Mycobacterium avium subspecies paratuberculosis (M. ap) is the causative agent of paratuberculosis or Johne's disease (JD) in herbivores with potential involvement in cases of Crohn's disease in humans. JD is spread worldwide and is economically important for both beef and dairy industries. Generally, pathogenic ovine strains (M. ap-S) are mainly found in sheep while bovine strains (M. ap-C) infect other ruminants (e.g. cattle, goat, deer), as well as sheep. In an effort to characterize this emerging infection in dromedary/Arabian camels, we successfully cultured M. ap from several samples collected from infected camels suffering from chronic, intermittent diarrhea suggestive of JD. Gene-based typing of isolates indicated that all isolates belong to sheep lineage of strains of M. ap (M. ap-S), suggesting a putative transmission from infected sheep herds. Screening sheep and goat herds associated with camels identified the circulation of this type in sheep but not goats. The current genome-wide analysis recognizes these camel isolates as a sub-lineage of the sheep strain with a significant number of single nucleotide polymorphisms (SNPs) between sheep and camel isolates (∼1000 SNPs). Such polymorphism could represent geographical differences among isolates or host adaptation of M. ap during camel infection. To our knowledge, this is the first attempt to examine the genomic basis of this emerging infection in camels with implications on the evolution of this important pathogen. The sequenced genomes of M. ap isolates from camels will further assist our efforts to understand JD pathogenesis and the dynamic of disease transmission across animal species.
Ghosh, Pallab; Hsu, Chungyi; Alyamani, Essam J.; Shehata, Maher M.; Al-Dubaib, Musaad A.; Al-Naeem, Abdulmohsen; Hashad, Mahmoud; Mahmoud, Osama M.; Alharbi, Khalid B. J.; Al-Busadah, Khalid; Al-Swailem, Abdulaziz M.; Talaat, Adel M.
2012-01-01
Mycobacterium avium subspecies paratuberculosis (M. ap) is the causative agent of paratuberculosis or Johne's disease (JD) in herbivores with potential involvement in cases of Crohn's disease in humans. JD is spread worldwide and is economically important for both beef and dairy industries. Generally, pathogenic ovine strains (M. ap-S) are mainly found in sheep while bovine strains (M. ap-C) infect other ruminants (e.g. cattle, goat, deer), as well as sheep. In an effort to characterize this emerging infection in dromedary/Arabian camels, we successfully cultured M. ap from several samples collected from infected camels suffering from chronic, intermittent diarrhea suggestive of JD. Gene-based typing of isolates indicated that all isolates belong to sheep lineage of strains of M. ap (M. ap-S), suggesting a putative transmission from infected sheep herds. Screening sheep and goat herds associated with camels identified the circulation of this type in sheep but not goats. The current genome-wide analysis recognizes these camel isolates as a sub-lineage of the sheep strain with a significant number of single nucleotide polymorphisms (SNPs) between sheep and camel isolates (∼1000 SNPs). Such polymorphism could represent geographical differences among isolates or host adaptation of M. ap during camel infection. To our knowledge, this is the first attempt to examine the genomic basis of this emerging infection in camels with implications on the evolution of this important pathogen. The sequenced genomes of M. ap isolates from camels will further assist our efforts to understand JD pathogenesis and the dynamic of disease transmission across animal species. PMID:22393374
Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging.
Dempsey, Graham T; Chaudhary, Khuram W; Atwater, Nicholas; Nguyen, Cuong; Brown, Barry S; McNeish, John D; Cohen, Adam E; Kralj, Joel M
2016-01-01
The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative seeks an in vitro test to accurately predict clinical Torsades de Pointes (TdP). We developed a cardiotoxicity assay incorporating simultaneous measurement of the action potential (AP) waveform and Ca(2+) transient (CT) in human iPSC-derived cardiomyocytes (CMs). Concurrent optogenetic pacing provided a well-controlled electrophysiological background. We used the Optopatch platform for all-optical electrophysiology (Hochbaum et al., 2014). In a monolayer culture, a subset of cells expressed a genetically encoded, calcium and voltage reporter, CaViar (Hou, Kralj, Douglass, Engert, & Cohen, 2014), while others expressed a channelrhodopsin variant, CheRiff. Optical pacing of CheRiff-expressing cells synchronized the syncytium. We screened 12 compounds (11 acute, 1 chronic) to identify electrophysiological (AP rise time, AP50, AP90, beat rate) and CT effects in spontaneously beating and paced cultures (1Hz, 2Hz). CaViar reported spontaneous and paced APs and CTs with high signal-to-noise ratio and low phototoxicity. Quinidine, flecainide, E-4031, digoxin and cisapride prolonged APs, while verapamil and nifedipine shortened APs. Early after depolarizations (EADs) were elicited by quinidine, flecainide and cisapride. All but four compounds (amiodarone, chromanol, nifedipine, verapamil) prolonged AP rise time. Nifedipine and verapamil decreased CT amplitude, while digoxin increased CT amplitude. Pentamidine prolonged APs after chronic exposure. The Optopatch platform provides a robust assay to measure APs and CTs in hiPSC-CMs. This addresses the CiPA mandate and will facilitate comparisons of cell-based assays to human clinical data. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Enyu; Kong, Xiangfei; Rong, Xian; Yao, Chengqiang; Yang, Hua; Qi, Chengying
2016-01-01
Phase change material (PCM) used in buildings can reduce the building energy consumption and indoor temperature fluctuation. A composite PCM has been fabricated by the binary eutectic mixture of tetradecanol (TD) and lauric acid (LA) absorbed into the expanded perlite (EP) using vacuum impregnation method, and its thermal conductivity was promoted by aluminium powder (AP) additive. Besides, the styrene-acrylic emulsion has been mixed with the composite PCM particles to form the protective film, so as to solve the problem of leakage. Thus, a novel PCM panel (PCMP) has been prepared using compression moulding forming method. The thermal property, microstructure characteristic, mechanical property, thermal conductivity, thermal reliability and leakage of the composite PCM have been investigated and analysed. Meanwhile, the thermal performance of the prepared PCMP was tested through PCMPs installed on the inside wall of a cell under outdoor climatic conditions. The composite PCM has a melting temperature of 24.9 °C, a freezing temperature of 25.2 °C, a melting latent heat of 78.2 J/g and a freezing latent heat of 81.3 J/g. The thermal conductivity test exposed that the thermal conductivity has been enhanced with the addition of AP and the latent heat has been decreased, but it still remains in a high level. The leakage test result has proven that liquid PCM leaking has been avoided by the surface film method. The thermal performance experiment has shown the significant function of PCMP about adjusting the indoor temperature and reducing the heats transferring between the wall inside and outside. In view of the thermal performance, mechanical property and thermal reliability results, it can be concluded that the prepared PCMP has a promising building application potential. PMID:28774020
Advanced APS impacts on vehicle payloads
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Reed, Brian D.
1989-01-01
Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethylhydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination of scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.
Advanced APS Impacts on Vehicle Payloads
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Reed, Brian D.
1989-01-01
Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethyl hydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination and scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.
Javed, Muhammad Ahsan; Wen, Li; Awais, Muhammad; Latawiec, Diane; Huang, Wei; Chvanov, Michael; Schaller, Sophie; Bordet, Thierry; Michaud, Magali; Pruss, Rebecca; Tepikin, Alexei; Criddle, David; Sutton, Robert
2018-01-01
Objectives Mitochondrial permeability transition pore inhibition is a promising approach to treat acute pancreatitis (AP). We sought to determine (i) the effects of the mitochondrial permeability transition pore inhibitor 3,5-seco-4-nor-cholestan-5-one oxime-3-ol (TRO40303) on murine and human pancreatic acinar cell (PAC) injury induced by fatty acid ethyl esters (FAEEs) or taurolithocholic acid-3-sulfate and (ii) TRO40303 pharmacokinetics and efficacy in experimental alcoholic AP (FAEE-AP). Methods Changes in mitochondrial membrane potential (Δψm), cytosolic Ca2+ ([Ca2+]c), and cell fate were examined in freshly isolated murine or human PACs by confocal microscopy. TRO40303 pharmacokinetics were assessed in cerulein-induced AP and therapeutic efficacy in FAEE-AP induced with palmitoleic acid and ethanol. Severity of AP was assessed by standard biomarkers and blinded histopathology. Results TRO40303 prevented loss of Δψm and necrosis induced by 100 μM palmitoleic acid ethyl ester or 500 μM taurolithocholic acid-3-sulfate in murine and human PACs. Pharmacokinetic analysis found TRO40303 accumulated in the pancreas. A single dose of 3 mg/kg TRO40303 significantly reduced serum amylase (P = 0.043), pancreatic trypsin (P = 0.018), and histopathology scores (P = 0.0058) in FAEE-AP. Conclusions TRO40303 protects mitochondria and prevents necrotic cell death pathway activation in murine and human PACs, ameliorates the severity of FAEE-AP, and is a candidate drug for human AP. PMID:29200128
Astrophysical interpretation of the anisotropies in the unresolved gamma-ray background
NASA Astrophysics Data System (ADS)
Ando, Shin'ichiro; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco; Zechlin, Hannes-S.
2017-06-01
Recently, a new measurement of the auto- and cross-correlation angular power spectrum (APS) of the isotropic gamma-ray background was performed, based on 81 months of data of the Fermi Large-Area Telescope (LAT). Here, we fit, for the first time, the new APS data with a model describing the emission of unresolved blazars. These sources are expected to dominate the anisotropy signal. The model we employ in our analysis reproduces well the blazars resolved by Fermi LAT. When considering the APS obtained by masking the sources listed in the 3FGL catalog, we find that unresolved blazars underproduce the measured APS below ˜1 GeV . Contrary to past results, this suggests the presence of a new contribution to the low-energy APS, with a significance of, at least, 5 σ . The excess can be ascribed to a new class of faint gamma-ray emitters. If we consider the APS obtained by masking the sources in the 2FGL catalog, there is no underproduction of the APS below 1 GeV, but the new source class is still preferred over the blazars-only scenario (with a significance larger than 10 σ ). The properties of the new source class and the level of anisotropies induced in the isotropic gamma-ray background are the same, independent of the APS data used. In particular, the new gamma-ray emitters must have a soft energy spectrum, with a spectral index ranging, approximately, from 2.7 to 3.2. This complicates their interpretation in terms of known sources, since, normally, star-forming and radio galaxies are observed with a harder spectrum. The new source class identified here is also expected to contribute significantly to the intensity of the isotropic gamma-ray background.
Spectrum of cisplatin-induced mutations in Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnouf, D.; Duane, M.; Fuchs, R.P.
1987-06-01
Using a forward-mutation assay based on the inactivation of the tetracycline-resistance gene located on plasmid pBR322, we have determined the mutation spectrum induced in Escherichia coli by cisplatin (cis-diamminedichloroplatinum(II)), a widely used antitumor drug. Cisplatin is known to form mainly intrastrand diadducts at ApG and GpG sites. We found that cisplatin efficiently induces mutations in an SOS-dependent way (i.e., dependent upon UV irradiation of the host bacteria). More than 90% of the mutations are single-base-pair substitutions occurring at the potential sites of cisplatin adducts (ApG and GpG). Taking into account the relative proportions of ApG and GpG adducts, we foundmore » that the ApG adducts are at least 5 times more mutagenic than the GpG adducts. Moreover, a strong mutation specificity was seen at the 5' side of the ApG adducts (A X T----T X A transversions). The observation that most mutations occur at the 5' end of the adduct at both ApG and GpG sites is discussed in relation to recent structural data.« less
Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam
Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji
2016-01-01
Carbonate apatite (CO3Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO3Ap foam for bone replacement, CO3Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO3Ap foam was 74 kPa whereas that of the gelatin-reinforced CO3Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO3Ap foam. PMID:28773832
Efficacy and safety of novel antipsychotics: a critical review.
Balestrieri, Matteo; Vampini, Claudio; Bellantuono, Cesario
2000-10-01
Efficacy and safety of novel antipsychotic (AP) drugs (amisulpride, olanzapine, quetiapine, ziprasidone and zotepine) have been reviewed. Data on their antipsychotic efficacy and side effects profile have been evaluated only on the basis of controlled trials so far published. Overall, all these drugs have shown an antipsychotic efficacy on positive symptoms of schizophrenia similar to that of the conventional AP drugs. On negative symptoms, all novel AP drugs, except quetiapine and ziprasidone, demonstrated a better efficacy than haloperidol. Long-term efficacy of these AP drugs in the maintenance treatment of schizophrenia needs to be explored by further, better-designed, epidemiological studies. The safety profile shows that the novel AP drugs are generally well-tolerated and induce significantly less acute extrapyramidal side effects in comparison with haloperidol. Some methodological flaws in the experimental design of the clinical trials analysed are discussed. Although these novel AP drugs have potential clinical advantages, a number of relevant questions still remain to be addressed, in order to establish the impact of these drugs in the overall treatment of schizophrenia. Copyright 2000 John Wiley & Sons, Ltd.
Different cell responses induced by exposure to maghemite nanoparticles.
Luengo, Yurena; Nardecchia, Stefania; Morales, María Puerto; Serrano, M Concepción
2013-12-07
Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible nature of NPs when in contact with biological systems. Herein, we have investigated how controlled changes in the physicochemical properties of iron oxide NPs at their surface (i.e., surface charge and hydrodynamic size) affect, first, their interaction with cell media components and, subsequently, cell responses to NP exposure. For that purpose, we have prepared iron oxide NPs with three different coatings (i.e., dimercaptosuccinic acid - DMSA, (3-aminopropyl)triethoxysilane - APS and dextran) and explored the response of two different cell types, murine L929 fibroblasts and human Saos-2 osteoblasts, to their exposure. Interestingly, different cell responses were found depending on the NP concentration, surface charge and cell type. In this sense, neutral NPs, as those coated with dextran, induced negligible cell damage, as their cellular internalization was significantly reduced. In contrast, surface-charged NPs (i.e., those coated with DMSA and APS) caused significant cellular changes in viability, morphology and cell cycle under certain culture conditions, as a result of a more active cellular internalization. These results also revealed a particular cellular ability to detect and remember the original physicochemical properties of the NPs, despite the formation of a protein corona when incubated in culture media. Overall, conclusions from these studies are of crucial interest for future biomedical applications of iron oxide NPs.
Korabecna, Marie; Ulcova-Gallova, Zdenka; Horinek, Ales; Pazourková, Eva; Calda, Pavel
2014-11-01
Apoptosis of tissues of fetal origin is thought to be one of the main sources of cell-free fetal DNA (cffDNA) in maternal circulation, impaired apoptosis is also involved in the mechanisms contributing to recurrent spontaneous miscarriages (RSM) associated with antiphospholipid syndrome (APS). The APS increases the risk for preeclampsia nine times. In preeclampsia, the elevated levels of cffDNA were described by different authors. To our knowledge, cffDNA in pregnant patients with APS was never studied. In our pilot study, we focused on the levels of cffDNA in four pregnant patients with treated primary APS and compared them with values obtained in twenty-one healthy subjects of comparable gestation age (the third trimester of pregnancy). We supposed that the increase of cffDNA concentration in our treated patients would signalize the elevated apoptosis of fetal tissues as in other pathological changes of placentation. The aim of our pilot study was to determine cffDNA concentrations in patients with treated APS and to compare them with values detected in healthy pregnant women of comparable gestation age in order to discover potential non-physiological elevations in patients. The elevated values of cffDNA were not observed in our patients (p value = 0.4363, Mann-Whitney test). All patients delivered healthy children. The measurement of concentrations of cffDNA seems to be a promising tool for monitoring of therapy effectiveness in pregnant women with APS but evaluation of randomized controlled trials would be necessary to determine the specificity and the sensitivity of this test.
Shade-Induced Action Potentials in Helianthus annuus L. Originate Primarily from the Epicotyl
Stephens, Nicholas R; Cleland, Robert E; Van Volkenburgh, Elizabeth
2006-01-01
Repeated observations that shading (a drastic reduction in illumination rate) increased the generation of spikes (rapidly reversed depolarizations) in leaves and stems of many cucumber and sunflower plants suggests a phenomenon widespread among plant organs and species. Although shaded leaves occasionally generate spikes and have been suggested to trigger systemic action potentials (APs) in sunflower stems, we never found leaf-generated spikes to propagate out of the leaf and into the stem. On the contrary, our data consistently implicate the epicotyl as the location where most spikes and APs (propagating spikes) originate. Microelectrode studies of light and shading responses in mesophyll cells of leaf strips and in epidermis/cortex cells of epicotyl segments confirm this conclusion and show that spike induction is not confined to intact plants. 90% of the epicotyl-generated APs undergo basipetal propagation to the lower epicotyl, hypocotyl and root. They propagate with an average rate of 2 ± 0.3 mm s−1 and always undergo a large decrement from the hypocotyl to the root. The few epicotyl-derived APs that can be tracked to leaf blades (< 10%) undergo either a large decrement or fail to be transmitted at all. Occasionally (5% of the observations) spikes were be generated in hypocotyl and lower epicotyl that moved towards the upper epicotyl unaltered, decremented, or amplified. This study confirms that plant APs arise to natural, nontraumatic changes. In simultaneous recordings with epicotyl growth, AP generation was found to parallel the acceleration of stem growth under shade. The possible relatedness of both processes must be further investigated. PMID:19521471
Krieger, Patrik
2009-11-01
In spines on basal dendrites of layer 2/3 pyramidal neurons in somatosensory barrel cortex, calcium transients evoked by back-propagating action potentials (bAPs) were investigated (i) along the length of the basal dendrite, (ii) with postnatal development and (iii) with sensory deprivation during postnatal development. Layer 2/3 pyramidal neurons were investigated at three different ages. At all ages [postnatal day (P)8, P14, P21] the bAP-evoked calcium transient amplitude increased with distance from the soma with a peak at around 50 microm, followed by a gradual decline in amplitude. The effect of sensory deprivation on the bAP-evoked calcium was investigated using two different protocols. When all whiskers on one side of the rat snout were trimmed daily from P8 to P20-24 there was no difference in the bAP-evoked calcium transient between cells in the contralateral hemisphere, lacking sensory input from the whisker, and cells in the ipsilateral barrel cortex, with intact whisker activation. When, however, only the D-row whiskers on one side were trimmed the distribution of bAP-evoked calcium transients in spines was shifted towards larger amplitudes in cells located in the deprived D-column. In conclusion, (i) the bAP-evoked calcium transient gradient along the dendrite length is established at P8, (ii) the calcium transient increases in amplitude with age and (iii) this increase is enhanced in layer 2/3 pyramidal neurons located in a sensory-deprived barrel column that is bordered by non-deprived barrel columns.
Calcium Signaling in Intact Dorsal Root Ganglia
Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.
2013-01-01
Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180
NASA Astrophysics Data System (ADS)
Norizan, Nabila Najwa; Santiagoo, Ragunathan; Ismail, Hanafi
2017-07-01
The fabrication of High Density Polyethylene (HDPE)/ Acrylonitrile-butadiene rubber (NBR)/ Palm Pressed Fibre (PPF) composite were investigated. The effect of γ-Aminopropyltriethoxy Silane (APS) as coupling agent on the properties of HDPE/ NBR/ PPF composite were studied. The composites were melt mixed using heated two roll mill at 180°C and speed of 15rpm with six different loading (100/0/10, 80/20/10, 70/30/10, 60/40/10, 50/50/10, and 40/60/10). The effects of γ-APS silane on mechanical, and morphological properties were examined using universal tensile machine (UTM) and scanning electron microscopy (SEM), respectively. Tensile strength and Young's modulus of HDPE/ NBR/ PPF composites decrease with increasing of NBR loading, whilst increasing the elongation at break. However, treated composites have resulted 3% to 29%, and 9% to 19%, higher in tensile strength and young's modulus compared to untreated composites. This was due to the better adhesion between HDPE/ NBR matrices and PPF filler with the presence of silanol moieties. From the morphological study, the micrograph of treated composites has proved the well bonded and good attachment of PPF filler with HDPE/ NBR matrices which resulted to better tensile strength to the HDPE/ NBR/ PPF composites.
Aistrup, Gary L; Arora, Rishi; Grubb, Søren; Yoo, Shin; Toren, Benjamin; Kumar, Manvinder; Kunamalla, Aaron; Marszalec, William; Motiwala, Tej; Tai, Shannon; Yamakawa, Sean; Yerrabolu, Satya; Alvarado, Francisco J; Valdivia, Hector H; Cordeiro, Jonathan M; Shiferaw, Yohannes; Wasserstrom, John Andrew
2017-11-01
Abnormal intracellular Ca2+ cycling contributes to triggered activity and arrhythmias in the heart. We investigated the properties and underlying mechanisms for systolic triggered Ca2+ waves in left atria from normal and failing dog hearts. Intracellular Ca2+ cycling was studied using confocal microscopy during rapid pacing of atrial myocytes (36 °C) isolated from normal and failing canine hearts (ventricular tachypacing model). In normal atrial myocytes (NAMs), Ca2+ waves developed during rapid pacing at rates ≥ 3.3 Hz and immediately disappeared upon cessation of pacing despite high sarcoplasmic reticulum (SR) load. In heart failure atrial myocytes (HFAMs), triggered Ca2+ waves (TCWs) developed at a higher incidence at slower rates. Because of their timing, TCW development relies upon action potential (AP)-evoked Ca2+ entry. The distribution of Ca2+ wave latencies indicated two populations of waves, with early events representing TCWs and late events representing conventional spontaneous Ca2+ waves. Latency analysis also demonstrated that TCWs arise after junctional Ca2+ release has occurred and spread to non-junctional (cell core) SR. TCWs also occurred in intact dog atrium and in myocytes from humans and pigs. β-adrenergic stimulation increased Ca2+ release and abolished TCWs in NAMs but was ineffective in HFAMs making this a potentially effective adaptive mechanism in normals but potentially arrhythmogenic in HF. Block of Ca-calmodulin kinase II also abolished TCWs, suggesting a role in TCW formation. Pharmacological manoeuvres that increased Ca2+ release suppressed TCWs as did interventions that decreased Ca2+ release but these also severely reduced excitation-contraction coupling. TCWs develop during the atrial AP and thus could affect AP duration, producing repolarization gradients and creating a substrate for reentry, particularly in HF where they develop at slower rates and a higher incidence. TCWs may represent a mechanism for the initiation of atrial fibrillation particularly in HF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.
Manns, Ian D; Sakmann, Bert; Brecht, Michael
2004-01-01
Layer 5 (L5) pyramidal neurones constitute a major sub- and intracortical output of the somatosensory cortex. This layer 5 is segregated into layers 5A and 5B which receive and distribute relatively independent afferent and efferent pathways. We performed in vivo whole-cell recordings from L5 neurones of the somatosensory (barrel) cortex of urethane-anaesthetized rats (aged 27–31 days). By delivering 6 deg single whisker deflections, whisker pad receptive fields were mapped for 16 L5A and 11 L5B neurones located below the layer 4 whisker-barrels. Average resting membrane potentials were −75.6±1.1 mV, and spontaneous action potential (AP) rates were 0.54± 0.14 APs s−1. Principal whisker (PW) evoked responses were similar in L5A and L5B neurones, with an average 5.0 ± 0.6 mV postsynaptic potential (PSP) and 0.12 ± 0.03 APs per stimulus. The layer 5A sub- and suprathreshold receptive fields (RFs) were more confined to the principle whisker than those of layer 5B. The basal dendritic arbors of layer 5A and 5B cells were located below both layer 4 barrels and septa, and the cell bodies were biased towards the barrel walls. Responses in both L5A and L5B developed slowly, with onset latencies of 10.1 ± 0.5 ms and peak latencies of 33.9 ± 3.3 ms. Contralateral multi-whisker stimulation evoked PSPs similar in amplitude to those of PW deflections; whereas, ipsilateral stimulation evoked smaller and longer latency PSPs. We conclude that in L5 a whisker deflection is represented in two ways: focally by L5A pyramids and more diffusely by L5B pyramids as a result of combining different inputs from lemniscal and paralemniscal pathways. The relevant output evoked by a whisker deflection could be the ensemble activity in the anatomically defined cortical modules associated with a single or a few barrel-columns. PMID:14724202
Increased levels of 3-hydroxykynurenine parallel disease severity in human acute pancreatitis.
Skouras, Christos; Zheng, Xiaozhong; Binnie, Margaret; Homer, Natalie Z M; Murray, Toby B J; Robertson, Darren; Briody, Lesley; Paterson, Finny; Spence, Heather; Derr, Lisa; Hayes, Alastair J; Tsoumanis, Andreas; Lyster, Dawn; Parks, Rowan W; Garden, O James; Iredale, John P; Uings, Iain J; Liddle, John; Wright, Wayne L; Dukes, George; Webster, Scott P; Mole, Damian J
2016-09-27
Inhibition of kynurenine 3-monooxygenase (KMO) protects against multiple organ dysfunction (MODS) in experimental acute pancreatitis (AP). We aimed to precisely define the kynurenine pathway activation in relation to AP and AP-MODS in humans, by carrying out a prospective observational study of all persons presenting with a potential diagnosis of AP for 90 days. We sampled peripheral venous blood at 0, 3, 6, 12, 24, 48, 72 and 168 hours post-recruitment. We measured tryptophan metabolite concentrations and analysed these in the context of clinical data and disease severity indices, cytokine profiles and C-reactive protein (CRP) concentrations. 79 individuals were recruited (median age: 59.6 years; 47 males, 59.5%). 57 met the revised Atlanta definition of AP: 25 had mild, 23 moderate, and 9 severe AP. Plasma 3-hydroxykynurenine concentrations correlated with contemporaneous APACHE II scores (R 2 = 0.273; Spearman rho = 0.581; P < 0.001) and CRP (R 2 = 0.132; Spearman rho = 0.455, P < 0.001). Temporal profiling showed early tryptophan depletion and contemporaneous 3-hydroxykynurenine elevation. Furthermore, plasma concentrations of 3-hydroxykynurenine paralleled systemic inflammation and AP severity. These findings support the rationale for investigating early intervention with a KMO inhibitor, with the aim of reducing the incidence and severity of AP-associated organ dysfunction.
Increased levels of 3-hydroxykynurenine parallel disease severity in human acute pancreatitis
Skouras, Christos; Zheng, Xiaozhong; Binnie, Margaret; Homer, Natalie Z. M.; Murray, Toby B. J.; Robertson, Darren; Briody, Lesley; Paterson, Finny; Spence, Heather; Derr, Lisa; Hayes, Alastair J.; Tsoumanis, Andreas; Lyster, Dawn; Parks, Rowan W.; Garden, O. James; Iredale, John P.; Uings, Iain J.; Liddle, John; Wright, Wayne L.; Dukes, George; Webster, Scott P.; Mole, Damian J.
2016-01-01
Inhibition of kynurenine 3-monooxygenase (KMO) protects against multiple organ dysfunction (MODS) in experimental acute pancreatitis (AP). We aimed to precisely define the kynurenine pathway activation in relation to AP and AP-MODS in humans, by carrying out a prospective observational study of all persons presenting with a potential diagnosis of AP for 90 days. We sampled peripheral venous blood at 0, 3, 6, 12, 24, 48, 72 and 168 hours post-recruitment. We measured tryptophan metabolite concentrations and analysed these in the context of clinical data and disease severity indices, cytokine profiles and C-reactive protein (CRP) concentrations. 79 individuals were recruited (median age: 59.6 years; 47 males, 59.5%). 57 met the revised Atlanta definition of AP: 25 had mild, 23 moderate, and 9 severe AP. Plasma 3-hydroxykynurenine concentrations correlated with contemporaneous APACHE II scores (R2 = 0.273; Spearman rho = 0.581; P < 0.001) and CRP (R2 = 0.132; Spearman rho = 0.455, P < 0.001). Temporal profiling showed early tryptophan depletion and contemporaneous 3-hydroxykynurenine elevation. Furthermore, plasma concentrations of 3-hydroxykynurenine paralleled systemic inflammation and AP severity. These findings support the rationale for investigating early intervention with a KMO inhibitor, with the aim of reducing the incidence and severity of AP-associated organ dysfunction. PMID:27669975
Boord, Jeffrey B; Maeda, Kazuhisa; Makowski, Liza; Babaev, Vladimir R; Fazio, Sergio; Linton, MacRae F; Hotamisligil, Gökhan S
2002-10-01
The adipocyte fatty acid-binding protein, aP2, has important effects on insulin resistance, lipid metabolism, and atherosclerosis. Its expression in macrophages enhances early foam cell formation and atherosclerosis in vivo. This study was designed to determine whether aP2 deficiency has a similar effect in the setting of advanced atherosclerosis and severe hypercholesterolemia. Mice deficient in aP2 and apolipoprotein E (aP2(-/-)apoE(-/-) mice) and apolipoprotein E-deficient control mice (apoE(-/-) mice) were fed a Western diet for 14 weeks. No significant differences in fasting serum levels of cholesterol, triglycerides, or free fatty acids were found between groups for each sex. Compared with apoE(-/-) control mice, male and female aP2(-/-)apoE(-/-) mice had significant reductions in mean atherosclerotic lesion size in the proximal aorta, en face aorta, and innominate/right carotid artery. Feeding the Western diet in the apoE-deficient background did not cause a significant reduction in insulin sensitivity in vivo, as determined by steady-state serum glucose levels and insulin tolerance testing. These data demonstrate an important role for aP2 expression in the advanced stages of atherosclerotic lesion formation. Thus, aP2 provides an important physiological link between different features of the metabolic syndrome and is a potential target for therapy of atherosclerosis.
Antipsychotic Use in Pregnancy and the Risk for Congenital Malformations.
Huybrechts, Krista F; Hernández-Díaz, Sonia; Patorno, Elisabetta; Desai, Rishi J; Mogun, Helen; Dejene, Sara Z; Cohen, Jacqueline M; Panchaud, Alice; Cohen, Lee; Bateman, Brian T
2016-09-01
The frequency of antipsychotic (AP) use during pregnancy has approximately doubled during the last decade. However, little is known about their safety for the developing fetus, and concerns have been raised about a potential association with congenital malformations. To examine the risk for congenital malformations overall and cardiac malformations associated with first-trimester exposure to APs. This nationwide sample of 1 360 101 pregnant women enrolled in Medicaid with a live-born infant constituted the pregnancy cohort nested in the Medicaid Analytic Extract database, which included data from January 1, 2000, to December 31, 2010. Participants were enrolled in Medicaid from 3 months before their last menstrual period through at least 1 month after delivery. Relative risks (RRs) were estimated using generalized linear models with fine stratification on the propensity score to control for the underlying psychiatric disorders and other potential confounders. Data were analyzed during 2015. Use of APs during the first trimester, the etiologically relevant period for organogenesis. Major congenital malformations overall and cardiac malformations identified during the first 90 days after delivery. Of the 1 341 715 pregnancies that met inclusion criteria (mean [SD] age of women, 24.02 [5.77] years), 9258 (0.69%) filled at least 1 prescription for an atypical AP and 733 (0.05%) filled at least 1 prescription for a typical AP during the first trimester. Overall, 32.7 (95% CI, 32.4-33.0) per 1000 births not exposed to APs were diagnosed with congenital malformations compared with 44.5 (95% CI, 40.5-48.9) per 1000 births exposed to atypical and 38.2 (95% CI, 26.6-54.7) per 1000 births exposed to typical APs. Unadjusted analyses suggested an increased risk for malformations overall for atypical APs (RR, 1.36; 95% CI, 1.24-1.50) but not for typical APs (RR, 1.17; 95% CI, 0.81-1.68). After confounding adjustment, the RR was reduced to 1.05 (95% CI, 0.96-1.16) for atypical APs and 0.90 (95% CI, 0.62-1.31) for typical APs. The findings for cardiac malformations were similar. For the individual agents examined, a small increased risk in overall malformations (RR, 1.26; 95% CI, 1.02-1.56) and cardiac malformations (RR, 1.26; 95% CI, 0.88-1.81) was found for risperidone that was independent of measured confounders. Evidence from this large study suggests that use of APs early in pregnancy generally does not meaningfully increase the risk for congenital malformations overall or cardiac malformations in particular. The small increase in the risk for malformations observed with risperidone requires additional study.
Lata, Charu; Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj
2014-01-01
The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses. PMID:25409524
Lata, Charu; Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj
2014-01-01
The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses.
ERIC Educational Resources Information Center
Bähring, Robert; Bauer, Christiane K.
2014-01-01
The generation and conduction of neuronal action potentials (APs) were the subjects of a cell physiology exercise for first-year medical students. In this activity, students demonstrated the all-or-none nature of AP generation, measured conduction velocity, and examined the dependence of the threshold stimulus amplitude on stimulus duration. For…
Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.
2014-01-01
The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445
Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E
2014-01-01
The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.
Li, Li-Li; Melero-Fernandez de Mera, Raquel M; Chen, Jia; Ba, Wei; Kasri, Nael Nadif; Zhang, Mingjie; Courtney, Michael J
2015-05-13
The protein NOS1AP/CAPON mediates signaling from a protein complex of NMDA receptor, PSD95 and nNOS. The only stroke trial for neuroprotectants that showed benefit to patients targeted this ternary complex. NOS1AP/nNOS interaction regulates small GTPases, iron transport, p38MAPK-linked excitotoxicity, and anxiety. Moreover, the nos1ap gene is linked to disorders from schizophrenia, post-traumatic stress disorder, and autism to cardiovascular disorders and breast cancer. Understanding protein interactions required for NOS1AP function, therefore, has broad implications for numerous diseases. Here we show that the interaction of NOS1AP with nNOS differs radically from the classical PDZ docking assumed to be responsible. The NOS1AP PDZ motif does not bind nNOS as measured by multiple methods. In contrast, full-length NOS1AP forms an unusually stable interaction with nNOS. We mapped the discrepancy between full-length and C-terminal PDZ motif to a novel internal region we call the ExF motif. The C-terminal PDZ motif, although neither sufficient nor necessary for binding, nevertheless promotes the stability of the complex. It therefore potentially affects signal transduction and suggests that functional interaction of nNOS with NOS1AP might be targetable at two distinct sites. We demonstrate that excitotoxic pathways can be regulated, in cortical neuron and organotypic hippocampal slice cultures from rat, either by the previously described PDZ ligand TAT-GESV or by the ExF motif-bearing region of NOS1AP, even when lacking the critical PDZ residues as long as the ExF motif is intact and not mutated. This previously unrecognized heterodivalent interaction of nNOS with NOS1AP may therefore provide distinct opportunities for pharmacological intervention in NOS1AP-dependent signaling and excitotoxicity. Copyright © 2015 the authors 0270-6474/15/357349-16$15.00/0.
Karwi, Qutuba G; Bornbaum, Julia; Boengler, Kerstin; Torregrossa, Roberta; Whiteman, Matthew; Wood, Mark E; Schulz, Rainer
2017-01-01
Background and Purpose H2S protects myocardium against ischaemia/reperfusion injury. This protection may involve the cytosolic reperfusion injury salvage kinase (RISK) pathway, but direct effects on mitochondrial function are possible. Here, we investigated the potential cardioprotective effect of a mitochondria‐specific H2S donor, AP39, at reperfusion against ischaemia/reperfusion injury. Experimental Approach Anaesthetized rats underwent myocardial ischaemia (30 min)/reperfusion (120 min) with randomization to receive interventions before reperfusion: vehicle, AP39 (0.01, 0.1, 1 μmol·kg−1), or control compounds AP219 and ADT‐OH (1 μmol·kg−1). LY294002, L‐NAME or ODQ were used to investigate the involvement of the RISK pathway. Myocardial samples harvested 5 min after reperfusion were analysed for RISK protein phosphorylation and isolated cardiac mitochondria were used to examine the direct mitochondrial effects of AP39. Key Results AP39, dose‐dependently, reduced infarct size. Inhibition of either PI3K/Akt, eNOS or sGC did not affect this effect of AP39. Western blot analysis confirmed that AP39 did not induce phosphorylation of Akt, eNOS, GSK‐3β or ERK1/2. In isolated subsarcolemmal and interfibrillar mitochondria, AP39 significantly attenuated mitochondrial ROS generation without affecting respiratory complexes I or II. Furthermore, AP39 inhibited mitochondrial permeability transition pore (PTP) opening and co‐incubation of mitochondria with AP39 and cyclosporine A induced an additive inhibitory effect on the PTP. Conclusion and Implications AP39 protects against reperfusion injury independently of the cytosolic RISK pathway. This cardioprotective effect could be mediated by inhibiting PTP via a cyclophilin D‐independent mechanism. Thus, selective delivery of H2S to mitochondria may be therapeutically applicable for employing the cardioprotective utility of H2S. PMID:27930802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Esther, E-mail: esther.peters@radboudumc.n
Two small clinical trials indicated that administration of bovine intestinal alkaline phosphatase (AP) improves renal function in critically ill patients with sepsis-associated acute kidney injury (AKI), for which the mechanism of action is not completely understood. Here, we investigated the effects of a newly developed human recombinant AP (recAP) on renal oxygenation and hemodynamics and prevention of kidney damage and inflammation in two in vivo AKI models. To induce AKI, male Wistar rats (n = 18) were subjected to renal ischemia (30 min) and reperfusion (I/R), or sham-operated. In a second model, rats (n = 18) received a 30 minmore » infusion of lipopolysaccharide (LPS; 2.5 mg/kg), or saline, and fluid resuscitation. In both models, recAP (1000 U/kg) was administered intravenously (15 min before reperfusion, or 90 min after LPS). Following recAP treatment, I/R-induced changes in renal blood flow, renal vascular resistance and oxygen delivery at early, and cortical microvascular oxygen tension at late reperfusion were no longer significantly affected. RecAP did not influence I/R-induced effects on mean arterial pressure. During endotoxemia, recAP treatment did not modulate the LPS-induced changes in systemic hemodynamics and renal oxygenation. In both models, recAP did exert a clear renal protective anti-inflammatory effect, demonstrated by attenuated immunostaining of inflammatory, tubular injury and pro-apoptosis markers. Whether this renal protective effect is sufficient to improve outcome of patients suffering from sepsis-associated AKI is being investigated in a large clinical trial. - Highlights: • Human recombinant alkaline phosphatase (recAP) is a potential new therapy for sepsis-associated acute kidney injury (AKI). • RecAP can modulate renal oxygenation and hemodynamics immediately following I/R-induced AKI. • RecAP did not modulate endotoxemia-induced changes in systemic hemodynamics and renal oxygenation. • RecAP did exert a clear renal protective anti-inflammatory effect in both models.« less
Cui, Di; Xu, Jun; Xu, Quanyi; Zuo, Guokun
2017-02-21
Cerebral infarction is a type of ischemic stroke and is one of the main causes of irreversible brain damage. Although multiple neuroprotective agents have been investigated recently, the potential of DL-2-amino-3-phosphonopropionic acid (DL-AP3) in treating oxygen-glucose deprivation (OGD)-induced neuronal injury, has not been clarified yet. This study was aimed to explore the role of DL-AP3 in primary neuronal cell cultures. Primary neurons were divided into four groups: (1) a control group that was not treated; (2) DL-AP3 group treated with 10 μM of DL-AP3; (3) OGD group, in which neurons were cultured under OGD conditions; and (4) OGD + DL-AP3 group, in which OGD model was first established and then the cells were treated with 10 μM of DL-AP3. Neuronal viability and apoptosis were measured using Cell Counting Kit-8 and flow cytometry. Expressions of phospho-Akt1 (p-Akt1) and cytochrome c were detected using Western blot. The results showed that DL-AP3 did not affect neuronal viability and apoptosis in DL-AP3 group, nor it changed p-Akt1 and cytochrome c expression (p > 0.05). In OGD + DL-AP3 group, DL-AP3 significantly attenuated the inhibitory effects of OGD on neuronal viability (p < 0.001), and reduced OGD induced apoptosis (p < 0.01). Additionally, the down-regulation of p-Akt1 and up-regulation of cytochrome c, induced by OGD, were recovered to some extent after DL-AP3 treatment (p < 0.05 or p < 0.001). Overall, DL-AP3 could protect primary neurons from OGD-induced injury by affecting the viability and apoptosis of neurons, and by regulating the expressions of p-Akt1 and cytochrome c.
Wang, Lei; Taniguchi, Yosuke; Okamura, Hidenori; Sasaki, Shigeki
2017-07-15
Triplex formation against a target duplex DNA has the potential to become a tool for the genome research. However, there is an intrinsic restriction on the duplex DNA sequences capable of forming the triplex DNA. Recently, we demonstrated the selective formation of the stable antiparallel triplexes containing the CG inversion sites using the 2'-deoxy-1-methylpseudocytidine derivative (ΨdC), whose amino group was conjugated with the 2-aminopyridine at its 5-position as an additional hydrogen bonding unit (AP-ΨdC). The 1-N of 2-aminopyridine was supposed to be protonated to form the hydrogen bond with the guanine of the CG inversion site. In this study, to test the effect of the 3-substitution of the 2-aminopyridine unit of AP-ΨdC on the triplex stability, we synthesized the 3-halogenated 2-aminopyridine derivatives of AP-ΨdC. The pKa values 1-N of the 2-aminopyridine unit of AP-ΨdC as the monomer nucleoside were determined to be 6.3 for 3-CH 3 ( Me AP-ΨdC), 6.1 for 3-H (AP-ΨdC), 4.3 for 3-Cl ( Cl AP-ΨdC), 4.4 for 3-Br ( Br AP-ΨdC), and 4.7 for 3-I ( I AP-ΨdC), suggesting that all the halogenated AP-ΨdCs are not protonated under neutral conditions. Interestingly, although the recognition selectivity depends on the sequence context, the TFO having the sequence of the 3'-G-( I AP-ΨdC)-A-5' context showed the selective triplex formation with the CG inversion site. These results suggest that the protonation at the 1-N position plays an important role in the stable and selective triplex formation of AP-ΨdC derivatives in any sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Frontiers of X-ray research at the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmer, J.J.
1995-12-31
With providential timing, the Advanced Photon Source (APS) at Argonne National Laboratory has begun to produce x-rays during the centennial year of Wilhelm Rongtgen`s discovery of a {open_quotes}new kind of rays.{close_quotes} When complete, this third-generation, 7-GeV positron storage ring will produce nearly one hundred intense x-ray beams, with a major emphasis on the laser-like (highly collimated, locally coherent) beams from undulator sources. This talk will provide an overview of (1) the important properties of the synchrotron radiation to be produced by the APS, (2) the major classes of experimental approaches that use x-rays, and (3) some speculation on the impactsmore » of the APS on the materials, chemical, biological, and environmental sciences.« less
The Anatomy of AP1000 Mono-Block Low Pressure Rotor Forging
NASA Astrophysics Data System (ADS)
Jin, Jia-yu; Rui, Shou-tai; Wang, Qun
AP1000 mono-block low pressure (LP) rotor forgings for nuclear power station have maximum ingot weight, maximum diameter and the highest technical requirements. It confronts many technical problems during manufacturing process such as composition segregation and control of inclusion in the large ingot, core compaction during forging, control of grain size and mechanical performance. The rotor forging were anatomized to evaluate the manufacturing level of CFHI. This article introduces the anatomical results of this forging. The contents include chemical composition, mechanical properties, inclusions and grain size and other aspects from the full-length and full cross-section of this forging. The fluctuation of mechanical properties, uniformity of microstructure and purity of chemical composition were emphasized. The results show that the overall performance of this rotor forging is particularly satisfying.
Westfall, T D; McIntyre, C A; Obeid, S; Bowes, J; Kennedy, C; Sneddon, P
1997-01-01
The site(s) at which diadenosine 5′,5′′′-P1,P4-tetraphosphate (AP4A) and diadenosine 5′, 5′′′-P1,P5-pentaphosphate (AP5A) act to evoke contraction of the guinea-pig isolated vas deferens was studied by use of a series of P2-receptor antagonists and the ecto-ATPase inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP (ARL 67156). Pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (300 nM–30 μM), suramin (3–100 μM) and pyridoxal-5′-phosphate (P-5-P) (3–1000 μM) inhibited contractions evoked by equi-effective concentrations of AP5A (3 μM), AP4A (30 μM) and α,β-methyleneATP (α,β-meATP) (1 μM), in a concentration-dependent manner and abolished them at the highest concentrations used. PPADS was more potent than suramin, which in turn was more potent than P-5-P. PPADS inhibited AP5A, AP4A and α,β-meATP with similar IC50 values. No significant difference was found between IC50 values for suramin against α,β-meATP and AP5A or α,β-meATP and AP4A, but suramin was more than 2.5 times more potent against AP4A than AP5A. P-5-P showed the same pattern of antagonism. Desensitization of the P2X1-receptor by α,β-meATP abolished contractions evoked by AP5A (3 μM) and AP4A (30 μM), but had no effect on those elicited by noradrenaline (100 μM). ARL 67156 (100 μM) reversibly potentiated contractions evoked by AP4A (30 μM) by 61%, but caused a small, significant decrease in the mean response to AP5A (3 μM). It is concluded that AP4A and AP5A act at the P2X1-receptor, or a site similar to the P2X1-receptor, to evoke contraction of the guinea-pig isolated vas deferens. Furthermore, the potency of AP4A, but not AP5A, appears to be inhibited by an ecto-enzyme which is sensitive to ARL 67156. PMID:9146887
Scintillation properties of selected oxide monocrystals activated with Ce and Pr
NASA Astrophysics Data System (ADS)
Wojtowicz, Andrzej J.; Drozdowski, Winicjusz; Wisniewski, Dariusz; Lefaucheur, Jean-Luc; Galazka, Zbigniew; Gou, Zhenhui; Lukasiewicz, Tadeusz; Kisielewski, Jaroslaw
2006-01-01
In the last 10-15 years there has been a significant effort toward development of new, more efficient and faster materials for detection of ionizing radiation. A growing demand for better scintillator crystals for detection of 511 keV gamma particles has been due mostly to recent advances in modern imaging systems employing positron emitting radionuclides for medical diagnostics in neurology, oncology and cardiology. While older imaging systems were almost exclusively based on BGO and NaI:Tl crystals the new systems, e.g., ECAT Accel, developed by Siemens/CTI, are based on recently discovered and developed LSO (Lu 2SiO 5:Ce, Ce-activated lutetium oxyorthosilicate) crystals. Interestingly, despite very good properties of LSO, there still is a strong drive toward development of new scintillator crystals that would show even better performance and characteristics. In this presentation we shall review spectroscopic and scintillator characterization of new complex oxide crystals, namely LSO, LYSO, YAG, LuAP (LuAlO 3, lutetium aluminate perovskite) and LuYAP activated with Ce and Pr. The LSO:Ce crystals have been grown by CTI Inc (USA), LYSO:Ce, LuAP:Ce and LuYAP:Ce crystals have been grown by Photonic Materials Ltd., Scotland (PML is the only company providing large LuAP:Ce crystals on a commercial scale), while YAG:Pr and LuAP:Pr crystals have been grown by Institute of Electronic Materials Technology (Poland). All these crystals have been characterized at Institute of Physics, N. Copernicus University (Poland). We will review and compare results of measurements of radioluminescence, VUV spectroscopy, scintillation light yields, scintillation time profiles and low temperature thermoluminescence performed on these crystals. We will demonstrate that all experiments clearly indicate that there is a significant room for improvement of LuAP, LuYAP and YAG. While both Ce-activated LSO and LYSO perform very well, we also note that LuYAP:Ce, LuAP:Ce and YAG:Pr offer some advantages and, after a likely improvement of some parameters, may also present a viable and desired alternative in applications that require high counting rates or better time resolution. Unfortunately, LuAP:Pr, although the fastest among all the materials studied, may be seriously limited in its achievable light yield by inherent physical processes that are responsible for nonradiative quenching of scintillation light in this material.
Electronic neuron within a ganglion of a leech (Hirudo medicinalis).
Aliaga, J; Busca, N; Minces, V; Mindlin, G B; Pando, B; Salles, A; Sczcupak, L
2003-06-01
We report the construction of an electronic device that models and replaces a neuron in a midbody ganglion of the leech Hirudo medicinalis. In order to test the behavior of our device, we used a well-characterized synaptic interaction between the mechanosensory, sensitive to pressure, (P) cell and the anteropagoda (because of the action potential shape) (AP) neuron. We alternatively stimulated a P neuron and our device connected to the AP neuron, and studied the response of the latter. The number and timing of the AP spikes were the same when the electronic parameters were properly adjusted. Moreover, after changes in the depolarization of the AP cell, the responses under the stimulation of both the biological neuron and the electronic device vary in a similar manner.
Formation of the imidazolides of dinucleotides under potentially prebiotic conditions
NASA Technical Reports Server (NTRS)
Sleeper, H. L.; Lohrmann, R.; Orgel, L. E.
1978-01-01
Imidazolides of dinucleotides such as ImpApA can be formed from the corresponding dinucleotides in a two-stage process, which gives up to 15% yields under potentially prebiotic conditions. First a solution of the dinucleotide and sodium trimetaphosphate is dried out at constant temperature and humidity. This produces polyphosphates such as p(n)ApA in excellent yield (greater than or equal to 80%). The products are dissolved in water, imidazole is added, and the solution is dried out again. This yields the 5'-phosphorimidazolides.
Wu, Chia-wei; Schmoller, Shelly K.; Bannantine, John P.; Eckstein, Torsten M.; Inamine, Julie M.; Livesey, Michael; Albrecht, Ralph; Talaat, Adel M.
2009-01-01
Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne's disease in cattle and a potential risk factor for Crohn's disease. Scanning electron microscopy and colonization levels of the M. ap mutant indicated that the pstA gene significantly contributes to the ability of M. ap to form biofilms. Digital measurements taken during electron microscopy identified a unique morphology for the ΔpstA mutant, which consisted of significantly shorter bacilli than the wild type. Analysis of the lipid profiles of the mycobacterial strains identified a novel lipopeptide that was present in the cell wall extracts of wild-type M. ap, but missing from the ΔpstA mutant. Interestingly, the calf infection model suggested that pstA contributes to intestinal invasion of M. ap. Furthermore, immunoblot analysis of peptides encoded by pstA identified a specific and significant level of immunogenicity. Taken together, our analysis revealed a novel cell wall component that could contribute to biofilm formation and to the virulence and immunogenicity of M. ap. Molecular tools to better control M. ap infections could be developed utilizing the presented findings. PMID:19490829
Self-propulsion against a moving membrane: Enhanced accumulation and drag force
NASA Astrophysics Data System (ADS)
Marini Bettolo Marconi, U.; Sarracino, A.; Maggi, C.; Puglisi, A.
2017-09-01
Self-propulsion (SP) is a main feature of active particles (AP), such as bacteria or biological micromotors, distinguishing them from passive colloids. A renowned consequence of SP is accumulation at static interfaces, even in the absence of hydrodynamic interactions. Here we address the role of SP in the interaction between AP and a moving semipermeable membrane. In particular, we implement a model of noninteracting AP in a channel crossed by a partially penetrable wall, moving at a constant velocity c . With respect to both the cases of passive colloids with c >0 and AP with c =0 , the AP with finite c show enhancement of accumulation in front of the obstacle and experience a largely increased drag force. This effect is understood in terms of an effective potential localised at the interface between particles and membrane, of height proportional to c τ /ξ , where τ is the AP's reorientation time and ξ the width characterizing the surface's smoothness (ξ →0 for hard core obstacles). An approximate analytical scheme is able to reproduce the observed density profiles and the measured drag force, in very good agreement with numerical simulations. The effects discussed here can be exploited for automatic selection and filtering of AP with desired parameters.
Automated activity-aware prompting for activity initiation.
Holder, Lawrence B; Cook, Diane J
2013-01-01
Performing daily activities without assistance is important to maintaining an independent functional lifestyle. As a result, automated activity prompting systems can potentially extend the period of time that adults can age in place. In this paper we introduce AP, an algorithm to automate activity prompting based on smart home technology. AP learns prompt rules based on the time when activities are typically performed as well as the relationship between activities that normally occur in a sequence. We evaluate the AP algorithm based on smart home datasets and demonstrate its ability to operate within a physical smart environment.
Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit
2015-11-01
Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kawamura, Yusuke; Ikeda, Kenji; Arase, Yasuji; Fujiyama, Shunichiro; Hosaka, Tetsuya; Kobayashi, Masahiro; Saitoh, Satoshi; Sezaki, Hitomi; Akuta, Norio; Suzuki, Fumitaka; Suzuki, Yoshiyuki; Kumada, Hiromitsu
2017-01-01
Objective To detect the aggressive phenotype (AP) of non-alcoholic fatty liver disease (NAFLD) based on the initial laboratory data and clinical characteristics. Methods We enrolled 144 patients with histologically proven NAFLD. For the first analysis, 24 NAFLD patients underwent repeat biopsy to establish a discriminant formula for predicting the AP of NAFLD (D-APN). The AP was defined by NAFLD that had been maintained or progressed to a fibrotic stage beyond stage 2. In the second analysis, we analyzed the distribution of the AP in each stage of disease and the incidence of the PNPLA3 rs738409 GG genotype in AP in 120 other patients. Results After the analysis, the following function was found to discriminate the disease phenotype: z=0.150×body mass index (kg/m 2 )+0.085×age (years)+1.112×ln (AST) (IU/L)+0.127×ln (m-AST)-12.96. A positive result indicates the AP of NAFLD. The discriminant functions had a positive predictive value of 94% and a negative predictive value of 71%. The distribution of the AP and the incidence of the PNPLA3 GG genotype in the AP in each stage of the disease among the 120 patients were as follows: non-alcoholic fatty liver, 30%/33%; non-alcoholic steatohepatitis (NASH) stage 1, 53%/26%; stage 2, 71%/70%; stage 3, 92%/57%; and stage 4, 93%/64%; there was a significant increase in the incidence of the AP as the disease progressed (p<0.001). Conclusion The new discriminant formula was useful for predicting disease progression potential in NAFLD patients and the incidence of the PNPLA3 GG genotype was elevated according to the distribution of AP.
Pakhomov, Nikolai; Pustovit, Ksenia; Potekhina, Victoria; Filatova, Tatiana; Kuzmin, Vladislav; Abramochkin, Denis
2018-02-05
Extracellular diadenosine polyphosphates (Ap n A) are recently considered as an endogenous signaling compounds with transmitter-like activity which present in numerous tissues, including heart. It has been demonstrated previously that extracellular Ap n A cause alteration of the heart functioning via purine receptors in different mammalian species. Nevertheless, principal intracellular pathways which underlie Ap n A action in the heart remain unknown. In the present study the role of the P2Y-associated intracellular regulatory pathway in the mediation of diadenosine tetraphosphate (Ap 4 A) effects in the rat heart has been investigated for the first time. Extracellular Ap 4 A caused significant decreasing of the ventricular inotropy. Ap 4 A evoked reduction of the left ventricle contractility in the isolated Langendorff-perfused rat hearts, decreasing of the Ca 2+ transients in the enzymatically isolated ventricular cardiomyocytes and induced shortening of action potentials in the ventricle multicellular preparations. The inhibitory effects of Ap 4 A in the rat heart were significantly attenuated by protein kinase C (PKC) inhibitor chelerythrine but these effects were not affected by NO-synthase inhibitor L-NAME and guanylyl cyclase (sGC) inhibitor ODQ. In addition, substantial attenuation of Ap 4 A-caused negative inotropy in the left ventricle was produced by nonselective phsophodiesterase (PDE) inhibitor IBMX, while PDE type 2 inhibitor EHNA was ineffective. In conclusion, our results allow suggesting that Ap 4 A-induced inhibitory effects in the rat heart are mediated by PKC, but not by NO/sGC/PKG-related signaling pathway. In addition, PDE stimulation may contribute to Ap 4 A-caused inhibition of the rat heart contractility. Copyright © 2017 Elsevier B.V. All rights reserved.
Johnston, Jamie; Griffin, Sarah J; Baker, Claire; Skrzypiec, Anna; Chernova, Tatanya; Forsythe, Ian D
2008-01-01
The medial nucleus of the trapezoid body (MNTB) is specialized for high frequency firing by expression of Kv3 channels, which minimize action potential (AP) duration, and Kv1 channels, which suppress multiple AP firing, during each calyceal giant EPSC. However, the outward K+ current in MNTB neurons is dominated by another unidentified delayed rectifier. It has slow kinetics and a peak conductance of ∼37 nS; it is half-activated at −9.2 ± 2.1 mV and half-inactivated at −35.9 ± 1.5 mV. It is blocked by several non-specific potassium channel antagonists including quinine (100 μm) and high concentrations of extracellular tetraethylammonium (TEA; IC50 = 11.8 mm), but no specific antagonists were found. These characteristics are similar to recombinant Kv2-mediated currents. Quantitative RT-PCR showed that Kv2.2 mRNA was much more prevalent than Kv2.1 in the MNTB. A Kv2.2 antibody showed specific staining and Western blots confirmed that it recognized a protein ∼110 kDa which was absent in brainstem tissue from a Kv2.2 knockout mouse. Confocal imaging showed that Kv2.2 was highly expressed in axon initial segments of MNTB neurons. In the absence of a specific antagonist, Hodgkin–Huxley modelling of voltage-gated conductances showed that Kv2.2 has a minor role during single APs (due to its slow activation) but assists recovery of voltage-gated sodium channels (Nav) from inactivation by hyperpolarizing interspike potentials during repetitive AP firing. Current-clamp recordings during high frequency firing and characterization of Nav inactivation confirmed this hypothesis. We conclude that Kv2.2-containing channels have a distinctive initial segment location and crucial function in maintaining AP amplitude by regulating the interspike potential during high frequency firing. PMID:18511484
The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.
Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer
2016-02-08
Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake
Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D.; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A.S.; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer
2016-01-01
Summary Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract PMID:26804557
Pérez-Sánchez, Carlos; Arias-de la Rosa, Iván; Aguirre, María Ángeles; Luque-Tévar, María; Ruiz-Limón, Patricia; Barbarroja, Nuria; Jiménez-Gómez, Yolanda; Ábalos-Aguilera, María Carmen; Collantes-Estévez, Eduardo; Segui, Pedro; Velasco, Francisco; Herranz, María Teresa; Lozano-Herrero, Jesús; Hernandez-Vidal, María Julia; Martínez, Constantino; González-Conejero, Rocío; Radin, Massimo; Sciascia, Savino; Cecchi, Irene; Cuadrado, María José; López-Pedrera, Chary
2018-05-01
We aimed to identify the plasma miRNA profile of antiphospholipid syndrome (APS) patients and to investigate the potential role of specific circulating miRNAs as non-invasive disease biomarkers. Ninety APS patients and 42 healthy donors were recruited. Profiling of miRNAs by PCR-array in plasma of APS patients identified a set of miRNAs differentially expressed and collectively involved in clinical features. Logistic regression and ROC analysis identified a signature of 10 miRNA ratios as biomarkers of disease. In addition, miRNA signature was related to fetal loss, atherosclerosis, and type of thrombosis, and correlated with parameters linked to inflammation, thrombosis, and autoimmunity. Hard clustering analysis differentiated 3 clusters representing different thrombotic risk profile groups. Significant differences between groups for several miRNA ratios were found. Moreover, miRNA signature remained stable over time, demonstrated by their analysis three months after the first sample collection. Parallel analysis in two additional cohorts of patients, including thrombosis without autoimmune disease, and systemic lupus erythematosus without antiphospholipid antibodies, each displayed specific miRNA profiles that were distinct from those of APS patients. In vitro , antiphospholipid antibodies of IgG isotype promoted deregulation in selected miRNAs and their potential atherothrombotic protein targets in monocytes and endothelial cells. Taken together, differentially expressed circulating miRNAs in APS patients, modulated at least partially by antiphospholipid antibodies of IgG isotype, might have the potential to serve as novel biomarkers of disease features and to typify patients' atherothrombotic status, thus constituting a useful tool in the management of the disease. Copyright © 2018 Ferrata Storti Foundation.
Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro
McCarthy, Kelly M.; Tank, David W.; Enquist, Lynn W.
2009-01-01
Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals. PMID:19876391
Knobelspiesse, Kirk; Cairns, Brian; Mishchenko, Michael; Chowdhary, Jacek; Tsigaridis, Kostas; van Diedenhoven, Bastiaan; Martin, William; Ottaviani, Matteo; Alexandrov, Mikhail
2012-09-10
Remote sensing of aerosol optical properties is difficult, but multi-angle, multi-spectral, polarimetric instruments have the potential to retrieve sufficient information about aerosols that they can be used to improve global climate models. However, the complexity of these instruments means that it is difficult to intuitively understand the relationship between instrument design and retrieval success. We apply a Bayesian statistical technique that relates instrument characteristics to the information contained in an observation. Using realistic simulations of fine size mode dominated spherical aerosols, we investigate three instrument designs. Two of these represent instruments currently in orbit: the Multiangle Imaging SpectroRadiometer (MISR) and the POLarization and Directionality of the Earths Reflectances (POLDER). The third is the Aerosol Polarimetry Sensor (APS), which failed to reach orbit during recent launch, but represents a viable design for future instruments. The results show fundamental differences between the three, and offer suggestions for future instrument design and the optimal retrieval strategy for current instruments. Generally, our results agree with previous validation efforts of POLDER and airborne prototypes of APS, but show that the MISR aerosol optical thickness uncertainty characterization is possibly underestimated.
NASA Technical Reports Server (NTRS)
Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Foster, Jonathan B.; Soderberg, Alicia M.; Fesen, Robert A.; Parrent, Jerod T.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish;
2014-01-01
The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad- lined Type Ic supernova SN2012ap that exhibit changes in equivalent width over short (. 30 days) timescales. The 4428 A and 6283 A DIB features get weaker with time, whereas the 5780 A feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.
Inference of neuronal network spike dynamics and topology from calcium imaging data
Lütcke, Henry; Gerhard, Felipe; Zenke, Friedemann; Gerstner, Wulfram; Helmchen, Fritjof
2013-01-01
Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence (“spike trains”) from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties. PMID:24399936
Cai, Ziyan; Feng, Zhouyan; Guo, Zheshan; Zhou, Wenjie; Wang, Zhaoxiang; Wei, Xuefeng
2017-01-01
Deep brain stimulation (DBS) has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS) sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS) were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms. PMID:29066946
A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation
NASA Astrophysics Data System (ADS)
Xiong, Tao; Qiu, Jing-Mei
2017-05-01
A class of high order nodal discontinuous Galerkin implicit-explicit (DG-IMEX) schemes with asymptotic preserving (AP) property has been developed for the one-dimensional (1D) BGK equation in Xiong et al. (2015) [40], based on a micro-macro reformulation. The schemes are globally stiffly accurate and asymptotically consistent, and as the Knudsen number becomes small or goes to zero, they recover first the compressible Navier-Stokes (CNS) and then the Euler limit. Motivated by the recent work of Filbet and Rey (2015) [27] and the references therein, in this paper, we propose a hierarchical high order AP method, namely kinetic, CNS and Euler solvers are automatically applied in regions where their corresponding models are appropriate. The numerical solvers for different regimes are coupled naturally by interface conditions. To the best of our knowledge, the resulting scheme is the very first hierarchical one being proposed in the literature, that enjoys AP property as well as uniform high order accuracy. Numerical experiments demonstrate the efficiency and effectiveness of the proposed approach. As time evolves, three different regimes are dynamically identified and naturally coupled, leading to significant CPU time savings (more than 80% for some of our test problems).
Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks
Mejean, Cecile O.; Schaefer, Andrew W.; Buck, Kenneth B.; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W.; Dufresne, Eric R.; Forscher, Paul
2013-01-01
Adhesions are multi-molecular complexes that transmit forces generated by a cell’s acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions’ mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement. PMID:24039928
An ecological systems examination of elder abuse: a week in the life of adult protective services.
Wangmo, Tenzin; Teaster, Pamela B; Grace, James; Wong, Wilson; Mendiondo, Marta S; Blandford, Caitlin; Fisher, Steve; Fardo, David W
2014-01-01
Using Bronfenbrenner's ecological systems model, this study examined allegations of elder abuse made to Kentucky Adult Protective Services (APS) and the investigation that followed, in order to understand how APS addressed the needs of abused elders. Elder abuse allegations made to APS during the study week were collected using 3 study tools. Allegations and resulting investigations were analyzed. During the study week, APS received 1,002 calls alleging elder abuse. Of these, 483 were categorized as reports needing protective services, with 177 reports screened in for investigation and 167 actually investigated. Results describe characteristics of abuse calls, investigations, victims, perpetrators, and total investigation times. Substantiation ratio, recidivism, and whether investigation increased or decreased the risk of abuse were also assessed. An examination of APS casework through the lens of nested systems frames the study findings and discussion. Such an examination has the potential to improve the quality of services provided to older adults.
Van Der Knaap, Esther; Rodriguez, Russell J.; Freckman, Diana W.
1993-01-01
Arbitrarily-primed polymerase chain reaction (ap-PCR) was used to differentiate closely related bacterial-feeding nematodes of the genera: Caenorhabditis, Acrobeloides, Cephalobus and Zeldia. Average percentage similarity of bands generated by ap-PCR with seven different primers between 14 isolates of Caenorhabditis elegans was ⪢ 90%, whereas between C. elegans, C. briggsae and C. remanei similarity was < 20%. Based on intra- and inter-specific similarity between Caenorhabditis isolates, analysis of Acrobeloides, Cephalobus and Zeldia isolates revealed either similar or different genotypes. Distinct genotypes were verified by morphological analyses. In addition, the genotypes obtained from single egg-derived nematode populations were also obtained from ap-PCR analysis of single worms. Due to the difficulty of identification of soil nematodes, the ap-PCR offers potential as a rapid and reliable technique to assess biodiversity. Ap-PCR will make it feasible, for the first time, to study the ecological interactions of unique nematode genotypes in soil habitats.
Kügler, Philipp; Bulelzai, M A K; Erhardt, André H
2017-04-04
Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolarization phase of cardiac action potentials (APs). EADs are caused by drugs, oxidative stress or ion channel disease, and they are considered as potential precursors to cardiac arrhythmias in recent attempts to redefine the cardiac drug safety paradigm. The irregular behaviour of EADs observed in experiments has been previously attributed to chaotic EAD dynamics under periodic pacing, made possible by a homoclinic bifurcation in the fast subsystem of the deterministic AP system of differential equations. In this article we demonstrate that a homoclinic bifurcation in the fast subsystem of the action potential model is neither a necessary nor a sufficient condition for the genesis of chaotic EADs. We rather argue that a cascade of period doubling (PD) bifurcations of limit cycles in the full AP system paves the way to chaotic EAD dynamics across a variety of models including a) periodically paced and spontaneously active cardiomyocytes, b) periodically paced and non-active cardiomyocytes as well as c) unpaced and spontaneously active cardiomyocytes. Furthermore, our bifurcation analysis reveals that chaotic EAD dynamics may coexist in a stable manner with fully regular AP dynamics, where only the initial conditions decide which type of dynamics is displayed. EADs are a potential source of cardiac arrhythmias and hence are of relevance both from the viewpoint of drug cardiotoxicity testing and the treatment of cardiomyopathies. The model-independent association of chaotic EADs with period doubling cascades of limit cycles introduced in this article opens novel opportunities to study chaotic EADs by means of bifurcation control theory and inverse bifurcation analysis. Furthermore, our results may shed new light on the synchronization and propagation of chaotic EADs in homogeneous and heterogeneous multicellular and cardiac tissue preparations.
Antiphospholipid Syndrome Nephropathy: From Pathogenesis to Treatment.
Tektonidou, Maria G
2018-01-01
Kidney damage is a well-recognized complication of the antiphospholipid syndrome (APS), either primary or systemic lupus erythematosus (SLE)-associated APS. Kidney involvement in APS involves a variety of manifestations, such as renal artery thrombosis or stenosis, renal vein thrombosis, allograft loss due to thrombosis after kidney transplantation, and injury to the renal microvasculature, also known as APS nephropathy. Biopsy in patients with APS nephropathy includes acute thrombotic microangiopathy lesions and chronic intrarenal vascular lesions such as interlobular fibrous intimal hyperplasia, arterial and arteriolar recanalizing thrombosis, fibrous arterial occlusion, and focal cortical atrophy. The most frequent clinical features are hypertension, microscopic hematuria, proteinuria (ranging from mild to nephritic levels), and renal insufficiency. It is uncertain whether antiphospholipid antibodies or other factors are implicated in the development of APS nephropathy, and whether it is driven mainly by thrombotic or by inflammatory processes. Experimental models and clinical studies of thrombotic microangiopathy lesions implicate activation of the complement cascade, tissue factor, and the mTORC pathway. Currently, the management of APS nephropathy relies on expert opinion, and consensus is lacking. There is limited evidence about the effect of anticoagulants, and their use remains controversial. Treatment approaches in patients with APS nephropathy lesions may include the use of heparin based on its role on complement activation pathway inhibition or the use of intravenous immunoglobulin and/or plasma exchange. Targeted therapies may also be considered based on potential APS nephropathy pathogenetic mechanisms such as B-cell directed therapies, complement inhibition, tissue factor inhibition, mTOR pathway inhibition, or anti-interferon antibodies, but prospective multicenter studies are needed to address their role.
Xu, Zhe-Rong; Li, Jin-You; Dong, Xin-Wei; Tan, Zhong-Ju; Wu, Wei-Zhen; Xie, Qiang-Min; Yang, Yun-Mei
2015-08-24
In this study, we examined the effects of apple polyphenols (APs) on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE(-/-) mice were fed a western-type diet and orally treated with APs (100 mg/kg) or atorvastatin (10 mg/kg) for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL) cholesterol and markedly up-regulated the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs). Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis.
Xu, Zhe-Rong; Li, Jin-You; Dong, Xin-Wei; Tan, Zhong-Ju; Wu, Wei-Zhen; Xie, Qiang-Min; Yang, Yun-Mei
2015-01-01
In this study, we examined the effects of apple polyphenols (APs) on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE−/− mice were fed a western-type diet and orally treated with APs (100 mg/kg) or atorvastatin (10 mg/kg) for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL) cholesterol and markedly up-regulated the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs). Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis. PMID:26305254
NASA Astrophysics Data System (ADS)
Ealo, Marina; Alastuey, Andrés; Pérez, Noemí; Ripoll, Anna; Querol, Xavier; Pandolfi, Marco
2018-01-01
Further research is needed to reduce the existing uncertainties on the effect that specific aerosol particle sources have on light extinction and consequently on climate. This study presents a new approach that aims to quantify the mass scattering and absorption efficiencies (MSEs and MAEs) of different aerosol sources at urban (Barcelona - BCN), regional (Montseny - MSY) and remote (Montsec - MSA) background sites in the north-western (NW) Mediterranean. An analysis of source apportionment to the measured multi-wavelength light scattering (σsp) and absorption (σap) coefficients was performed by means of a multilinear regression (MLR) model for the periods 2009-2014, 2010-2014 and 2011-2014 at BCN, MSY and MSA respectively. The source contributions to PM10 mass concentration, identified by means of the positive matrix factorization (PMF) model, were used as dependent variables in the MLR model. With this approach we addressed both the effect that aerosol sources have on air quality and their potential effect on light extinction through the determination of their MSEs and MAEs. An advantage of the presented approach is that the calculated MSEs and MAEs take into account the internal mixing of atmospheric particles. Seven aerosol sources were identified at MSA and MSY, and eight sources at BCN. Mineral, aged marine, secondary sulfate, secondary nitrate and V-Ni bearing sources were common at the three sites. Traffic, industrial/metallurgy and road dust resuspension sources were isolated at BCN, whereas mixed industrial/traffic and aged organics sources were identified at MSY and MSA. The highest MSEs were observed for secondary sulfate (4.5 and 10.7 m2 g-1, at MSY and MSA), secondary nitrate (8.8 and 7.8 m2 g-1) and V-Ni bearing source (8 and 3.5 m2 g-1). These sources dominated the scattering throughout the year with marked seasonal trends. The V-Ni bearing source, originating mainly from shipping in the area under study, simultaneously contributed to both σsp and σap, being the second most efficient light-absorbing source in BCN (MAE = 0.9 m2 g-1). The traffic source at BCN and the industrial/traffic at MSY exhibited the highest MAEs (1.7 and 0.9 m2 g-1). These sources were major contributors to σap at BCN and MSY; however at MSA, secondary nitrate exerted the highest influence on σap (MAE = 0.4 m2 g-1). The sources which were predominantly composed of fine and relatively dark particles, such as industrial/traffic, aged organics and V-Ni, were simultaneously characterized by low single scattering albedo (SSA) and a high scattering Ångström exponent (SAE). Conversely, mineral and aged marine showed the lowest SAE and the highest SSA, being scattering the dominant process in the light extinction. The good agreement found between modelled and measured particle optical properties allowed the reconstruction of σsp and σap long-term series over the period 2004-2014 at MSY. Significant decreasing trends were found for the modelled σsp and σap (-4.6 and -4.1 % yr-1).
Aerosol optical properties at SORPES in Nanjing, east China
NASA Astrophysics Data System (ADS)
Shen, Yicheng; Virkkula, Aki; Ding, Aijun; Wang, Jiaping; Chi, Xuguang; Nie, Wei; Qi, Ximeng; Huang, Xin; Liu, Qiang; Zheng, Longfei; Xu, Zheng; Petäjä, Tuukka; Aalto, Pasi P.; Fu, Congbin; Kulmala, Markku
2018-04-01
Aerosol optical properties (AOPs) and supporting parameters - particle number size distributions, PM2.5 mass concentrations, and the concentrations of trace gases (NOx and NOy) - were measured at SORPES, a regional background station in Nanjing, China from June 2013 to May 2015. The aerosol was highly scattering: the average scattering coefficient was σsp = 403 ± 314 Mm-1, the absorption coefficient σap = 26 ± 19 Mm-1, and the single-scattering albedo SSA = 0.93 ± 0.03 for green light. The SSA in Nanjing appears to be slightly higher than published values from several other sites in China and elsewhere. The average Ångström exponent of absorption (AAE) for the wavelength range 370-950 nm was 1.04 and the AAE range was 0.7-1.4. These AAE values can be explained with different amounts of non-absorbing coating on pure black carbon (BC) cores and different core sizes rather than contribution by brown carbon. The AOPs had typical seasonal cycles with high σsp and σap in winter and low ones in summer: the averages were σsp = 544 ± 422 and σap = 36 ± 24 Mm-1 in winter and σsp = 342 ± 281 and σap = 20 ± 13 Mm-1 in summer. The intensive AOPs had no clear seasonal cycles, the variations in them were rather related to the evolution of pollution episodes. The diurnal cycles of the intensive AOPs were clear and in agreement with the cycle of the particle number size distribution. The diurnal cycle of SSA was similar to that of the air photochemical age, suggesting that the darkest aerosol originated from fresh traffic emissions. A Lagrangian retroplume analysis showed that the potential source areas of high σsp and σap are mainly in eastern China. Synoptic weather phenomena dominated the cycle of AOPs on a temporal scale of 3-7 days. During pollution episodes, modeled boundary layer height decreased, whereas PM2.5 concentrations and σsp and σap typically increased gradually and remained high during several days but decreased faster, sometimes by even more than an order of magnitude within some hours. During the growth phase of the pollution episodes the intensive AOPs evolved clearly. The mass scattering efficiency MSE of PM2.5 grew during the extended pollution episodes from ˜ 4 to ˜ 6 m2 g-1 and the mass fraction of BCe decreased from ˜ 10 to ˜ 3 % during the growth phase of the episodes. Particle growth resulted in the backscatter fraction decreasing from more than 0.16 to less than 0.10, SSA growing from less than 0.9 to more than 0.95, and radiative forcing efficiency (RFE) changing from less than -26 W m-2 to more than -24 W m-2, which means that the magnitude of RFE decreased. The RFE probability distribution at SORPES was clearly narrower than at a clean background site which is in agreement with a published RFE climatology.
Approximate entropy analysis of event-related potentials in patients with early vascular dementia.
Xu, Jin; Sheng, Hengsong; Lou, Wutao; Zhao, Songzhen
2012-06-01
This study investigated differences in event-related potential (ERP) parameters among early vascular dementia (VD) patients, healthy elder controls (ECs), and young controls (YCs). A visual "oddball" color identification task was performed while individuals' electroencephalograms (EEGs) were recorded. Approximate entropy (ApEn), a nonlinear measure, along with P300 latencies and amplitudes were used to analyze ERP data and compare these three groups. The patients with VD showed more complex ERP waveforms and higher ApEn values than did ECs while performing the visual task. It was further found that patients with VD showed reduced P300 amplitudes and increased latencies. The results indicate that patients with VD have fewer attention resources to devote to processing stimuli, lower speed of stimulus classification, and lower synchrony in their cortical activity during the response period. We suggest that ApEn, as a measure of ERP complexity, is a promising marker for early diagnosis of VD.
Kang, Min-Cheol; Kim, Seo Young; Kim, Yoon Taek; Kim, Eun-A; Lee, Seung-Hong; Ko, Seok-Chun; Wijesinghe, W A J P; Samarakoon, Kalpa W; Kim, Young-Sun; Cho, Jin Hun; Jang, Hyeang-Su; Jeon, You-Jin
2014-01-01
The in vitro and in vivo antioxidant potentials of a polysaccharide isolated from aloe vera gel were investigated. Enzymatic extracts were prepared from aloe vera gel by using ten digestive enzymes including five carbohydrases and five proteases. Among them, the highest yield was obtained with the Viscozyme extract and the same extract showed the best radical scavenging activity. An active polysaccharide was purified from the Viscozyme extract using ethanol-added separation and anion exchange chromatography. Purified aloe vera polysaccharide (APS) strongly scavenged radicals including DPPH, hydroxyl and alkyl radicals. In addition, APS showed a protective effect against AAPH-induced oxidative stress and cell death in Vero cells as well as in the in vivo zebrafish model. In this study, it is proved that both the in vitro and in vivo antioxidant potentials of APS could be further utilized in relevant industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Marriott, Andrew S.; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A.; McLennan, Alexander G.; Jones, Nigel J.
2016-01-01
Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis. PMID:27144453
Marriott, Andrew S; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A; McLennan, Alexander G; Jones, Nigel J
2016-01-01
Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis.
Abramochkin, Denis V; Kuzmin, Vladislav S; Rosenshtraukh, Leonid V
2017-12-01
A new class III antiarrhythmic drug niferidil (RG-2) has been introduced as a highly effective therapy for cases of persistent atrial fibrillation, but ionic mechanisms of its action are poorly understood. In the present study, the effects of niferidil on action potential (AP) waveform and potassium currents responsible for AP repolarization were investigated in guinea pig atrial myocardium. APs were recorded with sharp glass microelectrodes in multicellular atrial preparations. Whole-cell patch-clamp technique was used to measure K + currents in isolated myocytes. In multicellular atrial preparations, 10 -8 M niferidil effectively prolonged APs by 15.2 ± 2.8% at 90% repolarization level. However, even the highest tested concentrations, 10 -6 M and 10 -5 M failed to prolong APs more than 32.5% of control duration. The estimated concentration of niferedil for half-maximal AP prolongation was 1.13 × 10 -8 M. Among the potassium currents responsible for AP repolarization phase, I K1 was found to be almost insensitive to niferidil. However, another inward rectifier, I KACh , was effectively suppressed by micromolar concentrations of niferidil with IC 50 = 9.2 × 10 -6 M. I KATP was much less sensitive to the drug with IC 50 = 2.26 × 10 -4 M. The slow component of delayed rectifier, I Ks , also demonstrated low sensitivity to niferidil-the highest used concentration, 10 -4 M, decreased peak I Ks density to 46.2 ± 5.5% of control. Unlike I Ks , the rapid component of delayed rectifier, I Kr , appeared to be extremely sensitive to niferidil. The IC 50 was 1.26 × 10 -9 M. I Kr measured in ventricular myocytes was found to be less sensitive to niferidil with IC 50 = 3.82 × 10 -8 M. Niferidil prolongs APs in guinea pig atrial myocardium via inhibition of I Kr .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandic, Marjana; Sepcic, Kristina; Turk, Tom
2011-08-15
APS12-2 is one in a series of synthetic analogs of the polymeric alkylpyridinium salts isolated from the marine sponge Reniera sarai. As it is a potential candidate for treating non small cell lung cancer (NSCLC), we have studied its possible toxic and lethal effects in vivo. The median lethal dose (LD{sub 50}) of APS12-2 in mice was determined to be 11.5 mg/kg. Electrocardiograms, arterial blood pressure and respiratory activity were recorded under general anesthesia in untreated, pharmacologically vagotomized and artificially ventilated rats injected with APS12-2. In one group, the in vivo effects of APS12-2 were studied on nerve-evoked muscle contraction.more » Administration of APS12-2 at a dose of 8 mg/kg caused a progressive reduction of arterial blood pressure to a mid-circulatory value, accompanied by bradycardia, myocardial ischemia, ventricular extrasystoles, and second degree atrio-ventricular block. Similar electrocardiogram and arterial blood pressure changes caused by APS12-2 (8 mg/kg) were observed in animals pretreated with atropine and in artificially ventilated animals, indicating that hypoxia and cholinergic effects do not play a crucial role in the toxicity of APS12-2. Application of APS12-2 at sublethal doses (4 and 5.5 mg/kg) caused a decrease of arterial blood pressure, followed by an increase slightly above control values. We found that APS12-2 causes lysis of rat erythrocytes in vitro, therefore it is reasonable to expect the same effect in vivo. Indeed, hyperkalemia was observed in the blood of experimental animals. Hyperkalemia probably plays an important role in APS12-2 cardiotoxicity since no evident changes in histopathology of the heart were found. However, acute lesions were observed in the pulmonary vessels of rats after application of 8 mg/kg APS12-2. Predominant effects were dilation of interalveolar blood vessels and lysis of aggregated erythrocytes within their lumina. - Highlights: > LD{sub 50} estimated in mice (11.5 mg/kg) revealed that toxicity of APS12-2 is low. > APS12-2 causes dose dependent hemolysis of rat erythrocytes in vivo and in vitro. > Cardiac arrest by APS12-2 is caused by the high blood potassium concentration. > APS12-2 causes mild acute pulmonary edema.« less
Deslauriers, Jessica; Desmarais, Christian; Sarret, Philippe; Grignon, Sylvain
2014-03-01
Chronic administration of antipsychotics (APs) has been associated with dopamine D2 receptor (D2R) upregulation and tardive dyskinesia. We previously showed that haloperidol, a first-generation AP, exerted a more robust increase in D2R expression than amisulpride, a second-generation AP and that (±)-α-lipoic acid pre-treatment reversed the AP-induced D2R upregulation. We also demonstrated that the Akt/GSK-3β/β-catenin pathway is involved in the control of D2R expression levels, but is unlikely implicated in the preventive effects of (±)-α-lipoic acid since co-treatment with haloperidol and (±)-α-lipoic acid exerts synergistic effects on Akt/GSK-3β activation. These findings led us to examine whether the ERK/MAPK signaling pathway may be involved in D2R upregulation elicited by APs, and in its reversal by (±)-α-lipoic acid, in SH-SY5Y human neuroblastoma cells. Our results revealed that haloperidol, in parallel with an elevation in D2R mRNA levels, induced a larger increase of ERK (p42/p44) phosphorylation than amisulpride. Pre-treatment with the selective ERK inhibitor U0126 attenuated haloperidol-induced increase in D2R upregulation. Furthermore, (±)-α-lipoic acid prevented AP-induced ERK activation. These results show that (1) the ERK/MAPK pathway is involved in haloperidol-induced D2R upregulation; (2) the preventive effect of (±)-α-lipoic acid on haloperidol-induced D2R upregulation is in part mediated by an ERK/MAPK-dependent signaling cascade. Taken together, our data suggest that (±)-α-lipoic acid exerts synergistic effects with haloperidol on the Akt/GSK-3β pathway, potentially involved in the therapeutic effects of APs, and antagonism of ERK activation and D2R upregulation, potentially involved in tardive dyskinesia and treatment resistance.
Walton, Richard D.; Benson, Alan P.; Hardy, Matthew E. L.; White, Ed; Bernus, Olivier
2013-01-01
Spatial dispersion of repolarization is known to play an important role in arrhythmogenesis. Electrotonic modulation of repolarization by the activation sequence has been observed in some species and tissue preparations, but to varying extents. Our study sought to determine the mechanisms underlying species- and tissue-dependent electrotonic modulation of repolarization in ventricles. Epi-fluorescence optical imaging of whole rat hearts and pig left ventricular wedges were used to assess epicardial spatial activation and repolarization characteristics. Experiments were supported by computer simulations using realistic geometries. Tight coupling between activation times (AT) and action potential duration (APD) were observed in rat experiments but not in pig. Linear correlation analysis found slopes of −1.03 ± 0.59 and −0.26 ± 0.13 for rat and pig, respectively (p < 0.0001). In rat, maximal dispersion of APD was 11.0 ± 3.1 ms but dispersion of repolarization time (RT) was relatively homogeneous (8.2 ± 2.7, p < 0.0001). However, in pig no such difference was observed between the dispersion of APD and RT (17.8 ± 6.1 vs. 17.7 ± 6.5, respectively). Localized elevations of APD (12.9 ± 8.3%) were identified at ventricular insertion sites of rat hearts both in experiments and simulations. Tissue geometry and action potential (AP) morphology contributed significantly to determining influence of electrotonic modulation. Simulations of a rat AP in a pig geometry decreased the slope of AT and APD relationships by 70.6% whereas slopes were increased by 75.0% when implementing a pig AP in a rat geometry. A modified pig AP, shortened to match the rat APD, showed little coupling between AT and APD with greatly reduced slope compared to the rat AP. Electrotonic modulation of repolarization by the activation sequence is especially pronounced in small hearts with murine-like APs. Tissue architecture and AP morphology play an important role in electrotonic modulation of repolarization. PMID:24115934
Adams, David S; Hasson, Brendan; Boyer-Boiteau, Anne; El-Khishin, Adam; Shashoua, Victor E
2003-05-01
Ependymin (EPN) is a goldfish brain neurotrophic factor previously shown to function in a variety of cellular events related to long-term memory formation and neuronal regeneration. CMX-8933, an 8-amino-acid synthetic peptide fragment of EPN, was designed for aiding an investigation of the biological properties of this glycoprotein. We reported from previous studies that treatment of mouse neuroblastoma (NB2a) cultures with CMX-8933 promotes activation of transcription factor AP-1, a characteristic previously associated with the following full-length neurotrophic factors: nerve growth factor, neurotropin-3, and brain-derived neurotrophic factor. The CMX-8933-activated AP-1 specifically bound an AP-1 consensus probe and appeared to contain c-Jun and c-Fos protein components in antibody supershift experiments. Because AP-1 influences a variety of positive and negative cellular processes, determined in part by its exact protein composition and mechanism of activation, we extended these initial AP-1 observations in the current study to confirm the identity of the CMX-8933-activated c-Jun and c-Fos components. CMX-8933 increases the enzymatic activity of c-Jun N-terminal kinase (JNK), increases the phosphorylation of JNK and c-Jun proteins, and increases the cellular titers of c-Jun and c-Fos mRNAs. Furthermore, the AP-1 activated by CMX-8933 is functional, insofar as it transactivates both synthetic and natural AP-1-dependent reporter plasmids. Inhibition studies indicate that activation of the 8933-induced AP-1 occurs via the mitogen-activated protein kinase pathway. These data are in agreement with the recently proposed model for the conversion of short- to long-term synaptic plasticity and memory, in which a JNK-activated transcription factor AP-1, containing c-Jun and c-Fos components, functions at the top of a hierarchy of transcription factors known to regulate long-term neural plasticity. Copyright 2003 Wiley-Liss, Inc.
VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3
Li, Haiyan; Santos, Magda S.; Park, Chihyung K.; Dobry, Yuriy; Voglmaier, Susan M.
2017-01-01
Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling. PMID:29123471
VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3.
Li, Haiyan; Santos, Magda S; Park, Chihyung K; Dobry, Yuriy; Voglmaier, Susan M
2017-01-01
Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling.
Ni, Miaozhong; Xiong, Min; Zhang, Xinchao; Cai, Guoping; Chen, Huaiwen; Zeng, Qingmin; Yu, Zuochong
2015-01-01
Background Cancer stem cells (CSCs) possess the characteristics associated with normal stem cells and are responsible for cancer initiation, recurrence, and metastasis. CD133 is regarded as a CSCs marker of osteosarcoma, which is the most common primary bone malignancy in childhood and adolescence. Salinomycin, a polyether ionophore antibiotic, has been shown to kill various CSCs, including osteosarcoma CSCs. However, salinomycin displayed poor aqueous solubility that hinders its clinical application. The objective of this study was to develop salinomycin-loaded nanoparticles to eliminate CD133+ osteosarcoma CSCs. Methods The salinomycin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles (SAL-NP) conjugated with CD133 aptamers (Ap-SAL-NP) were developed by an emulsion/solvent evaporation method, and the targeting and cytotoxicity of Ap-SAL-NP to CD133+ osteosarcoma CSCs were evaluated. Results The nanoparticles are of desired particle size (~150 nm), drug encapsulation efficiency (~50%), and drug release profile. After 48 hours treatment of the Saos-2 CD133+ osteosarcoma cells with drugs formulated in Ap-SAL-NP, SAL-NP, and salinomycin, the concentrations needed to kill 50% of the incubated cells were found to be 2.18, 10.72, and 5.07 μg/mL, respectively, suggesting that Ap-SAL-NP could be 4.92 or 2.33 fold more effective than SAL-NP or salinomycin, respectively. In contrast, Ap-SAL-NP was as effective as SAL-NP, and less effective than salinomycin in Saos-2 CD133− cells, suggesting that Ap-SAL-NP possess specific cytotoxicity toward Saos-2 CD133+ cells. Ap-SAL-NP showed the best therapeutic effect in Saos-2 osteosarcoma xenograft mice, compared with SAL-NP or salinomycin. Significantly, Ap-SAL-NP could selectively kill CD133+ osteosarcoma CSCs both in vitro and in vivo, as reflected by the tumorsphere formation and proportion of Saos-2 CD133+ cells. Conclusion Our results suggest that CD133 is a potential target for drug delivery to osteosarcoma CSCs and that it is possible to significantly inhibit the osteosarcoma growth by killing CD133+ osteosarcoma CSCs. We demonstrated that Ap-SAL-NP have the potential to target and kill CD133+ osteosarcoma CSCs. PMID:25848270
2011-12-23
International Conference on Plasma Science, Karlsruhe, Germany, 2008. [9] K.J. Willis, S.C. Hagness, and I. Knezevic, “A global EMC/FDTD simulation...Materials,” 2010 IEEE AP-S International Symposium on Antennas and Propagation and 2010 USNC/ CNC /URSI Meeting in Toronto, ON, Canada, July 11-17...with a High-Q Quasioptical Resonator,” IEEE Int’l Conf. Plasma Sci., Chicago, IL, June 26-30, (2011), paper IO2B-4. [21] M.J. Weber, B.B. Yang, S.L
Hirono, Moritoshi; Ogawa, Yasuhiro; Misono, Kaori; Zollinger, Daniel R; Trimmer, James S; Rasband, Matthew N; Misonou, Hiroaki
2015-05-06
In myelinated axons, K(+) channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na(+) channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K(+) channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K(+) channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni(2+) elicited a similar effect on APs, indicating the involvement of Ni(2+)-sensitive Ca(2+) channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex. Copyright © 2015 the authors 0270-6474/15/357082-13$15.00/0.
Hyperforin activates gene transcription involving transient receptor potential C6 channels.
Thiel, Gerald; Rössler, Oliver G
2017-04-01
Hypericum perforatum is one of the most prominent medical plants. Hyperforin, a main ingredient of H. perforatum, has been shown to activate transient receptor potential canonical C6 (TRPC6) channels. Alternatively, it has been proposed that hyperforin functions as a protonophore in a TRPC6-independent manner. Here, we show that hyperforin stimulation activates the transcription factor AP-1 in HEK293 cells expressing TRPC6 (T6.11 cells), but did not substantially change the AP-1 activity in HEK293 cells lacking TRPC6. We identified the AP-1 binding site as a hyperforin-responsive element. AP-1 is composed of the transcription factors c-Jun and c-Fos, or other members of the c-Jun and c-Fos families of proteins. Hyperforin stimulation increased c-Jun and c-Fos promoter activities in T6.11 cells and induced an upregulation of c-Jun and c-Fos biosynthesis. The analysis of the c-Fos promoter revealed that the cAMP-response element also functions as a hyperforin-responsive element. Hyperforin-induced upregulation of AP-1 in T6.11 cells was attenuated by preincubation of the cells with either pregnenolone or progesterone, indicating that gene regulation via TRPC6 is under control of hormones or hormonal precursors. The signal transduction of hyperforin-induced AP-1 gene transcription required an influx of Ca 2+ ions into the cells, the activation of MAP kinases, and the activation of the transcription factors c-Jun and ternary complex factor. We conclude that hyperforin regulates gene transcription via activation of TRPC6 channels, involving stimulus-regulated protein kinases and stimulus-responsive transcription factors. The fact that hyperforin regulates gene transcription may explain many of the intracellular alterations induced by this compound. Copyright © 2017 Elsevier Inc. All rights reserved.
Ona-Jodar, Tiffany; Gerkau, Niklas J; Sara Aghvami, S; Rose, Christine R; Egger, Veronica
2017-01-01
Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca 2+ imaging. Here, we used two-photon Na + imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence Δ F / F by 10% corresponded to a Δ[Na + ] i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial Δ F / F of ∼15% (∼33 mM Δ[Na + ] i ). Δ F / F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ 1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small Δ F / F of ∼3% (∼7 mM Δ[Na + ] i ). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic Δ F / F of 7% (16 mM Δ[Na + ] i ) with τ 1/2 ∼1 s, similar for 50 and 80 Hz. Na + transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in Δ F / F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na + ] i replicated these behaviors via negative and positive gradients in Na + current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer specific temporal processing capabilities to bulbar principal cell-GC subnetworks. In conclusion, we show that Na + imaging provides a valuable tool for characterizing AP invasion of MC axons and GC dendrites and spines.
Ona-Jodar, Tiffany; Gerkau, Niklas J.; Sara Aghvami, S.; Rose, Christine R.; Egger, Veronica
2017-01-01
Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca2+ imaging. Here, we used two-photon Na+ imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na+]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na+]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na+]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na+]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na+ transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na+]i replicated these behaviors via negative and positive gradients in Na+ current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer specific temporal processing capabilities to bulbar principal cell-GC subnetworks. In conclusion, we show that Na+ imaging provides a valuable tool for characterizing AP invasion of MC axons and GC dendrites and spines. PMID:28293175
Felício, Andréia A; Crago, Jordan; Maryoung, Lindley A; Almeida, Eduardo A; Schlenk, Daniel
2016-11-01
Previous studies using in vivo bioassay guided fractionation indicated that the herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and alkylphenol (AP)-containing surfactants were detected in fractions of extracts that induced the estrogenic biomarker, vitellogenin in fish exposed to surface water extracts from the United States. However, when the compounds were evaluated individually using in vivo estrogenic assays or in vitro estrogen receptor assays, estrogenic activity was not observed. Since APs have been shown to alter activity and content of cytochrome P450s (CYP) which convert diuron to potential estrogenic metabolites, the hepatic biotransformation of diuron was measured with and without a 7day pretreatment of p-Octylphenol (OP) and p-Nonylphenol (NP) at low (OP 13ng/L+NP 91ng/L), and high concentrations (OP 65ng/L+NP 455ng/L) in juvenile male Nile tilapia (Oreochromus niloticus). Pre-treatment with the OP/NP (AP) mixture caused elevated levels of NADPH-catalyzed formation of 3,4-dichlorophenyl-N-methylurea (DCPMU) but not 3,4-dichlorophenylurea (DCPU). Fish were also treated with nominal concentrations of low (40ng/L) and high (200ng/L) diuron and each of its three degradates/metabolites: DCPMU, DCPU and 3,4-dichloroaniline (DCA). Additional treatments were conducted with APs and Diuron as a mixture at the low concentrations which mimicked concentrations observed in surface waters. Hepatic vitellogenin (Vtg) mRNA was induced by exposure to the high concentrations of Diuron, as well as DCPMU and DCPU in both concentrations. Brain cytochrome P450 aromatase activity was generally diminished by diuron, its metabolites, and the AP/diuron mixtures. 17β-Hydroxysteroid dehydrogenase (17βHSD) levels were also reduced by DCPMU and DCA in the lower concentrations, but not by higher concentrations. While the AP mixture reduced 17βHSD, the AP/diuron mixture induced testosterone (T) biosynthesis at the single concentration tested. Although CYP3A expression was induced by all diuron metabolites, it was unchanged by the AP mixture. These data indicate that mixtures of AP and diuron enhanced the formation of the metabolite (DCPMU) which induced vitellogenin, and reduced T biosynthetic enzymes (17βHSD inhibition). Overall, these data showed that APs may have induced the biotransformation of diuron to at least one metabolite, that may disrupt androgen biosynthesis and potentially alter steroid feedback pathways in the central nervous system. Copyright © 2016 Elsevier B.V. All rights reserved.
AP-1 Oligodeoxynucleotides Reduce Aortic Elastolysis in a Murine Model of Marfan Syndrome.
Arif, Rawa; Zaradzki, Marcin; Remes, Anca; Seppelt, Philipp; Kunze, Reiner; Schröder, Hannes; Schwill, Simon; Ensminger, Stephan M; Robinson, Peter N; Karck, Matthias; Müller, Oliver J; Hecker, Markus; Wagner, Andreas H; Kallenbach, Klaus
2017-12-15
Marfan syndrome is characterized by high expression of matrix metalloproteinases (MMPs) in aortic smooth muscle cells (AoSMCs) associated with medial elastolysis and aortic root aneurysm. We aimed to reduce aortic elastolysis through decrease of MMP expression with decoy oligodeoxynucleotides (dODNs) neutralizing the transcription factor activating factor-1 (AP-1). AP-1 abundance in nuclear extracts as well as MMP-2 and MMP-9 expression were significantly increased in isolated mAoSMC of mgR/mgR Marfan mice compared to wild-type cells. Exposure to AP-1 neutralizing dODNs resulted in a significant reduction of basal and interleukin-1β-stimulated MMP expression and activity in mAoSMCs. Moreover, increased migration and formation of superoxide radical anions was substantially decreased in mAoSMCs by AP-1 dODN treatment. Aortic grafts from donor Marfan mice were treated with AP-1- dODN ex vivo and implanted as infrarenal aortic interposition grafts in mgR/mgR mice. Pretreatment of aortic grafts with AP-1 dODN led to reduced elastolysis, macrophage infiltration, and MMP activity. Permeability of the endothelial monolayer was increased for dODN in mgR/mgR aortae with observed loss of tight junction proteins ZO-1 and occludin, enabling dODN to reach the tunica media. Targeting AP-1 activity offers a new potential strategy to treat the vascular phenotype associated with Marfan syndrome. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Lubben, Nienke B.; Sahlender, Daniela A.; Motley, Alison M.; Lehner, Paul J.; Benaroch, Philippe
2007-01-01
Major histocompatibility complex class I is down-regulated from the surface of human immunodeficiency virus (HIV)-1-infected cells by Nef, a virally encoded protein that is thought to reroute MHC-I to the trans-Golgi network (TGN) in a phosphofurin acidic cluster sorting protein (PACS) 1, adaptor protein (AP)-1, and clathrin-dependent manner. More recently, an alternative model has been proposed, in which Nef uses AP-1 to direct MHC-I to endosomes and lysosomes. Here, we show that knocking down either AP-1 or clathrin with small interfering RNA inhibits the down-regulation of HLA-A2 (an MHC-I isotype) by Nef in HeLa cells. However, knocking down PACS-1 has no effect, not only on Nef-induced down-regulation of HLA-A2 but also on the localization of other proteins containing acidic cluster motifs. Surprisingly, knocking down AP-2 actually enhances Nef activity. Immuno-electron microscopy labeling of Nef-expressing cells indicates that HLA-A2 is rerouted not to the TGN, but to endosomes. In AP-2–depleted cells, more of the HLA-A2 localizes to the inner vesicles of multivesicular bodies. We propose that depleting AP-2 potentiates Nef activity by altering the membrane composition and dynamics of endosomes and causing increased delivery of HLA-A2 to a prelysosomal compartment. PMID:17581864
Boord, Jeffrey B.; Maeda, Kazuhisa; Makowski, Liza; Babaev, Vladimir R.; Fazio, Sergio; Linton, MacRae F.; Hotamisligil, Gökhan S.
2014-01-01
Objective The adipocyte fatty acid-binding protein, aP2, has important effects on insulin resistance, lipid metabolism, and atherosclerosis. Its expression in macrophages enhances early foam cell formation and atherosclerosis in vivo. This study was designed to determine whether aP2 deficiency has a similar effect in the setting of advanced atherosclerosis and severe hypercholesterolemia. Methods and Results Mice deficient in aP2 and apolipoprotein E (aP2−/−apoE−/− mice) and apolipoprotein E-deficient control mice (apoE−/− mice) were fed a Western diet for 14 weeks. No significant differences in fasting serum levels of cholesterol, triglycerides, or free fatty acids were found between groups for each sex. Compared with apoE−/− control mice, male and female aP2−/−apoE−/− mice had significant reductions in mean atherosclerotic lesion size in the proximal aorta, en face aorta, and innominate/right carotid artery. Feeding the Western diet in the apoE-deficient background did not cause a significant reduction in insulin sensitivity in vivo, as determined by steady-state serum glucose levels and insulin tolerance testing. Conclusions These data demonstrate an important role for aP2 expression in the advanced stages of atherosclerotic lesion formation. Thus, aP2 provides an important physiological link between different features of the metabolic syndrome and is a potential target for therapy of atherosclerosis. PMID:12377750
Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Wang, Guozhi; Mao, Genxiang
2016-03-01
In this study, the optimization of the extraction conditions of polysaccharide from 'Anji Baicha' (Camellia sinensis (L.) O. Kuntze) (AP) was investigated by response surface methodology (RSM). Three main independent variables (extraction temperature, time, ratio of water to raw material) were taken into consideration. And then the free radical scavenging activities of the sample were investigated including scavenging effects of superoxide and hydroxyl radicals. The RSM analysis showed good correspondence between experimental and predicted values.. The optimal condition to obtain the highest yield of AP was determined as follows: temperature 76.79 °C, time 2.48 h, ratio of water to material 22.53 mL/g. For the free radical scavenging activity, the IC50 values of Vc and AP were 7.78 and 83.25 μg/mL. And for the scavenging effect on hydroxyl radical, that of AP and Vc were 1.80 and 1.69 mg/mL. AP showed excellent antioxidant activity. This exhibited AP had a good potential for antioxidant. The purification and structure needs to be study in further. Copyright © 2015 Elsevier B.V. All rights reserved.
Castillon, Guillaume A; Burriat-Couleru, Patricia; Abegg, Daniel; Criado Santos, Nina; Watanabe, Reika
2018-03-01
Recently, studies in animal models demonstrate potential roles for clathrin and AP1 in apical protein sorting in epithelial tissue. However, the precise functions of these proteins in apical protein transport remain unclear. Here, we reveal mistargeting of endogenous glycosyl phosphatidyl inositol-anchored proteins (GPI-APs) and soluble secretory proteins in Madin-Darby canine kidney (MDCK) cells upon clathrin heavy chain or AP1 subunit knockdown (KD). Using a novel directional endocytosis and recycling assay, we found that these KD cells are not only affected for apical sorting of GPI-APs in biosynthetic pathway but also for their apical recycling and basal-to-apical transcytosis routes. The apical distribution of the t-SNARE syntaxin 3, which is known to be responsible for selective targeting of various apical-destined cargo proteins in both biosynthetic and endocytic routes, is compromised suggesting a molecular explanation for the phenotype in KD cells. Our results demonstrate the importance of biosynthetic and endocytic routes for establishment and maintenance of apical localization of GPI-APs in polarized MDCK cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Decreased gene expression of CD2AP in Chinese patients with sporadic Alzheimer's disease.
Tao, Qing-Qing; Liu, Zhi-Jun; Sun, Yi-Min; Li, Hong-Lei; Yang, Ping; Liu, De-Shan; Jiang, Bin; Li, Xiao-Yan; Xu, Jian-Feng; Wu, Zhi-Ying
2017-08-01
Many sporadic Alzheimer's disease (SAD) risk genes have been identified in the last decades, but most of them have not been consistently accepted. Here, we sought to identify SAD-associated genes and their potential mechanisms involved in SAD pathogenesis. A 2-stage design was employed. In stage 1, 95 variants in 75 genes that were previously reported as SAD-risk genes in Caucasian populations were evaluated in 1857 subjects (422 SAD patients and 1435 controls). In stage 2, a subset of promising variants found in stage 1 were further evaluated in an independent cohort of 1001 subjects (254 SAD and 747 controls). Variants in CD2AP were significantly associated with SAD risk in our subjects. Furthermore, CD2AP gene expression in peripheral blood lymphocytes (PBL) from 209 SAD patients and 213 controls was determined. CD2AP gene expression in PBL was significantly decreased in patients with SAD as compared with controls. Our study suggests that CD2AP is an SAD-risk gene in Chinese Han population and CD2AP gene expression is decreased in the PBL of patients with SAD, indicating its possible systemic involvement in SAD. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Yun; Chang, Chen-Fu; Morales, Marisela; Chiang, Yung-Hsiao; Harvey, Brandon K; Su, Tsung-Ping; Tsao, Li-I; Chen, Suyu; Thiemermann, Christoph
2003-08-27
Diadenosine tetraphosphate (AP4A), an endogenous diadenosine polyphosphate, reduces ischemic injury in the heart. In this study, we report the potent and protective effects of AP4A in rodent models of stroke and Parkinson's disease. AP4A, given intracerebroventricularly before middle cerebral artery (MCA) ligation, reduced cerebral infarction size and enhanced locomotor activity in adult rats. The intravenous administration of AP4A also induced protection when given early after MCA ligation. AP4A suppressed terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) induced by hypoxia/reperfusion in primary cortical cultures, and reduced both ischemia-induced translocation of mitochondrial cytochrome c and the increase in cytoplasmic caspase-3 activity in vivo. The purinergic P2/P4 antagonist di-inosine pentaphosphate or P1-receptor antagonist sulfonylphenyl theophylline, but not the P2-receptor antagonist suramin, antagonized the effect of AP4A, suggesting that the observed protection is mediated through an anti-apoptotic mechanism and the activation of P1- and P4-purinergic receptors. AP4A also afforded protection from toxicity induced by unilateral medial forebrain bundle injection of 6-hydroxydopamine (6-OHDA). One month after lesioning, vehicle-treated rats exhibited amphetamine-induced rotation. Minimal tyrosine hydroxylase immunoreactivity was detected in the lesioned nigra or striatum. No KCl-induced dopamine release was found in the lesioned striatum. All of these indices of dopaminergic degeneration were attenuated by pretreatment with AP4A. In addition, AP4A reduced TUNEL in the lesioned nigra 2 d after 6-OHDA administration. Collectively, our data suggest that AP4A is protective against neuronal injuries induced by ischemia or 6-OHDA through the inhibition of apoptosis. We propose that AP4A may be a potentially useful target molecule in the therapy of stroke and Parkinson's disease.
Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe
2017-01-01
Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. PMID:29046391