Fragment Screening of Human Aquaporin 1
To, Janet; Torres, Jaume
2016-01-01
Aquaporins (AQPs) are membrane proteins that enable water transport across cellular plasma membranes in response to osmotic gradients. Phenotypic analyses have revealed important physiological roles for AQPs, and the potential for AQP water channel modulators in various disease states has been proposed. For example, AQP1 is overexpressed in tumor microvessels, and this correlates with higher metastatic potential and aggressiveness of the malignancy. Chemical modulators would help in identifying the precise contribution of water channel activity in these disease states. These inhibitors would also be important therapeutically, e.g., in anti-cancer treatment. This perceived importance contrasts with the lack of success of high-throughput screens (HTS) to identify effective and specific inhibitors of aquaporins. In this paper, we have screened a library of 1500 “fragments”, i.e., smaller than molecules used in HTS, against human aquaporin (hAQP1) using a thermal shift assay and surface plasmon resonance. Although these fragments may not inhibit their protein target, they bound to and stabilized hAQP1 (sub mM binding affinities (KD), with an temperature of aggregation shift ΔTagg of +4 to +50 °C) in a concentration-dependent fashion. Chemically expanded versions of these fragments should follow the determination of their binding site on the aquaporin surface. PMID:27023529
Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin
2017-01-01
Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects.
Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin
2017-01-01
Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects. PMID:28813533
Binding of a small molecule water channel inhibitor to aquaporin Z examined by solid-state MAS NMR.
Phillips, Margaret; To, Janet; Yamazaki, Toshio; Nagashima, Toshio; Torres, Jaume; Pervushin, Konstantin
2018-06-18
Aquaporins are integral membrane proteins that facilitate water flow across biological membranes. Their involvement in multiple physiological functions and disease states has prompted intense research to discover water channel activity modulators. However, inhibitors found so far are weak and/or lack specificity. For organic compounds, which lack of high electron-dense atoms, the identification of binding sites is even more difficult. Nuclear magnetic resonance spectroscopy (NMR) requires large amounts of the protein, and expression and purification of mammalian aquaporins in large quantities is a difficult task. However, since aquaporin Z (AqpZ) can be purified and expressed in good quantities and has a high similarity to human AQP1 (~ 40% identity), it can be used as a model for studying the structure and function of human aquaporins. In the present study, we have used solid-state MAS NMR to investigate the binding of a lead compound [1-(4-methylphenyl)1H-pyrrole-2,5-dione] to AqpZ, through mapping of chemical shift perturbations in the presence of the compound.
Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.
Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi
2012-04-01
Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.
Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia
2016-02-01
Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response. © 2015 John Wiley & Sons Ltd.
The role of aquaporin-5 in cancer cell migration: A potential active participant.
Jensen, Helene H; Login, Frédéric H; Koffman, Jennifer S; Kwon, Tae-Hwan; Nejsum, Lene N
2016-10-01
Emerging data identifies the water channel aquaporin-5 as a major player in multiple cancers. Over-expression of aquaporin-5 has been associated with increased metastasis and poor prognosis, suggesting that aquaporin-5 may enhance cancer cell migration. This review aims to highlight the current knowledge and hypothesis regarding downstream signaling partners of aquaporin-5 in relation to cancer cell migration. The molecular mechanisms that link aquaporin-5 to cell migration are not completely understood. Aquaporin-5 may promote cell movement by increasing water uptake into the front of the cell allowing local swelling. Aquaporin-5 may also activate extracellular-regulated kinases, increasing proliferation and potentially stimulating the migration machinery. Thus, further studies are warranted to identify the underlying mechanisms and signaling pathways. This will reveal whether aquaporin-5 and downstream effectors could be targets for developing new cancer therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aquaporins in the eye: Expression, function, and roles in ocular disease☆
Schey, Kevin L.; Wang, Zhen; Wenke, Jamie L.; Qi, Ying
2015-01-01
Background All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. Scope of review This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. Major conclusions Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. General significance Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins. PMID:24184915
Ozu, Marcelo; Dorr, Ricardo A; Teresa Politi, M; Parisi, Mario; Toriano, Roxana
2011-06-01
This work studies water permeability properties of human aquaporin 1 (hAQP1) expressed in Xenopus laevis oocyte membranes, applying a technique where cellular content is replaced with a known medium, with the possibility of measuring intracellular pressure. Consequences on water transport-produced by well-known anisotonic gradients and by the intracellular effect of probable aquaporin inhibitors-were tested. In this way, the specific intracellular inhibition of hAQP1 by the diuretic drug furosemide was demonstrated. In addition, experiments imposing anisotonic mannitol gradients with a constant ionic strength showed that the relationship between water flux and the applied mannitol gradient deflects from a perfect osmometer response when the gradient is higher than 150 mosmol kg (W) (-1) . These results would indicate that the passage of water molecules through hAQP1 may have a maximum rate. As a whole, this work demonstrates the technical advantage of controlling both intracellular pressure and medium composition in order to study biophysical properties of hAQP1, and contributes information on water channel behavior under osmotic challenges and the discovery of new inhibitors.
Oliva, Romina; Calamita, Giuseppe; Thornton, Janet M.; Pellegrini-Calace, Marialuisa
2010-01-01
Aquaporins are homotetrameric channel proteins, which allow the diffusion of water and small solutes across biological membranes. According to their transport function, aquaporins can be divided into “orthodox aquaporins”, which allow the flux of water molecules only, and “aquaglyceroporins”, which facilitate the diffusion of glycerol and other small solutes in addition to water. The contribution of individual residues in the pore to the selectivity of orthodox aquaporins and aquaglyceroporins is not yet fully understood. To gain insights into aquaporin selectivity, we focused on the sequence variation and electrostatics of their channels. The continuum Poisson-Boltzmann electrostatic potential along the channel was calculated and compared for ten three-dimensional-structures which are representatives of different aquaporin subfamilies, and a panel of functionally characterized mutants, for which high-accuracy three-dimensional-models could be derived. Interestingly, specific electrostatic profiles associated with the main selectivity to water or glycerol could be identified. In particular: (i) orthodox aquaporins showed a distinctive electrostatic potential maximum at the periplasmic side of the channel around the aromatic/Arg (ar/R) constriction site; (ii) aquaporin-0 (AQP0), a mammalian aquaporin with considerably low water permeability, had an additional deep minimum at the cytoplasmic side; (iii) aquaglyceroporins showed a rather flat potential all along the channel; and (iv) the bifunctional protozoan PfAQP had an unusual all negative profile. Evaluation of electrostatics of the mutants, along with a thorough sequence analysis of the aquaporin pore-lining residues, illuminated the contribution of specific residues to the electrostatics of the channels and possibly to their selectivity. PMID:20147624
Zhao, Manchun; Tan, Hwei-Ting; Scharwies, Johannes; Levin, Kara; Evans, John R; Tyerman, Stephen D
2017-06-01
The role of some aquaporins as CO 2 permeable channels has been controversial. Low CO 2 permeability of plant membranes has been criticized because of unstirred layers and other limitations. Here we measured both water and CO 2 permeability (P os , P CO2 ) using stopped flow on plasma membrane vesicles (pmv) isolated from Pisum sativum (pea) and Arabidopsis thaliana leaves. We excluded the chemical limitation of carbonic anhydrase (CA) in the vesicle acidification technique for P CO2 using different temperatures and CA concentrations. Unstirred layers were excluded based on small vesicle size and the positive correlation between vesicle diameter and P CO2 . We observed high aquaporin activity (P os 0.06 to 0.22 cm s -1 ) for pea pmv based on all the criteria for their function using inhibitors and temperature dependence. Inhibitors of P os did not alter P CO2 . P CO2 ranged from 0.001 to 0.012 cm s -1 (mean 0.0079 + 0.0007 cm s -1 ) with activation energy of 30.2 kJ mol -1 . Intrinsic variation between pmv batches from normally grown or stressed plants revealed a weak (R 2 = 0.27) positive linear correlation between P os and P CO2 . Despite the low P CO2 , aquaporins may facilitate CO 2 transport across plasma membranes, but probably via a different pathway than for water. © 2016 John Wiley & Sons Ltd.
Lin, Yu; Zhang, Tiezheng; Feng, Pinning; Qiu, Miaojuan; Liu, Qiaojuan; Li, Suchun; Zheng, Peili; Kong, Yonglun; Levi, Moshe; Li, Chunling; Wang, Weidong
2017-10-01
The direct renin inhibitor aliskiren has been shown to be retained and persist in medullary collecting ducts even after treatment is discontinued, suggesting a new mechanism of action for this drug. The purpose of the present study was to investigate whether aliskiren regulates renal aquaporin expression in the collecting ducts and improves urinary concentrating defect induced by lithium in mice. The mice were fed with either normal chow or LiCl diet (40 mmol·kg dry food -1 ·day -1 for 4 days and 20 mmol·kg dry food -1 ·day -1 for the last 3 days) for 7 days. Some mice were intraperitoneally injected with aliskiren (50 mg·kg body wt -1 ·day -1 in saline). Aliskiren significantly increased protein abundance of aquaporin-2 (AQP2) in the kidney inner medulla in mice. In inner medulla collecting duct cell suspension, aliskiren markedly increased AQP2 and phosphorylated AQP2 at serine 256 (pS256-AQP2) protein abundance, which was significantly inhibited both by adenylyl cyclase inhibitor MDL-12330A and by PKA inhibitor H89, indicating an involvement of the cAMP-PKA signaling pathway in aliskiren-induced increased AQP2 expression. Aliskiren treatment improved urinary concentrating defect in lithium-treated mice and partially prevented the decrease of AQP2 and pS256-AQP2 protein abundance in the inner medulla of the kidney. In conclusion, the direct renin inhibitor aliskiren upregulates AQP2 protein expression in inner medullary collecting duct principal cells and prevents lithium-induced nephrogenic diabetes insipidus likely via cAMP-PKA pathways. Copyright © 2017 the American Physiological Society.
Martínez-Ballesta, Maria Del Carmen; Pérez-Sánchez, Horacio; Moreno, Diego A; Carvajal, Micaela
2016-07-01
Their biodegradable nature and ability to target cells make biological vesicles potential nanocarriers for bioactives delivery. In this work, the interaction between proteoliposomes enriched in aquaporins derived from broccoli plants and the glucosinolates was evaluated. The vesicles were stored at different temperatures and their integrity was studied. Determination of glucosinolates, showed that indolic glucosinolates were more sensitive to degradation in aqueous solution than aliphatic glucosinolates. Glucoraphanin was stabilized by leaf and root proteoliposomes at 25°C through their interaction with aquaporins. An extensive hydrogen bond network, including different aquaporin residues, and hydrophobic interactions, as a consequence of the interaction between the linear alkane chain of glucoraphanin and Glu31 and Leu34 protein residues, were established as the main stabilizing elements. Combined our results showed that plasma membrane vesicles from leaf and root tissues of broccoli plants may be considered as suitable carriers for glucosinolate which stabilization can be potentially attributed to aquaporins. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis
NASA Astrophysics Data System (ADS)
De Ieso, Michael L.; Yool, Andrea J.
2018-04-01
Cancer is a leading cause of death worldwide, and its incidence is rising with numbers expected to increase 70% in the next two decades. The fact that current mainline treatments for cancer patients are accompanied by debilitating side effects prompts a growing demand for new therapies that not only inhibit growth and proliferation of cancer cells, but also control invasion and metastasis. One class of targets gaining international attention is the aquaporins, a family of membrane-spanning water channels with diverse physiological functions and extensive tissue-specific distributions in humans. Aquaporins -1, -2, -3, -4, -5, -8, and -9 have been linked to roles in cancer proliferation, invasion and metastasis, but their mechanisms of action remain to be fully defined. Aquaporins are implicated in the metastatic cascade in processes of angiogenesis, cellular dissociation, migration and invasion. Cancer invasion and metastasis are proposed to be potentiated by aquaporins in boosting tumor angiogenesis, enhancing cell volume regulation, regulating cell-cell and cell-matrix adhesions, interacting with actin cytoskeleton, regulating proteases and extracellular-matrix degrading molecules, contributing to the regulation of epithelial-mesenchymal transitions, and interacting with signaling pathways enabling motility and invasion. Pharmacological modulators of aquaporin channels are being identified and tested for therapeutic potential, including compounds derived from loop diuretics, metal-containing organic compounds, plant natural products, and other small molecules. Further studies on aquaporin-dependent functions in cancer metastasis are needed to define the differential contributions of different classes of aquaporin channels to regulation of fluid balance, cell volume, small solute transport, signal transduction, their possible relevance as rate limiting steps, and potential values as therapeutic targets for proliferation and invasion.
Fernández, José R; Webb, Corey; Rouzard, Karl; Voronkov, Michael; Huber, Kristen L; Stock, Jeffry B; Stock, Maxwell; Gordon, Joel S; Perez, Eduardo
2017-03-01
Isoprenylcysteine (IPC) small molecules were discovered as signal transduction modulating compounds ~25 years ago. More recently, IPC molecules have demonstrated antioxidant and anti-inflammatory properties in a variety of dermal cells as well as antimicrobial activity, representing a novel class of compounds to ameliorate skin conditions and disease. Here, we demonstrate a new IPC compound, N-acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191), which inhibits UVB-induced inflammation blocking pro-inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) production. To investigate further the previously reported hydrating potential of IPC compounds, SIG-1191 was tested for its ability to modulate aquaporin expression. Specifically, aquaporin 3 (AQP3) the most abundant aquaporin found in skin has been reported to play a key role in skin hydration, elasticity and barrier repair. Results show here for the first time that SIG-1191 increases AQP3 expression in both cultured normal human epidermal keratinocytes as well as when applied topically in a three-dimensional (3D) reconstructed human skin equivalent. Additionally, SIG-1191 dose dependently increased AQP3 protein levels, as determined by specific antibody staining, in the epidermis of the 3D skin equivalents. To begin to elucidate which signaling pathways SIG-1191 may be modulating to increase AQP3 levels, we used several pharmacological pathway inhibitors and determined that AQP3 expression is mediated by the Mitogen-activated protein kinase/Extracellular signal-regulated kinase kinase (MEK) pathway. Altogether, these data suggest SIG-1191 represents a new IPC derivative with anti-inflammatory activity that may also promote increased skin hydration based on its ability to increase AQP3 levels.
Novel Regulation of Aquaporins during Osmotic Stress1
Vera-Estrella, Rosario; Barkla, Bronwyn J.; Bohnert, Hans J.; Pantoja, Omar
2004-01-01
Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions. PMID:15299122
Novel regulation of aquaporins during osmotic stress.
Vera-Estrella, Rosario; Barkla, Bronwyn J; Bohnert, Hans J; Pantoja, Omar
2004-08-01
Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions.
The Aquaporin Channel Repertoire of the Tardigrade Milnesium tardigradum
Grohme, Markus A.; Mali, Brahim; Wełnicz, Weronika; Michel, Stephanie; Schill, Ralph O.; Frohme, Marcus
2013-01-01
Limno-terrestrial tardigrades are small invertebrates that are subjected to periodic drought of their micro-environment. They have evolved to cope with these unfavorable conditions by anhydrobiosis, an ametabolic state of low cellular water. During drying and rehydration, tardigrades go through drastic changes in cellular water content. By our transcriptome sequencing effort of the limno-terrestrial tardigrade Milnesium tardigradum and by a combination of cloning and targeted sequence assembly, we identified transcripts encoding eleven putative aquaporins. Analysis of these sequences proposed 2 classical aquaporins, 8 aquaglyceroporins and a single potentially intracellular unorthodox aquaporin. Using quantitative real-time PCR we analyzed aquaporin transcript expression in the anhydrobiotic context. We have identified additional unorthodox aquaporins in various insect genomes and have identified a novel common conserved structural feature in these proteins. Analysis of the genomic organization of insect aquaporin genes revealed several conserved gene clusters. PMID:23761966
Ferro, Suellen; Azevedo-Silva, João; Casal, Margarida; Côrte-Real, Manuela; Baltazar, Fatima; Preto, Ana
2016-01-01
Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP). We provide evidence that acetate enters CRC cells by the secondary active transporters MCT1 and/or MCT2 and SMCT1 as well as by facilitated diffusion via aquaporins. CRC cell exposure to acetate upregulates the expression of MCT1, MCT4 and CD147, while promoting MCT1 plasma membrane localization. We also observed that acetate increases CRC cell glycolytic phenotype and that acetate-induced apoptosis and anti-proliferative effect was potentiated by 3BP. Our data suggest that acetate selectivity towards CRC cells might be explained by the fact that aquaporins and MCTs are found overexpressed in CRC clinical cases. Our work highlights the importance that acetate transport regulation has in the use of drugs such as 3BP as a new therapeutic strategy for CRC. PMID:28874966
Aquaporins: Highly Regulated Channels Controlling Plant Water Relations1
Chaumont, François; Tyerman, Stephen D.
2014-01-01
Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key “gatekeeper” cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations. PMID:24449709
Aquaporins: highly regulated channels controlling plant water relations.
Chaumont, François; Tyerman, Stephen D
2014-04-01
Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key "gatekeeper" cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations.
Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2009-05-01
Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.
Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2009-01-01
Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885
EPA attenuates ultraviolet radiation-induced downregulation of aquaporin-3 in human keratinocytes.
Jeon, Byoung-Kook; Kang, Moon-Kyung; Lee, Ghang-Tai; Lee, Kun-Kuk; Lee, Ho-Sub; Woo, Won-Hong; Mun, Yeun-Ja
2015-08-01
Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid (ω-3 PUFA) that protects against photodamage and photocarcinogenesis in mammals. Aquaporin-3 (AQP3) is a water/glycerol transport protein that is found in basal layer keratinocytes. In this study, we have investigated the protective effect of EPA against ultraviolet B (UVB)-induced AQP3 downregulation in human keratinocytes. EPA treatment was found to increase AQP3 gene and protein expression in human epidermal keratinocytes (HaCaT). Using a specific inhibitor, we observed that the effect of EPA on AQP3 expression was mediated by extracellular signal-regulated kinase (ERK) activation. UVB radiation induced AQP3 downregulation in HaCaT cells, and it was found that EPA treatment attenuated UVB-induced AQP3 reduction and the associated cell death. UVB-induced downregulation of AQP3 was blocked by EPA and p38 inhibitor SB203580. Collectively, the present results show that EPA increased AQP3 expression and that this led to a reduction UVB-induced photodamage.
Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.
Bienert, Gerd P; Møller, Anders L B; Kristiansen, Kim A; Schulz, Alexander; Møller, Ian M; Schjoerring, Jan K; Jahn, Thomas P
2007-01-12
The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.
Structure, function and translational relevance of aquaporin dual water and ion channels.
Yool, Andrea J; Campbell, Ewan M
2012-01-01
Aquaporins have been assumed to be selective for water alone, and aquaglyceroporins are accepted as carrying water and small uncharged solutes including glycerol. This review presents an expanded view of aquaporins as channels with more complex mechanisms of regulation and diverse repertoires of substrate permeabilities than were originally appreciated in the early establishment of the field. The role of aquaporins as dual water and gated ion channels is likely to have physiological and potentially translational relevance, and can be evaluated with newly developed molecular and pharmacological tools. Ion channel activity has been shown for Aquaporins -0, -1, and -6, Drosphila Big Brain, and plant Nodulin-26. Although the concept of ion channel function in aquaporins remains controversial, research advances are beginning to define not only the ion channel function but also the detailed molecular mechanisms that govern and mediate the multifunctional capabilities. With regard to physiological relevance, the adaptive benefit of expression of ion channel activity in aquaporins, implied by amino acid sequence conservation of the ion channel gating domains, suggests they provide more than water or glycerol and solute transport. Dual ion and water channels are of interest for understanding the modulation of transmembrane fluid gradients, volume regulation, and possible signal transduction in tissues expressing classes of aquaporins that have the dual function capability. Other aquaporin classes might be found in future work to have ion channel activities, pending identification of the possible signaling pathways that could govern activation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Carbon dioxide and water transport through plant aquaporins.
Groszmann, Michael; Osborn, Hannah L; Evans, John R
2017-06-01
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO 2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO 2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency. © 2016 John Wiley & Sons Ltd.
Opportunistic infections of the retina in patients with aquaporin-4 antibody disease.
George, Jithin S; Leite, Maria Isabel; Kitley, Joanna L; Jones, Nicola; Cortes, Nicholas; Donati, Matthew; Matthews, Bethan Non; Calladine, Daniel; Hillier, Charles; Yusuf, Imran H; Munneke, Robert; Patel, Chetan K; Palace, Jacqueline A; Elston, John S
2014-11-01
Patients with neuromyelitis optica who have aquaporin-4 antibodies are being identified and receiving immunosuppressant treatment earlier and more aggressively as a result of increasing awareness of the importance of preventing relapses responsible for the high morbidity and mortality associated with the disease. To our knowledge, opportunistic retinal infection in patients with aquaporin-4 antibodies who are receiving immunosuppressants has not been reported to date. We describe 2 patients with aquaporin-4 antibodies who were receiving conventional doses of first-line immunosuppressive therapy. Both patients presented with vision loss that was initially thought to be optic neuritis attacks. The subsequent diagnoses were ocular toxoplasmosis and cytomegalovirus retinitis. Retinal opportunistic infections can occur in patients with aquaporin-4 antibodies who are receiving relatively low levels of immunosuppression, may mimic optic neuritis, and are a potentially reversible cause of vision loss when treated promptly.
USDA-ARS?s Scientific Manuscript database
Some soybean (Glycine max (L.) Merr.) have been identified that expressed limited transpiration rate (TR) above a threshold vapor pressure deficit (VPD). Restriction of TR at high VPD conditions is considered a water conservation trait that allows water to be retained in the soil to benefit of crop...
Montalvetti, Andrea; Rohloff, Peter; Docampo, Roberto
2004-09-10
We cloned an aquaporin gene from Trypanosoma cruzi (TcAQP) that encodes a protein of 231 amino acids, which is highly hydrophobic. The protein has six putative transmembrane domains and the two signature motifs asparagine-proline-alanine (NPA) which have been shown, in other aquaporins, to be involved in the formation of an aqueous channel spanning the bilayer. TcAQP was sensitive to endo H treatment, suggesting that the protein is N-glycosylated. Oocytes of Xenopus laevis expressing TcAQP swelled under hyposmotic conditions indicating water permeability, which was abolished after preincubating oocytes with very low concentrations of the AQP inhibitors HgCl(2) and AgNO(3). glycerol transport was detected. No Immunofluorescence microscopy of T. cruzi expressing GFP-TcAQP showed co-localization of TcAQP with the vacuolar proton pyrophosphatase (V-H(+)-PPase), a marker of acidocalcisomes. This localization was confirmed by Western blotting and immunofluorescence staining using polyclonal antibodies against a C-terminal peptide of TcAQP. In addition, there was a strong anterior labeling in a vacuole, close to the flagellar pocket, that was distinct from the acidocalcisomes and that was identified by immunogold electron microscopy as the contractile vacuole complex. Taking together, the presence of an aquaporin in acidocalcisomes and the contractile vacuole complex of T. cruzi, provides support for the role of these organelles in osmotic adaptations of these parasites.
Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide.
Bienert, Gerd P; Chaumont, François
2014-05-01
Hydrogen peroxide (H2O2) is an important signaling compound that has recently been identified as a new substrate for several members of the aquaporin superfamily in various organisms. Evidence is emerging about the physiological significance of aquaporin-facilitated H2O2 diffusion. This review summarizes current knowledge about aquaporin-facilitated H2O2 diffusion across cellular membranes. It focuses on physicochemical and experimental evidence demonstrating the involvement of aquaporins in the transport of this redox signaling compound and discusses the regulation and structural prerequisites of these channels to transmit this signal. It also provides perspectives about the potential importance of aquaporin-facilitated H2O2 diffusion processes and places this knowledge in the context of the current understanding of transmembrane redox signaling processes. Specific aquaporin isoforms facilitate the passive diffusion of H2O2 across biological membranes and control H2O2 membrane permeability and signaling in living organisms. Redox signaling is a very important process regulating the physiology of cells and organisms in a similar way to the well-characterized hormonal and calcium signaling pathways. Efficient transmembrane diffusion of H2O2, a key molecule in the redox signaling network, requires aquaporins and makes these channels important players in this signaling process. Channel-mediated membrane transport allows the fine adjustment of H2O2 levels in the cytoplasm, intracellular organelles, the apoplast, and the extracellular space, which are essential for it to function as a signal molecule. This article is part of a Special Issue entitled Aquaporins. © 2013.
Evidence for aquaporin-mediated water transport in nematocytes of the jellyfish Pelagia noctiluca.
Marino, Angela; Morabito, Rossana; La Spada, Giuseppina; Adragna, Norma C; Lauf, Peter K
2011-01-01
Nematocytes, the stinging cells of Cnidarians, have a cytoplasm confined to a thin rim. The main cell body is occupied by an organoid, the nematocyst, containing the stinging tubule and venom. Exposed to hypotonic shock, nematocytes initially swell during an osmotic phase (OP) and then undergo regulatory volume decrease (RVD) driven by K(+), Cl(-) and obligatory water extrusion mechanisms. The purpose of this report is to characterize the OP. Nematocytes were isolated by the NaSCN/Ca(2+) method from tentacles of the jellyfish Pelagia noctiluca, collected in the Strait of Messina, Italy. Isolated nematocytes were subjected to hyposmotic shock in 65% artificial seawater (ASW) for 15 min. The selective aquaporin water channel inhibitor HgCl(2) (0.1-25 μM) applied prior to osmotic shock prevented the OP and thus RVD. These effects were attenuated in the presence of 1mM dithiothreitol (DTT), a mercaptide bond reducing agent. AgNO(3) (1 μM) and TEA (tetraethylammonium, 100 μM), also reported to inhibit water transport, did not alter the OP but significantly diminished RVD, suggesting different modes of action for the inhibitors tested. Based on estimates of the nematocyte surface area and volume, and OP duration, a relative water permeability of ~10(-7) cm/sec was calculated and the number of putative aquaporin molecules mediating the OP was estimated. This water permeability is 3-4 orders of magnitude lower in comparison to higher order animals and may constitute an evolutionary advantage for Cnidarian survival. Copyright © 2011 S. Karger AG, Basel.
Bilska-Kos, Anna; Szczepanik, Jarosław; Sowiński, Paweł
2016-10-20
Chilling stress is known to affect the water balance in plants, which often manifests itself in the decrease of the water potential in different organs. Relationships between chilling, assimilate transport and water balance are far from being understood. Although aquaporins play a key role in regulating water balance in plants, especially under stress conditions, the role of individual aquaporins in stress response remains unclear. In this report we show the specific localization within plasma membranes of one of the aquaporins (PIP2;3) in the leaves of two maize inbred lines differing in their chilling-sensitivity. This form of aquaporin has been also observed in thick-walled sieve elements - an additional type of sieve tubes of unclear function found only in monocotyledons. Moderate chilling (about 15°C) caused significant reduction of labelling in these cells accompanied by a steep decrease in the water potential in leaves of chilling-sensitive maize line. Our results suggest that both PIP2;3 and thick-walled sieve tubes may be an unknown element of the mechanism of the response of maize to cold stress. Copyright © 2016 Elsevier GmbH. All rights reserved.
AROCA, RICARDO; FERRANTE, ANTONIO; VERNIERI, PAOLO; CHRISPEELS, MAARTEN J.
2006-01-01
• Background and Aims Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. • Methods Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. • Key Results None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. • Conclusions The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured. PMID:17028296
USDA-ARS?s Scientific Manuscript database
Aquaporins regulate water transport through the highly hydrophobic lipid bilayer of cell membranes. As ticks ingest large volumes of host blood in relation to their size, they are required to concentrate blood components and have efficient water transport mechanisms. This study aimed to evaluate the...
USDA-ARS?s Scientific Manuscript database
In a collaboration with Washington State University and ARS-Pullman, WA researchers, we identified and sequenced a 1,059 base pair Rhipicephalus microplus transcript that contained the coding region for a water channel protein, Aquaporin 2 (RmAQP2). The clone sequencing resulted in the production of...
USDA-ARS?s Scientific Manuscript database
This study evaluated a recombinant aquaporin 1 protein of Rhipicephalus (Boophilus) microplus (RmAQP1) as antigen in a vaccine against R. sanguineus. Five dogs were immunized with RmAQP1 (10 µg) + adjuvant (Montanide) (G1), and five were inoculated with adjuvant only (G2), three times. Twenty-one da...
Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions.
Sutka, Moira; Li, Guowei; Boudet, Julie; Boursiac, Yann; Doumas, Patrick; Maurel, Christophe
2011-03-01
To gain insights into the natural variation of root hydraulics and its molecular components, genotypic differences related to root water transport and plasma membrane intrinsic protein (PIP) aquaporin expression were investigated in 13 natural accessions of Arabidopsis (Arabidopsis thaliana). The hydraulic conductivity of excised root systems (Lpr) showed a 2-fold variation among accessions. The contribution of aquaporins to water uptake was characterized using as inhibitors mercury, propionic acid, and azide. The aquaporin-dependent and -independent paths of water transport made variable contributions to the total hydraulic conductivity in the different accessions. The distinct suberization patterns observed among accessions were not correlated with their root hydraulic properties. Real-time reverse transcription-polymerase chain reaction revealed, by contrast, a positive overall correlation between Lpr and certain highly expressed PIP transcripts. Root hydraulic responses to salt stress were characterized in a subset of five accessions (Bulhary-1, Catania-1, Columbia-0, Dijon-M, and Monte-Tosso-0 [Mr-0]). Lpr was down-regulated in all accessions except Mr-0. In Mr-0 and Catania-1, cortical cell hydraulic conductivity was unresponsive to salt, whereas it was down-regulated in the three other accessions. By contrast, the five accessions showed qualitatively similar aquaporin transcriptional profiles in response to salt. The overall work provides clues on how hydraulic regulation allows plant adaptation to salt stress. It also shows that a wide range of root hydraulic profiles, as previously reported in various species, can be observed in a single model species. This work paves the way for a quantitative genetics analysis of root hydraulics.
Sutka, Moira; Li, Guowei; Boudet, Julie; Boursiac, Yann; Doumas, Patrick; Maurel, Christophe
2011-01-01
To gain insights into the natural variation of root hydraulics and its molecular components, genotypic differences related to root water transport and plasma membrane intrinsic protein (PIP) aquaporin expression were investigated in 13 natural accessions of Arabidopsis (Arabidopsis thaliana). The hydraulic conductivity of excised root systems (Lpr) showed a 2-fold variation among accessions. The contribution of aquaporins to water uptake was characterized using as inhibitors mercury, propionic acid, and azide. The aquaporin-dependent and -independent paths of water transport made variable contributions to the total hydraulic conductivity in the different accessions. The distinct suberization patterns observed among accessions were not correlated with their root hydraulic properties. Real-time reverse transcription-polymerase chain reaction revealed, by contrast, a positive overall correlation between Lpr and certain highly expressed PIP transcripts. Root hydraulic responses to salt stress were characterized in a subset of five accessions (Bulhary-1, Catania-1, Columbia-0, Dijon-M, and Monte-Tosso-0 [Mr-0]). Lpr was down-regulated in all accessions except Mr-0. In Mr-0 and Catania-1, cortical cell hydraulic conductivity was unresponsive to salt, whereas it was down-regulated in the three other accessions. By contrast, the five accessions showed qualitatively similar aquaporin transcriptional profiles in response to salt. The overall work provides clues on how hydraulic regulation allows plant adaptation to salt stress. It also shows that a wide range of root hydraulic profiles, as previously reported in various species, can be observed in a single model species. This work paves the way for a quantitative genetics analysis of root hydraulics. PMID:21212301
Wang, Chi; Yan, Muyang; Jiang, Hui; Wang, Qi; He, Shang; Chen, Jingwen; Wang, Chengbin
2018-01-15
We aim to investigate the mechanism of aquaporin 4 (AQP 4) up-regulation during high-altitude cerebral edema (HACE) in rats under hypobaric hypoxia and preventative effect of puerarin. Rats were exposed to a hypobaric chamber with or without the preventative treatment of puerarin or dexamethasone. Morriz water maze was used to evaluate the spatial memory injury. HE staining and W/D ratio were used to evaluate edema injury. Rat astrocytes and microglia were co-cultured under the condition of hypoxia with the administration of p38 inhibitor, NF-κB inhibitor or puerarin. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF α) of cortex and culture supernatant were measured with ELISA. AQP4, phosphorylation of MAPKs, NF-κB pathway of cortex and astrocytes were measured by Western blot. Weakened spatial memory and cerebral edema were observed after hypobaric hypoxia exposure. AQP4, phosphorylation of NF-κB and MAPK signal pathway of cortex increased after hypoxia exposure and decreased with preventative treatment of puerarin. Hypoxia increased TNF-α and IL-6 levels in cortex and microglia and puerarin could prevent the increase of them. AQP4 of astrocytes increased after co-cultured with microglia when both were exposed to hypoxia. AQP4 showed a decrease after administered with p38 inhibitor, NF-κB inhibitor or puerarin. Hypoxia triggers inflammatory response, during which AQP4 of astrocytes can be up regulated through the release of TNF-α and IL-6 from microglia. Puerarin can exert a preventative effect on the increase of AQP4 through inhibiting the release of TNF-α and phosphorylation of NF-κB, MAPK pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Tao; Hu, Ya-Jun; Hao, Zhi-Peng; Li, Hong; Chen, Bao-Dong
2013-05-01
Arbuscular mycorrhizal (AM) symbiosis, established between AM fungi (AMF) and roots of higher plants, occurs in most terrestrial ecosystems. It has been well demonstrated that AM symbiosis can improve plant performance under various environmental stresses, including drought stress. However, the molecular basis for the direct involvement of AMF in plant drought tolerance has not yet been established. Most recently, we cloned two functional aquaporin genes, GintAQPF1 and GintAQPF2, from AM fungus Glomus intraradices. By heterologous gene expression in yeast, aquaporin localization, activities and water permeability were examined. Gene expressions during symbiosis in expose to drought stress were also analyzed. Our data strongly supported potential water transport via AMF to host plants. As a complement, here we adopted the monoxenic culture system for AMF, in which carrot roots transformed by Ri-T DNA were cultured with Glomus intraradices in two-compartment Petri dishes, to verify the aquaporin gene functions in assisting AMF survival under polyethylene glycol (PEG) treatment. Our results showed that 25% PEG significantly upregulated the expression of two aquaporin genes, which was in line with the gene functions examined in yeast. We therefore concluded that the aquaporins function similarly in AMF as in yeast subjected to osmotic stress. The study provided further evidence to the direct involvement of AMF in improving plant water relations under drought stresses.
Pirici, Ionica; Balsanu, Tudor Adrian; Bogdan, Catalin; Margaritescu, Claudiu; Divan, Tamir; Vitalie, Vacaras; Mogoanta, Laurentiu; Pirici, Daniel; Carare, Roxana Octavia; Muresanu, Dafin Fior
2017-12-23
Aquaporin-4 (AQP4) is the most abundant water channel in the brain, and its inhibition before inducing focal ischemia, using the AQP4 inhibitor TGN-020, has been showed to reduce oedema in imaging studies. Here, we aimed to evaluate, for the first time, the histopathological effects of a single dose of TGN-020 administered after the occlusion of the medial cerebral artery (MCAO). On a rat model of non-reperfusion ischemia, we have assessed vascular densities, albumin extravasation, gliosis, and apoptosis at 3 and 7 days after MCAO. TGN-020 significantly reduced oedema, glial scar, albumin effusion, and apoptosis, at both 3 and 7 days after MCAO. The area of GFAP-positive gliotic rim decreased, and 3D fractal analysis of astrocytic processes revealed a less complex architecture, possibly indicating water accumulating in the cytoplasm. Evaluation of the blood vessels revealed thicker basement membranes colocalizing with exudated albumin in the treated animals, suggesting that inhibition of AQP4 blocks fluid flow towards the parenchyma in the paravascular drainage pathways of the interstitial fluid. These findings suggest that a single dose of an AQP4 inhibitor can reduce brain oedema, even if administered after the onset of ischemia, and AQP4 agonists/antagonists might be effective modulators of the paravascular drainage flow.
Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System
NASA Technical Reports Server (NTRS)
Hill, Terry; Taylor ,Brandon W.
2012-01-01
Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System. With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water "super-Q" - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.
The role of aquaporins in polycystic ovary syndrome - A way towards a novel drug target in PCOS.
Wawrzkiewicz-Jałowiecka, Agata; Kowalczyk, Karolina; Pluta, Dagmara; Blukacz, Łukasz; Madej, Paweł
2017-05-01
Aquaporins (AQPs) are transmembrane proteins, able to transport water (and in some cases also small solutes, e. g. glycerol) through the cell membrane. There are twelve types of aquaporins (AQP1-AQP12) expressed in mammalian reproductive systems. According to literature, many diseases of the reproductive organs are correlated with changes of AQPs expression and their malfunction. That is the case in the polycystic ovary syndrome (PCOS), where dysfunctions of AQPs 7-9 and alterations in its levels occur. In this work, we postulate how AQPs are involved in PCOS-related disorders, in order to emphasize their potential therapeutic meaning as a drug target. Our research allows for a surprising inference, that genetic mutation causing malfunction and/or decreased expression of aquaporins, may be incorporated in the popular insulin-dependent hypothesis of PCOS pathogenesis. What is more, changes in AQP's expression may affect the folliculogenesis and follicular atresia in PCOS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ohrui, T; Nobira, H; Sakata, Y; Taji, T; Yamamoto, C; Nishida, K; Yamakawa, T; Sasuga, Y; Yaguchi, Y; Takenaga, H; Tanaka, Shigeo
2007-12-01
The atmospheric epiphyte Tillandsia ionantha is capable of surviving drought stress for 6 months or more without any exogenous water supply via an as of yet to be determined mechanism. When plants were soaked in water for 3 h, leaves absorbed a remarkably large amount of water (30-40% on the basis of fresh weight), exhibiting a bimodal absorption pattern. Radiolabeled water was taken up by the leaves by capillary action of the epidermal trichomes within 1 min (phase 1) and then transported intracellularly to leaf tissues over 3 h (phase 2). The removal of epidermal trichome wings from leaves as well as rinsing leaves with water significantly lowered the extracellular accumulation of water on leaf surfaces. The intracellular transport of water was inhibited by mercuric chloride, implicating the involvement of a water channel aquaporin in second-phase water absorption. Four cDNA clones (TiPIP1a, TiPIP1b, TiPIP1c, and TiPIP2a) homologous to PIP family aquaporins were isolated from the leaves, and RT-PCR showed that soaking plants in water stimulated the expression of TiPIP2a mRNA, suggesting the reinforcement in ability to rapidly absorb a large amount of water. The expression of TiPIP2a complementary RNA in Xenopus oocytes enhanced permeability, and treatment with inhibitors suggested that the water channel activity of TiPIP2a protein was regulated by phosphorylation. Thus, the high water uptake capability of T. ionantha leaves surviving drought is attributable to a bimodal trichome- and aquaporin-aided water uptake system based on rapid physical collection of water and subsequent, sustained chemical absorption.
Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.
Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo
2017-11-01
The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.
Hsu, Kate; Lee, Ting-Ying; Periasamy, Ammasi; Kao, Fu-Jen; Li, Li-Tzu; Lin, Chuang-Yu; Lin, Hui-Ju; Lin, Marie
2017-10-01
Human CO 2 respiration requires rapid conversion between CO 2 and HCO 3 - Carbonic anhydrase II facilitates this reversible reaction inside red blood cells, and band 3 [anion exchanger 1 (AE1)] provides a passage for HCO 3 - flux across the cell membrane. These 2 proteins are core components of the CO 2 transport metabolon. Intracellular H 2 O is necessary for CO 2 /HCO 3 - conversion. However, abundantly expressed aquaporin 1 (AQP1) in erythrocytes is thought not to be part of band 3 complexes or the CO 2 transport metabolon. To solve this conundrum, we used Förster resonance energy transfer (FRET) measured by fluorescence lifetime imaging (FLIM-FRET) and identified interaction between aquaporin-1 and band 3 at a distance of 8 nm, within the range of dipole-dipole interaction. Notably, their interaction was adaptable to membrane tonicity changes. This suggests that the function of AQP1 in tonicity response could be coupled or correlated to its function in band 3-mediated CO 2 /HCO 3 - exchange. By demonstrating AQP1 as a mobile component of the CO 2 transport metabolon, our results uncover a potential role of water channel in blood CO 2 transport and respiration.-Hsu, K., Lee, T.-Y., Periasamy, A., Kao, F.-J., Li, L.-T., Lin, C.-Y., Lin, H.-J., Lin, M. Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO 2 transport. © FASEB.
Crystal Structure of an Ammonia-Permeable Aquaporin
Kirscht, Andreas; Kaptan, Shreyas S.; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L.; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban
2016-01-01
Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants. PMID:27028365
Role of aquaporin and sodium channel in pleural water movement.
Jiang, Jinjun; Hu, Jie; Bai, Chunxue
2003-12-16
The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.
Brain Aquaporin-4 in Experimental Acute Liver Failure
Rama Rao, Kakulavarapu V.; Jayakumar, Arumugam R.; Tong, Xiaoying; Curtis, Kevin M.; Norenberg, Michael D.
2016-01-01
Intracranial hypertension due to brain edema and associated astrocyte swelling is a potentially lethal complication of acute liver failure (ALF). Mechanisms of edema formation are not well understood but elevated levels of blood and brain ammonia and its byproduct glutamine have been implicated in this process. We examined mRNA and protein expression of the water channel protein aquaporin-4 (AQP4) in cerebral cortex in a rat model of ALF induced by the hepatotoxin thioacetamide. Rats with ALF showed increased AQP4 protein in the plasma membrane (PM). Total tissue levels of AQP4 protein and mRNA levels were not altered indicating that increased AQP4 is not transcriptionally mediated but is likely due to a conformational change in the protein, i.e. a more stable anchoring of AQP4 to the PM and/or interference with its degradation. By immunohistochemistry there was an increase in AQP4 immunoreactivity in the PM of perivascular astrocytes in ALF. Rats with ALF showed increased levels of α-syntrophin, a protein involved in the anchoring of AQP4 to perivascular astrocytic end-feet. Increased AQP4 and α-syntrophin levels were inhibited by L-histidine, an inhibitor of glutamine transport into mitochondria, suggesting a role for glutamine in the increase of PM levels of AQP4. These results indicate that increased AQP4 PM levels in perivascular astrocytic end-feet are likely critical to the development of brain edema in ALF. PMID:20720509
Li, Tao; Hu, Ya-Jun; Hao, Zhi-Peng; Li, Hong; Wang, You-Shan; Chen, Bao-Dong
2013-01-01
Arbuscular mycorrhizal (AM) symbiosis is known to stimulate plant drought tolerance. However, the molecular basis for the direct involvement of AM fungi (AMF) in plant water relations has not been established. Two full-length aquaporin genes, namely GintAQPF1 and GintAQPF2, were cloned by rapid amplification of cDNA 5'- and 3'-ends from an AMF, Glomus intraradices. Aquaporin localization, activities and water permeability were examined by heterologous expression in yeast. Gene expression during symbiosis was also analyzed by quantitative real-time polymerase chain reaction. GintAQPF1 was localized to the plasma membrane of yeast, whereas GintAQPF2 was localized to both plasma and intracellular membranes. Transformed yeast cells exhibited a significant decrease in cell volume on hyperosmotic shock and faster protoplast bursting on hypo-osmotic shock. Polyethylene glycol (PEG) stimulated, but glycerol inhibited, the aquaporin activities. Furthermore, the expression of the two genes in arbuscule-enriched cortical cells and extraradical mycelia of maize roots was also enhanced significantly under drought stress. GintAQPF1 and GintAQPF2 are the first two functional aquaporin genes from AMF reported to date. Our data strongly support potential water transport via AMF to host plants, which leads to a better understanding of the important role of AMF in plant drought tolerance. © 2012 Research Centre for Eco-Environmental Sciences, CAS New Phytologist © 2012 New Phytologist Trust.
Aquaporins in Clinical Medicine
Verkman, A.S.
2012-01-01
The aquaporins are a family of membrane water channels, some of which also transport glycerol. They are involved in a wide range of physiological functions (including water/salt homeostasis, exocrine fluid secretion, and epidermal hydration) and human diseases (including glaucoma, cancer, epilepsy, and obesity). At the cellular level, aquaporin-mediated osmotic water transport across cell plasma membranes facilitates transepithelial fluid transport, cell migration, and neuroexcitation; aquaporin-mediated glycerol transport regulates cell proliferation, adipocyte metabolism, and epidermal water retention. Genetic diseases caused by loss-of-function mutations in aquaporins include nephrogenic diabetes insipidus and congenital cataracts. The neuroinflammatory demyelinating disease neuromyelitis optica is marked by pathogenic autoantibodies against astrocyte water channel aquaporin-4. There remain broad opportunities for the development of aquaporin-based diagnostics and therapeutics. Disease-relevant aquaporin polymorphisms are beginning to be explored. There is great promise in the development of small-molecule aquaporin modulators for therapy of some types of refractory edema, brain swelling, neuroinflammation, glaucoma, epilepsy, cancer, pain, and obesity. PMID:22248325
Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong
2012-01-01
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25–6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5–4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = −0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema. PMID:25657707
Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong
2012-07-25
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.
Aquaporin structure-function relationships: water flow through plant living cells.
Zhao, Chang-Xing; Shao, Hong-Bo; Chu, Li-Ye
2008-04-01
Plant aquaporins play an important role in water uptake and movement-an aquaporin that opens and closes a gate that regulates water movement in and out of cells. Some plant aquaporins also play an important role in response to water stress. Since their discovery, advancing knowledge of their structures and properties led to an understanding of the basic features of the water transport mechanism and increased illumination to water relations. Meanwhile, molecular and functional characterization of aquaporins has revealed the significance of their regulation in response to the adverse environments such as salinity and drought. This paper reviews the structure, species diversity, physiology function, regulation of plant aquaporins, and the relations between environmental factors and plant aquaporins. Complete understanding of aquaporin function and regulation is to integrate those mechanisms in time and space and to well regulate the permeation of water across biological membranes under changing environmental and developmental conditions.
Farlora, Rodolfo; Valenzuela-Muñoz, Valentina; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian
2016-07-01
Aquaporins are small integral membrane proteins that function as pore channels for the transport of water and other small solutes across the cell membrane. Considering the important roles of these proteins in several biological processes, including host-parasite interactions, there has been increased research on aquaporin proteins recently. The present study expands on the knowledge of aquaporin family genes in parasitic copepods, examining diversity and expression during the ontogeny of the sea louse Caligus rogercresseyi. Furthermore, aquaporin expression was evaluated during the early infestation of Atlantic (Salmo salar) and Coho salmon (Oncorhynchus kisutch). Deep transcriptome sequencing data revealed eight full length and two partial open reading frames belonging to the aquaporin protein family. Clustering analyses with identified Caligidae sequences revealed three major clades of aquaglyceroporins (Cr-Glp), classical aquaporin channels (Cr-Bib and Cr-PripL), and unorthodox aquaporins (Cr-Aqp12-like). In silico analysis revealed differential expression of aquaporin genes between developmental stages and between sexes. Male-biased expression of Cr-Glp1_v1 and female-biased expression of Cr-Bib were further confirmed in adults by RT-qPCR. Additionally, gene expressions were measured for seven aquaporins during the early infestation stage. The majority of aquaporin genes showed significant differential transcription expressions between sea lice parasitizing different hosts, with Atlantic salmon sea lice exhibiting overall reduced expression as compared to Coho salmon. The observed differences in the regulation of aquaporin genes may reveal osmoregulatory adaptations associated with nutrient ingestion and metabolite waste export, exposing complex host-parasite relationships in C. rogercresseyi. Copyright © 2016 Elsevier B.V. All rights reserved.
Järvå, Michael; Alm Rosenblad, Magnus; Pingitore, Piero; Karlsson, Emil; Wrange, Anna-Lisa; Kamdal, Emelie; Sundell, Kristina; André, Carl; Jonsson, Per R.; Havenhand, Jon; Eriksson, Leif A.; Hedfalk, Kristina; Blomberg, Anders
2017-01-01
Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation. PMID:28715506
Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System
NASA Technical Reports Server (NTRS)
Hill, Terry R.; Taylor, Brandon W.
2011-01-01
With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water 'super-Q' - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.
Expression and inhibition of aquaporins in germinating Arabidopsis seeds.
Vander Willigen, Clare; Postaire, Olivier; Tournaire-Roux, Colette; Boursiac, Yann; Maurel, Christophe
2006-09-01
Extensive and kinetically well-defined water exchanges occur during germination of seeds. A putative role for aquaporins in this process was investigated in Arabidopsis. Macro-arrays carrying aquaporin gene-specific tags and antibodies raised against aquaporin subclasses revealed two distinct aquaporin expression programs between dry seeds and young seedlings. High expression levels of a restricted number of tonoplast intrinsic protein (TIP) isoforms (TIP3;1 and/or TIP3;2, and TIP5;1) together with a low expression of all 13 plasma membrane aquaporin (PIP) isoforms was observed in dry and germinating materials. In contrast, prevalent expression of aquaporins of the TIP1, TIP2 and PIP subgroups was induced during seedling establishment. Mercury (5 microM HgCl(2)), a general blocker of aquaporins in various organisms, reduced the speed of seed germination and induced a true delay in maternal seed coat (testa) rupture and radicle emergence, by 8-9 and 25-30 h, respectively. Most importantly, mercury did not alter seed lot homogeneity nor the seed germination developmental sequence, and its effects were largely reversed by addition of 2 mM dithiothreitol, suggesting that these effects were primarily due to oxidation of cell components, possibly aquaporins, without irreversible alteration of cell integrity. Measurements of water uptake in control and mercury-treated seeds suggested that aquaporin functions are not involved in early seed imbibition (phase I) but would rather be associated with a delayed initiation of phase III, i.e. water uptake accompanying expansion and growth of the embryo. A possible role for aquaporins in germinating seeds and more generally in plant tissue growth is discussed.
Wei, Fang; Zhang, Cui; Xue, Rong; Shan, Lidong; Gong, Shan; Wang, Guoqing; Tao, Jin; Xu, Guangyin; Zhang, Guoxing; Wang, Linhui
2017-08-01
It has been proved that cerebrospinal fluid (CSF) in the subarachnoid space could reenter the brain parenchyma via the perivascular space. The present study was designed to explore the pathway of subarachnoid CSF flux into the spinal cord and the potential role of aquaporin-4 (AQP4) in this process. Fluorescently tagged cadaverine, for the first time, was used to study CSF movement in mice. Following intracisternal infusion of CSF tracers, the cervical spinal cord was sliced and prepared for fluorescence imaging. Some sections were subject with immunostaining in order to observe tracer distribution and AQP4 expression. Fluorescently tagged cadaverine rapidly entered the spinal cord. Tracer influx into the spinal parenchyma was time dependent. At 10min post-infusion, cadaverine was largely distributed in the superficial tissue adjacent to the pial surface. At 70min post-infusion, cadaverine was distributed in the whole cord and especially concentrated in the gray matter. Furthermore, fluorescent tracer could enter the spinal parenchyma either along the perivascular space or across the pial surface. AQP4 was observed highly expressed in the astrocytic endfeet surrounding blood vessels and the pial surface. Blocking AQP4 by its specific inhibitor TGN-020 strikingly reduced the inflow of CSF tracers into the spinal cord. Subarachnoid CSF could flow into the spinal cord along the perivascular space or across the pial surface, in which AQP4 is involved. Our observation provides a basis for the study on CSF movement in the spinal cord when some neurological diseases occur. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A cDNA encoding an aquaporin from the cattle tick, Rhipicephalus microplus, was isolated from transcriptomic studies. Bioinformatic analysis indicates this aquaporin, designated RmAQP1, shows greatest amino acid similarity to the human aquaporin 7 family. Members of this family of water-conducting c...
Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins.
Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won
2013-12-01
Aquaporins belongs to the major intrinsic proteins involved in the transcellular membrane transport of water and other small solutes. A comprehensive genome-wide search for the homologues of Solanum tuberosum major intrinsic protein (MIP) revealed 41 full-length potato aquaporin genes. All potato aquaporins are grouped into five subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and x-intrinsic proteins (XIPs). Functional predictions based on the aromatic/arginine (ar/R) selectivity filters and Froger's positions showed a remarkable difference in substrate transport specificity among subfamilies. The expression pattern of potato aquaporins, examined by qPCR analysis, showed distinct expression profiles in various organs and tuber developmental stages. Furthermore, qPCR analysis of potato plantlets, subjected to various abiotic stresses revealed the marked effect of stresses on expression levels of aquaporins. Taken together, the expression profiles of aquaporins imply that aquaporins play important roles in plant growth and development, in addition to maintaining water homeostasis in response to environmental stresses. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Li, Chunxiang; Li, Xiaofu; Wu, Linfeng; Jiang, Zheng
2017-08-01
Hilar cholangiocarcinomas are malignant tumors with a poor prognosis. An early prediction of prognosis for patients may help us determine treatment strategies. Aquaporin 1 is a cell membrane channel involved in water transport, cell motility, and proliferation. Increasing evidences showed that aquaporin 1 played a role in tumor prognosis and diagnosis. The purpose of this study is to evaluate the role of aquaporin 1 in hilar cholangiocarcinoma. Here, we analyzed messenger RNA expression data of genes function as bile secretion in a data set of 169 samples using the R2 bioinformatic platform ( http://r2.amc.nl ). Quantitative polymerase chain reaction was performed to verify the gene expression in 17 hilar cholangiocarcinoma samples. Immunohistochemistry was also performed in a series of specimens from 62 hilar cholangiocarcinoma tissues, and its clinical significance was assessed by clinical correlation and Kaplan-Meier analyses. All data were analyzed using the R2 web application, aquaporin 1 was selected for further analysis. The significant expression variation of aquaporin 1 among 17 cases with cholangiocarcinoma was also found using quantitative polymerase chain reaction. The expression level of aquaporin 1 protein significantly correlated with tumor-node-metastasis stage ( P = .002) and overall survival time ( P = .010). Higher aquaporin 1 expression indicated poor prognostic outcomes ( P <.05, log-rank test). Multivariate analysis also showed strong aquaporin 1 protein expression was an independent adverse prognosticator in hilar cholangiocarcinoma ( P = .002). This study highlighted the prognostic value of aquaporin 1 in hilar cholangiocarcinoma. Strong aquaporin 1 expression predicts poor survival, regardless of pathological features. Immunohistochemical detection of aquaporin 1, as a prognostic marker, may contribute to predicting clinical outcome for patients with hilar cholangiocarcinoma.
Baaziz, Khaoula Ben; Lopez, David; Rabot, Amelie; Combes, Didier; Gousset, Aurelie; Bouzid, Sadok; Cochard, Herve; Sakr, Soulaiman; Venisse, Jean-Stephane
2012-04-01
Understanding the response of leaf hydraulic conductance (K(leaf)) to light is a challenge in elucidating plant-water relationships. Recent data have shown that the effect of light on K(leaf) is not systematically related to aquaporin regulation, leading to conflicting conclusions. Here we investigated the relationship between light, K(leaf), and aquaporin transcript levels in five tree species (Juglans regia L., Fagus sylvatica L., Quercus robur L., Salix alba L. and Populus tremula L.) grown in the same environmental conditions, but differing in their K(leaf) responses to light. Moreover, the K(leaf) was measured by two independent methods (high-pressure flow metre (HPFM) and evaporative flux method (EFM)) in the most (J. regia) and least (S. alba) responsive species and the transcript levels of aquaporins were analyzed in perfused and unperfused leaves. Here, we found that the light-induced K(leaf) value was closely related to stronger expression of both the PIP1 and PIP2 aquaporin genes in walnut (J. regia), but to stimulation of PIP1 aquaporins alone in F. sylvatica and Q. robur. In walnut, all newly identified aquaporins were found to be upregulated in the light and downregulated in the dark, further supporting the relationship between the light-mediated induction of K(leaf) and aquaporin expression in walnut. We also demonstrated that the K(leaf) response to light was quality-dependent, K(leaf) being 60% lower in the absence of blue light. This decrease in K(leaf) was correlated with strong downregulation of three PIP2 aquaporins and of all the PIP1 aquaporins tested. These data support a relationship between light-mediated K(leaf) regulation and the abundance of aquaporin transcripts in the walnut tree.
Navarro-Ródenas, Alfonso; Ruíz-Lozano, Juan Manuel; Kaldenhoff, Ralf; Morte, Asunción
2012-02-01
Terfezia claveryi is a hypogeous mycorrhizal fungus belonging to the so-called "desert truffles," with a good record as an edible fungus and of considerable economic importance. T. claveryi improves the tolerance to water stress of the host plant Helianthemum almeriense, for which, in field conditions, symbiosis with T. claveryi is valuable for its survival. We have characterized cDNAs from T. claveryi and identified a sequence related to the aquaporin gene family. The full-length sequence was obtained by rapid amplification of cDNA ends and was named TcAQP1. This aquaporin gene encoded a functional water-channel protein, as demonstrated by heterologous expression assays in Saccharomyces cerevisiae. The mycorrhizal fungal aquaporin increased both water and CO(2) conductivity in the heterologous expression system. The expression patterns of the TcAQP1 gene in mycelium, under different water potentials, and in mycorrhizal plants are discussed. The high levels of water conductivity of TcAQP1 could be related to the adaptation of this mycorrhizal fungus to semiarid areas. The CO(2) permeability of TcAQP1 could be involved in the regulation of T. claveryi growth during presymbiotic phases, making it a good candidate to be considered a novel molecular signaling channel in mycorrhizal fungi.
Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.
Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S
2015-05-01
Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. Copyright © 2015 the American Physiological Society.
Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium
Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming
2015-01-01
Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484
Dynamic regulation of aquaporin-4 water channels in neurological disorders
Hsu, Ying; Tran, Minh; Linninger, Andreas A.
2015-01-01
Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution. PMID:26526878
A brief survey of aquaporins and their implications for renal physiology.
Gade, Wayne; Robinson, Brooke
2006-01-01
Aquaporins (AQPs) are an important family of proteins that efficiently channel water through the cell membranes. Although water can diffuse across biological membranes at measurable rates, physiologists had long predicted the existence of channels to facilitate rapid reabsorption of water by renal tubular cells. With AQPs present, water can "gush" through the membrane at the extraordinary rate of three billion water molecules per second per aquaporin channel. In their absence, water only trickles across the hydrophobic lipid bilayers of cell membranes. Aquaporins have fascinated researchers over the last decade, culminating in the 2003 Nobel Prize for Chemistry given to their discoverer, Dr. Peter Agre. During the 1990s, scientists identified and characterized members of the mammalian aquaporin family, now designated as AQP0 through AQP10. AQPs are also found in many plant and bacterial species. However, their relevance to the clinical laboratory is only recently emerging. Dr. Agre's Nobel symposium address provides an excellent mini-review of aquaporins in medicine. Our understanding of renal physiology and pathophysiology has advanced greatly as we account for the subtle implications of various AQP systems. For example, nephrogenic diabetes insipidus (NDI), the inability to produce concentrated urine, can result from several different malfunctions in the AQP2 system controlled by anti-diuretic hormone (ADH). Virtually all mammalian cells incorporate aquaporins into their cell membranes, and many cells produce multiple aquaporins, each with a specific function. It is therefore not surprising that malfunctions have important clinical conditions. The present article discusses the implications of aquaporins for renal physiology, while the accompanying article is focused on the clinical aspects of aquaporins.
Aquaporins in the kidney: emerging new aspects.
Yamamoto, T; Sasaki, S
1998-10-01
Since 1992 and the discovery of an MIP (major intrinsic protein of lens fiber cell) homologue protein that selectively permeates water, aquaporin (AQP), there has been an explosion of research in this field. Early research speculated that aquaporins played indispensible physiological roles in bacteria and plants, as well as in mammalian organs such as red blood cells, kidney, eye, brain and lung, where water transport rapidly takes place. Yet human subjects were identified who lacked AQP1 and yet had no apparent phenotypical changes clinically. To date 10 aquaporins have been discovered and a plethora of MIP members, and their prevalance in almost all organisms is a testament to their indispensible roles in the body, possibly as water and small neutral solute transporting channels. The recent localization of many different aquaporins in the same organ indicates that they may work cooperatively, which may partially explain the mystery of their physiological mechanism. Because the physiological roles of most aquaporins are currently only speculation, more extensive research is necessary to understand the exact function of each aquaporin.
Aquaporins: important but elusive drug targets
Verkman, Alan S.; Anderson, Marc O.; Papadopoulos, Marios C.
2014-01-01
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators. PMID:24625825
Shivaraj, S. M.; Deshmukh, Rupesh K.; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K.; Dash, Prasanta K.
2017-01-01
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax. PMID:28447607
Shivaraj, S M; Deshmukh, Rupesh K; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K; Dash, Prasanta K
2017-04-27
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.
Putpeerawit, Pattaranit; Sojikul, Punchapat; Thitamadee, Siripong; Narangajavana, Jarunya
2017-12-01
Cassava (Manihot esculenta Crantz) is an important economic crop in tropical countries. Although cassava is considered a drought-tolerant crop that can grow in arid areas, the impact of drought can significantly reduce the growth and yield of cassava storage roots. The discovery of aquaporin molecules (AQPs) in plants has resulted in a paradigm shift in the understanding of plant-water relationships, whereas the relationship between aquaporin and drought resistance in cassava still remains elusive. To investigate the potential role of aquaporin in cassava under water-deficit conditions, 45 putative MeAQPs were identified in the cassava genome. Six members of MeAQPs, containing high numbers of water stress-responsive motifs in their promoter regions, were selected for a gene expression study. Two cassava cultivars, which showed different degrees of responses to water-deficit stress, were used to test in in vitro and potted plant systems. The differential expression of all candidate MeAQPs were found in only leaves from the potted plant system were consistent with the relative water content and with the stomatal closure profile of the two cultivars. MePIP2-1 and MePIP2-10 were up-regulated and this change in their expression might regulate a special signal for water efflux out of guard cells, thus inducing stomatal closure under water-deficit conditions. In addition, the expression profiles of genes in the ABA-dependent pathway revealed an essential correlation with stomatal closure. The potential functions of MeAQPs and candidate ABA-dependent pathway genes in response to water deficit in the more tolerant cassava cultivar were discussed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Aquaporins in Salivary Glands: From Basic Research to Clinical Applications
Delporte, Christine; Bryla, Angélic; Perret, Jason
2016-01-01
Salivary glands are involved in saliva secretion that ensures proper oral health. Aquaporins are expressed in salivary glands and play a major role in saliva secretion. This review will provide an overview of the salivary gland morphology and physiology of saliva secretion, and focus on the expression, subcellular localization and role of aquaporins under physiological and pathophysiological conditions, as well as clinical applications involving aquaporins. This review is highlighting expression and localization of aquaporins in human, rat and mouse, the most studied species and is pointing out possible difference between major salivary glands, i.e., parotid, submandibular and sublingual glands. PMID:26828482
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester
Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessedmore » by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS. ► Aquaporin-8 knockdown causes ROS-induced mitochondrial depolarization and cell death. ► Mitochondrial permeability transition blockage prevents depolarization and cell death.« less
Jakowiecki, Jakub; Sztyler, Agnieszka; Filipek, Slawomir; Li, Pingzuo; Raman, Karthik; Barathiraja, Natarajan; Ramakrishna, Seeram; Eswara, Jairam R; Altaee, Ali; Sharif, Adel O; Ajayan, Pulickel M; Renugopalakrishnan, Venkatesan
2018-06-06
The aquaporin superfamily of hydrophobic integral membrane proteins constitutes water channels essential to the movement of water across the cell membrane, maintaining homeostatic equilibrium. During the passage of water between the extracellular and intracellular sides of the cell, aquaporins act as ultra-sensitive filters. Owing to their hydrophobic nature, aquaporins self-assemble in phospholipids. If a proper choice of lipids is made then the aquaporin biomimetic membrane can be used in the design of an artificial kidney. In combination with graphene, the aquaporin biomimetic membrane finds practical application in desalination and water recycling using mostly Escherichia coli AqpZ. Recently, human aquaporin 1 has emerged as an important biomarker in renal cell carcinoma. At present, the ultra-sensitive sensing of renal cell carcinoma is cumbersome. Hence, we discuss the use of epitopes from monoclonal antibodies as a probe for a point-of-care device for sensing renal cell carcinoma. This device works by immobilizing the antibody on the surface of a single-layer graphene, that is, as a microfluidic device for sensing renal cell carcinoma.
Aquaporins and plant transpiration.
Maurel, Christophe; Verdoucq, Lionel; Rodrigues, Olivier
2016-11-01
Although transpiration and aquaporins have long been identified as two key components influencing plant water status, it is only recently that their relations have been investigated in detail. The present review first examines the various facets of aquaporin function in stomatal guard cells and shows that it involves transport of water but also of other molecules such as carbon dioxide and hydrogen peroxide. At the whole plant level, changes in tissue hydraulics mediated by root and shoot aquaporins can indirectly impact plant transpiration. Recent studies also point to a feedback effect of transpiration on aquaporin function. These mechanisms may contribute to the difference between isohydric and anisohydric stomatal regulation of leaf water status. The contribution of aquaporins to transpiration control goes far beyond the issue of water transport during stomatal movements and involves emerging cellular and long-distance signalling mechanisms which ultimately act on plant growth. © 2016 John Wiley & Sons Ltd.
New challenges in plant aquaporin biotechnology.
Martinez-Ballesta, Maria del Carmen; Carvajal, Micaela
2014-03-01
Recent advances concerning genetic manipulation provide new perspectives regarding the improvement of the physiological responses in herbaceous and woody plants to abiotic stresses. The beneficial or negative effects of these manipulations on plant physiology are discussed, underlining the role of aquaporin isoforms as representative markers of water uptake and whole plant water status. Increasing water use efficiency and the promotion of plant water retention seem to be critical goals in the improvement of plant tolerance to abiotic stress. However, newly uncovered mechanisms, such as aquaporin functions and regulation, may be essential for the beneficial effects seen in plants overexpressing aquaporin genes. Under distinct stress conditions, differences in the phenotype of transgenic plants where aquaporins were manipulated need to be analyzed. In the development of nano-technologies for agricultural practices, multiple-walled carbon nanotubes promoted plant germination and cell growth. Their effects on aquaporins need further investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha
2013-01-01
Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial role for LTCCs in regulation of expression, activity and stability of aquaporin-0, connexins, cytoskeletal proteins, and the mechanical properties of lens, all of which have a vital role in maintaining lens function and cytoarchitecture.
A Nanoscale Interface Promoting Molecular and Functional Differentiation of Neural Cells
NASA Astrophysics Data System (ADS)
Posati, Tamara; Pistone, Assunta; Saracino, Emanuela; Formaggio, Francesco; Mola, Maria Grazia; Troni, Elisabetta; Sagnella, Anna; Nocchetti, Morena; Barbalinardo, Marianna; Valle, Francesco; Bonetti, Simone; Caprini, Marco; Nicchia, Grazia Paola; Zamboni, Roberto; Muccini, Michele; Benfenati, Valentina
2016-08-01
Potassium channels and aquaporins expressed by astrocytes are key players in the maintenance of cerebral homeostasis and in brain pathophysiologies. One major challenge in the study of astrocyte membrane channels in vitro, is that their expression pattern does not resemble the one observed in vivo. Nanostructured interfaces represent a significant resource to control the cellular behaviour and functionalities at micro and nanoscale as well as to generate novel and more reliable models to study astrocytes in vitro. However, the potential of nanotechnologies in the manipulation of astrocytes ion channels and aquaporins has never been previously reported. Hydrotalcite-like compounds (HTlc) are layered materials with increasing potential as biocompatible nanoscale interface. Here, we evaluate the effect of the interaction of HTlc nanoparticles films with primary rat neocortical astrocytes. We show that HTlc films are biocompatible and do not promote gliotic reaction, while favouring astrocytes differentiation by induction of F-actin fibre alignment and vinculin polarization. Western Blot, Immunofluorescence and patch-clamp revealed that differentiation was accompanied by molecular and functional up-regulation of both inward rectifying potassium channel Kir 4.1 and aquaporin 4, AQP4. The reported results pave the way to engineering novel in vitro models to study astrocytes in a in vivo like condition.
Aquaporins: The renal water channels
Agarwal, S. K.; Gupta, A.
2008-01-01
Water is the most abundant molecule in any cell. Specialized membrane channel, proteins called aquaporins, facilitate water transport across cell membranes. At least seven aquaporins (AQP): 1, 2, 3, 4, 6, 7, and 11 are expressed in the kidneys. Aquaporins play a role in both the short-term and long-term regulation of water balance as well as in the pathophysiology of water balance disorders. Aquaporin is composed of a single peptide chain consisting of approximately 270 amino acids. Inherited central and nephrogenic diabetes insipidus are primarily due to the decreased expression of AQP2 while mutation in the AQP2 molecule is responsible for inherited central diabetes insipidus. In acquired causes of nephrogenic diabetes insipidus, there is a downregulation of AQP2 expression in the inner medulla of the kidney. Nephrotic syndrome is characterized by excessive sodium and water reabsorption, although in spite of this, patients do not develop hyponatremia. There is a marked downregulation of both AQP2 and AQP3 expression, which could be a physiologic response to extracellular water reabsorption in patients with nephrotic syndrome. There are some conditions in which aquaporin expression has been found to increase such as experimentally induced heart failure, cirrhosis, and pregnancy. Some drugs such as cisplatin and cyclosporine, also alter the expression of aquaporins. The three-pore model of peritoneal transport depicts the importance of aquaporins. Thus, the understanding of renal water channels has solved the mystery behind many water balance disorders. Further insights into the molecular structure and biology of aquaporins will help to lay a foundation for the development of future drugs. PMID:20142913
Plasma membrane aquaporins mediates vesicle stability in broccoli
Martínez-Ballesta, Maria del Carmen; García-Gomez, Pablo; Yepes-Molina, Lucía; Guarnizo, Angel L.; Teruel, José A.
2018-01-01
The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability. PMID:29420651
Expression of aquaporin water channels in rat taste buds.
Watson, Kristina J; Kim, Insook; Baquero, Arian F; Burks, Catherine A; Liu, Lidong; Gilbertson, Timothy A
2007-06-01
In order to gain insight into the molecular mechanisms that allow taste cells to respond to changes in their osmotic environment, we have used primarily immunocytochemical and molecular approaches to look for evidence of the presence of aquaporin-like water channels in taste cells. Labeling of isolated taste buds from the fungiform, foliate, and vallate papillae in rat tongue with antibodies against several of the aquaporins (AQPs) revealed the presence of AQP1, AQP2, and AQP5 in taste cells from these areas. AQP3 antibodies failed to label isolated taste buds from any of the papillae. There was an apparent difference in the regional localization of AQP labeling within the taste bud. Antibodies against AQP1 and AQP2 labeled predominantly the basolateral membrane, whereas the AQP5 label was clearly evident on both the apical and basolateral membranes of cells within the taste bud. Double labeling revealed that AQP1 and AQP2 labeled many, but not all, of the same taste cells. Similar double-labeling experiments with anti-AQP2 and anti-AQP5 clearly showed that AQP5 was expressed on or near the apical membranes whereas AQP2 was absent from this area. The presence of these 3 types of AQPs in taste buds but not in non-taste bud-containing epithelia was confirmed using reverse transcription-polymerase chain reaction. Experiments using patch clamp recording showed that the AQP inhibitor, tetraethylammonium, significantly reduced hypoosmotic-induced currents in rat taste cells. We hypothesize that the AQPs may play roles both in the water movement underlying compensatory mechanisms for changes in extracellular osmolarity and, in the case of AQP5 in particular, in the gustatory response to water.
Ariani, Andrea; Gepts, Paul
2015-10-01
Plant aquaporins are a large and diverse family of water channel proteins that are essential for several physiological processes in living organisms. Numerous studies have linked plant aquaporins with a plethora of processes, such as nutrient acquisition, CO2 transport, plant growth and development, and response to abiotic stresses. However, little is known about this protein family in common bean. Here, we present a genome-wide identification of the aquaporin gene family in common bean (Phaseolus vulgaris L.), a legume crop essential for human nutrition. We identified 41 full-length coding aquaporin sequences in the common bean genome, divided by phylogenetic analysis into five sub-families (PIPs, TIPs, NIPs, SIPs and XIPs). Residues determining substrate specificity of aquaporins (i.e., NPA motifs and ar/R selectivity filter) seem conserved between common bean and other plant species, allowing inference of substrate specificity for these proteins. Thanks to the availability of RNA-sequencing datasets, expression levels in different organs and in leaves of wild and domesticated bean accessions were evaluated. Three aquaporins (PvTIP1;1, PvPIP2;4 and PvPIP1;2) have the overall highest mean expressions, with PvTIP1;1 having the highest expression among all aquaporins. We performed an EST database mining to identify drought-responsive aquaporins in common bean. This analysis showed a significant increase in expression for PvTIP1;1 in drought stress conditions compared to well-watered environments. The pivotal role suggested for PvTIP1;1 in regulating water homeostasis and drought stress response in the common bean should be verified by further field experimentation under drought stress.
Toussaint, Jimmy; Raval, Chirag Bharavi; Nguyen, Tieuvi; Fadaifard, Hadi; Joshi, Shripad; Wolberg, George; Quarfordt, Steven; Jan, Kung-Ming; Rumschitzki, David S
2017-11-01
Numerous studies have examined the role of aquaporins in osmotic water transport in various systems, but virtually none have focused on the role of aquaporin in hydrostatically driven water transport involving mammalian cells save for our laboratory's recent study of aortic endothelial cells. Here, we investigated aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genetically altered Wistar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two-kidney, one-clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry and function by measuring the pressure-driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We used them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2 h of forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis. NEW & NOTEWORTHY The aortic endothelia of two high-renin hypertensive rat models express greater than two times the aquaporin-1 and, at low pressures, have greater than two times the endothelial hydraulic conductivity of normotensive rats. Data are consistent with theory predicting that higher endothelial aquaporin-1 expression raises the critical pressure for subendothelial intima compression and for artery wall hydraulic conductivity to drop. Copyright © 2017 the American Physiological Society.
Aquaporins and membrane diffusion of CO2 in living organisms.
Kaldenhoff, Ralf; Kai, Lei; Uehlein, Norbert
2014-05-01
Determination of CO2 diffusion rates in living cells revealed inconsistencies with existing models about the mechanisms of membrane gas transport. Mainly, these discrepancies exist in the determined CO2 diffusion rates of bio-membranes, which were orders of magnitudes below those for pure lipid bilayers or theoretical considerations as well as in the observation that membrane insertion of specific aquaporins was rescuing high CO2 transport rates. This effect was confirmed by functional aquaporin protein analysis in heterologous expression systems as well as in bacteria, plants and partly in mammals. This review summarizes the arguments in favor of and against aquaporin facilitated membrane diffusion of CO2 and reports about its importance for the physiology of living organisms. Most likely, the aquaporin tetramer forming an additional fifth pore is required for CO2 diffusion facilitation. Aquaporin tetramer formation, membrane integration and disintegration could provide a mechanism for regulation of cellular CO2 exchange. The physiological importance of aquaporin mediated CO2 membrane diffusion could be shown for plants and cyanobacteria and partly for mammals. Taking the mentioned results into account, consequences for our current picture of cell membrane transport emerge. It appears that in some or many instances, membranes might not be as permeable as it was suggested by current bio-membrane models, opening an additional way of controlling the cellular influx or efflux of volatile substances like CO2. This article is part of a Special Issue entitled Aquaporins. © 2013.
The Role of Aquaporins in Ocular Lens Homeostasis
Schey, Kevin L.; Petrova, Rosica S.; Gletten, Romell B.; Donaldson, Paul J.
2017-01-01
Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required. PMID:29231874
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Patrick Vane; Mayer, Tom; Cygan, Randall Timothy
2011-01-01
Nanomaterials and nanotechnology methods have been an integral part of international research over the past decade. Because many traditional water treatment technologies (e.g. membrane filtration, biofouling, scale inhibition, etc.) depend on nanoscale processes, it is reasonable to expect one outcome of nanotechnology research to be better, nano-engineered water treatment approaches. The most immediate, and possibly greatest, impact of nanotechnology on desalination methods will likely be the development of membranes engineered at the near-molecular level. Aquaporin proteins that channel water across cell membranes with very low energy inputs point to the potential for dramatically improved performance. Aquaporin-laced polymer membranes and aquaporin-mimickingmore » carbon nanotubes and metal oxide membranes developed in the lab support this. A critical limitation to widespread use of nanoengineered desalination membranes will be their scalability to industrial fabrication processes. Subsequent, long-term improvements in nanoengineered membranes may result in self-healing membranes that ideally are (1) more resistant to biofouling, (2) have biocidal properties, and/or (3) selectively target trace contaminants.« less
Challenges in Commercializing Biomimetic Membranes.
Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus
2015-11-05
The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market-in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.
Stavang, Jon Anders; Chauvigné, Francois; Kongshaug, Heidi; Cerdà, Joan; Nilsen, Frank; Finn, Roderick Nigel
2015-08-19
An emerging field in biomedical research is focusing on the roles of aquaporin water channels in parasites that cause debilitating or lethal diseases to their vertebrate hosts. The primary vectorial agents are hematophagous arthropods, including mosquitoes, flies, ticks and lice, however very little is known concerning the functional diversity of aquaporins in non-insect members of the Arthropoda. Here we conducted phylogenomic and functional analyses of aquaporins in the salmon louse, a marine ectoparasitic copepod that feeds on the skin and body fluids of salmonids, and used the primary structures of the isolated channels to uncover the genomic repertoires in Arthropoda. Genomic screening identified 7 aquaporin paralogs in the louse in contrast to 42 in its host the Atlantic salmon. Phylogenetic inference of the louse nucleotides and proteins in relation to orthologs identified in Chelicerata, Myriapoda, Crustacea and Hexapoda revealed that the arthropod aquaporin superfamily can be classified into three major grades (1) classical aquaporins including Big brain (Bib) and Prip-like (PripL) channels (2) aquaglyceroporins (Glp) and (3) unorthodox aquaporins (Aqp12-like). In Hexapoda, two additional subfamilies exist as Drip and a recently classified entomoglyceroporin (Eglp) group. Cloning and remapping the louse cDNAs to the genomic DNA revealed that they are encoded by 1-7 exons, with two of the Glps being expressed as N-terminal splice variants (Glp1_v1, -1_v2, -3_v1, -3_v2). Heterologous expression of the cRNAs in amphibian oocytes demonstrated that PripL transports water and urea, while Bib does not. Glp1_v1, -2, -3_v1 and -3_v2 each transport water, glycerol and urea, while Glp1_v2 and the Aqp12-like channels were retained intracellularly. Transcript abundance analyses revealed expression of each louse paralog at all developmental stages, except for glp1_v1, which is specific to preadult and adult males. Our data suggest that the aquaporin repertoires of extant arthropods have expanded independently in the different lineages, but can be phylogenetically classified into three major grades as opposed to four present in deuterostome animals. While the aquaporin repertoire of Atlantic salmon represents a 6-fold redundancy compared to the louse, the functional assays reveal that the permeation properties of the different crustacean grades of aquaporin are largely conserved to the vertebrate counterparts.
Ratelade, Julien; Verkman, A S
2014-11-01
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bi-functionality of Opisthorchis viverrini aquaporins.
Geadkaew, Amornrat; von Bülow, Julia; Beitz, Eric; Tesana, Smarn; Vichasri Grams, Suksiri; Grams, Rudi
2015-01-01
Aquaporins (AQP) are essential mediators of water regulation in all living organisms and members of the major intrinsic protein (MIP) superfamily of integral membrane proteins. They are potential vehicles or targets for chemotherapy, e.g. in Trypanosoma brucei melarsoprol and pentamidine uptake is facilitated by TbAQP-2. Transcriptome data suggests that there are at least three active aquaporins in the human liver fluke, Opisthorchis viverrini, OvAQP-1, 2 and 3, and crude RNA silencing of OvAQP-1 and 2 has recently been shown to affect parasite swelling in destilled water. In the present work we demonstrate that OvAQP-3 is a major water-conducting channel of the parasite, that it can be detected from the newly excysted juvenile to the adult stage and that it is present in major tissues of the parasite. Furthermore, a comparative functional characterization of the three parasite AQPs was performed by using Xenopus oocyte swelling and yeast phenotypic assays. OvAQP-1, OvAQP-2, and OvAQP-3 were found to conduct water and glycerol while only the latter two were also able to conduct urea. In addition, all OvAQPs were found to transport ammonia and methylamine. Our findings demonstrate that the sequence-based classification into orthodox aquaporins and glycerol-conducting aquaglyceroporins is not functionally conserved in the parasite and implicate a broder range of functions for these channels. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.
Bárzana, Gloria; Aroca, Ricardo; Bienert, Gerd Patrick; Chaumont, François; Ruiz-Lozano, Juan Manuel
2014-04-01
The relationship between modulation by arbuscular mycorrhizae (AM) of aquaporin expression in the host plant and changes in root hydraulic conductance, plant water status, and performance under stressful conditions is not well known. This investigation aimed to elucidate how the AM symbiosis modulates the expression of the whole set of aquaporin genes in maize plants under different growing and drought stress conditions, as well as to characterize some of these aquaporins in order to shed further light on the molecules that may be involved in the mycorrhizal responses to drought. The AM symbiosis regulated a wide number of aquaporins in the host plant, comprising members of the different aquaporin subfamilies. The regulation of these genes depends on the watering conditions and the severity of the drought stress imposed. Some of these aquaporins can transport water and also other molecules which are of physiological importance for plant performance. AM plants grew and developed better than non-AM plants under the different conditions assayed. Thus, for the first time, this study relates the well-known better performance of AM plants under drought stress to not only the water movement in their tissues but also the mobilization of N compounds, glycerol, signaling molecules, or metalloids with a role in abiotic stress tolerance. Future studies should elucidate the specific function of each aquaporin isoform regulated by the AM symbiosis in order to shed further light on how the symbiosis alters the plant fitness under stressful conditions.
A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants.
Rougé, Pierre; Barre, Annick
2008-02-29
The three-dimensional models built for the Nod26-like aquaporins all exhibit the typical alpha-helical fold of other aquaporins containing the two ar/R and NPA constriction filters along the central water channel. Besides these structural homologies, they readily differ with respect to the amino acid residues forming the ar/R selective filter. According to these discrepancies in both the hydrophilicity and pore size of the ar/R filter, Nod26-like aquaporins can be distributed in three subgroups corresponding to NIP-1, NIP-II and a third subgroup of Nod26-like aquaporins exhibiting a highly hydrophilic and widely open filter. However, all Nod26-like aquaporins display a bipartite distribution of electrostatic charges along the water channel with an electropositive extracellular vestibular portion followed by an electronegative cytosolic vestibular portion. The specific transport of water, non-ionic solutes (glycerol, urea, ammoniac), ions (NH4+) and gas (NH(3)) across the Nod26-like obviously depends on the electrostatic and conformational properties of their central water channel.
A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouge, Pierre; Barre, Annick
2008-02-29
The three-dimensional models built for the Nod26-like aquaporins all exhibit the typical {alpha}-helical fold of other aquaporins containing the two ar/R and NPA constriction filters along the central water channel. Besides these structural homologies, they readily differ with respect to the amino acid residues forming the ar/R selective filter. According to these discrepancies in both the hydrophilicity and pore size of the ar/R filter, Nod26-like aquaporins can be distributed in three subgroups corresponding to NIP-1, NIP-II and a third subgroup of Nod26-like aquaporins exhibiting a highly hydrophilic and widely open filter. However, all Nod26-like aquaporins display a bipartite distribution ofmore » electrostatic charges along the water channel with an electropositive extracellular vestibular portion followed by an electronegative cytosolic vestibular portion. The specific transport of water, non-ionic solutes (glycerol, urea, ammoniac), ions (NH{sub 4}{sup +}) and gas (NH{sub 3}) across the Nod26-like obviously depends on the electrostatic and conformational properties of their central water channel.« less
di Pietro, Magali; Vialaret, Jérôme; Li, Guo-Wei; Hem, Sonia; Prado, Karine; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique
2013-12-01
In plants, aquaporins play a crucial role in regulating root water transport in response to environmental and physiological cues. Controls achieved at the post-translational level are thought to be of critical importance for regulating aquaporin function. To investigate the general molecular mechanisms involved, we performed, using the model species Arabidopsis, a comprehensive proteomic analysis of root aquaporins in a large set of physiological contexts. We identified nine physiological treatments that modulate root hydraulics in time frames of minutes (NO and H2O2 treatments), hours (mannitol and NaCl treatments, exposure to darkness and reversal with sucrose, phosphate supply to phosphate-starved roots), or days (phosphate or nitrogen starvation). All treatments induced inhibition of root water transport except for sucrose supply to dark-grown plants and phosphate resupply to phosphate-starved plants, which had opposing effects. Using a robust label-free quantitative proteomic methodology, we identified 12 of 13 plasma membrane intrinsic protein (PIP) aquaporin isoforms, 4 of the 10 tonoplast intrinsic protein isoforms, and a diversity of post-translational modifications including phosphorylation, methylation, deamidation, and acetylation. A total of 55 aquaporin peptides displayed significant changes after treatments and enabled the identification of specific and as yet unknown patterns of response to stimuli. The data show that the regulation of PIP and tonoplast intrinsic protein abundance was involved in response to a few treatments (i.e. NaCl, NO, and nitrate starvation), whereas changes in the phosphorylation status of PIP aquaporins were positively correlated to changes in root hydraulic conductivity in the whole set of treatments. The identification of in vivo deamidated forms of aquaporins and their stimulus-induced changes in abundance may reflect a new mechanism of aquaporin regulation. The overall work provides deep insights into the in vivo post-translational events triggered by environmental constraints and their possible role in regulating plant water status.
Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.
Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M
2015-02-01
To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.
Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Gómez-Garza, Gilberto; Carrasco-Portugal, Miriam Del C; Pérez-Guillé, Beatriz; Flores-Murrieta, Francisco J; Pérez-Guillé, Gabriela; Osnaya, Norma; Juárez-Olguín, Hugo; Monroy, Maria E; Monroy, Silvia; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Patel, Sarjubhai A; Kumarathasan, Prem; Vincent, Renaud; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Maronpot, Robert R
2009-08-01
Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.
Ma, Xiaohong; Shatil-Cohen, Arava; Ben-Dor, Shifra; Wigoda, Noa; Perera, Imara Y; Im, Yang Ju; Diminshtein, Sofia; Yu, Ling; Boss, Wendy F; Moshelion, Menachem; Moran, Nava
2015-03-01
Enhancing the membrane content of PtdInsP 2 , the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (P f) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase ('Ptase cells') or human phosphatidylinositol (4) phosphate 5-kinase ('PIPK cells'). The mean P f of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive P f: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased P f by 12-30 μm s(-1), while in the controls only by 3-4 μm s(-1). (2) Cytosol acidification-known to inhibit aquaporins-lowered the P f in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects.
Aquaporin water channels – from atomic structure to clinical medicine
Agre, Peter; King, Landon S; Yasui, Masato; Guggino, Wm B; Ottersen, Ole Petter; Fujiyoshi, Yoshinori; Engel, Andreas; Nielsen, Søren
2002-01-01
The water permeability of biological membranes has been a longstanding problem in physiology, but the proteins responsible for this remained unknown until discovery of the aquaporin 1 (AQP1) water channel protein. AQP1 is selectively permeated by water driven by osmotic gradients. The atomic structure of human AQP1 has recently been defined. Each subunit of the tetramer contains an individual aqueous pore that permits single-file passage of water molecules but interrupts the hydrogen bonding needed for passage of protons. At least 10 mammalian aquaporins have been identified, and these are selectively permeated by water (aquaporins) or water plus glycerol (aquaglyceroporins). The sites of expression coincide closely with the clinical phenotypes – ranging from congenital cataracts to nephrogenic diabetes insipidus. More than 200 members of the aquaporin family have been found in plants, microbials, invertebrates and vertebrates, and their importance to the physiology of these organisms is being uncovered. PMID:12096044
Figueroa, Michelle; Guo, Yong; Tselis, Alexandros; Pittock, Sean J.; Lennon, Vanda A.; Lucchinetti, Claudia F.; Lisak, Robert P.
2014-01-01
IMPORTANCE Reports of neuromyelitis optica spectrum disorder (NMOSD) occurring in the setting of neoplasia suggest that aquaporin-4 autoimmunitymay in some cases have a paraneoplastic basis. OBSERVATIONS In this case report, we describe a patient with NMOSD whose test results were seropositive for aquaporin-4 IgG and who had a hepatic metastasis from a small-bowel neuroendocrine tumor. The tumor cells expressed aquaporin-4 immunoreactivity. She presented to the Neurology Department at Wayne State University with bilateral leg weakness, ascending paresthesias, and decreased sensation. CONCLUSIONS AND RELEVANCE This case extends the context of NMOSD as a paraneoplastic disorder. PMID:24733266
Merlaen, Britt; De Keyser, Ellen; Van Labeke, Marie-Christine
2018-01-01
The newly identified aquaporin coding sequences presented here pave the way for further insights into the plant-water relations in the commercial strawberry ( Fragaria x ananassa ). Aquaporins are water channel proteins that allow water to cross (intra)cellular membranes. In Fragaria x ananassa , few of them have been identified hitherto, hampering the exploration of the water transport regulation at cellular level. Here, we present new aquaporin coding sequences belonging to different subclasses: plasma membrane intrinsic proteins subtype 1 and subtype 2 (PIP1 and PIP2) and tonoplast intrinsic proteins (TIP). The classification is based on phylogenetic analysis and is confirmed by the presence of conserved residues. Substrate-specific signature sequences (SSSSs) and specificity-determining positions (SDPs) predict the substrate specificity of each new aquaporin. Expression profiling in leaves, petioles and developing fruits reveals distinct patterns, even within the same (sub)class. Expression profiles range from leaf-specific expression over constitutive expression to fruit-specific expression. Both upregulation and downregulation during fruit ripening occur. Substrate specificity and expression profiles suggest that functional specialization exists among aquaporins belonging to a different but also to the same (sub)class.
Boursiac, Yann; Chen, Sheng; Luu, Doan-Trung; Sorieul, Mathias; van den Dries, Niels; Maurel, Christophe
2005-01-01
Aquaporins facilitate the uptake of soil water and mediate the regulation of root hydraulic conductivity (Lpr) in response to a large variety of environmental stresses. Here, we use Arabidopsis (Arabidopsis thaliana) plants to dissect the effects of salt on both Lpr and aquaporin expression and investigate possible molecular and cellular mechanisms of aquaporin regulation in plant roots under stress. Treatment of plants by 100 mm NaCl was perceived as an osmotic stimulus and induced a rapid (half-time, 45 min) and significant (70%) decrease in Lpr, which was maintained for at least 24 h. Macroarray experiments with gene-specific tags were performed to investigate the expression of all 35 genes of the Arabidopsis aquaporin family. Transcripts from 20 individual aquaporin genes, most of which encoded members of the plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP) subfamilies, were detected in nontreated roots. All PIP and TIP aquaporin transcripts with a strong expression signal showed a 60% to 75% decrease in their abundance between 2 and 4 h following exposure to salt. The use of antipeptide antibodies that cross-reacted with isoforms of specific aquaporin subclasses revealed that the abundance of PIP1s decreased by 40% as early as 30 min after salt exposure, whereas PIP2 and TIP1 homologs showed a 20% to 40% decrease in abundance after 6 h of treatment. Expression in transgenic plants of aquaporins fused to the green fluorescent protein revealed that the subcellular localization of TIP2;1 and PIP1 and PIP2 homologs was unchanged after 45 min of exposure to salt, whereas a TIP1;1-green fluorescent protein fusion was relocalized into intracellular spherical structures tentatively identified as intravacuolar invaginations. The appearance of intracellular structures containing PIP1 and PIP2 homologs was occasionally observed after 2 h of salt treatment. In conclusion, this work shows that exposure of roots to salt induces changes in aquaporin expression at multiple levels. These changes include a coordinated transcriptional down-regulation and subcellular relocalization of both PIPs and TIPs. These mechanisms may act in concert to regulate root water transport, mostly in the long term (≥6 h). PMID:16183846
Quiroga, Gabriela; Erice, Gorka; Aroca, Ricardo; Chaumont, François; Ruiz-Lozano, Juan M.
2017-01-01
The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrasting drought sensitivity. This information would help to identify key aquaporin genes involved in the enhanced drought tolerance by the AM symbiosis. Results showed that when plants were subjected to drought stress the AM symbiosis induced a higher improvement of physiological parameters in drought-sensitive plants than in drought-tolerant plants. These include efficiency of photosystem II, membrane stability, accumulation of soluble sugars and plant biomass production. Thus, drought-sensitive plants obtained higher physiological benefit from the AM symbiosis. In addition, the genes ZmPIP1;1, ZmPIP1;3, ZmPIP1;4, ZmPIP1;6, ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, and ZmTIP2;3 were down-regulated by the AM symbiosis in the drought-sensitive cultivar and only ZmTIP4;1 was up-regulated. In contrast, in the drought-tolerant cultivar only three of the studied aquaporin genes (ZmPIP1;6, ZmPIP2;2, and ZmTIP4;1) were regulated by the AM symbiosis, resulting induced. Results in the drought-sensitive cultivar are in line with the hypothesis that down-regulation of aquaporins under water deprivation could be a way to minimize water loss, and the AM symbiosis could be helping the plant in this regulation. Indeed, during drought stress episodes, water conservation is critical for plant survival and productivity, and is achieved by an efficient uptake and stringently regulated water loss, in which aquaporins participate. Moreover, the broader and contrasting regulation of these aquaporins by the AM symbiosis in the drought-sensitive than the drought-tolerant cultivar suggests a role of these aquaporins in water homeostasis or in the transport of other solutes of physiological importance in both cultivars under drought stress conditions, which may be important for the AM-induced tolerance to drought stress. PMID:28674550
Dissecting the roles of aquaporins in renal pathophysiology using transgenic mice
Verkman, A. S.
2008-01-01
Transgenic mice lacking renal aquaporins (AQPs), or containing mutated AQPs, have been useful in confirming anticipated AQP functions in renal physiology and in discovering new functions. Mice lacking AQPs 1–4 manifest defects in urinary concentrating ability to different extents. Mechanistic studies have confirmed the involvement of AQP1 in near-isosmolar fluid absorption in proximal tubule, and in countercurrent multiplication and exchange mechanisms that produce medullary hypertonicity in the antidiuretic kidney. Deletion of AQPs 2–4 impairs urinary concentrating ability by reduction of transcellular water permeability in collecting duct. Recently created transgenic mouse models of nephrogenic diabetes insipidus produced by AQP2 gene mutation offer exciting possibilities to test new drug therapies. Several unanticipated AQP functions in kidney have been discovered recently that are unrelated to their role in transcellular water transport. There is evidence for involvement of AQP1 in kidney cell migration following renal injury, of AQP7 in renal glycerol clearance, of AQP11 in prevention of renal cystic disease, and possibly of AQP3 in regulation of collecting duct cell proliferation. Future work in renal AQPs will focus on mechanisms responsible for these non-fluid-transporting functions, and on the development of small-molecule AQP inhibitors for use as aquaretic-type diuretics. PMID:18519083
Will, Jessica L; Kim, Hyun Seok; Clarke, Jessica; Painter, John C; Fay, Justin C; Gasch, Audrey P
2010-04-01
A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw-tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function-providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments-contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.
Li, Yadong; Jin, Qian; Yang, Desong; Cui, Jianghu
2018-04-25
Molybdenum sulfide (MoS 2 ) has been applied widely in industrial and environmental application, leading to increasing release into environment. So far, no studies have been investigated with regard to the potential effect of MoS 2 on plants. Herein, we studied the impact of MoS 2 on the growth, chlorophyll content, lipid peroxidation, antioxidase system, and aquaporins of rice for the first time. Results showed that MoS 2 did not significantly affect the germination of rice seeds, malonaldehyde (MDA) content, and the antioxidant enzyme activity. While the length and biomass of rice root and shoot, chlorophyll content index (CCI), and expression of aquaporin genes were significantly increased. Based on these results, we concluded that MoS 2 promoted rice growth through (i) the promotion of nitrogen source assimilation, (ii) the enhancement of photosynthesis, enzymatic-related biochemical reactions, and metabolic processes, subsequently, (iii) the acceleration of cell division and expansion, furthermore (iv) no abiotic stress and favorable condition of antioxidant enzyme system. These results provided an important insight into the further application of MoS 2 on agriculture and environment.
Xiao, Lin; Ng, Tzi Bun; Feng, Yi-Bin; Yao, Tong; Wong, Jack Ho; Yao, Ren-Min; Li, Lei; Mo, Fei-Zhi; Xiao, Yin; Shaw, Pang-Chui; Li, Ze-Min; Sze, Stephen Cho Wing; Zhang, Kalin Yanbo
2011-01-15
This study aimed to investigate the mechanism of Dendrobium candidum extract in promoting expression of aquaporin-5 for treatment of Sjögren's syndrome (SS). Sixteen patients with SS suffered from deficient secretion of saliva due to an autoimmune destruction of salivary glands leading to dry mouth symptoms (xerostomia). However, glandular dysfunction also occurred without destruction. Based upon its abnormal distribution in SS salivary glands, a potential role of the water channel protein aquaporin-5 (AQP-5) in the pathogenesis of SS was proposed. After oral administration of D. candidum extracted liquid (DCEL) for 1 week, saliva and salivary gland biopsies from labial glands of patients were collected and examined by employing immunoreactivity and immunohistochemistry techniques. Results showed that salivary secretion increased by about 65% in patients treated with DCEL as compared with the control group. Higher labeling indices (percentage of acinus area immunoreactive for AQP-5) in the biopsies were found in SS patients who had taken DCEL. This study demonstrated that D. candidum would regulate the expression of AQP-5 in labial glands of SS patients and thereby promoted secretion of saliva to improve dry mouth symptoms. 2010 Elsevier GmbH. All rights reserved.
Therapeutic Options for Controlling Fluids in the Visual System
NASA Technical Reports Server (NTRS)
Curry, Kristina M.; Wotring, Virginia E.
2014-01-01
Visual Impairment/Intracranial Pressure (VIIP) is a newly recognized risk at NASA. The VIIP project examines the effect of long-term exposure to microgravity on vision of crewmembers before and after they return to Earth. Diamox (acetazolamide) is a medication which is used to decrease intraocular pressure; however, it carries a 3% risk of kidney stones. Astronauts are at a higher risk of kidney stones during spaceflight and the use Diamox would only increase the risk; therefore alternative therapies were investigated. Histamine 2 (H2) antagonist acid blockers such as cimetidine, ranitidine, famotidine and nizatidine are typically used to relieve the symptoms of gastroesophageal reflux disease (GERD). H2 receptors have been found in the human visual system, which has led to research on the use of H2 antagonist blockers to control fluid production in the human eye. Another potential therapeutic strategy is targeted at aquaporins, which are water channels that help maintain fluid homeostasis. Aquaporin antagonists are also known to affect intracranial pressure which can in turn alter intraocular pressure. Studies on aquaporin antagonists suggest high potential for effective treatment. The primary objective of this investigation is to review existing research on alternate medications or therapy to significantly reduce intracranial and intraocular pressure. A literature review was conducted. Even though we do not have all the answers quite yet, a considerable amount of information was discovered, and findings were narrowed, which should allow for more conclusive answers to be found in the near future.
Aquaporins in Digestive System.
Zhu, Shuai; Ran, Jianhua; Yang, Baoxue; Mei, Zhechuan
2017-01-01
In this chapter, we mainly discuss the expression and function of aquaporins (AQPs ) expressed in digestive system . AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5 and AQP8, and a member of aquaglyceroporin subfamily: AQP3. In the digestive glands, especially the liver, we discuss three members of aquaporin subfamily: AQP1, AQP5 and AQP8, a member of aquaglyceroporin subfamily: AQP9. AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP9 plays considerable role in glycerol metabolism , urea transport and hepatocellular carcinoma. Further investigation is necessary for specific locations and functions of AQPs in digestive system.
Chen, Tiege; Dang, Yuexiu; Wang, Ming; Zhang, Dongliang; Guo, Yongqiang; Zhang, Haihong
2018-05-28
Spinal edema is a very important pathophysiological basis for secondary spinal cord injury, which affects the repair and prognosis of spinal cord injury. Aquaporin-4 is widely distributed in various organs of the body, and is highly expressed in the brain and spinal cord. Inward rectifying potassium channel 4.1 is a protein found in astrocytes of central nervous system. It interacts with aquaporins in function. Aquaporin-4 and inward rectifying potassium channel 4.1 play an important role in the formation and elimination of spinal cord edema, inhibition of glial scar formation and promotion of excitotoxic agents exclusion. The distribution and function of aquaporin-4 and inward rectifying potassium channel 4.1 in the central nervous system and their expression after spinal cord injury have multiple effects on spinal edema. Studies of aquaporin-4 and inward rectifying potassium channel 4.1 in the spinal cord may provide new ideas for the elimination and treatment of spinal edema.
USDA-ARS?s Scientific Manuscript database
The plasma membrane intrinsic proteins (PIP) are one of the five aquaporin protein subfamilies. Aquaporin proteins are known to facilitate water transport through biological membranes. In order to identify NIP aquaporin gene candidates in cotton (Gossypium hirsutum L.), in silico and molecular clon...
Two different effects of calcium on aquaporins in salinity-stressed pepper plants.
Martínez-Ballesta, M Carmen; Cabañero, Francisco; Olmos, Enrique; Periago, Paula María; Maurel, Christophe; Carvajal, Micaela
2008-06-01
Two different effects of calcium were studied, respectively, in plasma membrane vesicles and in protoplasts isolated from roots of control pepper plants (Capsicum annuum L cv. California) or of plants treated with 50 mM NaCl, 10 mM CaCl(2) or 10 mM CaCl(2) + 50 mM NaCl. Under saline conditions, osmotic water permeability (P ( f )) values decreased in protoplasts and plasma membrane vesicles, and the same reduction was observed in the PIP1 aquaporin abundance, indicating inhibitory effects of NaCl on aquaporin functionality and protein abundance. The cytosolic Ca(2+) concentration, [Ca(2+)](cyt), was reduced by salinity, as observed by confocal microscope analysis. Two different actions of Ca(2+) were observed. On the one hand, increase in free cytosolic calcium concentrations associated with stress perception may lead to aquaporin closure. On the other hand, when critical requirements of Ca(2+) were reduced (by salinity), and extra-calcium would lead to an upregulation of aquaporins, indicating that a positive role of calcium at whole plant level combined with an inhibitory mechanism at aquaporin level may work in the regulation of pepper root water transport under salt stress. However, a link between these observations and other cell signalling in relation to water channel gating remains to be established.
Will, Jessica L.; Kim, Hyun Seok; Clarke, Jessica; Painter, John C.; Fay, Justin C.; Gasch, Audrey P.
2010-01-01
A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw–tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function—providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments—contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection. PMID:20369021
Sivasakthi, Kaliamoorthy; Tharanya, Murugesan; Kholová, Jana; Wangari Muriuki, Ruth; Thirunalasundari, Thiyagarajan; Vadez, Vincent
2017-01-01
Lower plant transpiration rate (TR) under high vapor pressure deficit (VPD) conditions and early plant vigor are proposed as major traits influencing the rate of crop water use and possibly the fitness of chickpea lines to specific terminal drought conditions—this being the major constraint limiting chickpea productivity. The physiological mechanisms underlying difference in TR under high VPD and vigor are still unresolved, and so is the link between vigor and TR. Lower TR is hypothesized to relate to hydraulic conductance differences. Experiments were conducted in both soil (Vertisol) and hydroponic culture. The assessment of the TR response to increasing VPD showed that high vigor genotypes had TR restriction under high VPD, and this was confirmed in the early vigor parent and progeny genotype (ICC 4958 and RIL 211) having lower TR than the late vigor parent and progeny genotype (ICC 1882 and RIL 022). Inhibition of water transport pathways [apoplast and symplast (aquaporins)] in intact plants led to a lower transpiration inhibition in the early vigor/low TR genotypes than in the late vigor/high TR genotypes. De-rooted shoot treatment with an aquaporin inhibitor led to a lower transpiration inhibition in the early vigor/low TR genotypes than in the late vigor/high TR genotypes. Early vigor genotypes had lower root hydraulic conductivity than late vigor/high TR genotypes. Under inhibited conditions (apoplast, symplast), root hydraulic conductivity was reduced more in the late vigor/high TR genotypes than in the early vigor/low TR genotypes. We interpret that early vigor/low TR genotypes have a lower involvement of aquaporins in water transport pathways and may also have a smaller apoplastic pathway than high TR genotypes, which could explain the transpiration restriction under high VPD and would be helpful to conserve soil water under high evaporative demand. These findings open an opportunity for breeding to tailor genotypes with different “dosage” of these traits toward adaptation to varying drought-prone environments. PMID:29085377
Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean
2012-01-01
Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868
Expression of CXCL4 and aquaporin 3 and 10 mRNAs in patients with otitis media with effusion.
Jin, Zhe; Cha, Sung Ho; Choi, Yong-Sung; Kim, Young Il; Choi, Sun A; Yeo, Seung Geun
2016-02-01
Bacterial infections in children with underdeveloped Eustachian tubes are a major cause of otitis media with effusion (OEM), and persistent effusion in the middle ear in these patients is a major cause of surgical intervention. CXCL4 is associated with bacterial infection, and aquaporins 3 and 10 are associated with water metabolism. This study assessed the expression of mRNAs encoding CXCL-4 and aquaporins 3 and 10 in the effusion of pediatric OME patients, and the association of this expression with clinical manifestations. Levels of CXCL4 and aquaporin 3 and 10 mRNA were assayed by real-time RT-PCR in the middle ear effusion of 38 pediatric patients with OME requiring ventilation tube insertion. The relationships of these mRNA levels with the presence of bacteria; concomitant diseases such as allergic rhinitis, sinusitis, and adenoid disease; recurrence of OME; and number of ventilation tube insertions were evaluated. CXCL4 and aquaporin 3 and 10 mRNAs were expressed in middle ear effusion of all OME patients. CXCL-4 mRNA levels were significantly lower when bacteria were present and in patients with concomitant diseases (p<0.05 each). Levels of all three mRNAs were unrelated to OME recurrence or number of ventilation tube insertions (p>0.05 each). The levels of CXCL4 and aquaporin 10 mRNAs were significantly correlated (p<0.05). Expression of CXCL4 and aquaporin 3 and 10 mRNAs in middle ear effusion is associated with the pathophysiology of OME. CXCL4 mRNA levels are significantly lower in patients with than without concomitant diseases or bacterial infections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.
Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana
2017-05-01
Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes.
Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P
2015-08-01
Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines. © 2015 Marine Biological Laboratory.
Functional relevance of water and glycerol channels in Saccharomyces cerevisiae.
Sabir, Farzana; Loureiro-Dias, Maria C; Soveral, Graça; Prista, Catarina
2017-05-01
Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Optimizing water permeability through the hourglass shape of aquaporins
Gravelle, Simon; Joly, Laurent; Detcheverry, François; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric
2013-01-01
The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite-element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances. PMID:24067650
Subangstrom resolution X-ray structure details aquaporin-water interactions.
Eriksson, Urszula Kosinska; Fischer, Gerhard; Friemann, Rosmarie; Enkavi, Giray; Tajkhorshid, Emad; Neutze, Richard
2013-06-14
Aquaporins are membrane channels that facilitate the flow of water across biological membranes. Two conserved regions are central for selective function: the dual asparagine-proline-alanine (NPA) aquaporin signature motif and the aromatic and arginine selectivity filter (SF). Here, we present the crystal structure of a yeast aquaporin at 0.88 angstrom resolution. We visualize the H-bond donor interactions of the NPA motif's asparagine residues to passing water molecules; observe a polarized water-water H-bond configuration within the channel; assign the tautomeric states of the SF histidine and arginine residues; and observe four SF water positions too closely spaced to be simultaneously occupied. Strongly correlated movements break the connectivity of SF waters to other water molecules within the channel and prevent proton transport via a Grotthuss mechanism.
Regulation of aquaporins in plants under stress.
Kapilan, Ranganathan; Vaziri, Maryam; Zwiazek, Janusz J
2018-01-16
Aquaporins (AQP) are channel proteins belonging to the Major Intrinsic Protein (MIP) superfamily that play an important role in plant water relations. The main role of aquaporins in plants is transport of water and other small neutral molecules across cellular biological membranes. AQPs have remarkable features to provide an efficient and often, specific water flow and enable them to transport water into and out of the cells along the water potential gradient. Plant AQPs are classified into five main subfamilies including the plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26 like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and X intrinsic proteins (XIPs). AQPs are localized in the cell membranes and are found in all living cells. However, most of the AQPs that have been described in plants are localized to the tonoplast and plasma membranes. Regulation of AQP activity and gene expression, are also considered as a part of the adaptation mechanisms to stress conditions and rely on complex processes and signaling pathways as well as complex transcriptional, translational and posttranscriptional factors. Gating of AQPs through different mechanisms, such as phosphorylation, tetramerization, pH, cations, reactive oxygen species, phytohormones and other chemical agents, may play a key role in plant responses to environmental stresses by maintaining the uptake and movement of water in the plant body.
Bhattarai, Kashi Raj; Lee, Sang-Won; Kim, Seung Hyun; Kim, Hyung-Ryong; Chae, Han-Jung
2017-01-01
The aim of this study was to investigate the effects of Ixeris dentata (IXD) extract to improve the salivation rate in dry mouth induced by diabetes. Both control and diabetic rats were treated with a sublingual spray of either water or IXD extract to determine the effects of IXD on salivation. During the study, we observed that IXD extract treatment increased the salivary flow rate in diabetic rats. The expression of α-amylase was increased significantly in both saliva and glandular tissue lysates of IXD-treated diabetic rats. Aquaporin-5 protein expression was abnormally low in the salivary glands of diabetic rats, which increased hyposalivation and led to salivary dysfunction. However, a single oral spray of IXD extract drastically increased the expression of aquaporin-5 in salivary gland acinar and ductal cells in diabetic rats. Moreover, IXD extract induced expression of Na+/H+ exchangers in the salivary gland, which suggests that Na+/H+ exchangers modulate salivary secretions and aid in the fluid-secretion mechanism. Furthermore, transient treatment with IXD extract increased the intracellular calcium in human salivary gland cells. Taken together, these results suggest the potential value of an IXD extract for the treatment of diabetes-induced hyposalivation and xerostomia. PMID:28814903
Bhattarai, Kashi Raj; Lee, Sang-Won; Kim, Seung Hyun; Kim, Hyung-Ryong; Chae, Han-Jung
2017-01-01
The aim of this study was to investigate the effects of Ixeris dentata (IXD) extract to improve the salivation rate in dry mouth induced by diabetes. Both control and diabetic rats were treated with a sublingual spray of either water or IXD extract to determine the effects of IXD on salivation. During the study, we observed that IXD extract treatment increased the salivary flow rate in diabetic rats. The expression of α-amylase was increased significantly in both saliva and glandular tissue lysates of IXD-treated diabetic rats. Aquaporin-5 protein expression was abnormally low in the salivary glands of diabetic rats, which increased hyposalivation and led to salivary dysfunction. However, a single oral spray of IXD extract drastically increased the expression of aquaporin-5 in salivary gland acinar and ductal cells in diabetic rats. Moreover, IXD extract induced expression of Na + /H + exchangers in the salivary gland, which suggests that Na + /H + exchangers modulate salivary secretions and aid in the fluid-secretion mechanism. Furthermore, transient treatment with IXD extract increased the intracellular calcium in human salivary gland cells. Taken together, these results suggest the potential value of an IXD extract for the treatment of diabetes-induced hyposalivation and xerostomia.
Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M
2015-12-01
The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. © 2015 American Society of Plant Biologists. All Rights Reserved.
Bárzana, Gloria; Aroca, Ricardo; Paz, José Antonio; Chaumont, François; Martinez-Ballesta, Mari Carmen; Carvajal, Micaela; Ruiz-Lozano, Juan Manuel
2012-04-01
The movement of water through mycorrhizal fungal tissues and between the fungus and roots is little understood. It has been demonstrated that arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties, including root hydraulic conductivity. However, it is not clear whether this effect is due to a regulation of root aquaporins (cell-to-cell pathway) or to enhanced apoplastic water flow. Here we measured the relative contributions of the apoplastic versus the cell-to-cell pathway for water movement in roots of AM and non-AM plants. We used a combination of two experiments using the apoplastic tracer dye light green SF yellowish and sodium azide as an inhibitor of aquaporin activity. Plant water and physiological status, root hydraulic conductivity and apoplastic water flow were measured. Roots of AM plants enhanced significantly relative apoplastic water flow as compared with non-AM plants and this increase was evident under both well-watered and drought stress conditions. The presence of the AM fungus in the roots of the host plants was able to modulate the switching between apoplastic and cell-to-cell water transport pathways. The ability of AM plants to switch between water transport pathways could allow a higher flexibility in the response of these plants to water shortage according to the demand from the shoot.
Bárzana, Gloria; Aroca, Ricardo; Paz, José Antonio; Chaumont, François; Martinez-Ballesta, Mari Carmen; Carvajal, Micaela; Ruiz-Lozano, Juan Manuel
2012-01-01
Background and Aims The movement of water through mycorrhizal fungal tissues and between the fungus and roots is little understood. It has been demonstrated that arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties, including root hydraulic conductivity. However, it is not clear whether this effect is due to a regulation of root aquaporins (cell-to-cell pathway) or to enhanced apoplastic water flow. Here we measured the relative contributions of the apoplastic versus the cell-to-cell pathway for water movement in roots of AM and non-AM plants. Methods We used a combination of two experiments using the apoplastic tracer dye light green SF yellowish and sodium azide as an inhibitor of aquaporin activity. Plant water and physiological status, root hydraulic conductivity and apoplastic water flow were measured. Key Results Roots of AM plants enhanced significantly relative apoplastic water flow as compared with non-AM plants and this increase was evident under both well-watered and drought stress conditions. The presence of the AM fungus in the roots of the host plants was able to modulate the switching between apoplastic and cell-to-cell water transport pathways. Conclusions The ability of AM plants to switch between water transport pathways could allow a higher flexibility in the response of these plants to water shortage according to the demand from the shoot. PMID:22294476
Expression of Renal Aquaporins in Aristolochic Acid I and Aristolactam I-Induced Nephrotoxicity.
Li, Ji; Zhang, Liang; Jiang, ZhenZhou; He, XiuQin; Zhang, LuYong; Xu, Ming
2016-01-01
Exposure to aristolochic acid (AA) can cause AA nephropathy, which is characterized by extensive proximal tubular damage and polyuria. To test the hypothesis that polyuria might be induced by altered regulation of aquaporins (AQPs) in the kidney, different doses of AA-I or aristolactam I (AL-I) were administered intraperitoneally to Sprague-Dawley rats, and urine, blood, and kidney samples were analyzed. In addition, AQP1, AQP2, AQP4 and AQP6 expression in the kidney were determined. The results showed dose-dependent proximal tubular damage and polyuria in the AA-I- and AL-I-treated groups, and the nephrotoxicity of AL-I was higher than that of AA-I. The expression of renal AQP1, AQP2 and AQP4, but not AQP6 were significantly inhibited by AA-I and AL-I. Comparison of the inhibition potencies of AA-I and AL-I showed that AL-I was a stronger inhibitor of AQP1 expression than AA-I, while there was no difference in their effects on AQP2 and AQP4. These results suggested that AA induced renal damage and polyuria were associated with a specific decrease in the expression of renal AQP1 AQP2 and AQP4, and AL-I showed higher nephrotoxicity than AA-I, which might be attributable to the differences in their inhibition of AQP1. © 2016 S. Karger AG, Basel.
Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón
2015-01-01
The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. PMID:26450705
Osmotic water transport in aquaporins: evidence for a stochastic mechanism
Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric; MacAulay, Nanna
2013-01-01
We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, PS, is proportional to 1 –σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mm of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured optically at high resolution and compared to the solute permeability obtained from short-term uptake of radio-labelled solute under isotonic conditions. For each type of aquaporin there was a linear relationship between solute permeability and reflection coefficient, in accordance with the model. We found no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward-facing end of the pore. PMID:23959676
NASA Technical Reports Server (NTRS)
Shaw, Hali L.; Howard, Kevin; Flynn, Michael T.; Beeler, David; Kawashima, Brian; Andersen, Thomas A. E.; Kleinschmidt, Kim; Vogel, Jorg; Parodi, Jurek
2017-01-01
The Multifiltration Bed system in the International Space Station (ISS) Water Processor Assembly (WPA) needs to be improved by reducing or eliminating the usage rate of expendable media, removing dimethylsilanediol (DMSD), and reducing the overall system mass. The WPA contains two multifiltration beds, each with a mass of approximately 50 kg. Reducing the mass of the WPA is an important part of evolving the ISS system for future exploration missions. The Multifiltration Bed Replacement (MFBR) technology is based on biomimetic membranes, which derive their unique characteristics from aquaporins, or water channel proteins. Aquaporin membranes were commercialized by the company Aquaporin AS. Tests were conducted using the Aquaporin Inside Hollow Fiber Module to determine the maximum water recovery ratio and membrane life. Samples were analyzed for total organic carbon (TOC), DMSD, acetate, ions, and volatiles such as ethanol and acetone. The results indicate that at a 97.498.1 water recovery ratio, the membrane module can reject approximately 50 of the TOC and specific conductance using the simulated ISS MSFC humidity condensate ersatz. Additionally, the life of the membrane was determined to be a minimum of 7103 hours.
Non-invasive imaging using reporter genes altering cellular water permeability
NASA Astrophysics Data System (ADS)
Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.
2016-12-01
Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.
Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice.
Komatsu, Toshiyuki; Sasaki, Suguru; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya
2017-01-01
Astaxanthin, a carotenoid found mainly in seafood, has potential clinical applications due to its antioxidant activity. In this study, we evaluated the effect of dietary astaxanthin derived from Haematococcus pluvialis on skin photoaging in UVA-irradiated hairless mice by assessing various parameters of photoaging. After chronic ultraviolet A (UVA) exposure, a significant increase in transepidermal water loss (TEWL) and wrinkle formation in the dorsal skin caused by UVA was observed, and dietary astaxanthin significantly suppressed these photoaging features. We found that the mRNA expression of lympho-epithelial Kazal-type-related inhibitor, steroid sulfatase, and aquaporin 3 in the epidermis was significantly increased by UVA irradiation for 70 days, and dietary astaxanthin significantly suppressed these increases in mRNA expression to be comparable to control levels. In the dermis, the mRNA expression of matrix metalloprotease 13 was increased by UVA irradiation and significantly suppressed by dietary astaxanthin. In addition, HPLC-PDA analysis confirmed that dietary astaxanthin reached not only the dermis but also the epidermis. Our results indicate that dietary astaxanthin accumulates in the skin and appears to prevent the effects of UVA irradiation on filaggrin metabolism and desquamation in the epidermis and the extracellular matrix in the dermis.
Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice
Komatsu, Toshiyuki; Sasaki, Suguru; Manabe, Yuki; Hirata, Takashi
2017-01-01
Astaxanthin, a carotenoid found mainly in seafood, has potential clinical applications due to its antioxidant activity. In this study, we evaluated the effect of dietary astaxanthin derived from Haematococcus pluvialis on skin photoaging in UVA-irradiated hairless mice by assessing various parameters of photoaging. After chronic ultraviolet A (UVA) exposure, a significant increase in transepidermal water loss (TEWL) and wrinkle formation in the dorsal skin caused by UVA was observed, and dietary astaxanthin significantly suppressed these photoaging features. We found that the mRNA expression of lympho-epithelial Kazal-type-related inhibitor, steroid sulfatase, and aquaporin 3 in the epidermis was significantly increased by UVA irradiation for 70 days, and dietary astaxanthin significantly suppressed these increases in mRNA expression to be comparable to control levels. In the dermis, the mRNA expression of matrix metalloprotease 13 was increased by UVA irradiation and significantly suppressed by dietary astaxanthin. In addition, HPLC-PDA analysis confirmed that dietary astaxanthin reached not only the dermis but also the epidermis. Our results indicate that dietary astaxanthin accumulates in the skin and appears to prevent the effects of UVA irradiation on filaggrin metabolism and desquamation in the epidermis and the extracellular matrix in the dermis. PMID:28170435
Quantification of Water Flux in Vesicular Systems.
Hannesschläger, Christof; Barta, Thomas; Siligan, Christine; Horner, Andreas
2018-06-04
Water transport across lipid membranes is fundamental to all forms of life and plays a major role in health and disease. However, not only typical water facilitators like aquaporins facilitate water flux, but also transporters, ion channels or receptors represent potent water pathways. The efforts directed towards a mechanistic understanding of water conductivity determinants in transmembrane proteins, the development of water flow inhibitors, and the creation of biomimetic membranes with incorporated membrane proteins or artificial water channels depend on reliable and accurate ways of quantifying water permeabilities P f . A conventional method is to subject vesicles to an osmotic gradient in a stopped-flow device: Fast recordings of scattered light intensity are converted into the time course of vesicle volume change. Even though an analytical solution accurately acquiring P f from scattered light intensities exists, approximations potentially misjudging P f by orders of magnitude are used. By means of computational and experimental data we point out that erroneous results such as that the single channel water permeability p f depends on the osmotic gradient are direct results of such approximations. Finally, we propose an empirical solution of which calculated permeability values closely match those calculated with the analytical solution in the relevant range of parameters.
Ding, Lei; Li, Yingrui; Gao, Limin; Lu, Zhifeng; Wang, Min; Ling, Ning; Shen, Qirong; Guo, Shiwei
2018-01-01
The photosynthetic rate increases under high-N supply, resulting in a large CO2 transport conductance in mesophyll cells. It is less known that water movement is affected by nitrogen supply in leaves. This study investigated whether the expression of aquaporin and water transport were affected by low-N (0.7 mM) and high-N (7 mM) concentrations in the hydroponic culture of four rice varieties: (1) Shanyou 63 (SY63), a hybrid variant of the indica species; (2) Yangdao 6 (YD6), a variant of indica species; (3) Zhendao 11 (ZD11), a hybrid variant of japonica species; and (4) Jiuyou 418 (JY418), another hybrid of the japonica species. Both the photosynthetic and transpiration rate were increased by the high-N supply in the four varieties. The expressions of aquaporins, plasma membrane intrinsic proteins (PIPs), and tonoplast membrane intrinsic protein (TIP) were higher in high-N than low-N leaves, except in SY63. Leaf hydraulic conductance (Kleaf) was lower in high-N than low-N leaves in SY63, while Kleaf increased under high-N supply in the YD6 variant. Negative correlations were observed between the expression of aquaporin and the transpiration rate in different varieties. Moreover, there was a significant negative correlation between transpiration rate and intercellular air space. In conclusion, the change in expression of aquaporins could affect Kleaf and transpiration. A feedback effect of transpiration would regulate aquaporin expression. The present results imply a coordination of gas exchange with leaf hydraulic conductance. PMID:29337869
[Involvement of aquaporin-4 in synaptic plasticity, learning and memory].
Wu, Xin; Gao, Jian-Feng
2017-06-25
Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.
Calvo-Polanco, Monica; Sánchez-Romera, Beatriz; Aroca, Ricardo
2014-01-01
Plants respond to salinity by altering their physiological parameters in order to maintain their water balance. The reduction in root hydraulic conductivity is one of the first responses of plants to the presence of salt in order to minimize water stress. Although its regulation has been commonly attributed to aquaporins activity, osmotic adjustment and the toxic effect of Na+ and Cl− have also a main role in the whole process. We studied the effects of 30 mM NaCl on Phaseolus vulgaris plants after 9 days and found different responses in root hydraulic conductivity over-time. An initial and final reduction of root hydraulic conductivity, stomatal conductance, and leaf water potential in response to NaCl was attributed to an initial osmotic shock after 1 day of treatment, and to the initial symptoms of salt accumulation within the plant tissues after 9 days of treatment. After 6 days of NaCl treatment, the increase in root hydraulic conductivity to the levels of control plants was accompanied by an increase in root fructose content, and with the intracellular localization of root plasma membrane aquaporins (PIP) to cortex cells close to the epidermis and to cells surrounding xylem vessels. Thus, the different responses of bean plants to mild salt stress over time may be connected with root fructose accumulation, and intracellular localization of PIP aquaporins. PMID:24595059
Cellular expansion and gene expression in the developing grape (Vitis vinifera L.).
Schlosser, J; Olsson, N; Weis, M; Reid, K; Peng, F; Lund, S; Bowen, P
2008-01-01
Expression profiles of genes involved in cell wall metabolism and water transport were compared with changes in grape (Vitis vinifera L.) berry growth, basic chemical composition, and the shape, size, and wall thickness of cells within tissues of the berry pericarp. Expression of cell wall-modifying and aquaporin genes in berry pericarp tissues generally followed a bimodal expression profile with high levels of expression coinciding with the two periods of rapid berry growth, stages I and III, and low levels of expression corresponding to the slow-growth period, stage II. Cellular expansion was observed throughout all tissues during stage I, and only mesocarp cellular expansion was observed during stage III. Expansion of only exocarp cells was evident during transition between stages II and III. Cell wall-modifying and aquaporin gene expression profiles followed similar trends in exocarp and mesocarp tissues throughout berry development, with the exception of the up-regulation of pectin methylesterase, pectate lyase, two aquaporin genes (AQ1 and AQ2), and two expansin genes (EXP3 and EXPL) during stage II, which was delayed in the exocarp tissue compared with mesocarp tissue. Exocarp endo-(1-->3)-beta-glucanase and expansin-like gene expression was concurrent with increases in epidermal and hypodermal cell wall thickness. These results indicate a potential role of the grape berry skin in modulating grape berry growth.
Yaba, A; Sozen, B; Suzen, B; Demir, N
2017-03-01
Tanycytes are special ependymal cells located in the ventrolateral wall and floor of the third ventricle having processes extending nuclei that regulate reproductive functions and around of vessels in median eminance. The aquaporins (AQPs) are a family of transmembrane proteins that transport water and glycerol. AQP-7 and -9 are permeable to other small molecules as glycerol and therefore called aquaglyceroporins. In this study, we aimed to show localization of AQP-7 and -9 in epithelial cells of choroid plexus and tanycytes during female mouse estrus cycle. AQP-7 and -9 proteins were detected in α2 and β1 tanycytes in prœstrus stage. Interestingly, there is no staining in estrus stage in any type of tanycytes. We observed weak immunoreactivity in α1, α2 and β1 tanycyte cells in metestrus stage for AQP-7 and α1 for AQP-9 protein. AQP-7 and -9 showed intense immunoreactivity in α2, β1 and β2 tanycyte cells during diestrus stage. Consequently, AQP-7 and -9 showed differential staining pattern in different stages of mouse estrus cycle. In the light of our findings and other recent publications, we suggest that AQP-7 and -9-mediated glycerol transport in tanycyte cells might be under hormonal control to use glycerol as a potential energy substrate during mouse estrus cycle. Copyright © 2016. Published by Elsevier Masson SAS.
Conner, Matthew T; Conner, Alex C; Bland, Charlotte E; Taylor, Luke H J; Brown, James E P; Parri, H Rheinallt; Bill, Roslyn M
2012-03-30
The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The structural features of the family and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this only has been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here, we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations through transient receptor potential channels, which trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30 s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly changing local cellular water availability. Moreover, because calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.
Aquaporins are major determinants of water use efficiency of rice plants in the field.
Nada, Reham M; Abogadallah, Gaber M
2014-10-01
This study aimed at specifying the reasons of unbalanced water relations of rice in the field at midday which results in slowing down photosynthesis and reducing water use efficiency (WUE) in japonica and indica rice under well-watered and droughted conditions. Leaf relative water content (RWC) decreased in the well-watered plants at midday in the field, but more dramatically in the droughted indica (75.6 and 71.4%) than japonica cultivars (85.5 and 80.8%). Gas exchange was measured at three points during the day (9:00, 13:00 and 17:00). Leaf internal CO2 (Ci) was not depleted when midday stomatal depression was highest indicating that Ci was not limiting to photosynthesis. Most aquaporins were predominantly expressed in leaves suggesting higher water permeability in leaves than in roots. The expression of leaf aquaporins was further induced by drought at 9:00 without comparable responses in roots. The data suggest that aquaporin expression in the root endodermis was limiting to water uptake. Upon removal of the radial barriers to water flow in roots, transpiration increased instantly and photosynthesis increased after 4h resulting in increasing WUE after 4h, demonstrating that WUE in rice is largely limited by the inadequate aquaporin expression profiles in roots. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kuwagata, Tsuneo; Ishikawa-Sakurai, Junko; Hayashi, Hidehiro; Nagasuga, Kiyoshi; Fukushi, Keiko; Ahamed, Arifa; Takasugi, Katsuko; Katsuhara, Maki; Murai-Hatano, Mari
2012-08-01
The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.
Sánchez-Romera, Beatriz; Ruiz-Lozano, Juan Manuel; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo
2016-02-01
Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.
He, Wei-Di; Gao, Jie; Dou, Tong-Xin; Shao, Xiu-Hong; Bi, Fang-Cheng; Sheng, Ou; Deng, Gui-Ming; Li, Chun-Yu; Hu, Chun-Hua; Liu, Ji-Hong; Zhang, Sheng; Yang, Qiao-Song; Yi, Gan-Jun
2018-01-01
Banana is an important tropical fruit with high economic value. One of the main cultivars (‘Cavendish’) is susceptible to low temperatures, while another closely related specie (‘Dajiao’) has considerably higher cold tolerance. We previously reported that some membrane proteins appear to be involved in the cold tolerance of Dajiao bananas via an antioxidation mechanism. To investigate the early cold stress response of Dajiao, here we applied comparative membrane proteomics analysis for both cold-sensitive Cavendish and cold-tolerant Dajiao bananas subjected to cold stress at 10°C for 0, 3, and 6 h. A total of 2,333 and 1,834 proteins were identified in Cavendish and Dajiao, respectively. Subsequent bioinformatics analyses showed that 692 Cavendish proteins and 524 Dajiao proteins were predicted to be membrane proteins, of which 82 and 137 differentially abundant membrane proteins (DAMPs) were found in Cavendish and Dajiao, respectively. Interestingly, the number of DAMPs with increased abundance following 3 h of cold treatment in Dajiao (80) was seven times more than that in Cavendish (11). Gene ontology molecular function analysis of DAMPs for Cavendish and Dajiao indicated that they belong to eight categories including hydrolase activity, binding, transporter activity, antioxidant activity, etc., but the number in Dajiao is twice that in Cavendish. Strikingly, we found peroxidases (PODs) and aquaporins among the protein groups whose abundance was significantly increased after 3 h of cold treatment in Dajiao. Some of the PODs and aquaporins were verified by reverse-transcription PCR, multiple reaction monitoring, and green fluorescent protein-based subcellular localization analysis, demonstrating that the global membrane proteomics data are reliable. By combining the physiological and biochemical data, we found that membrane-bound Peroxidase 52 and Peroxidase P7, and aquaporins (MaPIP1;1, MaPIP1;2, MaPIP2;4, MaPIP2;6, MaTIP1;3) are mainly involved in decreased lipid peroxidation and maintaining leaf cell water potential, which appear to be the key cellular adaptations contributing to the cold tolerance of Dajiao. This membrane proteomics study provides new insights into cold stress tolerance mechanisms of banana, toward potential applications for ultimate genetic improvement of cold tolerance in banana. PMID:29568304
Shelden, Megan C; Vandeleur, Rebecca; Kaiser, Brent N; Tyerman, Stephen D
2017-01-01
We report physiological, anatomical and molecular differences in two economically important grapevine ( Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent loss of conductance of potted grapevines subject to the onset of water-stress. Leaf (ψ L ) and stem water potential (ψ S ), stomatal conductance ( g s ), transpiration ( E ), petiole hydraulics ( K Pet ), and xylem diameter were also measured. Chardonnay displayed hydraulic segmentation based on UAE, with cavitation occurring at a less negative ψ L in the petiole than in the stem. Vulnerability segmentation was not observed in Grenache, with both petioles and stems equally vulnerable to cavitation. Leaf water potential that induced 50% of maximum UAE was significantly different between petioles and stems in Chardonnay (ψ 50Petiole = -1.14 and ψ 50Stem = -2.24 MPa) but not in Grenache (ψ 50Petiole = -0.73 and ψ 50Stem = -0.78 MPa). Grenache stems appeared more susceptible to water-stress induced cavitation than Chardonnay stems. Grenache displayed (on average) a higher K Pet likely due to the presence of larger xylem vessels. A close relationship between petiole hydraulic properties and vine water status was observed in Chardonnay but not in Grenache. Transcriptional analysis of aquaporins in the petioles and leaves ( VvPIP1;1, VvPIP2;1, VvPIP2;2 VvPIP2;3, VvTIP1;1 , and VvTIP2;1 ) showed differential regulation diurnally and in response to water-stress. VvPIP2;1 showed strong diurnal regulation in the petioles and leaves of both cultivars with expression highest predawn. Expression of VvPIP2;1 and VvPIP2;2 responded to ψ L and ψ S in both cultivars indicating the expression of these two genes are closely linked to vine water status. Expression of several aquaporin genes correlated with gas exchange measurements, however, these genes differed between cultivars. In summary, the data shows two contrasting responses in petiole hydraulics and aquaporin expression between the near-isohydric cultivar, Grenache and anisohydric cultivar, Chardonnay.
Shelden, Megan C.; Vandeleur, Rebecca; Kaiser, Brent N.; Tyerman, Stephen D.
2017-01-01
We report physiological, anatomical and molecular differences in two economically important grapevine (Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent loss of conductance of potted grapevines subject to the onset of water-stress. Leaf (ψL) and stem water potential (ψS), stomatal conductance (gs), transpiration (E), petiole hydraulics (KPet), and xylem diameter were also measured. Chardonnay displayed hydraulic segmentation based on UAE, with cavitation occurring at a less negative ψL in the petiole than in the stem. Vulnerability segmentation was not observed in Grenache, with both petioles and stems equally vulnerable to cavitation. Leaf water potential that induced 50% of maximum UAE was significantly different between petioles and stems in Chardonnay (ψ50Petiole = -1.14 and ψ50Stem = -2.24 MPa) but not in Grenache (ψ50Petiole = -0.73 and ψ50Stem = -0.78 MPa). Grenache stems appeared more susceptible to water-stress induced cavitation than Chardonnay stems. Grenache displayed (on average) a higher KPet likely due to the presence of larger xylem vessels. A close relationship between petiole hydraulic properties and vine water status was observed in Chardonnay but not in Grenache. Transcriptional analysis of aquaporins in the petioles and leaves (VvPIP1;1, VvPIP2;1, VvPIP2;2 VvPIP2;3, VvTIP1;1, and VvTIP2;1) showed differential regulation diurnally and in response to water-stress. VvPIP2;1 showed strong diurnal regulation in the petioles and leaves of both cultivars with expression highest predawn. Expression of VvPIP2;1 and VvPIP2;2 responded to ψL and ψS in both cultivars indicating the expression of these two genes are closely linked to vine water status. Expression of several aquaporin genes correlated with gas exchange measurements, however, these genes differed between cultivars. In summary, the data shows two contrasting responses in petiole hydraulics and aquaporin expression between the near-isohydric cultivar, Grenache and anisohydric cultivar, Chardonnay. PMID:29163613
Red blood cell aquaporin-1 expression is decreased in hereditary spherocytosis.
Crisp, Renée L; Maltaneri, Romina E; Vittori, Daniela C; Solari, Liliana; Gammella, Daniel; Schvartzman, Gabriel; García, Eliana; Rapetti, María C; Donato, Hugo; Nesse, Alcira
2016-10-01
Aquaporin-1 (AQP1) is the membrane water channel responsible for changes in erythrocyte volume in response to the tonicity of the medium. As the aberrant distribution of proteins in hereditary spherocytosis (HS) generates deficiencies of proteins other than those codified by the mutated gene, we postulated that AQP1 expression might be impaired in spherocytes. AQP1 expression was evaluated through flow cytometry in 5 normal controls, 1 autoimmune hemolytic anemia, 10 HS (2 mild, 3 moderate, 2 severe, and 3 splenectomized), and 3 silent carriers. The effect of AQP1 inhibitors was evaluated through water flow-based tests: osmotic fragility and hypertonic cryohemolysis. Serum osmolality was measured in 20 normal controls and 13 HS. The effect of erythropoietin (Epo) on AQP1 expression was determined in cultures of erythroleukemia UT-7 cells, dependent on Epo to survive. Independent of erythrocyte size, HS patients showed a lower content of AQP1 in erythrocyte membranes which correlated with the severity of the disease. Accordingly, red blood cells from HS subjects were less sensitive to cryohemolysis than normal erythrocytes after inhibition of the AQP1 water channel. A lower serum osmolality in HS with respect to normal controls suggests alterations during reticulocyte remodeling. The decreased AQP1 expression could contribute to explain variable degrees of anemia in hereditary spherocytosis. The finding of AQP1 expression induced by Epo in a model of erythroid cells may be interpreted as a mechanism to restore the balance of red cell water fluxes.
Horng, Jiun-Lin; Chao, Pei-Lin; Chen, Po-Yen; Shih, Tin-Han; Lin, Li-Yih
2015-01-01
Mammalian aquaporin 1 (AQP1) is well known to function as a membrane channel for H2O and CO2 transport. Zebrafish AQP1a.1 (the homologue of mammalian AQP1) was recently identified in ionocytes of embryos; however its role in ionocytes is still unclear. In this study, we hypothesized that zebrafish AQP1a.1 is involved in the acid secretion by ionocytes through facilitating H2O and CO2 diffusion. A real-time PCR showed that mRNA levels of AQP1a.1 in embryos were induced by exposure to 1% CO2 hypercapnia for 3 days. In situ hybridization and immunohistochemistry showed that the AQP1a.1 transcript was highly expressed by acid-secreting ionocytes, i.e., H+-ATPase-rich (HR) cells. A scanning ion-selective electrode technique (SIET) was applied to analyze CO2-induced H+ secretion by individual ionocytes in embryos. H+ secretion by HR cells remarkably increased after a transient loading of CO2 (1% for 10 min). AQP1a.1 knockdown with morpholino oligonucleotides decreased the H+ secretion of HR cells by about half and limited the CO2 stimulated increase. In addition, exposure to an AQP inhibitor (PCMB) for 10 min also suppressed CO2-induced H+ secretion. Results from this study support our hypothesis and provide in vivo evidence of the physiological role of AQP1 in CO2 transport. PMID:26287615
Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan
2014-01-01
A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation. PMID:25426855
Secchi, Francesca; Schubert, Andrea; Lovisolo, Claudio
2016-04-14
The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1) and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1) gene expression varies in tobacco leaves subjected to treatments with different CO₂ concentrations (ranging from 0 to 800 ppm), inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO₂ concentration ([CO₂]) affected net photosynthesis (Pn) and leaf substomatal [CO₂] (Ci). Pn was slightly negative at 0 ppm air CO₂; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO₂] showed one-third reduced stomatal conductance (gs) and transpiration (E), and their gs was in turn slightly lower than in 200 ppm- and in 0 ppm-treated leaves. The 800 ppm air [CO₂] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO₂], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO₂ transport, positively responds to CO₂ scarcity in the air in the whole range 0-800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO₂ transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure.
Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect
Krishnan, Devishree; Pan, Wanling; Beggs, Megan R.; Trepiccione, Francesco; Chambrey, Régine; Eladari, Dominique; Cordat, Emmanuelle; Dimke, Henrik; Alexander, R. Todd
2018-01-01
Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice. PMID:29354070
Mozaffari, Mahmood S; Abdelsayed, Rafik; Liu, Jun Yao; Zakhary, Ibrahim; Baban, Babak
2012-02-01
Hallmark features of type 2 diabetes mellitus include glucosuria and polyuria. Further, renal aquaporin 2 is pivotal to regulation of fluid excretion and urine osmolality. Accordingly, we tested the hypothesis that the db/db mouse displays increased glucosuria and fluid excretion but reduced urine osmolality in association with decreased renal aquaporin 2 level. In addition, we examined the effect of chromium picolinate (Cr(pic)3) which is purported to improve glycemic control. The db/db mice excreted more urine in association with marked glucose excretion but lower urine osmolality than db/m control group. Light microscopic examination of renal tissue revealed proliferation of tubular structures in db/db compared to the db/m mice, a feature validated with Ki67 immunostaining. Further, these tubules showed generally similar immunostaining intensity and pattern for aquaporin 2 indicating that proliferated tubules are of distal origin. On the other hand, renal aquaporin 2 protein level was significantly higher in the db/db than db/m group. Treatment of db/db mice with Cr(pic)3 reduced plasma glucose and hemoglobin A1c (~15-17%, p<0.05) and Ki67 positive cells but other parameters were similar to their untreated counterparts. Collectively, these findings suggest that proliferation of renal distal tubules and increased aquaporin 2 level likely represent an adaptive mechanism to regulate fluid excretion to prevent dehydration in the setting of marked glucosuria in the db/db mouse, features not affected by Cr(pic)3 treatment. These observations are of relevance to increasing interest in developing therapeutic agents that facilitate renal glucose elimination. Copyright © 2011 Elsevier Inc. All rights reserved.
Mozaffari, Mahmood S.; Abdelsayed, Rafik; Liu, Jun Yao; Zakhary, Ibrahim; Baban, Babak
2011-01-01
Hallmark features of type 2 diabetes mellitus include glucosuria and polyuria. Further, renal aquaporin 2 is pivotal to regulation of fluid excretion and urine osmolality. Accordingly, we tested the hypothesis that the db/db mouse displays increased glucosuria and fluid excretion but reduced urine osmolality in association with decreased renal aquaporin 2 level. In addition, we examined the effect of chromium picolinate (Cr(pic)3) which is purported to improve glycemic control. The db/db mice excreted more urine in association with marked glucose excretion but lower urine osmolality than db/m control group. Light microscopic examination of renal tissue revealed proliferation of tubular structures in db/db compared to the db/m mice, a feature validated with Ki67 immunostaining. Further, these tubules showed generally similar immunostaining intensity and pattern for aquaporin 2 indicating that proliferated tubules are of distal origin. On the other hand, renal aquaporin 2 protein level was significantly higher in the db/db than db/m group. Treatment of db/db mice with Cr(pic)3 reduced plasma glucose and hemoglobin A1c (~ 15–17%, p<0.05) and Ki67 positive cells but other parameters were similar to their untreated counterparts. Collectively, these findings suggest that proliferation of renal distal tubules and increased aquaporin 2 level likely represent an adaptive mechanism to regulate fluid excretion to prevent dehydration in the setting of marked glucosuria in the db/db mouse, features not affected by Cr(pic)3 treatment. These observations are of relevance to increasing interest in developing therapeutic agents that facilitate renal glucose elimination. PMID:21983138
Khositseth, Sookkasem; Charngkaew, Komgrid; Boonkrai, Chatikorn; Somparn, Poorichaya; Uawithya, Panapat; Chomanee, Nusara; Payne, D Michael; Fenton, Robert A; Pisitkun, Trairak
2017-05-01
Hypercalcemia can cause renal dysfunction such as nephrogenic diabetes insipidus (NDI), but the mechanisms underlying hypercalcemia-induced NDI are not well understood. To elucidate the early molecular changes responsible for this disorder, we employed mass spectrometry-based proteomic analysis of inner medullary collecting ducts (IMCD) isolated from parathyroid hormone-treated rats at onset of hypercalcemia-induced NDI. Forty-one proteins, including the water channel aquaporin-2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the downregulated proteins were associated with cytoskeletal protein binding, regulation of actin filament polymerization, and cell-cell junctions. Targeted LC-MS/MS and immunoblot studies confirmed the downregulation of 16 proteins identified in the initial proteomic analysis and in additional experiments using a vitamin D treatment model of hypercalcemia-induced NDI. Evaluation of transcript levels and estimated half-life of the downregulated proteins suggested enhanced protein degradation as the possible regulatory mechanism. Electron microscopy showed defective intercellular junctions and autophagy in the IMCD cells from both vitamin D- and parathyroid hormone-treated rats. A significant increase in the number of autophagosomes was confirmed by immunofluorescence labeling of LC3. Colocalization of LC3 and Lamp1 with aquaporin-2 and other downregulated proteins was found in both models. Immunogold electron microscopy revealed aquaporin-2 in autophagosomes in IMCD cells from both hypercalcemia models. Finally, parathyroid hormone withdrawal reversed the NDI phenotype, accompanied by termination of aquaporin-2 autophagic degradation and normalization of both nonphoshorylated and S256-phosphorylated aquaporin-2 levels. Thus, enhanced autophagic degradation of proteins plays an important role in the initial mechanism of hypercalcemic-induced NDI. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Hinrichs, Gitte R; Hansen, Louise H; Nielsen, Maria R; Fagerberg, Christina; Dieperink, Hans; Rittig, Søren; Jensen, Boye L
2016-04-01
Mutations in the vasopressin V2 receptor gene AVPR2 may cause X-linked nephrogenic diabetes insipidus by defective apical insertion of aquaporin-2 in the renal collecting duct principal cell. Substitution mutations with exchange of arginine at codon 137 can cause nephrogenic syndrome of inappropriate antidiuresis or congenital X-linked nephrogenic diabetes insipidus. We present a novel mutation in codon 137 within AVPR2 with substitution of glycine for arginine in male dizygotic twins. Nephrogenic diabetes insipidus was demonstrated by water deprivation test and resistance to vasopressin administration. While a similar urine exosome release rate was shown between probands and controls by western blotting for the marker ALIX, there was a selective decrease in exosome aquaporin-2 versus aquaporin-1 protein in probands compared to controls. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Chaumont, François; Barrieu, François; Jung, Rudolf; Chrispeels, Maarten J.
2000-01-01
The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins. PMID:10759498
Are phloem sieve tubes leaky conduits supported by numerous aquaporins?
Stanfield, Ryan C; Hacke, Uwe G; Laur, Joan
2017-05-01
Aquaporin membrane water channels have been previously identified in the phloem of angiosperms, but currently their cellular characterization is lacking, especially in tree species. Pinpointing the cellular location will help generate new hypotheses of how membrane water exchange facilitates sugar transport in plants. We studied histological sections of balsam poplar ( Populus balsamifera L.) in leaf, petiole, and stem organs. Immuno-labeling techniques were used to characterize the distribution of PIP1 and PIP2 subfamilies of aquaporins along the phloem pathway. Confocal and super resolution microscopy (3D-SIM) was used to identify the localization of aquaporins at the cellular level. Sieve tubes of the leaf lamina, petiole, and stem were labeled with antibodies directed at PIP1s and PIP2s. While PIP2s were mostly observed in the plasma membrane, PIP1s showed both an internal membrane and plasma membrane labeling pattern. The specificity and consistency of PIP2 labeling in sieve element plasma membranes points to high water exchange rates between sieve tubes and adjacent cells. The PIP1s may relocate between internal membranes and the plasma membrane to facilitate dynamic changes in membrane permeability of sieve elements in response to changing internal or environmental conditions. Aquaporin-mediated changes in membrane permeability of sieve tubes would also allow for some control of radial exchange of water between xylem and phloem. © 2017 Botanical Society of America.
Cabañero, Francisco J; Martínez-Ballesta, M Carmen; Teruel, José A; Carvajal, Micaela
2006-02-01
This study, of how Ca2+ availability (intracellular, extracellular or linked to the membrane) influences the functionality of aquaporins of pepper (Capsicum annuum L.) plants grown under salinity stress, was carried out in plants treated with NaCl (50 mM), CaCl2 (10 mM), and CaCl2 (10 mM) + NaCl (50 mM). For this, water transport through the plasma membrane of isolated protoplasts, and the involvement of aquaporins and calcium (extracellular, intracellular and linked to the membrane) has been determined. After these treatments, it could be seen that the calcium concentration was reduced in the apoplast, in the cells and on the plasma membrane of roots of pepper plants grown under saline conditions; these concentrations were increased or restored when extra calcium was added to the nutrient solution. Protoplasts extracted from plants grown under Ca2+ starvation showed no aquaporin functionality. However, for the protoplasts to which calcium was added, an increase of aquaporin functionality of the plasma membrane was observed [osmotic water permeability (Pf) inhibition after Hg addition]. Interestingly, when verapamil (a Ca2+ channel blocker) was added, no functionality was observed, even when Ca2+ was added with verapamil. Therefore, calcium seems to be involved in plasma membrane aquaporin regulation via a chain of processes within the cell but not by alteration of the stability of the plasma membrane.
USDA-ARS?s Scientific Manuscript database
Aquaporins (AQPs) are integral membrane channel proteins that facilitate the bidirectional transfer of water or other small solutes across biological membranes involved in numerous essential physiological processes. In arthropods, AQPs belong to several subfamilies, which contribute to osmoregulatio...
Desai, Bhargav; Hsu, Ying; Schneller, Benjamin; Hobbs, Jonathan G; Mehta, Ankit I; Linninger, Andreas
2016-09-01
Aquaporin-4 (AQP4) channels play an important role in brain water homeostasis. Water transport across plasma membranes has a critical role in brain water exchange of the normal and the diseased brain. AQP4 channels are implicated in the pathophysiology of hydrocephalus, a disease of water imbalance that leads to CSF accumulation in the ventricular system. Many molecular aspects of fluid exchange during hydrocephalus have yet to be firmly elucidated, but review of the literature suggests that modulation of AQP4 channel activity is a potentially attractive future pharmaceutical therapy. Drug therapy targeting AQP channels may enable control over water exchange to remove excess CSF through a molecular intervention instead of by mechanical shunting. This article is a review of a vast body of literature on the current understanding of AQP4 channels in relation to hydrocephalus, details regarding molecular aspects of AQP4 channels, possible drug development strategies, and limitations. Advances in medical imaging and computational modeling of CSF dynamics in the setting of hydrocephalus are summarized. Algorithmic developments in computational modeling continue to deepen the understanding of the hydrocephalus disease process and display promising potential benefit as a tool for physicians to evaluate patients with hydrocephalus.
Jiang, Xiu Xiu; Fei, Xiang Wei; Zhao, Li; Ye, Xiao Lei; Xin, Liao Bin; Qu, Yang; Xu, Kai Hong; Wu, Rui Jin; Lin, Jun
2015-01-01
Aquaporin 5 (AQP5) participates in the migration of endometrial cells. Elucidation of the molecular mechanisms associated with AQP5-mediated, migration of endometrial cells may contribute to a better understanding of endometriosis. Our objectives included identifying the estrogen-response element (ERE) in the promoter region of the AQP5 gene, and, investigating the effects of AQP5 on ectopic implantation of endometrial cells. Luciferase reporter assays and electrophoretic mobility shift assay (EMSA) identified the ERE-like motif in the promoter region of the AQP5 gene. After blocking and up-regulating estradiol (E2) levels, we analysed the expression of AQP5 in endometrial stromal (ES) cells. After blocking E2 /or phosphatidylinositol 3 kinase(PI3K), we analysed the role of AQP5 in signaling pathways. We constructed an AQP5, shRNA, lentiviral vector to knock out the AQP5 gene in ES cells. After knock-out of the AQP5 gene, we studied the role of AQP5 in cell invasion, proliferation, and the formation of ectopic endometrial implants in female mice. We identified an estrogen-response element in the promoter region of the AQP5 gene. Estradiol (E2) increased AQP5 expression in a dose-dependent fashion, that was blocked by ICI182,780(an estrogen receptor inhibitor). E2 activated PI3K /protein kinase B(AKT) pathway (PI3K/AKT), that, in turn, increased AQP5 expression. LY294002(PI3K inhibitor) attenuated estrogen-enhanced, AQP5 expression. Knock-out of the AQP5 gene with AQP5 shRNA lentiviral vector significantly inhibited E2-enhanced invasion, proliferation of ES cells and formation of ectopic implants. Estrogen induces AQP5 expression by activating ERE in the promoter region of the AQP5gene, activates the PI3K/AKT pathway, and, promotes endometrial cell invasion and proliferation. These results provide new insights into some of the mechanisms that may underpin the development of deposits of ectopic endometrium. PMID:26679484
Siwy, Zuzanna; Fornasiero, Francesco
2017-08-25
Biological nanopores can selectively and rapidly transport ions and molecules through membranes. For example, many biological ion channels conduct only one type of ion across the cell membrane, and they do so in response to external stimuli. Aquaporins transport water at astonishingly high rates and are efficient desalination units, in that they have excellent rejection of all ions, including protons. In conclusion, on page 792 of this issue, Tunuguntla et al. present an artificial nanopore system that sustains water fluxes exceeding those of aquaporins, exhibits ionic selectivities comparable to those of biological ion channels, and consists of carbon nanotubes (CNTs)more » that are 10 nm long and merely 0.8 nm in diameter embedded in a lipid bilayer.« less
Association of anti-aquaporin-4 antibody-positive neuromyelitis optica with myasthenia gravis.
Uzawa, Akiyuki; Mori, Masahiro; Iwai, Yuhta; Kobayashi, Makoto; Hayakawa, Sei; Kawaguchi, Naoki; Kuwabara, Satoshi
2009-12-15
We describe 2 patients who developed anti-aquaporin-4 antibody-positive neuromyelitis optica (NMO) following the development of anti-acetylcholine receptor antibody-positive myasthenia gravis (MG). A literature review of 13 similar cases in addition to the present 2 cases of NMO with MG showed predominance among Asian women and frequent development of NMO following thymectomy for MG. Moreover, in one of our patients, serial assays of anti-aquaporin-4 antibody and anti-acetylcholine receptor antibody were performed. Accumulating evidence for the coexistence of NMO and MG suggests that a common immunopathogenesis of NMO and MG may exist, and the association of NMO with MG may be more frequent than hitherto believed.
van Lieburg, A. F.; Verdijk, M. A.; Knoers, V. V.; van Essen, A. J.; Proesmans, W.; Mallmann, R.; Monnens, L. A.; van Oost, B. A.; van Os, C. H.; Deen, P. M.
1994-01-01
Mutations in the X-chromosomal V2 receptor gene are known to cause nephrogenic diabetes insipidus (NDI). Besides the X-linked form, an autosomal mode of inheritance has been described. Recently, mutations in the autosomal gene coding for water-channel aquaporin 2 (AQP2) of the renal collecting duct were reported in an NDI patient. In the present study, missense mutations and a single nucleotide deletion in the aquaporin 2 gene of three NDI patients from consanguineous matings are described. Expression studies in Xenopus oocytes showed that the missense AQP2 proteins are nonfunctional. These results prove that mutations in the AQP2 gene cause autosomal recessive NDI. PMID:7524315
CO2 Transport by PIP2 Aquaporins of Barley
Mori, Izumi C.; Rhee, Jiye; Shibasaka, Mineo; Sasano, Shizuka; Kaneko, Toshiyuki; Horie, Tomoaki; Katsuhara, Maki
2014-01-01
CO2 permeability of plasma membrane intrinsic protein 2 (PIP2) aquaporins of Hordeum vulgare L. was investigated. Five PIP2 members were heterologously expressed in Xenopus laevis oocytes. CO2 permeability was determined by decrease of cytosolic pH in CO2-enriched buffer using a hydrogen ion-selective microelectrode. HvPIP2;1, HvPIP2;2, HvPIP2;3 and HvPIP2;5 facilitated CO2 transport across the oocyte cell membrane. However, HvPIP2;4 that is highly homologous to HvPIP2;3 did not. The isoleucine residue at position 254 of HvPIP2;3 was conserved in PIP2 aquaporins of barley, except HvPIP2;4, which possesses methionine instead. CO2 permeability was lost by the substitution of the Ile254 of HvPIP2;3 by methionine, while water permeability was not affected. These results suggest that PIP2 aquaporins are permeable to CO2. and the conserved isoleucine at the end of the E-loop is crucial for CO2 selectivity. PMID:24406630
Cabañero, Francisco J; Carvajal, Micaela
2007-10-01
In order to study the effect of nutrient stress on water uptake in pepper plants (Capsicum annuum L.), the excess or deficiency of the main cations involved in plant nutrition (K(+), Mg(2+), Ca(2+)) and two different degrees of salinity were related to the activity of plasma membrane H(+)-ATPase, the pH of the xylem sap, nutrient flux into the xylem (J(s)) and to a number of parameters related to water relations, such as root hydraulic conductance (L(0)), stomatal conductance (g(s)) and aquaporin activity. Excess of K(+), Ca(+) and NaCl produced a toxic effect on L(0) while Mg(2+) starvation produced a positive effect, which was in agreement with aquaporin functionality, but not with ATPase activity. The xylem pH was altered only by Ca treatments. The results obtained with each treatment could suggest that detection of the quality of the nutrient supply being received by roots can be related to aquaporins functionality, but also that each cation stress triggers specific responses that have to be assessed individually.
Water transport across biological membranes: Overton, water channels, and peritoneal dialysis.
Devuyst, O
2010-01-01
Peritoneal dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the modelization of peritoneal transport. Proof-of-principle studies have shown that upregulation of the expression of AQP1 in peritoneal capillaries is reflected by increased water permeability and ultrafiltration, without affecting the osmotic gradient and the permeability for small solutes. Inversely, studies in Aqp1 mice have shown that haplo-insufficiency in AQP1 is reflected by significant attenuation of water transport. Recent studies have identified lead compounds that could act as agonists of aquaporins, as well as putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states. These studies on the peritoneal membrane also provide an experimental framework to investigate the role of water channels in the endothelium and various cell types.
McElrone, A. J.
2012-01-01
Vitis vinifera scions are commonly grafted onto rootstocks of other grape species to influence scion vigour and provide resistance to soil-borne pests and abiotic stress; however, the mechanisms by which rootstocks affect scion physiology remain unknown. This study characterized the hydraulic physiology of Vitis rootstocks that vary in vigour classification by investigating aquaporin (VvPIP) gene expression, fine-root hydraulic conductivity (Lp r), % aquaporin contribution to Lp r, scion transpiration, and the size of root systems. Expression of several VvPIP genes was consistently greater in higher-vigour rootstocks under favourable growing conditions in a variety of media and in root tips compared to mature fine roots. Similar to VvPIP expression patterns, fine-root Lp r and % aquaporin contribution to Lp r determined under both osmotic (Lp r Osm) and hydrostatic (Lp r Hyd) pressure gradients were consistently greater in high-vigour rootstocks. Interestingly, the % aquaporin contribution was nearly identical for Lp r Osm and Lp r Hyd even though a hydrostatic gradient would induce a predominant flow across the apoplastic pathway. In common scion greenhouse experiments, leaf area-specific transpiration (E) and total leaf area increased with rootstock vigour and were positively correlated with fine-root Lp r. These results suggest that increased canopy water demands for scion grafted onto high-vigour rootstocks are matched by adjustments in root-system hydraulic conductivity through the combination of fine-root Lp r and increased root surface area. PMID:23136166
Moeller, Hanne B.; Knepper, Mark A.; Fenton, Robert A.
2012-01-01
Trafficking of the water channel aquaporin-2 to the apical plasma membrane of the collecting duct is mediated by arginine vasopressin, rendering the cell permeable to water. We recently identified a novel form of aquaporin-2 that is phosphorylated at serine-269 (pS269-AQP2). Using antibodies specific for this form of the water channel, we detected rat and mouse pS269-AQP2 in the connecting tubule and throughout the collecting duct system. Using confocal immunofluorescence microscopy with organelle-specific markers and immunogold electron microscopy, we found that pS269-AQP2 was found only on the apical plasma membrane of principal cells. In vasopressin-deficient Brattleboro rats, pS269-AQP2 was undetectable but dramatically increased in abundance after these rats were treated with [deamino-Cys-1, d-Arg-8]vasopressin (dDAVP). This increase occurred only at the apical plasma membrane, even after long-term dDAVP treatment. Following dDAVP there was a time-dependent redistribution of total aquaporin-2 from predominantly intracellular vesicles to the apical plasma membrane, clathrin-coated vesicles, early endosomal compartments, and lysosomes. However, pS269-AQP2 was found only on the apical plasma membrane at any time. Our results show that S269 phosphorylated aquaporin-2 is exclusively associated with the apical plasma membrane, where it escapes endocytosis to remain at the cell surface. PMID:18843259
Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells
Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin
2014-01-01
P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004
Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui
2015-01-01
Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Yao, Chenjuan; Purwanti, Nunuk; Karabasil, Mileva Ratko; Azlina, Ahmad; Javkhlan, Purevjav; Hasegawa, Takahiro; Akamatsu, Tetsuya; Hosoi, Toru; Ozawa, Koichiro; Hosoi, Kazuo
2010-08-01
The mRNA and protein levels of aquaporin (AQP)5 in the parotid gland were found to be potentially decreased by lipopolysaccharide (LPS) in vivo in C3H/HeN mice, but only weakly in C3H/HeJ, a TLR4 mutant mouse strain. In the LPS-injected mice, pilocarpine-stimulated saliva production was reduced by more than 50%. In a tissue culture system, the LPS-induced decrease in the AQP5 mRNA level was blocked completely by pyrrolidine dithiocarbamate, MG132, tyrphostin AG126, SP600125, and partially by SB203580, which are inhibitors for IkappaB kinase, 26S proteasome, ERK1/2, JNK, and p38 MAPK, respectively. In contrast, the expression of AQP1 mRNA was down-regulated by LPS and such down-regulation was blocked only by SP600125. The transcription factors NF-kappaB (p65 subunit), p-c-Jun, and c-Fos were increased by LPS given in vivo, whereas the protein-binding activities of the parotid gland extract toward the sequences for NF-kappaB but not AP-1-responsive elements present at the promoter region of the AQP5 gene were increased by LPS injection. Co-immunoprecipitation by using antibody columns suggested the physical association of the three transcription factors. These results suggest that LPS-induced potential down-regulation of expression of AQP5 mRNA in the parotid gland is mediated via a complex(es) of these two classes of transcription factors, NF-kappaB and p-c-Jun/c-Fos.
Secchi, Francesca; Schubert, Andrea; Lovisolo, Claudio
2016-01-01
The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1) and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1) gene expression varies in tobacco leaves subjected to treatments with different CO2 concentrations (ranging from 0 to 800 ppm), inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO2 concentration ([CO2]) affected net photosynthesis (Pn) and leaf substomatal [CO2] (Ci). Pn was slightly negative at 0 ppm air CO2; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO2] showed one-third reduced stomatal conductance (gs) and transpiration (E), and their gs was in turn slightly lower than in 200 ppm– and in 0 ppm–treated leaves. The 800 ppm air [CO2] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO2], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO2 transport, positively responds to CO2 scarcity in the air in the whole range 0–800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO2 transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure. PMID:27089333
Marino, Angela; Morabito, Rossana; La Spada, Giuseppina; Adragna, Norma C; Lauf, Peter K
2010-01-01
The nature and role of potassium (K) and water transport mediating hyposmotically-induced regulatory volume decrease (RVD) were studied in nematocytes dissociated with 605 mM thiocyanate from acontia of the Anthozoan Aiptasia diaphana. Cell volume and hence RVD were calculated from the inverse ratios of the cross sectional areas of nematocytes (A/A(o)) measured before (A(o)) and after (A) challenge with 65% artificial sea water (ASW). To distinguish between K channels and K-Cl cotransport (KCC), external sodium (Na) and chloride (Cl) were replaced by K and nitrate (NO(3)), respectively. Inhibitors were added to identify K channels (barium, Ba), and putative kinase (N-ethylmaleimide, NEM) and phosphatase (okadaic acid, OA) regulation of KCC. In 65% NaCl ASW, nematocytes displayed a biphasic change in A/A(o), peaking within 4 min due to osmotic water entry and thereafter declining within 6 min due to RVD. Changing NaCl to KCl or NaNO(3) ASW did not affect the osmotic phase but attenuated RVD, consistent with K channel and KCC mechanisms. Ba (3 mM) inhibited RVD. NEM and OA, applied separately, inhibited the osmotic phase and muted RVD suggesting primary action on water transport (aquaporins). NEM and OA together reduced the peak A/A(o) ratio during the osmotic phase whereas RVD was inhibited when OA preceded NEM. Thus, both K channels and KCC partake in the nematocyte RVD, the extent of which is determined by functional thiols and dephosphorylation of putative aquaporins facilitating the preceding osmotic water shifts. Copyright 2010 S. Karger AG, Basel.
Catalin, Bogdan; Rogoveanu, O C; Pirici, Ionica; Balseanu, Tudor Adrian; Stan, Adina; Tudorica, Valerica; Balea, Maria; Mindrila, Ion; Albu, Carmen Valeria; Mohamed, Guleed; Pirici, Daniel; Muresanu, Dafin Fior
2018-04-25
Edema represents one of the earliest negative markers of survival and consecutive neurological deficit following stroke. The mixture of cellular and vasogenic edema makes treating this condition complicated, and to date, there is no pathogenically oriented drug treatment for edema, which leaves parenteral administration of a hypertonic solution as the only non-surgical alternative. New insights into water metabolism in the brain have opened the way for molecular targeted treatment, with aquaporin 4 channels (AQP4) taking center stage. We aimed here to assess the effect of inhibiting AQP4 together with the administration of a neurotropic factor (Cerebrolysin) in ischemic stroke. Using a permanent medial cerebral artery occlusion rat model, we administrated a single dose of the AQP4 inhibitor TGN-020 (100 mg/kg) at 15 minutes after ischemia followed by daily Cerebrolysin dosing (5ml/kg) for seven days. Rotarod motor testing and neuropathology examinations were next performed. We showed first that the combination treatment animals have a better motor function preservation at seven days after permanent ischemia. We have also identified distinct cellular contributions that represent the bases of behavior testing, such as less astrocyte scarring and a larger neuronal-survival phenotype rate in animals treated with both compounds than in animals treated with Cerebrolysin alone or untreated animals. Our data shows that water diffusion inhibition and Cerebrolysin administration after focal ischemic stroke reduces infarct size, leading to a higher neuronal survival in the peri-core glial scar region. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Graziani, Valentina; Marrone, Alessandro; Re, Nazzareno; Coletti, Cecilia; Platts, James A; Casini, Angela
2017-10-04
Structural studies have paved the avenue to a deeper understanding of aquaporins (AQPs), small ancient proteins providing efficient transmembrane pathways for water, small uncharged solutes such as glycerol, and possibly gas molecules. Despite the numerous studies, their roles in health and disease remain to be fully disclosed. The recent discovery of Au III complexes as potent and selective inhibitors of aquaglyceroporin isoforms paves the way to their possible therapeutic application. The binding of the selective human AQP3 inhibitor, the cationic complex [Au(bipy)Cl 2 ] + (Aubipy), to the protein channel has been investigated here by means of a multi-level theoretical workflow that includes QM, MD and QM/MM approaches. The hydroxo complex was identified as the prevalent form of Aubipy in physiological media and its binding to AQP3 studied by MD. Both non-covalent and coordinative Aubipy-AQP3 adducts were simulated to probe their role in the modulation of water channel functionality. The electronic structures of representative Aubipy-AQP3 adducts were then analysed to unveil the role played by the metal moiety in their stabilisation. This study spotlights the overall importance of three key aspects for AQP3 inhibition: 1) water speciation of the Au III complex, 2) stability of non-covalent adducts and 3) conformational changes induced within the pore by the coordinative binding of Au III . The obtained results are expected to orient future developments in the design of isoform-selective Au III inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bietz, Sven; Montilla, Irine; Külzer, Simone; Przyborski, Jude M; Lingelbach, Klaus
2009-09-01
The molecular mechanisms underlying the formation of the parasitophorous vacuolar membrane in Plasmodium falciparum infected erythrocytes are incompletely understood, and the protein composition of this membrane is still enigmatic. Although the differentiated mammalian erythrocyte lacks the machinery required for endocytosis, some reports have described a localisation of host cell membrane proteins at the parasitophorous vacuolar membrane. Aquaporin 3 is an abundant plasma membrane protein of various cells, including mammalian erythrocytes where it is found in distinct oligomeric states. Here we show that human aquaporin 3 is internalized into infected erythrocytes, presumably during or soon after invasion. It is integrated into the PVM where it is organized in novel oligomeric states which are not found in non-infected cells.
Glycogen synthase kinase-3 regulation of urinary concentrating ability.
Rao, Reena
2012-09-01
Glycogen synthase kinase-3 (GSK3) is an enzyme that is gaining prominence as a critical signaling molecule in the epithelial cells of renal tubules. This review will focus on recent findings exploring the role of GSK3 in renal collecting ducts, especially its role in urine concentration involving vasopressin signaling. Recent studies using inhibition or tissue-specific gene deletion of GSK3 revealed the mechanism by which GSK3 regulates aquaporin 2 water channels via adenylate cyclase or the prostaglandin-E2 pathway. In other studies, postnatal treatment with lithium, an inhibitor of GSK3, increased cell proliferation and led to microcyst formation in rat kidneys. These studies suggest that loss of GSK3 activity could interfere with renal water transport at two levels. In the short term, it could disrupt vasopressin signaling in collecting duct cells and in the long term it could alter the structure of the collecting ducts, making them less responsive to the hydro-osmotic effects of vasopressin. Ongoing studies reveal the crucial role played by GSK3 in the regulation of vasopressin action in the renal collecting ducts and suggest a possible use of GSK3 inhibitors in disease conditions associated with disrupted vasopressin signaling.
Pancreatic aquaporin-7: a novel target for anti-diabetic drugs?
NASA Astrophysics Data System (ADS)
Méndez-Giménez, Leire; Ezquerro, Silvia; da Silva, Inês V.; Soveral, Graça; Frühbeck, Gema; Rodríguez, Amaia
2018-04-01
Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5 and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in ,, , and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic -cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced -cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion by increasing intracellular glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function variants of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of aquaporins in the physiology and pathophysiology of the pancreas, highlighting the role of pancreatic AQP7 as a novel player in the control of -cell function and a potential anti-diabetic-drug.
Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs?
Méndez-Giménez, Leire; Ezquerro, Silvia; da Silva, Inês V.; Soveral, Graça; Frühbeck, Gema; Rodríguez, Amaia
2018-01-01
Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of aquaporins in the physiology and pathophysiology of the pancreas, highlighting the role of pancreatic AQP7 as a novel player in the control of β-cell function and a potential anti-diabetic-drug. PMID:29675407
The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.
Drake, Lisa L; Boudko, Dmitri Y; Marinotti, Osvaldo; Carpenter, Victoria K; Dawe, Angus L; Hansen, Immo A
2010-12-29
The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.
Rainey-Smith, Stephanie R; Mazzucchelli, Gavin N; Villemagne, Victor L; Brown, Belinda M; Porter, Tenielle; Weinborn, Michael; Bucks, Romola S; Milicic, Lidija; Sohrabi, Hamid R; Taddei, Kevin; Ames, David; Maruff, Paul; Masters, Colin L; Rowe, Christopher C; Salvado, Olivier; Martins, Ralph N; Laws, Simon M
2018-02-26
The glymphatic system is postulated to be a mechanism of brain Aβ-amyloid clearance and to be most effective during sleep. Ablation of the astrocytic end-feet expressed water-channel protein, Aquaporin-4, in mice, results in impairment of this clearance mechanism and increased brain Aβ-amyloid deposition, suggesting that Aquaporin-4 plays a pivotal role in glymphatic function. Currently there is a paucity of literature regarding the impact of AQP4 genetic variation on sleep, brain Aβ-amyloid burden and their relationship to each other in humans. To address this a cross-sectional observational study was undertaken in cognitively normal older adults from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Genetic variants in AQP4 were investigated with respect to self-reported Pittsburgh Sleep Quality Index sleep parameters, positron emission tomography derived brain Aβ-amyloid burden and whether these genetic variants moderated the sleep-Aβ-amyloid burden relationship. One AQP4 variant, rs72878776, was associated with poorer overall sleep quality, while several SNPs moderated the effect of sleep latency (rs491148, rs9951307, rs7135406, rs3875089, rs151246) and duration (rs72878776, rs491148 and rs2339214) on brain Aβ-amyloid burden. This study suggests that AQP4 genetic variation moderates the relationship between sleep and brain Aβ-amyloid burden, which adds weight to the proposed glymphatic system being a potential Aβ-amyloid clearance mechanism and suggests that AQP4 genetic variation may impair this function. Further, AQP4 genetic variation should be considered when interpreting sleep-Aβ relationships.
López-Pérez, Luis; Martínez-Ballesta, María Del Carmen; Maurel, Christophe; Carvajal, Micaela
2009-03-01
Salinity stress is known to modify the plasma membrane lipid and protein composition of plant cells. In this work, we determined the effects of salt stress on the lipid composition of broccoli root plasma membrane vesicles and investigated how these changes could affect water transport via aquaporins. Brassica oleracea L. var. Italica plants treated with different levels of NaCl (0, 40 or 80mM) showed significant differences in sterol and fatty acid levels. Salinity increased linoleic (18:2) and linolenic (18:3) acids and stigmasterol, but decreased palmitoleic (16:1) and oleic (18:1) acids and sitosterol. Also, the unsaturation index increased with salinity. Salinity increased the expression of aquaporins of the PIP1 and PIP2 subfamilies and the activity of the plasma membrane H(+)-ATPase. However, there was no effect of NaCl on water permeability (P(f)) values of root plasma membrane vesicles, as determined by stopped-flow light scattering. The counteracting changes in lipid composition and aquaporin expression observed in NaCl-treated plants could allow to maintain the membrane permeability to water and a higher H(+)-ATPase activity, thereby helping to reduce partially the Na(+) concentration in the cytoplasm of the cell while maintaining water uptake via cell-to-cell pathways. We propose that the modification of lipid composition could affect membrane stability and the abundance or activity of plasma membrane proteins such as aquaporins or H(+)-ATPase. This would provide a mechanism for controlling water permeability and for acclimation to salinity stress.
The Discovery of Water Channels (Aquaporins).
Brown, Dennis
2017-01-01
The movement of water into and out of cells is a fundamental biological process that is essential for life. Such water movement not only regulates the activity of individual cells but also is responsible for the functioning of many organ systems and for maintaining whole body water balance. It had long been suspected that water movement across biological cell membranes was in some way enhanced or facilitated by pores or channels, but the search to identify these channels was long and tedious. As is often the case in science, the secret of the water channel was eventually discovered by chance in 1992 by Peter Agre and his colleagues at the Johns Hopkins University in Baltimore, who were working on red blood cell membrane proteins. This "first" water channel was originally named CHIP28 and is now known as aquaporin 1. Agre received the Nobel Prize in Chemistry in 2003 for this discovery. There are currently 13 known aquaporins in mammals, distributed in most tissues, but many more have been identified in lower organisms and in the plant kingdom. The involvement of aquaporins in processes such as urinary concentration and body fluid homeostasis, brain function, glandular secretion, skin hydration, male fertility, hearing, vision, and most important body functions that can be imagined are now all under intense scientific scrutiny. Moreover, defects in aquaporin function have been related to various disease conditions and pathological states. This brief review will discuss their background, discovery, and function in selected bodily processes, especially focusing on hydration. © 2017 The Author(s) Published by S. Karger AG, Basel.
Martinez-Ballesta, Maria del Carmen; Bastías, Elizabeth; Zhu, Chuanfeng; Schäffner, Anton R; González-Moro, Begoña; González-Murua, Carmen; Carvajal, Micaela
2008-04-01
Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole-plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L(0)), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron- and salt-tolerant Zea mays L. cv. amylacea, was evaluated. A downregulation of root ZmPIP1 and ZmPIP2 aquaporin contents were observed in NaCl-treated plants in agreement with the L(0) measurements. However, in the H3BO3-treated plants differences in the ZmPIP1 and ZmPIP2 abundance were observed. The ATPase activity was related directly to the amount of ATPase protein and Na+ concentration in the roots, for which an increase in NaCl- and H3BO3+ NaCl-treated plants was observed with respect to untreated and H3BO3-treated plants. Although nutrient imbalance may result from the effect of salinity or H3BO3 alone, an ameliorative effect was observed when both treatments were applied together. In conclusion, our results suggest that under salt stress, the activity of specific membrane components can be influenced directly by boric acid, regulating the functions of certain aquaporin isoforms and ATPase as possible components of the salinity tolerance mechanism.
Transport Characteristics of Aquaporins.
Geng, Xiaoqiang; Yang, Baoxue
2017-01-01
Aquaporins (AQPs ) are a class of the integral membrane proteins, which are permeable to water , some small neutral solutes and certain gases across biological membranes. AQPs are considered as critical transport mediators that are involved in many physiological functions and pathological processes such as transepithelial fluid transport , cell migration, brain edema , neuro excitation and carcinoma. This chapter will provide information about the transport characteristics of AQPs .
Chevalier, Adrien S; Chaumont, François
2015-05-01
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana.
Kaldenhoff, R; Grote, K; Zhu, J J; Zimmermann, U
1998-04-01
The plant plasma membrane intrinsic protein, PIP1b, facilitates water transport. These features were characterized in Xenopus oocytes and it has asked whether aquaporins are relevant for water transport in plants. In order to elucidate this uncertainty Arabidopsis thaliana was transformed with an anti-sense construct targeted to the PIP1b gene. Molecular analysis revealed that the anti-sense lines have reduced steady-state levels of PIP1b and the highly homologous PIP1a mRNA. The cell membrane water permeability was analyzed by swelling of protoplasts, which had been transferred into hypotonic conditions. The results indicate that the reduced expression of the specific aquaporins decreases the cellular osmotic water permeability coefficient approximately three times. The morphology and development of the anti-sense lines resembles that of control plants, with the exception of the root system, which is five times as abundant as that of control plants. Xylem pressure measurement suggests that the increase of root mass compensates the reduced cellular water permeability in order to ensure a sufficient water supply to the plant. The results obtained by this study, therefore, clearly demonstrate that aquaporins are important for plant water transport.
Wu, Xin; Zhang, Jie-Ting; Li, Di; Zhou, Jun; Yang, Jun; Zheng, Hui-Ling; Chen, Jian-Guo; Wang, Fang
2017-01-01
Aquaporin-4 (AQP-4) is the predominant water channel in the brain and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. A growing number of evidence shows that AQP-4 plays a potential role in the regulation of astrocyte function. However, little is known about the function of AQP-4 for synaptic plasticity in the hippocampus. Therefore, we evaluated long-term depression (LTD) in the hippocampus and the extinction of fear memory of AQP-4 knockout (KO) and wild-type (WT) mice. We found that AQP-4 deficiency facilitated fear memory extinction and NMDA receptors (NMDARs)-dependent LTD in the CA3-CA1 pathway. Furthermore, AQP-4 deficiency selectively increased GluN2B-NMDAR-mediated excitatory postsynaptic currents (EPSCs). The excessive activation of extrasynaptic GluN2B-NMDAR contributed to the facilitation of NMDAR-dependent LTD and enhancement of fear memory extinction in AQP-4 KO mice. Thus, it appears that AQP-4 may be a potential target for intervention in fear memory extinction. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.
Daniel M. Johnson; Mark E. Sherrard; Jean-Christophe Domec; Robert B. Jackson
2014-01-01
Key message Deep root hydraulic conductance is upregulated during severe drought and is associated with upregulation in aquaporin activity. Abstract In 2011, Texas experienced the worst single-year drought in its recorded history and, based on tree-ring data, likely itsworst in the pastmillennium. In the Edwards Plateau of Texas, rainfall was 58 % lower and the mean...
Bienert, Gerd P; Heinen, Robert B; Berny, Marie C; Chaumont, François
2014-01-01
Plant aquaporins play important roles in transmembrane water transport processes, but some also facilitate the diffusion of other small uncharged solutes ranging from gases to metalloids. Recent evidence suggests that the transmembrane movement of hydrogen peroxide, an intra- and intercellular multifunctional signaling and defense compound, can be regulated by aquaporins. We addressed the question whether maize aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily facilitate hydrogen peroxide diffusion using heterologous expression in the yeast Saccharomyces cerevisiae. We showed that ZmPIP proteins belonging to the PIP1 and PIP2 groups were significantly expressed in yeast cells only after codon optimization of their cDNA. In accordance with previous localization studies in oocytes and plants, ZmPIP1;2 was mainly retained in intracellular membranes, while ZmPIP2;5 was localized to the plasma membrane. However, upon co-expression with ZmPIP2;5, ZmPIP1;2 was re-localized to the plasma membrane. Using a non-functional plasma membrane-localized ZmPIP2;5 mutant to deliver ZmPIP1;2 to the plasma membrane, we demonstrated that, in contrast to wild type ZmPIP2;5, ZmPIP1;2 was not permeable to hydrogen peroxide. Our study further highlighted the fact that, when using the yeast system, which is widely employed to study substrates for plant aquaporins and other transporters, although positive transport assay results allow direct conclusions to be drawn regarding solute permeability, negative results require additional control experiments to show that the protein is expressed and localized correctly before concluding on the lack of transport activity. © 2013.
Rajesh, Kumar; Xiangying, Kong
2015-01-01
Objective To study the effect of early intervention and rehabilitation in the expression of aquaporin-4 and ultrastructure changes on cerebral palsy pups model induced by intrauterine infection. Methods 20 pregnant Wistar rats were consecutively injected with lipopolysaccharide intraperitoneally. 60 Pups born from lipopolysaccharide group were randomly divided into intervention group (n=30) and non-intervention group (n=30); intervention group further divided into early intervention and rehabilitation group (n=10), acupuncture group (n=10) and consolidate group (n=10). Another 5 pregnant rats were injected with normal saline intraperitoneally; 30 pups born from the normal saline group were taken as control group. The intervention group received early intervention, rehabilitation and acupuncture treatment. The motor functions of all pups were assessed via suspension test and modified BBB locomotor score. Aquaporin-4 expression in brain tissue was studied through immunohistochemical and western-blot analysis. Ultrastructure changes in damaged brain and control group were studied electron-microscopically. Results The scores of suspension test and modified BBB locomotor test were significantly higher in the control group than the intervention and non intervention group (p<0.01); higher in the intervention group than the non-intervention group (p<0.01). The expression of Aquaporin-4 was lower in intervention and non intervention group than in the control group (p<0.01); also lower in non-intervention group than the intervention group (p<0.01). Marked changes were observed in ultrastructure of cortex and hippocampus CAI in brain damaged group. Conclusion Early intervention and rehabilitation training can improve the motor function in offspring with brain injury and reduce the expression of aquaporin-4 in damaged brain. PMID:26279808
NASA Astrophysics Data System (ADS)
Yusupov, Maksudbek; Yan, Dayun; Cordeiro, Rodrigo M.; Bogaerts, Annemie
2018-03-01
Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H2O2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H2O2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H2O2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H2O2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells.
Challenges in Commercializing Biomimetic Membranes
Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus
2015-01-01
The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes. PMID:26556379
Li, Yong-Xia; Huang, Yun; Liu, Song; Mao, Yan; Yuan, Cheng-Yan; Yang, Xiao; Yao, Li-Jun
2016-01-01
Glycogen synthase kinase 3 (GSK3) regulates urine concentration by mediating the vasopressin-induced aquaporin 2 expression and water permeability, although it is unknown whether GSK3 also mediates the accumulation of the urea transporter A1 (UT-A1). The aim of this study is to investigate the effect of GSK3 on UT-A1 distribution. Mouse inner medullary collecting duct 3 cells were transfected with UT-A1-GFP construct. The stable transfected cells were cultured under hypertonic conditions, treated with GSK3 inhibitor lithium chloride, GSK3 activator, lysosome or proteasome inhibitor. The expression levels of UT-A1, GSK3, and phospho-GSK3 were analyzed using western blot. The interaction between UT-A1 and the Golgi apparatus was examined using confocal immunofluorescence microscope. The UT-A1 trafficking was examined using the biotinylation of surface membranes. UT-A1 dissociated away from the Golgi apparatus and translocated to the plasma membrane under hypertonic-NaCl and NaCl plus urea stimulation. This movement was accompanied by the increased phosphorylation of GSK3 and its localization on the cellular membrane. Moreover, these results were duplicated by treating the cells with the GSK3 inhibitor, and by contrast, were partially reversed by the GSK3 activator. Treating cells with a lysosome or proteasome inhibitor failed to attenuate the effects of hypertonic stimulus, indicating that the loss of UT-A1 from the Golgi was not due to degradation. Our results suggest that GSK3 may in part modulate the hypertonic-induced intracellular UT-A1 redistribution and its accumulation on the plasma membrane, which may constitute another mechanism by which GSK3 modulates urine concentration. © 2016 S. Karger AG, Basel.
Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds.
Novikova, Galina V; Tournaire-Roux, Colette; Sinkevich, Irina A; Lityagina, Snejana V; Maurel, Christophe; Obroucheva, Natalie
2014-09-01
A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity.
Li, Guowei; Boudsocq, Marie; Hem, Sonia; Vialaret, Jérôme; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique
2015-07-01
The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins. © 2014 John Wiley & Sons Ltd.
Aquaporin-4 in brain and spinal cord oedema.
Saadoun, S; Papadopoulos, M C
2010-07-28
Brain oedema is a major clinical problem produced by CNS diseases (e.g. stroke, brain tumour, brain abscess) and systemic diseases that secondarily affect the CNS (e.g. hyponatraemia, liver failure). The swollen brain is compressed against the surrounding dura and skull, which causes the intracranial pressure to rise, leading to brain ischaemia, herniation, and ultimately death. A water channel protein, aquaporin-4 (AQP4), is found in astrocyte foot processes (blood-brain border), the glia limitans (subarachnoid cerebrospinal fluid-brain border) and ependyma (ventricular cerebrospinal fluid-brain border). Experiments using mice lacking AQP4 or alpha syntrophin (which secondarily downregulate AQP4) showed that AQP4 facilitates oedema formation in diseases causing cytotoxic (cell swelling) oedema such as cerebral ischaemia, hyponatraemia and meningitis. In contrast, AQP4 facilitates oedema elimination in diseases causing vasogenic (vessel leak) oedema and therefore AQP4 deletion aggravates brain oedema produced by brain tumour and brain abscess. AQP4 is also important in spinal cord oedema. AQP4 deletion was associated with less cord oedema and improved outcome after compression spinal cord injury in mice. Here we consider the possible routes of oedema formation and elimination in the injured cord and speculate about the role of AQP4. Finally we discuss the role of AQP4 in neuromyelitis optica (NMO), an inflammatory demyelinating disease that produces oedema in the spinal cord and optic nerves. NMO patients have circulating AQP4 IgG autoantibody, which is now used for diagnosing NMO. We speculate how NMO-IgG might produce CNS inflammation, demyelination and oedema. Since AQP4 plays a key role in the pathogenesis of CNS oedema, we conclude that AQP4 inhibitors and activators may reduce CNS oedema in many diseases. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming
2014-02-01
High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.
Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice
Nørregaard, Rikke; Tao, Shixin; Nilsson, Line; Woodgett, James R.; Kakade, Vijayakumar; Yu, Alan S. L.; Howard, Christiana
2015-01-01
In mammals, glycogen synthase kinase (GSK)3 comprises GSK3α and GSK3β isoforms. GSK3β has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3α has yet to be discerned. To investigate the role of GSK3α in urine concentration, we compared GSK3α knockout (GSK3αKO) mice with wild-type (WT) littermates. Under normal conditions, GSK3αKO mice had higher water intake and urine output. GSK3αKO mice also showed reduced urine osmolality and aquaporin-2 levels but higher urinary vasopressin. When water deprived, they failed to concentrate their urine to the same level as WT littermates. The addition of 1-desamino-8-d-arginine vasopressin to isolated inner medullary collecting ducts increased the cAMP response in WT mice, but this response was reduced in GSK3αKO mice, suggesting reduced responsiveness to vasopressin. Gene silencing of GSK3α in mpkCCD cells also reduced forskolin-induced aquaporin-2 expression. When treated with LiCl, an isoform nonselective inhibitor of GSK3 and known inducer of polyuria, WT mice developed significant polyuria within 6 days. However, in GSK3αKO mice, the polyuric response was markedly reduced. This study demonstrates, for the first time, that GSK3α could play a crucial role in renal urine concentration and suggest that GSK3α might be one of the initial targets of Li+ in LiCl-induced nephrogenic diabetes insipidus. PMID:25608967
Bradford, Davis; Raghuram, Viswanathan; Wilson, Justin L L; Chou, Chung-Lin; Hoffert, Jason D; Knepper, Mark A; Pisitkun, Trairak
2014-07-15
In the renal collecting duct, binding of AVP to the V2 receptor triggers signaling changes that regulate osmotic water transport. Short-term regulation of water transport is dependent on vasopressin-induced phosphorylation of aquaporin-2 (AQP2) at Ser256. The protein kinase that phosphorylates this site is not known. We use Bayes' theorem to rank all 521 rat protein kinases with regard to the likelihood of a role in Ser256 phosphorylation on the basis of prior data and new experimental data. First, prior probabilities were estimated from previous transcriptomic and proteomic profiling data, kinase substrate specificity data, and evidence for kinase regulation by vasopressin. This ranking was updated using new experimental data describing the effects of several small-molecule kinase inhibitors with known inhibitory spectra (H-89, KN-62, KN-93, and GSK-650394) on AQP2 phosphorylation at Ser256 in inner medullary collecting duct suspensions. The top-ranked kinase was Ca2+/calmodulin-dependent protein kinase II (CAMK2), followed by protein kinase A (PKA) and protein kinase B (AKT). Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based in vitro phosphorylation studies compared the ability of three highly ranked kinases to phosphorylate AQP2 and other inner medullary collecting duct proteins, PKA, CAMK2, and serum/glucocorticoid-regulated kinase (SGK). All three proved capable of phosphorylating AQP2 at Ser256, although CAMK2 and PKA were more potent than SGK. The in vitro phosphorylation experiments also identified candidate protein kinases for several additional phosphoproteins with likely roles in collecting duct regulation, including Nedd4-2, Map4k4, and 3-phosphoinositide-dependent protein kinase 1. We conclude that Bayes' theorem is an effective means of integrating data from multiple data sets in physiology.
Adiredjo, Afifuddin Latif; Navaud, Olivier; Grieu, Philippe; Lamaze, Thierry
2014-12-01
This article evaluates the potential of intraspecific variation for whole-root hydraulic properties in sunflower. We investigated genotypic differences related to root water transport in four genotypes selected because of their differing water use efficiency (JAC doi: 10.1111/jac.12079. 2014). We used a pressure-flux approach to characterize hydraulic conductance (L 0 ) which reflects the overall water uptake capacity of the roots and hydraulic conductivity (Lp r ) which represents the root intrinsic water permeability on an area basis. The contribution of aquaporins (AQPs) to water uptake was explored using mercuric chloride (HgCl 2 ), a general AQP blocker. There were considerable variations in root morphology between genotypes. Mean values of L 0 and Lp r showed significant variation (above 60% in both cases) between recombinant inbred lines in control plants. Pressure-induced sap flow was strongly inhibited by HgCl 2 treatment in all genotypes (more than 50%) and contribution of AQPs to hydraulic conductivity varied between genotypes. Treated root systems displayed markedly different L 0 values between genotypes whereas Lp r values were similar. Our analysis points to marked differences between genotypes in the intrinsic aquaporin-dependent path (Lp r in control plants) but not in the intrinsic AQP-independent paths (Lp r in HgCl 2 treated plants). Overall, root anatomy was a major determinant of water transport properties of the whole organ and can compensate for a low AQP contribution. Hydraulic properties of root tissues and organs might have to be taken into account for plant breeding since they appear to play a key role in sunflower water balance and water use efficiency.
Muries, Beatriz; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen
2013-05-01
The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na(+) concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.
Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges
Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus
2015-01-01
In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033
LaMacchia, John C.
2015-01-01
Periods of oxygen deprivation can lead to ion and water imbalances in affected tissues that manifest as swelling (edema). Although oxygen deprivation-induced edema is a major contributor to injury in clinical ischemic diseases such as heart attack and stroke, the pathophysiology of this process is incompletely understood. In the present study we investigate the impact of aquaporin-mediated water transport on survival in a Caenorhabditis elegans model of edema formation during complete oxygen deprivation (anoxia). We find that nematodes lacking aquaporin water channels in tissues that interface with the surrounding environment display decreased edema formation and improved survival rates in anoxia. We also find that these animals have significantly reduced demand for glycogen as an energetic substrate during anoxia. Together, our data suggest that reductions in membrane water permeability may be sufficient to induce a hypometabolic state during oxygen deprivation that reduces injury and extends survival limits. PMID:26017147
NASA Technical Reports Server (NTRS)
Hill, Terry R.; Taylor, Brandon W.
2012-01-01
With the retirement of the U.S. Space Shuttle fleet, the supply of extremely high quality water required for the Extravehicular Mobility Unit (EMU) space suit cooling on the International Space Station (ISS) will become a significant operational hardware challenge in the very near future. One proposed solution is the use of a filtration system consisting of a semipermeable membrane embedded with aquaporin proteins, a special class of transmembrane proteins that facilitate passive, selective transport of water in vivo. The specificity of aquaporins is such that only water is allowed through the protein structure, and it is this novel property that invites their adaptation for use in water filtration systems, specifically those onboard the ISS for the EMU space suit system. These proteins are also currently being developed for use in terrestrial filtration systems.
Aquaporins in desert rodent physiology.
Pannabecker, Thomas L
2015-08-01
Desert rodents face a sizeable challenge in maintaining salt and water homeostasis due to their life in an arid environment. A number of their organ systems exhibit functional characteristics that limit water loss above that which occurs in non-desert species under similar conditions. These systems include renal, pulmonary, gastrointestinal, nasal, and skin epithelia. The desert rodent kidney preserves body water by producing a highly concentrated urine that reaches a maximum osmolality nearly three times that of the common laboratory rat. The precise mechanism by which urine is concentrated in any mammal is unknown. Insights into the process may be more apparent in species that produce highly concentrated urine. Aquaporin water channels play a fundamental role in water transport in several desert rodent organ systems. The role of aquaporins in facilitating highly effective water preservation in desert rodents is only beginning to be explored. The organ systems of desert rodents and their associated AQPs are described. © 2015 Marine Biological Laboratory.
Combined effect of boron and salinity on water transport: The role of aquaporins.
Del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth; Carvajal, Micaela
2008-10-01
Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.
Wang, Lili; Zhou, Hu; Li, Zhengjun; Lim, Teck Kwang; Lim, Xin Shan; Lin, Qingsong
2015-11-01
Aquaporins are integral membrane channel proteins found in all kingdoms of life. The Escherichia coli aquaporin Z (AqpZ) has been shown to solely conduct water at high permeability. Functional AqpZ is generally purified from the membrane fraction. However, the quantity of the purified protein is limited. In this study, a new method is developed to achieve high yield of bioactive AqpZ protein. A mild detergent n-dodecyl-β-D-maltopyranoside (DDM) was used to solubilize the over-expressed insoluble AqpZ from inclusion bodies without a refolding process. The recovered AqpZ protein showed high water permeability comparable with AqpZ obtained from the membrane fraction. In this way, the total yield of bioactive AqpZ has been increased greatly, which will facilitate the structural and functional characterization and future applications of AqpZ. Copyright © 2015 Elsevier Inc. All rights reserved.
Integrin linked kinase regulates the transcription of AQP2 by NFATC3.
Hatem-Vaquero, Marco; Griera, Mercedes; Giermakowska, Wieslawa; Luengo, Alicia; Calleros, Laura; Gonzalez Bosc, Laura V; Rodríguez-Puyol, Diego; Rodríguez-Puyol, Manuel; De Frutos, Sergio
2017-09-01
Two processes are associated with progressive loss of renal function: 1) decreased aquaporin-2 (AQP2) expression and urinary concentrating capacity (Nephrogenic Diabetes Insipidus, NDI); and 2) changes in extracellular matrix (ECM) composition, e.g. increased collagen I (Col I) deposition, characteristic of tubule-interstitial fibrosis. AQP2 expression is regulated by both the ECM-to-intracellular scaffold protein integrin-linked kinase (ILK) by NFATc/AP1 and other transcription factors. In the present work, we used in vivo and in vitro approaches to examine ILK participation in NFATc3/AP-1-mediated increases in AQP2 gene expression. Both NFATc3 knock-out mice and ILK conditional-knockdown mice (cKD-ILK) display symptoms of NDI (polyuria and reduced AQP2 expression). NFATc3 is upregulated in the renal medulla tubular cells of cKD-ILK mice but with reduced nuclear localization. Inner medullary collecting duct mIMCD3 cells were subjected to ILK depletion and transfected with reporter plasmids. Pharmacological activators or inhibitors determined the effect of ILK activity on NFATc/AP-1-dependent increases in transcription of AQP2. Finally, mIMCD3 cultured on Col I showed reduced activity of the ILK/GSK3β/NFATc/AQP2 axis, suggesting this pathway is a potential target for therapeutic treatment of NDI. Copyright © 2017 Elsevier B.V. All rights reserved.
Glycogen synthase kinase-3 regulation of urinary concentrating ability
Rao, Reena
2013-01-01
Purpose of review Glycogen synthase kinase-3 (GSK3) is an enzyme that is gaining prominence as a critical signaling molecule in the epithelial cells of renal tubules. This review will focus on recent findings exploring the role of GSK3 in renal collecting ducts, especially its role in urine concentration involving vasopressin signaling. Recent findings Recent studies using inhibition or tissue-specific gene deletion of GSK3 revealed the mechanism by which GSK3 regulates aquaporin 2 water channels via adenylate cyclase or the prostaglandin-E2 pathway. In other studies, postnatal treatment with lithium, an inhibitor of GSK3, increased cell proliferation and led to microcyst formation in rat kidneys. These studies suggest that loss of GSK3 activity could interfere with renal water transport at two levels. In the short term, it could disrupt vasopressin signaling in collecting duct cells and in the long term it could alter the structure of the collecting ducts, making them less responsive to the hydro-osmotic effects of vasopressin. Summary Ongoing studies reveal the crucial role played by GSK3 in the regulation of vasopressin action in the renal collecting ducts and suggest a possible use of GSK3 inhibitors in disease conditions associated with disrupted vasopressin signaling. PMID:22691876
Reale, Riccardo; English, Niall J; Garate, José-Antonio; Marracino, Paolo; Liberti, Micaela; Apollonio, Francesca
2013-11-28
Water self-diffusion and the dipolar response of the selectivity filter within human aquaporin 4 have been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static and alternating electric fields. The pulses were approximately 50 and 100 ns in duration and 0.0065 V/Å in (r.m.s.) intensity and were either static or else 2.45 or 100 GHz in frequency and applied both along and perpendicular to the channels. In addition, the relaxation of the aquaporin, water self-diffusion and gating dynamics following cessation of the impulses was studied. In previous work it was determined that switches in the dihedral angle of the selectivity filter led to boosting of water permeation events within the channels, in the presence of identical external static and alternating electric fields, although applied continuously. Here the application of field impulses (and subsequently, upon removal) has shown that it is the dipolar orientation of the histidine-201 residue in the selectivity filter which governs the dihedral angle, and hence influences water self-diffusion; this constitutes an appropriate order parameter. The dipolar response of this residue to the applied field leads to the adoption of four distinct states, which we modelled as time-homogeneous Markov jump processes, and may be distinguished in the potential of mean force (PMF) as a function of the dipolar orientation of histidine-201. The observations of enhanced "dipolar flipping" of H201 serve to explain increased levels of water self-diffusion within aquaporin channels during, and immediately following, field impulses, although the level of statistical certainty here is lower. Given the appreciable size of the energy barriers evident in PMFs computed directly from deterministic MD (whether in the absence or presence of external fields), metadynamics calculations were undertaken to explore the free-energy landscape of histidine-201 orientation with greater accuracy and precision. These indicate that electric fields do alter the free-energy profile of the H201 side-chain orientation, wherein a perturbation of the symmetric bimodal state evident in the zero-field case is observed. These effects are dependent on the field intensities.
Susa, Taketo; Sawai, Nobuhiko; Aoki, Takeo; Iizuka-Kogo, Akiko; Kogo, Hiroshi; Negishi, Akihide; Yokoo, Satoshi; Takata, Kuniaki; Matsuzaki, Toshiyuki
2013-01-01
Aquaporins are water channel proteins which enable rapid water movement across the plasma membrane. Aquaporin-5 (AQP5) is the major aquaporin and is expressed on the apical membrane of salivary gland acinar cells. We examined the effects of repeated administration of pilocarpine, a clinically useful stimulant for salivary fluid secretion, and isoproterenol (IPR), a stimulant for salivary protein secretion, on the abundance of AQP5 protein in rat salivary glands by immunofluorescence microscopy and semi-quantitative immunoblotting. Unexpectedly AQP5 was decreased in pilocarpine-administered salivary glands, in which fluid secretion must be highly stimulated, implying that AQP5 might not be required for fluid secretion at least in pilocarpine-administered state. The abundance of AQP5, on the other hand, was found to be significantly increased in IPR-administered submandibular and parotid glands. To address the possible mechanism of the elevation of AQP5 abundance in IPR-administered animals, changes of AQP5 level in fasting animals, in which the exocytotic events are reduced, were examined. AQP5 was found to be decreased in fasting animals as expected. These results suggested that the elevation of cAMP and/or frequent exocytotic events could increase AQP5 protein. AQP5 expression seems to be easily changed by salivary stimulants, although these changes do not always reflect the ability in salivary fluid secretion. PMID:24610966
Pohl, P; Saparov, S M; Borgnia, M J; Agre, P
2001-08-14
Aquaporins are membrane channels selectively permeated by water or water plus glycerol. Conflicting reports have described ion conductance associated with some water channels, raising the question of whether ion conductance is a general property of the aquaporin family. To clarify this question, a defined system was developed to simultaneously measure water permeability and ion conductance. The Escherichia coli water channel aquaporin-Z (AqpZ) was studied, because it is a highly stable tetramer. Planar lipid bilayers were formed from unilamellar vesicles containing purified AqpZ. The hydraulic conductivity of bilayers made from the total extract of E. coli lipids increased 3-fold if reconstituted with AqpZ, but electric conductance was unchanged. No channel activity was detected under voltage-clamp conditions, indicating that less than one in 10(9) transport events is electrogenic. Microelectrode measurements were simultaneously undertaken adjacent to the membrane. Changes in sodium concentration profiles accompanying transmembrane water flow permitted calculation of the activation energies: 14 kcal/mol for protein-free lipid bilayers and 4 kcal/mol for lipid bilayers containing AqpZ. Neither the water permeability nor the electric conductivity exhibited voltage dependence. This sensitive system demonstrated that AqpZ is permeated by water but not charged ions and should permit direct analyses of putative electrogenic properties of other aquaporins.
Pou, Alicia; Jeanguenin, Linda; Milhiet, Thomas; Batoko, Henri; Chaumont, François; Hachez, Charles
2016-12-01
Salt stress triggers a simultaneous transcriptional repression and aquaporin internalization to modify root cell water conductivity. Plasma membrane intrinsic proteins (PIPs) are involved in the adjustment of plant water balance in response to changing environmental conditions. In this study, Arabidopsis wild-type (Col-0) and transgenic lines overexpressing PIP2;7 were used to investigate and compare their response to salt stress. Hydraulic conductivity measurements using a high-pressure flowmeter (HPFM) revealed that overexpression of PIP2;7 induced a sixfold increase in root hydraulic conductivity of four week-old Arabidopsis thaliana plants compared to WT. Exposure to a high salt stress (150 mM NaCl) triggered a rapid repression of overall aquaporin activity in both genotypes. Response to salt stress was also investigated in 8 day-old seedlings. Exposure to salt led to a repression of PIP2;7 promoter activity and a significant decrease in PIP2;7 mRNA abundance within 2 h. Concomitantly, a rapid internalization of fluorescently-tagged PIP2;7 proteins was observed but removal from the cell membrane was not accompanied by further degradation of the protein within 4 h of exposure to salinity stress. These data suggest that PIP transcriptional repression and channel internalization act in concert during salt stress conditions to modulate aquaporin activity, thereby significantly altering the plant hydraulic parameters in the short term.
Benga, Gh
2006-10-30
Water channel proteins, later called aquaporins, are transmembrane proteins that have as their main(specific) function the water transport across biological membranes. The first water channel protein (WCP), now called aquaporin 1, was identified or "seen" in situ (hence discovered) in the human red blood cell (RBC) membrane in 1985 by Benga's group (Cluj-Napoca, Romania). This was achieved by a very selective radiolabeling of RBC membrane proteins with the water transport inhibitor [203Hg]-p-chloromercuribenzene sulfonate (PCMBS), under conditions of specific inhibition. The presence and location of the WCP was discovered among the polypeptides migrating in the region of 35-60 kDa on the electrophoretogram of RBC membrane proteins. The work was first published in 1986 in Biochemistry and Eur. J. Cell Biol. and reviewed by Benga in several articles in 1988-2004. We have thus a world priority in the discovery of the first water channel in the RBC membrane, that was re-discovered by chance by the group of Agre (Baltimore, USA) in 1988, when they isolated a new protein from the RBC membrane, nick-named CHIP28 (channel-forming integral membrane protein of 28 kDa). However, in addition to the 28 kDa component, this protein had a 35-60 kDa glycosylated component, the one detected by Benga's group. Only in 1992 the Agre's group suggested that "it is likely that CHIP28 is a functional unit of membrane water channels". In 1993 CHIP28 was renamed aquaporin 1. Looking in retrospect, asking the crucial question, when was the first WCP, discovered, a fair and clear cut answer would be: the first WCP, now called aquaporin 1, was identified or "seen" (hence discovered) in situ in the human RBC membrane by Benga and coworkers in 1985. It was again "seen" when it was purified in 1988 and again identified when its water transport property was found byAgre's group in 1992. If we make a comparison with the discovery of New World of America, the first man who has "seen" a part, very small indeed, of The New Land was Columbus; later, others, including Amerigo Vespucci (from whom the name derived), have better "seen" and in the subsequent years many explorers discovered the complexity of the Americas. Consequently, the initial discovery of the first water channel by Benga's group must be properly credited; the omission of Gheorghe Benga from the 2003 Nobel Prize in Chemistry (half of which was awarded to Peter Agre "for the discovery of the water channels") was a new mistake in the award of Nobel Prizes. Benga's claim is presented on the web site of the Ad Astra Association (www.ad-astra.ro/benga). As can be seen on this site his recognition as a discoverer of the first water channel protein from the human RBC membrane is growing. Thousands of science-related professionals from hundreds of academic and research units, as well as participants in several international scientific events, have signed as supporters of Benga; his priority is also mentioned in several comments on the 2003 Nobel Prize as presented on the site.
Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David
2017-07-01
Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Kato, Mitsunori; Pisliakov, Andrei V; Warshel, Arieh
2006-09-01
The origin of the barrier for proton transport through the aquaporin channel is a problem of general interest. It is becoming increasingly clear that this barrier is not attributable to the orientation of the water molecules across the channel but rather to the electrostatic penalty for moving the proton charge to the center of the channel. However, the reason for the high electrostatic barrier is still rather controversial. It has been argued by some workers that the barrier is due to the so-called NPA motif and/or to the helix macrodipole or to other specific elements. However, our works indicated that the main reason for the high barrier is the loss of the generalized solvation upon moving the proton charge from the bulk to the center of the channel and that this does not reflect a specific repulsive electrostatic interaction but the absence of sufficient electrostatic stabilization. At this stage it seems that the elucidation and clarification of the origin of the electrostatic barrier can serve as an instructive test case for electrostatic models. Thus, we reexamine the free-energy surface for proton transport in aquaporins using the microscopic free-energy perturbation/umbrella sampling (FEP/US) and the empirical valence bond/umbrella sampling (EVB/US) methods as well as the semimacroscopic protein dipole Langevin dipole model in its linear response approximation version (the PDLD/S-LRA). These extensive studies help to clarify the nature of the barrier and to establish the "reduced solvation effect" as the primary source of this barrier. That is, it is found that the barrier is associated with the loss of the generalized solvation energy (which includes of course all electrostatic effects) upon moving the proton charge from the bulk solvent to the center of the channel. It is also demonstrated that the residues in the NPA region and the helix dipole cannot be considered as the main reasons for the electrostatic barrier. Furthermore, our microscopic and semimacroscopic studies clarify the problems with incomplete alternative calculations, illustrating that the effects of various electrostatic elements are drastically overestimated by macroscopic calculations that use a low dielectric constant and do not consider the protein reorganization. Similarly, it is pointed out that microscopic potential of mean force calculations that do not evaluate the electrostatic barrier relative to the bulk water cannot be used to establish the origin of the electrostatic barrier. The relationship between the present study and calculations of pK(a)s in protein interiors is clarified, pointing out that approaches that are applied to study the aquaporin barrier should be validated by pK(a)s calculations. Such calculations also help to clarify the crucial role of solvation energies in establishing the barrier in aquaporins. (c) 2006 Wiley-Liss, Inc.
Müller, Werner E G; Belikov, Sergey I; Kaluzhnaya, Oxana V; Chernogor, L; Krasko, Anatoli; Schröder, Heinz C
2009-01-01
Lake Baikal is rich in endemic sponge species, among them the arborescently growing species Lubomirskia baicalensis. During winter when the lake is covered by ice, this species reproduces sexually, reflecting a high metabolic activity. Throughout the year, L. baicalensis lives in association with dinoflagellates, which - according to the data presented herein - are symbiotic. The dinoflagellates have been determined on the basis of their rDNA/ITS characteristics and were found to display high sequence similarity to Gymnodinium sanguineum. The dinoflagellates give the sponge its characteristic green color, reflecting the high chlorophyll content (chlorophyll-a content in March and September of 3.2 +/- 0.6 microg/g and 1.9 +/- 0.5 microg/g of protein, respectively). With the in vitro cell culture system for sponges, the primmorphs, it could be demonstrated that [(14)C] glycerol is readily taken up by sponge cells; this process can be inhibited by phloretin, an aquaporin channel blocker. In order to prove the effect of cholesterol on the intermediate metabolism of the sponge cells, molecule probes, cDNAs for key enzymes in gluconeogenesis, glycolysis, and citric acid, have been applied in Northern blot studies. The data revealed that the genes coding for the enzymes citrate synthase and fructose-1,6-bisphosphatase are strongly upregulated after exposure of primmorphs to glycerol. This effect is abolished by phloretin. The genes encoding the phosphoglucose isomerase and pyruvate dehydrogenase do not respond to glycerol supply, suggesting that their expression is not under genetic control in L. baicalensis. To prove the assumption that the aquaporin channel is involved in the influx of glycerol in sponge cells, this cDNA was cloned and applied for in situ hybridization studies. The results obtained show that cells surrounding the dinoflagellates become brightly stained after hybridization with the aquaporin this probe. This demonstrates that L. baicalensis cells respond to glycerol, a metabolite which might be supplied by the dinoflagellates and imported via the aquaporin channel into the sponge cells.
Hirt, B; Penkova, Z H; Eckhard, A; Liu, W; Rask-Andersen, H; Müller, M; Löwenheim, H
2010-07-28
Aquaporins are membrane water channel proteins that have also been identified in the cochlea. Auditory function critically depends on the homeostasis of the cochlear fluids perilymph and endolymph. In particular, the ion and water regulation of the endolymph is essential for sensory transduction. Within the cochlear duct the lateral wall epithelium has been proposed to secrete endolymph by an aquaporin-mediated flow of water across its epithelial tight junction barrier. This study identifies interspecies differences in the cellular distribution of aquaporin 5 (AQP5) in the cochlear lateral wall of mice, rats, gerbils and guinea pigs. In addition the cellular expression pattern of AQP5 is described in the human cochlea. Developmental changes in rats demonstrate longitudinal and radial gradients along the cochlear duct. During early postnatal development a pancochlear expression is detected. However a regression to the apical quadrant and limitation to outer sulcus cells (OSCs) is observed in the adult. This developmental loss of AQP5 expression in the basal cochlear segments coincides with a morphological loss of contact between OSCs and the endolymph. At the subcellular level, AQP5 exhibits polarized expression in the apical plasma membrane of the OSCs. Complementary, the basolateral membrane in the root processes of the OSCs exhibits AQP4 expression. This differential localization of AQP5 and AQP4 in the apical and basolateral membranes of the same epithelial cell type suggests a direct aquaporin-mediated transcellular water shunt between the perilymph and endolymph in the OSCs of the cochlear lateral wall. In the human cochlea these findings may have pathophysiological implications attributed to a dysfunctional water regulation by AQP5 such as endolymphatic hydrops (i.e. in Meniere's disease) or sensorineural hearing loss (i.e. in Sjögren's syndrome). Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.
2001-01-01
Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807
Perrone, Irene; Gambino, Giorgio; Chitarra, Walter; Vitali, Marco; Pagliarani, Chiara; Riccomagno, Nadia; Balestrini, Raffaella; Kaldenhoff, Ralf; Uehlein, Norbert; Gribaudo, Ivana; Schubert, Andrea; Lovisolo, Claudio
2012-10-01
We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.
Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.
del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M
2006-09-01
The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.
Functional characterization of Aquaporin-like genes in the human bed bug Cimex lectularius.
Tsujimoto, Hitoshi; Sakamoto, Joyce M; Rasgon, Jason L
2017-06-12
The bed bug Cimex lectularius is a blood-feeding re-emerging annoyance pest insect that has the ability to transmit Trypanosoma cruzi under experimental laboratory conditions. Aquaporins (AQPs) are water channel proteins that are essential in biological organisms. C. lectularius are constantly exposed to water-related stress, suggesting that AQPs may offer novel control avenues. We identified and cloned four AQPs from C. lectularius, assessed tissue and lifestage-specific expression, and characterized biochemical functions in vitro and in vivo. We identified an efficient water-specific AQP (ClAQP1), two aquaglyceroporins (ClGlp1 and ClGlp2) and a homolog of Drosophila melanogaster big brain (ClBib). ClGlp1 was only functional when co-expressed with the water-specific AQP. Simultaneous RNAi gene silencing of ClAQP1 and ClGlp1 significantly reduced water and urea excretion post blood feeding. The Bib homologue was enriched in embryos, exclusively expressed in ovaries, and when silenced, dramatically increased bug fecundity. Our data demonstrate that AQPs have critical roles in excretion, water homeostasis and reproduction in C. lectularius, and could be potential targets for control in this notorious pest.
Polyphenols as Modulators of Aquaporin Family in Health and Disease.
Fiorentini, Diana; Zambonin, Laura; Dalla Sega, Francesco Vieceli; Hrelia, Silvana
2015-01-01
Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.
Role of Aquaporins in a Composite Model of Water Transport in the Leaf.
Yaaran, Adi; Moshelion, Menachem
2016-06-30
Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs). To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes.
Frick, Anna; Eriksson, Urszula Kosinska; de Mattia, Fabrizio; Oberg, Fredrik; Hedfalk, Kristina; Neutze, Richard; de Grip, Willem J; Deen, Peter M T; Törnroth-Horsefield, Susanna
2014-04-29
Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein-protein interactions involved in cellular sorting of AQP2. Two Cd(2+)-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking.
Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R; Russinova, Eugenia; Chaumont, François
2014-07-01
Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. © 2014 American Society of Plant Biologists. All rights reserved.
The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium
NASA Astrophysics Data System (ADS)
Yan, Dayun; Xiao, Haijie; Zhu, Wei; Nourmohammadi, Niki; Zhang, Lijie Grace; Bian, Ka; Keidar, Michael
2017-02-01
The cold atmospheric plasma (CAP) is a promising novel anti-cancer method. Our previous study showed that the cold plasma-stimulated medium (PSM) exerted remarkable anti-cancer effect as effectively as the direct CAP treatment did. H2O2 has been identified as a key anti-cancer substance in PSM. However, the mechanisms underlying intracellular H2O2 regulation by cancer cells is largely unknown. Aquaporins (AQPs) are the confirmed membrane channels of H2O2. In this study, we first demonstrated that the anti-glioblastoma capacity of PSM could be inhibited by silencing the expression of AQP8 in glioblastoma cells (U87MG) or using the aquaporins-blocker silver atoms. This discovery illustrates the key intermediate role of AQPs in the toxicity of PSM on cancer cells. Because the expression of AQPs varies significantly among different cancer cell lines, this study may facilitate the understanding on the diverse responses of cancer cells to PSM or the direct CAP treatment.
A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells.
Park, Eui-Jung; Kwon, Tae-Hwan
2015-06-01
The kidney collecting duct is an important renal tubular segment for the regulation of body water and salt homeostasis. Water reabsorption in the collecting duct cells is regulated by arginine vasopressin (AVP) via the vasopressin V2-receptor (V2R). AVP increases the osmotic water permeability of the collecting duct cells through aquaporin-2 (AQP2) and aquaporin-3 (AQP3). AVP induces the apical targeting of AQP2 and transcription of AQP2 gene in the kidney collecting duct principal cells. The signaling transduction pathways resulting in the AQP2 trafficking to the apical plasma membrane of the collecting duct principal cells, include AQP2 phosphorylation, RhoA phosphorylation, actin depolymerization and calcium mobilization, and the changes of AQP2 protein abundance in water balance disorders have been extensively studied. These studies elucidate the underlying cellular and molecular mechanisms of body water homeostasis and provide the basis for the treatment of body water balance disorders.
Marracino, Paolo; Liberti, Micaela; Trapani, Erika; Burnham, Christian J.; Avena, Massimiliano; Garate, José-Antonio; Apollonio, Francesca; English, Niall J.
2016-01-01
Human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static electric fields. The pulses were 10 ns in duration and 0.012–0.065 V/Å in intensity acting along both directions perpendicular to the pores. Water permeability and the dipolar response of all residues of interest (including the selectivity filter) within the pores have been studied. Results showed decreased levels of water osmotic permeability within aquaporin channels during orthogonally-oriented field impulses, although care must be taken with regard to statistical certainty. This can be explained observing enhanced “dipolar flipping” of certain key residues, especially serine 211, histidine 201, arginine 216, histidine 95 and cysteine 178. These residues are placed at the extracellular end of the pore (serine 211, histidine 201, and arginine 216) and at the cytoplasm end (histidine 95 and cysteine 178), with the key role in gating mechanism, hence influencing water permeability. PMID:27428954
Schmidt, Martin J; Rummel, Christoph; Hauer, Jessica; Kolecka, Malgorzata; Ondreka, Nele; McClure, Vanessa; Roth, Joachim
2016-06-29
Studies in animal models, in which internal hydrocephalus has been induced by obstructing the cerebrospinal fluid pathways, have documented an up-regulation of the concentrations of aquaporin-4 (AQP4) in the brain. In this study, the concentrations of aquaporin-1 (AQP1), AQP1, AQP4 and interleukin-6 (IL-6) were determined in the CSF of dogs with idiopathic communicating hydrocephalus before and after the reduction of intraventricular volume following ventriculo-peritoneal shunt (VP-shunt) treatment. The concentrations of AQP4 and IL-6 were increased in the cerebrospinal fluid of dogs with hydrocephalus compared to controls. Both parameters significantly decreased after surgical treatment, accompanied by decrease of ventricular size and the clinical recovery of the dogs. AQP1 was not detectable in CSF. Brain AQP4 up-regulation might be a compensatory response in dogs with hydrocephalus. Future determination of AQP4 at the mRNA and protein level in brain tissue is warranted to substantiate this hypothesis.
Li, Ren; Wang, Jinfang; Li, Shuangtao; Zhang, Lei; Qi, Chuandong; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong
2016-08-22
The function of aquaporin (AQP) protein in transporting water is crucial for plants to survive in drought stress. With 47 homologues in tomato (Solanum lycopersicum) were reported, but the individual and integrated functions of aquaporins involved in drought response remains unclear. Here, three plasma membrane intrinsic protein genes, SlPIP2;1, SlPIP2;7 and SlPIP2;5, were identified as candidate aquaporins genes because of highly expressed in tomato roots. Assay on expression in Xenopus oocytes demonstrated that SlPIP2s protein displayed water channel activity and facilitated water transport into the cells. With real-time PCR and in situ hybridization analysis, SlPIP2s were considered to be involved in response to drought treatment. To test its function, transgenic Arabidopsis and tomato lines overexpressing SlPIP2;1, SlPIP2;7 or SlPIP2;5 were generated. Compared with wild type, the over-expression of SlPIP2;1, SlPIP2;7 or SlPIP2;5 transgenic Arabidopsis and tomato plants all showed significantly higher hydraulic conductivity levels and survival rates under both normal and drought conditions. Taken together, this study concludes that aquaporins (SlPIP2;1, SlPIP2;7 and SlPIP2;5) contribute substantially to root water uptake in tomato plants through improving plant water content and maintaining osmotic balance.
Wang, Lin; Li, Qingtian; Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin
2015-01-01
Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.
Zhu, Cui; Chen, Zhuang; Jiang, Zongyong
2016-01-01
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines. PMID:27589719
Zhu, Cui; Chen, Zhuang; Jiang, Zongyong
2016-08-29
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.
Jensen, Helene H; Login, Frédéric H; Park, Ji-Young; Kwon, Tae-Hwan; Nejsum, Lene N
2017-11-25
Aberrant levels of aquaporin-5 (AQP5) expression have been observed in several types of cancer, including breast cancer, where AQP5 overexpression is associated with metastasis and poor prognosis. In cultured cancer cells, AQP5 facilitates cell migration and activates Ras signaling. Both increased cell migration and Ras activation are associated with cancer metastasis, but so far it is unknown if AQP5 also affects these processes in vivo. Therefore, we investigated if high AQP5 expression in breast cancer tissue correlated with increased activation of Ras and of Rac1, which is a GTPase also involved in cell migration. This was accomplished by immunohistochemical analysis of invasive ductal carcinoma of breast tissue sections from human patients, followed by qualitative and quantitative correlation analysis between AQP5 and activated Ras and Rac1. Immunohistochemistry revealed that activation of Ras and Rac1 was positively correlated. There was, however, no correlation between high AQP5 expression and activation of Ras, whereas a nonsignificant, but positive, tendency between the levels of AQP5 and activated Rac1 levels was observed. In summary, this is the first report that correlates AQP5 expression levels to downstream signaling partners in breast cancer tissue sections. The results suggest Rac1 as a potential downstream signaling partner of AQP5 in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
A search for structurally similar cellular internal ribosome entry sites
Baird, Stephen D.; Lewis, Stephen M.; Turcotte, Marcel; Holcik, Martin
2007-01-01
Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5′UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5′UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function. PMID:17591613
Kelly, John J; Forge, Andrew; Jagger, Daniel J
2012-08-01
The cochlear spiral ligament is a connective tissue that plays diverse roles in normal hearing. Spiral ligament fibrocytes are classified into functional sub-types that are proposed to carry out specialized roles in fluid homeostasis, the mediation of inflammatory responses to trauma, and the fine tuning of cochlear mechanics. We derived a secondary sub-culture from guinea pig spiral ligament, in which the cells expressed protein markers of type III or "tension" fibrocytes, including non-muscle myosin II (nmII), α-smooth muscle actin (αsma), vimentin, connexin43 (cx43), and aquaporin-1. The cells formed extensive stress fibers containing αsma, which were also associated intimately with nmII expression, and the cells displayed the mechanically contractile phenotype predicted by earlier modeling studies. cx43 immunofluorescence was evident within intercellular plaques, and the cells were coupled via dye-permeable gap junctions. Coupling was blocked by meclofenamic acid (MFA), an inhibitor of cx43-containing channels. The contraction of collagen lattice gels mediated by the cells could be prevented reversibly by blebbistatin, an inhibitor of nmII function. MFA also reduced the gel contraction, suggesting that intercellular coupling modulates contractility. The results demonstrate that these cells can impart nmII-dependent contractile force on a collagenous substrate, and support the hypothesis that type III fibrocytes regulate tension in the spiral ligament-basilar membrane complex, thereby determining auditory sensitivity.
Miniussi, Matilda; Del Terra, Lorenzo; Savi, Tadeja; Pallavicini, Alberto; Nardini, Andrea
2015-10-01
Plant aquaporins (AQPs) are involved in the transport of water and other small solutes across cell membranes, and thus play major roles in the regulation of plant water balance, as well as in growth regulation and response to abiotic stress factors. Limited information is currently available about the presence and role of AQPs in Coffea arabica L., despite the economic importance of the species and its vulnerability to drought stress. We identified candidate AQP genes by screening a proprietary C. arabica transcriptome database, resulting in the identification of nine putative aquaporins. A phylogenetic analysis based on previously characterized AQPs from Arabidopsis thaliana and Solanum tuberosum allowed to assign the putative coffee AQP sequences to the Tonoplast (TIP) and Plasma membrane (PIP) subfamilies. The possible functional role of coffee AQPs was explored by measuring hydraulic conductance and aquaporin gene expression on leaf and root tissues of two-year-old plants (C. arabica cv. Pacamara) subjected to different experimental conditions. In a first experiment, we tested plants for root and leaf hydraulic conductance both before dawn and at mid-day, to check the eventual impact of light on AQP activity and plant hydraulics. In a second experiment, we measured plant hydraulic responses to different water stress levels as eventually affected by changes in AQPs expression levels. Our results shed light on the possible roles of AQPs in the regulation of C. arabica hydraulics and water balance, opening promising research lines to improve the sustainability of coffee cultivation under global climate change scenarios. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Secchi, Francesca; Zwieniecki, Maciej A.
2013-01-01
In order to study the role of PIP1 aquaporins in leaf water and CO2 transport, several lines of PIP1-deficient transgenic Populus tremula x alba were generated using a reverse genetic approach. These transgenic lines displayed no visible developmental or morphological phenotypes when grown under conditions of no water stress. Major photosynthetic parameters were also not affected by PIP1 down regulation. However, low levels of PIP1 expression resulted in greater leaf hydraulic resistance (an increase of 27%), which effectively implicated PIP1 role in water transport. Additionally, the expression level of PIP1 genes in the various transgenic lines was correlated with reductions in mesophyll conductance to CO2 (gm), suggesting that in poplar, these aquaporins influenced membrane permeability to CO2. Overall, although analysis showed that PIP1 genes contributed to the mass transfer of water and CO2 in poplar leaves, their down-regulation did not dramatically impair the physiological needs of this fast growing tree when cultivated under conditions of no stress. PMID:24379822
Regulation of the Water Channel Aquaporin-2 via 14-3-3θ and -ζ*
Moeller, Hanne B.; Slengerik-Hansen, Joachim; Aroankins, Takwa; Assentoft, Mette; MacAulay, Nanna; Moestrup, Soeren K.; Bhalla, Vivek; Fenton, Robert A.
2016-01-01
The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function. With the exception of σ, all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3β and -ζ, whereas levels of 14-3-3η and -θ were decreased. Co-immunoprecipitation (co-IP) studies in mpkCCD14 cells uncovered an AQP2/14-3-3 interaction that was modulated by acute dDAVP treatment. Additional co-IP studies in HEK293 cells determined that AQP2 interacts selectively with 14-3-3ζ and -θ. Use of phosphatase inhibitors in mpkCCD14 cells, co-IP with phosphorylation deficient forms of AQP2 expressed in HEK293 cells, or surface plasmon resonance studies determined that the AQP2/14-3-3 interaction was modulated by phosphorylation of AQP2 at various sites in its carboxyl terminus, with Ser-256 phosphorylation critical for the interactions. shRNA-mediated knockdown of 14-3-3ζ in mpkCCD14 cells resulted in increased AQP2 ubiquitylation, decreased AQP2 protein half-life, and reduced AQP2 levels. In contrast, knockdown of 14-3-3θ resulted in increased AQP2 half-life and increased AQP2 levels. In conclusion, this study demonstrates phosphorylation-dependent interactions of AQP2 with 14-3-3θ and -ζ. These interactions play divergent roles in modulating AQP2 trafficking, phosphorylation, ubiquitylation, and degradation. PMID:26645691
Azad, Abul Kalam; Katsuhara, Maki; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2008-08-01
We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.
Frick, Anna; Eriksson, Urszula Kosinska; de Mattia, Fabrizio; Öberg, Fredrik; Hedfalk, Kristina; Neutze, Richard; de Grip, Willem J.; Deen, Peter M. T.; Törnroth-Horsefield, Susanna
2014-01-01
Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein–protein interactions involved in cellular sorting of AQP2. Two Cd2+-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking. PMID:24733887
Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang
2015-01-01
Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965
Hamed, Saher; Ullmann, Yehuda; Egozi, Dana; Keren, Aviad; Daod, Essam; Anis, Omer; Kabha, Hoda; Belokopytov, Mark; Ashkar, Manal; Shofti, Rona; Zaretsky, Asaph; Schlesinger, Michal; Teot, Luc; Liu, Paul Y
2017-08-01
We have previously reported that the topical application of erythropoietin (EPO) to cutaneous wounds in rats and mice with experimentally induced diabetes accelerates their healing by stimulating angiogenesis, reepithelialization, and collagen deposition, and by suppressing the inflammatory response and apoptosis. Aquaporins (AQPs) are integral membrane proteins whose function is to regulate intracellular fluid hemostasis by enabling the transport of water and glycerol. AQP3 is the AQP that is expressed in the skin where it facilitates cell migration and proliferation and re-epithelialization during wound healing. In this report, we provide the results of an investigation that examined the contribution of AQP3 to the mechanism of EPO action on the healing of burn wounds in the skin of pigs with experimentally induced type 1 diabetes. We found that topical EPO treatment of the burns accelerated their healing through an AQP3-dependent mechanism that activates angiogenesis, triggers collagen and hyaluronic acid synthesis and the formation of the extracellular matrix (ECM), and stimulates reepithelialization by keratinocytes. We also found that incorporating fibronectin, a crucial constituent of the ECM, into the topical EPO-containing gel, can potentiate the accelerating action of EPO on the healing of the burn injury. © 2017 by the American Diabetes Association.
Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin
2017-09-01
Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD 7 ) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD 7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.
Vukićević, Tanja; Schulz, Maike; Faust, Dörte; Klussmann, Enno
2016-01-01
Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments. PMID:26903868
Koffman, Jennifer S.; Arnspang, Eva C.; Marlar, Saw; Nejsum, Lene N.
2015-01-01
Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport in response to physiological stimuli by changes in protein modifications, interactions with proteins and lipids, nanoscale membrane domain organization, and turnover rates. Such regulatory mechanisms could potentially be associated with alteration of diffusion behavior, possibly resulting in a change in the plasma membrane diffusion coefficient of AQP5. We aimed to test the short-term regulatory effects of the above pathways, by measuring lateral diffusion of AQP5 and an AQP5 phospho-mutant, T259A, using k-space Image Correlation Spectroscopy of quantum dot- and EGFP-labeled AQP5. Elevated cAMP and PKA inhibition significantly decreased lateral diffusion of AQP5, whereas T259A mutation showed opposing effects; slowing diffusion without stimulation and increasing diffusion to basal levels after cAMP elevation. Thus, lateral diffusion of AQP5 is significantly regulated by cAMP, PKA, and T259 phosphorylation, which could be important for regulating water flow in glandular secretions. PMID:26218429
Krediet, Raymond T.; Barreto, Deirisa Lopes; Struijk, Dirk G.
2016-01-01
Sodium sieving in peritoneal dialysis (PD) occurs in a situation with high osmotically-driven ultrafiltration rates. This dilutional phenomenon is caused by free water transport through the water channel aquaporin-1. It has recently been described that encapsulating peritoneal fibrosis is associated with impaired free water transport, despite normal expression of aquaporin-1. In this review, it will be argued that free water transport can be used for assessment of fibrotic peritoneal alterations, due to the water-binding capacity of collagen. Finally, the consequences for clinical practice will be discussed. PMID:26475849
Aquaporins in Cardiovascular System.
Tie, Lu; Wang, Di; Shi, Yundi; Li, Xuejun
2017-01-01
Recent studies have shown that some aquaporins (AQPs ), including AQP1, AQP4, AQP7 and AQP9, are expressed in endothelial cells, vascular smooth muscle cells and heart of cardiovascular system. These AQPs are involved in the cardiovascular function and in pathological process of related diseases, such as cerebral ischemia , congestion heart failure , hypertension and angiogenesis. Therefore, it is important to understand the accurate association between AQPs and cardiovascular system, which may provide novel approaches to prevent and treat related diseases. Here we will discuss the expression and physiological function of AQPs in cardiovascular system and summarize recent researches on AQPs related cardiovascular diseases.
Responses of hybrid aspen over-expressing a PIP2;5 aquaporin to low root temperature.
Ranganathan, Kapilan; El Kayal, Walid; Cooke, Janice E K; Zwiazek, Janusz J
2016-03-15
Aquaporins mediate the movement of water across cell membranes. Plasma membrane intrinsic protein 2;5 from Populus trichocarpa×deltoides (PtdPIP2;5) was previously demonstrated to be a functionally important water conducting aquaporin. To study the relevance of aquaporin-mediated root water transport at low temperatures, we generated transgenic Populus tremula×alba over-expressing PtdPIP2;5 under control of the maize ubiquitin promoter, and compared the physiological responses and water transport properties of the PtdPIP2;5 over-expressing lines (PtdPIP2;5ox) with wild-type plants. We hypothesized that over-expression of PtdPIP2;5 would reduce temperature sensitivity of root water transport and gas exchange. Decreasing root temperatures to 10 and 5°C significantly decreased hydraulic conductivities (Lp) in wild-type plants, but had no significant effect on Lp in PtdPIP2;5ox plants. Recovery of Lp in the transgenic lines returned to 20°C from 5°C was faster than in the wild-type plants. Low root temperature did not induce major changes in transcript levels for other PIPs. When roots were exposed to 5°C in solution culture and shoots were exposed to 20°C, wild-type plants had significantly lower net photosynthetic and transpiration rates compared to PtdPIP2;5ox plants. Taken together, our results demonstrate that over-expression of PtdPIP2;5 in P. tremula×alba was effective in alleviating the effects of low root temperature on Lp and gas exchange. Copyright © 2016 Elsevier GmbH. All rights reserved.
Macho-Rivero, Miguel A; Herrera-Rodríguez, M Begoña; Brejcha, Ramona; Schäffner, Anton R; Tanaka, Nobuhiro; Fujiwara, Toru; González-Fontes, Agustín; Camacho-Cristóbal, Juan J
2018-04-01
Toxic boron (B) concentrations cause impairments in several plant metabolic and physiological processes. Recently we reported that B toxicity led to a decrease in the transpiration rate of Arabidopsis plants in an ABA-dependent process within 24 h, which could indicate the occurrence of an adjustment of whole-plant water relations in response to this stress. Since plasma membrane intrinsic protein (PIP) aquaporins are key components influencing the water balance of plants because of their involvement in root water uptake and tissue hydraulic conductance, the aim of the present work was to study the effects of B toxicity on these important parameters affecting plant water status over a longer period of time. For this purpose, transpiration rate, water transport to the shoot and transcript levels of genes encoding four major PIP aquaporins were measured in Arabidopsis plants treated or not with a toxic B concentration. Our results indicate that, during the first 24 h of B toxicity, increased shoot ABA content would play a key role in reducing stomatal conductance, transpiration rate and, consequently, the water transport to the shoot. These physiological responses to B toxicity were maintained for up to 48 h of B toxicity despite shoot ABA content returning to control levels. In addition, B toxicity also caused the down-regulation of several genes encoding root and shoot aquaporins, which could reduce the cell to cell movement of water in plant tissues and, consequently, the water flux to shoot. All these changes in the water balance of plants under B toxicity could be a mechanism to prevent excess B accumulation in plant tissues.
A tonoplast intrinsic protein in Gardenia jasminoides
NASA Astrophysics Data System (ADS)
Gao, Lan; Li, Hao-Ming
2017-08-01
Physiological and molecular studies proved that plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) subfamily of aquaporins play key functions in plant water homeostasis. Five specialized subgroups (TIP1-5) of TIPs have been found in higher plants, in which the TIP1 and TIP2 isoforms are the largest arbitrary groups. TIPs have high water-transport activity than PIPs, some TIPs can transport other small molecule such as urea, ammonia, hydrogen peroxide, and carbon dioxide. In this work, the structure of the putative tonoplast aquaporin from Gardenia jasminoides (GjTIP) was analyzed. Its transcript level has increased during fruit maturation. A phylogenetic analysis indicates that the protein belongs to TIP1 subfamily. A three-dimensional model structure of GjTIP was built based on crystal structure of an ammonia-permeable AtTIP2-1 from Arabidopsis thaliana. The model structure displayed as a homo-tetramer, each monomer has six trans-membrane and two half-membrane-spanning α helices. The data suggests that the GjTIP has tendency to be a mixed function aquaporin, might involve in water, urea and hydrogen peroxide transport, and the gating machanism founded in some AQPs involving pH and phosphorylation response have not been proved in GjTIP.
Prieto-Martínez, Noelia; Vilagran, Ingrid; Morató, Roser; Rodríguez-Gil, Joan E; Yeste, Marc; Bonet, Sergi
2016-04-01
Aquaporins (AQPs) are integral membrane water channels that allow transport of water and small solutes across cell membranes. Although water permeability is known to play a critical role in mammalian cells, including spermatozoa, little is known about their localisation in boar spermatozoa. Two aquaporins, AQP7 and AQP11, in boar spermatozoa were identified by western blotting and localised through immunocytochemistry analyses. Western blot results showed that boar spermatozoa expressed AQP7 (25kDa) and AQP11 (50kDa). Immunocytochemistry analyses demonstrated that AQP7 was localised in the connecting piece of boar spermatozoa, while AQP11 was found in the head and mid-piece and diffuse labelling was also seen along the tail. Despite differences in AQP7 and AQP11 content between boar ejaculates, these differences were not found to be correlated with sperm quality in the case of AQP7. Conversely, AQP11 content showed a significant correlation (P<0.05) with sperm membrane integrity and fluidity and sperm motility. In conclusion, boar spermatozoa express AQP7 and AQP11, and the amounts of AQP11 but not those of AQP7 are correlated with sperm motility and membrane integrity.
Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification.
Sun, Guofei; Chung, Tai-Shung; Jeyaseelan, Kandiah; Armugam, Arunmozhiarasi
2013-02-01
Aquaporins are water channel proteins in biological membranes that have extraordinary water permeability and selectivity. In this work, we have demonstrated that one of their family members, AquaporinZ (AqpZ), can be possibly applied in a pressure-driven water purification process. A nanofiltration membrane was designed and fabricated by immobilization of AqpZ-reconstituted liposomes on a polydopamine (PDA) coated microporous membrane. Amine-functionalized proteoliposomes were first deposited via gentle vacuum suction and subsequently conjugated on the PDA layer via an amine-catechol adduct formation. Due to the existence of a polymer network within the lipid bilayers, the membrane could sustain hydraulic pressure of 5 bar as well as the strong surface agitation in nanofiltration tests, indicating a relatively stable membrane structure. In comparison with membrane without AqpZ incorporation, the membrane with AqpZ-to-lipid weight ratio of 1:100 increased the water flux by 65% with enhanced NaCl and MgCl(2) rejections of 66.2% and 88.1%, respectively. With AqpZ incorporation, the vesicle immobilized membrane exhibits a promising strategy for high productivity water purification. Copyright © 2012 Elsevier B.V. All rights reserved.
Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei
2013-10-11
Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases ofmore » human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.« less
Rodrigues, Marcela I; Bravo, Juliana P; Sassaki, Flávio T; Severino, Fábio E; Maia, Ivan G
2013-12-01
Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Chang, Thashi; Withana, Milinda
2015-02-10
Neuromyelitis optica is characterised by optic neuritis, longitudinally-extensive transverse myelitis and presence of anti-aquaporin-4 antibodies in the serum. However, non-opticospinal central nervous system manifestations have been increasingly recognised. Awareness of the widening clinical spectrum of neuromyelitis optica (unified within the nosology of 'neuromyelitis optica spectrum disorders') is key to earlier diagnosis and appropriate therapy. We report 2 patients to illustrate the varied clinical manifestations of neuromyelitis optica spectrum disorders while postulating an effect of anti-aquaporin-4 antibodies on the miscarriage of pregnancy. This is the first report of horizontal gaze palsy as a presenting symptom of neuromyelitis optica spectrum disorders. Patient 1: A 17-year-old Sri Lankan female presented with hypersomnolence, lateral gaze palsy and loss of taste of 1 week duration. Two years previously she had presented with intractable hiccups and vomiting followed by a brainstem syndrome. Magnetic resonance imaging showed a lesion in the left cerebellum extending into the pons while lesions in bilateral hypothalami and medulla noted 2 years ago had resolved. Autoimmune, vasculitis and infection screens were negative. Anti-aquaporin-4 antibodies were detected in serum. All her symptoms resolved with immunosuppressive therapy. Patient 2: A 47-Year-old Sri Lankan female presented with persistent vomiting lasting over 3 weeks. Three years previously, at 25-weeks of her 4(th) pregnancy, she had presented with quadriparesis and was found to have a longitudinally extensive transverse myelitis from C2 to T2 vertebral levels, which gradually improved following intravenous steroid therapy. Magnetic resonance imaging showed a hyper-intense lesion in the area postrema and longitudinally extensive atrophy of the cord corresponding to her previous myelitis. Autoimmune, vasculitis and infection screens were negative. Anti-aquaporin-4 antibodies were detected in serum. Her vomiting subsided with immunosuppressive therapy. Her second pregnancy had resulted in a first-trimester miscarriage. The clinical spectrum of neuromyelitis optica spectrum disorders has expanded beyond optic neuritis and myelitis to include non-opticospinal syndromes involving the diencephalon, brainstem and cerebrum. Our report highlights the varied central nervous system manifestations of neuromyelitis optica spectrum disorders and miscarriage of pregnancy possibly related to anti-aquaporin-4 antibodies.
Skowronska, Agnieszka; Młotkowska, Patrycja; Wojciechowicz, Bartosz; Okrasa, Stanisław; Nielsen, Soren; Skowronski, Mariusz T
2015-02-18
The cell membrane water channel protein, aquaporins (AQPs), regulate cellular water transport and cell volume and play a key role in water homeostasis. Recently, AQPs are considered as important players in the field of reproduction. In previous studies, we have established the presence of AQP1 and 5 in porcine uterus. Their expression at protein level altered in distinct tissues of the female reproductive system depending on the phase of the estrous cycle. However, the regulation of aquaporin genes and proteins expression has not been examined in porcine uterine tissue. Therefore, we have designed an in vitro experiment to explain whether steroid hormones, progesterone (P4) and estradiol (E2), and other factors: oxytocine (OT), arachidonic acid (AA; substrate for prostaglandins synthesis) as well as forskolin (FSK; adenylate cyclase activator) and cAMP (second messenger, cyclic adenosine monophosphate) may impact AQPs expression. Uterine tissues were collected on Days 10-12 and 14-16 of the estrous cycle representing the mid-luteal phase and luteolysis. Real-time PCR and Western blot analysis were performed to examine the expression of porcine AQP1 and AQP5. Their expression in the uterine explants was also evaluated by immunohistochemistry. The results indicated that uterine expression of AQP1 and AQP5 potentially remains under control of steroid hormones and AA-derived compounds (e.g. prostaglandins). P4, E2, AA, FSK and cAMP cause translocation of AQP5 from apical to the basolateral plasma membrane of the epithelial cells, which might affect the transcellular water movement (through epithelial cells) between uterine lumen and blood vessels. The AC/cAMP pathway is involved in the intracellular signals transduction connected with the regulation of AQPs expression in the pig uterus. This study documented specific patterns of AQP1 and AQP5 expression in response to P4, E2, AA, FSK and cAMP, thereby providing new indirect evidence of their role in maintaining the local fluid balance within the uterus during the mid-luteal phase of the estrous cycle and luteolysis in pigs.
Gender effect on neuromyelitis optica spectrum disorder with aquaporin4-immunoglobulin G.
Kim, Sung-Min; Waters, Patrick; Woodhall, Mark; Kim, Yoo-Jin; Kim, Jin-Ah; Cheon, So Young; Lee, Sehoon; Jo, Seong Rae; Kim, Dong Gun; Jung, Kyeong Cheon; Lee, Kwang-Woo; Sung, Jung-Joon; Park, Kyung Seok
2017-07-01
Neuromyelitis optica spectrum disorder with aquaporin4-immunoglobulin G (NMOSD-AQP4) is an inflammatory disease characterised by a high female predominance. However, the effect of gender in patients with NMOSD-AQP4 has not been fully evaluated. The aim of this study was to determine the effect of gender in clinical manifestations and prognosis of patients with NMOSD-AQP4. The demographics, clinical and radiological characteristics, pattern reversal visual evoked potential (VEP) test results, and prognosis of 102 patients (18 males) with NMOSD-AQP4 were assessed. Male patients had a higher age at onset (48.7 vs 41 years, p = 0.037) and less optic neuritis as the onset attack (17% vs 44%, p = 0.026), higher tendency to manifest as isolated myelitis over the follow-up period (67% vs 28%, p = 0.005), fewer optic neuritis attacks per year (0.08 vs 0.27, p < 0.001), and shorter relative P100 latency on VEP testing (97.1% vs 108.3%, p = 0.001). Moreover, male gender was significantly associated with the absence of optic neuritis attacks over the follow-up period independent of their age of onset. In NMOSD-AQP4 patients, gender impacts on disease onset age and site of attack. This may be an important clue in identifying NMOSD-AQP4 patients with limited manifestations as well as in predicting their clinical courses.
Ball, Andrew; Campbell, Ewan M; Jacob, Jimmy; Hoppler, Stefan; Bowman, Alan S
2009-02-01
Much is known about the physiology of tick salivation, but nothing is known about the movement of water through the cell membranes of salivary glands, a phenomenon usually associated with water channels or aquaporins (AQPs). An AQP, RsAQP1, was identified in a salivary gland cDNA library of Rhipicephalus sanguineus. In the first functional characterization of an acarine AQP, Xenopus oocytes expressing RsAQP1 became water permeable, whereas RsAQP1 did not transport glycerol or urea. RsAQP1 was inhibited by Hg(2+) but not by triethylammonium. Treatment with a protein kinase A activator (cAMP) had no effect on RsAQP1 transport, whereas treatment with a protein kinase C activator (phorbol 12,13-dibutyrate) reduced water flux by 60%. RsAQP1 transcript was present in unfed larvae, nymphs and adult R. sanguineus, but absent in embryos. Partially fed female R. sanguineus expressed RsAQP1 in gut, Malpighian tubules and was particularly abundant in salivary gland tissue, but absent in ovary and synganglion tissues. Because of the importance of water management in tick biology for both the off-host and on-host phases of the life cycle, our findings on tick AQP1 represent a major advancement in our understanding of tick osmoregulation that could potentially be exploited in tick control.
2011-01-01
To elucidate the molecular mechanisms underling hydration during oocyte maturation, we characterized the structure of Japanese eel (Anguilla japonica) novel-water selective aquaporin 1 (AQP1b) that thought to be involved in oocyte hydration. The aqp1b cDNA encodes a 263 amino acid protein that includes the six potential transmembrane domains and two Asn-Pro-Ala motifs. Reverse transcription-polymerase chain reaction showed transcription of Japanese eel aqp1b in ovary and testis but not in the other tissues. In situ hybridization studies with the eel aqp1b cRNA probe revealed intense eel aqp1b signal in the oocytes at the perinucleolus stage and the signals became faint during the process of oocyte development. Light microscopic immunocytochemical analysis of ovary revealed that the Japanese eel AQP1b was expressed in the cytoplasm around the yolk globules which were located in the peripheral region of oocytes during the primary yolk globule stage; thereafter, the immunoreactivity was observed throughout the cytoplasm of oocyte as vitellogenesis progressed. The immunoreactivity became localized around the large membrane-limited yolk masses which were formed by the fusion of yolk globules during the oocyte maturation phase. These results together indicate that AQP1b, which is synthesized in the oocyte during the process of oocyte growth, is essential for mediating water uptake into eel oocytes. PMID:21615964
Jensen, Helene H; Holst, Mikkel R; Login, Frédéric H; Morgen, Jeanette J; Nejsum, Lene N
2018-06-01
Aquaporin-5 (AQP5) is a plasma membrane water channel mainly expressed in secretory glands. Increased expression of AQP5 is observed in multiple cancers, including breast cancer, where high expression correlates with the degree of metastasis and poor prognosis. Moreover, studies in cancer cells have suggested that AQP5 activates Ras signaling, drives morphological changes, and in particular increased invasiveness. To design intervention strategies, it is of utmost importance to characterize and dissect the cell biological changes induced by altered AQP5 expression. To isolate the effect of AQP5 overexpression from the cancer background, AQP5 was overexpressed in normal epithelial MDCK cells which have no endogenous AQP5 expression. AQP5 overexpression promoted actin stress fiber formation and lamellipodia dynamics. Moreover, AQP5 decreased cell circularity. Phosphorylation of AQP5 on serine 156 in the second intracellular loop has been shown to activate the Ras pathway. When serine 156 was mutated to alanine to mimic the nonphosphorylated state, the decrease in cell circularity was reversed, indicating that the AQP5-Ras axis is involved in the effect on cell shape. Interestingly, the cellular changes mediated by AQP5 were not associated with induction of epithelial-to-mesenchymal transition. Thus, AQP5 may contribute to cancer by altering cellular morphology and actin organization, which increase the metastatic potential.
Palestini, Paola; Calvi, Chiara; Conforti, Elena; Daffara, Rossella; Botto, Laura; Miserocchi, Giuseppe
2003-10-01
We evaluated in anesthetized rabbits the compositional changes of plasmalemmal lipid microdomains from lung tissue samples after inducing pulmonary interstitial edema (0.5 ml/kg for 3 h, leading to approximately 5% increase in extravascular water). Lipid microdomains (lipid rafts and caveolae) were present in the detergent-resistant fraction (DRF) obtained after discontinuous sucrose density gradient. DRF was enriched in caveolin-1, flotillin, aquaporin-1, GM1, cholesterol, sphingomyelin, and phosphatidylserine, and their contents significantly increased in interstitial edema. The higher DRF content in caveolin, flotillin, and aquaporin-1 and of the ganglioside GM1 suggests an increase both in caveolar domains and in lipid rafts, respectively. Compositional changes could be ascribed to endothelial and epithelial cells that provide most of plasma membrane surface area in the air-blood barrier. Alterations in lipid components in the plasma membrane may reflect rearrangement of floating lipid platforms within the membrane and/or lipid translocation from intracellular stores. Lipid traffic could be stimulated by the marked increase in hydraulic interstitial pressure after initial water accumulation, from approximately -10 to 5 cmH2O, due to the low compliance of the pulmonary tissue, in particular in the basement membranes and in the interfibrillar substance. Compositional changes in lipid microdomains represent a sign of cellular activation and suggest the potential role of mechanotransduction in response to developing interstitial edema.
Boyle, R T; Oliveira, L F; Bianchini, A; Souza, M M
2013-03-01
We used immunocytochemical and fluorometric techniques to show that gill cells of two marine invertebrates, the crab Neohelice granulata (osmoregulator) and the clam Mesodesma mactroides (osmoconformer), increase the expression of membrane transporters [Na(+)/K(+)-ATPase and aquaporin (AQP1)] after whole-animals exposure (96 h) to sublethal concentrations of copper in water of salinity 30 ppt, when both clams and crabs are isosmotic with respect to the environmental medium. A plausible interpretation of our findings is that this increased expression in membrane transporters may serve as an attempt to ameliorate the deleterious effects of copper on the mechanisms involved in ion and volume regulation in gill cells.
Asato, Yuko; Kamitani, Toshiaki; Ootsuka, Kuniyuki; Kuramochi, Mizuki; Nakanishi, Kozo; Shimada, Tetsuya; Takahashi, Toshiyuki; Misu, Tatsuro; Aoki, Masashi; Fujihara, Kazuo; Kawabata, Yoshinori
2018-05-18
We herein report the case of a 76-year old man with aquaporin-4-Immunoglobulin-G (AQP4-IgG)-positive neuromyelitis optica spectrum disorder (NMOSD), in whom transient interstitial pulmonary lesions developed at the early stage of the disease. Chest X-ray showed multiple infiltrative shadows in both upper lung fields, and computed tomography revealed abnormal shadows distributed randomly in the lungs. Surgical lung biopsy showed features of unclassifiable interstitial pneumonia, characterized by various types of air-space organization, which resulted in obscure lung structure. This is the first report to describe the pathological findings of interstitial pneumonia, which may represent a rare extra-central nervous system complication of NMOSD.
Martínez-Ballesta, Maria del Carmen; Muries, Beatriz; Moreno, Diego Ángel; Dominguez-Perles, Raúl; García-Viguera, Cristina; Carvajal, Micaela
2014-02-01
Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. The concentrations of these chemopreventive compounds (glucosinolate-degradation products, the bioactive isothiocyanates) may be modified under salinity. In this work, the effect of the aliphatic glucosinolate sinigrin (2-propenyl-glucosinolate) on plant water balance, involving aquaporins, was explored under salt stress. For this purpose, water uptake and its transport through the plasma membrane were determined in plants after NaCl addition, when sinigrin was also supplied. We found higher hydraulic conductance (L0 ) and water permeability (Pf ) and increased abundance of PIP2 aquaporins after the direct administration of sinigrin, showing the ability of the roots to promote cellular water transport across the plasma membrane in spite of the stress conditions imposed. The higher content of the allyl-isothiocyanate and the absence of sinigrin in the plant tissues suggest that the isothiocyanate is related to water balance; in fact, a direct effect of this nitro-sulphate compound on water uptake is proposed. This work provides the first evidence that the addition of a glucosinolate can regulate aquaporins and water transport: this effect and the mechanism(s) involved merit further investigation. © 2013 Scandinavian Plant Physiology Society.
Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins.
Vandeleur, Rebecca K; Sullivan, Wendy; Athman, Asmini; Jordans, Charlotte; Gilliham, Matthew; Kaiser, Brent N; Tyerman, Stephen D
2014-02-01
We investigated how root hydraulic conductance (normalized to root dry weight, Lo ) is regulated by the shoot. Shoot topping (about 30% reduction in leaf area) reduced Lo of grapevine (Vitis vinifera L.), soybean (Glycine max L.) and maize (Zea mays L.) by 50 to 60%. More detailed investigations with soybean and grapevine showed that the reduction in Lo was not correlated with the reduction in leaf area, and shading or cutting single leaves had a similar effect. Percentage reduction in Lo was largest when initial Lo was high in soybean. Inhibition of Lo by weak acid (low pH) was smaller after shoot damage or leaf shading. The half time of reduction in Lo was approximately 5 min after total shoot decapitation. These characteristics indicate involvement of aquaporins. We excluded phloem-borne signals and auxin-mediated signals. Xylem-mediated hydraulic signals are possible since turgor rapidly decreased within root cortex cells after shoot topping. There was a significant reduction in the expression of several aquaporins in the plasma membrane intrinsic protein (PIP) family of both grapevine and soybean. In soybean, there was a five- to 10-fold reduction in GmPIP1;6 expression over 0.5-1 h which was sustained over the period of reduced Lo . © 2013 John Wiley & Sons Ltd.
Liu, Chunfang; Zheng, Yanfang; Xu, Wen; Wang, Hui; Lin, Na
2014-01-01
Tannins, a group of major active components of Chinese rhubarb and widely distributed in nature, have a significant antidiarrhoeal activity. Aquaporins (AQPs) 2 and 3 play important roles in regulating water transfer during diarrhoea. The present study aims to determine the effect of the total tannins extract of rhubarb on aquaporins (AQPs) 2 and 3 in diarrhoea mice and HT-29 cells both induced by magnesium sulphate (MgSO4). Our results showed that rhubarb tannins extract (RTE) significantly decreased the faecal water content in colon and evaluation index of defecation of diarrhoea mice. Interestingly, RTE could markedly reduce the mRNA and protein expression levels of AQPs 2 and 3 in apical and lateral mucosal epithelial cells in the colons of diarrhoea mice and HT-29 cells both induced by MgSO4 in a dose-dependent manner. Furthermore, RTE suppressed the production of cyclic monophosphate- (cAMP-) dependent protein kinase A catalytic subunits α (PKA C-α) and phosphorylated cAMP response element-binding protein (p-CREB, Ser133) in MgSO4-induced HT-29 cells. Our data showed for the first time that RTE inhibit AQPs 2 and 3 expression in vivo and in vitro via downregulating PKA/p-CREB signal pathway, which accounts for the antidiarrhoeal effect of RTE.
Ismail, M; Bokaee, S; Davies, J; Harrington, K J; Pandha, H
2009-01-01
Aquaporins (AQPs) are intrinsic membrane proteins that facilitate selective water and small solute movement across the plasma membrane. In this study, we investigate the role of inhibiting AQPs in sensitising prostate cancer cells to cryotherapy. PC-3 and DU145 prostate cancer cells were cooled to 0, −5 and −10°C. The expression of AQP3 in response to freezing was determined using real-time quantitative polymerase chain reaction (RT–qPCR) and western blot analysis. Aquaporins were inhibited using mercuric chloride (HgCl2) and small interfering RNA (siRNA) duplex, and cell survival was assessed using a colorimetric assay. There was a significant increase in AQP3 expression in response to freezing. Cells treated with AQP3 siRNA were more sensitive to cryoinjury compared with control cells (P<0.001). Inhibition of the AQPs by HgCl2 also increased the sensitivity of both cell lines to cryoinjury and there was a complete loss of cell viability at −10°C (P<0.01). In conclusion, we have shown that AQP3 is involved directly in cryoinjury. Inhibition of AQP3 increases the sensitivity of prostate cancer cells to freezing. This strategy may be exploited in the clinic to improve the efficacy of prostate cryotherapy. PMID:19513079
Secchi, Francesca; Pagliarani, Chiara; Zwieniecki, Maciej A
2017-06-01
Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events. © 2016 John Wiley & Sons Ltd.
Barrieu, F; Marty-Mazars, D; Thomas, D; Chaumont, F; Charbonnier, M; Marty, F
1999-07-01
Changes in vacuolar structure and the expression at the RNA level of a tonoplast aquaporin (BobTIP26-1) were examined in cauliflower (Brassicaoleracea L. var. botrytis) under water-stress conditions. Gradual drying out of slices of cauliflower floret tissue caused its collapse, with a shrinkage in tissue and cell volumes and an apparent vesiculation of the central vacuole, whereas osmotic stress resulted in plasmolysis with a collapse of the cytoplasm and the central vacuole within. Osmotic stress caused a rapid and substantial increase in BobTIP26 mRNA in slices of floret tissue. Exposure of tissue slices to a regime of desiccation showed a slower but equally large rise in BobTIP26 mRNA followed by a rapid decline upon rehydration. In situ hybridization showed that BobTIP26-2 mRNA is expressed most highly in meristematic and expanding cells of the cauliflower florets and that desiccation strongly increased the expression in those cells and in differentiated cells near the xylem vessels. These data indicate that under water-deficit conditions, expression of the tonoplast aquaporin gene in cauliflower is subject to a precise regulation that can be correlated with important cytological changes in the cells.
Badaut, Jérôme; Fukuda, Andrew M; Jullienne, Amandine; Petry, Klaus G
2014-05-01
The presence of water channel proteins, aquaporins (AQPs), in the brain led to intense research in understanding the underlying roles of each of them under normal conditions and pathological conditions. In this review, we summarize some of the recent knowledge on the 3 main AQPs (AQP1, AQP4 and AQP9), with a special focus on AQP4, the most abundant AQP in the central nervous system. AQP4 was most studied in several brain pathological conditions ranging from acute brain injuries (stroke, traumatic brain injury) to the chronic brain disease with autoimmune neurodegenerative diseases. To date, no specific therapeutic agents have been developed to either inhibit or enhance water flux through these channels. However, experimental results strongly underline the importance of this topic for future investigation. Early inhibition of water channels may have positive effects in prevention of edema formation in brain injuries but at later time points during the course of a disease, AQP is critical for clearance of water from the brain into blood vessels. Thus, AQPs, and in particular AQP4, have important roles both in the formation and resolution of edema after brain injury. The dual, complex function of these water channel proteins makes them an excellent therapeutic target. This article is part of a Special Issue entitled Aquaporins. © 2013.
Li, Ye; Hu, Haifeng; Liu, Jingchen; Zhu, Qingsan; Gu, Rui
2018-02-01
To investigate the effects of aquaporin 4 (AQP4) and inward rectifier potassium channel 4.1 (Kir4.1) on medullospinal edema after treatment with methylprednisolone (MP) to suppress acute spinal cord injury (ASCI) in rats. Sprague Dawley rats were randomly divided into control, sham, ASCI, and MP-treated ASCI groups. After the induction of ASCI, we injected 30 mg/kg MP via the tail vein at various time points. The Tarlov scoring method was applied to evaluate neurological symptoms, and the wet-dry weights method was applied to measure the water content of the spinal cord. The motor function score of the ASCI group was significantly lower than that of the sham group, and the spinal water content was significantly increased. In addition, the levels of AQP4 and Kir4.1 were significantly increased, as was their degree of coexpression. Compared with that in the ASCI group, the motor function score and the water content were significantly increased in the MP group; in addition, the expression and coexpression of AQP4 and Kir4.1 were significantly reduced. Methylprednisolone inhibited medullospinal edema in rats with acute spinal cord injury, possibly by reducing the coexpression of aquaporin 4 and Kir4.1 in medullospinal tissues.
Evoked potentials are useful for diagnosis of neuromyelitis optica spectrum disorder.
Ohnari, Keiko; Okada, Kazumasa; Takahashi, Toshiyuki; Mafune, Kosuke; Adachi, Hiroaki
2016-05-15
Neuromyelitis optica spectrum disorder (NMOSD) has been differentiated from relapsing-remitting multiple sclerosis (RRMS) by clinical, laboratory, and pathological findings, including the presence of the anti-aquaporin 4 antibody. Measurement of evoked potentials (EPs) is often used for the diagnosis of RRMS, although the possibility of applying EPs to the diagnosis of NMOSD has not been investigated in detail. Eighteen patients with NMOSD and 28 patients with RRMS were included in this study. The patients' neurological symptoms and signs were examined and their EPs were recorded. Characteristic findings were absence of visual evoked potentials and absence of motor evoked potentials in the lower extremities in patients with NMOSD, and a delay in these potentials in patients with RRMS. Most patients with NMOSD did not present abnormal subclinical EPs, whereas many patients with RRMS did. None of the patients with NMOSD showed abnormalities in auditory brainstem responses. NMOSD can be differentiated from RRMS by EP data obtained in the early stages of these diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Azad, Abul Kalam; Yoshikawa, Naoki; Ishikawa, Takahiro; Sawa, Yoshihiro; Shibata, Hitoshi
2012-01-01
Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs. Copyright © 2011 Elsevier B.V. All rights reserved.
Lu, Ming-Xing; Pan, Dan-Dan; Xu, Jing; Liu, Yang; Wang, Gui-Rong; Du, Yu-Zhou
2018-01-01
Aquaporins are integral membrane proteins some of which form high capacity water-selective channels, promoting water permeation across cell membranes. In this study, we isolated the aquaporin transcript (CsDrip1) of Chilo suppressalis, one of the important rice pests. CsDrip1 included two variants, CsDrip1_v1 and CsDrip1_v2. Although CsDrip1_v2 sequence (>409 bp) was longer than CsDrip1_v1, they possessed the same open reading frame (ORF). Protein structure and topology of CsDrip1 was analyzed using a predicted model, and the results demonstrated the conserved properties of insect water-specific aquaporins, including 6 transmembrane domains, 2 NPA motifs, ar/R constriction region (Phe69, His194, Ser203, and Arg209) and the C-terminal peptide sequence ending in “SYDF.” Our data revealed that the Xenopus oocytes expressing CsDrip1 indicated CsDrip1 could transport water instead of glycerol, trehalose and urea. Further, the transcript of CsDrip1 expressed ubiquitously but differentially in different tissues or organs and developmental stages of C. suppressalis. CsDrip1 mRNA exhibited the highest level of expression within hindgut and the third instar larvae. Regardless of pupae and adults, there were significantly different expression levels of CsDrip1 gene between male and female. Different from at low temperature, the transcript of CsDrip1 in larvae exposed to high temperature was increased significantly. Moreover, the mRNA levels of CsDrip1 in the third instar larvae, the fifth instar larvae, pupae (male and female), and adults (male and female) under different humidities were investigated. However, the mRNA levels of CsDrip1 of only female and male adults were changed remarkably. In conclusions, CsDrip1 plays important roles in maintaining water homeostasis in this important rice pest. PMID:29467668
Zhang, Yue; Peti-Peterdi, Janos; Müller, Christa E; Carlson, Noel G; Baqi, Younis; Strasburg, David L; Heiney, Kristina M; Villanueva, Karie; Kohan, Donald E; Kishore, Bellamkonda K
2015-12-01
P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI. Copyright © 2015 by the American Society of Nephrology.
Insights into plant plasma membrane aquaporin trafficking.
Hachez, Charles; Besserer, Arnaud; Chevalier, Adrien S; Chaumont, François
2013-06-01
Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.
A preliminary study of aquaporin 1 immunolocalization in chronic subdural hematoma membranes.
Basaldella, Luca; Perin, Alessandro; Orvieto, Enrico; Marton, Elisabetta; Itskevich, David; Dei Tos, Angelo Paolo; Longatti, Pierluigi
2010-07-01
Aquaporin 1 (AQP1) is a molecular water channel expressed in many anatomical locations, particularly in epithelial barriers specialized in water transport. The aim of this study was to investigate AQP1 expression in chronic subdural hematoma (CSDH) membranes. In this preliminary study, 11 patients with CSDH underwent burr hole craniectomy and drainage. Membrane specimens were stained with a monoclonal antibody targeting AQP1 for immunohistochemical analysis. The endothelial cells of the sinusoid capillaries of the outer membranes exhibited an elevated immunoreactivity to AQP1 antibody compared to the staining intensity of specimens from the inner membrane and normal dura. These findings suggest that the outer membrane might be the source of the increased fluid accumulation responsible for chronic hematoma enlargement.
Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF
NASA Astrophysics Data System (ADS)
de Groot, Bert L.; Grubmüller, Helmut
2001-12-01
``Real time'' molecular dynamics simulations of water permeation through human aquaporin-1 (AQP1) and the bacterial glycerol facilitator GlpF are presented. We obtained time-resolved, atomic-resolution models of the permeation mechanism across these highly selective membrane channels. Both proteins act as two-stage filters: Conserved fingerprint [asparagine-proline-alanine (NPA)] motifs form a selectivity-determining region; a second (aromatic/arginine) region is proposed to function as a proton filter. Hydrophobic regions near the NPA motifs are rate-limiting water barriers. In AQP1, a fine-tuned water dipole rotation during passage is essential for water selectivity. In GlpF, a glycerol-mediated ``induced fit'' gating motion is proposed to generate selectivity for glycerol over water.
Kon, Tomoya; Ueno, Tatsuya; Suzuki, Chieko; Nunomura, Jinichi; Igarashi, Shohei; Sato, Tsugumi; Tomiyama, Masahiko
2017-08-15
Autoimmune diseases are sometimes associated with neoplasms. A 70-year-old Japanese woman with myelitis, seropositive for aquaporin-4 (AQP4) antibody, was diagnosed with neuromyelitis optica spectrum disorder (NMOSD); thereafter an esophageal squamous cell carcinoma was identified. Immunohistochemically, her cancer was anti-AQP4 antibody negative. Her symptoms, imaging findings and AQP4 titer markedly improved with corticosteroid and anti-cancer therapies. Although AQP4 may be a paraneoplastic antigen, paraneoplastic syndrome could not be definitively diagnosed in this case. Nevertheless, this is the first report of an association between AQP4 antibody-seropositive NMOSD and esophageal cancer. The possibility of underlying malignancy should be considered in patients diagnosed with NMOSD. Copyright © 2017 Elsevier B.V. All rights reserved.
Aquaporin 4 molecular mimicry and implications for neuromyelitis optica.
Vaishnav, Radhika A; Liu, Ruolan; Chapman, Joab; Roberts, Andrew M; Ye, Hong; Rebolledo-Mendez, Jovan D; Tabira, Takeshi; Fitzpatrick, Alicia H; Achiron, Anat; Running, Mark P; Friedland, Robert P
2013-07-15
Neuromyelitis optica (NMO) is associated with antibodies to aquaporin 4 (AQP4). We hypothesized that antibodies to AQP4 can be triggered by exposure to environmental proteins. We compared human AQP4 to plant and bacterial proteins to investigate the occurrence of significantly similar structures and sequences. High similarity to a known epitope for NMO-IgG, AQP4(207-232), was observed for corn ZmTIP4-1. NMO and non-NMO sera were assessed for reactivity to AQP4(207-232) and the corn peptide. NMO patient serum showed reactivity to both peptides as well as to plant tissue. These findings warrant further investigation into the role of the environment in NMO etiology. Copyright © 2013 Elsevier B.V. All rights reserved.
Takeuchi, Kazuhiro; Hayashi, Shinya; Matumoto, Tomoyuki; Hashimoto, Shingo; Takayama, Koji; Chinzei, Nobuaki; Kihara, Shinsuke; Haneda, Masahiko; Kirizuki, Shinsuke; Kuroda, Yuichi; Tsubosaka, Masanori; Nishida, Kotaro; Kuroda, Ryosuke
2018-06-13
Aquaporins (AQPs) are small integral membrane proteins that are essential for water transport across membranes. AQP9, one of the 13 mammalian AQPs (including AQP0 to 12), has been reported to be highly expressed in hydrarthrosis and synovitis patients. Given that several studies have identified signal transduction as an additional function of AQPs, it is hypothesized that AQP9 may modulate inflammatory signal transduction in chondrocytes. Therefore, the present study used a model of interleukin (IL)‑1β‑induced inflammation to determine the mechanisms associated with AQP9 functions in chondrocytes. Osteoarthritis (OA) and normal cartilage samples were subjected to immunohistological analysis. In addition, matrix metalloproteinase (MMP)3, MMP13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS‑5) mRNA and protein analysis was conducted in normal human articular chondrocytes from the knee (NHAC‑Kn) stimulated with IL‑1β by reverse transcription‑polymerase chain reaction (RT‑qPCR) and western blotting, respectively. AQP9 knockdown was also performed by transfection of AQP9‑specific small interfering RNA using Lipofectamine. AQP1, 3, 7, 9 and 11 mRNA expression levels were detected in OA human chondrocytes and in IL‑1β‑treated normal human chondrocytes. The levels of AQP9, MMP‑3, MMP‑13 and ADAMTS‑5 mRNA were increased by treatment with 10 ng/ml IL‑1β in a time‑dependent manner, while knockdown of AQP9 expression significantly decreased the mRNA levels of the MMP3, MMP13 and ADAMTS‑5 genes, as well as the phosphorylation of IκB kinase (IKK). Treatment with a specific IKK inhibitor also significantly decreased the expression levels of MMP‑3, MMP‑13 and ADAMTS‑5 in response to IL‑1β stimulation. Furthermore, immunohistochemical analysis demonstrated that AQP9 and inflammatory markers were highly expressed in OA cartilage. In addition, the downregulation of AQP9 in cultured chondrocytes decreased the catabolic gene expression in response to IL‑1β stimulation through nuclear factor‑κB signaling. Therefore, AQP9 may be a promising target for the treatment of OA.
Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry
2016-01-01
Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993
Noda, Yumi
2014-08-01
The human body is two-thirds water. The ability of ensuring the proper amount of water inside the body is essential for the survival of mammals. The key event for maintenance of body water balance is water reabsorption in the kidney collecting ducts, which is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and never allows permeation of ions or other small molecules. Under normal conditions, AQP2 is restricted within the cytoplasm of the collecting duct cells. However, when the body is dehydrated and needs to retain water, AQP2 relocates to the apical membrane, allowing water reabsorption from the urinary tubule into the cell. Its impairments result in various water balance disorders including diabetes insipidus, which is a disease characterized by a massive loss of water through the kidney, leading to severe dehydration in the body. Dysregulation of AQP2 is also a common cause of water retention and hyponatremia that exacerbate the prognosis of congestive heart failure and hepatic cirrhosis. Many studies have uncovered the regulation mechanisms of AQP2 at the single-molecule level, the whole-body level, and the clinical level. In clinical practice, urinary AQP2 is a useful marker for body water balance (hydration status). Moreover, AQP2 is now attracting considerable attention as a potential therapeutic target for water balance disorders which commonly occur in many diseases.
Imaizumi, Hideko; Ishibashi, Keiichiro; Takenoshita, Seiichi; Ishida, Hideyuki
2018-05-01
Aquaporin 1 (AQP1), which functions as a water transporter, is associated with cancer cell proliferation, invasion, metastasis and angiogenesis in numerous types of solid cancer, including colorectal cancer (CRC). The focus of the present study was to address the potential clinical use of AQP1 expression in CRC as a prognostic and predictive biomarker for disease recurrence and therapeutic outcomes. The current study investigated the expression of AQP1 in surgically resected specimens from 268 patients with stage 0-IV CRC. AQP1 expression was positive in 112 (41.8%) patients, and was significantly associated with left-sided tumors (P<0.01) and with aggressive tumor phenotypes, including depth of invasion (P=0.03), lymph node metastasis (P=0.03), lymphatic invasion (P<0.01) and venous invasion (P<0.01). However, AQP1 expression had no significant prognostic effect on disease-free survival (DFS) in patients with stage II and III CRC following curative surgery. In 84 stage II and III patients who were administered 5-fluorouracil-based adjuvant chemotherapy, positive AQP1 expression was associated with an increased DFS rate compared with that of AQP1-negative patients (P=0.05). Additionally, these results identified that receiving adjuvant chemotherapy was not beneficial to patients with AQP1-negative tumors. This suggests that the expression of AQP1 may be a candidate biomarker predictive of response to 5-fluorouracil-based adjuvant chemotherapy following surgery in patients with stage II and III CRC.
Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum.
Vera-Estrella, Rosario; Barkla, Bronwyn J; Amezcua-Romero, Julio C; Pantoja, Omar
2012-03-01
Mesembryanthemum crystallinum exhibits induction of Crassulacean acid metabolism (CAM) after a threshold stage of development, by exposure to long days with high light intensities or by water and salt stress. During the CAM cycle, fluctuations in carbon partitioning within the cell lead to transient drops in osmotic potential, which are likely stabilized/balanced by passive movement of water via aquaporins (AQPs). Protoplast swelling assays were used to detect changes in water permeability during the day/night cycle of CAM. To assess the role of AQPs during the same period, we followed transcript accumulation and protein abundance of four plasma membrane intrinsic proteins (PIPs) and one tonoplast intrinsic protein (TIP). CAM plants showed a persistent rhythm of specific AQP protein abundance changes throughout the day/night cycle, including changes in amount of McPIP2;1, McTIP1;2, McPIP1;4 and McPIP1;5, while the abundance of McPIP1;2 was unchanged. These protein changes did not appear to be coordinated with transcript levels for any of the AQPs analysed; however, they did occur in parrallel to alterations in water permeability, as well as variations in cell osmolarity, pinitol, glucose, fructose and phosphoenolpyruvate carboxylase (PEPc) levels measured throughout the day/night CAM cycle. Results suggest a role for AQPs in maintaining water balance during CAM and highlight the complexity of protein expression during the CAM cycle. © 2011 Blackwell Publishing Ltd.
Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.
Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G
2014-04-01
Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.
Hsu, Pei-Jen; Wu, Fang-Ju; Kudo, Masataka; Hsiao, Chih-Lun; Hsueh, Aaron J W; Luo, Ching-Wei
2014-01-01
Leucine-rich repeat containing G protein-coupled receptor 4 (LGR4) promotes the Wnt signaling through interaction with R-spondins or norrin. Using PCR amplification from rat ovarian cDNAs, we identified a naturally occurring Lgr4 splice variant encoding only the ectodomain of Lgr4, which was named Lgr4-ED. Lgr4-ED can be detected as a secreted protein in the extracts from rodent and bovine postnatal gonads, suggesting conservation of Lgr4-ED in mammals. Recombinant Lgr4-ED purified from the conditioned media of transfected 293T cells was found to dose-dependently inhibit the LGR4-mediated Wnt signaling induced by RSPO2 or norrin, suggesting that it is capable of ligand absorption and could have a potential role as an antagonist. Intraperitoneal injection of purified recombinant Lgr4-ED into newborn mice was found to significantly decrease the testicular expression of estrogen receptor alpha and aquaporin 1, which is similar to the phenotype found in Lgr4-null mice. Administration of recombinant Lgr4-ED to superovulated female rats can also decrease the expression of estrogen receptor alpha, aquaporin 1, LH receptor and other key steroidogenic genes as well as bring about the suppression of progesterone production. Thus, these findings suggest that endogenously expressed Lgr4-ED may act as an antagonist molecule and help to fine-tune the R-spondin/norrin-mediated Lgr4-Wnt signaling during gonadal development.
Liu, Chunfang; Zheng, Yanfang; Xu, Wen; Wang, Hui
2014-01-01
Tannins, a group of major active components of Chinese rhubarb and widely distributed in nature, have a significant antidiarrhoeal activity. Aquaporins (AQPs) 2 and 3 play important roles in regulating water transfer during diarrhoea. The present study aims to determine the effect of the total tannins extract of rhubarb on aquaporins (AQPs) 2 and 3 in diarrhoea mice and HT-29 cells both induced by magnesium sulphate (MgSO4). Our results showed that rhubarb tannins extract (RTE) significantly decreased the faecal water content in colon and evaluation index of defecation of diarrhoea mice. Interestingly, RTE could markedly reduce the mRNA and protein expression levels of AQPs 2 and 3 in apical and lateral mucosal epithelial cells in the colons of diarrhoea mice and HT-29 cells both induced by MgSO4 in a dose-dependent manner. Furthermore, RTE suppressed the production of cyclic monophosphate- (cAMP-) dependent protein kinase A catalytic subunits α (PKA C-α) and phosphorylated cAMP response element-binding protein (p-CREB, Ser133) in MgSO4-induced HT-29 cells. Our data showed for the first time that RTE inhibit AQPs 2 and 3 expression in vivo and in vitro via downregulating PKA/p-CREB signal pathway, which accounts for the antidiarrhoeal effect of RTE. PMID:25215286
Maclaren, Oliver J.; Sneyd, James; Crampin, Edmund J.
2012-01-01
Secretion from the salivary glands is driven by osmosis following the establishment of osmotic gradients between the lumen, the cell and the interstitium by active ion transport. We consider a dynamic model of osmotically-driven primary saliva secretion, and use singular perturbation approaches and scaling assumptions to reduce the model. Our analysis shows that isosmotic secretion is the most efficient secretion regime, and that this holds for single isolated cells and for multiple cells assembled into an acinus. For typical parameter variations, we rule out any significant synergistic effect on total water secretion of an acinar arrangement of cells about a single shared lumen. Conditions for the attainment of isosmotic secretion are considered, and we derive an expression for how the concentration gradient between the interstitium and the lumen scales with water and chloride transport parameters. Aquaporin knockout studies are interpreted in the context of our analysis and further investigated using simulations of transport efficiency with different membrane water permeabilities. We conclude that recent claims that aquaporin knockout studies can be interpreted as evidence against a simple osmotic mechanism are not supported by our work. Many of the results that we obtain are independent of specific transporter details, and our analysis can be easily extended to apply to models that use other proposed ionic mechanisms of saliva secretion. PMID:22258315
Function of the Membrane Water Channel Aquaporin-5 in the Salivary Gland
Matsuzaki, Toshiyuki; Susa, Taketo; Shimizu, Kinue; Sawai, Nobuhiko; Suzuki, Takeshi; Aoki, Takeo; Yokoo, Satoshi; Takata, Kuniaki
2012-01-01
The process of saliva production in the salivary glands requires transepithelial water transfer from the interstitium to the acinar lumen. There are two transepithelial pathways: the transcellular and paracellular. In the transcellular pathway, the aquaporin water channels induce passive water diffusion across the membrane lipid bilayer. It is well known that aquaporin-5 (AQP5) is expressed in the salivary glands, in which it is mainly localized at the apical membrane of the acinar cells. This suggests the physiological importance of AQP5 in transcellular water transfer. Reduced saliva secretion under pilocarpine stimulation in AQP5-null mice compared with normal mice further indicates the importance of AQP5 in this process, at least in stimulated saliva secretion. Questions remain therefore regarding the role and importance of AQP5 in basal saliva secretion. It has been speculated that there would be some short-term regulation of AQP5 such as a trafficking mechanism to regulate saliva secretion. However, no histochemical evidence of AQP5-trafficking has been found, although some of biochemical analyses suggested that it may occur. There are no reports of human disease caused by AQP5 mutations, but some studies have revealed an abnormal subcellular distribution of AQP5 in patients or animals with xerostomia caused by Sjögren’s syndrome and X-irradiation. These findings suggest the possible pathophysiological importance of AQP5 in the salivary glands. PMID:23209334
Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M.; Flexas, Jaume; Fernández, José E.; Sebastiani, Luca; Diaz-Espejo, Antonio
2014-01-01
The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. PMID:24799563
Pittock, Sean J.; Lucchinetti, Claudia F.
2015-01-01
The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4) as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease, has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SD) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging (MRI) brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy. PMID:26096370
Song, Shun; Xu, Yi; Huang, Dongmei; Miao, Hongxia; Liu, Juhua; Jia, Caihong; Hu, Wei; Valarezo, Ana Valeria; Xu, Biyu; Jin, Zhiqiang
2018-07-01
Drought and salt stresses often affect plant growth and crop yields. Identification of promoters involved in drought and salt stress responses is of great significance for genetic improvement of crop resistance. Our previous studies showed that aquaporin can respond to drought and salt stresses, but its promoter has not yet been reported in plants. In the present study, cis-acting elements of MaAQP family member promoters were systematically analyzed in banana. Expression of MaTIP1; 2 was induced by drought and salt stresses but not sensitive to cold stress, waterlogging stress, or mechanical damage, and its promoter contained five stress-related cis-acting elements. The MaTIP1; 2 promoter (841 bp upstream of translation initiation site) from banana (Musa acuminata L. AAA group cv. Brazilian) was isolated through genome walking polymerase chain reaction, and found to contain a TATA Box, CAAT box, ABRE element, CCGTCC box, CGTCA motif, and TCA element. Transformation of the MaTIP1; 2 promoter into Arabidopsis to assess its function indicated that it responds to both drought and salt stress treatments. These results suggest that MaTIP1; 2 utilization may improve drought and salt stresses resistance of the transgenic plants by promoting banana aquaporin expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Heinke, Florian; Labudde, Dirk
2012-01-01
Diabetes insipidus (DI) is a rare endocrine, inheritable disorder with low incidences in an estimated one per 25,000–30,000 live births. This disease is characterized by polyuria and compensatory polydypsia. The diverse underlying causes of DI can be central defects, in which no functional arginine vasopressin (AVP) is released from the pituitary or can be a result of defects in the kidney (nephrogenic DI, NDI). NDI is a disorder in which patients are unable to concentrate their urine despite the presence of AVP. This antidiuretic hormone regulates the process of water reabsorption from the prourine that is formed in the kidney. It binds to its type-2 receptor (V2R) in the kidney induces a cAMP-driven cascade, which leads to the insertion of aquaporin-2 water channels into the apical membrane. Mutations in the genes of V2R and aquaporin-2 often lead to NDI. We investigated a structure model of V2R in its bound and unbound state regarding protein stability using a novel protein energy profile approach. Furthermore, these techniques were applied to the wild-type and selected mutations of aquaporin-2. We show that our results correspond well to experimental water ux analysis, which confirms the applicability of our theoretical approach to equivalent problems. PMID:22474537
Hoshi, Akihiko; Yamamoto, Teiji; Shimizu, Keiko; Ugawa, Yoshikazu; Nishizawa, Masatoyo; Takahashi, Hitoshi; Kakita, Akiyoshi
2012-08-01
Senile plaques (SPs) containing amyloid β peptide (Aβ) 1-42 are the major species present in Alzheimer disease (AD), whereas Aβ1-40 is the major constituent of arteriolar walls affected by cerebral amyloid angiopathy. The water channel proteins astrocytic aquaporin 1 (AQP1) and aquaporin 4 (AQP4) are known to be abnormally expressed in AD brains, but the expression of AQPs surrounding SPs and cerebral amyloid angiopathy has not been described in detail. Here, we investigated whether AQP expression is associated with each species of Aβ deposited in human brains affected by either sporadic or familial AD. Immunohistochemical analysis demonstrated more numerous AQP1-positive reactive astrocytes in the AD cerebral cortex than in controls, located close to Aβ42- or Aβ40-positive SPs. In AD cases, however, AQP1-positive astrocytes were not often observed in Aβ-rich areas, and there was a significant negative correlation between the levels of AQP1 and Aβ42 assessed semiquantitatively. We also found that Aβ plaque-like AQP4 was distributed in association with Aβ42- or Aβ40-positive SPs and that the degree of AQP4 expression around Aβ40-positive vessels was variable. These findings suggest that a defined population of AQP1-positive reactive astrocytes may modify Aβ deposition in the AD brain, whereas the Aβ deposition process might alter astrocytic expression of AQP4.
Impaired olfaction in mice lacking aquaporin-4 water channels
Lu, Daniel C.; Zhang, Hua; Zador, Zsolt; Verkman, A. S.
2008-01-01
Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had ∼12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 ± 0.7 vs. 55 ± 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 ± 0.07 vs. 0.28 ± 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K+ buffering in the olfactory epithelium.—Lu, D. C., Zhang, H., Zador, Z., Verkman, A. S. Impaired olfaction in mice lacking aquaporin-4 water channels. PMID:18511552
Sarda, X; Tousch, D; Ferrare, K; Cellier, F; Alcon, C; Dupuis, J M; Casse, F; Lamaze, T
1999-05-01
We isolated five sunflower (Helianthus annuus) cDNAs belonging to the TIP (tonoplast intrinsic protein) family. SunRb7 and Sun gammaTIP (partial sequence) are homologous to tobacco TobRb7 and Arabidopsis gamma-TIP, respectively. SunTIP7, 18 and 20 (SunTIPs) are closely related and homologous to Arabidopsis delta-TIP (SunTIP7 and 20 have already been presented in Sarda et al., Plant J. 12 (1997) 1103-1111). As was previously shown for SunTIP7 and 20, expression of SunTIP18 and SunRb7 in Xenopus oocytes caused an increase in osmotic water permeability demonstrating that they are aquaporins. In roots, in situ hybridization revealed that SunTIP7 and 18 mRNAs accumulate in phloem tissues. The expression of TIP-like genes was studied in roots during 24 h water deprivation through exposure to air. During the course of the treatment, each SunTIP gene displayed an individual response: SunTIP7 transcript abundance increased, SunTIP18 decreased whereas that of SunTIP20 was transitorily enhanced. By contrast, SunRb7 and Sun gammaTIP mRNA levels did not fluctuate. Due to the changes in their transcript levels, it is proposed that SUNTIP aquaporins encoded by delta-TIP-like genes play a role in the sunflower response to drought.
Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris
Kong, Weilong; Yang, Shaozong; Wang, Yulu; Bendahmane, Mohammed
2017-01-01
Aquaporins (AQPs) are essential channel proteins that execute multi-functions throughout plant growth and development, including water transport, uncharged solutes uptake, stress response, and so on. Here, we report the first genome-wide identification and characterization AQP (BvAQP) genes in sugar beet (Beta vulgaris), an important crop widely cultivated for feed, for sugar production and for bioethanol production. Twenty-eight sugar beet AQPs (BvAQPs) were identified and assigned into five subfamilies based on phylogenetic analyses: seven of plasma membrane (PIPs), eight of tonoplast (TIPs), nine of NOD26-like (NIPs), three of small basic (SIPs), and one of x-intrinsic proteins (XIPs). BvAQP genes unevenly mapped on all chromosomes, except on chromosome 4. Gene structure and motifs analyses revealed that BvAQP have conserved exon-intron organization and that they exhibit conserved motifs within each subfamily. Prediction of BvAQPs functions, based on key protein domains conservation, showed a remarkable difference in substrate specificity among the five subfamilies. Analyses of BvAQPs expression, by mean of RNA-seq, in different plant organs and in response to various abiotic stresses revealed that they were ubiquitously expressed and that their expression was induced by heat and salt stresses. These results provide a reference base to address further the function of sugar beet aquaporins and to explore future applications for plants growth and development improvements as well as in response to environmental stresses. PMID:28948097
Prado, Karine; Boursiac, Yann; Tournaire-Roux, Colette; Monneuse, Jean-Marc; Postaire, Olivier; Da Ines, Olivier; Schäffner, Anton R; Hem, Sonia; Santoni, Véronique; Maurel, Christophe
2013-03-01
The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.
Prado, Karine; Boursiac, Yann; Tournaire-Roux, Colette; Monneuse, Jean-Marc; Postaire, Olivier; Da Ines, Olivier; Schäffner, Anton R.; Hem, Sonia; Santoni, Véronique; Maurel, Christophe
2013-01-01
The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics. PMID:23532070
Procino, Giuseppe; Carmosino, Monica; Milano, Serena; Dal Monte, Massimo; Schena, Giorgia; Mastrodonato, Maria; Gerbino, Andrea; Bagnoli, Paola; Svelto, Maria
2016-09-01
To date, the study of the sympathetic regulation of renal function has been restricted to the important contribution of β1- and β2-adrenergic receptors (ARs). Here we investigate the expression and the possible physiologic role of β3-adrenergic receptor (β3-AR) in mouse kidney. The β3-AR is expressed in most of the nephron segments that also express the type 2 vasopressin receptor (AVPR2), including the thick ascending limb and the cortical and outer medullary collecting duct. Ex vivo experiments in mouse kidney tubules showed that β3-AR stimulation with the selective agonist BRL37344 increased intracellular cAMP levels and promoted 2 key processes in the urine concentrating mechanism. These are accumulation of the water channel aquaporin 2 at the apical plasma membrane in the collecting duct and activation of the Na-K-2Cl symporter in the thick ascending limb. Both effects were prevented by the β3-AR antagonist L748,337 or by the protein kinase A inhibitor H89. Interestingly, genetic inactivation of β3-AR in mice was associated with significantly increased urine excretion of water, sodium, potassium, and chloride. Stimulation of β3-AR significantly reduced urine excretion of water and the same electrolytes. Moreover, BRL37344 promoted a potent antidiuretic effect in AVPR2-null mice. Thus, our findings are of potential physiologic importance as they uncover the antidiuretic effect of β3-AR stimulation in the kidney. Hence, β3-AR agonism might be useful to bypass AVPR2-inactivating mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Chen, Yuqin; Gao, Fei; Jiang, Rong; Liu, Hui; Hou, Jiaojiao; Yi, Yaoxing; Kang, Lili; Liu, Xueyuan; Li, Yuan; Yang, Mei
2017-12-01
Glioma is the most common and lethal central nervous system tumors. Temozolomide (TMZ) is an effective drug for malignant glioma, however, the intracellular and molecular mechanisms behind this anti-cancer effect have yet to be fully understood. The aim of the present study was to determine whether TMZ inhibits proliferation, invasion of glioma cells in vitro and whether these effects can be mediated through modulation of aquaporin 4 (AQP4) and phosphorylation of the MAPK pathway. The viability of U87 and U251 human glioma cells was evaluated using MTT assay. The cell cycle distribution was detected with flow cytometry. Migration ability and invasion ability were tested by scratch assays and transwell assays, respectively. The levels of AQP4 and MAPK were measured using immunoblot analyses. Our results showed that TMZ inhibited proliferation, migration and invasion, and induced G2/M arrest in U87 and U251 glioma cell lines. These changes were associated with a decrease in the levels of AQP4 expression as well as activation phosphorylated level of p38. Treatment with a p38 chemical activator (anisomycin) resulted in similar effects as TMZ treatment on glioma cells. And p38 chemical inhibitor (SB203580) could block these effects in glioma treated with TMZ, suggesting a direct up-regulation of the p38 signaling pathway. Therefore, we identified that TMZ might have therapeutic potential for controlling proliferation, invasion of malignant glioma by inhibiting AQP4 expression through activation of p38 signal transduction pathway. J. Cell. Biochem. 118: 4905-4913, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2004-05-01
A protein phosphatase holo-type enzyme (38, 65, and 75 kDa) preparation and a free catalytic subunit (38 kDa) purified from tulip petals were characterized as protein phosphatase 2A (PP2A) by immunological and biochemical approaches. The plasma membrane containing the putative plasma membrane aquaporin (PM-AQP) was prepared from tulip petals, phosphorylated in vitro, and used as the substrate for both of the purified PP2A preparations. Although both preparations dephosphorylated the phosphorylated PM-AQP at 20 degrees C, only the holo-type enzyme preparation acted at 5 degrees C on the phosphorylated PM-AQP with higher substrate specificity, suggesting that regulatory subunits are required for low temperature-dependent dephosphorylation of PM-AQP in tulip petals.
Hacohen, Yael; Messina, Silvia; Gan, Hoong-Wei; Wright, Sukhvir; Chandratre, Saleel; Leite, Maria Isabel; Fallon, Penny; Vincent, Angela; Ciccarelli, Olga; Wassmer, Evangeline; Lim, Ming; Palace, Jacqueline; Hemingway, Cheryl
2018-04-01
The involvement of the diencephalic regions in neuromyelitis optica spectrum disorder (NMOSD) may lead to endocrinopathies. In this study, we identified the following endocrinopathies in 60% (15/25) of young people with paediatric-onset aquaporin 4-Antibody (AQP4-Ab) NMOSD: morbid obesity ( n = 8), hyperinsulinaemia ( n = 5), hyperandrogenism ( n = 5), amenorrhoea ( n = 5), hyponatraemia ( n = 4), short stature ( n = 3) and central hypothyroidism ( n = 2) irrespective of hypothalamic lesions. Morbid obesity was seen in 88% (7/8) of children of Caribbean origin. As endocrinopathies were prevalent in the majority of paediatric-onset AQP4-Ab NMOSD, endocrine surveillance and in particular early aggressive weight management is required for patients with AQP4-Ab NMOSD.
Meng, Juan-hong; Ma, Xu-chen; Li, Zhi-min; Wu, Deng-cheng
2007-12-20
Over 70% of the total tissue weight in the cartilage matrix consists of water, and the early-stage osteoarthritic cartilage is characterized by swelling. Water transport in the cartilage matrix and across the membranes of chondrocytes may be important in normal and pathological conditions of cartilage. The purpose of this study was to identify aquaporin-1 (AQP1) and aquaporin-3 (AQP3) expressions in the mandibular condylar cartilage after experimentally induced osteoarthritis (OA) in rats. An experimental temporomandibular joint OA was induced by partial discectomy in rats. The pathological characteristics of the normal, early-stage, and late-stage osteoarthritic TMJ cartilages were verified by histological techniques. The AQP1 and AQP3 gene expressions in the normal and osteoarthritic cartilages were measured using quantitative real-time reverse-transcription PCR analysis. The cartilage sections were incubated in primary polyclonal antibodies to AQP3; immunofluorescent microscopy was used to examine the AQP3 expression shown by its protein level. The mRNA expression levels of AQP1 and AQP3, analyzed using quantitative PCR, revealed that AQP3 mRNA was highly up-regulated in the OA cartilage, which was considered significant. There was no notable difference in the expression of AQP1 mRNA between OA and normal controls. With the progressing of the OA, the localization of the AQP3 protein was quite different from that of the normal cartilage. Compared to the normal cartilage, the expressions of AQP3 protein were observed mainly in the proliferative zone and the upper mid-zone chondrocytes at the early-stage of OA, and were observed to appear frequently throughout the mid- and deep zone during the late-stage of OA. The high expression of AQP3 mRNA in the OA cartilage and the different localization of the AQP3 protein suggest that it may play a particular role in OA pathogenesis. Further study of AQP3 function may provide new insight into the understanding of the molecular mechanisms underlying OA.
Kuwahara-Otani, Sachi; Maeda, Seishi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto
2013-01-01
We investigated the effects of lipopolysaccharide (LPS)-induced endotoxemia on the expression of aquaporin-4 (AQP4) in the rat anterior pituitary gland, using the real-time polymerase chain reaction and immunohistochemistry. After intraperitoneal injection of LPS, the level of AQP4 mRNA doubled at 2, 4 and 8 hr. Immunohistochemical analysis showed an increase with time in AQP4 immunostaining in folliculo-stellate cells following LPS injection; the intensity of immunoreactivity peaked at 8 hr. At the same time, some cyst-like structures, formed by AQP4-positive cells, were observed. These findings indicate that LPS induces the expression of AQP4 in the anterior pituitary gland. The present results should provide an important key to elucidate the pathogenesis of the anterior pituitary gland during endotoxemia.
Nielsen, Jakob; Kwon, Tae-Hwan; Christensen, Birgitte Mønster; Frøkiaer, Jørgen; Nielsen, Søren
2008-05-01
Lithium is used commonly to treat bipolar mood disorders. In addition to its primary therapeutic effects in the central nervous system lithium has a number of side effects in the kidney. The side effects include nephrogenic diabetes insipidus with polyuria, mild sodium wasting, and changes in acid/base balance. These functional changes are associated with marked structural changes in collecting duct cell composition and morphology, likely contributing to the functional changes. Over the past few years, investigations of lithium-induced renal changes have provided novel insight into the molecular mechanisms that are responsible for the disturbances in water, sodium, and acid/base metabolism. This includes dysregulation of renal aquaporins, epithelial sodium channel, and acid/base transporters. This review focuses on these issues with the aim to present this in context with clinically relevant features.
Marlar, Saw; Jensen, Helene H.; Login, Frédéric H.; Nejsum, Lene N.
2017-01-01
Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a pivotal role in cancer metastasis. AQP3 knockout mice were resistant to skin tumor formation and overexpression correlated with metastasis and poor prognosis in patients with breast or gastric cancer. In cultured cancer cells, increased AQP3 expression stimulated several intracellular signaling pathways and resulted in increased cell proliferation, migration, and invasion as well as aggravation of epithelial-to-mesenchymal transition. Besides AQP facilitated water transport at the leading edge of migrating cells, AQP3 signaling mechanisms are beginning to be unraveled. Here, we give a thorough review of current knowledge regarding AQP3 expression in cancer and how AQP3 contributes to cancer progression via signaling that modulates cellular mechanisms. This review article will expand our understanding of the known pathophysiological findings regarding AQP3 in cancer. PMID:28991174
Marlar, Saw; Jensen, Helene H; Login, Frédéric H; Nejsum, Lene N
2017-10-07
Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a pivotal role in cancer metastasis. AQP3 knockout mice were resistant to skin tumor formation and overexpression correlated with metastasis and poor prognosis in patients with breast or gastric cancer. In cultured cancer cells, increased AQP3 expression stimulated several intracellular signaling pathways and resulted in increased cell proliferation, migration, and invasion as well as aggravation of epithelial-to-mesenchymal transition. Besides AQP facilitated water transport at the leading edge of migrating cells, AQP3 signaling mechanisms are beginning to be unraveled. Here, we give a thorough review of current knowledge regarding AQP3 expression in cancer and how AQP3 contributes to cancer progression via signaling that modulates cellular mechanisms. This review article will expand our understanding of the known pathophysiological findings regarding AQP3 in cancer.
Muries, Beatriz; Faize, Mohamed; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen
2011-04-01
Plant aquaporins belong to a large superfamily of conserved proteins called the major intrinsic proteins (MIPs). There is limited information about the diversity of MIPs and their water transport capacity in broccoli (Brassica oleracea) plants. In this study, the cDNAs of isoforms of Plasma Membrane Intrinsic Proteins (PIPs), a class of aquaporins, from broccoli roots have been partially sequenced. Thus, sequencing experiments led to the identification of eight PIP1 and three PIP2 genes encoding PIPs in B. oleracea plants. The occurrence of different gene products encoding PIPs suggests that they may play different roles in plants. The screening of their expression as well as the expression of two specific PIP2 isoforms (BoPIP2;2 and BoPIP2;3), in different organs and under different salt-stress conditions in two varieties, has helped to unravel the function and the regulation of PIPs in plants. Thus, a high degree of BoPIP2;3 expression in mature leaves suggests that this BoPIP2;3 isoform plays important roles, not only in root water relations but also in the physiology and development of leaves. In addition, differences between gene and protein patterns led us to consider that mRNA synthesis is inhibited by the accumulation of the corresponding encoded protein. Therefore, transcript levels, protein abundance determination and the integrated hydraulic architecture of the roots must be considered in order to interpret the response of broccoli to salinity.
Huang, Ping; Takai, Yoshiki; Kusano-Arai, Osamu; Ramadhanti, Julia; Iwanari, Hiroko; Miyauchi, Takayuki; Sakihama, Toshiko; Han, Jing-Yan; Aoki, Masashi; Hamakubo, Takao; Fujihara, Kazuo; Yasui, Masato; Abe, Yoichiro
2016-09-01
Neuromyelitis optica (NMO), an autoimmune disease of the central nervous system, is characterized by an autoantibody called NMO-IgG that recognizes the extracellular domains (ECDs) of aquaporin-4 (AQP4). In this study, monoclonal antibodies (mAbs) against the ECDs of mouse AQP4 were established by a baculovirus display method. Two types of mAb were obtained: one (E5415A) recognized both M1 and M23 isoforms, and the other (E5415B) almost exclusively recognized the square-array-formable M23 isoform. While E5415A enhanced endocytosis of both M1 and M23, followed by degradation in cells expressing AQP4, including astrocytes, E5415B did so to a much lesser degree, as determined by live imaging using fluorescence-labeled antibodies and by Western blotting of lysate of cells treated with these mAbs. E5415A promoted cluster formation of AQP4 on the cell surface prior to endocytosis as determined by immunofluorescent microscopic observation of bound mAbs to astrocytes as well as by Blue native PAGE analysis of AQP4 in the cells treated with the mAbs. These observations clearly indicate that an anti-AQP4-ECDs antibody possessing an ability to form a large cluster of AQP4 by cross-linking two or more tetramers outside the AQP4 arrays enhances endocytosis and the subsequent lysosomal degradation of AQP4.
Oligomerization state of water channels and glycerol facilitators. Involvement of loop E.
Lagrée, V; Froger, A; Deschamps, S; Pellerin, I; Delamarche, C; Bonnec, G; Gouranton, J; Thomas, D; Hubert, J F
1998-12-18
The major intrinsic protein (MIP) family includes water channels aquaporins (AQPs) and facilitators for small solutes such as glycerol (GlpFs). Velocity sedimentation on sucrose gradients demonstrates that heterologous AQPcic expressed in yeast or Xenopus oocytes behaves as an homotetramer when extracted by n-octyl beta-D-glucopyranoside (OG) and as a monomer when extracted by SDS. We performed an analysis of GlpF solubilized from membranes of Escherichia coli or of mRNA-injected Xenopus oocytes. The GlpF protein extracted either by SDS or by nondenaturing detergents, OG and Triton X-100, exhibits sedimentation coefficients only compatible with a monomeric form of the protein in micelles. We then substituted in loop E of AQPcic two amino acids predicted to play a role in the functional/structural properties of the MIPs. In two expression systems, yeast and oocytes, the mutant AQPcic-S205D is monomeric in OG and in SDS. The A209K mutation does not modify the tetrameric form of the heterologous protein in OG. This study shows that the serine residue at position 205 is essential for AQPcic tetramerization. Because the serine in this position is highly conserved among aquaporins and systematically replaced by an acid aspartic in GlpFs, we postulate that glycerol facilitators are monomers whereas aquaporins are organized in tetramers. Our data suggest that the role of loop E in MIP properties partly occurs through its ability to allow oligomerization of the proteins.
Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A; Tyerman, Stephen D; Langridge, Peter; Sutton, Tim
2010-08-01
Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley.
Nakamura, Moriyoshi; Saga, Tsuyoshi; Watanabe, Koichi; Takahashi, Nagahiro; Tabira, Yoko; Kusukawa, Jingo; Yamaki, Koh-Ichi
2013-01-01
Cevimeline is a muscarinic agonist that promotes saliva secretion and is used to treat Sjögren's syndrome (SS), an autoimmune disorder in which the exocrine glands that produce saliva are destroyed. Cevimeline is thought to affect the composition of saliva in part by regulating the localization of aquaporins (AQPs). In this study, we investigated the effects of chronic Cevimeline administration in the salivary glands of SS mice on the immunohistochemical localization of aquaporin (AQP)-1, 3, 4, 5 and 8. We used Cevimeline-untreated SS mice, treated SS mice, discontinued SS mice and untreated normal mice. AQP-5 was found in the apical and lateral membranes of acinar cells in the parotid and submandibular glands of cevimeline-treated SS mice and untreated normal mice. Saliva secretion and AQP-5 localization were sustained in SS mice who were chronically administered Cevimeline and at four weeks after discontinuation. Unlike AQP-5, the localization of AQP-1, 3, 4 and 8 were not affected by Cevimeline administration. Our findings demonstrated that administration of Cevimeline maintains the proper localization of AQP-5 in the acinar cells of the salivary gland, which may promote salivation in chronically treated SS mice. Clinically, this suggests that chronic Cevimeline administration may be useful therapeutically for SS patients suffering from a decrease in saliva secretion by improving the disordered AQP-5 localization.
Bienert, Gerd Patrick; Barberini, María Laura
2016-01-01
In flowers with dry stigmas, pollen development, pollination, and pollen tube growth require spatial and temporal regulation of water and nutrient transport. To better understand the molecular mechanisms involved in reproductive processes, we characterized NIP4;1 and NIP4;2, two pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 are paralogs found exclusively in the angiosperm lineage. Although they have 84% amino acid identity, they displayed different expression patterns. NIP4;1 has low expression levels in mature pollen, while NIP4;2 expression peaks during pollen tube growth. Additionally, NIP4;1pro:GUS flowers showed GUS activity in mature pollen and pollen tubes, whereas NIP4;2pro:GUS flowers only in pollen tubes. Single T-DNA mutants and double artificial microRNA knockdowns had fewer seeds per silique and reduced pollen germination and pollen tube length. Transport assays in oocytes showed NIP4;1 and NIP4;2 function as water and nonionic channels. We also found that NIP4;1 and NIP4;2 C termini are phosphorylated by a pollen-specific CPK that modifies their water permeability. Survival assays in yeast indicated that NIP4;1 also transports ammonia, urea, boric acid, and H2O2. Thus, we propose that aquaporins NIP4;1 and NIP4;2 are exclusive components of the reproductive apparatus of angiosperms with partially redundant roles in pollen development and pollination. PMID:27095837
Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M; Flexas, Jaume; Fernández, José E; Sebastiani, Luca; Diaz-Espejo, Antonio
2014-07-01
The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The Claim of Anti-Cataract Potential of Heliotropium indicum: A Myth or Reality?
Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Afari, Clement; Asiamah, Emmanuel Akomanin
2015-12-01
Heliotropium indicum has several uses in traditional medicine attributable to its numerous bioactive compounds. It is used as a traditional remedy for cataracts in Ghana without any scientific verification. This study aimed at verifying the anti-cataract properties of an aqueous whole plant extract of H. indicum. The effect (cataract score) of 30, 100, and 300 mg kg(-1) extract (bid for 21 days, per os) on the development of 30 µmol kg(-1) sodium selenite-induced cataract in 10-day-old rat pups was investigated. Soluble lens proteins alpha A and alpha B crystallins, total lens protein, total lens glutathione, and aquaporin 0 in enucleated lens homogenates were determined spectrophotometrically using commercially available kits. Histopathological studies on the lenses were also performed. The 2,2-diphenyl-1-picrylhydrazyl scavenging effect and linoleic acid autoxidation (antioxidant properties) of the extract (0.1-3.0 mg ml(-1)), compared to n-propyl gallate, were ascertained using standard procedures. Cataract scores showed that the extract, at all dose levels, significantly alleviated selenite-induced cataracts (P ≤ 0.001). Markers of lens transparency (aquaporin 0, alpha A and B crystallins), as well as total lens proteins and lens glutathione levels, were significantly preserved (P ≤ 0.01-0.001). The extract exhibited activity relevant for scavenging free radicals and inhibition of lipid peroxidation. Epithelial and lens fiber integrity in the histopathological assessment were maintained with HIE treatment. The aqueous whole plant extract of H. indicum significantly inhibited the development of cataracts in rats via multiple mechanisms.
Skowronska, A; Mlotkowska, P; Majewski, M; Nielsen, S; Skowronski, M T
2016-11-08
Aquaporin proteins (AQPs) are a family of channels expressed in numerous mammalian tissues, where they play a fundamental role in regulating water transport across cell membranes. Based on reports that AQPs are present in the reproductive system and participate in reproductive processes, our aim was to investigate the effect of progesterone (P(4)), estradiol (E(2)), oxytocin (OT), arachidonic acid (AA), forskolin (FSK) and cyclic adenosine monophosphate (cAMP) on AQP1 and AQP5 expression at mRNA and protein levels in porcine uterine explants from Days 14-16 of gestation in order to determine if they play a role in implantation period in pigs. Quantitative real time PCR and Western-blot analysis revealed that the uterine explants treated with FSK and cAMP produce delayed, but long-term effects on AQP1 abundance (24 h) while AQP5 had a rapid and sustained response to FSK and cAMP in protein content (3 and 24 h). AA increases gene and protein content of AQP1 after longer exposition whereas AQP5 increases after 3 h only at the protein level. Both AQPs potentially remains under control of steroid hormones. OT has been shown to increase AQP1, and decrease AQP5 mRNA, without visible changes in protein content. P(4), E(2), AA, FSK and cAMP caused the appearance of AQP5 expression in the basolateral plasma membrane of the epithelial cells. The staining represents most likely AQP5 functioning mechanism for both absorption and reabsorption across the glandular epithelium.
NASA Astrophysics Data System (ADS)
English, Niall J.; Garate, José-A.
2016-08-01
An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ˜0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.
English, Niall J; Garate, José-A
2016-08-28
An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ∼0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.
Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G.
2014-01-01
Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems. PMID:24521876
Carbon Nanotube Membranes for Water Purification
NASA Astrophysics Data System (ADS)
Bakajin, Olgica
2009-03-01
Carbon nanotubes are an excellent platform for the fundamental studies of transport through channels commensurate with molecular size. Water transport through carbon nanotubes is also believed to be similar to transport in biological channels such as aquaporins. I will discuss the transport of gas, water and ions through microfabricated membranes with sub-2 nanometer aligned carbon nanotubes as ideal atomically-smooth pores. The measured gas flow through carbon nanotubes exceeded predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeded values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations and measured for aquaporins. More recent reverse osmosis experiments reveal ion rejection by our membranes. Based on our experimental findings, the current understanding of the fundamentals of water and gas transport and of ion rejection will be discussed. The potential application space that exploits these unique nanofluidic phenomena will be explored. The extremely high permeabilities of these membranes, combined with their small pore size will enable energy efficient filtration and eventually decrease the cost of water purification.[4pt] In collaboration with Francesco Fornasiero, Biosciences and Biotechnology Division, PLS, LLNL, Livermore, CA 94550; Sangil Kim, NSF Center for Biophotonics Science & Technology, University of California at Davis, Sacramento CA 95817; Jung Bin In, Mechanical Engineering Department, UC Berkeley, Berkeley CA 94720; Hyung Gyu Park, Jason K Holt, and Michael Stadermann, Biosciences and Biotechnology Division, PLS, LLNL; Costas P. Grigoropoulos, Mechanical Engineering Department, UC Berkeley; Aleksandr Noy, Biosciences and Biotechnology Division, PLS, LLNL and School of Natural Sciences, University of California at Merced.
Nephrogenic diabetes insipidus in mice caused by deleting COOH-terminal tail of aquaporin-2
Shi, Peijun P.; Cao, Xiao R.; Qu, Jing; Volk, Ken A.; Kirby, Patricia; Williamson, Roger A.; Stokes, John B.; Yang, Baoli
2009-01-01
In mammals, the hormonal regulation of water homeostasis is mediated by the aquaporin-2 water channel (Aqp2) of the collecting duct (CD). Vasopressin induces redistribution of Aqp2 from intracellular vesicles to the apical membrane of CD principal cells, accompanied by increased water permeability. Mutations of AQP2 gene in humans cause both recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin. In this study, we generated a line of mice with the distal COOH-terminal tail of the Aqp2 deleted (Aqp2Δ230), including the protein kinase A phosphorylation site (S256), but still retaining the putative apical localization signal (221–229) at the COOH-terminal. Mice heterozygous for the truncation appear normal. Homozygotes are viable to adulthood, with reduced urine concentrating capacity, increased urine output, decreased urine osmolality, and increased daily water consumption. Desmopressin increased urine osmolality in wild-type mice but had no effect on Aqp2Δ230/Δ230 mice. Kidneys from affected mice showed CD and pelvis dilatation and papillary atrophy. By immunohistochemical and immunoblot analyses using antibody against the NH2-terminal region of the protein Aqp2 Δ230/Δ230 mice had a markedly reduced protein abundance. Expression of the truncated protein in MDCK cells was consistent with a small amount of functional expression but no stimulation. Thus we have generated a mouse model of NDI that may be useful in studying the physiology and potential therapy of this disease. PMID:17229678
Peter Agre and Aquaporin Water Channels
as a postdoctoral fellow in cell biology. Dr. Agre joined the faculty in 1984 and has spent most of Hopkins Malaria Research Institute (JHMRI) in January, 2008. 'Agre will remain a professor of cell biology
Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi
2016-01-01
We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.
Insect glycerol transporters evolved by functional co-option and gene replacement
Finn, Roderick Nigel; Chauvigné, François; Stavang, Jon Anders; Belles, Xavier; Cerdà, Joan
2015-01-01
Transmembrane glycerol transport is typically facilitated by aquaglyceroporins in Prokaryota and Eukaryota. In holometabolan insects however, aquaglyceroporins are absent, yet several species possess polyol permeable aquaporins. It thus remains unknown how glycerol transport evolved in the Holometabola. By combining phylogenetic and functional studies, here we show that a more efficient form of glycerol transporter related to the water-selective channel AQP4 specifically evolved and multiplied in the insect lineage, resulting in the replacement of the ancestral branch of aquaglyceroporins in holometabolan insects. To recapitulate this evolutionary process, we generate specific mutants in distantly related insect aquaporins and human AQP4 and show that a single mutation in the selectivity filter converted a water-selective channel into a glycerol transporter at the root of the crown clade of hexapod insects. Integration of phanerozoic climate models suggests that these events were associated with the emergence of complete metamorphosis and the unparalleled radiation of insects. PMID:26183829
Tsutsumi, Zenta; Inokuchi, Taku; Tamada, Daisuke; Moriwaki, Yuji; Ka, Tsuneyoshi; Takahashi, Sumio; Yamamoto, Tetsuya
2009-01-01
We performed mutational analyses of a woman patient with congenital nephrogenic diabetes insipidus referred to us during pregnancy. The diagnosis was made during the neonatal period, after which she was treated with spironolactone and hydrochlorothiazide. Our examination showed the patient to be apparently in good health without definite evidence of dehydration. Serum and urine osmolality were 220 mOsm/L and 50 mOsm/L, respectively, and the serum concentration of AVP was 2.7 pg/mL. Results of a water-deprivation test performed after delivery were compatible with nephrogenic diabetes insipidus. Mutational analyses showed that the patient was a compound heterozygote with point mutations at nucleotide position 298 (G to A; G100R) in exon 1 and nucleotide position 374 (C to T; T125M) in exon 2 of the aquaporin 2 gene, which have been previously described.
Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance.
Ho, Joseph D; Yeh, Ronald; Sandstrom, Andrew; Chorny, Ilya; Harries, William E C; Robbins, Rebecca A; Miercke, Larry J W; Stroud, Robert M
2009-05-05
Aquaporin (AQP) 4 is the predominant water channel in the mammalian brain, abundantly expressed in the blood-brain and brain-cerebrospinal fluid interfaces of glial cells. Its function in cerebral water balance has implications in neuropathological disorders, including brain edema, stroke, and head injuries. The 1.8-A crystal structure reveals the molecular basis for the water selectivity of the channel. Unlike the case in the structures of water-selective AQPs AqpZ and AQP1, the asparagines of the 2 Asn-Pro-Ala motifs do not hydrogen bond to the same water molecule; instead, they bond to 2 different water molecules in the center of the channel. Molecular dynamics simulations were performed to ask how this observation bears on the proposed mechanisms for how AQPs remain totally insulating to any proton conductance while maintaining a single file of hydrogen bonded water molecules throughout the channel.
Electron crystallography and aquaporins.
Schenk, Andreas D; Hite, Richard K; Engel, Andreas; Fujiyoshi, Yoshinori; Walz, Thomas
2010-01-01
Electron crystallography of two-dimensional (2D) crystals can provide information on the structure of membrane proteins at near-atomic resolution. Originally developed and used to determine the structure of bacteriorhodopsin (bR), electron crystallography has recently been applied to elucidate the structure of aquaporins (AQPs), a family of membrane proteins that form pores mostly for water but also other solutes. While electron crystallography has made major contributions to our understanding of the structure and function of AQPs, structural studies on AQPs, in turn, have fostered a number of technical developments in electron crystallography. In this contribution, we summarize the insights electron crystallography has provided into the biology of AQPs, and describe technical advancements in electron crystallography that were driven by structural studies on AQP 2D crystals. In addition, we discuss some of the lessons that were learned from electron crystallographic work on AQPs. Copyright © 2010 Elsevier Inc. All rights reserved.
Kwee, Ingrid L.
2017-01-01
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467
Palmgren, Madelene; Hernebring, Malin; Eriksson, Stefanie; Elbing, Karin; Geijer, Cecilia; Lasič, Samo; Dahl, Peter; Hansen, Jesper S; Topgaard, Daniel; Lindkvist-Petersson, Karin
2017-12-01
Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.
Aquaporins in the Colon as a New Therapeutic Target in Diarrhea and Constipation
Ikarashi, Nobutomo; Kon, Risako; Sugiyama, Kiyoshi
2016-01-01
Aquaporins (AQPs) play important roles in the water transport system in the human body. There are currently 13 types of AQP, AQP0 through AQP12, which are expressed in various organs. Many members of the AQP family are expressed in the intestinal tract. AQP3 is predominantly expressed in the colon, ultimately controlling the water transport. Recently, it was clarified that several laxatives exhibit a laxative effect by changing the AQP3 expression level in the colon. In addition, it was revealed that morphine causes severe constipation by increasing the AQP3 expression level in the colon. These findings have shown that AQP3 is one of the most important functional molecules in water transport in the colon. This review will focus on the physiological and pathological roles of AQP3 in the colon, and discuss clinical applications of colon AQP3. PMID:27447626
[Roles of Aquaporins in Brain Disorders].
Yasui, Masato
2015-06-01
Aquaporin (AQP) is a water channel protein that is expressed in the cell membranes. AQPs are related to several kinds of human diseases such as cataract. In the mammalian central nervous system (CNS), AQP4 is specifically expressed in the astrocyte membranes lining the perivascular and periventricular structures. AQP4 plays a role in the development of brain edema associated with certain brain disorders. Neuromyelitis optica (NMO) is a demyelinating disorder, and patients with NMO develop autoimmune antibodies against AQP4 in their serum. Therefore, AQP4 is involved in NMO pathogenesis. A new concept referred to as "glymphatic pathway" has been recently proposed to explain the lymphatic system in the CNS. Dysfunction of the "glymphatic pathway" may cause several neurodegenerative diseases and mood disorders. Importantly, AQP4 may play a role in the "glymphatic pathway". Further investigation of AQP4 in CNS disorders is necessary, and a new drug against AQP4 is expected.
Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji
2017-08-18
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.
Kim, Jung Nam; Kim, Hyun Jung; Kim, Iksung; Kim, Yun Tai; Kim, Byung Joo
2018-01-01
Zingerone, a major component found in ginger root, is clinically effective for the treatment of various diseases. Interstitial cells of Cajal (ICCs) are the pacemaker cells responsible for slow waves in the gastrointestinal (GI) tract. We investigated the effects of zingerone on the pacemaker potentials of ICCs to assess its mechanisms of action and its potential as a treatment for GI tract motility disorder. We isolated ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record the pacemaker potentials in cultured ICCs. Under the current clamping mode, zingerone inhibited pacemaker potentials of ICCs concentration-dependently. These effects were blocked not by capsazepine, a transient receptor potential vanilloid 1 (TRPV1) channel blocker, but by glibenclamide, a specific ATP-sensitive K+ channel blocker. Pretreatment with SQ-22536 (an adenylate cyclase inhibitor), LY294002 (a phosphoinositide 3-kinase inhibitor), and calphostin C (a protein kinase C (PKC) inhibitor) did not block the effects of zingerone on the pacemaker potentials relative to treatment with zingerone alone. However, zingerone-induced pacemaker potential inhibition was blocked by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ; a guanylate cyclase inhibitor), KT5823 (a protein kinase G (PKG) inhibitor), and L-NAME (a non-selective nitric oxide synthase (NOS) inhibitor). In addition, zingerone stimulated cyclic guanosine monophosphate (cGMP) production in ICCs. Finally, pretreatment with PD98059 (a p42/44 mitogen-activated protein kinase (MAPK) inhibitor), SB203580 (a p38 MAPK inhibitor), and SP600125 (c-Jun N-terminal kinases (JNK)-specific inhibitor) blocked the zingerone-induced pacemaker potential inhibition. These results suggest that zingerone concentration-dependently inhibits pacemaker potentials of ICCs via NO/cGMP-dependent ATP-sensitive K+ channels through MAPK-dependent pathways. Taken together, this study shows that zingerone may have the potential for development as a GI regulation agent. © 2018 The Author(s). Published by S. Karger AG, Basel.
Apelin-13 Protects against Ischemic Blood-Brain Barrier Damage through the Effects of Aquaporin-4.
Chu, Heling; Yang, Xiaobo; Huang, Chuyi; Gao, Zidan; Tang, Yuping; Dong, Qiang
2017-01-01
Apelin-13 has been found to have protective effects on many neurological diseases, including cerebral ischemia. However, whether Apelin-13 acts on blood-brain barrier (BBB) disruption following cerebral ischemia is largely unknown. Aquaporin-4 (AQP4) has a close link with BBB due to the high concentration in astrocyte foot processes and regulation of astrocytes function. Here, we aimed to test Apelin-13's effects on ischemic BBB injury and examine whether the effects were dependent on AQP4. We detected the expression of AQP4 induced by Apelin-13 injection at 1, 3, and 7 days after middle cerebral artery occlusion. Meanwhile, we examined the effects of Apelin-13 on neurological function, infarct volume, and BBB disruption owing to cerebral ischemia in wild type mice, and tested whether such effects were AQP4 dependent by using AQP4 knock-out mice. Furthermore, we assessed the possible signal transduction pathways activated by Apelin-13 to regulate AQP4 expression via astrocyte cultures. It was found that Apelin-13 highly increased AQP4 expression as well as reduced neurological scores and infarct volume. Importantly, Apelin-13 played a role of BBB protection in both types of mice by reducing BBB permeability, increased vascular endothelial growth factor, upregulated endothelial nitric oxide synthase, and downregulated inducible NOS. In morphology, we demonstrated Apelin-13 suppressed tight junction opening and endothelial cell swelling via electron microscopy detection. Meanwhile, Apelin-13 also alleviated apoptosis of astrocytes and promoted angiogenesis. Interestingly, effects of AQP4 on neurological function and infarct volume varied with time course, while AQP4 elicited protective effects on BBB at all time points. Statistical analysis of 2-way analysis of variance with replication indicated that AQP4 was required for these effects. In addition, Apelin-13 upregulated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt as well as AQP4 protein in cultured astrocytes. The latter was inhibited by ERK and phosphatidylinositol 3'-kinase (PI3K) inhibitors. Our data suggest that Apelin-13 protects BBB from disruption after cerebral ischemia both morphologically and functionally, which is highly associated with the increased levels of AQP4, possibly through the activation of ERK and PI3K/Akt pathways. This study provides double targets to protection of ischemic BBB damage, which can present new insights to drugs development. © 2017 S. Karger AG, Basel.
Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter
2016-04-29
The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhao, Long; Yang, Zongze; Guo, Qiaobing; Mao, Shun; Li, Shaoqiang; Sun, Fasheng; Wang, Huan; Yang, Chunwu
2017-01-01
Halophytes are remarkable plants that can tolerate extremely high-salinity conditions, and have different salinity tolerance mechanisms from those of glycophytic plants. In this work, we investigated the mechanisms of salinity tolerance of an extreme halophyte, Kochia sieversiana (Pall.) C. A. M, using RNA sequencing and physiological tests. The results showed that moderate salinity stimulated the growth and water uptake of K. sieversiana and, even under 480-mM salinity condition, K. sieversiana maintained an extremely high water content. This high water content may be a specific adaptive strategy of K. sieversiana to high salinity. The physiological analysis indicated that increasing succulence and great accumulations of sodium, alanine, sucrose, and maltose may be favorable to the water uptake and osmotic regulation of K. sieversiana under high-salinity stress. Transcriptome data indicated that some aquaporin genes and potassium (K+) transporter genes may be important for water uptake and ion balance, respectively, while different members of those gene families were employed under low- and high-salinity stresses. In addition, several aquaporin genes were up-regulated in low- but not high-salinity stressed roots. The highly expressed aquaporin genes may allow low-salinity stressed K. sieversiana plants to uptake more water than control plants. The leaf K+/root K+ ratio was enhanced under low- but not high-salinity stress, which suggested that low salinity might promote K+ transport from the roots to the shoots. Hence, we speculated that low salinity might allow K. sieversiana to uptake more water and transport more K+ from roots to shoots, increasing the growth rate of K. sieversiana. PMID:29225608
Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A.; Tyerman, Stephen D.; Langridge, Peter; Sutton, Tim
2010-01-01
Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley. PMID:20581256
Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing
2016-12-01
Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp r ), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lp rc ), and leaf cell hydraulic conductivity (Lp lc ) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp r and K leaf were reduced by 29 %, and Lp rc and Lp lc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.
Different blocking effects of HgCl2 and NaCl on aquaporins of pepper plants.
Martínez-Ballesta, M Carmen; Diaz, Rafael; Martínez, Vicente; Carvajal, Micaela
2003-12-01
In this study we have compared the short-term effects of both NaCl and HgCl2 on aquaporins of Capsicum annuum L. plants, in order to determine whether or not they are similar. Stomatal conductance, turgor, root hydraulic conductance and water status were measured after 0.5, 2, 4 and 6 h of NaCl (60 mmol/L) or HgCl2 (50 micromol/L) treatment. When 60 mmol/L NaCl was added to the nutrient solution, a large decrease in stomatal conductance was observed after 2 h. However, when HgCl2 (50 micromol/L) was added, the decrease occurred after 4 h. The number of open stomata closed was always lower in plants treated with HgCl2 than in plants treated with NaCl. The water content of the Hg(2+)-treated plants was decreased, compared with controls and NaCl-treated. The root hydraulic conductance decreased after HgCl2 and NaCl treatment plants. Turgor of leaf epidermal cells was greatly reduced in plants treated with HgCl2, but remained constant in the NaCl treatment, compared with control plants. The fact that the stomatal conductance was reduced more rapidly after NaCl addition, followed by the stomatal closure, and that both water content and turgor did not differ from the control suggests that in NaCl-treated plants there must be a signal moving from root to shoot. Therefore, the control of plant homeostasis through a combined regulation of root and stomatal exchanges may be dependent on aquaporin regulation.
Bhagat, J; Kaur, A; Kaur, R; Yadav, A K; Sharma, V; Chadha, B S
2016-10-01
The aim of this study was to screen endophytic fungi isolated from Vinca rosea for their potential to produce acetylcholinesterase (AChE) inhibitors. Endophytic fungi isolated from V. rosea (Catharanthus roseus), were screened for AChE inhibitor production using Ellman's method. Maximum inhibition against AChE (78%) was observed in an isolate VS-10, identified to be Alternaria alternata on morphological and molecular basis. The isolate also inhibited butyrylcholinesterase (73%). Significant increase (1·3 fold) was achieved after optimization of process parameters using one variable at time approach. The inhibitor was purified using chromatographic techniques. The structure elucidation of the inhibitor was carried out using spectroscopic techniques and was identified to be 'altenuene'. The purified inhibitor possessed antioxidant potential as revealed by dot blot assay. The insecticidal potential of purified inhibitor was evaluated by feeding Spodoptora litura on diet amended with inhibitor. It evinced significant larval mortality. Endophytic A. alternata can serve as a source of dual cholinesterase inhibitor 'altenuene' with significant antioxidant and insecticidal activity. This is the first report on acetylcholinestearse inhibitory activity of altenuene. Alternaria alternata has the potential to produce a dual ChE inhibitor with antioxidant activity useful in the treatment of neurodegenerative disorders and in agriculture as biocontrol agent. © 2016 The Society for Applied Microbiology.
Xu, Wei; Shao, Rong; Xiao, Jianbo
2016-07-26
The inhibitory potential of natural polyphenols for α-amylases has attracted great interests among researchers. The structure-affinity properties of natural polyphenols binding to α-amylase and the structure-activity relationship of dietary polyphenols inhibiting α-amylase were deeply investigated. There is a lack of consistency between the structure-affinity relationship and the structure-activity relationship of natural polyphenols as α-amylase inhibitors. Is it consistent between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors? It was found that the consistency between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors is not equivocal. For example, there is no consistency between the binding affinity and the inhibitory potential of quercetin and its glycosides as α-amylase inhibitors. However, catechins with higher α-amylase inhibitory potential exhibited higher affinity with α-amylase.
Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella
2016-07-11
The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1.
Castagna, Annalisa; Pizzolo, Francesca; Chiecchi, Laura; Morandini, Francesca; Channavajjhala, Sarath Kiran; Guarini, Patrizia; Salvagno, Gianluca; Olivieri, Oliviero
2015-06-01
A circadian timing system is involved in the maintenance of fluid and electrolyte balance and blood pressure control. Aldosterone and vasopressin modulate ion transporters and channels crucial in sodium (Na) and water reabsorption such as the epithelium Na channel and the renal thiazide-sensitive NaCl cotransporter (NCC). We analyzed in urinary exosomes the intraday variations of NCC and prostasin expression and the association with electrolytes and water balance parameters. Blood and urine samples were collected at five time points during the day from five healthy subjects. Blood renin, aldosterone, cortisol, ACTH, and plasmatic and urinary Na, potassium, creatinine, adiuretin (ADH), NCC, and prostasin were evaluated. ACTH and cortisol showed a circadian pattern, similarly to aldosterone, while exosomal NCC and prostasin pattern were similar to urinary ADH, decreased in the morning and subsequently increased in the afternoon and evening. In urinary exosomes, NCC and prostasin had a diurnal pattern parallel to ADH and aquaporin 2, confirming that, in healthy subjects, both prostasin and NCC relate to water balance. These results provide suggestions for a possible chronotherapeutic approach in patients treated with thiazides, diuretic drugs acting as specific inhibitors of NCC-mediated Na reabsorption. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zou, Zhi; Yang, Lifu; Gong, Jun; Mo, Yeyong; Wang, Jikun; Cao, Jianhua; An, Feng; Xie, Guishui
2016-01-01
Aquaporins (AQPs) are channel-forming integral membrane proteins that transport water and other small solutes across biological membranes. Despite the vital role of AQPs, to date, little is known in physic nut (Jatropha curcas L., Euphorbiaceae), an important non-edible oilseed crop with great potential for the production of biodiesel. In this study, 32 AQP genes were identified from the physic nut genome and the family number is relatively small in comparison to 51 in another Euphorbiaceae plant, rubber tree (Hevea brasiliensis Muell. Arg.). Based on the phylogenetic analysis, the JcAQPs were assigned to five subfamilies, i.e., nine plasma membrane intrinsic proteins (PIPs), nine tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), two X intrinsic proteins (XIPs), and four small basic intrinsic proteins (SIPs). Like rubber tree and other plant species, functional prediction based on the aromatic/arginine selectivity filter, Froger's positions, and specificity-determining positions showed a remarkable difference in substrate specificity among subfamilies of JcAQPs. Genome-wide comparative analysis revealed the specific expansion of PIP and TIP subfamilies in rubber tree and the specific gene loss of the XIP subfamily in physic nut. Furthermore, by analyzing deep transcriptome sequencing data, the expression evolution especially the expression divergence of duplicated HbAQP genes was also investigated and discussed. Results obtained from this study not only provide valuable information for future functional analysis and utilization of Jc/HbAQP genes, but also provide a useful reference to survey the gene family expansion and evolution in Euphorbiaceae plants and other plant species. PMID:27066041
Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R
2013-10-01
Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Orsini, Francesco; Santacroce, Massimo; Cremona, Andrea; Gosvami, Nitya N; Lascialfari, Alessandro; Hoogenboom, Bart W
2014-11-01
Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4-M23) was expressed in the X. laevis oocytes following their injection with AQP4-M23 cRNA. AQP4-M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4-M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over-expressed AQP4-M23, the membranes from AQP4-M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher-order arrays of AQP4-M23. In addition, but only infrequently, AQP4-M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.
Yeom, Mijung; Kim, Sung-Hun; Lee, Bombi; Han, Jeong-Jun; Chung, Guk Hoon; Choi, Hee-Don; Lee, Hyejung; Hahm, Dae-Hyun
2012-08-01
Irritant contact dermatitis (ICD) is an inflammatory skin disease triggered by exposure to a chemical that is toxic or irritating to the skin. A major characteristic of chronic ICD is an inflammatory dry-skin condition with associated itching. Although glucosylceramide (GlcCer) is known to improve the skin barrier function, its mechanism of action is unknown. Using a mouse model of oxazolone-induced chronic ICD, this study investigated the effects of oral administration of GlcCer on inflammatory dry skin. Chronic ICD was induced by repeated application of oxazolone in mice. GlcCer was orally administered once daily throughout the elicitation phase. The beneficial efficacy of GlcCer on cutaneous inflammation was evaluated by assessing ear thickness, lymph node weight, histological findings, and mRNA expression of pro-inflammatory cytokines such as IL-1β and IL-6. Additionally, parameters of the itch-associated response, including scratching behavior, water content of the skin, and aquaporin-3 levels in the lesional ear, were measured. Oral GlcCer administration significantly suppressed mRNA expression of the pro-inflammatory cytokines IL-1β and IL-6. GlcCer also suppressed ear swelling, lymph node weight gains, and infiltration of leukocytes and mast cells in ICD mice. In oxazolone-induced ICD mice, GlcCer significantly inhibited irritant-related scratching behavior and dehydration of the stratum corneum, and decreased aquaporin-3 expression. Our results indicate that GlcCer suppressed inflammation not only by inhibiting cytokine production but also by repairing the skin barrier function, suggesting a potential beneficial role for GlcCer in the improvement of chronic ICD. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Expression and localisation of aquaporin water channels in human urothelium in situ and in vitro.
Rubenwolf, Peter C; Georgopoulos, Nikolaos T; Clements, Lisa A; Feather, Sally; Holland, Philip; Thomas, David F M; Southgate, Jennifer
2009-12-01
Urothelium is generally considered to be impermeable to water and constituents of urine. The possibility that human urothelium expresses aquaporin (AQP) water channels as the basis for water and solute transport has not previously been investigated. To investigate the expression of AQP water channels by human urothelium in situ, in proliferating urothelial cell cultures and in differentiated tissue constructs. AQP expression by human urothelium in situ and cultured urothelial cells was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunolabelling. Expression screening was carried out on samples of freshly isolated urothelia from multiple surgical (bladder and ureteric) specimens and on proliferating and differentiated normal human urothelial (NHU) cells in culture. Urothelial tissue constructs were established and investigated for expression of urothelial differentiation markers and AQPs. Qualitative study. Transcripts for AQP3, AQP4, AQP7, AQP9, and AQP11 were expressed consistently by freshly isolated urothelia as well as by cultured NHU cells. AQP0, AQP1, AQP2, AQP5, AQP6, AQP8, AQP10, and AQP12 were not expressed. Immunochemistry confirmed expression of AQP3, AQP4, AQP7, and AQP9 at the protein level. AQP3 was shown to be intensely expressed at cell borders in the basal and intermediate layers in both urothelium in situ and differentiated tissue constructs in vitro. This is the first study to demonstrate that AQPs are expressed by human urothelium, suggesting a potential role in transurothelial water and solute transport. Our findings challenge the traditional concept of the urinary tract as an impermeable transit and storage unit and provide a versatile platform for further investigations into the biological and clinical relevance of AQPs in human urothelium.
Parreira, Kleber S; Debaix, Huguette; Cnops, Yvette; Geffers, Lars; Devuyst, Olivier
2009-08-01
High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney.
Burfeind, Kevin G; Murchison, Charles F; Westaway, Shawn K; Simon, Matthew J; Erten-Lyons, Deniz; Kaye, Jeffrey A; Quinn, Joseph F; Iliff, Jeffrey J
2017-09-01
The glymphatic system is a brain-wide perivascular network that facilitates clearance of proteins, including amyloid β, from the brain interstitium through the perivascular exchange of cerebrospinal fluid and interstitial fluid. The astrocytic water channel aquaporin-4 (AQP4) is required for glymphatic system function, and impairment of glymphatic function in the aging brain is associated with altered AQP4 expression and localization. In human cortical tissue, alterations in AQP4 expression and localization are associated with Alzheimer's disease (AD) status and pathology. Although this suggests a potential role for AQP4 in the development or progression of AD, the relationship between of naturally occurring variants in the human AQP4 gene and cognitive function has not yet been evaluated. Using data from several longitudinal aging cohorts, we investigated the association between five AQP4 single-nucleotide polymorphisms (SNPs) and the rate of cognitive decline in participants with a diagnosis of AD. None of the five SNPs were associated with different rates of AD diagnosis, age of dementia onset in trial subjects. No association between AQP4 SNPs with histological measures of AD pathology, including Braak stage or neuritic plaque density was observed. However, AQP4 SNPs were associated with altered rates of cognitive decline after AD diagnosis, with two SNPS (rs9951307 and rs3875089) associated with slower cognitive decline and two (rs3763040 and rs3763043) associated with more rapid cognitive decline after AD diagnosis. These results provide the first evidence that variations in the AQP4 gene, whose gene product AQP4 is vital for glymphatic pathway function, may modulate the progression of cognitive decline in AD.
Frenkel, Nanne J; Vogt, Liffert; De Rooij, Sophia E; Trimpert, Christiane; Levi, Marcel M; Deen, Peter M T; van den Born, Bert-Jan H
2015-03-01
Hyponatraemia is a common, potentially life-threatening, complication of thiazide diuretics. The mechanism of thiazide-induced hyponatraemia is incompletely understood. Previous experiments have suggested a direct effect of thiazide diuretics on the plasma membrane expression of aquaporin (AQP)2. We examined the effects of a single re-exposure to hydrochlorothiazide (HCTZ) 50 mg on water balance, renal sodium handling and osmoregulation in 15 elderly hypertensive patients with a history of thiazide-induced hyponatraemia and 15 matched hypertensive controls using thiazide diuretics without previous hyponatraemia. Patients with thiazide-induced hyponatraemia had significantly lower body weight and lower plasma sodium and osmolality at baseline. After HCTZ administration, plasma sodium and osmolality significantly decreased and remained lower in patients compared with controls (P < 0.001). Plasma antidiuretic hormone (ADH) and urine AQP2 were low or suppressed in patients, whereas solute and electrolyte-free water clearance was significantly increased compared with controls. Ad libitum water intake was significantly higher in patients (2543 ± 925 ml) than in controls (1828 ± 624 ml, P < 0.05), whereas urinary sodium excretion did not differ. In contrast, urea excretion remained significantly lower in patients (263 ± 69 mmol per 24 h) compared with controls (333 ± 97 mmol per 24 h, P < 0.05) and predicted the decrease in plasma sodium following HCTZ administration. Thiazide diuretics are associated with markedly impaired free water excretion at low ADH and AQP2 in elderly patients. The higher water intake and lower urea excretion in patients points to an important role for polydipsia and urea-mediated water excretion in the pathogenesis of thiazide-induced hyponatraemia.
The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors.
Juul, Kristian Vinter; Bichet, Daniel G; Nielsen, Søren; Nørgaard, Jens Peter
2014-05-01
The arginine vasopressin (AVP) type 2 receptor (V2R) is unique among AVP receptor subtypes in signaling through cAMP. Its key function is in the kidneys, facilitating the urine concentrating mechanism through the AVP/V2 type receptor/aquaporin 2 system in the medullary and cortical collecting ducts. Recent clinical and research observations strongly support the existence of an extrarenal V2R. The clinical importance of the extrarenal V2R spans widely from stimulation of coagulation factor in the endothelium to as yet untested potential therapeutic targets. These include V2R-regulated membranous fluid turnover in the inner ear, V2R-regulated mitogensis and apoptosis in certain tumor tissues, and numerous other cell types where the physiological role of V2Rs still requires further research. Here, we review current evidence on the physiological and pathophysiological functions of renal and extrarenal V2Rs. These functions of V2R are important, not only in rare diseases with loss or gain of function of V2R but also in relation to the recent use of nonpeptide V2R antagonists to treat hyponatremia and possibly retard the growth of cysts and development of renal failure in autosomal dominant polycystic kidney disease. The main functions of V2R in principal cells of the collecting duct are water, salt, and urea transport by modifying the trafficking of aquaporin 2, epithelial Na(+) channels, and urea transporters and vasodilation and stimulation of coagulation factor properties, mainly seen with pharmacological doses of 1-desamino-8-D-AVP. The AVPR2 gene is located on the X chromosome, in a region with high probability of escape from inactivation; this may lead to phenotypic sex differences, with females expressing higher levels of transcript than males.
Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves.
McElrone, Andrew J; Bichler, Justin; Pockman, William T; Addington, Robert N; Linder, C Randal; Jackson, Robert B
2007-11-01
Although deep roots can contribute substantially to whole-tree water use, little is known about deep root functioning because of limited access for in situ measurements. We used a cave system on the Edwards Plateau of central Texas to investigate the physiology of water transport in roots at 18-20 m depth for two common tree species, Quercus fusiformis and Bumelia lanuginosa. Using sap flow and water potential measurements on deep roots, we found that calculated root hydraulic conductivity (RHC) fluctuated diurnally for both species and decreased under shading for B. lanuginosa. To assess whether these dynamic changes in RHC were regulated during initial water absorption by fine roots, we used an ultra-low flowmeter and hydroxyl radical inhibition to measure in situ fine root hydraulic conductivity (FRHC) and aquaporin contribution to FRHC (AQPC), respectively. During the summer, FRHC and AQPC were found to cycle diurnally in both species, with peaks corresponding to the period of highest transpirational demand at midday. During whole-tree shade treatments, B. lanuginosa FRHC ceased diurnal cycling and decreased by 75 and 35% at midday and midnight, respectively, while AQPC decreased by 41 and 30% during both time periods. A controlled growth-chamber study using hydroponically grown saplings confirmed daily cycling and shade-induced reductions in FRHC and AQPC. Winter measurements showed that the evergreen Q. fusiformis maintained high FRHC and AQPC throughout the year, while the deciduous B. lanuginosa ceased diurnal cycling and exhibited its lowest annual values for both parameters in winter. Adjustments in FRHC and AQPC to changing canopy water demands may help the trees maintain the use of reliable water resources from depth and contribute to the success of these species in this semi-arid environment.
Expression of aquaporin water channels in rat vagina: potential role in vaginal lubrication.
Park, Kwangsung; Han, Ho Jae; Kim, Soo Wan; Jung, Seung Il; Kim, Sun-Ouck; Lee, Hyun-Suk; Lee, Mi Na; Ahn, Kyuyoun
2008-01-01
Aquaporins (AQPs) are membrane proteins that facilitate water movement across biological membranes. There has been little research on the role of AQPs in the female sexual arousal response. The purposes of this study were to investigate the localization and functional roles of AQP1, AQP2, and AQP3 in rat vagina. Female Sprague-Dawley rats (230-240 g, N = 20) were anesthetized. The vaginal branch of the pelvic nerve was stimulated for 60 seconds (10 V, 16 Hz, 0.8 ms), and the animals were sacrificed either immediately or 5 minutes later. The expression and cellular localization of AQP1, 2, and 3 were determined by Western blot and immunohistochemistry of the vagina. The intracellular membrane and plasma membrane fractions of the proteins in vaginal tissue were studied by immunoblot analysis with the differential centrifugation. The expression and cellular localization of AQPs, and pelvic nerve stimulation induced translocation of AQPs in rat vaginal tissue. Immunolabeling showed that AQP1 was mainly expressed in the capillaries and venules of the vagina. AQP2 was expressed in the cytoplasm of the epithelium, and AQP3 was mainly associated with the plasma membrane of the vaginal epithelium. AQPs were found to be present primarily in the cytosolic fraction of untreated tissues. The translocation of AQP1 and 2 isoforms from the cytosolic compartment to the membrane compartment was observed immediately after nerve stimulation and had declined at 5 minutes after nerve stimulation, while the subcellular localization of AQP3 was not changed by nerve stimulation. These results showed a distinct localization of AQPs in the rat vagina. Pelvic nerve stimulation modulated short-term translocation of AQP1 and 2. These results imply that AQPs may play an important role in vaginal lubrication.
Potential non-oncological applications of histone deacetylase inhibitors.
Ververis, Katherine; Karagiannis, Tom C
2011-01-01
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma.
Potential non-oncological applications of histone deacetylase inhibitors
Ververis, Katherine; Karagiannis, Tom C
2011-01-01
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma. PMID:22046487
Perivascular Spaces, Glymphatic Dysfunction, and Small Vessel Disease
Mestre, Humberto; Kostrikov, Serhii; Mehta, Rupal I.; Nedergaard, Maiken
2017-01-01
Cerebral small vessel diseases (SVD) range broadly in etiology but share a remarkably overlapping pathology. Features of SVD including enlarged perivascular spaces and formation of abluminal protein deposits cannot be completely explained by the putative pathophysiology. The recently discovered glymphatic system provides a new perspective to potentially address these gaps. This work provides a comprehensive review of the known factors that regulate glymphatic function and the disease mechanisms underlying glymphatic impairment emphasizing the role that aquaporin-4 (AQP4)-lined perivascular spaces, cerebrovascular pulsatility, and metabolite clearance play in normal CNS physiology. This review also discusses the implications that glymphatic impairment may have on SVD inception and progression with the aim of exploring novel therapeutic targets and highlighting the key questions that remain to be answered. PMID:28798076
[The glymphatic system: concept, function and research progresses].
Wang, Lin-Hui; Wang, Zi-Lan; Chen, Wen-Yue; Chen, Ming-Jia; Xu, Guang-Yin
2018-02-25
The glymphatic system is a cerebrospinal fluid-interstitial fluid exchange system dependent on the water channel aquaporin-4 polarized on astrocyte endfeet, which is proposed to account for the clearance of abnormal proteins (e.g. β-amyloid) and metabolites (e.g. lactate) from the brain. Accumulating studies have revealed that glymphatic activity during sleep and general anesthesia is dramatically enhanced, while its function is significantly damaged during aging, traumatic brain injury, Alzheimer's disease, stroke, and diabetes. The glymphatic hypothesis is a breakthrough in the field of neuroscience recently, which would considerably enhance our comprehension on the cerebrospinal fluid circulation and its role in the maintenance of brain homeostasis. In this review, we briefly introduced the conceptualization of glymphatic system, summarized the recent progresses, and prospected its future investigation and potential clinical application.
Wang, Shengbiao; Amidi, Fataneh; Beall, Marie; Gui, Lizhen; Ross, Michael G
2006-04-01
The cell membrane water channel protein aquaporins (AQPs) may be important in regulating the intramembranous (IM) pathway of amniotic fluid (AF) resorption. The objective of the present study was to determine whether aquaporin 3 (AQP3) is expressed in human fetal membranes and to further determine if AQP3 expression in primary human amnion cell culture is regulated by second-messenger cyclic adenosine monophosphate (cAMP). AQP3 expression in human fetal membranes of normal term pregnancy was studied by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). To determine the effect of cAMP on AQP3 expression, primary human amnion cell cultures were treated in either heat-inactivated medium alone (control), or heat-inactivated medium containing: (1) SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP agonist, or (2) forskolin, an adenylate cyclase stimulator. Total RNA was isolated and multiplex real-time RT-PCR employed for relative quantitation of AQP3 expression. We detected AQP3 expression in placenta, chorion, and amnion using RT-PCR. Using IHC, we identified AQP3 protein expression in placenta syncytiotrophoblasts and cytotrophoblasts, chorion cytotrophoblasts, and amnion epithelia. In primary amnion epithelial cell culture, AQP3 mRNA significantly increased at 2 hours following forskolin or SP-cAMP, remained elevated at 10 hours following forskolin, and returned to baseline levels by 20 hours following treatment. This study provides evidence of AQP3 expression in human fetal membranes and demonstrates that AQP3 expression in primary human amnion cell culture is up-regulated by second-messenger cAMP. As AQP3 is permeable to water, urea, and glycerol, modulation of its expression in fetal membranes may contribute to AF homeostasis.
Deshmukh, Rupesh K; Sonah, Humira; Bélanger, Richard R
2016-01-01
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research.
Oliveira, Regiana L; Campolina-Silva, Gabriel H; Nogueira, José C; Mahecha, Germán A B; Oliveira, Cleida A
2013-06-01
Efferent ductules and epididymis are involved in water and solute transport, which is indispensable for storage and maintenance of the sperm viability. The reabsorption process involves proteins such as aquaporins (AQP), which has been described in the male genital system of limited species, including primate, rodents, cats and dogs. To contribute with information about AQPs in the male system, here we investigated the distribution of AQP1 and AQP9 in the tropical bat Artibeus lituratus, along the annual reproductive cycle. A. lituratus is a seasonal breeder with natural variation in components of the androgen and estrogen responsive system, thus being a good model for exploring the AQPs modulation. AQP1 was found restricted to differentiating spermatids, efferent ductules epithelium and venular endothelia along the male tract. AQP9 was detected throughout the epididymis being more abundant in the cauda and ductus deferens, but was not found in testis, rete testis and efferent ductules. Contrasting with AQP1 which appear to be constitutively expressed, there was seasonal variation in AQP9 expression, which was reduced in regressed epididymis. The AQP9 does not appear to be modulated by estradiol or androgens, but possibly by other factor related to luminal sperm. The establishment of specific function for aquaporins in the male tract remains undetermined; however, the cellular distribution presently found are compatible with the main function of AQP1, as a selective water channel, and AQP9, which is a conduct for water and a plethora of neutral solutes present in the epididymis milieu such as glycerol and urea. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Changhai; Li, Chao; Liang, Dong; Wei, Zhiwei; Zhou, Shasha; Wang, Rongchao; Ma, Fengwang
2012-09-01
Maintaining ion and water homeostasis in plants is an important defense strategy against salinity stress. Divergence in ion homeostasis between the salt-tolerant Malus hupehensis Rehd. and salt-sensitive Malus prunifolia 'yingyehaitang' was studied to understand their mechanisms for tolerance. Compared with the control on Day 15, plants of those two genotypes under high-salinity treatment had less K(+) in the leaves, stems, and roots. Contents were higher in the roots but lower in the leaves of M. hupehensis while levels in the stems were similar to those from M. prunifolia. For both genotypes, the sodium content increased after salinity treatment in all tissue types. However, the leaves from M. hupehensis had less Na(+) and maintained a lower Na(+)/K(+) ratio. To understand the basis for these differences, we studied the ion transporters and regulation of aquaporin transcripts in the leaves. Transcript levels for both MdHKT1 and MdSOS1 were higher in M. hupehensis, implying that this species had better capacity to exclude sodium so that less Na(+) occurred in the leaves but more in the stems. M. hupehensis also had a greater amount of MdNHX1 transcripts, which could have assisted in sequestering excess Na(+) into the vacuoles and sustaining a better cellular environment. A relatively higher level of aquaporin transcript was also found in M. hupehensis, suggesting that those plants were more capable of maintaining a better leaf water status and diluting excess ions effectively under high-salinity conditions. Therefore, these tested transporters may play important roles in determining how salinity tolerance is conferred in Malus species. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.
2016-01-01
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research. PMID:28066459
Pei, Jinxin V; Kourghi, Mohamad; De Ieso, Michael L; Campbell, Ewan M; Dorward, Hilary S; Hardingham, Jennifer E; Yool, Andrea J
2016-10-01
Aquaporin-1 (AQP1) is a major intrinsic protein that facilitates flux of water and other small solutes across cell membranes. In addition to its function as a water channel in maintaining fluid homeostasis, AQP1 also acts as a nonselective cation channel gated by cGMP, a property shown previously to facilitate rapid cell migration in a AQP1-expressing colon cancer cell line. Here we report two new modulators of AQP1 channels, bacopaside I and bacopaside II, isolated from the medicinal plant Bacopa monnieri Screening was conducted in the Xenopus oocyte expression system, using quantitative swelling and two-electrode voltage clamp techniques. Results showed bacopaside I blocked both the water (IC50 117 μM) and ion channel activities of AQP1 but did not alter AQP4 activity, whereas bacopaside II selectively blocked the AQP1 water channel (IC50 18 μM) without impairing the ionic conductance. These results fit with predictions from in silico molecular modeling. Both bacopasides were tested in migration assays using HT29 and SW480 colon cancer cell lines, with high and low levels of AQP1 expression, respectively. Bacopaside I (IC50 48 μM) and bacopaside II (IC50 14 μM) impaired migration of HT29 cells but had minimal effect on SW480 cell migration. Our results are the first to identify differential AQP1 modulators isolated from a medicinal plant. Bacopasides could serve as novel lead compounds for pharmaceutic development of selective aquaporin modulators. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP.
Maurel, C; Kado, R T; Guern, J; Chrispeels, M J
1995-07-03
The vacuolar membrane protein alpha-TIP is a seed-specific protein of the Major Intrinsic Protein family. Expression of alpha-TIP in Xenopus oocytes conferred a 4- to 8-fold increase in the osmotic water permeability (Pf) of the oocyte plasma membrane, showing that alpha-TIP forms water channels and is thus a new aquaporin. alpha-TIP has three putative phosphorylation sites on the cytoplasmic side of the membrane (Ser7, Ser23 and Ser99), one of which (Ser7) has been shown to be phosphorylated. We present several lines of evidence that the activity of this aquaporin is regulated by phosphorylation. First, mutation of the putative phosphorylation sites in alpha-TIP (Ser7Ala, Ser23Ala and Ser99Ala) reduced the apparent water transport activity of alpha-TIP in oocytes, suggesting that phosphorylation of alpha-TIP occurs in the oocytes and participates in the control of water channel activity. Second, exposure of oocytes to the cAMP agonists 8-bromoadenosine 3',5'-cyclic monophosphate, forskolin and 3-isobutyl-1-methylxanthine, which stimulate endogenous protein kinase A (PKA), increased the water transport activity of alpha-TIP by 80-100% after 60 min. That the protein can be phosphorylated by PKA was demonstrated by phosphorylating alpha-TIP in isolated oocyte membranes with the bovine PKA catalytic subunit. Third, the integrity of the three sites at positions 7, 23 and 99 was necessary for the cAMP-dependent increase in the Pf of oocytes expressing alpha-TIP, as well as for in vitro phosphorylation of alpha-TIP. These findings demonstrate that the alpha-TIP water channel can be modulated via phosphorylation of Ser7, Ser23 and Ser99.(ABSTRACT TRUNCATED AT 250 WORDS)
Eberhardt, Christina; Amann, Barbara; Feuchtinger, Annette; Hauck, Stefanie M; Deeg, Cornelia A
2011-05-01
Reactive gliosis is a well-established response to virtually every retinal disease. Autoimmune uveitis, a sight threatening disease, is characterized by recurrent relapses through autoaggressive T-cells. The purpose of this study was to assess retinal Müller glial cell function in equine recurrent uveitis (ERU), a spontaneous disease model resembling the human disease, by investigating membrane proteins implicated in ion and water homeostasis. We found that Kir2.1 was highly expressed in diseased retinas, whereas Kir4.1 was downregulated in comparison to controls. Distribution of Kir2.1 appeared Müller cell associated in controls, whereas staining of cell somata in the inner nuclear layer was observed in uveitis. In contrast to other subunits, Kir4.1 was evenly expressed along equine Müller cells, whereas in ERU, Kir4.1 almost disappeared from Müller cells. Hence, we suggest a different mechanism for potassium buffering in the avascular equine retina and, moreover, an impairment in uveitis. Uveitic retinas showed significantly increased expression of AQP4 as well as a displaced expression from Müller cells in healthy specimens to an intense circular expression pattern in the outer nuclear layer in ERU cases. Most interestingly, we detected the aquaporin family member protein AQP5 to be expressed in Müller cells with strong enrichments in Müller cell secondary processes. This finding indicates that fluid regulation within the equine retina may be achieved by an additional aquaporin. Furthermore, AQP5 was significantly decreased in uveitis. We conclude that the Müller cell response in autoimmune uveitis implies considerable changes in its potassium and water physiology.
Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L.
2011-01-01
Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl2 and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa. PMID:21444767
Targeting BET bromodomain proteins in solid tumors
Sahai, Vaibhav; Redig, Amanda J.; Collier, Katharine A.; Eckerdt, Frank D.; Munshi, Hidayatullah G.
2016-01-01
There is increasing interest in inhibitors targeting BET (bromodomain and extra-terminal) proteins because of the association between this family of proteins and cancer progression. BET inhibitors were initially shown to have efficacy in hematologic malignancies; however, a number of studies have now shown that BET inhibitors can also block progression of non-hematologic malignancies. In this Review, we summarize the efficacy of BET inhibitors in select solid tumors; evaluate the role of BET proteins in mediating resistance to current targeted therapies; and consider potential toxicities of BET inhibitors. We also evaluate recently characterized mechanisms of resistance to BET inhibitors; summarize ongoing clinical trials with these inhibitors; and discuss potential future roles of BET inhibitors in patients with solid tumors. PMID:27283767
Obara, Keisuke; Ogawa, Tsukasa; Chino, Daisuke; Tanaka, Yoshio
2017-01-01
Distigmine bromide (distigmine), a reversible, long-lasting cholinesterase (ChE) inhibitor, is used for the treatment of underactive bladder in Japan and has been shown to potentiate urinary bladder (UB) contractility. We studied the duration of distigmine's potentiating effects on acetylcholine (ACh)-induced UB contraction and its inhibitory effects on ChE activity, and compared that with those of other ChE inhibitors (neostigmine, pyridostigmine, and ambenonium). The duration of potentiating/inhibitory effects of ChE inhibitors, including distigmine, on ACh-induced guinea pig UB contraction/ChE activity was evaluated for 12 h following washout. Dissociation rate constants (k) of the inhibitors were also tentatively calculated based on the time courses of their ChE inhibitory effects. The potentiating effect of distigmine (10 -6 M) on ACh-induced UB contraction and its inhibitory effect on ChE activity were significantly sustained 12 h after washout. The potentiating effect of other ChE inhibitors on ACh-induced UB contraction, however, was sustained only until 3 h after washout. The ChE inhibitory effects of these inhibitors dissipated in a time-dependent manner after washout, with more than 75% of ChE activity restored by 4 h after washout. The k values of ChE inhibitors approached 0.50 h -1 , except for distigmine, where k could not be determined. Compared with that of other ChE inhibitors, the potentiating effect of distigmine on UB contractile function was significantly more sustainable following washout, which was likely associated with its corresponding long-lasting ChE inhibitory effect. Distigmine may associate more strongly with UB ChE than other ChE inhibitors, which would partly explain its sustained effects.
Aquaporins and root water uptake
USDA-ARS?s Scientific Manuscript database
Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...
Smith, Alex J; Yao, Xiaoming; Dix, James A; Jin, Byung-Ju; Verkman, Alan S
2017-08-21
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.
Structural Determinants of Oligomerization of the Aquaporin-4 Channel.
Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C
2016-03-25
The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Dorr, Ricardo; Ozu, Marcelo; Parisi, Mario
2007-04-15
Water channels (aquaporins) family members have been identified in central nervous system cells. A classic method to measure membrane water permeability and its regulation is to capture and analyse images of Xenopus laevis oocytes expressing them. Laboratories dedicated to the analysis of motion images usually have powerful equipment valued in thousands of dollars. However, some scientists consider that new approaches are needed to reduce costs in scientific labs, especially in developing countries. The objective of this work is to share a very low-cost hardware and software setup based on a well-selected webcam, a hand-made adapter to a microscope and the use of free software to measure membrane water permeability in Xenopus oocytes. One of the main purposes of this setup is to maintain a high level of quality in images obtained at brief intervals (shorter than 70 ms). The presented setup helps to economize without sacrificing image analysis requirements.
Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong
2015-11-01
Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion.
Tani, Kazutoshi; Mitsuma, Tadanori; Hiroaki, Yoko; Kamegawa, Akiko; Nishikawa, Kouki; Tanimura, Yukihiro; Fujiyoshi, Yoshinori
2009-06-19
Members of the aquaporin (AQP) family are expressed in almost every organism, including 13 homologues in humans. Based on the electron crystallographic structure of AQP1, the hydrogen-bond isolation mechanism was proposed to explain why AQPs are impermeable to protons despite their very fast water conduction. The mechanism by which AQPs exclude protons remained controversial, however. Here we present the structure of AQP4 at 2.8 A resolution obtained by electron crystallography of double-layered two-dimensional crystals. The resolution has been improved from the previous 3.2 A, with accompanying improvement in data quality resulting in the ability to identify individual water molecules. Our structure of AQP4, the predominant water channel in the brain, reveals eight water molecules in the channel. The arrangement of the waters provides support for the hydrogen-bond isolation mechanism. Our AQP4 structure also visualizes five lipids, showing that direct interactions of the extracellular surface of AQP4 with three lipids in the adjoining membrane help stabilize the membrane junction.
The blocking of aquaporin-3 (AQP3) impairs extravillous trophoblast cell migration.
Alejandra, Reca; Natalia, Szpilbarg; Alicia E, Damiano
2018-05-05
Several aquaporins (AQPs) are expressed in extravillous (EVT) and villous trophoblast cells. Among them, AQP3 is the most abundant AQP expressed in chorionic villi samples from first trimester, followed by AQP1 and AQP9. Although AQP3 expression persists in term placentas, it is significantly decreased in placentas from preeclamptic pregnancies. AQP3 is involved in the migration of different cell types, however its role in human placenta is still unknown. Here, we evaluated the role of AQP3 in the migration of EVT cells during early gestation. Our results showed that Swan 71 cells expressed AQP1, AQP3 and AQP9 but only the blocking of AQP3 by CuSO 4 or the silencing of its expression by siRNA significantly attenuates EVT cell migration. Our work provides evidence that AQP3 is required for EVT cell migration and suggests that an altered expression of placental AQP3 may produce failures in placentation such as in preeclampsia. Copyright © 2018 Elsevier Inc. All rights reserved.
The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator.
Heckwolf, Marlies; Pater, Dianne; Hanson, David T; Kaldenhoff, Ralf
2011-09-01
Cellular exchange of carbon dioxide (CO₂) is of extraordinary importance for life. Despite this significance, its molecular mechanisms are still unclear and a matter of controversy. In contrast to other living organisms, plants are physiologically limited by the availability of CO₂. In most plants, net photosynthesis is directly dependent on CO₂ diffusion from the atmosphere to the chloroplast. Thus, it is important to analyze CO₂ transport with regards to its effect on photosynthesis. A mutation of the Arabidopsis thaliana AtPIP1;2 gene, which was characterized as a non-water transporting but CO₂ transport-facilitating aquaporin in heterologous expression systems, correlated with a reduction in photosynthesis under a wide range of atmospheric CO₂ concentrations. Here, we could demonstrate that the effect was caused by reduced CO₂ conductivity in leaf tissue. It is concluded that the AtPIP1;2 gene product limits CO₂ diffusion and photosynthesis in leaves. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Liang, Fengyin; Luo, Chuanming; Xu, Guangqing; Su, Fengjuan; He, Xiaofei; Long, Simei; Ren, Huixia; Liu, Yaning; Feng, Yanqing; Pei, Zhong
2015-06-26
Micro traumatic brain injury (TBI) is the most common type of brain injury, but the mechanisms underlying it are poorly understood. Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet, which plays an important role in brain edema. However, little is known about the role of AQP4 in micro TBI. Here, we examined the role of AQP4 in the pathogenesis of micro TBI in a closed-skull brain injury model, using two-photon microscopy. Our results indicate that AQP4 deletion reduced cell death, water content, astrocyte swelling and lesion volume during the acute stage of micro TBI. Our data revealed that astrocyte swelling is a decisive pathophysiological factor in the acute phase of this form of micro brain injury. Thus, treatments that inhibit AQP4 could be used as a neuroprotective strategy for micro TBI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yao, Xiaoming; Dix, James A; Jin, Byung-Ju
2017-01-01
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed ‘glymphatic’ clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma. PMID:28826498
As an outcome of this project data on the applicability of protein polymer membranes for application to water desalination will be obtained. This will provide information on the stability and permeability of these membranes under simulated desalination conditions. The struct...
Students' Conceptions of Water Transport
ERIC Educational Resources Information Center
Rundgren, Carl-Johan; Rundgren, Shu-Nu Chang; Schonborn, Konrad J.
2010-01-01
Understanding diffusion of water into and out of the cell through osmosis is fundamental to the learning and teaching of biology. Although this process is thought of as occurring directly across the lipid bilayer, the majority of water transport is actually mediated by specialised transmembrane water-channels called aquaporins. This study…
USDA-ARS?s Scientific Manuscript database
Some hemipteran xylem and phloem feeding insects have evolved specialized alimentary structures or filter chambers that rapidly transport water for excretion or osmoregulation. In the whitefly, Bemisia tabaci, mass movement of water through opposing alimentary tract tissues within the filter chamber...
Perivascular spaces, glymphatic dysfunction, and small vessel disease.
Mestre, Humberto; Kostrikov, Serhii; Mehta, Rupal I; Nedergaard, Maiken
2017-09-01
Cerebral small vessel diseases (SVDs) range broadly in etiology but share remarkably overlapping pathology. Features of SVD including enlarged perivascular spaces (EPVS) and formation of abluminal protein deposits cannot be completely explained by the putative pathophysiology. The recently discovered glymphatic system provides a new perspective to potentially address these gaps. This work provides a comprehensive review of the known factors that regulate glymphatic function and the disease mechanisms underlying glymphatic impairment emphasizing the role that aquaporin-4 (AQP4)-lined perivascular spaces (PVSs), cerebrovascular pulsatility, and metabolite clearance play in normal CNS physiology. This review also discusses the implications that glymphatic impairment may have on SVD inception and progression with the aim of exploring novel therapeutic targets and highlighting the key questions that remain to be answered. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Sasaki, Ayako; Nagatomo, Katsuhiro; Ono, Koki; Yamamoto, Toshihiro; Otsuka, Yuji; Teshima, Tadashi; Yamada, Katsuya
2016-01-01
Of two stereoisomers of glucose, only D- and not L-glucose is abundantly found in nature, being utilized as an essential fuel by most organisms. The uptake of D-glucose into mammalian cells occurs through glucose transporters such as GLUTs, and this process has been effectively monitored by a fluorescent D-glucose derivative 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) at the single cell level. However, since fluorescence is an arbitrary measure, we have developed a fluorescent analog of L-glucose 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-L-glucose (2-NBDLG), as a negative control substrate for more accurately identifying the stereoselectivity of the uptake. Interestingly, a small portion of mouse insulinoma cells MIN6 abundantly took up 2-NBDLG at a late culture stage (≳ 10 days in vitro, DIV) when multi-cellular spheroids exhibiting heterogeneous nuclei were formed, whereas no such uptake was detected at an early culture stage (≲ 6 DIV). The 2-NBDLG uptake was persistently observed in the presence of a GLUT inhibitor cytochalasin B. Neither D- nor L-glucose in 50 mM abolished the uptake. No significant inhibition was detected by inactivating sodium/glucose cotransporters (SGLTs) with Na(+)-free condition. To our surprise, the 2-NBDLG uptake was totally inhibited by phloretin, a broad spectrum inhibitor against transporters/channels including GLUTs and aquaporins. From these, a question might be raised if non-GLUT/non-SGLT pathways participate in the 2-NBDLG uptake into spheroid-forming MIN6 insulinoma. It might also be worthwhile investigating whether 2-NBDLG can be used as a functional probe for detecting cancer, since the nuclear heterogeneity is among critical features of malignancy.
Laur, Joan; Hacke, Uwe G
2014-01-01
Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.
Klimochkin, Yuri N; Shiryaev, Vadim A; Petrov, Pavel V; Radchenko, Eugene V; Palyulin, Vladimir A; Zefirov, Nikolay S
2016-01-01
The influenza A virus M2 proton channel plays a critical role in its life cycle. However, known M2 inhibitors have lost their clinical efficacy due to the spread of resistant mutant channels. Thus, the search for broad-spectrum M2 channel inhibitors is of great importance. The goal of the present work was to develop a general approach supporting the design of ligands interacting with multiple labile targets and to propose on its basis the potential broad-spectrum inhibitors of the M2 proton channel. The dynamic dimer-of-dimers structures of the three primary M2 target variants, wild-type, S31N and V27A, were modeled by molecular dynamics and thoroughly analyzed in order to define the inhibitor binding sites. The potential inhibitor structures were identified by molecular docking and their binding was verified by molecular dynamics simulation. The binding sites of the M2 proton channel inhibitors were analyzed, a number of potential broad-spectrum inhibitors were identified and the binding modes and probable mechanisms of action of one promising compound were clarified. Using the molecular dynamics and molecular docking techniques, we have refined the dynamic dimer-ofdimers structures of the WT, S31N and V27A variants of the M2 proton channel of the influenza A virus, analyzed the inhibitor binding sites, identified a number of potential broad-spectrum inhibitor structures targeting them, and clarified the binding modes and probable mechanisms of action of one promising compound. The proposed approach is also suitable for the design of ligands interacting with other multiple labile targets.
NASA Astrophysics Data System (ADS)
Dai, Duoqian; Zhou, Lu; Zhu, Xiaohong; You, Rong; Zhong, Liangliang
2017-06-01
MutT homolog 1 (MTH1), a nudix phosphohydrolase enzyme participates in the process of repairing of DNA damage by hydrolyzing oxidized deoxy-ribonucleoside triphosphate in cancer cells, is regarded as a potential target for anticancer therapy. In order to seek for promising inhibitor of MTH1, structured-based pharmacophore and 3D-QSAR pharmacophore hypotheses combine with the ADMET analysis and Lipinski's rule of five were used for screening the public molecules libraries (Asinex, Ibscreen and Natural). Then molecular docking studies were performed on screened hits via various docking programs (Glide SP, GOLD and Glide XP), five molecules with three scaffolds were picked out as potential inhibitors against MTH1. Eventually, 20 ns molecular dynamics simulation was implemented on the potential inhibitors. The RMSD (Root Mean Square Deviation) values were used to illustrate bind stability between potential molecules and MTH1. Therefore, the five hits may be considered as promising MTH1 inhibitors by all above studies.
Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors.
Shih, Kuei-Chung; Shiau, Chung-Wai; Chen, Ting-Shou; Ko, Ching-Huai; Lin, Chih-Lung; Lin, Chun-Yuan; Hwang, Chrong-Shiong; Tang, Chuan-Yi; Chen, Wan-Ru; Huang, Jui-Wen
2011-08-01
Chemical features based 3D pharmacophore model for REarranged during Transfection (RET) tyrosine kinase were developed by using a training set of 26 structurally diverse known RET inhibitors. The best pharmacophore hypothesis, which identified inhibitors with an associated correlation coefficient of 0.90 between their experimental and estimated anti-RET values, contained one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic, and one ring aromatic features. The model was further validated by a testing set, Fischer's randomization test, and goodness of hit (GH) test. We applied this pharmacophore model to screen NCI database for potential RET inhibitors. The hits were docked to RET with GOLD and CDOCKER after filtering by Lipinski's rules. Ultimately, 24 molecules were selected as potential RET inhibitors for further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Molecular design of new aggrecanases-2 inhibitors.
Shan, Zhi Jie; Zhai, Hong Lin; Huang, Xiao Yan; Li, Li Na; Zhang, Xiao Yun
2013-10-01
Aggrecanases-2 is a very important potential drug target for the treatment of osteoarthritis. In this study, a series of known aggrecanases-2 inhibitors was analyzed by the technologies of three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking. Two 3D-QSAR models, which based on comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods, were established. Molecular docking was employed to explore the details of the interaction between inhibitors and aggrecanases-2 protein. According to the analyses for these models, several new potential inhibitors with higher activity predicted were designed, and were supported by the simulation of molecular docking. This work propose the fast and effective approach to design and prediction for new potential inhibitors, and the study of the interaction mechanism provide a better understanding for the inhibitors binding into the target protein, which will be useful for the structure-based drug design and modifications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1).
Ostrovskyi, Dmytro; Rumpf, Tobias; Eib, Julia; Lumbroso, Alexandre; Slynko, Inna; Klaeger, Susan; Heinzlmeir, Stephanie; Forster, Michael; Gehringer, Matthias; Pfaffenrot, Ellen; Bauer, Silke Mona; Schmidtkunz, Karin; Wenzler, Sandra; Metzger, Eric; Kuster, Bernhard; Laufer, Stefan; Schüle, Roland; Sippl, Wolfgang; Breit, Bernhard; Jung, Manfred
2016-09-01
The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].
2009-09-01
startle amplitude. They then received Pavlovian fear conditioning of five pairings of a 3 s light co-terminating with a 500 ms, 0.6mA footshock. Four...Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats PRINCIPAL INVESTIGATOR: Jeffrey B. Rosen, Ph.D...NUMBER Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats 5b. GRANT
Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C
2012-01-01
Histone deacetylase inhibitors have emerged as a new class of anti-cancer therapeutics due to their potent anti-proliferative and apoptotic effects in malignant cells. Accumulating evidence is indicating that histone deacetylase inhibitors may also have potential clinical utility in non-oncological applications, including asthma. However, the potential of histone deacetylase inhibitors in asthma remains controversial. For example, the mechanisms of action of the broad-spectrum histone deacetylase inhibitor, Trichostatin A, in animal models of allergic airways disease are conflicting. Further, there is evidence suggesting potential problems associated with histone deacetylase 2 inhibition and conventional glucocorticosteroid therapy. Similarly, disparate findings are emerging following modulation of the class III, sirtuin 1 enzyme. Indeed, it is becoming apparent that the mechanism of action may not be related to histone deacetylase inhibition activity per se. Further, there is only limited evidence that these compounds possess anti-inflammatory effects in models of asthma. In this review, we provide an overview of the biology of the metal-dependent and sirtuin deacetylases in the context of asthma. The controversies surrounding the potential use of histone deacetylase inhibitors in asthma are discussed and future directions involving the investigation of more specific analogues are explored.
Shinde, Ranajit Nivrutti; Kumar, G Siva; Eqbal, Shahbaz; Sobhia, M Elizabeth
2018-01-01
Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for Type 2 diabetes due to its specific role as a negative regulator of insulin signaling pathways. Discovery of active site directed PTP1B inhibitors is very challenging due to highly conserved nature of the active site and multiple charge requirements of the ligands, which makes them non-selective and non-permeable. Identification of the PTP1B allosteric site has opened up new avenues for discovering potent and selective ligands for therapeutic intervention. Interactions made by potent allosteric inhibitor in the presence of PTP1B were studied using Molecular Dynamics (MD). Computationally optimized models were used to build separate pharmacophore models of PTP1B and TCPTP, respectively. Based on the nature of interactions the target residues offered, a receptor based pharmacophore was developed. The pharmacophore considering conformational flexibility of the residues was used for the development of pharmacophore hypothesis to identify potentially active inhibitors by screening large compound databases. Two pharmacophore were successively used in the virtual screening protocol to identify potential selective and permeable inhibitors of PTP1B. Allosteric inhibition mechanism of these molecules was established using molecular docking and MD methods. The geometrical criteria values confirmed their ability to stabilize PTP1B in an open conformation. 23 molecules that were identified as potential inhibitors were screened for PTP1B inhibitory activity. After screening, 10 molecules which have good permeability values were identified as potential inhibitors of PTP1B. This study confirms that selective and permeable inhibitors can be identified by targeting allosteric site of PTP1B.
USDA-ARS?s Scientific Manuscript database
To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...
USDA-ARS?s Scientific Manuscript database
The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen ...
The role of aquaporins in pH-Dependent germination of Rhizopus delemar spores
USDA-ARS?s Scientific Manuscript database
Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an u...
Discovery of a novel aquaporin ZmPIP2-8 from southern corn rootworm infested maize
USDA-ARS?s Scientific Manuscript database
A common paradigm of infestation by chewing insects is a jasmonic acid (JA) cascade that results in the induction of JA responsive genes. However examination of several maize genes induced by Southern corn rootworm (SCR) infestation, an insect that chews into and significantly damages maize roots, ...
Alexopoulos, Harry; Kampylafka, Eleni I; Fouka, Penelope; Tatouli, Ioanna; Akrivou, Sofia; Politis, Panagiotis K; Moutsopoulos, Haralampos M; Tzioufas, Athanasios G; Dalakas, Marinos C
2015-12-15
Anti-aquaporin-4 autoantibodies are specific for the neuromyelitis optica spectrum disorders (NMOSD) and they have also been described in patients with systemic lupus erythematosus (SLE) with neurological signs consistent with NMOSD. Our objective was to test for the presence and pathogenicity of anti-AQP4 antibodies in SLE patients without neurological disease. Sera from 89 non-CNS-SLE patients were screened for anti-AQP4 autoantibodies. Two of the 89 patients were positive. Archived samples dating back 11 years were also positive. A brain and spinal cord MRI did not reveal any NMOSD-compatible lesions. An in vitro cytotoxicity assay showed that either sera or purified IgG from these patients induced a complement-mediated damage in cultured astrocytes comparable to antibodies obtained from typical NMO patients. We conclude that AQP4-antibodies can be present in SLE patients and persist for many years, without concurrent clinical or radiological NMOSD signs. It is unclear why the anti-AQP4 antibodies did not induce CNS disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Pollen Aquaporins: The Solute Factor.
Pérez Di Giorgio, Juliana A; Soto, Gabriela C; Muschietti, Jorge P; Amodeo, Gabriela
2016-01-01
In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen's success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange.
Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus
Kamsteeg, Erik-Jan; Bichet, Daniel G.; Konings, Irene B.M.; Nivet, Hubert; Lonergan, Michelle; Arthus, Marie-Françoise; van Os, Carel H.; Deen, Peter M.T.
2003-01-01
Vasopressin regulates body water conservation by redistributing aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical surface of renal collecting ducts, resulting in water reabsorption from urine. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease characterized by the inability to concentrate urine. Here, we report a frame-shift mutation in AQP2 causing dominant NDI. This AQP2 mutant is a functional water channel when expressed in Xenopus oocytes. However, expressed in polarized renal cells, it is misrouted to the basolateral instead of apical plasma membrane. Additionally, this mutant forms heterotetramers with wild-type AQP2 and redirects this complex to the basolateral surface. The frame shift induces a change in the COOH terminus of AQP2, creating both a leucine- and a tyrosine-based motif, which cause the reversed sorting of AQP2. Our data reveal a novel cellular phenotype in dominant NDI and show that dominance of basolateral sorting motifs in a mutant subunit can be the molecular basis for disease. PMID:14662748
Kawase, Miki; Hanba, Yuko T; Katsuhara, Maki
2013-07-01
We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.
Bichet, Daniel G; Bockenhauer, Detlef
2016-03-01
Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Jae Hwan; Lee, Yong Woo; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun
2010-01-01
Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia. PMID:20029450
The 2DX robot: a membrane protein 2D crystallization Swiss Army knife.
Iacovache, Ioan; Biasini, Marco; Kowal, Julia; Kukulski, Wanda; Chami, Mohamed; van der Goot, F Gisou; Engel, Andreas; Rémigy, Hervé-W
2010-03-01
Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution. (c) 2009 Elsevier Inc. All rights reserved.
The three-dimensional structure of aquaporin-1
NASA Astrophysics Data System (ADS)
Walz, Thomas; Hirai, Teruhisa; Murata, Kazuyoshi; Heymann, J. Bernard; Mitsuoka, Kaoru; Fujiyoshi, Yoshinori; Smith, Barbara L.; Agre, Peter; Engel, Andreas
1997-06-01
The entry and exit of water from cells is a fundamental process of life. Recognition of the high water permeability of red blood cells led to the proposal that specialized water pores exist in the plasma membrane. Expression in Xenopus oocytes and functional studies of an erythrocyte integral membrane protein of relative molecular mass 28,000, identified it as the mercury-sensitive water channel, aquaporin-1 (AQP1). Many related proteins, all belonging to the major intrinsic protein (MIP) family, are found throughout nature. AQP1 is a homotetramer containing four independent aqueous channels. When reconstituted into lipid bilayers, the protein forms two-dimensional lattices with a unit cell containing two tetramers in opposite orientation. Here we present the three-dimensional structure of AQP1 determined at 6Å resolution by cryo-electron microscopy. Each AQP1 monomer has six tilted, bilayer-spanning α-helices which form a right-handed bundle surrounding a central density. These results, together with functional studies, provide a model that identifies the aqueous pore in the AQP1 molecule and indicates the organization of the tetrameric complex in the membrane.
Sjögren syndrome and neuromyelitis optica spectrum disorder co-exist in a common autoimmune milieu.
Carvalho, Diogo C; Tironi, Tauana S; Freitas, Denise S; Kleinpaul, Rodrigo; Talim, Natalia C; Lana-Peixoto, Marco A
2014-08-01
The relationship between Sjögren's syndrome (SS) and neuromyelitis optica spectrum disorder (NMOSD) is not completely understood. We report two patients with both conditions and review 47 other previously reported cases meeting currently accepted diagnostic criteria, from 17 articles extracted from PubMed. Out of 44 patients whose gender was informed, 42 were females. Mean age at onset of neurological manifestation was 36.2 years (10-74). Serum anti-AQP4-IgG was positive in 32 patients, borderline in 1, and negative in 4. Our Case 1 was seronegative for AQP4-IgG and had no non-organ-specific autoantibodies other than anti-SSB antibodies. Our Case 2 had serum anti-AQP4, anti-SSA/SSB, anti-thyreoglobulin and anti-acethylcholine-receptor antibodies, as well as clinical hypothyreoidism, but no evidence of myasthenia gravis. Our Cases and others, as previously reported in literature, with similar heterogeneous autoimmune response to aquaporin-4, suggest that SS and NMO co-exist in a common autoimmune milieu which is not dependent on aquaporin-4 autoimmunity.
Aquaporins as Targets of Dietary Bioactive Phytocompounds
Tesse, Angela; Grossini, Elena; Tamma, Grazia; Brenner, Catherine; Portincasa, Piero; Marinelli, Raul A.; Calamita, Giuseppe
2018-01-01
Plant-derived bioactive compounds have protective role for plants but may also modulate several physiological processes of plant consumers. In the last years, a wide spectrum of phytochemicals have been found to be beneficial to health interacting with molecular signaling pathways underlying critical functions such as cell growth and differentiation, apoptosis, autophagy, inflammation, redox balance, cell volume regulation, metabolic homeostasis, and energy balance. Hence, a large number of biologically active phytocompounds of foods have been isolated, characterized, and eventually modified representing a natural source of novel molecules to prevent, delay or cure several human diseases. Aquaporins (AQPs), a family of membrane channel proteins involved in many body functions, are emerging among the targets of bioactive phytochemicals in imparting their beneficial actions. Here, we provide a comprehensive review of this fast growing topic focusing especially on what it is known on the modulatory effects played by several edible plant and herbal compounds on AQPs, both in health and disease. Phytochemical modulation of AQP expression may provide new medical treatment options to improve the prognosis of several diseases. PMID:29721498
Droplet-based microfluidics platform for measurement of rapid erythrocyte water transport
Jin, Byung-Ju; Esteva-Font, Cristina; Verkman, A.S.
2015-01-01
Cell membrane water permeability is an important determinant of epithelial fluid secretion, tissue swelling, angiogenesis, tumor spread and other biological processes. Cellular water channels, the aquaporins, are important drug targets. Water permeability is generally measured from the kinetics of cell volume change in response to an osmotic gradient. Here, we developed a microfluidics platform in which cells expressing a cytoplasmic, volume-sensing fluorescent dye are rapidly subjected to an osmotic gradient by solution mixing inside a ~ 0.1 nL droplet surrounded by oil. Solution mixing time was < 10 ms. Osmotic water permeability was deduced from a single, time-integrated fluorescence image of an observation area in which time after mixing is determined by spatial position. Water permeability was accurately measured in aquaporin-expressing erythrocytes with half-times for osmotic equilibration down to < 50 ms. Compared with conventional water permeability measurements using costly stopped-flow instrumentation, the microfluidics platform here utilizes sub-microliter blood sample volume, does not suffer from mixing artifact, and replaces challenging kinetic measurements by a single image capture using a standard laboratory fluorescence microscope. PMID:26159099
Finberg, John P M
2014-08-01
Inhibitors of monoamine oxidase (MAO) were initially used in medicine following the discovery of their antidepressant action. Subsequently their ability to potentiate the effects of an indirectly-acting sympathomimetic amine such as tyramine was discovered, leading to their limitation in clinical use, except for cases of treatment-resistant depression. More recently, the understanding that: a) potentiation of indirectly-acting sympathomimetic amines is caused by inhibitors of MAO-A but not by inhibitors of MAO-B, and b) that reversible inhibitors of MAO-A cause minimal tyramine potentiation, has led to their re-introduction to clinical use for treatment of depression (reversible MAO-A inhibitors and new dose form MAO-B inhibitor) and treatment of Parkinson's disease (MAO-B inhibitors). The profound neuroprotective properties of propargyl-based inhibitors of MAO-B in preclinical experiments have drawn attention to the possibility of employing these drugs for their neuroprotective effect in neurodegenerative diseases, and have raised the question of the involvement of the MAO-mediated reaction as a source of reactive free radicals. Despite the long-standing history of MAO inhibitors in medicine, the way in which they affect neuronal release of monoamine neurotransmitters is still poorly understood. In recent years, the detailed chemical structure of MAO-B and MAO-A has become available, providing new possibilities for synthesis of mechanism-based inhibitors. This review describes the latest advances in understanding the way in which MAO inhibitors affect the release of the monoamine neurotransmitters dopamine, noradrenaline and serotonin (5-HT) in the CNS, with an accent on the importance of these effects for the clinical actions of the drugs. Copyright © 2014 Elsevier Inc. All rights reserved.
Virtual screening for potential inhibitors of bacterial MurC and MurD ligases.
Tomašić, Tihomir; Kovač, Andreja; Klebe, Gerhard; Blanot, Didier; Gobec, Stanislav; Kikelj, Danijel; Mašič, Lucija Peterlin
2012-03-01
Mur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified. These compounds represent new scaffolds for further optimisation towards multiple Mur ligase inhibitors with improved inhibitory potency.
PI3K pathway inhibitors: potential prospects as adjuncts to vaccine immunotherapy for glioblastoma.
Oh, Taemin; Ivan, Michael E; Sun, Matthew Z; Safaee, Michael; Fakurnejad, Shayan; Clark, Aaron J; Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T
2014-01-01
Constitutive activation of the PI3K pathway has been implicated in glioblastoma (GBM) pathogenesis. Pharmacologic inhibition can both inhibit tumor survival and downregulate expression of programmed death ligand-1, a protein highly expressed on glioma cells that strongly contributes to cancer immunosuppression. In that manner, PI3K pathway inhibitors can help optimize GBM vaccine immunotherapy. In this review, we describe and assess the potential integration of various classes of PI3K pathway inhibitors into GBM immunotherapy. While early-generation inhibitors have a wide range of immunosuppressive effects that could negate their antitumor potency, further work should better characterize how contemporary inhibitors affect the immune response. This will help determine if these inhibitors are truly a therapeutic avenue with a strong future in GBM immunotherapy.
Cohen, David; Bogeat-Triboulot, Marie-Béatrice; Vialet-Chabrand, Silvère; Merret, Rémy; Courty, Pierre-Emmanuel; Moretti, Sébastien; Bizet, François; Guilliot, Agnès; Hummel, Irène
2013-01-01
Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected. PMID:23393587
Cohen, David; Bogeat-Triboulot, Marie-Béatrice; Vialet-Chabrand, Silvère; Merret, Rémy; Courty, Pierre-Emmanuel; Moretti, Sébastien; Bizet, François; Guilliot, Agnès; Hummel, Irène
2013-01-01
Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.
Graugaard-Jensen, C; Hvistendahl, G M; Frøkiaer, J; Bie, P; Djurhuus, J C
2014-09-01
We investigated the influence of gender on the diurnal regulation of urine production with special focus on vasopressin, oxytocin and prostaglandin E2. Fifteen young women in mid-follicular phase and 22 young men (20-33 years) were included. All participants underwent a 24-h circadian inpatient study under standardized conditions for measurements of plasma vasopressin, oxytocin, sodium and osmolality. Urine was fractionally collected for measurements of electrolytes, aquaporin-2 and prostaglandin E2. Plasma vasopressin expressed a diurnal rhythm with a night-time increase in both genders (P < 0.001). The ratio between mean daytime and mean night-time was 1.57 [95% CI: 1.33-1.84] P < 0.001 in men and 1.35 [95% CI: 1.11-1.64] P = 0.002 in women. P-vasopressin was higher in males during the night (P < 0.05). There was no difference in diuresis (P = 0.43), urine osmolality (P = 0.12) or aquaporin-2 excretion (P = 0.80) between genders. We found a trend towards a higher reabsorption of free water in males (P = 0.07). The excretion of prostaglandin E2 was higher in males (P < 0.001). There was no diurnal rhythm in p-oxytocin (P = 0.37) and no correlation to diuresis, urine osmolality or aquaporin-2 excretions. Similar urinary flows and osmolalities are associated with levels of plasma vasopressin and renal PGE2, which are higher in males than in females. Oxytocin does not seem to play a role in the diurnal urine formation, whereas prostaglandin E2 could represent a mediator of the gender difference, not only as a mediator of the vasopressin response, but also as an independent factor. These findings need further elucidation. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Zhang, Linlin; Li, Chunyan; Li, Li; She, Zhicai; Huang, Baoyu; Zhang, Guofan
2013-01-01
Background The Pacific oyster, Crassostrea gigas, has developed special mechanisms to regulate its osmotic balance to adapt to fluctuations of salinities in coastal zones. To understand the oyster’s euryhaline adaptation, we analyzed salt stress effectors metabolism pathways under different salinities (salt 5, 10, 15, 20, 25, 30 and 40 for 7 days) using transcriptome data, physiology experiment and quantitative real-time PCR. Results Transcriptome data uncovered 189, 480, 207 and 80 marker genes for monitoring physiology status of oysters and the environment conditions. Three known salt stress effectors (involving ion channels, aquaporins and free amino acids) were examined. The analysis of ion channels and aquaporins indicated that 7 days long-term salt stress inhibited voltage-gated Na+/K+ channel and aquaporin but increased calcium-activated K+ channel and Ca2+ channel. As the most important category of osmotic stress effector, we analyzed the oyster FAAs metabolism pathways (including taurine, glycine, alanine, beta-alanine, proline and arginine) and explained FAAs functional mechanism for oyster low salinity adaptation. FAAs metabolism key enzyme genes displayed expression differentiation in low salinity adapted individuals comparing with control which further indicated that FAAs played important roles for oyster salinity adaptation. A global metabolic pathway analysis (iPath) of oyster expanded genes displayed a co-expansion of FAAs metabolism in C. gigas compared with seven other species, suggesting oyster’s powerful ability regarding FAAs metabolism, allowing it to adapt to fluctuating salinities, which may be one important mechanism underlying euryhaline adaption in oyster. Additionally, using transcriptome data analysis, we uncovered salt stress transduction networks in C. gigas. Conclusions Our results represented oyster salt stress effectors functional mechanisms under salt stress conditions and explained the expansion of FAAs metabolism pathways as the most important effectors for oyster euryhaline adaptation. This study was the first to explain oyster euryhaline adaptation at a genome-wide scale in C. gigas. PMID:23554902
Obroucheva, Natalie V; Lityagina, Snezhana V; Novikova, Galina V; Sin'kevich, Irina A
2012-01-01
In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H(+)-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H(+)-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due to the short duration. The retained physiological activity of vacuoles allows them to function rapidly as dormancy is lost and when external conditions permit. Cell vacuolation precedes cell elongation in both hypocotyl and radicle, and provides impetus for rapid germination.
Hassouneh, Ramzi; Nasrallah, Rania; Zimpelmann, Joe; Gutsol, Alex; Eckert, David; Ghossein, Jamie; Burns, Kevin D; Hébert, Richard L
2016-06-01
The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury. Male Ep 3 (-/-) (also known as Ptger3 (-/-)) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption. Ep 3 (-/-)-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 (-/-)-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 (-/-) and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 (-/-)-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts. Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.
Schuurmans, Jolanda A M J; van Dongen, Joost T; Rutjens, Bas P W; Boonman, Alex; Pieterse, Corné M J; Borstlap, Adrianus C
2003-11-01
Water and nutrients required by developing seeds are mainly supplied by the phloem and have to be released from a maternal parenchyma tissue before being utilized by the filial tissues of embryo and endosperm. To identify aquaporins that could be involved in this process four full-length cDNAs were cloned and sequenced from a cDNA library of developing seed coats of pea (Pisum sativum L.). The cDNA of PsPIP1-1 appeared to be identical to that of clone 7a/TRG-31, a turgor-responsive gene cloned previously from pea roots. PsPIP1-1, PsPIP2-1, and PsTIP1-1, or their possible close homologues, were also expressed in cotyledons of developing and germinating seeds, and in roots and shoots of seedlings, but transcripts of PsNIP-1 were only detected in the seed coat. In mature dry seeds, high hybridization signals were observed with the probe for PsPIP1-1, but transcripts of PsPIP2-1, PsTIP1-1, and PsNIP-1 were not detected. Functional characterization after heterologous expression in Xenopus oocytes showed that PsPIP2-1 and PsTIP1-1 are aquaporins whereas PsNIP-1 is an aquaglyceroporin. PsNIP-1, like several other NIPs, contains a tryptophan residue corresponding with Trp-48 in GlpF (the glycerol facilitator of Escherichia coli) that borders the selectivity filter in the permeation channel. It is suggested that PsPIP1-1 and/or its possible close homologues could play a role in water absorption during seed imbibition, and that PsPIP2-1, possibly together with PsPIP1-1, could be involved in the release of phloem water from the seed coat symplast, which is intimately connected with the release of nutrients for the embryo.
Deeg, Cornelia A; Amann, Barbara; Lutz, Konstantin; Hirmer, Sieglinde; Lutterberg, Karina; Kremmer, Elisabeth; Hauck, Stefanie M
2016-04-23
Müller glial cells are important regulators of physiological function of retina. In a model disease of retinal inflammation and spontaneous recurrent uveitis in horses (ERU), we could show that retinal Müller glial cells significantly change potassium and water channel protein expression during autoimmune pathogenesis. The most significantly changed channel protein in neuroinflammatory ERU was aquaporin 11 (AQP11). Aquaporins (AQP, 13 members) are important regulators of water and small solute transport through membranes. AQP11 is an unorthodox member of this family and was assigned to a third group of AQPs because of its difference in amino acid sequence (conserved sequence is only 11 %) and especially its largely unknown function. In order to gain insight into the distribution, localization, and function of AQP11 in the retina, we first developed a novel monoclonal antibody for AQP11 enabling quantification, localization, and functional studies. In the horse retina, AQP11 was exclusively expressed at Müller glial cell membranes. In uveitic condition, AQP11 disappeared from gliotic Müller cells concomitant with glutamine synthase. Since function of AQP11 is still under debate, we assessed the impact of AQP11 channel on cell volume regulation of primary Müller glial cells under different osmotic conditions. We conclude a concomitant role for AQP11 with AQP4 in water efflux from these glial cells, which is disturbed in ERU. This could probably contribute to swelling and subsequent severe complication of retinal edema through impaired intracellular fluid regulation. Therefore, AQP11 is important for physiological Müller glia function and the expression pattern and function of this water channel seems to have distinct functions in central nervous system. The significant reduction in neuroinflammation points to a crucial role in pathogenesis of autoimmune uveitis.
Orman, G; Wang, K Y; Pekcevik, Y; Thompson, C B; Mealy, M; Levy, M; Izbudak, I
2017-05-01
Neuromyelitis optica spectrum disorders are inflammatory demyelinating disorders with optic neuritis and/or longitudinally extensive transverse myelitis episodes. We now know that neuromyelitis optica spectrum disorders are associated with antibodies to aquaporin-4, which are highly concentrated on astrocytic end-feet at the blood-brain barrier. Immune-mediated disruption of the blood-brain barrier may manifest as contrast enhancement on brain MR imaging. We aimed to delineate the extent and frequency of contrast enhancement on brain MR imaging within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and to correlate contrast enhancement with outcome measures. Brain MRIs of patients with neuromyelitis optica spectrum disorders were evaluated for patterns of contrast enhancement (periependymal, cloudlike, leptomeningeal, and so forth). The Fisher exact test was used to evaluate differences between the proportion of contrast enhancement in patients who were seropositive and seronegative for aquaporin-4 antibodies. The Mann-Whitney test was used to compare the annualized relapse rate and disease duration between patients with and without contrast enhancement and with and without seropositivity. Brain MRIs of 77 patients were evaluated; 59 patients (10 males, 49 females) were scanned within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and were included in the analysis. Forty-eight patients were seropositive, 9 were seronegative, and 2 were not tested for aquaporin-4 antibodies. Having brain contrast enhancement of any type during an acute attack was significantly associated with higher annualized relapse rates ( P = .03) and marginally associated with shorter disease duration ( P = .05). Having periependymal contrast enhancement was significantly associated with higher annualized relapse rates ( P = .03). Brain MRIs of patients with neuromyelitis optica spectrum disorders with contrast enhancement during an acute relapse of optic neuritis and/or longitudinally extensive transverse myelitis are associated with increased annual relapse rates. © 2017 by American Journal of Neuroradiology.
Microarray-based screening of heat shock protein inhibitors.
Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten
2014-06-20
Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.
Dewi, Lestari
2016-01-01
Introduction: The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. Aim: The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. Material and methods: The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. Results: Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. Conclusion: The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2. PMID:27594740
Dewi, Lestari
2016-06-01
The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2.
Chondrocyte channel transcriptomics
Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard
2013-01-01
To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703
Plant xylem hydraulics: What we understand, current research, and future challenges.
Venturas, Martin D; Sperry, John S; Hacke, Uwe G
2017-06-01
Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system, highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally, we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality. © 2017 Institute of Botany, Chinese Academy of Sciences.
Role of the H-bond between L53 and T56 for Aquaporin-4 epitope in Neuromyelitis Optica.
Pisani, Francesco; Simone, Laura; Gargano, Concetta Domenica; De Bellis, Manuela; Cibelli, Antonio; Mola, Maria Grazia; Catacchio, Giacomo; Frigeri, Antonio; Svelto, Maria; Nicchia, Grazia Paola
2017-03-01
Aquaporin-4 (AQP4) is the CNS water channel organized into well-ordered protein aggregates called Orthogonal Arrays of Particles (OAPs). Neuromyelitis Optica (NMO) is an autoimmune disease caused by anti-OAP autoantibodies (AQP4-IgG). Molecular Dynamics (MD) simulations have identified an H-bond between L53 and T56 as the key for AQP4 epitope and therefore of potential interest for drug design in NMO field. In the present study, we have experimentally tested this MD-prediction using the classic mutagenesis approach. We substituted T56 with V56 and tested this mutant for AQP4 aggregates and AQP4-IgG binding. gSTED super-resolution microscopy showed that the mutation does not affect AQP4 aggregate dimension; immunofluorescence and cytofluorimetric analysis demonstrated its unaltered AQP4-IgG binding, therefore invalidating the MD-prediction. We later investigated whether AQP4, expressed in Sf9 insect and HEK-293F cells, is able to correctly aggregate before and after the purification steps usually applied to obtain AQP4 crystal. The results demonstrated that AQP4-IgG recognizes AQP4 expressed in Sf9 and HEK-293F cells by immunofluorescence even though BN-PAGE analysis showed that AQP4 forms smaller aggregates when expressed in insect cells compared to mammalian cell lines. Notably, after AQP4 purification, from both insect and HEK-293F cells, no aggregates are detectable by BN-PAGE and AQP4-IgG binding is impaired in sandwich ELISA assays. All together these results indicate that 1) the MD prediction under analysis is not supported by experimental data and 2) the procedure to obtain AQP4 crystals might affect its native architecture and, as a consequence, MD simulations. In conclusion, given the complex nature of the AQP4 epitope, MD might not be the suitable for molecular medicine advances in NMO. Copyright © 2016. Published by Elsevier B.V.
Geis, Christian; Ritter, Christian; Ruschil, Christoph; Weishaupt, Andreas; Grünewald, Benedikt; Stoll, Guido; Holmoy, Trygve; Misu, Tatsuro; Fujihara, Kazuo; Hemmer, Bernhard; Stadelmann, Christine; Bennett, Jeffrey L.; Sommer, Claudia; Toyka, Klaus V.
2015-01-01
Neuromyelitis optica (NMO) is causally linked to autoantibodies (ABs) against aquaporin 4 (AQP4). Here, we focused on the pathogenic effects exclusively mediated by human ABs to AQP4 in vivo. We performed cell-free intrathecal (i.th.) passive transfer experiments in Lewis rats using purified patient NMO immunoglobulin G (IgG) and various recombinant human anti-AQP4 IgG-ABs via implanted i.th. catheters. Repetitive application of patient NMO IgG fractions and of recombinant human anti-AQP4 ABs induced signs of spinal cord disease. Magnetic resonance imaging (MRI) revealed longitudinal spinal cord lesions at the site of application of anti-AQP4 IgG. Somatosensory evoked potential amplitudes were reduced in symptomatic animals corroborating the observed functional impairment. Spinal cord histology showed specific IgG deposition in the grey and white matter in the affected areas. We did not find inflammatory cell infiltration nor activation of complement in spinal cord areas of immunoglobulin deposition. Moreover, destructive lesions showing axon or myelin damage and loss of astrocytes and oligodendrocytes were all absent. Immunoreactivity to AQP4 and to the excitatory amino acid transporter 2 (EAAT2) was markedly reduced whereas immunoreactivity to the astrocytic marker glial fibrillary acid protein (GFAP) was preserved. The expression of the NMDA-receptor NR1 subunit was down-regulated in areas of IgG deposition possibly induced by sustained glutamatergic overexcitation. Disease signs and histopathology were reversible within weeks after stopping injections. We conclude that in vivo application of ABs directed at AQP 4 can induce a reversible spinal cord disease in recipient rats by inducing distinct histopathological abnormalities. These findings may be the experimental correlate of “penumbra-like” lesions recently reported in NMO patients adjacent to effector-mediated tissue damage. PMID:25542977
Geis, Christian; Ritter, Christian; Ruschil, Christoph; Weishaupt, Andreas; Grünewald, Benedikt; Stoll, Guido; Holmoy, Trygve; Misu, Tatsuro; Fujihara, Kazuo; Hemmer, Bernhard; Stadelmann, Christine; Bennett, Jeffrey L; Sommer, Claudia; Toyka, Klaus V
2015-03-01
Neuromyelitis optica (NMO) is causally linked to autoantibodies (ABs) against aquaporin 4 (AQP4). Here, we focused on the pathogenic effects exclusively mediated by human ABs to AQP4 in vivo. We performed cell-free intrathecal (i.th.) passive transfer experiments in Lewis rats using purified patient NMO immunoglobulin G (IgG) and various recombinant human anti-AQP4 IgG-ABs via implanted i.th. catheters. Repetitive application of patient NMO IgG fractions and of recombinant human anti-AQP4 ABs induced signs of spinal cord disease. Magnetic resonance imaging (MRI) revealed longitudinal spinal cord lesions at the site of application of anti-AQP4 IgG. Somatosensory evoked potential amplitudes were reduced in symptomatic animals corroborating the observed functional impairment. Spinal cord histology showed specific IgG deposition in the grey and white matter in the affected areas. We did not find inflammatory cell infiltration nor activation of complement in spinal cord areas of immunoglobulin deposition. Moreover, destructive lesions showing axon or myelin damage and loss of astrocytes and oligodendrocytes were all absent. Immunoreactivity to AQP4 and to the excitatory amino acid transporter 2 (EAAT2) was markedly reduced whereas immunoreactivity to the astrocytic marker glial fibrillary acid protein (GFAP) was preserved. The expression of the NMDA-receptor NR1 subunit was downregulated in areas of IgG deposition possibly induced by sustained glutamatergic overexcitation. Disease signs and histopathology were reversible within weeks after stopping injections. We conclude that in vivo application of ABs directed at AQP 4 can induce a reversible spinal cord disease in recipient rats by inducing distinct histopathological abnormalities. These findings may be the experimental correlate of "penumbra-like" lesions recently reported in NMO patients adjacent to effector-mediated tissue damage. Copyright © 2014 Elsevier Inc. All rights reserved.
Aquaporins in Spinal Cord Injury: The Janus Face of AQP4
Nesic, Olivera; Guest, James D.; Zivadinovic, Dragoslava; Narayana, Ponnada A.; Herrera, Juan J.; Grill, Raymond J.; Mokkapati, Venkata U.L.; Gelman, Benjamin B.; Lee, Julieann
2010-01-01
Although malfunction of spinal cord water channels (aquaporins, AQP) likely contributes to severe disturbances in ion/water homeostasis after spinal cord injury (SCI), their roles are still poorly understood. Here we report and discuss the potential significance of changes in the AQP4 expression in human SCI that generates GFAP-labeled astrocytes devoid of AQP4, and GFAP-labeled astroglia that overexpress AQP4. We used a rat model of contusion SCI to study observed changes in human SCI. AQP4-negative astrocytes are likely generated during the process of SCI-induced replacement of lost astrocytes, but their origin and role in SCI remains to be investigated. We found that AQP4-overexpression is likely triggered by hypoxia. Our transcriptional profiling of injured rat cords suggests that elevated AQP4-mediated water influx accompanies increased uptake of chloride and potassium ions which represents a protective astrocytic reaction to hypoxia. However, unbalanced water intake also results in astrocytic swelling that can contribute to motor impairment, but likely only in milder injuries. In severe rat SCI, a low abundance of AQP4-overexpressing astrocytes was found during the motor recovery phase. Our results suggest that severe rat contusion SCI is a better model to analyze AQP4 functions after SCI. We found that AQP4 increases in the chronic post-injury phase are associated with the development of pain-like behavior in SCI rats, while possible mechanisms underlying pain development may involve astrocytic swelling-induced glutamate release. In contrast, the formation and size of fluid-filled cavities occurring later after SCI does not appear to be affected by the extent of increased AQP4 levels. Therefore, the effect of therapeutic interventions targeting AQP4 will depend not only on the time interval after SCI or animal models, but also on the balance between protective role of increased AQP4 in hypoxia and deleterious effects of ongoing astrocytic swelling. PMID:20109536
Bilgin, M; Burgazli, K M; Rafiq, A; Mericliler, M; Neuhof, C; Oliva, M L; Parahuleva, M; Soydan, N; Doerr, O; Abdallah, Y; Erdogan, A
2014-01-01
Proteinase inhibitors act as a defensive system against predators e.g. insects, in plants. Bauhinia bauhinioides kallikrein inhibitor (BbKI) is a serine proteinase inhibitor, isolated from seeds of Bauhinia bauhinioides and is structurally similar to plant Kunitz-type inhibitors but lacks disulfide bridges. In this study we evaluated the antiproliferative effect of BbKI on endothelial cells and its impact on changes in membrane potential and intracellular calcium. HUVEC proliferation was significantly reduced by incubation with BbKI 50 and 100 µM 12% and 13%. Furthermore, BbKI (100 µM) exposure caused a significant increase in intracellular Ca2+ concentration by 35% as compared to untreated control. The intracellular rise in calcium was not affected by the absence of extracellular calcium. BBKI also caused a significant change in the cell membrane potential but the antiproliferative effect was independent of changes in membrane potential. BBKI has an antiproliferative effect on HUVEC, which is independent of the changes in membrane potential, and it causes an increase in intracellular Ca2+.
Gu, Yu; Zhang, Xu; Chen, Yan-Kun; Zhao, Bo-Wen; Zhang, Yan-Ling
2017-12-01
5-lipoxygenase (5-LOX) and leukotriene A4 hydrolase (LTA4H), as the major targets of 5-LOX branch in the arachidonic acid (AA) metabolic pathway, play an important role in the treatment of inflammation. Rhei Radix et Rhizoma, Notopterygii Rhizoma et Radix and Genitana Macrophyllae Radix have clear anti-inflammation activities. In this paper, the targets of 5-LOX and LTA4H were used as the research carrier, and Hiphop module in DS4.0 (Discovery studio) was used to construct ingredients database for preliminary screening of three traditional Chinese medicines based on target inhibitor pharmacophore, so as to obtain 5-LOX and LTA4H potential active ingredients. The ingredients obtained in initial pharmacophore screening were further screened by using CDOCKER module, and the screening rules were established based on the score of initial compound and the key amino acids to obtain 12 potential 5-LOX inhibitors and 7 potential LTA4H inhibitors. To be more specific, the potential 5-LOX inhibitors included 6 ingredients in Rhei Radix et Rhizoma, such as procyanidins B2-3,3'-O-double gallate and revandchinone 2; four ingredients in notopterygium, such as dodecanoic acid and so on. On the other hand, potential LTA4H inhibitors included revandchinone 1, revandchinone 4 in Rhei Radix et Rhizoma, tridecanoic acid, tetracosanoic acid and methyl eicosanoate in Notopterygii Rhizoma et Radix, montanic acid methyl ester and N-docosanoyl-O-aminobenzoate in Genitana Macrophyllae Radix and so on. The molecular simulation methods were highly efficient and time-saving to obtain the potential inhibitors of 5-LOX and LTA4H, which could provide assistance for discovering the chemical quality indicators of anti-inflammatory efficacy of three Chinese herbs, and may be helpful to promote the whole-process quality control of three Chinese herbs. Copyright© by the Chinese Pharmaceutical Association.
Kalathiya, Umesh; Padariya, Monikaben; Baginski, Maciej
2014-01-01
During previous years, many studies on synthesis, as well as on anti-tumor, anti-inflammatory and anti-bacterial activities of the pyrazole derivatives have been described. Certain pyrazole derivatives exhibit important pharmacological activities and have proved to be useful template in drug research. Considering importance of pyrazole template, in current work the series of novel inhibitors were designed by replacing central ring of acridine with pyrazole ring. These heterocyclic compounds were proposed as a new potential base for telomerase inhibitors. Obtained dibenzopyrrole structure was used as a novel scaffold structure and extension of inhibitors was done by different functional groups. Docking of newly designed compounds in the telomerase active site (telomerase catalytic subunit TERT) was carried out. All dibenzopyrrole derivatives were evaluated by three docking programs: CDOCKER, Ligandfit docking (Scoring Functions) and AutoDock. Compound C_9g, C_9k and C_9l performed best in comparison to all designed inhibitors during the docking in all methods and in interaction analysis. Introduction of pyrazole and extension of dibenzopyrrole in compounds confirm that such compound may act as potential telomerase inhibitors.
2015-01-01
The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150’s exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior. PMID:25676389
Ogawa, Shintaro; Kunugi, Hiroshi
2015-01-01
Cannabis and analogs of Δ<sup>9</sup>-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted.
Corrosion inhibitors for water-base slurry in multiblade sawing
NASA Technical Reports Server (NTRS)
Chen, C. P.; Odonnell, T. P.
1982-01-01
The use of a water-base slurry instead of the standard PC oil vehicle was proposed for multiblade sawing (MBS) silicon wafering technology. Potential cost savings were considerable; however, significant failures of high-carbon steel blades were observed in limited tests using a water-based slurry during silicon wafering. Failures were attributed to stress corrosion. A specially designed fatigue test of 1095 steel blades in distilled water with various corrosion inhibitor solutions was used to determine the feasibility of using corrosion inhibitors in water-base MBS wafering. Fatigue tests indicate that several corrosion inhibitors have significant potential for use in a water-base MBS operation. Blade samples tested in these specific corrosion-inhibitor solutions exhibited considerably greater lifetime than those blades tested in PC oil.
Computer-aided identification of potential TYK2 inhibitors from drug database
NASA Astrophysics Data System (ADS)
Zhang, Wei; Li, Jianzong; Huang, Zhixin; Wang, Haiyang; Luo, Hao; Wang, Xin; Zhou, Nan; Wu, Chuanfang; Bao, Jinku
2016-10-01
TYK2 is a member of JAKs family protein tyrosine kinase activated in response to various cytokines. It plays a crucial role in transducing signals downstream of various cytokine receptors, which are involved in proinflammatory responses associated with immunological diseases. Thus, the study of selective TYK2 inhibitors is one of the most popular fields in anti-inflammation drug development. Herein, we adopted molecular docking, molecular dynamics simulation and MM-PBSA binding free energy calculation to screen potential TYK2-selective inhibitors from ZINC Drug Database. Finally, three small molecule drugs ZINC12503271 (Gemifloxacin), ZINC05844792 (Nebivolol) and ZINC00537805 (Glyburide) were selected as potential TYK2-selective inhibitors. Compared to known inhibitor 2,6-dichloro-N-{2-[(cyclopropylcarbonyl)amino]pyridin-4-yl}benzamide, these three candidates had better Grid score and Amber score from molecular docking and preferable results from binding free energy calculation as well. What's more, the ATP-binding site and A-loop motif had been identified to play key roles in TYK2-targeted inhibitor discovery. It is expected that our study will pave the way for the design of potent TYK2 inhibitors of new drugs to treat a wide variety of immunological diseases such as inflammatory diseases, multiple sclerosis, psoriasis inflammatory bowel disease (IBD) and so on.
Wang, Weidong; Li, Chunling; Summer, Sandra; Falk, Sandor
2010-01-01
The study was undertaken to examine the potential cross talk between vasopressin and angiotensin II (ANG II) intracellular signaling pathways. We investigated in vivo and in vitro whether vasopressin-induced water reabsorption could be attenuated by ANG II AT1 receptor blockade (losartan). On a low-sodium diet (0.5 meq/day) dDAVP-treated animals with or without losartan exhibited comparable renal function [creatinine clearance 1.2 ± 0.1 in dDAVP+losartan (LSDL) vs. 1.1 ± 0.1 ml·100 g−1·day−1 in dDAVP alone (LSD), P > 0.05] and renal blood flow (6.3 ± 0.5 in LSDL vs. 6.8 ± 0.5 ml/min in LSD, P > 0.05). The urine output, however, was significantly increased in LSDL (2.5 ± 0.2 vs. 1.8 ± 0.2 ml·100 g−1·day−1, P < 0.05) in association with decreased urine osmolality (2,600 ± 83 vs. 3,256 ± 110 mosmol/kgH2O, P < 0.001) compared with rats in LSD. Immunoblotting revealed significantly decreased expression of medullary AQP2 (146 ± 6 vs. 176 ± 10% in LSD, P < 0.01), p-AQP2 (177 ± 13 vs. 214 ± 12% in LSD, P < 0.05), and AQP3 (134 ± 14 vs. 177 ± 11% in LSD, P < 0.05) in LSDL compared with LSD. The expressions of AQP1, the α1- and γ-subunits of Na-K-ATPase, and the Na-K-2Cl cotransporter were not different among groups. In vitro studies showed that ANG II or dDAVP treatment was associated with increased AQP2 expression and cAMP levels, which were potentiated by cotreatment with ANG II and dDAVP and were inhibited by AT1 blockade. In conclusion, ANG II AT1 receptor blockade in dDAVP-treated rats on a low-salt diet was associated with decreased urine concentration and decreased inner medullary AQP2, p-AQP2, and AQP3 expression, suggesting that AT1 receptor activation plays a significant role in regulating aquaporin expression and modulating urine concentration in vivo. Studies in collecting duct cells were confirmatory. PMID:20576679
Inhibitor analysis for a solar heating and cooling system
NASA Technical Reports Server (NTRS)
Tabony, J. H.
1977-01-01
A study of potential corrosion inhibitors for the NASA solar heating and cooling system which uses aluminum solar panels is provided. Research consisted of testing using a dynamic corrosion system, along with an economic analysis of proposed corrosion inhibitors. Very good progress was made in finding a suitable inhibitor for the system.
Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi
2003-10-01
Alzheimer's disease (AD) has been treated with acetylcholinesterase (AChE) inhibitors such as donepezil. However, the clinical usefulness of AChE inhibitors is limited mainly due to their adverse peripheral effects. Depression seen in AD patients has been treated with serotonin transporter (SERT) inhibitors. We considered that combining SERT and AChE inhibition could improve the clinical usefulness of AChE inhibitors. In a previous paper, we found a potential dual inhibitor, 1, of AChE (IC50=101 nM) and SERT (IC50=42 nM), but its AChE inhibition activity was less than donepezil (IC50=10 nM). Here, we report the conformationally restricted (R)-18a considerably enhanced inhibitory activity against AChE (IC50=14 nM) and SERT (IC50=6 nM).
Liu, Yu; Wan, Wen-zhu; Li, Yan; Zhou, Guan-lian; Liu, Xin-guang
2017-01-01
Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors. PMID:27769061
Kumar Tripathy, Manas; Weeraratne, Gayani; Clark, Greg; Roux, Stanley J
2017-09-01
A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide-potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review.
Mane, Uttam Rajaram; Gupta, Ramesh C; Nadkarni, Sunil Sadanand; Giridhar, Rajani R; Naik, Prashant Prakash; Yadav, Mange R
2013-02-01
There is an urgent need to discover new antimalarial drugs due to emergence of resistance in the parasite to the existing drugs. Malarial cysteine proteases falcipin-2 (FP-2) and falcipain-3 (FP-3) are attractive targets for antimalarial chemotherapy. The structures and functions of FP-2/3, their binding domains and their interactions with small- and macro-molecules are well studied. These studies could provide important insight into rational designing of FP inhibitors as potential antimalarial drugs. This review is focused on a selection of interesting patents published during 1999 - 2011 on peptidic and nonpeptidic chemotypes of the FP-2/FP-3 inhibitors. It is a known fact that malaria is a serious health problem worldwide due to the emergence of resistant strains. Hence, development of novel, potent and affordable antimalarial drugs devoid of side effects is of great significance and in great demand. FPs, the malarial cysteine proteases are potential targets for development of new antimalarial drugs. Assessing the available literature on FP-2/3 and their inhibitors it could be speculated that these inhibitors have the potential to enter the clinical stages of development for the treatment of malaria in the years to come.
Lee, Yie-Vern; Wahab, Habibah A.
2015-01-01
Isocitrate lyase (ICL) is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle), especially Mycobacterium tuberculosis (MTB). In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a) MTB ICL with natural compounds; (b) MTB ICL with synthetic compounds; (c) non-MTB ICL with natural compounds; and (d) non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL. PMID:25649791
Chen, Yankun; Chen, Xi; Luo, Ganggang; Zhang, Xu; Lu, Fang; Qiao, Liansheng; He, Wenjing; Li, Gongyu; Zhang, Yanling
2018-04-28
Squalene synthase (SQS), a key downstream enzyme involved in the cholesterol biosynthetic pathway, plays an important role in treating hyperlipidemia. Compared to statins, SQS inhibitors have shown a very significant lipid-lowering effect and do not cause myotoxicity. Thus, the paper aims to discover potential SQS inhibitors from Traditional Chinese Medicine (TCM) by the combination of molecular modeling methods and biological assays. In this study, cynarin was selected as a potential SQS inhibitor candidate compound based on its pharmacophoric properties, molecular docking studies and molecular dynamics (MD) simulations. Cynarin could form hydrophobic interactions with PHE54, LEU211, LEU183 and PRO292, which are regarded as important interactions for the SQS inhibitors. In addition, the lipid-lowering effect of cynarin was tested in sodium oleate-induced HepG2 cells by decreasing the lipidemic parameter triglyceride (TG) level by 22.50%. Finally. cynarin was reversely screened against other anti-hyperlipidemia targets which existed in HepG2 cells and cynarin was unable to map with the pharmacophore of these targets, which indicated that the lipid-lowering effects of cynarin might be due to the inhibition of SQS. This study discovered cynarin is a potential SQS inhibitor from TCM, which could be further clinically explored for the treatment of hyperlipidemia.
Guasch, Laura; Sala, Esther; Ojeda, María José; Valls, Cristina; Bladé, Cinta; Mulero, Miquel; Blay, Mayte; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard
2012-01-01
Background Natural extracts play an important role in traditional medicines for the treatment of diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin could be, at least partially, explained by the inhibition of DPP-IV. Methodology/Principal Findings Using an initial set of 29,779 natural products that are annotated with their natural source and an experimentally validated virtual screening procedure previously developed in our lab (Guasch et al.; 2012) [1], we have predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that are known to have antidiabetic activity. Seven of these molecules are identical or similar to molecules with described antidiabetic activity (although their role as DPP-IV inhibitors has not been suggested as an explanation for their bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at least in part, for the antidiabetic activity of these extracts through their inhibitory effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 molecules from 6 different plants with no described antidiabetic activity but that share the same genus as plants with known antidiabetic properties. Moreover, none of the 18 molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a group of 2,342 known DPP-IV inhibitors. Conclusions/Significance Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts (12 of these plants have known antidiabetic properties, whereas, for the remaining 6, antidiabetic activity has been reported for other plant species from the same genus). Moreover, none of the 18 molecules exhibits chemical similarity with a large group of known DPP-IV inhibitors. PMID:23028712
Plant Protein Inhibitors of Enzymes: Their Role in Animal Nutrition and Plant Defence.
ERIC Educational Resources Information Center
Richardson, Michael
1981-01-01
Current information and research related to plant protein inhibitors of enzymes are reviewed, including potential uses of the inhibitors for medical treatment and for breeding plant varieties with greater resistance to insects. (DC)
Discovery – Targeted Treatments and mTOR Inhibitors
Thanks to discovering the anticancer effects of mTOR inhibitors, cancer treatment for pNet, a rare type of pancreatic cancer, were revolutionized. Through clinical trials, NCI continues to investigate the life-saving potential of mTOR inhibitors.
In silico identification of potential inhibitors targeting Streptococcus mutans sortase A
Luo, Hao; Liang, Dan-Feng; Bao, Min-Yue; Sun, Rong; Li, Yuan-Yuan; Li, Jian-Zong; Wang, Xin; Lu, Kai-Min; Bao, Jin-Ku
2017-01-01
Dental caries is one of the most common chronic diseases and is caused by acid fermentation of bacteria adhered to the teeth. Streptococcus mutans (S. mutans) utilizes sortase A (SrtA) to anchor surface proteins to the cell wall and forms a biofilm to facilitate its adhesion to the tooth surface. Some plant natural products, especially several flavonoids, are effective inhibitors of SrtA. However, given the limited number of inhibitors and the development of drug resistance, the discovery of new inhibitors is urgent. Here, the high-throughput virtual screening approach was performed to identify new potential inhibitors of S. mutans SrtA. Two libraries were used for screening, and nine compounds that had the lowest scores were chosen for further molecular dynamics simulation, binding free energy analysis and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties analysis. The results revealed that several similar compounds composed of benzofuran, thiadiazole and pyrrole, which exhibited good affinities and appropriate pharmacokinetic parameters, were potential inhibitors to impede the catalysis of SrtA. In addition, the carbonyl of these compounds can have a key role in the inhibition mechanism. These findings can provide a new strategy for microbial infection disease therapy. PMID:28358034
USDA-ARS?s Scientific Manuscript database
Here we report efforts to take advantage of previous knowledge on well characterized proteins that extensively accumulate in dehydration, for example those belonging to the LEA (late embryogenesis abundant) superfamily. ASR proteins, a subgroup exclusive to the plant kingdom (albeit absent in Arabid...
Update on neuromyelitis optica: natural history and management
Jindahra, Panitha; Plant, T
2012-01-01
Neuromyelitis optica or Devic disease is an inflammatory disorder of the central nervous system. It is caused by antibodies that attack aquaporin 4 water channels in the cell membrane of astrocytic foot processes at the blood brain barrier. It can involve the optic nerve, the spinal cord and beyond. Here we review its pathophysiology, clinical features, and therapy. PMID:28539779
Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system.
Zhao, G X; Dong, P P; Peng, R; Li, J; Zhang, D Y; Wang, J Y; Shen, X Z; Dong, L; Sun, J Y
2016-01-01
Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.
Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2004-05-01
The opening and closing of tulip petals was reproduced in the dark by changing the temperature from 5 degrees C to 20 degrees C for opening and 20 degrees C to 5 degrees C for closing. The opening process was accompanied by (3)H(2)O transport through the stem from the incubation medium to the petals. A Ca(2+)-channel blocker and a Ca(2+)-chelator inhibited petal opening and (3)H(2)O transport. Several proteins in the isolated plasma membrane fraction were phosphorylated in the presence of 25 micro M Ca(2+) at 20 degrees C. The 31-kDa protein that was phosphorylated, was suggested immunologically as the putative plasma membrane aquaporin (PM-AQP). This phosphorylated PM-AQP clearly reacted with the anti-phospho-Ser. In-gel assay revealed the presence of a 45-kDa Ca(2+)-dependent protein kinase in the isolated plasma membrane. Phosphorylation of the putative PM-AQP was thought to activate the water channel composed of PM-AQP. Dephosphorylation of the phosphorylated PM-AQP was also observed during petal closing at 5 degrees C, suggesting the inactivation of the water channel.
Immunolocalization of aquaporin CHIP in the guinea pig inner ear.
Stanković, K M; Adams, J C; Brown, D
1995-12-01
Aquaporin CHIP (AQP-CHIP) is a water channel protein previously identified in red blood cells and water transporting epithelia. The inner ear is an organ of hearing and balance whose normal function depends critically on maintenance of fluid homeostasis. In this study, AQP-CHIP, or a close homologue, was found in specific cells of the inner ear, as assessed by immunocytochemistry with the use of affinity-purified polyclonal antibodies against AQP-CHIP.AQP-CHIP was predominantly found in fibrocytes in close association with bone, including most of the cells lining the bony labyrinth and in fibrocytes lining the endolymphatic duct and sac. AQP-CHIP-positive cells not directly apposing bone include cells under the basilar membrane, some type III fibrocytes of the spiral ligament, fibrocytes of the spiral limbus, and the trabecular perilymphatic tissue extending from the membranous to the bony labyrinth. AQP-CHIP was also found in the periosteum of the middle ear and cranial bones, as well as in chondrocytes of the oval window and stapes. The distribution of AQP-CHIP in the inner ear suggests that AQP-CHIP may have special significance for maintenance of bone and the basilar membrane, and for function of the spiral ligament.
Uygunoğlu, Uğur; Pasha, Maarya; Saip, Sabahattin; Siva, Aksel
2015-01-01
Spinal cord involvement is not common, but can be seen in neuro-Behçet's syndrome (NBS). The major site of involvement is the cervical spinal cord with the myelitis-like inflammatory lesions continuing more than two segments, and extending to the brainstem. A 30-year-old male patient who has been followed with a diagnosis of Behçet's syndrome admitted to our neurology department clinically and radiologically suggestive of recurrent and extensive longitudinal myelitis. His anti-aquaporine antibody was negative. Because of insufficient effect of azathioprine, cyclophosphamide, and corticosteroids, infliximab was started. His clinical and radiological status is stationary for 3 years under infliximab treatment. Myelitis such as that occurring in our patient may have a similar presentation like neuromyelitis optica (NMO), which should therefore be included in differential diagnosis. Myelitis observed in both NMO and NBS shows spinal cord lesions longer than three or more vertebrae. Anti-aquaporine antibody must be evaluated in all patients presenting with longitudinal myelitis. Anti-tumor necrosis factor agent infliximab might be an alternative treatment in severe form of NBS such as myelitis. In our case, successful treatment of recurrent and extensive longitudinal transverse myelitis in NBS with infliximab was demonstrated.
Aquaporins in the antarctic midge, an extremophile that relies on dehydration for cold survival.
Goto, Shin G; Lee, Richard E; Denlinger, David L
2015-08-01
The terrestrial midge Belgica antarctica relies extensively on dehydration to survive the low temperatures and desiccation stress that prevail in its Antarctic habitat. The loss of body water is thus a critical adaptive mechanism employed at the onset of winter to prevent injury from internal ice formation; a rapid mechanism for rehydration is equally essential when summer returns and the larva resumes the brief active phase of its life. This important role for water movement suggests a critical role for aquaporins (AQPs). Recent completion of the genome project on this species revealed the presence of AQPs in B. antarctica representing the DRIP, PRIP, BIB, RPIP, and LHIP families. Treatment with mercuric chloride to block AQPs also blocks water loss, thereby decreasing cell survival at low temperatures. Antibodies directed against mammalian or Drosophila AQPs suggest a wide tissue distribution of AQPs in the midge and changes in protein abundance in response to dehydration, rehydration, and freezing. Thus far, functional studies have been completed only for PRIP1. It appears to be a water-specific AQP, but expression levels are not altered by dehydration or rehydration. Functional assays remain to be completed for the additional AQPs. © 2015 Marine Biological Laboratory.
Nakamura, Yoshitsugu; Nakajima, Hideto; Tani, Hiroki; Hosokawa, Takafumi; Ishida, Shimon; Kimura, Fumiharu; Kaneko, Kimihiko; Takahashi, Toshiyuki; Nakashima, Ichiro
2017-04-19
Anti-Myelin oligodendrocyte glycoprotein (MOG) antibodies are detected in various demyelinating diseases, such as pediatric acute disseminated encephalomyelitis (ADEM), recurrent optic neuritis, and aquaporin-4 antibody-seronegative neuromyelitis optica spectrum disorder. We present a patient who developed anti-MOG antibody-positive ADEM following infectious mononucleosis (IM) due to Epstein-Barr virus (EBV) infection. A 36-year-old healthy man developed paresthesia of bilateral lower extremities and urinary retention 8 days after the onset of IM due to primary EBV infection. The MRI revealed the lesions in the cervical spinal cord, the conus medullaris, and the internal capsule. An examination of the cerebrospinal fluid revealed pleocytosis. Cell-based immunoassays revealed positivity for anti-MOG antibody with a titer of 1:1024 and negativity for anti-aquaporin-4 antibody. His symptoms quickly improved after steroid pulse therapy followed by oral betamethasone. Anti-MOG antibody titer at the 6-month follow-up was negative. This case suggests that primary EBV infection would trigger anti-MOG antibody-positive ADEM. Adult ADEM patients can be positive for anti-MOG antibody, the titers of which correlate well with the neurological symptoms.
Procino, G; Barbieri, C; Carmosino, M; Rizzo, F; Valenti, G; Svelto, M
2010-02-01
Vasopressin causes the redistribution of the water channel aquaporin-2 (AQP2) from cytoplasmic storage vesicles to the apical plasma membrane of collecting duct principal cells, leading to urine concentration. The molecular mechanisms regulating the selective apical sorting of AQP2 are only partially uncovered. In this work, we investigate whether AQP2 sorting/trafficking is regulated by its association with membrane rafts. In both MCD4 cells and rat kidney, AQP2 preferentially associated with Lubrol WX-insoluble membranes regardless of its presence in the storage compartment or at the apical membrane. Block-and-release experiments indicate that 1) AQP2 associates with detergent-resistant membranes early in the biosynthetic pathway; 2) strong cholesterol depletion delays the exit of AQP2 from the trans-Golgi network. Interestingly, mild cholesterol depletion promoted a dramatic accumulation of AQP2 at the apical plasma membrane in MCD4 cells in the absence of forskolin stimulation. An internalization assay showed that AQP2 endocytosis was clearly reduced under this experimental condition. Taken together, these data suggest that association with membrane rafts may regulate both AQP2 apical sorting and endocytosis.
Calcium delivery and storage in plant leaves: exploring the link with water flow.
Gilliham, Matthew; Dayod, Maclin; Hocking, Bradleigh J; Xu, Bo; Conn, Simon J; Kaiser, Brent N; Leigh, Roger A; Tyerman, Stephen D
2011-04-01
Calcium (Ca) is a unique macronutrient with diverse but fundamental physiological roles in plant structure and signalling. In the majority of crops the largest proportion of long-distance calcium ion (Ca(2+)) transport through plant tissues has been demonstrated to follow apoplastic pathways, although this paradigm is being increasingly challenged. Similarly, under certain conditions, apoplastic pathways can dominate the proportion of water flow through plants. Therefore, tissue Ca supply is often found to be tightly linked to transpiration. Once Ca is deposited in vacuoles it is rarely redistributed, which results in highly transpiring organs amassing large concentrations of Ca ([Ca]). Meanwhile, the nutritional flow of Ca(2+) must be regulated so it does not interfere with signalling events. However, water flow through plants is itself regulated by Ca(2+), both in the apoplast via effects on cell wall structure and stomatal aperture, and within the symplast via Ca(2+)-mediated gating of aquaporins which regulates flow across membranes. In this review, an integrated model of water and Ca(2+) movement through plants is developed and how this affects [Ca] distribution and water flow within tissues is discussed, with particular emphasis on the role of aquaporins.
Wang, Fen; Ye, Bin
2016-09-01
Cyst echinococcosis caused by the matacestodal larvae of Echinococcus granulosus (Eg), is a chronic, worldwide, and severe zoonotic parasitosis. The treatment of cyst echinococcosis is still difficult since surgery cannot fit the needs of all patients, and drugs can lead to serious adverse events as well as resistance. The screen of target proteins interacted with new anti-hydatidosis drugs is urgently needed to meet the prevailing challenges. Here, we analyzed the sequences and structure properties, and constructed a phylogenetic tree by bioinformatics methods. The MIP family signature and Protein kinase C phosphorylation sites were predicted in all nine EgAQPs. α-helix and random coil were the main secondary structures of EgAQPs. The numbers of transmembrane regions were three to six, which indicated that EgAQPs contained multiple hydrophobic regions. A neighbor-joining tree indicated that EgAQPs were divided into two branches, seven EgAQPs formed a clade with AQP1 from human, a "strict" aquaporins, other two EgAQPs formed a clade with AQP9 from human, an aquaglyceroporins. Unfortunately, homology modeling of EgAQPs was aborted. These results provide a foundation for understanding and researches of the biological function of E. granulosus.
Sreedharan, Shareena; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R
2015-05-01
High soil salinity constitutes a major abiotic stress and an important limiting factor in cultivation of crop plants worldwide. Here, we report the identification and characterization of a aquaporin gene, MusaPIP2;6 which is involved in salt stress signaling in banana. MusaPIP2;6 was firstly identified based on comparative analysis of stressed and non-stressed banana tissue derived EST data sets and later overexpression in transgenic banana plants was performed to study its tangible functions in banana plants. The overexpression of MusaPIP2;6 in transgenic banana plants using constitutive or inducible promoter led to higher salt tolerance as compared to equivalent untransformed control plants. Cellular localization assay performed using transiently transformed onion peel cells indicated that MusaPIP2;6 protein tagged with green fluorescent protein was translocated to the plasma membrane. MusaPIP2;6-overexpressing banana plants displayed better photosynthetic efficiency and lower membrane damage under salt stress conditions. Our results suggest that MusaPIP2;6 is involved in salt stress signaling and tolerance in banana.
Aquaporin-4 immunoreactivity in Müller and amacrine cells of marine teleost fish retina.
Hombrebueno, José R; Lee, Eun-Jin; Martínez-Ruiz, Noemí; García-Alcázar, Alicia; Grzywacz, Norberto M; De Juan, Joaquín
2012-01-13
Aquaporins (AQPs) are membrane proteins that facilitate water transport across biological membranes and are essential for the proper function of neural tissue. Although AQPs have been extensively studied in mammalian retina, their presence in lower vertebrate retina is less frequently characterized. AQP4 expressed in mammalian and chick Müller cells plays a major part in maintaining retinal homeostasis. In this study, we examined the immunoreactivity of AQP4 in the adult retina of gilthead sea bream (Sparus aurata-teleost fish), during light and dark adaptation. The AQP4 expression was detected in Müller cell somas at the inner nuclear layer and in the end-feet processes near the vitreoretinal border. Moreover, AQP4 was also evident in cone photoreceptor cells and in a GABAergic subpopulation of amacrine cells (AQP4-ACs). Four different types of AQP4-ACs were characterized based on their morphology and dendrite stratification. Interestingly, a stronger AQP4 immunoreactivity was observed in the inner nuclear layer during dark adaptation, accompanied by a significant increment in AQP4-ACs cell size. Hence, AQP4 may play an important role in water distribution in the teleost fish retina. Copyright © 2011 Elsevier B.V. All rights reserved.
Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli
2017-02-01
We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p < 0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age-matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 expression around blood vessels. MMI-induced glymphatic dysfunction with delayed cerebrospinal fluid penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases Aquaporin-4 and induces glymphatic dysfunction which may play an important role in MMI-induced axonal/WM damage and cognitive deficits. Copyright © 2016 Elsevier Inc. All rights reserved.
Aquaporin 4 in Astrocytes is a Target for Therapy in Alzheimer's Disease.
Lan, Yu-Long; Chen, Jian-Jiao; Hu, Gang; Xu, Jun; Xiao, Ming; Li, Shao
2017-01-01
Current experimental evidence points to the conclusion that aquaporin 4 (AQP4), which is an important water-channel membrane protein found in the brain, could play major roles in various brain conditions pathologically including pathogenesis of Alzheimer's disease (AD). In this paper, we review how AQP4 and altered astrocyte functions interact in AD, and provide experimental evidence highlighting the importance of this topic for the future investigations. The interactions of AQP4 are as follows: (i) AQP4 could influence astrocytic calcium signaling and potassium homeostasis. (ii) AQP4 is linked with the removal of interstitial β-amyloid and glutamate transmission. (iii) Furthermore, AQP4 modulates the reactive astrogliosis and neuroinflammation mechanisms. (iv) To add to this, AQP4 could participate in the AD pathogenesis through affecting neurotrophic factor production. It is therefore possible to identify certain functional molecules that regulate astrocyte make-up and functions. However, making crucial efforts to develop specific agents or drugs that target AQP4 function and test their therapeutic efficiency will be a breakthrough for addressing AD in that AQP4 controls the various physiological as well as pathophysiological features of astrocytes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Aquaporins are multifunctional water and solute transporters highly divergent in living organisms.
Gomes, D; Agasse, A; Thiébaud, P; Delrot, S; Gerós, H; Chaumont, F
2009-06-01
Aquaporins (AQPs) are ubiquitous membrane proteins whose identification, pioneered by Peter Agre's team in the early nineties, provided a molecular basis for transmembrane water transport, which was previously thought to occur only by free diffusion. AQPs are members of the Major Intrinsic Protein (MIP) family and often referred to as water channels. In mammals and plants they are present in almost all organs and tissues and their function is mostly associated to water molecule movement. However, recent studies have pointed out a wider range of substrates for these proteins as well as complex regulation levels and pathways. Although their relative abundance in plants and mammals makes it difficult to investigate the role of a particular AQP, the use of knock-out and mutagenesis techniques is now bringing important clues regarding the direct implication of specific AQPs in animal pathologies or plant deficiencies. The present paper gives an overview about AQP structure, function and regulation in a broad range of living organisms. Emphasis will be given on plant AQPs where the high number and diversity of these transport proteins, together with some emerging aspects of their functionalities, make them behave more like multifunctional, highly adapted channels rather than simple water pores.
Relationship between Aging-Related Skin Dryness and Aquaporins
Ikarashi, Nobutomo; Kon, Risako; Kaneko, Miho; Mizukami, Nanaho; Kusunoki, Yoshiki; Sugiyama, Kiyoshi
2017-01-01
Skin function deteriorates with aging, and the dermal water content decreases. In this study, we have analyzed the mechanism of aging-related skin dryness focusing on aquaporins (AQPs), which are the water channels. Mice aged 3 and 20 months were designated as young and aged mice, respectively, to be used in the experiments. No differences were observed in transepidermal water loss between the young mice and aged mice. However, the dermal water content in aged mice was significantly lower than that in young mice, thus showing skin dryness. The expression of AQP1, AQP3, AQP4, AQP7, and AQP9 was observed in the skin. All the mRNA expression levels of these AQPs were significantly lower in aged mice. For AQP3, which was expressed dominantly in the skin, the protein level was lower in aged mice than in young mice. The results of the study showed that the expression level of AQPs in the skin decreased with aging, suggesting the possibility that this was one of the causes of skin dryness. New targets for the prevention and treatment of aging-related skin dryness are expected to be proposed when the substance that increases the expression of AQP3 is found. PMID:28718791
Dhanda, Saurabh; Sandhir, Rajat
2018-05-01
The present study was designed to investigate the mechanisms involved in blood-brain barrier (BBB) permeability in bile duct ligation (BDL) model of chronic hepatic encephalopathy (HE). Four weeks after BDL surgery, a significant increase was observed in serum bilirubin levels. Masson trichrome staining revealed severe hepatic fibrosis in the BDL rats. 99m Tc-mebrofenin retention was increased in the liver of BDL rats suggesting impaired hepatobiliary transport. An increase in permeability to sodium fluorescein, Evans blue, and fluorescein isothiocyanate (FITC)-dextran along with increase in water and electrolyte content was observed in brain regions of BDL rats suggesting disrupted BBB. Increased brain water content can be attributed to increase in aquaporin-4 mRNA and protein expression in BDL rats. Matrix metalloproteinase-9 (MMP-9) mRNA and protein expression was increased in brain regions of BDL rats. Additionally, mRNA and protein expression of tissue inhibitor of matrix metalloproteinases (TIMPs) was also increased in different regions of brain. A significant decrease in mRNA expression and protein levels of tight junction proteins, viz., occludin, claudin-5, and zona occluden-1 (ZO-1) was observed in different brain regions of BDL rats. VCAM-1 mRNA and protein expression was also found to be significantly upregulated in different brain regions of BDL animals. The findings from the study suggest that increased BBB permeability in HE involves activation of MMP-9 and loss of tight junction proteins.
THE URINE PROTEOME FOR RADIATION BIODOSIMETRY: EFFECT OF TOTAL BODY VERSUS LOCAL KIDNEY IRRADIATION
Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.
2009-01-01
Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. We used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10 Gy dose of X-rays. Both TBI and LKI altered the urinary protein profile within 24 hours with noticeable differences in Gene Ontology categories. Some proteins including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2 were detected only in the TBI group. Some other proteins including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Up/Uc ratio and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation. PMID:20065682
The urine proteome for radiation biodosimetry: effect of total body vs. local kidney irradiation.
Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E
2010-02-01
Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. The authors used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10-Gy dose of x-rays. Both TBI and LKI altered the urinary protein profile within 24 h with noticeable differences in gene ontology categories. Some proteins, including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2, were detected only in the TBI group. Some other proteins, including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Urine protein (Up) and creatinine (Uc) (Up/Uc) ratios and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation.
A new series of potent benzodiazepine gamma-secretase inhibitors.
Churcher, Ian; Ashton, Kate; Butcher, John W; Clarke, Earl E; Harrison, Timothy; Lewis, Huw D; Owens, Andrew P; Teall, Martin R; Williams, Susie; Wrigley, Jonathan D J
2003-01-20
A new series of benzodiazepine-containing gamma-secretase inhibitors with potential use in the treatment of Alzheimer's disease is disclosed. Structure-activity relationships of the pendant hydrocinnamate side-chain which led to the preparation of highly potent inhibitors are described.
Curigliano, Giuseppe
2018-05-15
In gynecological cancers tumor infiltrating lymphocytes and upregulation of immune-related gene signatures have been associated with a better prognosis. Knowledge of tumor immunogenicity and associated gene signatures suggests that the tumor immune landscape is a key determinant to define patient prognosis and potentially to predict response to immune-checkpoint inhibitors. The aim of this review is to give an overview of immune gene signatures across gynecology histological cancer types, defining their prognostic and potential predictive role. In the current review we will present data on these gene signatures, on immunohistochemical features and their potential importance to select patients potentially eligible to trials with immune-checkpoint inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.
DasGupta, Shirshendu; Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram
2009-05-15
Compounds belonging to the class of 2-imidazolidinones and tetrahydropyrimidin-2(1H)-ones were synthesized and evaluated for their TACE inhibitory activity. Most of the compounds showed very good TACE inhibitory activity. Docking study clearly indicates importance of the P1' group of the inhibitor for the TACE inhibitory activity. This work proves that these two classes of molecules could be used as potential leads for the development of TACE inhibitors.
Palm, Thomas; Bolognin, Silvia; Meiser, Johannes; Nickels, Sarah; Träger, Claudia; Meilenbrock, Ralf-Leslie; Brockhaus, Johannes; Schreitmüller, Miriam; Missler, Markus; Schwamborn, Jens Christian
2015-11-06
Induced pluripotent stem cell bear the potential to differentiate into any desired cell type and hold large promise for disease-in-a-dish cell-modeling approaches. With the latest advances in the field of reprogramming technology, the generation of patient-specific cells has become a standard technology. However, directed and homogenous differentiation of human pluripotent stem cells into desired specific cell types remains an experimental challenge. Here, we report the development of a novel hiPSCs-based protocol enabling the generation of expandable homogenous human neural stem cells (hNSCs) that can be maintained under self-renewing conditions over high passage numbers. Our newly generated hNSCs retained differentiation potential as evidenced by the reliable generation of mature astrocytes that display typical properties as glutamate up-take and expression of aquaporin-4. The hNSC-derived astrocytes showed high activity of pyruvate carboxylase as assessed by stable isotope assisted metabolic profiling. Moreover, using a cell transplantation approach, we showed that grafted hNSCs were not only able to survive but also to differentiate into astroglial in vivo. Engraftments of pluripotent stem cells derived from somatic cells carry an inherent tumor formation potential. Our results demonstrate that hNSCs with self-renewing and differentiation potential may provide a safer alternative strategy, with promising applications especially for neurodegenerative disorders.
Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology
Finberg, John P. M.; Rabey, Jose M.
2016-01-01
Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines (“cheese effect”). A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson's disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme's binding site structure should lead to future developments with these drugs. PMID:27803666
Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology.
Finberg, John P M; Rabey, Jose M
2016-01-01
Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines ("cheese effect"). A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson's disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme's binding site structure should lead to future developments with these drugs.
HDAC inhibitors and immunotherapy; a double edged sword?
Kroesen, Michiel; Armandari, Inna; Hoogerbrugge, Peter M.; Adema, Gosse J.
2014-01-01
Epigenetic modifications, like histone acetylation, are essential for regulating gene expression within cells. Cancer cells acquire pathological epigenetic modifications resulting in gene expression patterns that facilitate and sustain tumorigenesis. Epigenetic manipulation therefore is emerging as a novel targeted therapy for cancer. Histone Acetylases (HATs) and Histone Deacetylases (HDACs) regulate histone acetylation and hence gene expression. Histone deacetylase (HDAC) inhibitors are well known to affect cancer cell viability and biology and are already in use for the treatment of cancer patients. Immunotherapy can lead to clinical benefit in selected cancer patients, especially in patients with limited disease after tumor debulking. HDAC inhibitors can potentially synergize with immunotherapy by elimination of tumor cells. The direct effects of HDAC inhibitors on immune cell function, however, remain largely unexplored. Initial data have suggested HDAC inhibitors to be predominantly immunosuppressive, but more recent reports have challenged this view. In this review we will discuss the effects of HDAC inhibitors on tumor cells and different immune cell subsets, synergistic interactions and possible mechanisms. Finally, we will address future challenges and potential application of HDAC inhibitors in immunocombination therapy of cancer. PMID:25115382
MAO inhibitors and their wider applications: a patent review.
Carradori, Simone; Secci, Daniela; Petzer, Jacques P
2018-03-01
Monoamine oxidase (MAO) inhibitors, after the initial 'golden age', are currently used as third-line antidepressants (selective MAO-A inhibitors) or clinically enrolled as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). However, the research within this field is always increasing due to their pivotal role in modulating synaptic functions and monoamines metabolism. Areas covered: In this paper, MAO inhibitors (2015-2017) are disclosed ordering all the patents according to their chemical scaffold. Structure-activity relationships (SARs) are extrapolated for the most investigated chemotypes (coumarins, pyrazole/oxazepinones, (hetero)arylamides). 108 Compounds are divided into two main groups: newly synthesized molecules and naturally-occurring metabolites. Finally, new therapeutic options are outlined to ensure a more complete view on the potential of these inhibitors. Expert opinion: New proposed MAO inhibitors are endowed with a marked isoform selectivity, with innovative therapeutic potential toward other targets (gliomas, inflammation, muscle dystrophies, migraine, chronic pain, pseudobulbar affect), and with a promising ability to address multi-faceted pathologies such as Alzheimer's disease. The increasing number of patents is analyzed collecting data from 2002 to 2017.
Uba, Abdullahi Ibrahim; Yelekçi, Kemal
2017-10-23
Histone deacetylases (HDACs) have gained increased attention as targets for anticancer drug design and development. HDAC inhibitors have proven to be effective for reversing the malignant phenotype in HDAC-dependent cancer cases. However, lack of selectivity of the many HDAC inhibitors in clinical use and trials contributes to toxicities to healthy cells. It is believed that, the continued identification of isoform-selective inhibitors will eliminate these undesirable adverse effects - a task that remains a major challenge to HDAC inhibitor designs. Here, in an attempt to identify isoform-selective inhibitors, a large compound library containing 2,703,000 compounds retrieved from Otava database was screened against class I HDACs by exhaustive approach of structure-based virtual screening using rDOCK and Autodock Vina. A total of 41 compounds were found to show high-isoform selectivity and were further redocked into their respective targets using Autodock4. Thirty-six compounds showed remarkable isoform selectivity and passed drug-likeness and absorption, distribution, metabolism, elimination and toxicity prediction tests using ADMET Predictor™ and admetSAR. Furthermore, to study the stability of ligand binding modes, 10 ns-molecular dynamics (MD) simulations of the free HDAC isoforms and their complexes with respective best-ranked ligands were performed using nanoscale MD software. The inhibitors remained bound to their respective targets over time of the simulation and the overall potential energy, root-mean-square deviation, root-mean-square fluctuation profiles suggested that the detected compounds may be potential isoform-selective HDAC inhibitors or serve as promising scaffolds for further optimization towards the design of selective inhibitors for cancer therapy.
Enhancement of corrosion resistance of carbon steel by Dioscorea Hispida starch in NaCl
NASA Astrophysics Data System (ADS)
Zulhusni, M. D. M.; Othman, N. K.; Lazim, Azwan Mat
2015-09-01
Starch is a one of the most abundant natural product in the world and has the potential as corrosion inhibitor replacing harmful synthetic chemical based corrosion inhibitor. This research was aimed to examines the potential of starch extracted from local Malaysian wild yam (Dioscorea hispida), as corrosion inhibitor to carbon steel in NaCl media replicating sea water. By using gravimetric test and analysis, in which the carbon steel specimens were immersed in NaCl media for 24, 48 and 60 hours with the starch as corrosion inhibitor. the corrosion rate (mmpy) and inhibition efficiencies (%) was calculated. The results obtained showed decrease in corrosion rate as higher concentration of starch was employed. The inhibition efficiencies also shows an increasing manner up to 95.97 % as the concentration of the inhibitor increased.
Zhang, Jingzhu; Zhan, Zhipeng; Li, Xinhui; Xing, Aiping; Jiang, Congmin; Chen, Yanqiu; Shi, Wanying; An, Li
2017-01-01
The impairment of amyloid-β (Aβ) clearance in the brain plays a causative role in Alzheimer's disease (AD). Polarity distribution of aquaporin-4 (AQP4) is important to remove Aβ from brain. AQP4 polarity can be influenced by the ratio of two AQP4 isoforms M1 and M23 (AQP4-M1/M23), however, it is unknown whether the ratio of AQP4-M1/M23 changes in AD. Histone deacetylase 3 has been reported to be significantly increased in AD brain. Moreover, evidence indicated that microRNA-130a (miR-130a) possibly mediates the regulation of histone deacetylase 3 on AQP4-M1/M23 ratio by repressing the transcriptional activity of AQP4-M1 in AD. This study aimed to investigate whether intermittent fasting (IF), increasing the level of an endogenous histone deacetylases inhibitor β-hydroxybutyrate, restores AQP4 polarity via miR-130a mediated reduction of AQP4-M1/M23 ratio in protection against AD. The results showed that IF ameliorated cognitive dysfunction, prevented brain from Aβ deposition, and restored the AQP4 polarity in a mouse model of AD (APP/PS1 double-transgenic mice). Additionally, IF down-regulated the expression of AQP4-M1 and histone deacetylase 3, reduced AQP4-M1/M23 ratio, and increased miR-130a expression in the cerebral cortex of APP/PS1 mice. In vitro , β-hydroxybutyrate was found to down-regulate the expression of AQP4-M1 and histone deacetylase 3, reduce AQP4-M1/M23 ratio, and increase AQP4-M23 and miR-130a expression in 2 μM Aβ-treated U251 cells. Interestingly, on the contrary to the result observed in 2 μM Aβ-treated cells, AQP4 expression was obviously decreased in cells exposed to 10 μM Aβ. miR-130a mimic decreased the expression of AQP4-M1 and the ratio of AQP4-M1/M23, as well as silencing histone deacetylase 3 caused the up-regulation of AQP4 and miR-130a, and the reduction of AQP4-M1/M23 ratio in U251 cells. In conclusion, IF exhibits beneficial effects against AD. The mechanism may be associated with recovery of AQP4 polarity, resulting from the reduction of AQP4-M1/M23 ratio. Furthermore, β-hydroxybutyrate may partly mediate the effect of IF on the reduction of AQP4-M1/M23 ratio in AD, in which miR-130a and histone deacetylase 3 may be implicated.
Song, Dandan; Liu, Xuelei; Diao, Yugang; Sun, Yingjie; Gao, Guangjie; Zhang, Tiezheng; Chen, Keyan; Pei, Ling
2018-06-20
Myocardial ischemia, hypoxia and reperfusion injury are induced by aortic occlusion, cardiac arrest and resuscitation during cardiopulmonary bypass (CPB), which can severely affect cardiac function. The aim of the present study was to investigate the effects of hydrogen‑rich solution (HRS) and aquaporin (AQP) on cardiopulmonary bypass (CPB)‑induced myocardial injury, and determine the mechanism of the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway. Sprague Dawley rats were divided into a sham operation group, a CPB surgery group and a HRS group. A CPB model was established, and the hemodynamic parameters were determined at the termination of CPB. The myocardial tissues were observed by hematoxylin and eosin, and Masson staining. The levels of myocardial injury markers [adult cardiac troponin I (cTnI), lactate dehydrogenase (LDH), creatine kinase MB (CK‑MB) and brain natriuretic peptide (BNP)], inflammatory factors [interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α (TNF‑α)] and oxidative stress indicators [superoxide dismutase (SOD), malondialdehyde (MDA) and myeloperoxidase (MPO)] were determined by ELISA. Furthermore, H9C2 cells were treated with HRS following hypoxia/reoxygenation. Cell viability and cell apoptosis were investigated. The expression of apoptosis regulator Bcl‑2 (Bcl‑2), apoptosis regulator Bax (Bax), caspase 3, AQP‑1, AQP‑4, phosphorylated (p)‑Akt, heme oxygenase 1 (HO‑1) and nuclear factor erythroid 2‑related factor 2 (Nrf2) were investigated using western blotting and quantitative‑polymerase chain reaction of tissues and cells. Following CPB, myocardial cell arrangement was disordered, myocardial injury markers (cTnI, LDH, CK‑MB and BNP), inflammatory cytokines (IL‑1β, IL‑6 and TNF‑α) and MDA levels were significantly increased compared with the sham group; whereas the SOD levels were significantly downregulated following CPB compared with the sham group. HRS attenuated myocardial injury, reduced the expression levels of cTnI, LDH, CK‑MB, BNP, IL‑1β, IL‑6, TNF‑α, MDA and MPO, and increased SOD release. Levels of Bcl‑2, AQP‑1, AQP‑4, p‑Akt, HO‑1 and Nrf2 were significantly increased following HRS; whereas Bax and caspase‑3 expression levels were significantly reduced following CPB. HRS treatment significantly increased the viability of myocardial cells, reduced the rate of myocardial cell apoptosis and the release of MDA and LDH compared with the CPB group. A PI3K inhibitor (LY294002) was revealed to reverse the protective effect of HRS treatment. HRS was demonstrated to attenuate CPB‑induced myocardial injury, suppress AQP‑1 and AQP‑4 expression following CPB treatment and protect myocardial cells via the PI3K/Akt signaling pathway.
Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents
Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V
2013-01-01
Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date. PMID:23459471
Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.
Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V
2013-01-01
Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.
Lillico, Ryan; Stesco, Nicholas; Khorshid Amhad, Tina; Cortes, Claudia; Namaka, Mike P; Lakowski, Ted M
2016-05-01
Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.
Triazole inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase
Maurya, Sushil K.; Gollapalli, Deviprasad R.; Kirubakaran, Sivapriya; Zhang, Minjia; Johnson, Corey R.; Benjamin, Nicole N.; Hedstrom, Lizbeth; Cuny, Gregory D.
2010-01-01
Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. This protozoan parasite cannot salvage guanine or guanosine and therefore relies on inosine 5′-monophosphate dehydrogenase (IMPDH) for biosynthesis of guanine nucleotides and hence for survival. Since C. parvum IMPDH is highly divergent from the host counterpart, selective inhibitors could potentially be used to treat cryptosporidiosis with minimal effects on its mammalian host. A series of 1,2,3-triazole containing ether CpIMPDH inhibitors are described. A structure-activity relationship study revealed that a small alkyl group on the alpha-position of the ether was required with the (R)-enantiomer significantly more active than the (S)-enantiomer. Electron-withdrawing groups in the 3- and/or 4-positions of the pendent phenyl ring were best and conversion of the quinoline containing inhibitors to quinoline-N-oxides retained inhibitory activity both in the presence and absence of bovine serum albumin. The 1,2,3-triazole CpIMPDH inhibitors provide new tools for elucidating the role of IMPDH in C. parvum and may serve as potential therapeutics for treating cryptosporidiosis. PMID:19624136
Qiu, Hongyu; Novikov, Aleksandra; Vallon, Volker
2017-07-01
Inhibitors of the sodium-glucose cotransporter SGLT2 are a new class of antihyperglycemic drugs that have been approved for the treatment of type 2 diabetes mellitus (T2DM). These drugs inhibit glucose reabsorption in the proximal tubules of the kidney thereby enhancing glucosuria and lowering blood glucose levels. Additional consequences and benefits include a reduction in body weight, uric acid levels, and blood pressure. Moreover, SGLT2 inhibition can have protective effects on the kidney and cardiovascular system in patients with T2DM and high cardiovascular risk. However, a potential side effect that has been reported with SGLT2 inhibitors in patients with T2DM and particularly during off-label use in patients with type 1 diabetes is diabetic ketoacidosis. The US Food and Drug Administration recently warned that SGLT2 inhibitors may result in euglycemic ketoacidosis. Here, we review the basic metabolism of ketone bodies, the triggers of diabetic ketoacidosis, and potential mechanisms by which SGLT2 inhibitors may facilitate the development of ketosis or ketoacidosis. This provides the rationale for measures to lower the risk. We discuss the role of the kidney and potential links to renal gluconeogenesis and uric acid handling. Moreover, we outline potential beneficial effects of modestly elevated ketone body levels on organ function that may have therapeutic relevance for the observed beneficial effects of SGLT2 inhibitors on the kidney and cardiovascular system. Copyright © 2017 John Wiley & Sons, Ltd.
Discovery of isatin and 1H-indazol-3-ol derivatives as d-amino acid oxidase (DAAO) inhibitors.
Szilágyi, Bence; Kovács, Péter; Ferenczy, György G; Rácz, Anita; Németh, Krisztina; Visy, Júlia; Szabó, Pál; Ilas, Janez; Balogh, György T; Monostory, Katalin; Vincze, István; Tábi, Tamás; Szökő, Éva; Keserű, György M
2018-05-01
d-Amino acid oxidase (DAAO) is a potential target in the treatment of schizophrenia as its inhibition increases brain d-serine level and thus contributes to NMDA receptor activation. Inhibitors of DAAO were sought testing [6+5] type heterocycles and identified isatin derivatives as micromolar DAAO inhibitors. A pharmacophore and structure-activity relationship analysis of isatins and reported DAAO inhibitors led us to investigate 1H-indazol-3-ol derivatives and nanomolar inhibitors were identified. The series was further characterized by pK a and isothermal titration calorimetry measurements. Representative compounds exhibited beneficial properties in in vitro metabolic stability and PAMPA assays. 6-fluoro-1H-indazol-3-ol (37) significantly increased plasma d-serine level in an in vivo study on mice. These results show that the 1H-indazol-3-ol series represents a novel class of DAAO inhibitors with the potential to develop drug candidates. Copyright © 2018 Elsevier Ltd. All rights reserved.
SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy
Kawanami, Daiji; Matoba, Keiichiro; Takeda, Yusuke; Nagai, Yosuke; Akamine, Tomoyo; Yokota, Tamotsu; Sango, Kazunori; Utsunomiya, Kazunori
2017-01-01
Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) worldwide. Glycemic and blood pressure (BP) control are important but not sufficient to attenuate the incidence and progression of DN. Sodium–glucose cotransporter (SGLT) 2 inhibitors are a new class of glucose-lowering agent suggested to exert renoprotective effects in glucose lowering-dependent and independent fashions. Experimental studies have shown that SGLT2 inhibitors attenuate DN in animal models of both type 1 diabetes (T1D) and type 2 diabetes (T2D), indicating a potential renoprotective effect beyond glucose reduction. Renoprotection by SGLT2 inhibitors has been demonstrated in T2D patients with a high cardiovascular risk in randomized controlled trials (RCTs). These favorable effects of SGLT2 inhibitors are explained by several potential mechanisms, including the attenuation of glomerular hyperfiltration, inflammation and oxidative stress. In this review article, we discuss the renoprotective effects of SGLT2 inhibitors by integrating experimental findings with the available clinical data. PMID:28524098
SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy.
Kawanami, Daiji; Matoba, Keiichiro; Takeda, Yusuke; Nagai, Yosuke; Akamine, Tomoyo; Yokota, Tamotsu; Sango, Kazunori; Utsunomiya, Kazunori
2017-05-18
Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) worldwide. Glycemic and blood pressure (BP) control are important but not sufficient to attenuate the incidence and progression of DN. Sodium-glucose cotransporter (SGLT) 2 inhibitors are a new class of glucose-lowering agent suggested to exert renoprotective effects in glucose lowering-dependent and independent fashions. Experimental studies have shown that SGLT2 inhibitors attenuate DN in animal models of both type 1 diabetes (T1D) and type 2 diabetes (T2D), indicating a potential renoprotective effect beyond glucose reduction. Renoprotection by SGLT2 inhibitors has been demonstrated in T2D patients with a high cardiovascular risk in randomized controlled trials (RCTs). These favorable effects of SGLT2 inhibitors are explained by several potential mechanisms, including the attenuation of glomerular hyperfiltration, inflammation and oxidative stress. In this review article, we discuss the renoprotective effects of SGLT2 inhibitors by integrating experimental findings with the available clinical data.
Wu, Yan; Wu, Zheng-Rong; Chen, Peng; Yang-Li; Deng, Wan-Rong; Wang, You-Quan; Li, Hong-Yu
2015-04-01
In our searching for novel tyrosinase inhibitors from natural sources, (S)-N-trans-feruloyloctopamine isolated from garlic skin was found to be a potential mushroom tyrosinase inhibitor. Here, we examined the effects of the potential tyrosinase inhibitor in B16F10 cells on intracellular melanin contents, cytotoxicity, and the signaling mechanism involved in the expression of tyrosinase. The results showed the inhibitor displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin contents in a dose-dependent manner in the α-MSH-stimulated B16F10 cells. Real-time PCR and Western blot analysis showed that it inhibits melanogenesis signaling by down-regulates mRNA and protein expression levels of tyrosinase, which leads to a lower melanin contents. These results suggested that (S)-N-trans-feruloyloctopamine was an ideal tyrosinase inhibitor, and could be used in food and medical industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cheriyath, V; Kuhns, M A; Kalaycio, M E; Borden, E C
2011-03-15
Although inhibitors of histone deacetylase inhibitors (HDACis) in combination with genotoxins potentiate apoptosis, the role of proteases other than caspases in this process remained elusive. Therefore, we examined the potentiation of apoptosis and related mechanisms of HDACis and doxorubicin combination in a panel of myeloma cell lines and in 25 primary myelomas. At IC(50) concentrations, sodium butyrate (an HDACi) or doxorubicin alone caused little apoptosis. However, their combination potentiated apoptosis and synergistically reduced the viability of myeloma cells independent of p53 and caspase 3-7 activation. Potentiated apoptosis correlated with nuclear translocation of apoptosis-inducing factor, suggesting the induction of caspase 3- and 7-independent pathways. Consistent with this, butyrate and doxorubicin combination significantly increased the activity of cytoplasmic cathepsin B. Inhibition of cathepsin B either with a small-molecule inhibitor or downregulation with a siRNA reversed butyrate- and doxorubicin-potentiated apoptosis. Finally, ex vivo, clinically relevant concentrations of butyrate or SAHA (suberoylanilide hydroxamic acid, vorinostat, an HDACi in clinical testing) in combination with doxorubicin significantly (P<0.0001) reduced the survival of primary myeloma cells. Cathepsin B has a prominent function in mediating apoptosis potentiated by HDACi and doxorubicin combinations in myeloma. Our results support a molecular model of lysosomal-mitochondrial crosstalk in HDACi- and doxorubicin-potentiated apoptosis through the activation of cathepsin B.
Zhang, Xin; Nelson, Erik; Sattler, Martin; Liu, Feiyang; Nicolais, Maria; Zhang, Jianming; Mitsiades, Constantine; Smith, Robert W.; Stone, Richard; Galinsky, Ilene; Nonami, Atsushi; Griffin, James D.; Gray, Nathanael
2013-01-01
Objectives Tyrosine kinase inhibitor (TKI)-treated acute myeloid leukemia (AML) patients commonly show rapid and significant peripheral blood blast cell reduction, however a marginal decrease in bone marrow blasts. This suggests a protective environment and highlights the demand for a better understanding of stromal:leukemia cell communication. As a strategy to improve clinical efficacy, we searched for novel agents capable of potentiating the stroma-diminished effects of TKI treatment of mutant FLT3-expressing cells. Methods We designed a combinatorial high throughput drug screen using well-characterized kinase inhibitor-focused libraries to identify novel kinase inhibitors capable of overriding stromal-mediated resistance to TKIs, such as PKC412 and AC220. Standard liquid culture proliferation assays, cell cycle and apoptosis analysis, and immunoblotting were carried out with cell lines or primary AML to validate putative candidates from the screen and characterize the mechanism(s) underlying observed synergy. Results and Conclusions Our study led to the observation of synergy between selective Akt inhibitors and FLT3 inhibitors against mutant FLT3-positive AML in either the absence or presence of stroma. Our findings are consistent with evidence that Akt activation is characteristic of mutant FLT3-transformed cells, as well as observed residual Akt activity following FLT3 inhibitor treatment. In conclusion, our study highlights the potential importance of Akt as a signaling factor in leukemia survival, and supports the use of the co-culture chemical screen to identify agents able to potentiate TKI anti-leukemia activity in a cytoprotective microenvironment. PMID:23437141