Science.gov

Sample records for potential biocontrol agents

  1. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae)

    PubMed Central

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M.; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10–30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents. PMID:28144236

  2. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae).

    PubMed

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.

  3. Complete Genome Sequence of Ralstonia solanacearum FJAT-1458, a Potential Biocontrol Agent for Tomato Wilt

    PubMed Central

    Chen, Deju; Zhu, Yujing; Wang, Jieping; Chen, Zheng; Che, Jiamei; Zheng, Xuefang; Chen, Xiaoqiang

    2017-01-01

    ABSTRACT An avirulent strain of Ralstonia solanacearum FJAT-1458 was isolated from a living tomato. Here, we report the complete R. solanacearum FJAT-1458 genome sequence of 6,059,899 bp and 5,241 genes. This bacterial strain is a potential candidate as a biocontrol agent in the form of a plant vaccine for bacterial wilt. PMID:28385834

  4. Rhizobia: a potential biocontrol agent for soilborne fungal pathogens.

    PubMed

    Das, Krishnashis; Prasanna, Radha; Saxena, Anil Kumar

    2017-03-12

    Rhizobia are a group of organisms that are well known for their ability to colonize root surfaces and form symbiotic associations with legume plants. They not only play a major role in biological nitrogen fixation but also improve plant growth and reduce disease incidence in various crops. Rhizobia are known to control the growth of many soilborne plant pathogenic fungi belonging to different genera like Fusarium, Rhizoctonia, Sclerotium, and Macrophomina. Antagonistic activity of rhizobia is mainly attributed to production of antibiotics, hydrocyanic acid (HCN), mycolytic enzymes, and siderophore under iron limiting conditions. Rhizobia are also reported to induce systemic resistance and enhance expression of plant defense-related genes, which effectively immunize the plants against pathogens. Seed bacterization with appropriate rhizobial strain leads to elicitation and accumulation of phenolic compounds, isoflavonoid phytoalexins, and activation of enzymes like L-phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), peroxidase (POX), polyphenol oxidase (PPO), and others involved in phenylpropanoid and isoflavonoid pathways. Development of Rhizobium inoculants with dual attributes of nitrogen fixation and antagonism against phytopathogens can contribute to increased plant growth and productivity. This compilation aims to bring together the available information on the biocontrol facet of rhizobia and identify research gaps and effective strategies for future research in this area.

  5. The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Biocontrol Agent Against Wound Infections

    DTIC Science & Technology

    2014-09-01

    Associated With the Use of Predatory Bacteria as a Biocontrol Agent Against Wound Infections PRINCIPAL INVESTIGATOR: Daniel E Kadouri, Ph.D...W81XWH-12-2-0067 4. TITLE AND SUBTITLE The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Biocontrol Agent...serve as a novel therapeutic agent to control wound-related bacterial infections. In a previous study, we confirmed that predatory bacteria Bdellovibrio

  6. Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes.

    PubMed

    Odedina, Grace Fiyinfoluwa; Vongkamjan, Kitiya; Voravuthikunchai, Supayang Piyawan

    2015-09-07

    Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination.

  7. Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes

    PubMed Central

    Odedina, Grace Fiyinfoluwa; Vongkamjan, Kitiya; Voravuthikunchai, Supayang Piyawan

    2015-01-01

    Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination. PMID:26371033

  8. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina.

    PubMed

    Alaniz Zanon, María Silvina; Barros, Germán Gustavo; Chulze, Sofía Noemí

    2016-08-16

    Biological control is one of the most promising strategies for preventing aflatoxin contamination in peanuts at field stage. A population of 46 native Aspergillus flavus nonaflatoxin producers were analysed based on phenotypic, physiological and genetic characteristics. Thirty-three isolates were characterized as L strain morphotype, 3 isolates as S strain morphotype, and 10 isolates did not produce sclerotia. Only 11 of 46 non-aflatoxigenic isolates did not produce cyclopiazonic acid. The vegetative compatibility group (VCG) diversity index for the population was 0.37. For field trials we selected the non-aflatoxigenic A. flavus AR27, AR100G and AFCHG2 strains. The efficacy of single and mixed inocula as potential biocontrol agents in Northern Argentina was evaluated through a 2-year study (2014-2015). During the 2014 peanut growing season, most of the treatments reduced the incidence of aflatoxigenic strains in both soil and peanut kernel samples, and no aflatoxin was detected in kernels. During the 2015 growing season, there was a reduction of aflatoxigenic strains in kernel samples from the plots treated with the potential biocontrol agents. Reductions of aflatoxin contamination between 78.36% and 89.55% were observed in treated plots in comparison with the un-inoculated control plots. This study provides the first data on aflatoxin biocontrol based on competitive exclusion in the peanut growing region of Northern Argentina, and proposes bioproducts with potential use as biocontrol agents. Copyright © 2016. Published by Elsevier B.V.

  9. Identification of Aspergillus flavus isolates as potential biocontrol agents of aflatoxin contamination in crops.

    PubMed

    Rosada, L J; Sant'anna, J R; Franco, C C S; Esquissato, G N M; Santos, P A S R; Yajima, J P R S; Ferreira, F D; Machinski, M; Corrêa, B; Castro-Prado, M A A

    2013-06-01

    Aspergillus flavus, a haploid organism found worldwide in a variety of crops, including maize, cottonseed, almond, pistachio, and peanut, causes substantial and recurrent worldwide economic liabilities. This filamentous fungus produces aflatoxins (AFLs) B1 and B2, which are among the most carcinogenic compounds from nature, acutely hepatotoxic and immunosuppressive. Recent efforts to reduce AFL contamination in crops have focused on the use of nonaflatoxigenic A. flavus strains as biological control agents. Such agents are applied to soil to competitively exclude native AFL strains from crops and thereby reduce AFL contamination. Because the possibility of genetic recombination in A. flavus could influence the stability of biocontrol strains with the production of novel AFL phenotypes, this article assesses the diversity of vegetative compatibility reactions in isolates of A. flavus to identify heterokaryon self-incompatible (HSI) strains among nonaflatoxigenic isolates, which would be used as biological controls of AFL contamination in crops. Nitrate nonutilizing (nit) mutants were recovered from 25 A. flavus isolates, and based on vegetative complementation between nit mutants and on the microscopic examination of the number of hyphal fusions, five nonaflatoxigenic (6, 7, 9 to 11) and two nontoxigenic (8 and 12) isolates of A. flavus were phenotypically characterized as HSI. Because the number of hyphal fusions is reduced in HSI strains, impairing both heterokaryon formation and the genetic exchanges with aflatoxigenic strains, the HSI isolates characterized here, especially isolates 8 and 12, are potential agents for reducing AFL contamination in crops.

  10. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize.

    PubMed

    Atehnkeng, J; Ojiambo, P S; Ikotun, T; Sikora, R A; Cotty, P J; Bandyopadhyay, R

    2008-10-01

    Aflatoxin contamination resulting from maize infection by Aspergillus flavus is both an economic and a public health concern. Therefore, strategies for controlling aflatoxin contamination in maize are being investigated. The abilities of eleven naturally occurring atoxigenic isolates in Nigeria to reduce aflatoxin contamination in maize were evaluated in grain competition experiments and in field studies during the 2005 and 2006 growing seasons. Treatments consisted of inoculation of either grains in vials or ears at mid-silking stage in field plots, with the toxigenic isolate (La3228) or atoxigenic isolate alone and co-inoculation of each atoxigenic isolate and La3328. Aflatoxin B(1) + B(2) concentrations were significantly (p < 0.05) lower in the co-inoculation treatments compared with the treatment in which the aflatoxin-producing isolate La3228 was inoculated alone. Relative levels of aflatoxin B(1) + B(2) reduction ranged from 70.1% to 99.9%. Among the atoxigenics, two isolates from Lafia, La3279 and La3303, were most effective at reducing aflatoxin B(1) + B(2) concentrations in both laboratory and field trials. These two isolates have potential value as agents for the biocontrol of aflatoxin contamination in maize. Because these isolates are endemic to West Africa, they are both more likely than introduced isolates to be well adapted to West African environments and to meet regulatory concerns over their use throughout that region.

  11. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review.

    PubMed

    Hossain, Md Iqbal; Sadekuzzaman, Mohammad; Ha, Sang-Do

    2017-10-01

    Pathogenic microorganisms are a potential threat to the agriculture and food industries. Food contamination can be happened in the production levels at any point in the chain by pathogenic microorganisms. Conventional methods, such as those involving antibiotics, disinfectants, and physical methods, are commonly used as microbial control strategies. Owing to the limitations of these methods, such as emergence of resistance, low effectiveness, high cost, and detrimental effects on food, health, and the environment, many countries have adopted laws and regulations restricting their use. To overcome these problems, an environmentally friendly, cost-effective alternative approach is urgently needed. Probiotics are live microorganisms that offer health benefits to the host, when consumed in adequate amounts, by providing pathogen protective action and nutritional benefits. From a food microbiological point of view, to use probiotics in animals, there is a reduction of zoonotic pathogens in the gastro-intestinal tract (GIT) among animals which prevent the transmission of these pathogens through food. Therefore, probiotics have been proposed as an alternative antimicrobial means to protect against pathogenic microorganisms for better healthcare and food safety. In this review, we discuss probiotics, their selection criteria, mechanisms of action, and their prospects as alternative biocontrol agents, with special emphasis on the agriculture (livestock and aquaculture sectors), and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents

    PubMed Central

    Beneduzi, Anelise; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2012-01-01

    Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems. PMID:23411488

  13. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents.

    PubMed

    Beneduzi, Anelise; Ambrosini, Adriana; Passaglia, Luciane M P

    2012-12-01

    Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.

  14. Potential of Microbispora sp. V2 as biocontrol agent against Sclerotium rolfsii, the causative agent of southern blight of Zea mays L (Baby corn)--in vitro studies.

    PubMed

    Patil, N N; Waghmode, M S; Gaikwad, P S; Gajbhiye, M H; Gunjal, A B; Nawani, N N; Kapadnis, B P

    2014-11-01

    The study was undertaken with the aim of exploring novel and beneficial agro activities of rare actinomycetes like Microbispora sp. V2. The antagonistic activity of Microbispora sp. V2 was evaluated as a biocontrol agents against Sclerotium rolfsii, a soil-borne fungal plant pathogen. The methodology performed for evaluation of biocontrol agent was in vitro evaluation assay which comprised of three tests viz., cellophane overlay technique, seed germination test and Thiram (fungicide) tolerance of Microbispora sp. V2. The isolate was found to inhibit the fungal pathogen Sclerotium rolfsii to 91.43% in cellophane assay. In seed germination assay, Microbispora sp. V2 treated seeds resulted in 25.75% increased germination efficiency, as compared to seeds infected by Sclerotium rolfsii. The isolate Microbispora sp. V2 could tolerate 1000 microg mL(-1) of Thiram (fungicide). The in vitro assay studies proved that Microbispora sp. V2 can be used as antifungal antagonist and thus posses' great potential as biocontrol agent against southern blight caused by Sclerotium rolfsii in Zea mays L (Baby corn) which causes large economical losses.

  15. Bacillus methylotrophicus Strain NKG-1, Isolated from Changbai Mountain, China, Has Potential Applications as a Biofertilizer or Biocontrol Agent

    PubMed Central

    Ge, Beibei; Liu, Binghua; Nwet, Thinn Thinn; Zhao, Wenjun; Shi, Liming; Zhang, Kecheng

    2016-01-01

    Chemical pesticides are widely used in agriculture, which endangers both environmental health and food safety. Biocontrol is an environmentally-friendly and cost-effective green technique in environmental protection and agricultural production; it generally uses selected bioresources, including beneficial microorganisms. We isolated a novel bacterial strain (NKG-1) from the rare dormant volcanic soils of Changbai Mountain in China’s Jilin Province. The strain was identified as Bacillus methylotrophicus using morphological, biochemical, physiological, and phylogenetic 16S rDNA sequencing data. This strain was able to suppress mycelial growth and conidial germination of numerous plant pathogenic fungi on solid media. A greenhouse experiment showed that application of NKG-1 fermentation broth prior to inoculation of Botrytis cinerea, the cause of gray tomato mold, inhibited growth of the mold by 60%. Furthermore, application of a 100× dilution of NKG-1 fermentation broth to tomato seedlings yielded a significant increase in seedling fresh weight (27.4%), seedling length (12.5%), and root length (57.7%) compared to the control. When the same dosage was applied in the field, we observed increases in tomato plant height (14.7%), stem diameter (12.7%), crown width (16.3%), and maximum fruit diameter (11.5%). These results suggest that NKG-1 has potential commercial application as a biofertilizer or biocontrol agent. PMID:27832162

  16. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases.

    PubMed

    Calvo, H; Marco, P; Blanco, D; Oria, R; Venturini, M E

    2017-05-01

    The biocontrol potential of the Bacillus amyloliquefaciens strain BUZ-14 was tested against the main postharvest diseases of orange, apple, grape and stone fruit. After characterizing the temperature and pH growth curves of strain BUZ-14, its in vitro antifungal activity was determined against Botrytis cinerea, Monilinia fructicola, M. laxa, Penicillium digitatum, P. expansum and P. italicum. Subsequently, in vivo activity was tested against these pathogens by treating fruit with cells, endospores and cell-free supernatants. The in vitro results showed that BUZ-14 inhibited the growth of all the pathogens tested corresponding to the least susceptible species, P. italicum, and the most susceptible, M. laxa. In vivo tests corroborated these results as most of the treatments decreased the incidence of brown rot in stone fruit from 100% to 0%, establishing 10(7) CFU mL(-1) as the minimum inhibitory concentration. For the Penicillium species a preventive treatment inhibited P. digitatum and P. italicum growth in oranges and reduced P. expansum incidence in apples from 100% to 20%. Finally, it has been demonstrated that BUZ-14 was able to survive and to control brown rot in peaches stored at cool temperatures, making it a very suitable biocontrol agent for application during the post-harvest storage and marketing of horticultural products.

  17. Bacillus methylotrophicus Strain NKG-1, Isolated from Changbai Mountain, China, Has Potential Applications as a Biofertilizer or Biocontrol Agent.

    PubMed

    Ge, Beibei; Liu, Binghua; Nwet, Thinn Thinn; Zhao, Wenjun; Shi, Liming; Zhang, Kecheng

    2016-01-01

    Chemical pesticides are widely used in agriculture, which endangers both environmental health and food safety. Biocontrol is an environmentally-friendly and cost-effective green technique in environmental protection and agricultural production; it generally uses selected bioresources, including beneficial microorganisms. We isolated a novel bacterial strain (NKG-1) from the rare dormant volcanic soils of Changbai Mountain in China's Jilin Province. The strain was identified as Bacillus methylotrophicus using morphological, biochemical, physiological, and phylogenetic 16S rDNA sequencing data. This strain was able to suppress mycelial growth and conidial germination of numerous plant pathogenic fungi on solid media. A greenhouse experiment showed that application of NKG-1 fermentation broth prior to inoculation of Botrytis cinerea, the cause of gray tomato mold, inhibited growth of the mold by 60%. Furthermore, application of a 100× dilution of NKG-1 fermentation broth to tomato seedlings yielded a significant increase in seedling fresh weight (27.4%), seedling length (12.5%), and root length (57.7%) compared to the control. When the same dosage was applied in the field, we observed increases in tomato plant height (14.7%), stem diameter (12.7%), crown width (16.3%), and maximum fruit diameter (11.5%). These results suggest that NKG-1 has potential commercial application as a biofertilizer or biocontrol agent.

  18. Characterization of a new isolate of Pseudomonas fluorescens strain Psd as a potential biocontrol agent.

    PubMed

    Upadhyay, A; Srivastava, S

    2008-08-01

    Evaluation of a new isolate of Pseudomonas fluorescens for its biocontrol properties. Strain Psd identified as Ps. fluorescens, produces secondary metabolites that are toxic to some plant-pathogenic fungi. Inhibition of fungal growth of Fusarium oxysporum and Verticillium dahliae in the presence of bacterial culture filtrate provided the first clue to its biocontrol properties. In order to determine the basis for antifungal properties, antibiotics were extracted and analysed by TLC. Both pyrrolnitrin and phenazines could be detected in the culture of Psd. Presence of response regulator gene gacA of the two component regulatory system (GacS/GacA) was established by PCR amplification and sequencing. Sequence comparison of gacA justified the taxonomic position of this strain among the known members of Pseudomonadaceae. Synthesis of other compounds like toxic lipodepsipeptide, siderophores, and HCN was also confirmed by appropriate biochemical tests. Characterization of strain Psd by various biochemical/plate tests followed by chromatographic identification of antibiotics, demonstrates its multifunctional biocontrol property. Response regulator gene gacA provides an additional genetic marker for the phylogenetic studies. Ps. fluorescens strain Psd with its multifunctional biocontrol property can be used to bioprotect the crop plants from phytopathogens.

  19. Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora.

    PubMed

    Paternoster, Thomas; Défago, Geneviève; Duffy, Brion; Gessler, Cesare; Pertot, Ilaria

    2010-12-01

    This work describes a medium-based screening method for selecting microbial biocontrol agents against Erwinia amylovora based on the degradation of a specific growth factor. Erwinia amylovora, the causal agent of the devastating fire blight disease, requires nicotinic acid or nicotinamide as an essential growth factor. Potential biocontrol agents are either selected for antimicrobial production in plate or directly on immature pears or apple blossoms. In this work, we have attempted to streamline the selection of a new potential biocontrol agent with a lower risk of non-target effects by isolation based on the ability to degrade nicotinic acid in vitro, using therefore few plant materials. A total of 735 bacteria and 1237 yeast were isolated from apple blossoms and pre-screened for nicotinic acid-degradation. Pseudomonas rhizosphaerae strain JAN was able to degrade both nicotinic acid and nicotinamide. Mutants deficient in this ability were constructed. JAN, but not the mutants, controlled E. amylovora on pear slices. On detached apple blossoms, JAN colonized apple hypanthia and strongly suppressed E. amylovora growth. Under greenhouse conditions, JAN was more effective in controlling blossom blight than P. fluorescens A506, a commercial biocontrol agent of fire blight unable to degrade nicotinic acid and nicotinamide.

  20. A case of ecological specialization in ladybirds: Iberorhyzobius rondensis (Coleoptera: Coccinellidae), potential biocontrol agent of Matsucoccus feytaudi (Hemiptera: Matsucoccidae).

    PubMed

    Tavares, C; Jactel, H; van Halder, I; Mendel, Z; Branco, M

    2014-06-01

    Specialization is an important attribute of a biological control agent. The maritime pine bast scale, Matsucoccus feytaudi Ducasse (Hemiptera Matsucoccidae), is an invasive species in Southeast France and the North of Italy. Iberorhyzobius rondensis Eizaguirre (Coleoptera: Coccinellidae), is a recently described ladybird species. Both adults and larvae are predaceous, feeding on egg masses of M. feytaudi, and are strongly attracted to M. feytaudi's sex pheromone. To evaluate the potential of I. rondensis as a biocontrol agent of the scale, we studied its niche breadth and prey range with emphasis on pine forests and hemipterans as tested prey. In this study, I. rondensis was found to achieve complete development only when fed on M. feytaudi egg masses (92.9% survival) and an artificial prey: eggs of Ephestia kuehniella Zeller (27.6% survival). From the 2nd instar onwards, complete development could be achieved using other prey species, although larvae had significantly higher mortality and slower development. In choice tests, M. feytaudi was the preferred prey. Surveys of the ladybird populations in the Iberian Peninsula revealed that it was found exclusively on Pinus pinaster Aiton, the sole host of M. feytaudi. The unusual specialization of I. rondensis, among other predaceous ladybirds, makes it an appropriate candidate for classical biological control of M. feytaudi.

  1. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae.

    PubMed

    Zhao, Pengchao; Quan, Chunshan; Wang, Yingguo; Wang, Jianhua; Fan, Shengdi

    2014-05-01

    In recent years, Bacillus species have received considerable attention for the biological control of many fungal diseases. In this study, Bacillus amyloliquefaciens Q-426 was tested for its potential use against a variety of plant pathogens. Our screen for genes involved in the biosynthesis of antifungal agents revealed that the fen and bmy gene clusters are present in the Q-426 genome. Lipopeptides such as bacillomycin D, fengycin A, and fengycin B were purified from the bacterial culture broth and subsequently identified by ESI-mass spectrometry. The minimal inhibitory concentration of fengycin A against Fusarium oxysporum f. sp. spinaciae W.C. Snyder & H.N. Hansen O-27 was determined to be 31.25 μg ml(-1) . However, exposure of fungal cells to 50 μg ml(-1) of fengycin A did not allow permeation of fluorescein diacetate into the cytoplasm through the cell membrane. Moreover, leakage of intracellular inorganic cations, nucleic acid and protein were also not detected, indicating that the fungal cell membrane is not the primary target of action for fengycin A. Profound morphological changes were observed in the F. oxysporum strain and spore germination was completely inhibited, suggesting that 50 μg ml(-1) of fengycin A acts, at least, as a fungistatic agent.

  2. Entomopathogenic marine actinomycetes as potential and low-cost biocontrol agents against bloodsucking arthropods.

    PubMed

    Loganathan, Karthik; Kumar, Gaurav; Kirthi, Arivarasan Vishnu; Rao, Kokati Venkata Bhaskara; Rahuman, Abdul Abdul

    2013-11-01

    A novel approach to control strategies for integrated blood-feeding parasite management is in high demand, including the use of biological control agents. The present study aims to determine the efficacy of optimized crude extract of actinomycetes strain LK1 as biological control agent against the fourth-instar larvae of Anopheles stephensi and Culex tritaeniorhynchus (Diptera: Culicidae) and adults of Haemaphysalis bispinosa, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae), and Hippobosca maculata (Diptera: Hippoboscidae). Antiparasitic activity was optimized using the Plackett-Burman method, and the design was developed using the software Design-Expert version 8.0.7.1. The production of the optimized crude actinomycetes LK1 strain extract was performed using response surface methodology to optimize the process parameters of protease inhibitor activity of marine actinobacteria for the independent variables like pH, temperature, glucose, casein, and NaCl at two levels (-1 and +1). The potential actinomycetes strain was identified as Saccharomonas spp., and the metamodeling surface simulation procedure was followed. It was studied using a computer-generated experimental design, automatic control of simulation experiments, and sequential optimization of the metamodels fitted to a simulation response surface function. The central composite design (CCD) used for the analysis of treatment showed that a second-order polynomial regression model was in good agreement with the experimental results at R (2) = 0.9829 (p < 0.05). The optimized values of the variables for antioxidant production were pH 6.00, glucose 1.3%, casein 0.09%, temperature 31.23 °C, and NaCl 0.10%. The LK1 strain-optimized crude extract was purified using reversed-phase high-pressure liquid chromatography, and the isolated protease inhibitor showed antiparasitic activity. The antiparasitic activity of optimized crude extract of LK1 was tested against larvae of A. stephensi (LC₅₀ = 31.82 ppm

  3. Streptomyces globosus UAE1, a Potential Effective Biocontrol Agent for Black Scorch Disease in Date Palm Plantations

    PubMed Central

    Saeed, Esam E.; Sham, Arjun; Salmin, Zeinab; Abdelmowla, Yasmeen; Iratni, Rabah; El-Tarabily, Khaled; AbuQamar, Synan

    2017-01-01

    Many fungal diseases affect date palm causing considerable losses in date production worldwide. We found that the fungicide Cidely® Top inhibited the mycelial growth of the soil-borne pathogenic fungus Thielaviopsis punctulata, the causal agent of black scorch disease of date palm, both in vitro and in vivo. Because the use of biocontrol agents (BCAs) can minimize the impact of pathogen control on economic and environmental concerns related to chemical control, we aimed at testing local actinomycete strains isolated from the rhizosphere soil of healthy date palm cultivated in the United Arab Emirates (UAE) against T. punctulata. The selected isolate can thus be used as a potential agent for integrated disease management programs. In general, the BCA showed antagonism in vitro and in greenhouse experiments against this pathogen. The most promising actinomycete isolate screened showed the highest efficacy against the black scorch disease when applied before or at the same time of inoculation with T. punctulata, compared with BCA or fungicide application after inoculation. The nucleotide sequence and phylogenetic analyses using the 16S ribosomal RNA gene with other Streptomyces spp. in addition to morphological and cultural characteristics revealed that the isolated UAE strain belongs to Streptomyces globosus UAE1. The antagonistic activity of S. globosus against T. punctulata, was associated with the production by this strain of diffusible antifungal metabolites i.e., metabolites that can inhibit mycelial growth of the pathogen. This was evident in the responses of the vegetative growth of pure cultures of the pathogen when exposed to the culture filtrates of the BCA. Altogether, the pathogenicity tests, disease severity indices and mode of action tests confirmed that the BCA was not only capable of suppressing black scorch disease symptoms, but also could prevent the spread of the pathogen, as a potential practical method to improve disease management in the palm

  4. Streptomyces globosus UAE1, a Potential Effective Biocontrol Agent for Black Scorch Disease in Date Palm Plantations.

    PubMed

    Saeed, Esam E; Sham, Arjun; Salmin, Zeinab; Abdelmowla, Yasmeen; Iratni, Rabah; El-Tarabily, Khaled; AbuQamar, Synan

    2017-01-01

    Many fungal diseases affect date palm causing considerable losses in date production worldwide. We found that the fungicide Cidely(®) Top inhibited the mycelial growth of the soil-borne pathogenic fungus Thielaviopsis punctulata, the causal agent of black scorch disease of date palm, both in vitro and in vivo. Because the use of biocontrol agents (BCAs) can minimize the impact of pathogen control on economic and environmental concerns related to chemical control, we aimed at testing local actinomycete strains isolated from the rhizosphere soil of healthy date palm cultivated in the United Arab Emirates (UAE) against T. punctulata. The selected isolate can thus be used as a potential agent for integrated disease management programs. In general, the BCA showed antagonism in vitro and in greenhouse experiments against this pathogen. The most promising actinomycete isolate screened showed the highest efficacy against the black scorch disease when applied before or at the same time of inoculation with T. punctulata, compared with BCA or fungicide application after inoculation. The nucleotide sequence and phylogenetic analyses using the 16S ribosomal RNA gene with other Streptomyces spp. in addition to morphological and cultural characteristics revealed that the isolated UAE strain belongs to Streptomyces globosus UAE1. The antagonistic activity of S. globosus against T. punctulata, was associated with the production by this strain of diffusible antifungal metabolites i.e., metabolites that can inhibit mycelial growth of the pathogen. This was evident in the responses of the vegetative growth of pure cultures of the pathogen when exposed to the culture filtrates of the BCA. Altogether, the pathogenicity tests, disease severity indices and mode of action tests confirmed that the BCA was not only capable of suppressing black scorch disease symptoms, but also could prevent the spread of the pathogen, as a potential practical method to improve disease management in the palm

  5. Isolation and Characterization of phiLLS, a Novel Phage with Potential Biocontrol Agent against Multidrug-Resistant Escherichia coli

    PubMed Central

    Amarillas, Luis; Rubí-Rangel, Lucia; Chaidez, Cristobal; González-Robles, Arturo; Lightbourn-Rojas, Luis; León-Félix, Josefina

    2017-01-01

    Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac-type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content) encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative agent for the

  6. Draft Genome Sequence of a Natural Root Isolate, Bacillus subtilis UD1022, a Potential Plant Growth-Promoting Biocontrol Agent

    PubMed Central

    Bishnoi, Usha

    2015-01-01

    Bacillus subtilis, which belongs to the phylum Firmicutes, is the most widely studied Gram-positive model organism. It is found in a wide variety of environments and is particularly abundant in soils and in the gastrointestinal tracts of ruminants and humans. Here, we present the complete genome sequence of the newly described B. subtilis strain UD1022. The UD1022 genome consists of a 4.025-Mbp chromosome, and other major findings from our analysis will provide insights into the genomic basis of it being a plant growth-promoting rhizobacterium (PGPR) with biocontrol potential. PMID:26159522

  7. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum.

    PubMed

    Díaz Herrera, Silvana; Grossi, Cecilia; Zawoznik, Myriam; Groppa, María Daniela

    2016-01-01

    The role of endophytic communities of seeds is still poorly characterised. The purpose of this work was to survey the presence of bacterial endophytes in the seeds of a commercial wheat cultivar widely sown in Argentina and to look for plant growth promotion features and biocontrol abilities against Fusarium graminearum among them. Six isolates were obtained from wheat seeds following a culture-dependent protocol. Four isolates were assignated to Paenibacillus genus according to their 16S rRNA sequencing. The only gammaproteobacteria isolated, presumably an Enterobactereaceae of Pantoea genus, was particularly active as IAA and siderophore producer, and also solubilised phosphate and was the only one that grew on N-free medium. Several of these isolates demonstrated ability to restrain F. graminearum growth on dual culture and in a bioassay using barley and wheat kernels. An outstanding ability to form biofilm on an inert surface was corroborated for those Paenibacillus which displayed greater biocontrol of F. graminearum, and the inoculation with one of these isolates in combination with the Pantoea isolate resulted in greater chlorophyll content in barley seedlings. Our results show a significant ecological potential of some components of the wheat seed endophytic community. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Inhibition coefficient and molecular diversity of multi stress tolerant Trichoderma as potential biocontrol agent against Sclerotium rolfsii Sacc.

    PubMed

    Hirpara, Darshna G; Gajera, H P; Hirapara, Jaydeep G; Golakiya, B A

    2017-08-31

    Trichoderma is one of the most exploited biocontrol agent for the management of plant diseases. Twenty strains of Trichoderma (six of T. harzianum, four of T. viride, three of T. virens, three of T. koningii, each one of T. hamatum, T. reesei, T. parceramosum and Trichoderma spp.) subjected to in vitro antagonism up to 12days after inoculation against Sclerotium rolfsii Sacc. causing stem rot in groundnut. A new concept was developed to determine inhibition coefficient representing pathogen biology and biocontrol related biophysical variables. Results explained differential inhibition coefficient of test pathogen by Trichoderma antagonists. The inhibition coefficient of test pathogen was examined highest (91.13%) by T. virens NBAII Tvs12 followed by T. virens MTCC 794 (89.33%) and T. koningii MTCC 796 (62.39%). Microscopic study confirmed biocontrol mechanism as mycoparasitism for Tvs12 and antibiosis for T. koningii MTCC 796. The sclerotial biogenesis of test pathogen was elevated during weak antagonism and diminished in interactions with strong antagonists. The inhibition coefficient of S. rolfsii was significantly negatively correlated with sclerotia formation and lipid peroxidation during the antagonism. Trichoderma strains were screened for fungicides (carbendazim and tebuconazole, thiram and mancozeb) and abiotic stress (drought and salt) tolerance. Results indicated that T. koningii MTCC 796 efficiently grew better than the other strains with maximum radial growth under adverse conditions. The genetic variability among the Trichoderma was determined using 34 gene specific markers which amplified 146 alleles. The SSR similarities explained substantial diversity (15 to 87%) across Trichoderma strains and pathogen S. rolfsii. Principal coordinates analysis (PCA) were comparable to the cluster analysis and first three most informative PC components explained 64.45% of the total variation. In PCA, potent antagonists appear to be distinct from other strains. Five

  9. Methods for the Evaluation of the Bioactivity and Biocontrol Potential of Species of Trichoderma.

    PubMed

    Steyaert, Johanna; Hicks, Emily; Kandula, Janaki; Kandula, Diwakar; Alizadeh, Hossein; Braithwaite, Mark; Yardley, Jessica; Mendoza-Mendoza, Artemio

    2016-01-01

    Members of the genus Trichoderma comprise the majority of commercial fungal biocontrol agents of plant diseases. As such, there is a wealth of information available on the analysis of their biocontrol potential and the mechanisms behind their superior abilities. This chapter aims to summarize the most common methods utilized within a Trichoderma biocontrol program for assessing the biological properties of individual strains.

  10. Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose.

    PubMed

    Patiño-Vera, M; Jiménez, B; Balderas, K; Ortiz, M; Allende, R; Carrillo, A; Galindo, E

    2005-01-01

    To develop a pilot-plant fermentation process for the production of the yeast Rhodotorula minuta, to be used as a biocontrol agent of mango anthracnose, using a low-cost culture medium. To develop a stable liquid formulation that preserve high viability of the yeast stored at 4 degrees C. Keeping constant the volumetric power input, a fermentation process was scaled-up from shake flasks to a 100 l bioreactor. Preharvest applications of the yeast resulted in postharvest anthracnose severity equal or lower than that observed with a chemical fungicide. Glycerol was added to the formulation as water activity reducer and xanthan gum as a viscosity-enhancing agent. Yeast initial concentration of 10(10) CFU ml(-1) resulted in 4-5 orders of magnitude decrease after 1 month of storage at 4 degrees C, whereas when it was formulated at 10(9) CFU ml(-1), the decrease was of two orders of magnitude in 6 months. The fermentation process was successfully scaled-up using a low-cost culture medium. Postharvest anthracnose severity could be considerably reduced using this yeast. Formulating the yeast at 10(9) CFU ml(-1) and adding glycerol (20%) and xanthan (5 g l(-1)) avoided both contamination and yeast sedimentation and it was able to preserve up to 10(7) CFU ml(-1) after 6 months at 4 degrees C. The yeast R. minuta is reported as a novel antagonistic micro-organism against the pathogen Colletotrichum gloeosporioides. Pilot plant production of this yeast allowed us to conduct field tests in commercial orchards during three harvest seasons. Yeast suspensions applied to mango trees reduced the fruit anthracnose severity in levels similar or better than chemical fungicides.

  11. Wonder world of phages: potential biocontrol agents safeguarding biosphere and health of animals and humans- current scenario and perspectives.

    PubMed

    Tiwari, Ruchi; Chakraborty, Sandip; Dhama, Kuldeep; Wani, Mohd Yaqoob; Kumar, Amit; Kapoor, Sanjay

    2014-02-01

    Darwin's theory of natural selection and concept of survival of fittest of Wallace is a universal truth which derives the force of life among all live entities on this biosphere. Issues regarding food safety along with increased drug resistance and emerging zoonotic infections have proved that multidisciplinary efforts are in demand for human and animal welfare. This has led to development of various novel therapies the list of which remains incomplete without mentioning about phages. Homologous and non-homologous recombination along with point mutation and addition of new genes play role in their evolution. The rapid emergence of the antibiotic resistant strains of bacteria have created keen interest in finding necessary alternatives to check microbial infections and there comes the importance of phages. Phages kill the bacteria either by lysis or by releasing holins. Bacteriophages; the viruses that live on bacteria are nowadays considered as the best biocontrol agents. They are used as replacers of antibiotics; food industry promoter; guard of aquatic life as well as of plants; pre-slaughter treatment agents; Generally Recognized As Safe (GRAS) food additives; Typing agent of bacteria; active tool of super bug therapy; in post harvest crops and food and during post infection and also to combat intracellular pathogens viz. Mycobacteria and Mycoplasma. Cyanophages/phycophages are particularly useful in controlling blooms produced by various genera of algae and cyanobacteria. By performing centrifugation studies and based on electron microscopy certain virus like particles containing ds RNA have been confirmed as mycophages. They are well proven as threat to pathogenic fungi (both fungal hyphae and yeast). Those that infect yeasts are called zymophages. Virophages have exquisite specificity for their viral host, hence can extensively be used for genetic studies and can also act as evolutionary link. After the discovery of very first virophage till now, a total of 3

  12. Recent taxonomy changes and their impact on biocontrol agents

    USDA-ARS?s Scientific Manuscript database

    The revolution in DNA sequencing technology has led to and improved understanding of genetics and taxonomy of biocontrol agents. Our lab recently reported the genomes of some important Bacillus bacterial biocontrol agents, which in turn resulted in a change of taxonomy for these commercially importa...

  13. Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt.

    PubMed

    Deketelaere, Silke; Tyvaert, Lien; França, Soraya C; Höfte, Monica

    2017-01-01

    The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be

  14. Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt

    PubMed Central

    Deketelaere, Silke; Tyvaert, Lien; França, Soraya C.; Höfte, Monica

    2017-01-01

    The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be

  15. Potential of osmoadaptation for improving Pantoea agglomerans E325 as biocontrol agent for fire blight of apple and pear

    USDA-ARS?s Scientific Manuscript database

    Pantoea agglomerans biocontrol strain E325 is the active ingredient in a commercial product for fire blight, a destructive disease of apple and pear initiated by Erwinia amylovora in flowers. Osmoadaptation, involving the combination of saline osmotic stress and osmolyte amendment to growth media, w...

  16. Potential Alternatives to Classical Biocontrol: Using Native Agents in Invaded Habitats and Genetically Engineered Sterile Cultivars for Invasive Plant Management

    Treesearch

    ShiLi Miao; Yi Li; Qinfeng Guo; Hua Yu; JiangQing Ding; et al.

    2012-01-01

    The development of an effective approach to control and eradication of invasive species has become a major challenge to scientists, managers, and society. Biocontrol has been widely utilized to control exotic plants in the past few decades with some degree of sucess. However, there have been an increasing number of controversies pertaining to this approach, largely...

  17. Predacious bacteria, Bdellovibrio with potential for biocontrol.

    PubMed

    Markelova, Natalia Y

    2010-11-01

    Bacteria of the genus of Bdellovibrio are highly motile Gram-negative predators of other Gram-negative bacteria causing lysis of their prey. Here we report results of studies on the interactions of Bdellovibrio with species of Alcaligenes, Campylobacter, Erwinia, Escherichia, Helicobacter, Pseudomonas, Legionella, and Shigella in agar lower, liquid media and cells attached to a surface. Helicobacter pylori was studied employing both actively growing and viable but nonculturable (VBNC) cells. The majority of the bacterial strains tested were found to be susceptible to Bdellovibrio. A significant observation was that Bdellovibrio attacked both actively growing and VBNC H. pylori, that phenomenon has never been reported. The results indicate that bdellovibrios have potential as biocontrol agents.

  18. Responses of Yeast Biocontrol Agents to Environmental Stress

    PubMed Central

    Sui, Yuan; Wisniewski, Michael; Droby, Samir

    2015-01-01

    Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, all of which are affected by environmental factors such as temperature, pH, and UV light as well as osmotic and oxidative stresses. Additionally, during the production process, biocontrol agents encounter various severe abiotic stresses that also impact their viability. Therefore, understanding the ecological fitness of the potential yeast biocontrol agents and developing strategies to enhance their stress tolerance are essential to their efficacy and commercial application. The current review provides an overview of the responses of antagonistic yeast species to various environmental stresses, the methods that can be used to improve stress tolerance and efficacy, and the related mechanisms associated with improved stress tolerance. PMID:25710368

  19. An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum).

    PubMed

    Cao, Peng; Liu, Chongxi; Sun, Pengyu; Fu, Xuepeng; Wang, Shaoxian; Wu, Fengzhi; Wang, Xiangjing

    2016-12-01

    Plant endophytes play important roles in biocontrol of plant diseases. Actinomycetes are used for biocontrol of fungal diseases caused by Verticillium dahliae. Many studies have focused on the endophytic actinomycetes isolated from the roots of healthy plants, but few on those from the roots of diseased plants. In the present research, actinomycetes were isolated from the roots of diseased and healthy tomato plants, respectively. The results showed that, in total, 86 endophytic actinomycetes were isolated for screening of their antimicrobial activities, 8 of which showed antagonism to V. dahliae in vitro. Among the 8 antagonistic strains, 5 (out of 36) were from the roots of diseased plants, with inhibition diameter zones ranging from 11.2 to 18.2 mm, whereas 3 (out of 50) were from the roots of healthy plants, with inhibition diameter zones ranging from 11.5 to 15.5 mm. Endophytic strain DHV3-2 was isolated from the root of a diseased plant and demonstrated a potent effect against V. dahliae and other pathogenic fungi by showing the largest inhibition diameter zones among all the eight antagonistic strains. Thus, strain DHV3-2 was chosen to investigate its biological control efficacies in vivo. Further study showed that the disease incidence and disease severity indices of tomato Verticillium wilt decreased significantly (P < 0.05). We also found that the plant shoot fresh weight and height increased greatly (P < 0.05) upon treatment with strain DHV3-2 compared to the plants uninoculated in greenhouse conditions. Root colonization showed that strain DHV3-2 had the higher root-colonizing capacity in the roots of infected plants compared with the roots of healthy plants. This isolate was identified as Streptomyces sp. based on morphological characteristics and 16S rRNA gene analysis. In conclusion, the roots of diseased tomato plants are a potential reservoir of biological control actinomycetes, and Streptomyces sp. strain DHV3-2 is a potential biocontrol

  20. Bacteriophages as biocontrol agents in food.

    PubMed

    Hudson, J A; Billington, C; Carey-Smith, G; Greening, G

    2005-02-01

    Bacteriophages possess attributes that appear to be attractive to those searching for novel ways to control foodborne pathogens and spoilage organisms. These phages have a history of safe use, can be highly host specific, and replicate in the presence of a host. Campylobacter, Salmonella, and Listeria monocytogenes and various spoilage organisms have responded to phage control on some foods. However, the use of phages as biocontrol agents is complicated by factors such as an apparent requirement for a threshold level of host before replication can proceed and by suboptimal performance, at best, at temperatures beneath the optimum for the host. This review is a summary of the information on these issues and includes brief descriptions of alternative phage-based strategies for control of foodborne pathogens.

  1. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease.

    PubMed

    Cai, Xun-Chao; Liu, Chang-Hong; Wang, Bao-Tong; Xue, Ya-Rong

    2017-03-01

    Bacillus velezensis CC09, which was isolated from healthy leaves of Cinnamomum camphora and previously identified as Bacillus amyloliquefaciens CC09, shows great potential as a new biocontrol agent, in control of many phytopathogenic diseases. To extend our understanding of the potential antifungal capacities, we did a whole genome analysis of strain CC09. Result shows that strain CC09 has a relatively large genome size (4.17Mb) with an average GC content of 46.1%, and 4021 predicted genes. Thirteen secondary metabolites encoding clusters have been identified within the genome of B. velezensis CC09 using genome mining technique. Data of comparative genomic analysis indicated that 3 of the clusters are conserved by all strains of B. velezensis, B. amyloliquefaciens and B. subtilis 168, 9 by B. velezensis and B. amyloliquefaciens, and 2 by all strains of B. velezensis. Another 2 clusters encoding NRPS (Non-Ribosomal Peptide Synthetases) and NRPS-TransATPKS (NRPS and trans-Acyl Transferase Polyketide Synthetases) respectively are observed only in 15 B. velezensis strains, which might lead to the synthesis of novel bioactive compounds and could be explored as antimicrobial agents in the future. These clusters endow B. velezensis CC09 with strong and broad antimicrobial activities, for example, in control of wheat powdery mildew disease. Moreover, our data further confirmed the taxonomy of strain CC09 is a member of B. velezensis rather than a strain of B. amyloliquefaciens based on core genome sequence analysis using phylogenomic approach.

  2. Exploring the life cycles of three South American rusts that have potential as biocontrol agents of the stipoid grass Nassella neesiana in Australasia.

    PubMed

    Anderson, Freda E; Díaz, Marina L; Barton, Jane; Flemmer, Andrea C; Hansen, Paula V; McLaren, David A

    2011-01-01

    Three rusts, Puccinia nassellae, Uromyces pencanus, and Puccinia graminella, are being studied as potential biological control agents for Nassella neesiana (Chilean needle grass) in Australia and New Zealand. An understanding of the life cycle of a pathogen is desirable before its release as a biocontrol agent is considered, to enable the assessment of the risks involved in such a release. Field observations and experiments have been carried out to elucidate the life cycles of these three pathogens. Puccinia nassellae cycles as urediniospores and produces dormant teliospores. Dormancy of teliospores has been broken through manipulation in the laboratory, but resulting basidiospores have failed to infect N. neesiana plants under the conditions tested. Uromyces pencanus cycles as urediniospores and its telia appear to have lost the capacity to produce basidiospores. Aecia have been reported for this rust in the literature. However, evidence is provided that these aecia in fact belong to the life cycle of P. graminella. Puccinia graminella produces only aecia and telia. The aeciospores have been shown to be repetitive (aecidioid urediniospores). Teliospores germinate directly without a dormant phase, but resulting basidiospores failed to infect N. neesiana plants under the conditions tested. The role of teliospores in the life cycle of all three rusts remains unknown. Although the autoecious nature of their life cycles has not been proven experimentally, neither is there any evidence that they are heteroecious. Practical and theoretical implications of these findings are discussed. Copyright © 2011 The British Mycological Society. All rights reserved.

  3. Modulation of Human Immune Response by Fungal Biocontrol Agents

    PubMed Central

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A.; Vannier-Santos, Marcos A.; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses. PMID:28217107

  4. Modulation of Human Immune Response by Fungal Biocontrol Agents.

    PubMed

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A; Vannier-Santos, Marcos A; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses.

  5. Draft Genome Sequences of Pseudomonas fluorescens Strains SF39a and SF4c, Potential Plant Growth Promotion and Biocontrol Agents

    PubMed Central

    Ly, Lindsey K.; Underwood, Grace E.; McCully, Lucy M.; Bitzer, Adam S.; Godino, Agustina; Bucci, Vanni; Brigham, Christopher J.; Príncipe, Analía; Fischer, Sonia E.

    2015-01-01

    Pseudomonas fluorescens SF4c and SF39a, strains isolated from wheat rhizosphere, have potential applications in plant growth promotion and biocontrol of fungal diseases of crop plants. We report the draft genome sequences of SF4c and SF39a with estimated sizes of 6.5 Mb and 5.9 Mb, respectively. PMID:25814613

  6. Biocontrol of fouling pests: Effect of diversity, identity and density of control agents.

    PubMed

    Atalah, Javier; Newcombe, Emma M; Zaiko, Anastasija

    2016-04-01

    Augmentative biocontrol, using native natural enemies, has been suggested as a promising tool to control marine biofouling pests on artificial structures. However, there are still important knowledge gaps to be addressed before biocontrol can be considered as a management tool. In a field experiment on floating marine structures we examined intra- and interspecific consumer interactions among biocontrol agents on different surface orientations. We tested the effect of identity, density and diversity of three invertebrates (the 11-arm seastar Coscinasterias muricata, the sea urchin Evechinus chloroticus and the gastropod Cook's turban Cookia sulcata) to reduce established biofouling and to prevent fouling growth on defouled surfaces. High densities of biocontrol agents were not more effective at fouling control (cover and biomass) than low densities. Nor did multi-species treatments function more effectively than mono-specific ones. However, biocontrol agent identity was important, with the 11-arm seastar and Cook's turban being the most effective at fouling reduction and prevention, respectively. Surface orientation had a strong effect on the effectiveness of control agents, with the best results obtained on vertical compared to diagonal and underside surfaces. This study confirmed the potential of biocontrol as a management tool for marine pest, indicating that identity is more important than richness and density of control agents. It also highlighted the limitations of this approach on diagonal and underside surfaces, where control agents have limited retention ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Biocontrol: Fungi as Nematode Control Agents

    PubMed Central

    Mankau, R.

    1980-01-01

    The fungal antagonists of nematodes consist of a great variety of organisms belonging to widely divergent orders and families of fungi. They include the nematode-trapping fungi, endoparasitic fungi, parasites of nematode eggs and cysts, and fungi which produce metabolites toxic to nematodes. The diversity, adaptations, and distribution of nematode-destroying fungi and taxonomic problems encountered in their study are reviewed. The importance of nemato-phagous fungi in soil biology, with special emphasis on their relationship to populations of plant-parasitic nematodes, is considered. While predacious fungi have long been investigated as possible biocontrol agents and have often exhibited spectacular results in vitro, their performance in field studies has generated little enthusiasm among nematologists. To date no species has demonstrated control of any plant pest to a degree achieved with nematicides, but recent studies have provided a much clearer concept of possibilities and problems in the applied use of fungal antagonists. The discovery of new species, which appear to control certain pests effectively under specific conditions, holds out some promise that fungi may be utilized as alternatives to chemical control after a more thorough and expanded study of their biology and ecology. PMID:19300699

  8. Potential of Epicoccum purpurascens Strain 5615 AUMC as a Biocontrol Agent of Pythium irregulare Root Rot in Three Leguminous Plants

    PubMed Central

    Koutb, Mostafa

    2010-01-01

    Epicoccum purpurascens stain 5615 AUMC was investigated for its biocontrol activity against root rot disease caused by Pythium irregulare. E. purpurascens greenhouse pathogenicity tests using three leguminous plants indicated that the fungus was nonpathogenic under the test conditions. The germination rate of the three species of legume seeds treated with a E. purpurascens homogenate increased significantly compared with the seeds infested with P. irregulare. No root rot symptoms were observed on seeds treated with E. purpurascens, and seedlings appeared more vigorous when compared with the non-treated control. A significant increase in seedling growth parameters (seedling length and fresh and dry weights) was observed in seedlings treated with E. purpurascens compared to pathogen-treated seedlings. Pre-treating the seeds with the bioagent fungus was more efficient for protecting seeds against the root rot disease caused by P. irregulare than waiting for disease dispersal before intervention. To determine whether E. purpurascens produced known anti-fungal compounds, an acetone extract of the fungus was analyzed by gas chromatography mass spectrometry. The extract revealed a high percentage of the cinnamic acid derivative (trimethylsiloxy) cinnamic acid methyl ester. The E. purpurascens isolate grew more rapidly than the P. irregulare pathogen in a dual culture on potato dextrose agar nutrient medium, although the two fungi grew similarly when cultured separately. This result may indicate antagonism via antibiosis or competition. PMID:23956668

  9. Influence of container design on predation rate of potential biocontrol agent, Toxorhynchites splendens (Diptera: Culicidae) against dengue vector.

    PubMed

    Mohamad, N; Zuharah, W F

    2014-03-01

    Toxorhynchites splendens larvae are a natural predator of dengue vector mosquito larvae, Aedes albopictus. This study was carried out to evaluate the predation rate of Tx. splendens third instar larvae on Ae. albopictus larvae in 24 h. Each predator was offered prey at a density between 10 to 50 individuals. Predation rate of Tx. splendens were also tested with two manipulated factors; various types of container and different water volumes. The experiment was evaluated in man-made containers (tin cans, plastic drinking glasses and rubber tires) and natural container (bamboo stumps) which were filled with different water volumes (full, half full, 1/4 full, and 1/8 full). The prey density and the characteristics of the container were found as significant factors which influence the predation rate of Tx. splendens. The predator consumed significantly more prey at higher prey densities (40 and 50 preys) compared to the lowest density (10 preys) (F=3.935, df=4, p=0.008). The results showed significantly higher consumption in horizontal shaped container of rubber tire than in vertical shape of bamboo stumps (F=3.100, df=3, p=0.029). However, the water volume had no significant effect on predation rate of Tx. splendens (F=1.736, df=3, p=0.162). We generally suggest that Tx. splendens is best to be released in discarded tires or any other containers with horizontal shape design with wide opening since Tx. splendens can become more effective in searching prey in this type of container design. This predator is also a suitable biocontrol candidates to be introduced either in wet and dry seasons in Malaysia.

  10. Vorticella sp: Prospective Mosquito Biocontrol Agent

    PubMed Central

    Patil, Chandrashekhar Devidas; Narkhede, Chandrakant Prakash; Suryawanshi, Rahul Khushal; Patil, Satish Vitthal

    2016-01-01

    Background: Considering the disadvantages of chemical insecticides, we aimed to evaluate Vorticella parasites for control of mosquito larvae of Anopheles stephensi and Aedes aegypti at different larval stages. Methods: Vorticella sp infected mosquito larvae were crushed in the 0.85% saline and homogenized well to get Vorticella in suspension. The effects of Vorticella sp infections on larval development were investigated by inoculating protozoan on different larval instars of An. stephensi and Ae. aegypti and observed under light microscope. Lethal time of the Vorticella infected larvae at different stages was calculated. Results: First and 2nd larval instars of both An. stephensi and Ae. aegypti did not show signs of infection by Vorticella sp., whereas 3rd instars of An. stephensi showed more Vorticella infection than those of Ae. aegypti. However, 4th larval instars of both mosquitoes were heavily infected with Vorticella parasite which was responsible for sluggish movements of larvae and eventually death. Moreover, parasites (Vorticella spp) were responsible for more than 90% reduction in adult emergence for both infected An. stephensi and Ae. aegypti. Conclusion: This study provides insights for mosquito larvicidal action of surface parasite Vorticella on different larval stages of An. stephensi and Ae. Aegypti. It could be suggested as a potential candidate in mosquito biocontrol programs. PMID:28032113

  11. Phyllostictines A-D, Oxazatricycloalkenones Produced by Phyllosticta cirsii, A Potential Mycoherbicide for Cirsium arvense Biocontrol

    USDA-ARS?s Scientific Manuscript database

    Phyllosticta cirsii, a fungal pathogen isolated from Cirsium arvense and proposed as biocontrol agent of this noxious perennial weed, produces in liquid cultures different phytotoxic metabolites with potential herbicidal activity. Four new oxazatricycloalkenones, named phyllostictines A-D, were isol...

  12. Draft Genome Sequences of Pseudomonas fluorescens Strains SF39a and SF4c, Potential Plant Growth Promotion and Biocontrol Agents.

    PubMed

    Ly, Lindsey K; Underwood, Grace E; McCully, Lucy M; Bitzer, Adam S; Godino, Agustina; Bucci, Vanni; Brigham, Christopher J; Príncipe, Analía; Fischer, Sonia E; Silby, Mark W

    2015-03-26

    Pseudomonas fluorescens SF4c and SF39a, strains isolated from wheat rhizosphere, have potential applications in plant growth promotion and biocontrol of fungal diseases of crop plants. We report the draft genome sequences of SF4c and SF39a with estimated sizes of 6.5 Mb and 5.9 Mb, respectively. Copyright © 2015 Ly et al.

  13. Characterization and Genomic Study of the Novel Bacteriophage HY01 Infecting Both Escherichia coli O157:H7 and Shigella flexneri: Potential as a Biocontrol Agent in Food.

    PubMed

    Lee, Heyn; Ku, Hye-Jin; Lee, Dong-Hoon; Kim, You-Tae; Shin, Hakdong; Ryu, Sangryeol; Lee, Ju-Hoon

    2016-01-01

    Escherichia coli O157:H7 and Shigella flexneri are well-known food-borne pathogens causing severe food poisoning at low infectious doses. Bacteriophages have been approved for food applications by the US Food and Drug Administration (FDA) and have been suggested as natural food preservatives to control specific food-borne pathogens. To develop a novel natural food preservative against E. coli O157:H7 and S. flexneri, a new bacteriophage needs to be isolated and characterized. Bacteriophage HY01 infecting both E. coli O157:H7 and S. flexneri was isolated from a swine fecal sample. HY01 belongs to the family Myoviridae and is stable under various temperature and pH conditions. One-step growth curve analysis showed relatively short eclipse and latent periods as well as large burst size. The 167-kb genome sequence of HY01 was sequenced, and a comparative genome analysis with T4 for non-O157:H7 E. coli suggests that the receptor recognition protein of HY01 plays an important role in determination of host recognition and specificity. In addition, food applications using edible cabbage were conducted with two E. coli O157:H7 strains (ATCC 43890 and ATCC 43895), showing that treatment with HY01 inhibits these clinical and food isolates with >2 log reductions in bacterial load during the first 2 h of incubation. HY01 can inhibit both E. coli O157:H7 and S. flexneri with large burst size and stability under stress conditions. The ability of HY01 to infect both E. coli O157:H7 and S. flexneri may be derived from the presence of two different host specificity-associated tail genes in the genome. Food applications revealed the specific ability of HY01 to inhibit both pathogens in food, suggesting its potential as a novel biocontrol agent or novel natural food preservative against E. coli O157:H7 and potentially S. flexneri.

  14. The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Biocontrol Agent Against Wound Infections

    DTIC Science & Technology

    2013-10-01

    14. ABSTRACT Disease-causing microorganisms that have become resistant to drug therapy are an increasing cause of burn , wound , blast and...Introduction Disease-causing microorganisms that have become resistant to drug therapy are an increasing cause of burn , wound , blast and bone...resistant to antimicrobial agents than their planktonic counterparts. Thus, the high doses of antimicrobials required to rid wounds and medical

  15. Molecular analysis of faecal samples from birds to identify potential crop pests and useful biocontrol agents in natural areas.

    PubMed

    King, R A; Symondson, W O C; Thomas, R J

    2015-06-01

    Wild habitats adjoining farmland are potentially valuable sources of natural enemies, but also of pests. Here we tested the utility of birds as 'sampling devices', to identify the diversity of prey available to predators and particularly to screen for pests and natural enemies using natural ecosystems as refugia. Here we used PCR to amplify prey DNA from three sympatric songbirds foraging on small invertebrates in Phragmites reedbed ecosystems, namely the Reed Warbler (Acrocephalus scirpaceus), Sedge Warbler (Acrocephalus schoenobaenus) and Cetti's Warbler (Cettia cetti). A recently described general invertebrate primer pair was used for the first time to analyse diets. Amplicons were cloned and sequenced, then identified by reference to the Barcoding of Life Database and to our own sequences obtained from fresh invertebrates. Forty-five distinct prey DNA sequences were obtained from 11 faecal samples, of which 39 could be identified to species or genus. Targeting three warbler species ensured that species-specific differences in prey choice broadened the range of prey taken. Amongst the prey found in reedbeds were major pests (including the tomato moth Lacanobia oleracea) as well as many potentially valuable natural enemies including aphidophagous hoverflies and braconid wasps. Given the mobility of birds, this approach provides a practical way of sampling a whole habitat at once, providing growers with information on possible invasion by locally resident pests and the colonization potential of natural enemies from local natural habitats.

  16. Characterization and Genomic Study of the Novel Bacteriophage HY01 Infecting Both Escherichia coli O157:H7 and Shigella flexneri: Potential as a Biocontrol Agent in Food

    PubMed Central

    Lee, Heyn; Ku, Hye-Jin; Lee, Dong-Hoon; Kim, You-Tae; Shin, Hakdong; Ryu, Sangryeol; Lee, Ju-Hoon

    2016-01-01

    Background Escherichia coli O157:H7 and Shigella flexneri are well-known food-borne pathogens causing severe food poisoning at low infectious doses. Bacteriophages have been approved for food applications by the US Food and Drug Administration (FDA) and have been suggested as natural food preservatives to control specific food-borne pathogens. To develop a novel natural food preservative against E. coli O157:H7 and S. flexneri, a new bacteriophage needs to be isolated and characterized. Methodology/Principal Findings Bacteriophage HY01 infecting both E. coli O157:H7 and S. flexneri was isolated from a swine fecal sample. HY01 belongs to the family Myoviridae and is stable under various temperature and pH conditions. One-step growth curve analysis showed relatively short eclipse and latent periods as well as large burst size. The 167-kb genome sequence of HY01 was sequenced, and a comparative genome analysis with T4 for non-O157:H7 E. coli suggests that the receptor recognition protein of HY01 plays an important role in determination of host recognition and specificity. In addition, food applications using edible cabbage were conducted with two E. coli O157:H7 strains (ATCC 43890 and ATCC 43895), showing that treatment with HY01 inhibits these clinical and food isolates with >2 log reductions in bacterial load during the first 2 h of incubation. Conclusions/Significance HY01 can inhibit both E. coli O157:H7 and S. flexneri with large burst size and stability under stress conditions. The ability of HY01 to infect both E. coli O157:H7 and S. flexneri may be derived from the presence of two different host specificity-associated tail genes in the genome. Food applications revealed the specific ability of HY01 to inhibit both pathogens in food, suggesting its potential as a novel biocontrol agent or novel natural food preservative against E. coli O157:H7 and potentially S. flexneri. PMID:28036349

  17. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum.

    PubMed

    Wang, Lu-Yao; Xie, Yue-Shen; Cui, Yuan-Yu; Xu, Jianjun; He, Wei; Chen, Huai-Gu; Guo, Jian-Hua

    2015-08-01

    Fusarium root-rot and fusarium head blight are plant diseases caused by Fusarium sp. in different growth periods of wheat, bring heavy losses to crop production in China. This research is aiming to screen biocontrol agents conjunctively for controlling these two diseases at the same time, as well as evaluate our previous BCAs (Biological Control Agents) screening strategies in more complex situation, considering biocontrol is well concerned as an environmental-friendly plant disease controlling method. Totally 966 bacterial isolates were screened from different parts of wheat tissues, of which potential biocontrol values were detected according to their abilities in antagonism inhibition and secreting extracellular hydrolytic enzyme. Biocontrol tests against fusarium root rot and fusarium head blight were carried out on 37 bacterial isolates with potential biocontrol capacity after pre-selection through ARDRA- and BOX-PCR analysis on strains with high assessment points. We acquired 10 BCAs with obvious biocontrol efficacy (more than 40%) in greenhouse and field tests. Pseudomonas fluorescens LY1-8 performed well in both two tests (biocontrol efficacy: 44.62% and 58.31%), respectively. Overall, correlation coefficient is 0.720 between assessment values of 37 tested BCA strains and their biocontrol efficacy in trails against fusarium root rot; correlation coefficient is 0.806 between their assessment values and biocontrol efficacy in trails against fusarium head blight. We acquired 10 well-performed potential BCAs, especially P. fluorescens LY1-8 displayed good biocontrol capacity against two different diseases on wheat. Biocontrol efficacies results in both greenhouse and field tests showed high positive correlation with assessment values (0.720 and 0.806), suggesting that the BCAs screening and assessing strategy previously developed in our lab is also adaptable for conjunctively screening BCAs for controlling both root and shoot diseases on wheat caused by same

  18. Typhlodromus pyri and Euseius finlandicus (Acari: Phytoseiidae) as potential biocontrol agents against spider mites (Acari: Tetranychidae) inhabiting willows: laboratory studies on predator development and reproduction on four diets.

    PubMed

    Puchalska, Ewa K; Kozak, Marcin

    2016-01-01

    Typhlodromus pyri Scheuten and Euseius finlandicus (Oudemans) are important predators of phytophagous mites. The present laboratory study aimed to determine whether both species can develop and reach maturity feeding on spider mites occurring on willows, i.e., Schizotetranychus schizopus (Zacher), Schizotetranychus garmani Pritchard & Baker, and Tetranychus urticae Koch, and on Brassica napus L. pollen. The predators' development, reproduction and demographic parameters were significantly affected by diet. The data suggest that rape pollen can be useful in mass rearing of E. finlandicus but is completely unsuitable as alternative food for T. pyri. Short development time and high values of population parameters achieved by T. pyri feeding on larvae and protonymphs of S. schizopus and by E. finlandicus feeding on juvenile stages of S. garmani indicate great suitability of these preys as food for the phytoseiids, and make both predatory species promising biocontrol agents in spider mite control on willows.

  19. Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents.

    PubMed

    Schmid, Florian; Moser, Gerit; Müller, Henry; Berg, Gabriele

    2011-03-01

    Statistically significant differences in the structure and function of above-ground grapevine-associated microorganisms from organically and conventionally managed vineyards were found. Aureobasidium pullulans, a copper-detoxifying fungus and biocontrol agent, plays a key role in explaining these differences. The black fungus was strongly enriched in the communities of organically managed plants and yielded a higher indigenous antiphytopathogenic potential.

  20. A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens.

    PubMed

    Xu, X-M; Jeffries, P; Pautasso, M; Jeger, M J

    2011-09-01

    Effective use of biocontrol agents is an important component of sustainable agriculture. A previous numerical study of a generic model showed that biocontrol efficacy was greatest for a single biocontrol agent (BCA) combining competition with mycoparasitism or antibiosis. This study uses the same mathematical model to investigate whether the biocontrol efficacy of combined use of two BCAs with different biocontrol mechanisms is greater than that of a single BCA with either or both of the two mechanisms, assuming that two BCAs occupy the same host tissue as the pathogen. Within the parameter values considered, a BCA with two biocontrol mechanisms always outperformed the combined use of two BCAs with a single but different biocontrol mechanism. Similarly, combined use of two BCAs with a single but different biocontrol mechanism is shown to be far less effective than that of a single BCA with both mechanisms. Disease suppression from combined use of two BCAs was very similar to that achieved by the more efficacious one. As expected, a higher BCA introduction rate led to increased disease suppression. Incorporation of interactions between two BCAs did not greatly affect the disease dynamics except when a mycoparasitic and, to a lesser extent, an antibiotic-producing BCA was involved. Increasing the competitiveness of a mycoparasitic BCA over a BCA whose biocontrol mechanism is either competition or antibiosis may lead to improved biocontrol initially and reduced fluctuations in disease dynamics. The present study suggests that, under the model assumptions, combined use of two BCAs with different biocontrol mechanisms in most cases only results in control efficacies similar to using the more efficacious one alone. These predictions are consistent with published experimental results, suggesting that combined use of BCAs should not be recommended without clear understanding of their main biocontrol mechanisms and relative competitiveness, and experimental evaluation.

  1. Streptomyces rochei ACTA1551, an Indigenous Greek Isolate Studied as a Potential Biocontrol Agent against Fusarium oxysporum f.sp. lycopersici

    PubMed Central

    Kanini, Grammatiki S.; Katsifas, Efstathios A.; Savvides, Alexandros L.; Karagouni, Amalia D.

    2013-01-01

    Many studies have shown that several Greek ecosystems inhabit very interesting bacteria with biotechnological properties. Therefore Streptomyces isolates from diverse Greek habitats were selected for their antifungal activity against the common phytopathogenic fungus Fusarium oxysporum. The isolate encoded ACTA1551, member of Streptomyces genus, could strongly suppress the fungal growth when examined in antagonistic bioassays in vitro. The isolate was found phylogenetically relative to Streptomyces rochei after analyzing its 16S rDNA sequence. The influence of different environmental conditions, such as medium composition, temperature, and pH on the expression of the antifungal activity was thoroughly examined. Streptomyces rochei ACTA1551 was able to protect tomato seeds from F. oxysporum infection in vivo while it was shown to promote the growth of tomato plants when the pathogen was absent. In an initial effort towards the elucidation of the biochemical and physiological nature of ACTA1551 antifungal activity, extracts from solid streptomycete cultures under antagonistic or/and not antagonistic conditions were concentrated and fractionated. The metabolites involved in the antagonistic action of the isolate showed to be more than one and produced independently of the presence of the pathogen. The above observations could support the application of Streptomyces rochei ACTA1551 as biocontrol agent against F. oxysporum. PMID:23762841

  2. Potential biocontrol actinobacteria: Rhizospheric isolates from the Argentine Pampas lowlands legumes.

    PubMed

    Solans, Mariana; Scervino, Jose Martin; Messuti, María Inés; Vobis, Gernot; Wall, Luis Gabriel

    2016-11-01

    Control of fungal plant diseases by using naturally occurring non-pathogenic microorganisms represents a promising approach to biocontrol agents. This study reports the isolation, characterization, and fungal antagonistic activity of actinobacteria from forage soils in the Flooding Pampa, Argentina. A total of 32 saprophytic strains of actinobacteria were obtained by different isolation methods from rhizospheric soil of Lotus tenuis growing in the Salado River Basin. Based on physiological traits, eight isolates were selected for their biocontrol-related activities such as production of lytic extracellular enzymes, siderophores, hydrogen cyanide (HCN), and antagonistic activity against Cercospora sojina, Macrophomia phaseolina, Phomopsis sp., Fusarium oxysporum, and Fusarium verticilloides. These actinobacteria strains were characterized morphologically, physiologically, and identified by using molecular techniques. The characterization of biocontrol-related activities in vitro showed positive results for exoprotease, phospholipase, fungal growth inhibition, and siderophore production. However, none of the strains was positive for the production of hydrogen cyanide (HCN). Streptomyces sp. MM140 presented the highest index for biocontrol, and appear to be promising pathogenic fungi biocontrol agents. These results show the potential capacity of actinobacteria isolated from forage soils in the Argentine Pampas lowlands as promising biocontrol agents, and their future agronomic applications.

  3. Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens.

    PubMed

    Lopes, Ralf; Cerdeira, Louise; Tavares, Grace S; Ruiz, Jeronimo C; Blom, Jochen; Horácio, Elvira C A; Mantovani, Hilário C; Queiroz, Marisa Vieira de

    2017-09-25

    Diseases caused by phytopathogenic microorganisms account for enormous losses for agribusiness. Although Bacillus species are recognized as being antimicrobial producers and some may provide benefits to plants, the association between Bacillus toyonensis and plants has not been studied. In this study, the whole-genome sequenced endophytic B. toyonensis BAC3151, which has demonstrated antimicrobial activity and quorum sensing inhibition of phytopathogenic bacteria, was investigated for its potential for the production of compounds for biocontrol of plant pathogens. Four whole-genome sequenced B. toyonensis strains shared 3811 protein-coding DNA sequences (CDSs), while strain-specific CDSs, such as biosynthetic gene clusters of antimicrobials, were associated with specific chromosomal regions and mobile genetic elements of the strains. B. toyonensis strains had a higher frequency of putative bacteriocins gene clusters than that of Bacillus species traditionally used for the production of antimicrobials. In addition, gene clusters potentially involved in the production of novel bacteriocins were found in BAC3151, as well as biosynthetic genes of several other compounds, including non-ribosomal peptides, N-acyl homoserine lactonase and chitinases, revealing a genetic repertoire for antimicrobial synthesis greater than that of other Bacillus strains that have demonstrated effective activity against phytopathogens. This study showed for the first time that B. toyonensis has potential to produce various antimicrobials, and the analyses performed indicated that the endophytic strain BAC3151 can be useful for the development of new strategies to control microbial diseases in plants that are responsible for large damages in agricultural crops.

  4. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    PubMed

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  5. Identification of Biocontrol Agents to Control the Fungal Pathogen, Geomyces destructans, in Bats

    NASA Astrophysics Data System (ADS)

    Braunstein, S.; Cheng, T.

    2013-12-01

    The fungal pathogen Geomyces destructans (Gd) causes the disease White-nose Syndrome (WNS) in bats and is estimated to have killed millions of bats since its emergence in North America in 2006. Gd is predicted to cause the local extinction of at least three bat species if rates of decline continue unabated. Given the devastating impacts of Gd to bat populations, identifying a viable method for controlling the pathogen is pertinent for conservation of affected bat species. Our work focuses on identifying naturally-occurring skin bacteria on bats that are antagonistic to Gd that could potentially be used as a biocontrol. We cultured bacteria from skin swabs taken from wild bats (Myotis lucifugus, Eptesicus fuscus, Myotis sodalis, Perimyotis subflavus). We conducted challenge experiments to identify bacterial strains that inhibited Gd growth. Bacteria that exhibited antifungal properties were identified using 16S and gyrB markers. Our methods identified several bacteria in the Pseudomonas fluorescens complex as potential biocontrol agents. Future work will continue to test the viability of these bacteria as biocontrol agents via experimental treatments with live captive bats. The failure of previous non-biocontrol methods highlights the importance of developing these bacteria as a biologically-friendly method for controlling Gd. A bat infected with Geomyces destructans. Photo by West Virginia Division of Natural Resources Bacterial culture from the swab of a bat's wings

  6. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    Araújo, Francisca Diana da Silva; Araújo, Welington Luiz; Eberlin, Marcos Nogueira

    2017-02-01

    Species of genus Burkholderia display different interaction profiles in the environment, causing either several diseases in plants and animals or being beneficial to some plants, promoting their growth, and suppressing phytopathogens. Burkholderia spp. also produce many types of biomolecules with antimicrobial activity, which may be commercially used to protect crops of economic interest, mainly against fungal diseases. Herein we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate secondary metabolites produced by B. seminalis TC3.4.2R3 in monoculture and coculture with plant pathogen Fusarium oxysporum. The siderophore pyochelin and the rhamnolipid Rha-Rha-C15-C14 were detected in wild-type B. seminalis strain, and their productions were found to vary in mutant strains carrying disruptions in gene clusters associated with antimicrobial compounds. Two mycotoxins were detected in F. oxysporum. During coculture with B. seminalis, metabolites probably related to defense mechanisms of these microorganisms were observed in the interspecies interaction zone. Our findings demonstrate the effective application of MALDI-MSI in the detection of bioactive molecules involved in the defense mechanism of B. seminalis, and these findings suggest the potential use of this bacterium in the biocontrol of plant diseases caused by F. oxysporum.

  7. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    Araújo, Francisca Diana da Silva; Araújo, Welington Luiz; Eberlin, Marcos Nogueira

    2017-05-01

    Species of genus Burkholderia display different interaction profiles in the environment, causing either several diseases in plants and animals or being beneficial to some plants, promoting their growth, and suppressing phytopathogens. Burkholderia spp. also produce many types of biomolecules with antimicrobial activity, which may be commercially used to protect crops of economic interest, mainly against fungal diseases. Herein we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate secondary metabolites produced by B. seminalis TC3.4.2R3 in monoculture and coculture with plant pathogen Fusarium oxysporum. The siderophore pyochelin and the rhamnolipid Rha-Rha-C15-C14 were detected in wild-type B. seminalis strain, and their productions were found to vary in mutant strains carrying disruptions in gene clusters associated with antimicrobial compounds. Two mycotoxins were detected in F. oxysporum. During coculture with B. seminalis, metabolites probably related to defense mechanisms of these microorganisms were observed in the interspecies interaction zone. Our findings demonstrate the effective application of MALDI-MSI in the detection of bioactive molecules involved in the defense mechanism of B. seminalis, and these findings suggest the potential use of this bacterium in the biocontrol of plant diseases caused by F. oxysporum.

  8. Numerical studies of biocontrol efficacies of foliar plant pathogens in relation to the characteristics of a biocontrol agent.

    PubMed

    Xu, X-M; Salama, N; Jeffries, P; Jeger, M J

    2010-08-01

    A previously published generic mathematic model has been used in a numerical study to understand the dynamics of foliar pathogens in relation to mechanisms, and timing and coverage of biocontrol agent (BCA) applications. With the model parameter values used, it was demonstrated that a BCA possessing either competition or induced resistance as the main mechanism of biological control was more effective in reducing disease development than a BCA with either mycoparasitism or antibiosis as its mechanism. Application coverage, ranging from 50 to 90%, had little effect on biocontrol efficacy, particularly for a BCA with competition and induced resistance as the main mechanism of biocontrol. Conversely, delayed application of BCA had more profound effects on biocontrol efficacy for those with competition or induced resistance as their main mechanism than those with mycoparasitism and antibiosis. Biocontrol efficacy was greatest for a single BCA combining competition with mycoparasitism or antibiosis. The efficacy for a single BCA combining induced resistance with competition critically depended on application time; the efficacy was greatly reduced for delayed applications. The present study suggests that development of an effective strategy for BCA application is critically dependent upon our quantitative understanding of several key biocontrol processes and their interactions. Without reliable quantitative estimation of these processes, it is impossible to make quantitative predictions about biological control and hence to optimize BCA application strategies.

  9. Unrecognized impact of a biocontrol agent on the spread rate of an invasive thistle.

    PubMed

    Marchetto, Katherine M; Shea, Katriona; Kelly, Dave; Groenteman, Ronny; Sezen, Zeynep; Jongejans, Eelke

    2014-07-01

    Herbivores may significantly reduce plant populations by reducing seed set; however, we know little of their impact on seed movement. We show for the first time that the receptacle-feeding weevil Rhinocyllus conicus not only reduces seed production by the invasive thistle Carduus nutans but also inhibits release and subsequent wind dispersal of seeds. These effects generate large, though different, impacts on spatial spread and local abundance in two populations with differing demography, located in the United States and New Zealand. Furthermore, the mechanism is context dependent, with the largest effects through increased terminal velocity in the United States but through reduced seed production in New Zealand. Our results show that the benefit of biocontrol programs may have been underestimated; screenings of potential biocontrol agents should examine effects on pest dispersal and spread, as well as on abundance.

  10. Cystofilobasidium infirmominiatum as a biocontrol agent of postharvest diseases of apple and citrus

    USDA-ARS?s Scientific Manuscript database

    Two psycrotrophic yeasts isolated from the surface of lemons have been selected as biocontrol agents of the most common postharvest diseases of apples and citrus that develops during cold storage. The biocontrol yeasts were identified as Cystofilobasidium infirmominiatum and Leucosporidium scottii....

  11. Demographic models inform selection of biocontrol agents for garlic mustard (Alliaria petiolata).

    PubMed

    Davis, Adam S; Landis, Douglas A; Nuzzo, Victoria; Blossey, Bernd; Gerber, Esther; Hinz, Hariet L

    2006-12-01

    Nonindigenous invasive plants pose a major threat to natural communities worldwide. Biological control of weeds via selected introduction of their natural enemies can affect control over large spatial areas but also risk nontarget effects. To maximize effectiveness while minimizing risk, weed biocontrol programs should introduce the minimum number of host-specific natural enemies necessary to control an invasive nonindigenous plant. We used elasticity analysis of a matrix model to help inform biocontrol agent selection for garlic mustard (Alliaria petiolata (M. Bieb.) Cavara and Grande). The Eurasian biennial A. petiolata is considered one of the most problematic invaders of temperate forests in North America. Four weevil species in the genus Ceutorhynchus (Coleoptera: Curculionidae) are currently considered potential biocontrol agents. These species attack rosettes (C. scrobicollis), stems (C. roberti, C. alliariae), and seeds (C. constrictus) of A. petiolata. Elasticity analyses using A. petiolata demographic parameters from North America indicated that changes in the rosette-to-flowering-plant transition and changes in fecundity consistently had the greatest impact on population growth rate. These results suggest that attack by the rosette-feeder C. scrobicollis, which reduces overwintering survival, and seed or stem feeders that reduce seed output should be particularly effective. Model outcomes differed greatly as A. petiolata demographic parameters were varied within ranges observed in North America, indicating that successful control of A. petiolata populations may occur under some, but not all, conditions. Using these a priori analyses we predict: (1) rosette mortality and reduction of seed output will be the most important factors determining A. petiolata demography; (2) the root-crown feeder C. scrobicollis will have the most significant impact on A. petiolata demography; (3) releases of single control agents are unlikely to control A. petiolata across

  12. Functional and Structural Microbial Diversity in Organic and Conventional Viticulture: Organic Farming Benefits Natural Biocontrol Agents ▿ †

    PubMed Central

    Schmid, Florian; Moser, Gerit; Müller, Henry; Berg, Gabriele

    2011-01-01

    Statistically significant differences in the structure and function of above-ground grapevine-associated microorganisms from organically and conventionally managed vineyards were found. Aureobasidium pullulans, a copper-detoxifying fungus and biocontrol agent, plays a key role in explaining these differences. The black fungus was strongly enriched in the communities of organically managed plants and yielded a higher indigenous antiphytopathogenic potential. PMID:21278278

  13. Genome Sequences and Characterization of the Related Gordonia Phages GTE5 and GRU1 and Their Use as Potential Biocontrol Agents

    PubMed Central

    Tillett, Daniel; Seviour, Robert J.

    2012-01-01

    Activated sludge plants suffer frequently from the operational problem of stable foam formation on aerobic reactor surfaces, which can be difficult to prevent. Many foams are stabilized by mycolic acid-containing Actinobacteria, the mycolata. The in situ biocontrol of foaming using phages is an attractive strategy. We describe two polyvalent phages, GTE5 and GRU1, targeting Gordonia terrae and Gordonia rubrupertincta, respectively, isolated from activated sludge. Phage GRU1 also propagates on Nocardia nova. Both phages belong to the family Siphoviridae and have similar-size icosahedral heads that encapsulate double-stranded DNA genomes (∼65 kb). Their genome sequences are similar to each other but markedly different from those of other sequenced phages. Both are arranged in a modular fashion. These phages can reduce or eliminate foam formation by their host cells under laboratory conditions. PMID:22038604

  14. Antibiosis and bmyB Gene Presence As Prevalent Traits for the Selection of Efficient Bacillus Biocontrol Agents against Crown Gall Disease

    PubMed Central

    Frikha-Gargouri, Olfa; Ben Abdallah, Dorra; Bhar, Ilhem; Tounsi, Slim

    2017-01-01

    This study aimed to improve the screening method for the selection of Bacillus biocontrol agents against crown gall disease. The relationship between the strain biocontrol ability and their in vitro studied traits was investigated to identify the most important factors to be considered for the selection of effective biocontrol agents. In fact, previous selection procedure relying only on in vitro antibacterial activity was shown to be not suitable in some cases. A direct plant-protection strategy was performed to screen the 32 Bacillus biocontrol agent candidates. Moreover, potential in vitro biocontrol traits were investigated including biofilm formation, motility, hemolytic activity, detection of lipopeptide biosynthetic genes (sfp, ituC and bmyB) and production of antibacterial compounds. The obtained results indicated high correlations of the efficiency of the biocontrol with the reduction of gall weight (p = 0.000) and the antibacterial activity in vitro (p = 0.000). Moreover, there was strong correlations of the efficiency of the biocontrol (p = 0.004) and the reduction in gall weight (p = 0.000) with the presence of the bmyB gene. This gene directs the synthesis of the lipopeptide bacillomycin belonging to the iturinic family of lipopeptides. These results were also confirmed by the two-way hierarchical cluster analysis and the correspondence analysis showing the relatedness of these four variables. According to the obtained results a new screening procedure of Bacillus biocontrol agents against crown gall disease could be advanced consisting on two step selection procedure. The first consists on selecting strains with high antibacterial activity in vitro or those harbouring the bmyB gene. Further selection has to be performed on tomato plants in vivo. Moreover, based on the results of the biocontrol assay, five potent strains exhibiting high biocontrol abilities were selected. They were identified as Bacillus subtilis or Bacillus amyloliquefaciens. These

  15. Antibiosis and bmyB Gene Presence As Prevalent Traits for the Selection of Efficient Bacillus Biocontrol Agents against Crown Gall Disease.

    PubMed

    Frikha-Gargouri, Olfa; Ben Abdallah, Dorra; Bhar, Ilhem; Tounsi, Slim

    2017-01-01

    This study aimed to improve the screening method for the selection of Bacillus biocontrol agents against crown gall disease. The relationship between the strain biocontrol ability and their in vitro studied traits was investigated to identify the most important factors to be considered for the selection of effective biocontrol agents. In fact, previous selection procedure relying only on in vitro antibacterial activity was shown to be not suitable in some cases. A direct plant-protection strategy was performed to screen the 32 Bacillus biocontrol agent candidates. Moreover, potential in vitro biocontrol traits were investigated including biofilm formation, motility, hemolytic activity, detection of lipopeptide biosynthetic genes (sfp, ituC and bmyB) and production of antibacterial compounds. The obtained results indicated high correlations of the efficiency of the biocontrol with the reduction of gall weight (p = 0.000) and the antibacterial activity in vitro (p = 0.000). Moreover, there was strong correlations of the efficiency of the biocontrol (p = 0.004) and the reduction in gall weight (p = 0.000) with the presence of the bmyB gene. This gene directs the synthesis of the lipopeptide bacillomycin belonging to the iturinic family of lipopeptides. These results were also confirmed by the two-way hierarchical cluster analysis and the correspondence analysis showing the relatedness of these four variables. According to the obtained results a new screening procedure of Bacillus biocontrol agents against crown gall disease could be advanced consisting on two step selection procedure. The first consists on selecting strains with high antibacterial activity in vitro or those harbouring the bmyB gene. Further selection has to be performed on tomato plants in vivo. Moreover, based on the results of the biocontrol assay, five potent strains exhibiting high biocontrol abilities were selected. They were identified as Bacillus subtilis or Bacillus amyloliquefaciens. These

  16. Liquid cultivation techniques for enhancing the effectiveness of yeast biocontrol agents

    USDA-ARS?s Scientific Manuscript database

    Biocontrol agents will gain broader acceptance into integrated pest management programs if products with enhanced efficacy and consistency of performance are developed. Though given comparatively little research attention, liquid cultivation environments and protocols can and should be optimized to...

  17. [Fungal bio-control agents against ixodid tick--a review].

    PubMed

    Sun, Ming; Wang, Xiaoyan; Luo, Jianxun

    2012-08-04

    Entomopathogenic fungi as potential agents for bio-control have been widely applied in the control of insect pests in agriculture. However, the application remains in laboratory scale for the control of ectoparasites. Owing to the need to combat the short lasting period of chemical acaricides and reduction of pollution, it is urgent to develop sufficient, stable and safe measures for tick control. We reviewed the primary scientific achievements in utilization of environmental microbes for controlling of ticks. Studies conducted in this field may benefit to sustainable development, environmental protection, maintaining ecological balance and production of green products.

  18. Biology of Pseudoligosita plebeia (Hymenoptera: Trichogrammatidae), an egg parasitoid of Homalodisca spp. (Hemiptera: Cicadellidae) collected from northwestern Mexico as a potential biocontrol agent of H. Vitripennis in California.

    PubMed

    Lytle, J M; Bernal, J S; Morse, J G

    2012-10-01

    Pseudoligosita plebeia (Perkins) (Hymenoptera: Trichogrammatidae) is a candidate biological control agent targeting the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), in California. Little is known about the biology of P. plebeia. Here we report the results of laboratory studies describing the longevity of P. plebeia adults provided alternative food resources, their ability to parasitize H. vitripennis eggs of different ages, lifetime offspring production when provided steady access to excess host eggs, and levels of mature ovarian eggs present when wasps were held without access to hosts. P. plebeia is a gregarious parasitoid, with up to six adults emerging from a single H. vitripennis egg. When provided with honey and water, water alone, or no food or water, P. plebeia adult females lived an average of 64.1, 2.3, and 2.0 d, respectively. P. plebeia were able to successfully parasitize all ages of H. vitripennis eggs (1-8 d old), with higher parasitism in younger host eggs (1-3 d old) than in older host eggs (5-7 d old). An increasing trend in offspring production was seen for P. plebeia from adult age 2-26 d followed by a decreasing trend with offspring produced up to age 75 d. P. plebeia females are at least partially synovigenic, as they contained fewer mature eggs at younger ages (1 and 3 d old) than at older ages (5, 11, 15, and 31 d old). Our results provide foundational information regarding the biology of P. plebeia useful for its further evaluation as a potential biological control agent in California.

  19. Preliminary in vitro insights into the use of natural fungal pathogens of leaf-cutting ants as biocontrol agents.

    PubMed

    Folgarait, Patricia; Gorosito, Norma; Poulsen, Michael; Currie, Cameron R

    2011-09-01

    Leaf-cutting ants are one of the main herbivores of the Neotropics, where they represent an important agricultural pest. These ants are particularly difficult to control because of the complex network of microbial symbionts. Leaf-cutting ants have traditionally been controlled through pesticide application, but there is a need for alternative, more environmentally friendly, control methods such as biological control. Potential promising biocontrol candidates include the microfungi Escovopsis spp. (anamorphic Hypocreales), which are specialized pathogens of the fungi the ants cultivate for food. These pathogens are suppressed through ant behaviors and ant-associated antibiotic-producing Actinobacteria. In order to be an effective biocontrol agent, Escovopsis has to overcome these defenses. Here, we evaluate, using microbial in vitro assays, whether defenses in the ant-cultivated fungus strain (Leucoagaricus sp.) and Actinobacteria from the ant pest Acromyrmex lundii have the potential to limit the use of Escovopsis in biocontrol. We also explore, for the first time, possible synergistic biocontrol between Escovopsis and the entomopathogenic fungus Lecanicillium lecanii. All strains of Escovopsis proved to overgrow A. lundii cultivar in less than 7 days, with the Escovopsis strain isolated from a different leaf-cutting ant species being the most efficient. Escovopsis challenged with a Streptomyces strain isolated from A. lundii did not exhibit significant growth inhibition. Both results are encouraging for the use of Escovopsis as a biocontrol agent. Although we found that L. lecanii can suppress the growth of the cultivar, it also had a negative impact on Escovopsis, making the success of simultaneous use of these two fungi for biocontrol of A. lundii questionable.

  20. Combinations of Biocontrol Agents for Management of Plant-Parasitic Nematodes and Soilborne Plant-Pathogenic Fungi

    PubMed Central

    Meyer, Susan L. F.; Roberts, Daniel P.

    2002-01-01

    Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol preparation. Such combinations have potential for more extensive colonization of the rhizosphere, more consistent expression of beneficial traits under a broad range of soil conditions, and antagonism to a larger number of plant pests or pathogens than strains applied individually. Conversely, microbes applied in combination also may have antagonistic interactions with each other. Increased, decreased, and unaltered suppression of the target pathogen or pest has been observed when biocontrol microbes have been applied in combination. Unfortunately, the ecological basis for increased or decreased suppression has not been determined in many cases and needs further consideration. The complexity of interactions involved in the application of multiple organisms for biological control has slowed progress toward development of successful formulations. However, this approach has potential for overcoming some of the efficacy problems that occur with application of individual biocontrol agents. PMID:19265899

  1. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.

    PubMed

    Zhang, Fuli; Ge, Honglian; Zhang, Fan; Guo, Ning; Wang, Yucheng; Chen, Long; Ji, Xiue; Li, Chengwei

    2016-03-01

    Sclerotinia stem rot, caused by Sclerotinia sclerotiorum (Lib.) de Bary is a major disease of soybean (Glycine max (L.) Merr.). At present, we revealed the three-way interaction between Trichoderma harzianum T-aloe, pathogen S. sclerotiorum and soybean plants in order to demonstrate biocontrol mechanism and evaluate biocontrol potential of T-aloe against S. sclerotiorum in soybean. In our experiments, T-aloe inhibited the growth of S. sclerotiorum with an efficiency of 56.3% in dual culture tests. T-aloe hyphae grew in parallel or intertwined with S. sclerotiorum hyphae and produced hooked contact branches, indicating mycoparasitism. Plate tests showed that T-aloe culture filtrate inhibited S. sclerotiorum growth with an inhibition efficiency of 51.2% and sclerotia production. T-aloe pretreatment showed growth-promoting effect on soybean plants. The activities of peroxidase, superoxide dismutase, and catalase increased, and the hydrogen peroxide (H2O2) as well as the superoxide radical (O2(-)) content in soybean leaves decreased after T-aloe pretreatment in response to S. sclerotiorum pathogen challenge. T-aloe treatment diminished damage caused by pathogen stress on soybean leaf cell membrane, and increased chlorophyll as well as total phenol contents. The defense-related genes PR1, PR2, and PR3 were expressed in the leaves of T-aloe-treated plants. In summary, T-aloe displayed biocontrol potential against S. sclerotiorum. This is the first report of unraveling biocontrol potential of Trichoderma Spp. to soybean sclerotinia stem rot from the three-way interaction between the biocontrol agent, pathogen S. sclerotiorum and soybean plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi.

    PubMed

    Trias, Rosalia; Bañeras, Lluís; Montesinos, Emilio; Badosa, Esther

    2008-12-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot.

  3. Biosynthetic Mechanism for Sunscreens of the Biocontrol Agent Lysobacter enzymogenes

    PubMed Central

    Li, Yaoyao; Wang, Yansheng; Wang, Yulan; Wright, Stephen; Li, Yuezhong; Shen, Yuemao; Liu, Fengquan; Du, Liangcheng

    2013-01-01

    Lysobacter are ubiquitous environmental bacteria emerging as novel biocontrol agents and new sources of anti-infectives. So far, very little effort has been invested in the study of the biology of these Gram-negative gliding bacteria. Many Lysobacter species are characterized by their yellow-orange appearance. Using transposon mutagenesis, we identified a stand-alone polyketide synthase (PKS) gene cluster required for the pigment production in L. enzymogenes OH11. The yellow pigments were abolished in the “white” mutants generated by target-specific deletions of ketosynthase (KS), acyl carrier protein, or ketoreductase. Spectroscopic data suggested that the pigments belong to xanthomonadin-like aryl polyenes. Polyene-type polyketides are known to be biosynthesized by modular PKS (Type I), not by stand-alone PKS (Type II) which always contain the heterodimer KS-CLF (chain-length factor) as the key catalytic component. Remarkably, this aryl polyene PKS complex only contains the KS (ORF17), but not the CLF. Instead, a hypothetical protein (ORF16) is located immediately next to ORF17. ORF16–17 homologs are widespread in numerous uncharacterized microbial genomes, in which an ORF17 homolog is always accompanied by an ORF16 homolog. The deletion of ORF16 eliminated pigment production, and homology modeling suggested that ORF16 shares a structural similarity to the N-terminal half of CLF. A point-mutation of glutamine (Q166A) that is the conserved active site of known CLF abolished pigment production. The “white” mutants are significantly more sensitive to UV/visible light radiation or H2O2 treatment than the wild type. These results unveil the first example of Type II PKS-synthesized polyene pigments and show that the metabolites serve as Lysobacter “sunscreens” that are important for the survival of these ubiquitous environmental organisms. PMID:23826105

  4. Environmental factors affect the activity of biocontrol agents against ochratoxigenic Aspergillus carbonarius on wine grape.

    PubMed

    De Curtis, F; de Felice, D V; Ianiri, G; De Cicco, V; Castoria, R

    2012-09-17

    The influence of temperature and relative humidity (RH) on the activity of three biocontrol agents-the yeast Metschnikowia pulcherrima LS16 and two strains of the yeast-like fungus Aureobasidium pullulans LS30 and AU34-2-against infection by A. carbonarius and ochratoxin A (OTA) accumulation in wine grape berries was investigated in lab-scale experiments. The presence of wounds on grape skin dramatically favored infection of berries by A. carbonarius strain A1102, since unwounded berries showed very low levels of infection at all conditions of RH and temperature tested. Artificially wounded berries pre-treated with the biocontrol agents were inoculated with the ochratoxigenic A. carbonarius strain A1102 and were incubated for 5 days at two levels of RH (60% and 100%) and three different temperatures (20, 25 and 30 °C). The three biocontrol agents were able to prevent infections at 60% RH and 20 °C. At 60% RH and 25 °C only strain AU34-2 achieved some protection on day 5, whereas at 30 °C a limited biocontrol efficacy was evident only up to day 2. At 100% RH, LS16, LS30 and AU34-2 showed effective protection of grape berries at 20 °C until the 5th day of incubation. The three biocontrol agents achieved significant protection at higher temperatures only until the 2nd day after the beginning of the experiment: all three strains at 25 °C, and only strain LS16 at 30 °C. After 5 days, the three biocontrol agents were able to significantly reduce the level of OTA in berries at all the conditions tested. This occurred even when protection from infection was not significant, except at 30 °C and 100% of RH for all the three strains, and at 25 °C and 100% of RH for strain LS16. The biocontrol agents displayed a higher rate of colonization on grape berries at 20 and 25 °C than at 30 °C. The higher value of RH (100%) appeared to increase the rate of colonization, in particular at 20 and 25 °C. Taken together, our results emphasize the significant influence of

  5. Anolis lizards as biocontrol agents in mainland and island agroecosystems.

    PubMed

    Monagan, Ivan V; Morris, Jonathan R; Davis Rabosky, Alison R; Perfecto, Ivette; Vandermeer, John

    2017-04-01

    Our knowledge of ecological interactions that bolster ecosystem function and productivity has broad applications to the management of agricultural systems. Studies suggest that the presence of generalist predators in agricultural landscapes leads to a decrease in the abundance of herbivorous pests, but our understanding of how these interactions vary across taxa and along gradients of management intensity and eco-geographic space remains incomplete. In this study, we assessed the functional response and biocontrol potential of a highly ubiquitous insectivore (lizards in the genus Anolis) on the world's most important coffee pest, the coffee berry borer (Hypothalemus hampei). We conducted field surveys and laboratory experiments to examine the impact of land-use intensification on species richness and abundance of anoles and the capacity of anoles to reduce berry borer infestations in mainland and island coffee systems. Our results show that anoles significantly reduce coffee infestation rates in laboratory settings (Mexico, p = .03, F = 5.13 df = 1, 35; Puerto Rico, p = .014, F = 8.82, df = 1, 10) and are capable of consuming coffee berry borers in high abundance. Additionally, diversified agroecosystems bolster anole abundance, while high-intensity practices, including the reduction of vegetation complexity and the application of agrochemicals were associated with reduced anole abundance. The results of this study provide supporting evidence of the positive impact of generalist predators on the control of crop pests in agricultural landscapes, and the role of diversified agroecosystems in sustaining both functionally diverse communities and crop production in tropical agroecosystems.

  6. Optimization of a protective medium for freeze-dried Pichia membranifaciens and application of this biocontrol agent on citrus fruit.

    PubMed

    Niu, X; Deng, L; Zhou, Y; Wang, W; Yao, S; Zeng, K

    2016-07-01

    To optimize a protective medium for freeze-dried Pichia membranifaciens and to evaluate biocontrol efficacies of agents against blue and green mould and anthracnose in citrus fruit. Based on the screening assays of saccharides and antioxidants, response surface methodology was used to optimize sucrose, sodium glutamate and skim milk to improve viability of freeze-dried Pi. membranifaciens. Biocontrol assays were conducted between fresh and freeze-dried Pi. membranifaciens against Penicillium italicum, Penicillium digitatum and Colletotrichum gloeosporioides in citrus fruit. Solving the regression equation indicated that the optimal protective medium was 6·06% (w/v) sucrose combined with 3·40% (w/v) sodium glutamate and 5·43% (w/v) skim milk. Pi. membranifaciens freeze-dried in the optimal protective medium showed 76·80% viability, and retained biocontrol efficacy against Pe. italicum, Pe. digitatum and Co. gloeosporioides in citrus fruit. The optimal protective medium showed more effective protective properties than each of the three protectants used alone. The viability of freeze-dried Pi. membranifaciens finally reached 76·80%. Meanwhile, the biocontrol efficacies showed no significant difference between fresh and freeze-dried yeast against Pe. italicum, Pe. digitatum and Co. gloeosporioides in citrus fruit. The results showed the potential value of Pi. membranifaciens CICC 32259 for commercialization. © 2016 The Society for Applied Microbiology.

  7. Yeast microflora of nectarines and their potential for biocontrol of brown rot

    USDA-ARS?s Scientific Manuscript database

    Resident fruit microflora has been the source of biocontrol agents for the control of postharvest decays of fruits and the active ingredient in commercialized biocontrol products. With the exception of grapes and apples, information on the resident microflora of other fruits is only fragmentary; ho...

  8. Integrated effect of gamma radiation and biocontrol agent on quality parameters of apple fruit: An innovative commercial preservation method

    NASA Astrophysics Data System (ADS)

    Ahari Mostafavi, Hossein; Mahyar Mirmajlessi, Seyed; Fathollahi, Hadi; Shahbazi, Samira; Mohammad Mirjalili, Seyed

    2013-10-01

    Effects of gamma irradiation and biocontrol agent (Pseudomonas fluorescens) on the physico-chemical parameters (including moisture, total soluble solids, antioxidant activity, phenolic content and firmness) of cv. Golden Delicious apples were investigated for their ability to avoid the post-harvest blue mold caused by Penicillium expansum during cold storage. Freshly harvested apples were inoculated with P. expansum. Treated fruits were irradiated at doses of 0, 200, 400, 600 and 800 Gy and then inoculated with P. fluorescens suspension. Samples were evaluated at 3 month intervals. The results demonstrated a clear link between antioxidant activity and phenolic content, so that dose range of 200-400 Gy significantly increased phenolic content and antioxidant activity. Effect of P. fluorescens was similar to irradiation at 200 and 400 Gy that could prevent lesion diameter in pathogen-treated apples. As dose and storage time increased firmness decreased but, combination of P. fluorescens as well as irradiation (at 200-400 Gy) could decrease softening apple fruits during storage. In all parameters, P. fluorescens (as biocontrol agent) inhibited P. expansum similar to irradiation at 200-400 Gy. So, integrated treatment of irradiation and biocontrol agent explored the potential dual benefit of low doses (200 and 400 Gy) as a suitable method to sustain physico-chemical quality and conclusively reduce apple fruits losses during post-harvest preservation.

  9. Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential.

    PubMed

    Katoch, Meenu; Pull, Shipra

    2017-12-01

    The Food and Agriculture Organization has estimated that every year considerable losses of the food crops occur due to plant diseases. Although fungicides are extensively used for management of plant diseases, they are expensive and hazardous to the environment and human health. Alternatively, biological control is the safe way to overcome the effects of plant diseases and to sustain agriculture. Since Monarda citriodora Cerv. ex Lag. (Lamiaceae/Labiatae) is known for its antifungal properties, it was chosen for the study. The isolation of endophytic fungi from M. citriodora and assessing their biocontrol potential. The isolated endophytes were characterized using ITS-5.8 S rDNA sequencing. Their biocontrol potential was assessed using different antagonistic assays against major plant pathogens. Twenty-eight endophytes representing 11 genera were isolated, of which, around 82% endophytes showed biocontrol potential against plant pathogens. MC-2 L (Fusarium oxysporum), MC-14 F (F. oxysporum), MC-22 F (F. oxysporum) and MC-25 F (F. redolens) displayed significant antagonistic activity against all the tested pathogens. Interestingly, MC-10 L (Muscodor yucatanensis) completely inhibited the growth of Sclerotinia sp., Colletotrichum capsici, Aspergillus flavus and A. fumigatus in dual culture assay, whereas MC-8 L (A. oryzae) and MC-9 L (Penicillium commune) completely inhibited the growth of the Sclerotinia sp. in fumigation assay. Endophytes MC-2 L, MC-14 F, MC-22 F and MC-25 F could effectively be used to control broad range of phytopathogens, while MC-10 L, MC-8 L and MC-9 L could be used to control specific pathogens. Secondly, endophytes showing varying degrees of antagonism in different assays represented the chemo-diversity not only as promising biocontrol agents but also as a resource of defensive and bioactive metabolites.

  10. Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola.

    PubMed

    Zhou, Ting; Schneider, Karin E; Li, Xiu-Zhen

    2008-08-15

    demonstrated that isolate C06 has a great potential for being developed into a biocontrol agent.

  11. Draft Genome Sequence of Biocontrol Agent Pythium oligandrum Strain Po37, an Oomycota

    PubMed Central

    Berger, Harald; Yacoub, Amira; Gerbore, Jonathan; Grizard, Damien; Rey, Patrice; Sessitsch, Angela

    2016-01-01

    The oomycota Pythium oligandrum Po37 is used as a biocontrol agent of plant diseases. Here, we present the first draft of the P. oligandrum Po37 genome sequence, which comprises 725 scaffolds with a total length of 35.9 Mb and 11,695 predicted protein-coding genes. PMID:27081125

  12. Transcriptome analysis of grapefruit flavedo in response to application of the yeast biocontrol agent Metschnikowia fructicola

    USDA-ARS?s Scientific Manuscript database

    Yeasts used to control postharvest pathogens have been shown to induce several biochemical defense responses in surface wounds of fruit. The capability to elicit these responses in fruit tissue has been regarded as one of the possible mechanisms of action by which yeast biocontrol agent inhibit the...

  13. Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150

    USDA-ARS?s Scientific Manuscript database

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum f. sp. Cucumerinum. However, their survival ability in cucumber rhizosphere and non-rhizosphere as well as their influence on native microbial communities has not been fully i...

  14. Genome Sequence of the Biocontrol Agent Microbacterium barkeri Strain 2011-R4

    PubMed Central

    Liu, Jian; Zhou, Qing; Ibrahim, Muhammad; Liu, He; Jin, Gulei

    2012-01-01

    Microbacterium barkeri strain 2011-R4 is a Gram-positive epiphyte which has been confirmed as a biocontrol agent against several plant pathogens in our previous studies. Here, we present the draft genome sequence of this strain, which was isolated from the rice rhizosphere in Tonglu city, Zhejiang province, China. PMID:23144410

  15. Evaluation of the Biocontrol Potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in Eggplant.

    PubMed

    Lan, Xingjie; Zhang, Jing; Zong, Zhaofeng; Ma, Qing; Wang, Yang

    2017-01-01

    A fungus with broad spectrum antifungal activity was isolated from the soil in Qinling Mountain, Shaanxi Province, in China. The fungus was identified as Purpureocillium lilacinum based on ITS rDNA gene analysis. The strain, coded as QLP12, showed high inhibition activity on fungal mycelium growth in vitro, especially to Mucor piriformis, Trichothecium roseum, Rhizoctonia solani, and Verticillium dahliae, and its potential for biocontrol efficacy of eggplant. Verticillium wilt disease caused by Verticillium dahliae among 10 fungal species tested was explored. In greenhouse experiments, QLP12 showed an excellent growth-promoting effect on eggplant seed germination (76.7%), bud growth (79.4%), chlorophyll content (47.83%), root activity (182.02%), and so on. QLP12 can colonize the eggplant interior and also develop in rhizosphere soil. In greenhouse, the incidence of Verticillium wilt decreased by 83.82% with pretreated QLP12 fermentation broth in the soil. In the field, QLP12 showed prominent biocontrol effects on Verticillium wilt by reducing the disease index over the whole growth period, a decline of 40.1%. This study showed that the strain QLP12 is not only an effective biocontrol agent for controlling Verticillium wilt of eggplant, but also a plant growth-promoting fungus that deserves to be further developed.

  16. Evaluation of the Biocontrol Potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in Eggplant

    PubMed Central

    Zhang, Jing; Zong, Zhaofeng

    2017-01-01

    A fungus with broad spectrum antifungal activity was isolated from the soil in Qinling Mountain, Shaanxi Province, in China. The fungus was identified as Purpureocillium lilacinum based on ITS rDNA gene analysis. The strain, coded as QLP12, showed high inhibition activity on fungal mycelium growth in vitro, especially to Mucor piriformis, Trichothecium roseum, Rhizoctonia solani, and Verticillium dahliae, and its potential for biocontrol efficacy of eggplant. Verticillium wilt disease caused by Verticillium dahliae among 10 fungal species tested was explored. In greenhouse experiments, QLP12 showed an excellent growth-promoting effect on eggplant seed germination (76.7%), bud growth (79.4%), chlorophyll content (47.83%), root activity (182.02%), and so on. QLP12 can colonize the eggplant interior and also develop in rhizosphere soil. In greenhouse, the incidence of Verticillium wilt decreased by 83.82% with pretreated QLP12 fermentation broth in the soil. In the field, QLP12 showed prominent biocontrol effects on Verticillium wilt by reducing the disease index over the whole growth period, a decline of 40.1%. This study showed that the strain QLP12 is not only an effective biocontrol agent for controlling Verticillium wilt of eggplant, but also a plant growth-promoting fungus that deserves to be further developed. PMID:28303252

  17. Alternethanoxins A and B, polycyclic ethanones produced by Alternaria sonchi , potential mycoherbicides for Sonchus arvensis biocontrol.

    PubMed

    Evidente, Antonio; Punzo, Biancavaleria; Andolfi, Anna; Berestetskiy, Alexander; Motta, Andrea

    2009-08-12

    Alternaria sonchi is a fungal pathogen isolated from Sonchus arvensis and proposed as a biocontrol agent of this noxious perennial weed. Different phytotoxic metabolites were isolated from solid culture of the fungus. Two new polycyclic ethanones, named alternethanoxins A and B, were characterized using essentially spectroscopic and chemical methods. Tested by leaf disk-puncture assay on the fungal host plant and a number of nonhost plants, alternethanoxins A and B were shown to be phytotoxic, whereas they did not possess antimicrobial activity tested at 100 microg/disk. Hence, alternethanoxins A and B have potential as nonselective natural herbicides. Some structure-activity relationship observations were also made.

  18. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus x domestica)

    USDA-ARS?s Scientific Manuscript database

    Psychrotrophic yeasts isolated from soils collected in Antarctica and selected by its capacity of growing in apple juice at low temperatures were evaluated for their potential as biocontrol agents for the management of postharvest diseases of apple during cold storage. Among the species recovered, ...

  19. Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties.

    PubMed

    Mishra, N; Khan, S S; Sundari, S Krishna

    2016-08-01

    Species of Trichoderma are widely recognized for their biocontrol abilities, but seldom studied collectively, for their plant growth promotion, abiotic stress tolerance and bioremediation properties. Our study is a concentrated effort to establish the potential of native isolate Trichoderma harzianum KSNM (T103) to tolerate biotic (root pathogens) and abiotic stresses [high salt (100-1000 mM); heavy metal (chromium, nickel and zinc: 1-10 mM); pesticides: malathion (100-600 ppm), carbofuran (100-600 ppb)], along with its ability to support plant growth. In vitro growth promotion assays with T103 treated Vigna radiata, Vigna mungo and Hordeum vulgare confirmed 'non-species specific' growth promotion effects of T103. At lower metal concentration, T103 treatment was found to completely negate the impact of metal stress [60 % increase in radicle length (RL) with no significant decrease in %germination (%G)]. Even at 10 mM metal, T103 inoculation gave 80 % increase in %G and >50 % increase in RL. In vitro experiments confirmed high metal reduction capacity (47 %-Cr, 35 %-Ni and 42 %-Zn) of T103 at concentrations as high as 4 mM. At maximum residual concentrations of malathion (440 ppm) and carbofuran (100 ppb) reported in agricultural soils, T103 maintained 80 and 100 % survivability, respectively. T103 treatment has improved %G and RL in all three hosts challenged with pesticide. Isolate T103 was found to effectively suppress growth of three major root pathogens: Macrophomina phaseolina (65.83 %) followed by Sclerotium rolfsii (19.33 %) and Fusarium oxysporum (19.18 %). In the light of these observations, native T. harzianum (T103) seems to be a competent biocontrol agent for tropical agricultural soils contaminated with residual pesticides and heavy metals.

  20. Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent.

    PubMed

    Michavila, G; Adler, C; De Gregorio, P R; Lami, M J; Caram Di Santo, M C; Zenoff, A M; de Cristobal, R E; Vincent, P A

    2017-07-01

    Citrus canker is a worldwide-distributed disease caused by Xanthomonas citri subsp. citri. One of the most used strategies to control the disease is centred on copper-based compounds that cause environmental problems. Therefore, it is of interest to develop new strategies to manage the disease. Previously, we reported the ability of the siderophore pyochelin, produced by the opportunistic human pathogen Pseudomonas aeruginosa, to inhibit in vitro several bacterial species, including X. citri subsp. citri. The action mechanism, addressed with the model bacterium Escherichia coli, was connected to the generation of reactive oxygen species (ROS). This work aimed to find a non-pathogenic strain from the lemon phyllosphere that would produce pyochelin and therefore serve in canker biocontrol. An isolate that retained its capacity to colonise the lemon phyllosphere and inhibit X. citri subsp. citri was selected and characterised as Pseudomonas protegens CS1. From a liquid culture of this strain, the active compound was purified and identified as the pyochelin enantiomer, enantio-pyochelin. Using the producing strain and the pure compound, both in vitro and in vivo, we determined that the action mechanism of X. citri subsp. citri inhibition also involved the generation of ROS. Finally, the potential application of P. protegens CS1 was evaluated by spraying the bacterium in a model that mimics the natural X. citri subsp. citri infection. The ability of P. protegens CS1 to reduce canker formation makes this strain an interesting candidate as a biocontrol agent. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Plot- and landscape-level changes in climate and vegetation following defoliation of exotic saltcedar (Tamarix sp.) from the biocontrol agent Diorhabda carinulata along a stream in the Mojave Desert (USA)

    USGS Publications Warehouse

    Bateman, H.L.; Nagler, P.L.; Glenn, E.P.

    2013-01-01

    The biocontrol agent, northern tamarisk beetle (Diorhabda carinulata), has been used to defoliate non-native saltcedar (Tamarix spp.) in USA western riparian systems since 2001. Biocontrol has the potential to impact biotic communities and climatic conditions in affected riparian areas. To determine the relationships between biocontrol establishment and effects on vegetation and climate at the plot and landscape scales, we measured temperature, relative humidity, foliage canopy, solar radiation, and used satellite imagery to assess saltcedar defoliation and evapotranspiration (ET) along the Virgin River in the Mojave Desert. Following defoliation solar radiation increased, daily humidity decreased, and maximum daily temperatures tended to increase. MODIS and Landsat satellite imagery showed defoliation was widespread, resulting in reductions in ET and vegetation indices. Because biocontrol beetles are spreading into new saltcedar habitats on arid western rivers, and the eventual equilibrium between beetles and saltcedar is unknown, it is necessary to monitor trends for ecosystem functions and higher trophic-level responses in habitats impacted by biocontrol.

  2. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    USGS Publications Warehouse

    Paxton, Eben H.; Theimer, Tad C.; Sogge, Mark K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a well-studied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment.

  3. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    USGS Publications Warehouse

    Paxton, E.H.; Theimer, T.C.; Sogge, M.K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a wellstudied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment. ?? The Cooper Ornithological Society 2011.

  4. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens.

    PubMed

    Zachow, Christin; Berg, Christian; Müller, Henry; Monk, Jana; Berg, Gabriele

    2016-10-10

    Trichoderma strains exhibit enormous potential for applications in biotechnology, in particular as biocontrol agents against pathogens. However, little is known about the diversity of plant-associated Trichoderma communities at a global scale and their antagonistic spectrum. In order to gather information about structure and function, we compared Trichoderma biomes of endemic (Aeonium, Diospyros, Hebe, Rhododendron) and cosmopolitan plants (Zea mays) in a global study encompassing the area Northwest Africa to New Zealand via the European Alps and Madagascar. At the quantitative level we found no differences between cosmopolitan and endemic plants. Statistically significant differences were detected at the qualitative level: Trichoderma populations of endemic plants were highly specific and diverse with hot spots appearing in Madagascar and New Zealand. By contrast, maize plants from all sites shared the majority of Trichoderma species (65.5%). Interestingly, the high above ground biodiversity in ecosystems containing endemic plants was confirmed by a high below ground Trichoderma diversity. Despite the differences, we found a global Trichoderma core community shared by all analysed plants, which was dominated by T. koningii and T. koningiopsis. Amplicon-based network analyses revealed a high similarity between maize Trichoderma grown world-wide and distinct populations of endemic plants. Furthermore, Trichoderma strains from endemic plants showed a higher antagonistic activity against fungal pathogens compared to maize-associated strains. Our results showed that endemic plants are associated with a specific Trichoderma microbiome which possesses a high antagonistic activity indicating that it has potential to be used for biocontrol purposes.

  5. Phylogeny of certain biocontrol agents with special reference to nematophagous fungi based on RAPd.

    PubMed

    Jarullah, B M S; Subramanian, R B; Jummanah, M S J

    2005-01-01

    A number of phylogenetic studies have been carried out on biocontrol agents having similar biological control activity. However, no work has been carried out to determine the phylogenetic relationship amongst various groups of biological control agents with varied biocontrol properties. Our aim was to derive a phylogenetic relationship between diverse biocontrol agents belonging to the deuteromycetes and determine its correlation with their spore morphology and their biocontrol activity. RAPD was used to assess genomic variability in fungi used as biological control agents which included ten isolates of nematophagous fungi such as Arthrobotrys sp., Duddingtonia sp., Paecilomyces sp. and Verticillium sp., along with two isolates of fungal biocontrol agents such as Trichoderma sp. and two isolates of entomopathogenic fungi including Beauveria sp. A plant pathogenic fungus, Verticillium alboatrum was also included to increase the diversity of Deuteromycetes used. A similarity matrix was created using Jaccard's similarity coefficient & clustering was done using unweighted pair group arithmetic mean method (UPGMA). The final dendogram was created using a combination of two programs, Freetree and TreeExplorer. The phylogenetic tree constructed from the RAPD data showed marked genetic variability among different strains of the same species. The spore morphologies of all these fungi were also studied. The phylogenetic pattern could be correlated with the conidial and conidiophore morphology, a criterion commonly used for the classification of fungi in general and Deuteromycetes in particular. Interestingly, the inferred phylogeny showed no significant grouping based on either their biological control properties or the trapping structures amongst the nematophagous fungi as reported earlier by other workers. The phylogenetic pattern was also similar to the tree obtained by comparing the 18S rRNA sequences from the database. The result clearly indicates that the classical

  6. Use of mixed cultures of biocontrol agents to control sheep nematodes.

    PubMed

    Baloyi, M A; Laing, M D; Yobo, K S

    2012-03-23

    Biological control is a promising non-chemical approach for the control of gastrointestinal nematodes of sheep. Use of combinations of biocontrol agents have been reported to be an effective method to increase the efficacy of biological control effects. In this study, combinations of either two Bacillus thuringiensis (Bt) or Clonostachys rosea (C. rosea) isolates and Bt+C. rosea isolates were evaluated in vitro in microtitre plates for their biocontrol activity on sheep nematodes. The Baermann technique was used to extract the surviving L3 larval stages of intestinal nematodes and counted under a dissecting microscope to determine the larval counts. Results indicate that there was a significant reduction of nematode counts due to combination of biocontrol agents (P<0.001). Combinations of Bt isolates reduced nematodes counts by 72.8%, 64% and 29.8%. The results revealed a control level of 57% when C. rosea isolates P3+P8 were combined. Combination of Bt and C. rosea isolates B10+P8 caused the greatest mortality of 76.7%. Most combinations were antagonistic, with only a few combinations showing an additive effect. None were synergistic. The isolate combinations were more effective than when isolates were used alone. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Polymeric nanoparticles as an oral delivery system for biocontrol agents for the brushtail possum (Trichosurus vulpecula).

    PubMed

    McDowell, A; McLeod, B J; Rades, T; Tucker, I G

    2009-12-01

    To investigate polymeric nanoparticles as an oral delivery system for protein biocontrol agents for control of the brushtail possum, Trichosurus vulpecula. Insulin-loaded poly(ethyl 2-cyanoacrylate) (PECA) nanoparticles were prepared using interfacial polymerisation, and characterised for size, zeta potential, and efficiency of encapsulation of insulin. In-vitro release of insulin-loaded PECA nanoparticles was quantified using reverse-phase high-pressure liquid chromatography (HPLC). The in-vivo pharmacokinetics of insulin in PECA nanoparticles was investigated following I/V administration, and when injected directly into the caecum alone or in conjunction with the permeation enhancer EDTA. Blood samples were collected at intervals from -5 to 180 minutes, and the concentration of insulin in plasma was quantified using a radioimmunoassay (RIA) validated for possum plasma. Poly(ethyl 2-cyanoacrylate) nanoparticles were produced with a uniform particle size of 200-300 nm, and the mean entrapment of insulin was 78%. In-vitro release of insulin from the PECA nanoparticles was controlled, although incomplete, and approximately 30% of the insulin remained entrapped. The bioavailability of insulin when administered in a PECA nanoparticulate formulation injected directly into the caecum was <1%, and was not increased by addition of the permeation enhancer. The nanoparticulate formulations investigated as part of this study resulted in low bioavailability of the peptide insulin in the brushtail possum.

  8. Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt

    PubMed Central

    El_Komy, Mahmoud H.; Saleh, Amgad A.; Eranthodi, Anas; Molan, Younes Y.

    2015-01-01

    The use of novel isolates of Trichoderma with efficient antagonistic capacity against Fusarium oxysporum f. sp. lycopersici (FOL) is a promising alternative strategy to pesticides for tomato wilt management. We evaluated the antagonistic activity of 30 isolates of T. asperellum against 4 different isolates of FOL. The production of extracellular cell wall degrading enzymes of the antagonistic isolates was also measured. The random amplified polymorphic DNA (RAPD) method was applied to assess the genetic variability among the T. asperellum isolates. All of the T. asperellum isolates significantly reduced the mycelial growth of FOL isolates but the amount of growth reduction varied significantly as well. There was a correlation between the antagonistic capacity of T. asperellum isolates towards FOL and their lytic enzyme production. Isolates showing high levels of chitinase and β-1,3-glucanase activities strongly inhibited the growth of FOL isolates. RAPD analysis showed a high level of genetic variation among T. asperellum isolates. The UPGMA dendrogram revealed that T. asperellum isolates could not be grouped by their anta- gonistic behavior or lytic enzymes production. Six isolates of T. asperellum were highly antagonistic towards FOL and potentially could be used in commercial agriculture to control tomato wilt. Our results are consistent with the conclusion that understanding the genetic variation within Trichoderma isolates and their biochemical capabilities are required for the selection of effective indigenous fungal strains for the use as biocontrol agents. PMID:25774110

  9. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests.

    PubMed

    St Leger, Raymond J; Wang, Chengshu

    2010-01-01

    Molecular biology methods have elucidated pathogenic processes in several fungal biocontrol agents including two of the most commonly applied entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. In this review, we describe how a combination of molecular techniques has: (1) identified and characterized genes involved in infection; (2) manipulated the genes of the pathogen to improve biocontrol performance; and (3) allowed expression of a neurotoxin from the scorpion Androctonus australis. The complete sequencing of four exemplar species of entomopathogenic fungi including B. bassiana and M. anisopliae will be completed in 2010. Coverage of these genomes will help determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. Such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies to be used for different ecosystems and avoid the possibility of the host developing resistance.

  10. Releasing biocontrol agents: Risk assessment and overdue reform

    Treesearch

    Bob Peterson; Sharlene Sing

    2007-01-01

    Although the need for universally instituting formal risk assessment (RA) in the screening and approval process for non-native biological control (BC) agent releases has been widely acknowledged for the past several years, little seems to have been accomplished in terms of codifying this practice within a regulatory framework. Given the low success rate of classical BC...

  11. RNA Interference of Endochitinases in the Sugarcane Endophyte Trichoderma virens 223 Reduces Its Fitness as a Biocontrol Agent of Pineapple Disease

    PubMed Central

    Romão-Dumaresq, Aline S.; de Araújo, Welington Luiz; Talbot, Nicholas J.; Thornton, Christopher R.

    2012-01-01

    The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-ß-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-ß-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-ß-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte. PMID:23110120

  12. RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease.

    PubMed

    Romão-Dumaresq, Aline S; de Araújo, Welington Luiz; Talbot, Nicholas J; Thornton, Christopher R

    2012-01-01

    The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-ß-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-ß-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-ß-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte.

  13. Biocontrol agents promote growth of potato pathogens, depending on environmental conditions.

    PubMed

    Cray, Jonathan A; Connor, Mairéad C; Stevenson, Andrew; Houghton, Jonathan D R; Rangel, Drauzio E N; Cooke, Louise R; Hallsworth, John E

    2016-05-01

    There is a pressing need to understand and optimize biological control so as to avoid over-reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol-strain, Bacillus sp. JC12GB43, and potato-pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near-complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out-perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth-rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2-M glycerol) by up to 570%. Culture-based assays involving macromolecule-stabilizing (kosmotropic) compatible solutes provided proof-of-principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field-relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode-of-behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean.

    PubMed

    Larralde-Corona, C P; Santiago-Mena, M R; Sifuentes-Rincón, A M; Rodríguez-Luna, I C; Rodríguez-Pérez, M A; Shirai, K; Narváez-Zapata, J A

    2008-08-01

    Native strains of Trichoderma isolated from sorghum and common bean crop soils were investigated to assess their biocontrol potential over the phytopathogenic fungus Macrophomina phaseolina, isolated from diseased plants. The Trichoderma strains were characterized with a polyphasic approach, which combined the analysis of their morphological characteristics, enzymatic activity, macro- and microculture test results, rDNA restriction patterns (AFLP), ITS1-5.8S-ITS2 rDNA sequences, and protein profiles. The integration of these data sets can be used to select new isolates as biological control agents against native fungal phytopathogens. In general, we observed a positive correlation between the secretion of beta-1,3-glucanase and N-acetylhexosaminidase, and the biocontrol capacities of all the Trichoderma isolates. Strains with the best hyperparasitic behavior against M. phaseolina isolated from diseased bean and sorghum were Trichoderma sp. (TCBG-2) and Trichoderma koningiopsis (TCBG-8), respectively.

  15. [Optimization of biocontrol agent Burkholderia pyrrocinia strain JK-SH007 fermentation by response surface methodology].

    PubMed

    Li, Hao; Ren, Jiahong; Ye, Jianren

    2013-02-01

    In order to improve ferment efficiency of biocontrol agent Burkholderia pyrrocinia JK-SH007, the fermentation conditions of this strain were optimized. The optimal fermentation conditions were corn steep liquor (13.88 g/L) and glucose (3.37 g/L) by screening test, steepest ascent experiments and response surface analysis. The results showed that the cell density of JK-SH007 (1.18 x 10(9) CFU/mL) increased 1.35 times than before, and there was a 28.84% increase in antifungal activity.

  16. The impact of biotechnology on hyphomycetous fungal insect biocontrol agents.

    PubMed

    Hegedus, D D; Khachatourians, G G

    1995-01-01

    The potential for the control of insect pests by entomopathogenic fungi has been touted for decades, if not centuries. Only recently have advances in biotechnology provided the tools for indepth analysis of the mechanisms involved in pathogenesis and host death at the molecular level. This review outlines the current state of knowledge regarding the mode of infection and targets several key components that are amenable to improvement via biotechnology. Realization of the considerable economic potential of fungal bioinsecticides can occur only through a combined and coordinated effort involving fundamental science, formulation technology and field applications.

  17. Phytosanitation and the development of transgenic biocontrol agents

    USDA-ARS?s Scientific Manuscript database

    By the year 2050, there will be at least 9 billion people on Earth to feed using the same amount or less land and water than is available today. Currently, about one-third of all potential agricultural commodities grown worldwide are lost to diseases, weeds, insects and other pests. Farmers will be ...

  18. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks.

    PubMed

    Duke, Kelly A; Becker, Michael G; Girard, Ian J; Millar, Jenna L; Dilantha Fernando, W G; Belmonte, Mark F; de Kievit, Teresa R

    2017-06-19

    The biological control agent Pseudomonas chlororaphis PA23 is capable of protecting Brassica napus (canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. While we have elucidated bacterial genes and gene products responsible biocontrol, little is known about how the host plant responds to bacterial priming on the leaf surface, including global changes in gene activity in the presence and absence of S. sclerotiorum. Application of PA23 to the aerial surfaces of canola plants reduced the number of S. sclerotiorum lesion-forming petals by 91.1%. RNA sequencing of the host pathogen interface showed that pretreatment with PA23 reduced the number of genes upregulated in response to S. sclerotiorum by 16-fold. By itself, PA23 activated unique defense networks indicative of defense priming. Genes encoding MAMP-triggered immunity receptors detecting flagellin and peptidoglycan were downregulated in PA23 only-treated plants, consistent with post-stimulus desensitization. Downstream, we observed reactive oxygen species (ROS) production involving low levels of H2O2 and overexpression of genes associated with glycerol-3-phosphate (G3P)-mediated systemic acquired resistance (SAR). Leaf chloroplasts exhibited increased thylakoid membrane structures and chlorophyll content, while lipid metabolic processes were upregulated. In addition to directly antagonizing S. sclerotiorum, PA23 primes the plant defense response through induction of unique local and systemic defense networks. This study provides novel insight into the effects of biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of biocontrol systems as an alternative to chemical pesticides for protection of important crop systems.

  19. Benefits of pre-release population genetics: a case study using Psyttalia lounsburyi, a biocontrol agent of the olive fruit fly in California

    USDA-ARS?s Scientific Manuscript database

    From a pest management perspective, limited knowledge on the genetics of released biocontrol agents has been repeatedly considered as one possible cause of failures in classical biological control. Introduced biocontrol agents are expected to experience a loss in genetic diversity as the result of s...

  20. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    NASA Astrophysics Data System (ADS)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed

  1. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  2. Biocontrol potential of Halotolerant bacterial chitinase from high yielding novel Bacillus Pumilus MCB-7 autochthonous to mangrove ecosystem.

    PubMed

    Rishad, K S; Rebello, Sharrel; Shabanamol, P S; Jisha, M S

    2017-04-01

    The multifaceted role of chitinase in medicine, agriculture, environmental remediation and various other industries greatly demands the isolation of high yielding chitinase producing microorganisms with improved properties. The current study aimed to investigate the isolation, characterization and biocontrol prospective of chitinase producing bacterial strains autochthonous to the extreme conditions of mangrove ecosystems. Among the 51 bacterial isolates screened, Bacillus pumilus MCB-7 with highest chitinase production potential was identified and confirmed by 16S rDNA typing. Chitinase enzyme of MCB-7 was purified; the chitin degradation was evaluated by SEM and LC-MS. Unlike previously reported B.pumilus isolates, MCB-7 exhibited highest chitinase activity of 3.36U/mL, active even at high salt concentrations and temperature up to 60°C. The crude as well as purified enzyme showed significant antimycotic activity against agricultural pathogens such as Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Ceratorhiza hydrophila and Fusarium oxysporum. The enzyme also exhibited biopesticidal role against larvae of Scirpophaga incertulas (Walker). [Lep.: Pyralidae], a serious agricultural pest of rice. The high chitinolytic and antimycotic potential of MCB-7 increases the prospects of the isolate as an excellent biocontrol agent. To the best of our knowledge, this is the first report of high chitinase yielding Bacillus pumilus strain from mangrove ecosystem with a biocontrol role against phytopathogenic fungi and insect larval pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Detection and quantification by PCR assay of the biocontrol agent Pantoea agglomerans CPA-2 on apples.

    PubMed

    Soto-Muñoz, Lourdes; Teixidó, Neus; Usall, Josep; Viñas, Inmaculada; Torres, Rosario

    2014-04-03

    The registration of biological control agents requires the development of monitoring systems to detect and quantify the agent in the environment. Pantoea agglomerans CPA-2 is an effective biocontrol agent for postharvest diseases of citrus and pome fruits. The monitoring of CPA-2 in postharvest semi-commercial trials was evaluated by Rodac impression plates and the colonies isolated were confirmed by conventional PCR using the SCAR primers PAGA1 and PAGB1. Samples were taken from different surfaces that had contact with CPA-2, the surrounding environment and working clothes worn by handlers. Moreover, population dynamics of the strain CPA-2 were determined on apple surfaces using both the classical plating technique and real-time quantitative PCR (qPCR). A qPCR assay using a 3'-minor groove-binding (MGB) probe was developed for the specific detection and quantification of P. agglomerans strain CPA-2. Based on the nucleotide sequence of a SCAR fragment of CPA-2, one primer set and TaqMan MGB probe were designed. The primers SP2-F/SP2-R and the TaqMan MGB probe showed a specific detection of strain CPA-2 on apple surfaces, which was verified tested against purified DNA from 17 strains of P. agglomerans, 4 related Pantoea species, and 21 bacterial strains from other genera isolated from whole and also freshly-cut fruit and vegetables. The detection level was approximately 10(3) cells per reaction, and the standard curve was linear within a range of 5log units. Results from semi-commercial trials showed that CPA-2 had a low impact. The maximum persistence of P. agglomerans CPA-2 was not longer than 5days in plastic boxes stored at 0°C. Significant differences in CPA-2 population level dynamics were observed in results obtained by qPCR and dilution plating. These differences may indicate the presence of non-degraded DNA from non-viable cells. In conclusion, qPCR is a novel potential tool to quickly and specifically monitor recent surface colonisation by CPA-2

  4. Carbon requirements of some nematophagous, entomopathogenic and mycoparasitic hyphomycetes as fungal biocontrol agents.

    PubMed

    Sun, ManHong; Liu, XingZhong

    2006-05-01

    Thirty-three carbon sources were evaluated for their effects on spore germination, hyphal growth and sporulation of 11 fungal biocontrol agents, i.e. the nematophagous fungi Paecilomyces lilacinus, Pochonia chlamydosporia, Hirsutella rhossiliensis, H. minnesotensis and Arkansas Fungus 18, the entomopathogenic fungi Lecanicillium lecanii, Beauveria bassiana and Metarhizium anisopliae, and the mycoparasitic fungus Trichoderma viride. Variations in carbon requirements were found among the fungal species or strains tested. All strains studied except for T. viride grew on most carbon sources, although B. bassiana had more fastidious requirements for spore germination. Monosaccharides and disaccharides were suitable for fungal growth. For most isolates, D-glucose, D-mannose, sucrose and trehalose were superior to pectin and soluble starch among the polysaccharides and lactic acid among the organic acids. Both ethanol and methanol could accelerate growth of most isolates but not biomass. D-mannose, D-fructose and D-xylose were excellent carbon sources for sporulation, while D-glucose, sucrose, cellobiose, trehalose, chitin, dextrin, gelatin and lactic acid were better for some isolates. Neither sorbic acid nor linoleic acid could be utilized as a single carbon source. These findings provided a better understanding of the nutritional requirements of different fungal biocontrol agents that can benefit the mass production process.

  5. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents?

    PubMed

    Pandin, Caroline; Le Coq, Dominique; Canette, Alexis; Aymerich, Stéphane; Briandet, Romain

    2017-02-16

    Almost one-third of crop yields are lost every year due to microbial alterations and diseases. The main control strategy to limit these losses is the use of an array of chemicals active against spoilage and unwanted pathogenic microorganisms. Their massive use has led to extensive environmental pollution, human poisoning and a variety of diseases. An emerging alternative to this chemical approach is the use of microbial biocontrol agents. Biopesticides have been used with success in several fields, but a better understanding of their mode of action is necessary to better control their activity and increase their use. Very few studies have considered that biofilms are the preferred mode of life of microorganisms in the target agricultural biotopes. Increasing evidence shows that the spatial organization of microbial communities on crop surfaces may drive important bioprotection mechanisms. The aim of this review is to summarize the evidence of biofilm formation by biocontrol agents on crops and discuss how this surface-associated mode of life may influence their biology and interactions with other microorganisms and the host and, finally, their overall beneficial activity.

  6. Production of the biocontrol agent Pantoea agglomerans strain CPA-2 using commercial products and by-products.

    PubMed

    Costa, E; Teixidó, N; Usall, J; Atarés, E; Viñas, I

    2001-08-01

    The aim of this paper was to find the nitrogen and carbon sources that provide maximum biomass production of strain CPA-2 of the biocontrol agent Pantoea agglomerans and minimum cost of media, whilst maintaining biocontrol efficacy. To reduce the cost of media, commercial products and by-products were tested. P. agglomerans can be produced using a combination of nitrogen sources such as yeast extract (5 g l(-1)) and dry beer yeast (10 g l(-1)) with inexpensive carbohydrates such as sucrose (10 g l(-1)) and molasses (20 g l(-1)), respectively, maintaining the efficacy of the biocontrol agent against Penicillium digitatum and P. italicum on oranges. The results obtained in this study could be used to provide a reliable basis for a scale-up of this fermentation process to an industrial level.

  7. Application of terminal restriction fragment length polymorphism (T-RFLP) analysis to monitor effect of biocontrol agents on rhizosphere microbial community of hot pepper (Capsicum annuum L.).

    PubMed

    Kim, Young Tae; Cho, Myoungho; Jeong, Je Yong; Lee, Hyang Burm; Kim, Seung Bum

    2010-10-01

    Microbial communities in hot pepper (Capsicum annuum L.) cultivation fields under different cultivation methods were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis. Rhizosphere soil and leaf samples were collected from control, conventional and nature-friendly cultivation fields between May and July, 2009. Two Bacillus subtilis strains were applied to nature-friendly cultivation fields as biocontrol agents during the sampling period. Relative abundances of bacteria and plant pathogenic fungi related T-RFs were also measured to monitor the effect of biocontrol agents on potential plant pathogenic fungi. In the principal component analysis (PCA) based on T-RFLP profiles, the microbial communities from rhizosphere soil samples in July, including bacteria and fungi, showed distinct difference between nature-friendly cultivation fields and other cultivation fields. However, there was no correlation between cultivation methods and leaf microbial communities at any sampling period. Changes in the abundance of bacteria related T-RF in the rhizosphere of nature-friendly cultivation fields were observed clearly two months after application of biocontrol agent, while the abundance of plant pathogenic fungi related T-RFs significantly decreased.

  8. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica).

    PubMed

    Vero, Silvana; Garmendia, Gabriela; González, M Belén; Bentancur, Oscar; Wisniewski, Michael

    2013-03-01

    Psychrotrophic yeasts were isolated from Antarctic soils, selected based on their ability to grow in apple juice at low temperatures, and were evaluated as potential biocontrol agents for the management of postharvest diseases of apple during cold storage. Among the species recovered, an isolate of Leucosporidium scottii, designated At17, was identified as a good biocontrol agent for blue and gray mold of two apple cultivars. The selected isolate produced soluble and volatile antifungal substances that were inhibitory to apple pathogens. Siderophore production was also demonstrated, but it did not appear to play a role in pathogen inhibition. The selected yeast had the capacity to form a biofilm when grown in apple juice, which is considered an important attribute of postharvest antagonists to successfully colonize wounds and intact fruit surfaces. At17 was resistant to commonly used postharvest fungicides, so application of a combination of low-dose fungicide along with the biocontrol agent could be used as an integrated management practice. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Enhancement of Biocontrol Activities and Cyclic Lipopeptides Production by Chemical Mutagenesis of Bacillus subtilis XF-1, a Biocontrol Agent of Plasmodiophora brassicae and Fusarium solani.

    PubMed

    Li, Xing-Yu; Yang, Jing-Jing; Mao, Zi-Chao; Ho, Hon-Hing; Wu, Yi-Xing; He, Yue-Qiu

    2014-12-01

    Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P. brassicae. Four mutants exhibited inhibition activity significantly higher than the wild type. The cell extracts of these mutants and the XF-1 were subjected to matrix-assisted laser desorption ionization-time of flight mass spectra analysis, and three families of cyclic lipopeptides (CLPs) fengycin, surfactin and iturin were identified from the parental strain and the screened mutants. However, the relative contents and compound diversity changed after mutagenesis, and there was slight variation in the surfactin and fengycin. Notably, only 5 iturin components were discovered from the wild strain XF-1, but 13 were obtained from the mutant strains, and the relative CLPs contents of all mutant strains increased substantially. The results suggested that CLPs might be one of main biocontrol mechanisms of the clubroot disease by XF-1. The 4 mutants are far more effective than the parental strain, and they would be promising biocontrol candidates not only against P. brassicae but probably other plant diseases caused by fungi.

  10. Human exposure to airborne fungi from genera used as biocontrol agents in plant production.

    PubMed

    Madsen, Anne Mette; Hansen, Vinni Mona; Meyling, Nicolai Vitt; Eilenberg, Jørgen

    2007-01-01

    The fungi Trichoderma harzianum, T. polysporum, T. viride, Paeciliomyces fumosoroseus, P. lilacinus, Verticillium/lecanicillium lecanii, Ulocladium oudemansii, U. atrum and Beauveria bassiana are used or considered to be used for biocontrol of pests and plant diseases. Human exposure to these fungi in environments where they may naturally occur or are used as biocontrol agents has not been directly investigated to date. This review aims to provide an overview of the current knowledge of human exposure to fungi from the relevant genera. The subject of fungal taxonomy due to the rapid development of this issue is also discussed. B. bassiana, V. lecanii, T. harzianum, T. polysporum, P. lilacinus and U. oudemansii were infrequently present in the air and thus people in general seem to be seldom exposed to these fungi. However, when V. lecanii was present, high concentrations were measured. Fungi from the genera Trichoderma, Paecilomyces and Ulocladium were rarely identified to the species level and sometimes high concentrations were reported. T. viride and U. atrum were detected frequently in different environments and sometimes with a high frequency of presence in samples. Thus, people seem to be frequently exposed to these fungi. Sequence data have led to recent revisions of fungal taxonomy, and in future studies it is important to specify the taxonomy used for identification, thus making comparisons possible.

  11. Phaeobacter inhibens as biocontrol agent against Vibrio vulnificus in oyster models.

    PubMed

    Porsby, Cisse Hedegaard; Gram, Lone

    2016-08-01

    Molluscan shellfish can cause food borne diseases and here we investigated if addition of Vibrio-antagonising bacteria could reduce Vibrio vulnificus in model oyster systems and prevent its establishment in live animals. Phaeobacter inhibens, which produces an antibacterial compound, tropodithietic acid (TDA), inhibited V. vulnificus as did pure TDA (MIC of 1-3.9 μM). P. inhibens DSM 17395 (at 10(6) cfu/ml) eradicated 10(5) cfu/ml V. vulnificus CMCP6 (a rifampicin resistant variant) from a co-culture oyster model system (oyster juice) whereas the pathogen grew to 10(7) cfu/ml when co-cultured with a TDA negative Phaeobacter mutant. P. inhibens grew well in oyster juice to 10(8) CFU/ml and sterile filtered samples from these cultures were inhibitory to Vibrio spp. P. inhibens established itself in live European flat oysters (Ostrea edulis) and remained at 10(5) cfu/g for five days. However, the presence of P. inhibens could not prevent subsequently added V. vulnificus from entering the live animals, likely because of too low levels of the biocontrol strain. Whilst the oyster model studies provided indication that P. inhibens DSM 17395 could be a good candidate as biocontrol agent against V. vulnificus further optimization is need in the actual animal rearing situation.

  12. Biocontrol: the potential of entomophilic nematodes in insect management.

    PubMed

    Webster, J M

    1980-10-01

    A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management.

  13. Biocontrol: The Potential of Entomophilic Nematodes in Insect Management

    PubMed Central

    Webster, John M.

    1980-01-01

    A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management. PMID:19300702

  14. Global changes in expression of grapefruit peel tissue in response to the yeast biocontrol agent, Metschnikowia fructicola

    USDA-ARS?s Scientific Manuscript database

    To gain a better understanding of the molecular changes taking place in citrus fruit tissue following the application of the yeast biocontrol agent, Metschnikowia fructicola, microarray analysis was performed on grapefruit surface wounds using an Affymetrix Citrus GeneChip. Using a cut off of p<0.0...

  15. Hrp mutant bacteria as biocontrol agents: toward a sustainable approach in the fight against plant pathogenic bacteria.

    PubMed

    Hanemian, Mathieu; Zhou, Binbin; Deslandes, Laurent; Marco, Yves; Trémousaygue, Dominique

    2013-10-01

    Sustainable agriculture necessitates development of environmentally safe methods to protect plants against pathogens. Among these methods, application of biocontrol agents has been efficiently used to minimize disease development. Here we review current understanding of mechanisms involved in biocontrol of the main Gram-phytopathogenic bacteria-induced diseases by plant inoculation with strains mutated in hrp (hypersensitive response and pathogenicity) genes. These mutants are able to penetrate plant tissues and to stimulate basal resistance of plants. Novel protection mechanisms involving the phytohormone abscisic acid appear to play key roles in the biocontrol of wilt disease induced by Ralstonia solanacearum in Arabidopsis thaliana. Fully understanding these mechanisms and extending the studies to other pathosystems are still required to evaluate their importance in disease protection.

  16. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent.

    PubMed

    Nagórska, Krzysztofa; Bikowski, Mariusz; Obuchowski, Michał

    2007-01-01

    Intensive cultivation of plants in the monoculture field system in order to feed the continuously growing human population creates a need for their protection from the variety of natural competitors such as: bacteria, fungi, insects as well as other plants. The increase in the use of chemical substances in the 20th century has brought many effective solutions for the agriculture. However, it was extremely difficult to obtain a substance, which would be directed solely against a specific plant pathogen and would not be harmful for the environment. In the late 1900's scientists began trying to use natural antagonisms between resident soil organism to protect plants. This phenomenon was named biocontrol. Biological control of plants by microorganisms is a very promising alternative to an extended use of pesticides, which are often expensive and accumulate in plants or soil, having adverse effects on humans. Nonpathogenic soil bacteria living in association with roots of higher plants enhance their adaptive potential and, moreover, they can be beneficial for their growth. Here, we present the current status of the use of Bacillus subtilis in biocontrol. This prevalent inhabitant of soil is widely recognized as a powerful biocontrol agent. Naturally present in the immediate vicinity of plant roots, B. subtilis is able to maintain stable contact with higher plants and promote their growth. In addition, due to its broad host range, its ability to form endospores and produce different biologically active compounds with a broad spectrum of activity, B. subtilis as well as other Bacilli are potentially useful as biocontrol agents.

  17. Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying.

    PubMed

    Yánez-Mendizábal, V; Viñas, I; Usall, J; Torres, R; Solsona, C; Abadias, M; Teixidó, N

    2012-05-01

    To prepare commercially acceptable formulations of Bacillus subtilis CPA-8 by spray-drying with long storage life and retained efficacy to control peach and nectarine brown rot caused by Monilinia spp. CPA-8 24-h- and 72-h-old cultures were spray dried using 10% skimmed milk, 10% skimmed milk plus 10% MgSO(4) , 10% MgSO(4) and 20% MgSO(4) as carriers/protectants. All carriers/protectants gave good percentages of powder recovery (28-38%) and moisture content (7-13%). CPA-8 survival varied considerably among spray-dried 24-h- and 72-h-old cultures. Seventy-two hours culture spray dried formulations showed the highest survival (28-32%) with final concentration products of 1·6-3·3 × 10(9) CFU g(-1) , while viability of 24-h-old formulations was lower than 1%. Spray-dried 72-h-old formulations were selected to subsequent evaluation. Rehydration of cells with water provided a good recovery of CPA-8 dried cells, similar to other complex rehydration media tested. Spray-dried formulations stored at 4 ± 1 and 20 ± 1°C showed good shelf life during 6 months, and viability was maintained or slightly decreased by 0·2-0·3-log. CPA-8 formulations after 4- and 6 months storage were effective in controlling brown rot caused by Monilinia spp. on nectarines and peaches resulting in a 90-100% reduction in disease incidence. Stable and effective formulations of biocontrol agent B. subtilis CPA-8 could be obtained by spray-drying. New shelf-stable and effective formulations of a biocontrol agent have been obtained by spray-drying to control brown rot on peach. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  18. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents.

    PubMed

    Bhunchoth, A; Phironrit, N; Leksomboon, C; Chatchawankanphanich, O; Kotera, S; Narulita, E; Kawasaki, T; Fujie, M; Yamada, T

    2015-04-01

    To isolate and characterize novel bacteriophages infecting the phytopathogen, Ralstonia solanacearum, and to evaluate them as resources with potential uses in the biocontrol of bacterial wilt. Fourteen phages infecting R. solanacearum were isolated from soil samples collected in Chiang Mai, Thailand. The phages showed different host ranges when tested against 59 R. solanacearum strains isolated from Thailand and Japan. These phages were characterized as nine podoviruses and five myoviruses based on their morphology. Podovirus J2 in combination with another podovirus (φRSB2) lysed host cells very efficiently in contaminated soil. J2 treatment prevented wilting of tomato plants infected with a highly virulent R. solanacearum strain. Treatment with J2 effectively reduced the amount of the bacterial wilt pathogen in contaminated soil and prevented bacterial wilt of tomato in pot experiments. Myovirus J6 possessed jumbo phage features, giving a unique opportunity to study its utilization as a biocontrol agent. As exemplified by J2, the phages isolated in this study represent valuable resources with potential uses in biocontrol of bacterial wilt. A rare jumbo phage J6 served as a valuable subject to understand and utilize this new group of phages. © 2015 The Society for Applied Microbiology.

  19. Tailoring biocontrol to maximize top-down effects: on the importance of underlying site fertility.

    PubMed

    Hovick, Stephen M; Carson, Walter P

    2015-01-01

    The degree to which biocontrol agents impact invasive plants varies widely across landscapes, often for unknown reasons. Understanding this variability can help optimize invasive species management while also informing our understanding of trophic linkages. To address these issues, we tested three hypotheses with contrasting predictions regarding the likelihood of biocontrol success. (1) The biocontrol effort hypothesis: invasive populations are regulated primarily by top-down effects, predicting that increased biocontrol efforts alone (e.g., more individuals of a given biocontrol agent or more time since agent release) will enhance biocontrol success. (2) The relative fertility hypothesis: invasive populations are regulated primarily by bottom-up effects, predicting that nutrient enrichment will increase dominance by invasives and thus reduce biocontrol success, regardless of biocontrol efforts. (3) The fertility-dependent biocontrol effort hypothesis: top-down effects will only regulate invasive populations if bottom-up effects are weak. It predicts that greater biocontrol efforts will increase biocontrol success, but only in low-nutrient sites. To test these hypotheses, we surveyed 46 sites across three states with prior releases of Galerucella beetles, the most common biocontrol agents used against invasive purple loosestrife (Lythrum salicaria). We found strong support for the fertility-dependent biocontrol effort hypothesis, as biocontrol success occurred most often with greater biocontrol efforts, but only in low-fertility sites. This result held for early stage metrics of biocontrol success (higher Galerucella abundance) and ultimate biocontrol outcomes (decreased loosestrife plant size and abundance). Presence of the invasive grass Phalaris arundinacea was also inversely related to loosestrife abundance, suggesting that biocontrol-based reductions in loosestrife made secondary invasion by P. arundinacea more likely. Our data suggest that low-nutrient sites

  20. Microscopic Examination of Chitosan Polyphosphate Beads with Entrapped Spores of the Biocontrol Agent, Streptomyces melanosporofaciens EF-76

    NASA Astrophysics Data System (ADS)

    Jobin, Guy; Grondin, Gilles; Couture, Geneviève; Beaulieu, Carole

    2005-04-01

    Spores of the biocontrol agent, Streptomyces melanosporofaciens EF-76, were entrapped by complex coacervation in beads composed of a macromolecular complex (MC) of chitosan and polyphosphate. A proportion of spores entrapped in beads survived the entrapment procedure as shown by treating spores from chitosan beads with a dye allowing the differentiation of live and dead cells. The spore-loaded chitosan beads could be digested by a chitosanase, suggesting that, once introduced in soil, the beads would be degraded to release the biocontrol agent. Spore-loaded beads were examined by optical and scanning electron microscopy because the release of the biological agent depends on the spore distribution in the chitosan beads. The microscopic examination revealed that the beads had a porous surface and contained a network of inner microfibrils. Spores were entrapped in both the chitosan microfibrils and the bead lacuna.

  1. Antagonistic and Biocontrol Potential of Trichoderma asperellum ZJSX5003 Against the Maize Stalk Rot Pathogen Fusarium graminearum.

    PubMed

    Li, Yaqian; Sun, Ruiyan; Yu, Jia; Saravanakumar, Kandasamy; Chen, Jie

    2016-09-01

    The efficacy of seven strains of Trichoderma asperellum collected from the fields in Southern China was assessed against Fusarium graminearum (FG) the causal agent of corn stalk rot of maize were in vitro for their antagonistic properties followed by statistical model of principal compound analysis to identify the beneficial antagonist T. asperellum strain. The key factors of antagonist activity were attributed to a total of 13 factors including cell wall degrading enzymes (chitnase, protease and β-glucanases), secondary metabolites and peptaibols and these were analyzed from eight strains of Trichoderma. A linear regression model demonstrated that interaction of enzymes and secondary metabolites of T. asperellum strain ZJSX5003 enhanced the antagonist activity against FG. Further, this strain displayed a disease reduction of 71 % in maize plants inoculated with FG compared to negative control. Pointing out that the T. asperellum strain ZJSX5003 is a potential source for the development of a biocontrol agent against corn stalk rot.

  2. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi.

    PubMed

    Ramzan, Nadia; Noreen, Nayara; Perveen, Zahida; Shahzad, Saleem

    2016-08-01

    Mungbean (Vigna radiata (L.) Wilczek) is a leguminous pulse crop that is a major source of proteins, vitamins and minerals. Root-infecting fungi produce severe plant diseases like root rot, charcoal rot, damping-off and stem rot. The soil-borne pathogens can be controlled by chemicals, but these chemicals have several negative effects. Use of microbial antagonist such as fungi and bacteria is a safe, effective and eco-friendly method for the control of many soil-borne pathogens. Biological control agents promote plant growth and develop disease resistance. Application of bacteria and fungi as seed dressing suppressed the root-infecting fungi on leguminous crops. Seeds of mungbean were pelleted with different biocontrol agents to determine their effect on plant growth and colonisation of roots by root-infecting fungi, viz. Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani and Sclerotium rolfsii. Treatment of mungbean seeds with fungal antagonists showed more shoot and root length as compared to bacterial antagonists, whereas seed treated with bacterial antagonists showed maximum shoot and root weight. Trichoderma harzianum and Bacillus subtilis were the best among all the biocontrol agents since they provided the highest plant growth and greater reduction in root colonisation by all root-infecting fungi. Bacillus cereus, Trichoderma virens, Pseudomonas fluorescens and Micrococcus varians were also effective against root-infecting fungi but to a lesser extent. T. harzianum, T. virens, B. subtilis and P. fluorescens were found to be best among all biocontrol agents. The root-infecting fungi can be controlled by pelleting seeds with biocontrol agents as it is safe and effective method. Additionally, plant growth was promoted more by this method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. [Compatibility of two fungal biocontrol agents conidia with commercial chemical acaricides].

    PubMed

    Jiang, Yu; Feng, Mingguang

    2006-07-01

    In this paper, the biological compatibility of fungal biocontrol agents Beauveria bassiana and Paecilomyces fumosoroseus conidia with 10 commercial chemical acaricides were assayed, based on the conidial germination rates in nutritional liquid and on SDAY plate. The results showed that nutritional liquid was more available than SDAY plate in the assay. So far as the 24 h conidial viability concerned, there were significant differences among the test acaricides with the concentrations of recommended for field spray and 5 and 10 fold dilutions, as well as between the two fungal agents. Since acaricides azocyclotin, liuyangmycin, dicofol and avermectin had strong inhibitory effects on the 24 h germination rate of both fungal agents conidia, their combined application with fungal agents was unsuitable for mite control. However, the combined application of pyridaben, propargite, chlorpyrifos, hexythiazox or amitraz with either B. bassiana or P. fumosoroseus was practical, because of their short-term compatibility. When the mixtures of oil-based B. bassiana formulation with the three concentrations of pyridaben, propargite and chlorpyrifos were stored at 4 degrees C or at ambient temperature for 12 months, none of the three chemicals was considered to be good enough for a combined formulation due to the great variability in long-term compatibility. Nevertheless, chlorpyrifos exhibited an encouraging long-term compatibility with B. bassiana, because its low concentration in the fungal formulation did not affect the conidial viability during a 6.5-month period of storage at ambient temperature. When stored at 4 degrees C in dark, the B. bassiana formulation containing low or medium concentration of chlorpyrifos retained the conidial viability of > 90% for up to 12 months.

  4. The vegetative compatibility group to which the US biocontrol agent Aspergillus flavus AF36 belongs is also endemic to Mexico.

    PubMed

    Ortega-Beltran, A; Grubisha, L C; Callicott, K A; Cotty, P J

    2016-04-01

    To assess frequencies of the Aspergillus flavus atoxigenic vegetative compatibility group (VCG) YV36, to which the biocontrol agent AF36 belongs, in maize-growing regions of Mexico. Over 3500 A. flavus isolates recovered from maize agroecosystems in four states of Mexico during 2005 through 2008 were subjected to vegetative compatibility analyses based on nitrate nonutilizing mutants. Results revealed that 59 (1·6%) isolates belong to VCG YV36. All 59 isolates had the MAT1-2 idiomorph at the mating-type locus and the single nucleotide polymorphism in the polyketide synthase gene that confers atoxigenicity. Additional degradation of the aflatoxin gene cluster was detected in three isolates. Microsatellite loci analyses revealed low levels of genetic diversity and no linkage disequilibrium within VCG YV36. The VCG to which the biocontrol agent AF36 belongs, YV36, is also native to Mexico. The North American Free Trade Agreement should facilitate adoption of AF36 for use by Mexico in aflatoxin prevention programs. An USEPA registered biocontrol agent effective at preventing aflatoxin contamination of crops in the US, is also native to Mexico. This should facilitate the path to registration of AF36 as the first biopesticide for aflatoxin mitigation of maize in Mexico. Economic and health benefits to the population of Mexico should result once aflatoxin mitigation programs based on AF36 applications are implemented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice.

    PubMed

    Mosquera-Espinosa, Ana Teresa; Bayman, Paul; Prado, Gustavo A; Gómez-Carabalí, Arnulfo; Otero, J Tupac

    2013-01-01

    Ceratobasidium includes orchid mycorrhizal symbionts, plant pathogens and biocontrol agents of soilborne plant pathogens. It is not known to what extent members of the first guild also can participate in the others. Ceratobasidium spp. were isolated from roots of Colombian orchids and identified by phylogeny based on nrITS sequences. Phylogenetic grouping of Ceratobasidium spp. isolates corresponded to orchid host substrate (epiphytic vs. terrestrial). Isolates were tested for virulence on rice and for biocontrol of Rhizoctonia solani, causal agent of sheath blight of rice. All Ceratobasidium spp. isolates caused some signs of sheath blight but significantly less than a pathogenic R. solani used as a positive control. When Ceratobasidium spp. isolates were inoculated on rice seedlings 3 d before R. solani, they significantly reduced disease expression compared to controls inoculated with R. solani alone. The use of Ceratobasidium spp. from orchids for biological control is novel, and biodiverse countries such as Colombia are promising places to look for new biocontrol agents.

  6. From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong

    PubMed Central

    Ortega-Iturriaga, Adrián; del-Val, Ek

    2017-01-01

    The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird (Harmonia axyridis) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing “Harmonia axyridis” to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata, native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services. PMID:28533958

  7. From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong.

    PubMed

    Camacho-Cervantes, Morelia; Ortega-Iturriaga, Adrián; Del-Val, Ek

    2017-01-01

    The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird (Harmonia axyridis) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing "Harmonia axyridis" to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata, native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services.

  8. Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease.

    PubMed

    Xu, Ting; Li, Yan; Zeng, Xiadong; Yang, Xiaolu; Yang, Yuanzhu; Yuan, Shanshan; Hu, Xiaochun; Zeng, Jiarui; Wang, Zhenzhen; Liu, Qian; Liu, Yuqing; Liao, Hongdong; Tong, Chunyi; Liu, Xuanming; Zhu, Yonghua

    2017-03-01

    Biocontrol is a promising strategy in the control of rice blast disease. In the present study, we isolated and characterized a novel antagonist to the pathogen Magnaporthe oryzae from rice endophytic actinomycetes. Out of 482 endophytic actinomycetes isolated from rice blast infected and healthy rice, Streptomyces endus OsiSh-2 exhibited remarkable in vitro antagonistic activity. Scanning electron microscopy observations of M. oryzae treated by OsiSh-2 revealed significant morphological alterations in hyphae. In 2-year field tests, the spraying of OsiSh-2 spore solution (10(7)  spores mL(-1) ) is capable of reducing rice blast disease severity by 59.64%. In addition, a fermentation broth of OsiSh-2 and its cell-free filtrates could inhibit the growth of M. oryzae, suggesting the presence of active enzymes and secondary metabolites. OsiSh-2 tested positive for polyketide synthase-I and nonribosomal peptide synthetase genes and can produce cellulase, protease, gelatinase, siderophore, indole-3-acetic acid and 1-amino-cyclopropane-1-carboxylate deaminase. A preliminary separation indicated that the methanol extract of OsiSh-2 could suppress the growth of pathogens. The major active component was identified as nigericin. Endophytic S. endus OsiSh-2 has potential as a biocontrol agent against rice blast in agriculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Effect of temperature and host plant leaf morphology on the efficacy of two entomopathogenic biocontrol agents of Thrips palmi (Thysanoptera: Thripidae).

    PubMed

    Cuthbertson, A G S; North, J P; Walters, K F A

    2005-08-01

    The efficacy of two entomopathogenic biocontrol agents, Steinernema feltiae (Filipjev) and Verticillium lecanii (Zimmerman) Viégas (reclassified now as Lecanicillium muscarium (Petch) Zare & Gams), against Thrips palmi Karny was investigated. Assessments of the effect of temperature on the efficacy of S. feltiae indicated that higher mortality of T. palmi was recorded at 20 degrees C compared to either 15 or 25 degrees C, whereas significantly higher T. palmi mortality followed application of L. muscarium at 25 degrees C. Testing the control agents efficacy on three host plants; chrysanthemum, sweet pepper and cucumber, under constant temperature and high humidity conditions produced no significant difference in the level of T. palmi larval mortality on each host plant. Incorporating the chemical insecticide imidacloprid with both biological agents in a combined control strategy increased T. palmi juvenile mortality. The potential role of S. feltiae and L. muscarium within integrated pest management programmes for the control of T. palmi is discussed.

  10. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew

    PubMed Central

    Li, Yunlong; Gu, Yilin; Li, Juan; Xu, Mingzhu; Wei, Qing; Wang, Yuanhong

    2015-01-01

    Powdery mildew is a fungal disease found in a wide range of plants and can significantly reduce crop yields. Bacterial strain LJ02 is a biocontrol agent (BCA) isolated from a greenhouse in Tianjin, China. In combination of morphological, physiological, biochemical and phylogenetic analyses, strain LJ02 was classified as a new member of Bacillus amyloliquefaciens. Greenhouse trials showed that LJ02 fermentation broth (LJ02FB) can effectively diminish the occurrence of cucurbits powdery mildew. When treated with LJ02FB, cucumber seedlings produced significantly elevated production of superoxide dismutase, peroxidase, polyphenol oxidase and phenylalanine ammonia lyase as compared to that of the control. We further confirmed that the production of free salicylic acid (SA) and expression of one pathogenesis-related (PR) gene PR-1 in cucumber leaves were markedly elevated after treating with LJ02FB, suggesting that SA-mediated defense response was stimulated. Moreover, LJ02FB-treated cucumber leaves could secrete resistance-related substances into rhizosphere that inhibit the germination of fungi spores and the growth of pathogens. Finally, we separated bacterium and its fermented substances to test their respective effects and found that both components have SA-inducing activity and bacterium plays major roles. Altogether, we identified a BCA against powdery mildew and its mode of action by inducing systemic resistance such as SA signaling pathway. PMID:26379654

  11. Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons.

    PubMed

    Perez, María Florencia; Contreras, Luciana; Garnica, Nydia Mercedes; Fernández-Zenoff, María Verónica; Farías, María Eugenia; Sepulveda, Milena; Ramallo, Jacqueline; Dib, Julián Rafael

    2016-01-01

    Economic losses caused by postharvest diseases represent one of the main problems of the citrus industry worldwide. The major diseases affecting citrus are the "green mold" and "blue mold", caused by Penicillium digitatum and P. italicum, respectively. To control them, synthetic fungicides are the most commonly used method. However, often the emergence of resistant strains occurs and their use is becoming more restricted because of toxic effects and environmental pollution they generate, combined with trade barriers to international markets. The aim of this work was to isolate indigenous killer yeasts with antagonistic activity against fungal postharvest diseases in lemons, and to determine their control efficiency in in vitro and in vivo assays. Among 437 yeast isolates, 8.5% show to have a killer phenotype. According to molecular identification, based on the 26S rDNA D1/D2 domain sequences analysis, strains were identified belonging to the genera Saccharomyces, Wickerhamomyces, Kazachstania, Pichia, Candida and Clavispora. Killers were challenged with pathogenic molds and strains that caused the maximum in vitro inhibition of P. digitatum were selected for in vivo assays. Two strains of Pichia and one strain of Wickerhamomyces depicted a significant protection (p <0.05) from decay by P. digitatum in assays using wounded lemons. Thus, the native killer yeasts studied in this work showed to be an effective alternative for the biocontrol of postharvest fungal infections of lemons and could be promising agents for the development of commercial products for the biological control industry.

  12. Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons

    PubMed Central

    Garnica, Nydia Mercedes; Fernández-Zenoff, María Verónica; Farías, María Eugenia; Sepulveda, Milena; Ramallo, Jacqueline; Dib, Julián Rafael

    2016-01-01

    Economic losses caused by postharvest diseases represent one of the main problems of the citrus industry worldwide. The major diseases affecting citrus are the "green mold" and "blue mold", caused by Penicillium digitatum and P. italicum, respectively. To control them, synthetic fungicides are the most commonly used method. However, often the emergence of resistant strains occurs and their use is becoming more restricted because of toxic effects and environmental pollution they generate, combined with trade barriers to international markets. The aim of this work was to isolate indigenous killer yeasts with antagonistic activity against fungal postharvest diseases in lemons, and to determine their control efficiency in in vitro and in vivo assays. Among 437 yeast isolates, 8.5% show to have a killer phenotype. According to molecular identification, based on the 26S rDNA D1/D2 domain sequences analysis, strains were identified belonging to the genera Saccharomyces, Wickerhamomyces, Kazachstania, Pichia, Candida and Clavispora. Killers were challenged with pathogenic molds and strains that caused the maximum in vitro inhibition of P. digitatum were selected for in vivo assays. Two strains of Pichia and one strain of Wickerhamomyces depicted a significant protection (p <0.05) from decay by P. digitatum in assays using wounded lemons. Thus, the native killer yeasts studied in this work showed to be an effective alternative for the biocontrol of postharvest fungal infections of lemons and could be promising agents for the development of commercial products for the biological control industry. PMID:27792761

  13. Candida parapsilosis as a Potent Biocontrol Agent against Growth and Aflatoxin Production by Aspergillus Species

    PubMed Central

    Niknejad, F; Zaini, F; Faramarzi, MA; Amini, M; Kordbacheh, P; Mahmoudi, M; Safara, M

    2012-01-01

    Background: Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated. Methods: Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in the presence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation. Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5. Results: The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05). In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage of reductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively. Conclusion: C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species PMID:23308351

  14. Ecology of Anti-Biofilm Agents II: Bacteriophage Exploitation and Biocontrol of Biofilm Bacteria

    PubMed Central

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages are the viruses of bacteria. In the guise of phage therapy they have been used for decades to successfully treat what are probable biofilm-containing chronic bacterial infections. More recently, phage treatment or biocontrol of biofilm bacteria has been brought back to the laboratory for more rigorous assessment as well as towards the use of phages to combat environmental biofilms, ones other than those directly associated with bacterial infections. Considered in a companion article is the inherent ecological utility of bacteriophages versus antibiotics as anti-biofilm agents. Discussed here is a model for phage ecological interaction with bacteria as they may occur across biofilm-containing ecosystems. Specifically, to the extent that individual bacterial types are not highly abundant within biofilm-containing environments, then phage exploitation of those bacteria may represent a “Feast-or-famine” existence in which infection of highly localized concentrations of phage-sensitive bacteria alternate with treacherous searches by the resulting phage progeny virions for new concentrations of phage-sensitive bacteria to infect. An updated synopsis of the literature concerning laboratory testing of phage use to combat bacterial biofilms is then provided along with tips on how “Ecologically” such phage-mediated biofilm control can be modified to more reliably achieve anti-biofilm efficacy. PMID:26371011

  15. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum.

    PubMed

    Lu, Dandan; Ma, Zheng; Xu, Xianhao; Yu, Xiaoping

    2016-08-01

    Actinomycetes have received considerable attention as biocontrol agents against fungal plant pathogens and as plant growth promoters. In this study, a total of 320 actinomycetes were isolated from various habitats in China. Among which, 77 strains have been identified as antagonistic activities against Fusarium oxysporum f. sp. cucumerinum which usually caused fusarium wilt of cucumber. Of these, isolate actinomycete M527 not only displayed broad-spectrum antifungal activity but also showed the strongest antagonistic activity against the spore germination of F. oxysporum f. sp. cucumerinum. In pot experiments, the results indicated that isolate M527 could promote the shoot growth and prevent the development of the disease on cucumber caused by F. oxysporum f. sp. cucumerinum. The control efficacy against seedling fusarium wilt of cucumber after M527 fermentation broth root-irrigation was up to 72.1% as compared to control. Based on 16S rDNA sequence analysis, the isolate M527 was identified as Streptomyces rimosus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew.

    PubMed

    Li, Yunlong; Gu, Yilin; Li, Juan; Xu, Mingzhu; Wei, Qing; Wang, Yuanhong

    2015-01-01

    Powdery mildew is a fungal disease found in a wide range of plants and can significantly reduce crop yields. Bacterial strain LJ02 is a biocontrol agent (BCA) isolated from a greenhouse in Tianjin, China. In combination of morphological, physiological, biochemical and phylogenetic analyses, strain LJ02 was classified as a new member of Bacillus amyloliquefaciens. Greenhouse trials showed that LJ02 fermentation broth (LJ02FB) can effectively diminish the occurrence of cucurbits powdery mildew. When treated with LJ02FB, cucumber seedlings produced significantly elevated production of superoxide dismutase, peroxidase, polyphenol oxidase and phenylalanine ammonia lyase as compared to that of the control. We further confirmed that the production of free salicylic acid (SA) and expression of one pathogenesis-related (PR) gene PR-1 in cucumber leaves were markedly elevated after treating with LJ02FB, suggesting that SA-mediated defense response was stimulated. Moreover, LJ02FB-treated cucumber leaves could secrete resistance-related substances into rhizosphere that inhibit the germination of fungi spores and the growth of pathogens. Finally, we separated bacterium and its fermented substances to test their respective effects and found that both components have SA-inducing activity and bacterium plays major roles. Altogether, we identified a BCA against powdery mildew and its mode of action by inducing systemic resistance such as SA signaling pathway.

  17. Wolbachia Biocontrol Strategies for Arboviral Diseases and the Potential Influence of Resident Wolbachia Strains in Mosquitoes.

    PubMed

    Jeffries, Claire L; Walker, Thomas

    Arboviruses transmitted by mosquitoes are a major cause of human disease worldwide. The absence of vaccines and effective vector control strategies has resulted in the need for novel mosquito control strategies. The endosymbiotic bacterium Wolbachia has been proposed to form the basis for an effective mosquito biocontrol strategy. Resident strains of Wolbachia inhibit viral replication in Drosophila fruit flies and induce a reproductive phenotype known as cytoplasmic incompatibility that allows rapid invasion of insect populations. Transinfection of Wolbachia strains into the principle mosquito vector of dengue virus, Stegomyia aegypti, has resulted in dengue-refractory mosquito lines with minimal effects on mosquito fitness. Wolbachia strains have now been established in wild St. aegypti populations through open releases in dengue-endemic countries. In this review, we outline the current state of Wolbachia-based biocontrol strategies for dengue and discuss the potential impact of resident Wolbachia strains for additional target mosquito species that transmit arboviruses.

  18. Biocontrol: Bacillus penetrans and Related Parasites of Nematodes

    PubMed Central

    Sayre, R. M.

    1980-01-01

    Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, particularly with the genus Pasteuria, are considered. Also discussed are other soil bacterial species that are potential biocontrol agents. Products of their bacterial fermentation in soil are toxic to nematodes, making them effective biocontrol agents. PMID:19300701

  19. Integrated management of foot rot of lentil using biocontrol agents under field condition.

    PubMed

    Hannan, M A; Hasan, M M; Hossain, I; Rahman, S M E; Ismail, Alhazmi Mohammed; Oh, Deog-Hwan

    2012-07-01

    The efficacy of cowdung, Bangladesh Institute of Nuclear Agriculture (BINA)-biofertilizer, and Bangladesh Agricultural University (BAU)-biofungicide, alone or in combination, was evaluated for controlling foot rot disease of lentil. The results exhibited that BINA-biofertilizer and BAUbiofungicide (peat soil-based Rhizobium leguminosarum and black gram bran-based Trichoderma harzianum) are compatible and have combined effects in controlling the pathogenic fungi Fusarium oxysporum and Sclerotium rolfsii, which cause the root rot of lentil. Cowdung mixing with soil (at 5 t/ha) during final land preparation and seed coating with BINA-biofertilizer and BAU-biofungicide (at 2.5% of seed weight) before sowing recorded 81.50% field emergence of lentil, which showed up to 19.85% higher field emergence over the control. Post-emergence deaths of plants due to foot rot disease were significantly reduced after combined seed treatment with BINA-biofertilizer and BAU-biofungicide. Among the treatments used, only BAU-biofungicide as the seed treating agent resulted in higher plant stand (84.82%). Use of BINA-biofertilizer and BAU-biofungicide as seed treating biocontrol agents and application of cowdung in the soil as an organic source of nutrient resulted in higher shoot and root lengths, and dry shoot and root weights of lentil. BINA-biofertilizer significantly increased the number of nodules per plant and nodules weight of lentil. Seeds treating with BAUbiofungicide and BINA-biofertilizer and soil amendment with cowdung increased the biomass production of lentil up to 75.56% over the control.

  20. Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola.

    PubMed

    Senthilkumar, M; Swarnalakshmi, K; Govindasamy, V; Lee, Young Keun; Annapurna, K

    2009-04-01

    A total of 137 bacterial isolates from surface sterilized root, stem, and nodule tissues of soybean were screened for their antifungal activity against major phytopathogens like Rhizoctonia bataticola, Macrophomina phaseolina, Fusarium udam, and Sclerotium rolfsii. Nine bacterial endophytes suppressed the pathogens under in vitro plate assay. These were characterized biochemically and identified at the genus level based on their partial sequence analysis of 16S rDNA. Eight of the isolates belonged to Bacillus and one to Paenibacillus. The phylogenetic relationship among the selected isolates was studied and phylogenetic trees were generated. The selected isolates were screened for biocontrol traits like production of hydrogen cyanide (HCN), siderophore, hydrolytic enzymes, antibiotics, and plant growth promoting traits like indole 3-acetic acid production, phosphate solubilization, and nitrogen fixation. A modified assessment scheme was used to select the most efficient biocontrol isolates Paenibacillus sp. HKA-15 (HKA-15) and Bacillus sp. HKA-121 (HKA-121) as potential candidates for charcoal rot biocontrol as well as soybean plant growth promotion.

  1. Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea

    PubMed Central

    2014-01-01

    Background Filamentous fungi produce small cysteine rich surface active amphiphilic hydrophobins on the outer surface of cell walls that mediate interactions between the fungus and the environment. The role of hydrophobins in surface hydrophobicity, sporulation, fruit body formation, recognition and adhesion to host surface and virulence have been reported. The aim of the present study was to characterize the biological function of hydrophobins in the fungal biocontrol agent Clonostachys rosea in order to understand their potential roles in biocontrol mechanisms. Results Based on the presence of hydrophobin domains, cysteine spacing patterns and hydropathy plots, we identified three class II hydrophobin genes in C. rosea. Gene expression analysis showed basal expression of Hyd1, Hyd2 and Hyd3 in all conditions tested with the exception of induced Hyd1 expression in conidiating mycelium. Interestingly, up-regulation of Hyd1, Hyd2 and Hyd3 was found during C. rosea self interaction compared to interactions with the fungal plant pathogens Botrytis cinerea or Fusarium graminearum in dual culture assays. Phenotypic analysis of C. rosea deletion and complementation strains showed that Hyd1 and Hyd3 are jointly required for conidial hydrophobicity, although no difference in mycelia hydrophobicity was found between wild type (WT) and mutant strains. Interestingly, mutant strains showed increased growth rates, conidiation and enhanced tolerances of conidia to abiotic stresses. Antagonism tests using in vitro dual culture and detached leaf assays showed that the mutant strains were more aggressive towards B. cinerea, F. graminearum or Rhizoctonia solani, and that aggression was partly related to earlier conidial germination and enhanced tolerance of mutant strains to secreted fungal metabolites. Furthermore, in vitro Arabidopsis thaliana root colonization assays revealed reduced root colonization ability of the ΔHyd3 strain, but not for the ΔHyd1 strain. Furthermore

  2. Biological control of chestnut blight in Croatia: an interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1.

    PubMed

    Krstin, Ljiljana; Katanić, Zorana; Ježić, Marin; Poljak, Igor; Nuskern, Lucija; Matković, Ivana; Idžojtić, Marilena; Ćurković-Perica, Mirna

    2017-03-01

    Chestnut blight, caused by the fungus Cryphonectria parasitica, is a severe chestnut disease that can be controlled with naturally occurring hypoviruses in many areas of Europe. The aim of this research was to measure the effect of different Cryphonectria hypovirus 1 (CHV1) strains on the growth of the fungal host and select strains that could potentially be used for human-mediated biocontrol in forests and orchards, and to investigate whether and how chestnut-fungus-virus interactions affect the development and growth of the lesion area on cut stems. Two Croatian CHV1 strains (CR23 and M56/1) were selected as potential biocontrol agents. The sequencing of CHV1/ORF-A showed that both of these virus strains belonged to the Italian subtype of CHV1. In vitro transfection of selected virus strains from hypovirulent to genetically diverse virus-free fungal isolates and subsequent inoculation of all virus/fungus combinations on stems of genetically diverse sweet chestnut trees revealed that Croatian virus strain CR23 had an equally hypovirulent effect on the host as the strong French strain CHV1-EP713, while M56/1 had a weaker effect. Furthermore, it was shown that in some cases the same hypovirus/fungus combinations induced various degrees of canker development on different chestnut genotypes. Some CHV1 strains belonging to the Italian subtype have similar hypovirulent effects on C. parasitica to those belonging to the French subtype. Furthermore, chestnut susceptibility and recovery could be influenced by the response of chestnut trees to particular hypovirulent C. parasitica isolates, and virus-fungus-chestnut interactions could have significant implications for the success of chestnut blight biocontrol. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Laboratory evaluation of the biocontrol potential of Mesocyclops thermocyclopoides (Copepoda: Cyclopidae) against mosquito larvae.

    PubMed

    Mittal, P K; Dhiman, R C; Adak, T; Sharma, V P

    1997-12-01

    Biocontrol potential of Mesocyclops thermocyclopoides against first instar larvae of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus was studied under laboratory conditions. It was found that M. thermocyclopoides had the highest predation efficacy against Ae. aegypti followed by An. stephensi and Cx. quinquefasciatus. There was a significant reduction in the predation efficacy of M. thermocyclopoides against Cx. quinquefasciatus in the presence of alternate food (p < 0.01). The cage simulation trial indicated that M. themocyclopoides has the potential to control Ae. aegypti breeding effectively in a container type of habitat.

  4. Amblyseius swirskii: what made this predatory mite such a successful biocontrol agent?

    PubMed

    Calvo, F Javier; Knapp, Markus; van Houten, Yvonne M; Hoogerbrugge, Hans; Belda, José E

    2015-04-01

    The predatory mite Amblyseius swirskii quickly became one of the most successful biocontrol agents in protected cultivation after its introduction into the market in 2005 and is now released in more than 50 countries. There are several key factors contributing to this success: (1) it can control several major pests including the western flower thrips, Frankliniella occidentalis, the whiteflies Bemisia tabaci and Trialeurodes vaporariorum and the broad mite, Polyphagotarsonemus latus, simultaneously in vegetables and ornamental crops; (2) it can develop and reproduce feeding on non-prey food sources such as pollen, which allows populations of the predator to build up on plants before the pests are present and to persist in the crop during periods when prey is scarce or absent; and (3) it can be easily reared on factitious prey, which allows economic mass production. However, despite the fact that A. swirskii provides growers with a robust control method, external demands were initially a key factor in promoting the use of this predator, particularly in Spain. In 2006, when exports of fresh vegetables from Spain were stopped due to the presence of pesticide residues, growers were forced to look for alternatives to chemical control. This resulted in the massive adoption of biological control-based integrated pest management programmes based on the use of A. swirskii in sweet pepper. Biological control increased from 5 % in 2005, 1 year before A. swirskii was commercially released, to almost 100 % of a total 6,000 ha of protected sweet pepper in Spain within 3 years. Later, it was demonstrated that A. swirskii was equally effective in other crops and countries, resulting in extensive worldwide use of A. swirskii in greenhouses.

  5. Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu.

    PubMed

    Kulimushi, Parent Zihalirwa; Basime, Géant Chuma; Nachigera, Gustave Mushagalusa; Thonart, Philippe; Ongena, Marc

    2017-06-09

    In the province of South Kivu (Democratic Republic of Congo), warm and humid climatic conditions favor the development and spreading of phytopathogens. The resulting diseases cause important losses in production both in crop and after harvest. In this study, we wanted to evaluate the potential of Bacillus amyloliquefaciens as biocontrol agent to fight some newly isolated endemic fungal pathogens infesting maize. The strain S499 has been selected based on its high in vitro antagonistic activity correlating with a huge potential to secrete fungitoxic lipopeptides upon feeding on maize root exudates. Biocontrol activity of S499 was further tested on infected plantlets in growth chamber and on plants grown under field conditions over an entire cropping period. We observed a strong protective effect of this strain evaluated at two different locations with specific agro-ecological conditions. Interestingly, disease protection was associated with higher yields and our data strongly suggest that, in addition to directly inhibit pathogens, the strain may also act as biofertilizer through the solubilization of phosphorus and/or by producing plant growth hormones in the rhizosphere. This work supports the hope of exploiting such technologically advantageous bacilli for the sake of sustainable local production of this important crop in central Africa.

  6. Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents.

    PubMed

    Benelli, Giovanni; Kadaikunnan, Shine; Alharbi, Naiyf S; Govindarajan, Marimuthu

    2017-02-05

    Mosquito-borne diseases lead to serious public health concerns in tropical and sub-tropical countries worldwide, due to development of mosquito resistance to synthetic pesticides, non-target effects of pesticides, and socioeconomic reasons. Currently, green nanotechnology is a promising research field, showing a wide range of potential applications in vector control programs. The employ of natural products as reducing agents to fabricate insecticidal nanocomposites is gaining research attention worldwide, due to low costs and high effectiveness. Interestingly, biophysical features of green-synthesized nanoparticles strongly differ when different botanicals are employed for nanosynthesis. In this study, a cheap Acacia caesia leaf extract was employed to fabricate silver nanoparticles (Ag NPs) with ovicidal, larvicidal, and adulticidal toxicity against three mosquito vectors, Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Ag NPs were analyzed by various biophysical methods, including spectroscopy (UV-visible spectrophotometry, XRD, FTIR, EDX) and microscopy (SEM, TEM, AFM) techniques. High acute larvicidal potential was observed against larvae of An. subpictus (LC50 = 10.33 μg/ml), Ae. albopictus (LC50 = 11.32 μg/ml), and Cx. tritaeniorhynchus (LC50 = 12.35 μg/ml). Ag NPs completely inhibited egg hatchability on three vectors at 60, 75, and 90 μg/ml, respectively. In adulticidal assays, LD50 values were 18.66, 20.94, and 22.63 μg/ml. If compared to mosquito larvae, Ag NPs were safer to three non-target aquatic biocontrol agents, with LC50 ranging from 684 to 2245 μg/ml. Overall, our study highlights the potential of A. caesia as an abundant and cheap bioresource to fabricate biogenic Ag NPs effective against mosquito young instars and adults, with moderate impact on non-target aquatic biocontrol agents.

  7. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens

    PubMed Central

    Posada, Francisco J.; Vega, Fernando E.

    2005-01-01

    Fifty Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains isolated from the coffee berry borer were used to develop a novel screening method aimed at selecting strains with the highest biocontrol potential. The screening method is based on percent insect mortality, average survival time, mortality distribution, percent spore germination, fungal life cycle duration, and spore production on the insect. Based on these parameters, only 11 strains merited further study. The use of a sound scientific protocol for the selection of promising fungal entomopathogens should lead to more efficient use of time, labor, and financial resources in biological control programs. PMID:17119619

  8. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens.

    PubMed

    Posada, Francisco J; Vega, Fernando E

    2005-12-06

    Fifty Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains isolated from the coffee berry borer were used to develop a novel screening method aimed at selecting strains with the highest biocontrol potential. The screening method is based on percent insect mortality, average survival time, mortality distribution, percent spore germination, fungal life cycle duration, and spore production on the insect. Based on these parameters, only 11 strains merited further study. The use of a sound scientific protocol for the selection of promising fungal entomopathogens should lead to more efficient use of time, labor, and financial resources in biological control programs.

  9. Bio-control potential of Cladosporium sp. (MCPL-461), against a noxious weed Parthenium hysterophorus L.

    PubMed

    Kumar, Anuj; Verma, V C; Gond, S K; Kumar, V; Kharwar, R N

    2009-03-01

    The phenological survey of Parthenium hysterophorus L., in and around the campus of Banaras Hindu University (BHU) was done for about two years (2004-06). During Nov 2004, a few Parthenium plants were found diseased, and symptoms were restricted to the flowers, buds, and inflorescences. The disease causes sterility and reduces seed viability, which was observed with seed germination test from infected and healthy plants. The fungal pathogen was isolated and identified as Cladosporium sp. (MCPL-461). The severity of pathogen to the reproductive organs led to serious damages of the Parthenium plants. Thus in vitro and in vivo experiments were conducted to determine the bio-control potential of Cladosporium sp. (MCPL 461) against Parthenium weed. A combinatorial effort of Cladosporium sp. (MCPL 461) bio-control potential was evaluated with different culture media, incubation periods and spores strength. Spore suspension of 10(5) to 10(12) spores ml(-1) were used to spray on healthy Parthenium plants, and it was found that severe infection symptoms were appeared at 10(10) to 10(12) spores ml(-1) suspension. LD50 was found at 10(7) spores ml(-1). To enhance the myco-herbicide activity 3% sucrose was added to the spore suspension, which further resolute the bio-control efficacy of the isolates. Only 20-30% seeds of infected plants could germinate. However the safety of non-targeted and wild plants was also tested with Lantana camera, Chromolaena odorata and found that suspension up to 10(12) spores ml(-1) were not sufficient for disease outbreak in them.

  10. Dry formulations of the biocontrol agent Candida sake CPA-1 using fluidised bed drying to control the main postharvest diseases on fruits.

    PubMed

    Carbó, Anna; Torres, Rosario; Usall, Josep; Fons, Estanislau; Teixidó, Neus

    2017-08-01

    The biocontrol agent Candida sake CPA-1 is effective against several diseases. Consequently, the optimisation of a dry formulation of C. sake to improve its shelf life and manipulability is essential for increasing its potential with respect to future commercial applications. The present study aimed to optimise the conditions for making a dry formulation of C. sake using a fluidised bed drying system and then to determine the shelf life of the optimised formulation and its efficacy against Penicillium expansum on apples. The optimal conditions for the drying process were found to be 40 °C for 45 min and the use of potato starch as the carrier significantly enhanced the viability. However, none of the protective compounds tested increased the viability of the dried cells. A temperature of 25 °C for 10 min in phosphate buffer was considered as the optimum condition to recover the dried formulations. The dried formulations should be stored at 4 °C and air-packaged; moreover, shelf life assays indicated good results after 12 months of storage. The formulated products maintained their biocontrol efficacy. A fluidised bed drying system is a suitable process for dehydrating C. sake cells; moreover, the C. sake formulation is easy to pack, store and transport, and is a cost-effective process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals.

    PubMed

    Esmaeel, Qassim; Pupin, Maude; Jacques, Philippe; Leclère, Valérie

    2017-05-25

    Bacteria belonging to the genus Burkholderia live in various ecological niches and present a significant role in the environments through the excretion of a wide variety of secondary metabolites including modular nonribosomal peptides (NRPs) and polyketides (PKs). These metabolites represent a widely distributed biomedically and biocontrol important class of natural products including antibiotics, siderophores, and anticancers as well as biopesticides that are considered as a novel source that can be used to defend ecological niche from competitors and to promote plant growth. The aim of this review is to present all NRPs produced or potentially produced by strains of Burkholderia, as NRPs represent a major source of active compounds implicated in biocontrol. The review is a compilation of results from a large screening we have performed on 48 complete sequenced genomes available in NCBI to identify NRPS gene clusters, and data found in the literature mainly because some interesting compounds are produced by strains not yet sequenced. In addition to NRPs, hybrids NRPs/PKs are also included. Specific features about biosynthetic gene clusters and structures of the modular enzymes responsible for the synthesis, the biological activities, and the potential uses in agriculture and pharmaceutical of NRPs and hybrids NRPs/PKs will also be discussed.

  12. Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat.

    PubMed

    Perazzolli, Michele; Herrero, Noemí; Sterck, Lieven; Lenzi, Luisa; Pellegrini, Alberto; Puopolo, Gerardo; Van de Peer, Yves; Pertot, Ilaria

    2016-10-27

    Soil microorganisms are key determinants of soil fertility and plant health. Soil phytopathogenic fungi are one of the most important causes of crop losses worldwide. Microbial biocontrol agents have been extensively studied as alternatives for controlling phytopathogenic soil microorganisms, but molecular interactions between them have mainly been characterised in dual cultures, without taking into account the soil microbial community. We used an RNA sequencing approach to elucidate the molecular interplay of a soil microbial community in response to a plant pathogen and its biocontrol agent, in order to examine the molecular patterns activated by the microorganisms. A simplified soil microcosm containing 11 soil microorganisms was incubated with a plant root pathogen (Armillaria mellea) and its biocontrol agent (Trichoderma atroviride) for 24 h under controlled conditions. More than 46 million paired-end reads were obtained for each replicate and 28,309 differentially expressed genes were identified in total. Pathway analysis revealed complex adaptations of soil microorganisms to the harsh conditions of the soil matrix and to reciprocal microbial competition/cooperation relationships. Both the phytopathogen and its biocontrol agent were specifically recognised by the simplified soil microcosm: defence reaction mechanisms and neutral adaptation processes were activated in response to competitive (T. atroviride) or non-competitive (A. mellea) microorganisms, respectively. Moreover, activation of resistance mechanisms dominated in the simplified soil microcosm in the presence of both A. mellea and T. atroviride. Biocontrol processes of T. atroviride were already activated during incubation in the simplified soil microcosm, possibly to occupy niches in a competitive ecosystem, and they were not further enhanced by the introduction of A. mellea. This work represents an additional step towards understanding molecular interactions between plant pathogens and biocontrol

  13. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste.

    PubMed

    Kim, Sang Yoon; Lee, Sang Yeob; Weon, Hang-Yeon; Sang, Mee Kyung; Song, Jaekyeong

    2017-01-10

    Bacillus species have been widely used as biological control agents in agricultural fields due to their ability to suppress plant pathogens. Bacillus velezensis M75 was isolated from cotton waste used for mushroom cultivation in Korea, and was found to be antagonistic to fungal plant pathogens. Here, we report the complete genome sequence of the M75 strain, which has a 4,007,450-bp single circular chromosome with 3921 genes and a G+C content of 46.60%. The genome contained operons encoding various non-ribosomal peptide synthetases and polyketide synthases, which are responsible for the biosynthesis of secondary metabolites. Our results will provide a better understanding of the genome of B. velezensis strains for their application as biocontrol agents against fungal plant pathogens in agricultural fields.

  14. Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans.

    PubMed

    Kamala, Th; Indira, S

    2011-12-01

    Pythium aphanidermatum is one of the common causal pathogen of damping-off disease of beans (Phaseolus vulgaris L.) grown in Manipur. A total of 110 indigenous Trichoderma isolates obtained from North east India were screened for their biocontrol activity which can inhibit the mycelial growth of P. aphanidermatum, the causal organism of damping-off in beans. Out of the total isolates, 32% of them showed strong antagonistic activity against P. aphanidermatum under in vitro condition and subsequently 20 best isolates were selected based on their mycelial inhibition capacity against P. aphanidermatum for further analysis. Different biocontrol mechanisms such as protease, chitinase, β-1,3-glucanase activity, cellulase and production of volatile and non-volatile compounds were also assayed. Based on their relative biocontrol potency, only three indigenous Trichoderma isolates (T73, T80 and T105) were selected for pot culture experiment against damping-off diseases in common beans. In greenhouse experiment, Trichoderma isolates T-105 significantly reduced the pre- and post-emergence damping-off disease incidence under artificial infection with P. aphanidermatum and showed highest disease control percentage.

  15. Short-chain fatty acids and poly-beta-hydroxyalkanoates: (New) Biocontrol agents for a sustainable animal production.

    PubMed

    Defoirdt, Tom; Boon, Nico; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter

    2009-01-01

    Because of the risk of antibiotic resistance development, there is a growing awareness that antibiotics should be used more carefully in animal production. However, a decreased use of antibiotics could result in a higher frequency of pathogenic bacteria, which in its turn could lead to a higher incidence of infections. Short-chain fatty acids (SCFAs) have long been known to exhibit bacteriostatic activity. These compounds also specifically downregulate virulence factor expression and positively influence the gastrointestinal health of the host. As a consequence, there is currently considerable interest in SCFAs as biocontrol agents in animal production. Polyhydroxyalkanoates (PHAs) are polymers of beta-hydroxy short-chain fatty acids. Currently, PHAs are applied as replacements for synthetic polymers. These biopolymers can be depolymerised by many different microorganisms that produce extracellular PHA depolymerases. Interestingly, different studies provided some evidence that PHAs can also be degraded upon passage through the gastrointestinal tract of animals and consequently, adding these compounds to the feed might result in biocontrol effects similar to those described for SCFAs.

  16. Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8.

    PubMed

    Yánez-Mendizabal, V; Viñas, I; Usall, J; Cañamás, T; Teixidó, N

    2012-04-01

    The role of endospore production by Bacillus subtilis CPA-8 on survival during spray-drying was investigated by comparison with a non-spore-forming biocontrol agent Pantoea agglomerans CPA-2. Endospore formation promoted heat resistance in CPA-8 depending on growth time (72 h cultures were more resistant than 24 h ones). The survival of CPA-8 and CPA-2 after spray-drying was determined after being grown in optimised media for 24 and 72 h. Spray-dried 72 h CPA-8 had the best survival (32%), while CPA-2 viability was less than 2%. CPA-8 survival directly related with its ability to produce endospores. Spray-dried CPA-8 reduced Monilinia fructicola conidia germination similarly to fresh cells, demonstrating that spray-drying did not adversely affect biocontrol efficacy. Endospore production thus improves CPA-8 resistance to spray-drying. These results can provide a reliable basis for optimising of the spray-drying formulation process for CPA-8 and other microorganisms.

  17. Biocontrol potential of Steinernema thermophilum and its symbiont Xenorhabdus indica against lepidopteran pests: virulence to egg and larval stages

    USDA-ARS?s Scientific Manuscript database

    Under laboratory conditions, the biocontrol potential of Steinernema thermophilum was tested against eggs and larval stages of two important lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura (polyphagous pests), as well as Galleria mellonella (used as a model host) . In terms of ...

  18. Potential for bio-control of food-borne pathogens with Bacteriovorax spp. and implications for food safety

    USDA-ARS?s Scientific Manuscript database

    Bacteriovorax spp. (Bvx) are delta proteobacteria adapted to marine ecosystems where salinity concentration range from 1-3%. Due to their predation of Gram-negative bacteria, Bvx may have great potential for biocontrol of food-borne pathogens on fruits and leafy greens. The goal of this research was...

  19. Isolation, characterization, and production of red pigment from Cercospora piaropi a biocontrol agent for waterhyacinth.

    PubMed

    Jiménez, Maricela Martínez; Bahena, Selenia Miranda; Espinoza, César; Trigos, Angel

    2010-04-01

    A red pigment produced by a Mexican isolate of Cercospora piaropi (waterhyacinth pathogen) has been isolated and identified as cercosporin. The kinetic of cercosporin production in culture media during dark/light regimes was evaluated. When C. piaropi was cultivated in continuous light and potato dextrose broth culture, a maximum of cercosporin production was observed (72.59 mg/l). Despite other reports, C piaropi Mexican isolate produce cercosporin in dark conditions (25.70 mg/l). The results suggest that production of cercosporin in C. piaropi-waterhyacinth pathogenesis is an important factor to take into account in biocontrol strategies.

  20. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng.

    PubMed

    Chen, Jin-Lian; Sun, Shi-Zhong; Miao, Cui-Ping; Wu, Kai; Chen, You-Wei; Xu, Li-Hua; Guan, Hui-Lin; Zhao, Li-Xing

    2016-10-01

    Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

  1. Identifying, Developing and Releasing Insect Biocontrol Agents for the Management of Phragmites australis

    DTIC Science & Technology

    2013-07-01

    was a high wheat-germ diet (a gypsy - moth wheat germ diet with premixed agar ERDC/EL TN-13-3 July 2013 11 from MP Biomedicals, Inc.) with ground...potential control agents are shoot-boring moths in the genera Archanara (A. geminipuncta, A. neurica, and A. dissoluta and Arenostola phragmitidis. All...transferring larva by hand, and collecting eggs after moth oviposition in cages. While all moth species can be reared with enormous efforts

  2. Biocontrol Potential of Metchnikowia pulcherrima Strains Against Blue Mold of Apple.

    PubMed

    Janisiewicz, W J; Tworkoski, T J; Kurtzman, C P

    2001-11-01

    ABSTRACT Eight strains of Metschnikowia pulcherrima isolated over a 4-year period from an unmanaged orchard and selected for their biocontrol activity against blue mold (caused by Penicillium expansum) of apples were characterized phenotypically, genetically, and for their biocontrol potential against blue mold on apples. All strains grew well and only differed slightly in their growth in nutrient yeast dextrose broth medium at 1 degrees C after 216 h, but large differences occurred at 0 degrees C, with strain T5-A2 outgrowing other strains by more than 25% transmittance after 360 h. This strain was also one of the most resistant to diphenylamine (DPA), a postharvest antioxidant treatment. All strains required biotin for growth in minimum salt (MS) medium, although strain ST2-A10 grew slightly in MS medium containing riboflavin or folic acid, as did ST3-E1 in MS medium without vitamins. None of the strains produced killer toxins against an indicator strain of Saccharomyces cerevisiae. Analysis of Biolog data from YT plates for all eight strains using the MLCLUST program resulted in separation of the strains into one major cluster containing four strains and four scattered strains from which strain ST1-D10 was the most distant from all other strains. This was particularly apparent in 3-D and principle component analysis. Genetic differentiation of the eight strains using maximum parsimony analysis of nucleotide sequences from domain D1/D2 of nuclear large subunit (26S) ribosomal DNA resulted in detection of two clades. Strain ST1-D10 grouped with the type strain of M. pulcherrima but the remaining seven strains grouped separately, which might possibly represent a new species. All strains significantly reduced blue mold on mature Golden Delicious apples during 1 month of storage at 1 degrees C followed by 7 days at room temperature, but strains T5-A2 and T4-A2 were distinctly more effective under these conditions. Strain T5-A2 also was the most effective in tests on

  3. Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease.

    PubMed

    Hanada, Rogério Eiji; Pomella, Alan William V; Costa, Heron Salazar; Bezerra, José Luiz; Loguercio, Leandro L; Pereira, José O

    2010-01-01

    The endophytic niches of plants are a rich source of microbes that can directly and indirectly promote plant protection, growth and development. The diversity of culturable endophytic fungi from stems and branches of Theobroma cacao (cacao) and Theobroma grandiflorum (cupuaçu) trees growing in the Amazon region of Brazil was assessed. The collection of fungal endophytic isolates obtained was applied in field experiments to evaluate their potential as biocontrol agents against Phytophthora palmivora, the causal agent of the black-pod rot disease of cacao, one of the most important pathogens in cocoa-producing regions worldwide. The isolated endophytic fungi from 60 traditional, farmer-planted, healthy cacao and 10 cupuaçu plants were cultured in PDA under conditions inducing sporulation. Isolates were classified based upon the morphological characteristics of their cultures and reproductive structures. Spore suspensions from a total of 103 isolates that could be classified at least up to genus level were tested against P. palmivora in pods attached to cacao trees in the field. Results indicated that ∼70% of isolates showed biocontrol effects to a certain extent, suggesting that culturable endophytic fungal biodiversity in this system is of a mostly mutualistic type of interaction with the host. Eight isolates from genera Trichoderma (reference isolate), Pestalotiopsis, Curvularia, Tolypocladium and Fusarium showed the highest level of activity against the pathogen, and were further characterized. All demonstrated their endophytic nature by colonizing axenic cacao plantlets, and confirmed their biocontrol activity on attached pods trials by showing significant decrease in disease severity in relation to the positive control. None, however, showed detectable growth-promotion effects. Aspects related to endophytic biodiversity and host-pathogen-endophyte interactions in the environment of this study were discussed on the context of developing sustainable strategies

  4. Structural characterization of antibiotic self-immunity tRNA synthetase in plant tumour biocontrol agent

    PubMed Central

    Chopra, Shaileja; Palencia, Andrés; Virus, Cornelia; Schulwitz, Sarah; Temple, Brenda R.; Cusack, Stephen; Reader, John

    2016-01-01

    Antibiotic-producing microbes evolved self-resistance mechanisms to avoid suicide. The biocontrol Agrobacterium radiobacter K84 secretes the Trojan Horse antibiotic agrocin 84 that is selectively transported into the plant pathogen A. tumefaciens and processed into the toxin TM84. We previously showed that TM84 employs a unique tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase (LeuRS), while the TM84-producer prevents self-poisoning by expressing a resistant LeuRS AgnB2. We now identify a mechanism by which the antibiotic-producing microbe resists its own toxin. Using a combination of structural, biochemical and biophysical approaches, we show that AgnB2 evolved structural changes so as to resist the antibiotic by eliminating the tRNA-dependence of TM84 binding. Mutagenesis of key resistance determinants results in mutants adopting an antibiotic-sensitive phenotype. This study illuminates the evolution of resistance in self-immunity genes and provides mechanistic insights into a fascinating tRNA-dependent antibiotic with applications for the development of anti-infectives and the prevention of biocontrol emasculation. PMID:27713402

  5. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum.

    PubMed

    Yang, Fan; Abdelnabby, Hazem; Xiao, Yannong

    2015-12-01

    Sclerotinia sclerotiorum causes severe stem rot and yield loss in oilseed rape (Brassica napus L.) and other crops worldwide. Extensive studies have been conducted on Paecilomyces lilacinus as a nematophagous bioagent. However, no reports stated the effect of P. lilacinus as a biocontrol agent against oilseed rape rot S. sclerotiorum. This study describes such effect in lab and field trials using the new transformant pt361 derived from the wild strain P. lilacinus 36-1. Unlike the wild-type strain, the mutant pt361 showed high antagonistic effect against S. Sclerotiorum A. Under lab conditions, the pt361 inhibited (65%) radial mycelial growth of S. sclerotiorum in dual culture test producing 5.9 mm inhibition zone IZ in front of the S. sclerotiorum colony. Moreover, the cell-free filtrate of pt361 culture showed strong inhibitory effects (60.3-100%) on mycelial growth of S. sclerotiorum. In leaf detached assay, pt361 significantly (p < 0.05) inhibited (40.4-97.9%) the extension of the leaf spots caused by S. sclerotiorum A at all tested concentrations. The genomic DNA sequences of the inserted T-DNA flanking obtained from pt361 strain was cloned, verified as a glycoside hydrolase 31 family by homologous analysis with other fungal strains, and named PGH31 (2556bp). Secondary structure prediction showed a domain (Glycoside hydrolase31). Three years field trial confirmed that the cell-free filtrates or spores suspension of pt361 achieved significant (p < 0.05) suppression of oilseed rape stem rot, promoted growth and increased yield compared to the control and exceeded, at dose 100%, the action of the fungicide procymidone(®). In conclusion, the mutant pt361 of P. lilacinus is a novel and promising biocontrol agent against oilseed rape Sclerotinia stem rot. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cow dung extract: a medium for the growth of pseudomonads enhancing their efficiency as biofertilizer and biocontrol agent in rice.

    PubMed

    Srivastava, Rashmi; Aragno, Michel; Sharma, A K

    2010-09-01

    Some pseudomands are being utilized as biofertilizers and biopesticides because of their role in plant growth promotion and plant protection against root parasites, respectively. Two strains of Pseudomonas, P. jessenii LHRE62 and P. synxantha HHRE81, recovered from wheat rhizosphere, have shown their potential in field bioinoculation tests under rice-wheat and pulse-wheat rotation systems. Normally, pseudomonads are cultivated on synthetic media-like King's B and used for inoculation on seeds/soil drench with talcum or charcoal as carrier material. Cow dung is being used for different purposes from the ancient time and has a significant role in crop growth because of the content in humic compounds and fertilizing bioelements available in it. Here, cow dung extract was tested as a growth medium for strains LHRE62 and HHRE81, in comparison with growth in King's B medium. The log phase was delayed by 2 h as compared to growth in King's B medium. The bacterial growth yield, lower in plain cow dung extract as compared to King's B medium, was improved upon addition of different carbon substrates. Growth of rice var. Pant Dhan 4 in pot cultures was increased using liquid formulation of cow dung extract and bacteria as foliar spray, compared to their respective controls. Biocontrol efficacy of the bioagents was assessed by challenging rice crop with Rhizoctonia solani, a sheath blight pathogen. The growth promotion and biocontrol efficiencies were more pronounced in the case of mixed inocula of strains LHRE62 and HHRE81.

  7. Evaluation of yeasts from Tibetan fermented products as agents for biocontrol of blue mold of Nashi pear fruits*

    PubMed Central

    Hu, Hao; Xu, Yang; Lu, Huang-ping; Xiao, Rui; Zheng, Xiao-dong; Yu, Ting

    2015-01-01

    A total of 20 strains of yeast isolated from Tibetan fermented products were screened for antagonism against blue mold of pear caused by Penicillium expansum. Six isolates that inhibited incidence of postharvest decay by 35% or more were selected for further screening. Among them, the most effective was Rhodotorula mucilaginosa. The results showed that washed cell suspensions of R. mucilaginosa yielded better antagonistic efficacy than unwashed cell-culture mixtures, cell-free culture filtrates, and autoclaved cell cultures. Biocontrol activity improved with increasing concentrations of incubated cells. The best concentration was 1×108 cells/ml, at which the incidence of decay was only 16.7% after 6 d of incubation. The germination of conidia of P. expansum in vitro was significantly inhibited by both washed cell-suspensions and unwashed cell-culture mixtures. Rapid colonization by yeast at different concentrations showed a relationship between yeast-cell concentration and biocontrol activity. Although the titratable acidity of pear fruits increased after treatment, R. mucilaginosa did not affect the total soluble solids or ascorbic acid content. This is the first study to report that the yeast R. mucilaginosa from Tibet Autonomous Region of China may have potential as an antagonist to control the postharvest decay of pear fruits. PMID:25845361

  8. A Three-Way Transcriptomic Interaction Study of a Biocontrol Agent (Clonostachys rosea), a Fungal Pathogen (Helminthosporium solani), and a Potato Host (Solanum tuberosum).

    PubMed

    Lysøe, Erik; Dees, Merete W; Brurberg, May Bente

    2017-08-01

    Helminthosporium solani causes silver scurf, which affects the quality of potato. The biocontrol agent Clonostachys rosea greatly limited the severity of silver scurf symptoms and amount of H. solani genomic DNA in laboratory experiments. Transcriptomic analysis during interaction showed that H. solani gene expression was highly reduced when coinoculated with the biocontrol agent C. rosea, whereas gene expression of C. rosea was clearly boosted as a response to the pathogen. The most notable upregulated C. rosea genes were those encoding proteins involved in cellular response to oxidative stress, proteases, G-protein signaling, and the methyltransferase LaeA. The most notable potato response to both fungi was downregulation of defense-related genes and mitogen-activated protein kinase kinase kinases. At a later stage, this shifted, and most potato defense genes were turned on, especially those involved in terpenoid biosynthesis when H. solani was present. Some biocontrol-activated defense-related genes in potato were upregulated during early interaction with C. rosea alone that were not triggered by H. solani alone. Our results indicate that the reductions of silver scurf using C. rosea are probably due to a combination of mechanisms, including mycoparasitism, biocontrol-activated stimulation of plant defense mechanisms, microbial competition for nutrients, space, and antibiosis.

  9. Genome Sequencing and Comparative Analysis of the Biocontrol Agent Trichoderma harzianum sensu stricto TR274

    SciTech Connect

    Steindorff, Andrei S.; Noronha, Elilane F.; Ulhoa, Cirano J.; Kuo, Alan; Salamov, Asaf A.; Haridas, Sajeet; Riley, Robert W.; Druzhinina, Irina S.; Kubicek, Christian P.; Grigoriev, Igor V.

    2015-03-17

    Biological control is a complex process which requires many mechanisms and a high diversity of biochemical pathways. The species of Trichoderma harzianum are well known for their biocontrol activity against many plant pathogens. To gain new insights into the biocontrol mechanism used by T. harzianum, we sequenced the isolate TR274 genome using Illumina. The assembly was performed using AllPaths-LG with a maximum coverage of 100x. The assembly resulted in 2282 contigs with a N50 of 37033bp. The genome size generated was 40.8 Mb and the GC content was 47.7%, similar to other Trichoderma genomes. Using the JGI Annotation Pipeline we predicted 13,932 genes with a high transcriptome support. CEGMA tests suggested 100% genome completeness and 97.9% of RNA-SEQ reads were mapped to the genome. The phylogenetic comparison using orthologous proteins with all Trichoderma genomes sequenced at JGI, corroborates the Trichoderma (T. asperellum and T. atroviride), Longibrachiatum (T. reesei and T. longibrachiatum) and Pachibasium (T. harzianum and T. virens) section division described previously. The comparison between two Trichoderma harzianum species suggests a high genome similarity but some strain-specific expansions. Analyses of the secondary metabolites, CAZymes, transporters, proteases, transcription factors were performed. The Pachybasium section expanded virtually all categories analyzed compared with the other sections, specially Longibrachiatum section, that shows a clear contraction. These results suggests that these proteins families have an important role in their respective phenotypes. Future analysis will improve the understanding of this complex genus and give some insights about its lifestyle and the interactions with the environment.

  10. Characterization of extracellular lytic enzymes produced by the yeast biocontrol agent Candida oleophila.

    PubMed

    Bar-Shimon, Meirav; Yehuda, Hila; Cohen, Lea; Weiss, Batia; Kobeshnikov, Alexsandra; Daus, Avinoam; Goldway, Martin; Wisniewski, Michael; Droby, Samir

    2004-03-01

    The yeast Candida oleophila, the base of the commercial product Aspire, is recommended for the control of postharvest decay of citrus and pome fruit. Competition for nutrients and space is believed to be the major mode of action. Involvement of fungal cell wall-degrading enzymes is also suggested to play a role in the mechanism of action of yeast antagonists. The present study showed that the yeast C. oleophila is capable of producing and secreting various cell wall-degrading enzymes, including exo-beta-1,3-glucanase, chitinase and protease. Exo-beta-1,3-glucanase and chitinase were produced and maximized in the early stages of growth, whereas protease reached a maximum level only after 6-8 days. Production of exo-beta-1,3-glucanase, chitinase and protease was stimulated by the presence of cell wall fragments of Penicillium digitatum in the growth medium, in addition to glucose. This study also provided evidence that C. oleophila is capable of secreting exo-beta-1,3-glucanase into the wounded surface of grapefruit. The role of exo-beta-1,3-glucanase ( CoEXG1) in the biocontrol activity of C. oleophila was tested using CoEXG1-knockouts and double- CoEXG1 over-producing transformants. In vitro bioassays showed that wild-type C. oleophila and exo-beta-1,3-glucanase over-expressing transformants had similar inhibitory effects on spore germination and germ-tube elongation; and both were more inhibitory to the fungus than the knockout transformant. In experiments conducted on fruit to test the biocontrol activity against infection by P. digitatum, no significant difference in inhibition was observed between transformants and untransformed C. oleophila cells at the high concentrations of cells used, whereas at a lower concentration of yeast cells the knockout transformants appeared to be less effective.

  11. Bacteriophage biocontrol of foodborne pathogens.

    PubMed

    Kazi, Mustafa; Annapure, Uday S

    2016-03-01

    Bacteriophages are viruses that only infect bacterial cells. Phages are categorized based on the type of their life cycle, the lytic cycle cause lysis of the bacterium with the release of multiple phage particles where as in lysogenic phase the phage DNA is incorporated into the bacterial genome. Lysogeny does not result in lysis of the host. Lytic phages have several potential applications in the food industry as biocontrol agents, biopreservatives and as tools for detecting pathogens. They have also been proposed as alternatives to antibiotics in animal health. Two unique features of phage relevant for food safety are that they are harmless to mammalian cells and high host specificity, keeping the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about 'edible viruses'. This article reviews in detail the application of phages for the control of foodborne pathogens in a process known as "biocontrol".

  12. The Potential Use of Wolbachia-Based Mosquito Biocontrol Strategies for Japanese Encephalitis

    PubMed Central

    Jeffries, Claire L.; Walker, Thomas

    2015-01-01

    Japanese encephalitis virus (JEV) is a zoonotic pathogen transmitted by the infectious bite of Culex mosquitoes. The virus causes the development of the disease Japanese encephalitis (JE) in a small proportion of those infected, predominantly affecting children in eastern and southern Asia. Annual JE incidence estimates range from 50,000–175,000, with 25%–30% of cases resulting in mortality. It is estimated that 3 billion people live in countries in which JEV is endemic. The virus exists in an enzootic transmission cycle, with mosquitoes transmitting JEV between birds as reservoir hosts and pigs as amplifying hosts. Zoonotic infection occurs as a result of spillover events from the main transmission cycle. The reservoir avian hosts include cattle egrets, pond herons, and other species of water birds belonging to the family Ardeidae. Irrigated rice fields provide an ideal breeding ground for mosquitoes and attract migratory birds, maintaining the transmission of JEV. Although multiple vaccines have been developed for JEV, they are expensive and require multiple doses to maintain efficacy and immunity. As humans are a “dead-end” host for the virus, vaccination of the human population is unlikely to result in eradication. Therefore, vector control of the principal mosquito vector, Culex tritaeniorhynchus, represents a more promising strategy for reducing transmission. Current vector control strategies include intermittent irrigation of rice fields and space spraying of insecticides during outbreaks. However, Cx. Tritaeniorhynchus is subject to heavy exposure to pesticides in rice fields, and as a result, insecticide resistance has developed. In recent years, significant advancements have been made in the potential use of the bacterial endosymbiont Wolbachia for mosquito biocontrol. The successful transinfection of Wolbachia strains from Drosophila flies to Aedes (Stegomyia) mosquitoes has resulted in the generation of “dengue-refractory” mosquito lines

  13. Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation.

    PubMed

    Kang, Sang-Mo; Radhakrishnan, Ramalingam; Lee, In-Jung

    2015-10-01

    The fungus Rhizoctonia solani is one of the causal agents of numerous diseases that affect crop growth and yield. The aim of this present investigation was to identify a biocontrol agent that acts against R. solani and to determine the agent's protective effect through phytohormones and antioxidant regulation in experimentally infected Chinese cabbage plants. Four rhizospheric soil bacterial isolates GR53, GR169, GR786, and GR320 were tested for their antagonistic activity against R. solani. Among these isolates, GR53 significantly suppressed fungal growth. GR53 was identified as Bacillus amyloliquefaciens subsp. plantarum by phylogenetic analysis of the 16S rDNA sequence. The biocontrol activity of B. amyloliquefaciens subsp. plantarum GR53 was tested in Chinese cabbage plants under controlled conditions. Results showed that R. solani inhibited plant growth (length, width, fresh and dry weight of leaves) by reducing chlorophyll and total phenolic content, as well as by increasing the levels of salicylic acid, jasmonic acid, abscisic acid, and DPPH scavenging activity. By regulating the levels of these compounds, the co-inoculation of B. amyloliquefaciens subsp. plantarum GR53 heightened induced systemic resistance in infected Chinese cabbage, effectively mitigating R. solani-induced damaging effects and improving plant growth. The results obtained from this study suggest that B. amyloliquefaciens subsp. plantarum GR53 is an effective biocontrol agent to prevent the damage caused by R. solani in Chinese cabbage plants.

  14. Molecular Characterization and Identification of Biocontrol Isolates of Trichoderma spp.

    PubMed Central

    Hermosa, M. R.; Grondona, I.; Iturriaga, E. A.; Diaz-Minguez, J. M.; Castro, C.; Monte, E.; Garcia-Acha, I.

    2000-01-01

    The most common biological control agents (BCAs) of the genus Trichoderma have been reported to be strains of Trichoderma virens, T. harzianum, and T. viride. Since Trichoderma BCAs use different mechanisms of biocontrol, it is very important to explore the synergistic effects expressed by different genotypes for their practical use in agriculture. Characterization of 16 biocontrol strains, previously identified as “Trichoderma harzianum” Rifai and one biocontrol strain recognized as T. viride, was carried out using several molecular techniques. A certain degree of polymorphism was detected in hybridizations using a probe of mitochondrial DNA. Sequencing of internal transcribed spacers 1 and 2 (ITS1 and ITS2) revealed three different ITS lengths and four different sequence types. Phylogenetic analysis based on ITS1 sequences, including type strains of different species, clustered the 17 biocontrol strains into four groups: T. harzianum-T. inhamatum complex, T. longibrachiatum, T. asperellum, and T. atroviride-T. koningii complex. ITS2 sequences were also useful for locating the biocontrol strains in T. atroviride within the complex T. atroviride-T. koningii. None of the biocontrol strains studied corresponded to biotypes Th2 or Th4 of T. harzianum, which cause mushroom green mold. Correlation between different genotypes and potential biocontrol activity was studied under dual culturing of 17 BCAs in the presence of the phytopathogenic fungi Phoma betae, Rosellinia necatrix, Botrytis cinerea, and Fusarium oxysporum f. sp. dianthi in three different media. PMID:10788356

  15. Novel Trichoderma polysporum Strain for the Biocontrol of Pseudogymnoascus destructans, the Fungal Etiologic Agent of Bat White Nose Syndrome.

    PubMed

    Zhang, Tao; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-01-01

    White-nose syndrome (WNS), an emerging disease of hibernating bats, has rapidly spread across eastern North America killing millions of bats. Pseudogymnoascus destructans (Pd), the sole etiologic agent of WNS, is widespread and persistent in bat hibernacula. Control of Pd in the affected sites is urgently needed to break the transmission cycle while minimizing any adverse impact on the native organisms. We isolated a novel strain of Trichoderma polysporum (Tp) from one of the caves at the epicenter of WNS zoonotic. Detailed experimental studies revealed: (1) Tp WPM 39143 was highly adapted to grow at temperatures simulating the cave environment (6°C-15°C), (2) Tp WPM 39143 restricted Pd colony growth in dual culture challenges, (3) Tp WPM 39143 caused four logs reduction of Pd colony forming units and genome copies in autoclaved soil samples from one of the WNS affected caves, (4) Tp WPM 39143 extract showed specific fungicidal activity against Pd in disk diffusion assay, but not against closely related fungus P. pannorum (Pp), (5) Tp WPM 39143 extract retained inhibitory activity after exposure to high temperatures, light and proteinase K, and (6) Inhibitory metabolites in Tp WPM 39143 extract comprised of water-soluble, high polarity compounds. These results suggest that Tp WPM 39143 is a promising candidate for further evaluation as a biocontrol agent of Pd in WNS affected sites.

  16. Novel Trichoderma polysporum Strain for the Biocontrol of Pseudogymnoascus destructans, the Fungal Etiologic Agent of Bat White Nose Syndrome

    PubMed Central

    Zhang, Tao; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-01-01

    White-nose syndrome (WNS), an emerging disease of hibernating bats, has rapidly spread across eastern North America killing millions of bats. Pseudogymnoascus destructans (Pd), the sole etiologic agent of WNS, is widespread and persistent in bat hibernacula. Control of Pd in the affected sites is urgently needed to break the transmission cycle while minimizing any adverse impact on the native organisms. We isolated a novel strain of Trichoderma polysporum (Tp) from one of the caves at the epicenter of WNS zoonotic. Detailed experimental studies revealed: (1) Tp WPM 39143 was highly adapted to grow at temperatures simulating the cave environment (6°C-15°C), (2) Tp WPM 39143 restricted Pd colony growth in dual culture challenges, (3) Tp WPM 39143 caused four logs reduction of Pd colony forming units and genome copies in autoclaved soil samples from one of the WNS affected caves, (4) Tp WPM 39143 extract showed specific fungicidal activity against Pd in disk diffusion assay, but not against closely related fungus P. pannorum (Pp), (5) Tp WPM 39143 extract retained inhibitory activity after exposure to high temperatures, light and proteinase K, and (6) Inhibitory metabolites in Tp WPM 39143 extract comprised of water-soluble, high polarity compounds. These results suggest that Tp WPM 39143 is a promising candidate for further evaluation as a biocontrol agent of Pd in WNS affected sites. PMID:26509269

  17. Behaviorally active green leaf volatiles for monitoring the leaf beetle, Diorhabda elongata, a biocontrol agent of saltcedar, Tamarix spp.

    PubMed

    Cossé, Allard A; Bartelt, Robert J; Zilkowski, Bruce W; Bean, Daniel W; Andress, Earl R

    2006-12-01

    Biological activity and chemistry of host plant volatiles were investigated for Diorhabda elongata, Brullé (Coleoptera: Chrysomelidae), a biological control agent for the invasive tree, saltcedar (Tamarix spp., Tamaricaceae). Gas chromatographic-electroantennographic detection (GC-EAD) analysis of volatiles collected from adult D. elongata feeding on saltcedar foliage or from saltcedar foliage alone showed 15 antennally active compounds. These compounds were more abundant in collections from beetle-infested foliage. Antennally active compounds were identified by GC-mass spectrometry (MS) and confirmed with authentic standards. The emissions of the most abundant GC-EAD-active compounds, green leaf volatiles (GLV), were quantitated by GC-MS. A blend of four GLV compounds, mimicking the natural blend ratio, was highly attractive to male and female D. elongata in the field, and a combination of GLV and male-produced aggregation pheromone attracted significantly greater numbers of D. elongata than did either bait alone. A preliminary experiment with a blend of seven additional GC-EAD-active saltcedar volatiles did not show any behavioral activity. The combination of the pheromone and the green leaf odor blend could be a useful attractant in detecting the presence of the biocontrol agent, D. elongata, in stands of saltcedar newly colonized by the beetle.

  18. Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae

    PubMed Central

    2015-01-01

    Pseudomonas fluorescens strain PICF7 is a native endophyte of olive roots. Previous studies have shown this motile, Gram-negative, non-sporulating bacterium is an effective biocontrol agent against the soil-borne fungus Verticillium dahliae, the causal agent of one of the most devastating diseases for olive (Olea europaea L.) cultivation. Here, we announce and describe the complete genome sequence of Pseudomonas fluorescens strain PICF7 consisting of a circular chromosome of 6,136,735 bp that encodes 5,567 protein-coding genes and 88 RNA-only encoding genes. Genome analysis revealed genes predicting factors such as secretion systems, siderophores, detoxifying compounds or volatile components. Further analysis of the genome sequence of PICF7 will help in gaining insights into biocontrol and endophytism. PMID:25685259

  19. Host-Range Dynamics of Cochliobolus lunatus: From a Biocontrol Agent to a Severe Environmental Threat

    PubMed Central

    Louis, Bengyella; Waikhom, Sayanika Devi; Roy, Pranab; Bhardwaj, Pardeep Kumar; Sharma, Chandradev K.; Singh, Mohendro Wakambam; Talukdar, Narayan Chandra

    2014-01-01

    We undertook an investigation to advance understanding of the host-range dynamics and biocontrol implications of Cochliobolus lunatus in the past decade. Potato (Solanum tuberosum L) farms were routinely surveyed for brown-to-black leaf spot disease caused by C. lunatus. A biphasic gene data set was assembled and databases were mined for reported hosts of C. lunatus in the last decade. The placement of five virulent strains of C. lunatus causing foliar necrosis of potato was studied with microscopic and phylogenetic tools. Analysis of morphology showed intraspecific variations in stromatic tissues among the virulent strains causing foliar necrosis of potato. A maximum likelihood inference based on GPDH locus separated C. lunatus strains into subclusters and revealed the emergence of unclustered strains. The evolving nutritional requirement of C. lunatus in the last decade is exhibited by the invasion of vertebrates, invertebrates, dicots, and monocots. Our results contribute towards a better understanding of the host-range dynamics of C. lunatus and provide useful implications on the threat posed to the environment when C. lunatus is used as a mycoherbicide. PMID:24987680

  20. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes.

    PubMed

    Kandel, Shyam L; Firrincieli, Andrea; Joubert, Pierre M; Okubara, Patricia A; Leston, Natalie D; McGeorge, Kendra M; Mugnozza, Giuseppe S; Harfouche, Antoine; Kim, Soo-Hyung; Doty, Sharon L

    2017-01-01

    Microbial communities in the endosphere of Salicaceae plants, poplar (Populus trichocarpa) and willow (Salix sitchensis), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici, and Pythium ultimum. Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition.

  1. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes

    PubMed Central

    Kandel, Shyam L.; Firrincieli, Andrea; Joubert, Pierre M.; Okubara, Patricia A.; Leston, Natalie D.; McGeorge, Kendra M.; Mugnozza, Giuseppe S.; Harfouche, Antoine; Kim, Soo-Hyung; Doty, Sharon L.

    2017-01-01

    Microbial communities in the endosphere of Salicaceae plants, poplar (Populus trichocarpa) and willow (Salix sitchensis), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici, and Pythium ultimum. Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition. PMID:28348550

  2. Influence of diluent and sample processing methods on the recovery of the biocontrol agent Pantoea agglomerans CPA-2 from different fruit surfaces.

    PubMed

    Torres, R; Viñas, I; Usall, J; Remón, D; Teixidó, N

    2012-08-01

    Determining the populations of biocontrol agents applied as a postharvest treatment on fruit surfaces is fundamental to the assessment of the microorganisms' ability to colonise and persist on fruit. To obtain maximum recovery, we must develop a methodology that involves both diluent and processing methods and that does not affect the viability of the microorganisms. The effect of diluent composition was evaluated using three diluents: phosphate buffer, peptone saline and buffered peptone saline. An additional study was performed to compare three processing methods (shaking plus sonication, stomaching and shaking plus centrifugation) on the recovery efficiency of Pantoea agglomerans strain CPA-2 from apples, oranges, nectarines and peaches treated with this biocontrol agent. Overall, slight differences occurred among diluents, although the phosphate buffer maintained the most ideal pH for CPA-2 growth (between 5.2 and 6.2). Stomaching, using the phosphate buffer as diluent, was the best procedure for recovering and enumerating the biocontrol agent; this fact suggested that no lethal effects from naturally occurring antimicrobial compounds present on the fruit skins and/or produced when the tissues were disrupted affected the recovery of the CPA-2 cells, regardless of fruit type. The growth pattern of CPA-2 on fruits maintained at 20°C and under cold conditions was similar to that obtained in previous studies, which confirms the excellent adaptation of this strain to conditions commonly used for fruit storage.

  3. Leuconostoc citreum MB1 as biocontrol agent of Listeria monocytogenes in milk.

    PubMed

    Pujato, Silvina A; del L Quiberoni, Andrea; Candioti, Mario C; Reinheimer, Jorge A; Guglielmotti, Daniela M

    2014-05-01

    Cell-free supernatant from Leuconostoc citreum MB1 revealed specific antilisterial activity. Preliminary studies demonstrated the proteinaceous, heat-stable, bacteriocin-like trait of the antimicrobial components present in the supernatant. Determination of the genes encoding bacteriocins by PCR and DNA sequencing led to amplification products highly homologous with leucocin A (found in diverse Leuconostoc species) and UviB (found in Leuc. citreum KM20) sequences. Additionally, antimicrobial activity of cell-free supernatant from Leuc. citreum MB1 was revealed by an inhibition halo of the SDS-PAGE gel subjected to a direct detection using Listeria monocytogenes as indicator strain. Different assays were carried out to assess the capacity of Leuc.citreum MB1 to control List. monocytogenes growth: (i) inactivation kinetics of the pathogen by antilisterial compounds present in concentrated cell-free supernatant from Leuc. citreum MB1, (ii) evaluation of optimal Leuc. citreum MB1 initial concentration to obtain maximum List. monocytogenes ATCC 15313 inhibition, and (iii) biocontrol of List. monocytogenes ATCC 15313 with Leuc. citreum MB1 during growth in milk at refrigeration temperature. According to our results, it is unquestionable that at least one bacteriocin is active in Leuc. citreum MB1, since important antilisterial activity was verified either in its cell-free supernatant or in co-culture experiments. Co-culture tests showed that ∼107 CFU/ml Leuc. citreum MB1 was the optimal initial concentration to obtain maximum pathogen inhibition. Moreover, Leuc. citreum MB1 was able to delay List. monocytogenes growth at refrigerated temperature.

  4. Theoretical modeling suggests that synergy may result from combined use of two biocontrol agents for controlling foliar pathogens under spatial heterogeneous conditions.

    PubMed

    Xu, X-M; Jeger, M J

    2013-08-01

    There has been a trend for combined use of several biocontrol agents (BCAs) with an expectation of synergistic interactions among BCAs. However, previous modeling studies suggested that, under homogeneous and temporal-fluctuating conditions, combined use of two BCAs, in most cases, only results in efficacies similar to the more efficacious one used alone; a result consistent with published experimental data. The present modeling study investigated whether combined use of two mycoparasitic BCAs, two competitive BCAs, or a mycoparasitic and a competitive BCA leads to synergistic interactions under spatially heterogeneous conditions. In the model, there were two patches with varying relative sizes and two BCAs differentially adapted to the two patches. Within the range of model parameter values considered, combined use of two BCAs is more effective than the more efficacious BCA used alone in 72% of the simulated cases. There was also a considerable proportion (≈21%) of model simulations in which combined use of two BCAs led to synergy (i.e., efficacy was greater than expected under the assumption of Bliss independence, especially when each of the two BCAs can only survive in one [different] patch). Combined use of a mycoparasitic BCA with a competitive one is more likely to result in synergy than the other two BCA combinations. When biocontrol activities of individual BCAs are low or moderate, biocontrol efficacy arising from combined use of two BCAs does not depend greatly on biocontrol mechanisms. However, for high BCA activities, combined use with at least one competitive BCA resulted in better control than combined use of two mycoparasitic BCAs. The present modeling study emphasized the need for understanding the degree of spatial patchiness and quantitative relationships between biocontrol activities and external conditions in order to apply commercial BCAs effectively.

  5. Genetic characterization of a novel Phomopsis sp., a putative biocontrol agent for Carthamus lanatus.

    PubMed

    Ash, Gavin J; Stodart, Benjamin; Sakuanrungsirikul, Suchirat; Anschaw, Emma; Crump, Nigel; Hailstones, Deborah; Harper, John D I

    2010-01-01

    A large number of isolates of Phomopsis sp. have been collected from the weed Carthamus lanatus (saffron thistle) in Australia, and their potential as biological control agents for weeds of the Asteraceae has been demonstrated. An analysis of their genetic diversity and a multigene phylogenetic analysis were undertaken to ascertain whether these isolates were distinct from other species of Phomopsis that commonly attack crop species in Australia. Minimal variation was found between the Phomopsis spp. isolated from saffron thistle, except two isolates that appeared to share identity with Diaporthe helianthii and P. viticola. Analysis of the selected isolates from saffron thistle with the nucleotide sequence of the partial ITS and tefl-alpha regions demonstrated that the sequences were distinct from all other species of Phomopsis so far described from crops in Australia. These findings provide strong support for the recognition of these isolates as a separate species of Phomopsis. The implications of these findings are discussed in relation to biological control of saffron thistle.

  6. Regulatory approval for weed biocontrol agents in the U.S. - A scientist's perspective

    USDA-ARS?s Scientific Manuscript database

    The importation of weed biological control agents (BCAs) is regulated by USDA-APHIS-PPQ with consultation from the Technical Advisory Group for Biological Control Agents of Weeds and the U.S. Fish & Wildlife Service. Preparing candidate BCAs for consideration for importation is the responsibility o...

  7. Impact of osmotic/matric stress and heat shock on environmental tolerance induction of bacterial biocontrol agents against Fusarium verticillioides.

    PubMed

    Sartori, Melina; Nesci, Andrea; Etcheverry, Miriam

    2010-10-01

    Bacillus amyloliquefaciens and Microbacterium oleovorans reduced the Fusarium verticillioides count and significantly decreased fumonisin B(1) and B(2) levels in maize grains. The aim of this study was to determine the effect of water stress tolerance and heat shock survival upon cells of the biocontrol agents B. amyloliquefaciens and M. oleovorans. The a(w) of solid and liquid media and tryptic soy medium was modified to 0.99, 0.98, 0.97 and 0.96 by addition of ionic solute NaCl and non-ionic solutes such as glycerol and glucose. The non-ionic solute polyethylene glycol 600 (PEG 600) was used to modify matrically solid media. Bacterial incubation was at 30 °C. After 24, 48 and 72 h of incubation, samples from liquid media were spread-plate on nutrient agar medium and incubated for 24 h to determine the number of viable cells. The bacterial cells were harvested by centrifugation and heat treatment carried out in a water bath at 45 °C for 30 min. The viability of cells from different incubation times in liquid media showed statistically significant differences. Cells of B. amyloliquefaciens grown in liquid media amended with glycerol showed better tolerance at low a(w) and high survival under heat stress. These results could have important implications for optimizing and improving formulations.

  8. Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples.

    PubMed

    Morales, Hector; Sanchis, Vicente; Usall, Josep; Ramos, Antonio J; Marín, Sonia

    2008-02-29

    Penicillium expansum is the major responsible of fruit pome decaying in cold storage. Apples spoiled by P. expansum are expected to contain patulin, a mycotoxin which is proven to affect human health. The use of chemicals is the most common procedure to prevent rots in postharvest but legislation is becoming more and more restrictive. The use of biocontrol agents (BCA) as an alternative tool is currently being proposed. The aim of this study was to evaluate the effect of two BCA (Candida sake CPA-2 and Pantoea agglomerans CPA-1) on P. expansum growth and patulin accumulation in cold storage and further deck (ambient) storage. Wounded apples were inoculated with a cell suspension of either C. sake or P. agglomerans and with a P. expansum conidial suspension. Apples were cold stored at 1 degrees C until lesion diameter reached 2 or 4 cm. Half the apples of each treatment were further stored at 20 degrees C for three days before patulin analyses. Both BCA tested controlled blue rot and patulin accumulation during cold storage. The control of P. expansum growth was enhanced in C. sake treated apples. On the other side, control of patulin accumulation in P. agglomerans treated apples seemed to be more efficient. BCA treatment could not control blue rot and patulin accumulation during further storage at room temperature and in some cases, an increase in P. expansum aggressiveness was observed.

  9. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Sarma, Birinchi Kumar; Singh, Harikesh Bahadur

    2015-05-01

    Oxalic acid (OA) is an important pathogenic factor during early Sclerotinia sclerotiorum-host interaction and might work by reducing hydrogen peroxide production (H2 O2 ). In the present investigation, oxalic acid-induced cell death in pea was studied. Pea plants treated with biocontrol agents (BCAs) viz., Pseudomonas aeruginosa PJHU15, Bacillus subtilis BHHU100, and Trichoderma harzianum TNHU27 either singly and/or in consortium acted on S. sclerotiorum indirectly by enabling plants to inhibit the OA-mediated suppression of oxidative burst via induction of H2 O2 . Our results showed that BCA treated plants upon treatment with culture filtrate of the pathogen, conferred the resistance via. significantly decreasing relative cell death of pea against S. sclerotiorum compared to control plants without BCA treatment but treated with the culture filtrate of the pathogen. The results obtained from the present study indicate that the microbes especially in consortia play significant role in protection against S. sclerotiorum by modulating oxidative burst and partially enhancing tolerance by increasing the H2 O2 generation, which is otherwise suppressed by OA produced by the pathogen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biocontrol Potential of Streptomyces hydrogenans Strain DH16 toward Alternaria brassicicola to Control Damping Off and Black Leaf Spot of Raphanus sativus.

    PubMed

    Manhas, Rajesh K; Kaur, Talwinder

    2016-01-01

    Biocontrol agents and their bioactive metabolites provide one of the best alternatives to decrease the use of chemical pesticides. In light of this, the present investigation reports the biocontrol potential of Streptomyces hydrogenans DH16 and its metabolites towards Alternaria brassicicola, causal agent of black leaf spot and damping off of seedlings of crucifers. In vitro antibiosis of strain against pathogen revealed complete suppression of mycelial growth of pathogen, grown in potato dextrose broth supplemented with culture supernatant (20% v/v) of S. hydrogenans DH16. Microscopic examination of the fungal growth showed severe morphological abnormalities in the mycelium caused by antifungal metabolites. In vivo studies showed the efficacy of streptomycete cells and culture supernatant as seed dressings to control damping off of Raphanus sativus seedlings. Treatment of pathogen infested seeds with culture supernatant (10%) and streptomycete cells significantly improved seed germination (75-80%) and vigor index (1167-1538). Furthermore, potential of cells and culture supernatant as foliar treatment to control black leaf spot was also evaluated. Clearly visible symptoms of disease were observed in the control plants with 66.81% disease incidence and retarded growth of root system. However, disease incidence reduced to 6.78 and 1.47% in plants treated with antagonist and its metabolites, respectively. Additionally, treatment of seeds and plants with streptomycete stimulated various growth traits of plants over uninoculated control plants in the absence of pathogen challenge. These results indicate that S. hydrogenans and its culture metabolites can be developed as biofungicides as seed dressings to control seed borne pathogens, and as sprays to control black leaf spot of crucifers.

  11. Biocontrol Potential of Streptomyces hydrogenans Strain DH16 toward Alternaria brassicicola to Control Damping Off and Black Leaf Spot of Raphanus sativus

    PubMed Central

    Manhas, Rajesh K.; Kaur, Talwinder

    2016-01-01

    Biocontrol agents and their bioactive metabolites provide one of the best alternatives to decrease the use of chemical pesticides. In light of this, the present investigation reports the biocontrol potential of Streptomyces hydrogenans DH16 and its metabolites towards Alternaria brassicicola, causal agent of black leaf spot and damping off of seedlings of crucifers. In vitro antibiosis of strain against pathogen revealed complete suppression of mycelial growth of pathogen, grown in potato dextrose broth supplemented with culture supernatant (20% v/v) of S. hydrogenans DH16. Microscopic examination of the fungal growth showed severe morphological abnormalities in the mycelium caused by antifungal metabolites. In vivo studies showed the efficacy of streptomycete cells and culture supernatant as seed dressings to control damping off of Raphanus sativus seedlings. Treatment of pathogen infested seeds with culture supernatant (10%) and streptomycete cells significantly improved seed germination (75–80%) and vigor index (1167–1538). Furthermore, potential of cells and culture supernatant as foliar treatment to control black leaf spot was also evaluated. Clearly visible symptoms of disease were observed in the control plants with 66.81% disease incidence and retarded growth of root system. However, disease incidence reduced to 6.78 and 1.47% in plants treated with antagonist and its metabolites, respectively. Additionally, treatment of seeds and plants with streptomycete stimulated various growth traits of plants over uninoculated control plants in the absence of pathogen challenge. These results indicate that S. hydrogenans and its culture metabolites can be developed as biofungicides as seed dressings to control seed borne pathogens, and as sprays to control black leaf spot of crucifers. PMID:28018402

  12. Survival of the biocontrol agents Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116 on the spikes of barley in the field*

    PubMed Central

    Zhang, Xin; Zhang, Bing-xin; Zhang, Zhen; Shen, Wei-feng; Yang, Ching-hong; Yu, Jing-quan; Zhao, Yu-hua

    2005-01-01

    Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease that results in extensive yield losses to wheat and barley. A green fluorescent protein (GFP) expressing plasmid pRP22-GFP was constructed for monitoring the colonization of two biocontrol agents, Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116, on the spikes of barley and their effect on suppression of FHB. Survival and colonization of the Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116 strains on spikes of barley were observed by tracking the bacterial transformants with GFP expression. Our field study revealed that plasmid pRP22-GFP was stably maintained in the bacterial strains without selective pressure. The retrieved GFP-tagged strains showed that the bacterial population fluctuation accorded with that of the rain events. Furthermore, both biocontrol strains gave significant protection against FHB on spikes of barley in fields. The greater suppression of barley FHB disease was resulted from the treatment of barley spikes with biocontrol agents before inoculation with F. graminearum. PMID:16052710

  13. Growth kinetics and efficacy as parameters for ranking and selecting biocontrol agents that reduce pink rot in stored potatoes

    USDA-ARS?s Scientific Manuscript database

    Increased production of organic agricultural products and the relative ineffectiveness of traditional control measures support development of new biocontrol technologies for use against pink rot infections in storage. The microbiota of 84 different agricultural soils was individually transferred to...

  14. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  15. Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots.

    PubMed

    Kurtzman, C P; Droby, S

    2001-11-01

    A new ascosporic yeast, Metschnikowia fructicola (type strain NRRL Y-27328, CBS 8853), is described and was isolated from grapes grown in central Israel. Preliminary tests indicate the new species has biocontrol activity against Botrytis rot of stored grapes. Phylogenetic analysis of domain D1/D2 26S rDNA sequences showed M. fructicola to be a sister species of M. pulcherrima.

  16. Plant growth-promoting traits of biocontrol potential bacteria isolated from rice rhizosphere.

    PubMed

    Gopalakrishnan, Subramaniam; Upadhyaya, Hd; Vadlamudi, Srinivas; Humayun, Pagidi; Vidya, Meesala Sree; Alekhya, Gottumukkala; Singh, Amit; Vijayabharathi, Rajendran; Bhimineni, Ratna Kumari; Seema, Murali; Rathore, Abhishek; Rupela, Om

    2012-12-01

    Seven isolates of bacteria (SRI-156, SRI-158, SRI-178, SRI-211, SRI-229, SRI-305 and SRI-360) were earlier reported by us as having potential for biocontrol of charcoal rot of sorghum and plant growth promotion (PGP) of the plant. In the present study, the seven isolates were characterized for their physiological traits (tolerance to salinity, pH, temperature and resistance to antibiotics and fungicides) and further evaluated in the field for their PGP of rice. All the seven isolates were able to grow at pH values between 5 and 13, in NaCl concentrations of up to 8% (except SRI-156 and SRI-360), temperatures between 20 and 40°C and were resistant to ampicillin (>100 ppm; except SRI-158 and SRI-178) but sensitive (<10 ppm) to chloramphenicol, kanamycin, nalidixic acid, streptomycin (except SRI-156 and SRI-211) and tetracycline. They were tolerant to fungicides benlate and captan, except SRI-158 and SRI-178, bavistin and sensitive to thiram (except SRI-156 and SRI-211) at field application level. In the field, four of the seven isolates (SRI-158, SRI-211, SRI-229 and SRI-360) significantly enhanced the tiller numbers, stover and grain yields, total dry matter, root length, volume and dry weight over the un-inoculated control. In the rhizosphere soil at harvest, all the isolates significantly enhanced microbial biomass carbon (except SRI-156), microbial biomass nitrogen and dehydrogenase activity (up to 33%, 36% and 39%, respectively) and total N, available P and% organic carbon (up to 10%, 38% and 10%, respectively) compared to the control. This investigation further confirms that the SRI isolates have PGP properties.

  17. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    PubMed

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi.

  18. Potential role of exoglucanase genes (WaEXG1 and WaEXG2) in the biocontrol activity of Wickerhamomyces anomalous

    USDA-ARS?s Scientific Manuscript database

    The use of yeasts, including Wickerhamomyces anomalus, as biocontrol agents against fungi responsible for postharvest diseases of fruits and vegetables has been investigated for the past two decades. Among a variety of killer mechanisms, the production of glucanases coded by the genes WaEXG1 and Wa...

  19. Optimization of storage condition for maintaining long-term viability of nematophagous fungus Esteya vermicola as biocontrol agent against pinewood nematode.

    PubMed

    Xue, Jian Jie; Hou, Jin Gang; Zhang, Yong An; Wang, Chun Yan; Wang, Zhen; Yu, Jiao Jiao; Wang, Yun Bo; Wang, Yu Zhu; Wang, Qing Hua; Sung, Chang Keun

    2014-11-01

    The fungus, Esteya vermicola has been proposed as biocontrol agent against pine wilting disease caused by Bursaphelenchus xylophilus. In this study, we reported the effects of temperature and different additives on the viability and biocontrol efficacy of E. vermicola formulated by alginate-clay. The viability of the E. vermicola formulation was determined for six consecutive months at temperature ranged from -70 to 25 °C. The fresh conidia without any treatment were used as control. Under the optimal storage conditions with E. vermicola alginate-clay formulation, the results suggested that E. vermicola alginate-clay formulation with a long shelf life could be a non-vacuum-packed formulation that contains 2 % sodium alginate and 5 % clay at 4 °C. Three conidial formulations prepared with additives of 15 % glycerol, 0.5 % yeast extract and 0.5 % herbal extraction, respectively significantly improved the shelf life. In addition, these tested formulations retained the same biocontrol efficacy as the fresh conidial against pinewood nematode. This study provided a tractable and low-cost method to preserve the shelf life of E. vermicola.

  20. Studies of plant colonisation by closely related Bacillus amyloliquefaciens biocontrol agents using strain specific quantitative PCR assays.

    PubMed

    Johansson, Anna H; Bejai, Sarosh; Niazi, Adnan; Manzoor, Shahid; Bongcam-Rudloff, Erik; Meijer, Johan

    2014-12-01

    Certain strains of Bacillus amyloliquefaciens can colonize plants and improve growth and stress management. In order to study these effects, bacterial growth dynamics on plants and in the rhizosphere are of interest calling for specific analytical tools. For that purpose, quantitative real-time PCR (qPCR) assays were developed in order to differentiate among three closely related B. amyloliquefaciens subsp. plantarum strains (UCMB5033, UCMB5036, UCMB5113) and to determine their levels with high accuracy. Oligonucleotide primers were designed for strain unique gene sequences and used for SYBR green based qPCR analysis. Standard curves covered a wide linear range (10(6)) of DNA amounts with the lowest detection level at 50 fg. Post-reaction melting curve analysis showed only a single product. Accurate threshold cycles were obtained, even in the presence of high excess of related Bacillus strains and total bacterial DNA from soil. Analysis of Bacillus colonisation after seed treatment of two oilseed rape cultivars (Oase and Ritz) grown on agar support showed a time dependent effect but that the bacteria mostly were found on root tissues and little on green tissues. The colonisation on plants grown in soil varied among the Bacillus strains where Oase seemed to house more bacteria than Ritz. Applied as a mixture, all three Bacillus strains co-existed on the roots of plants grown in soil. The qPCR assay in combination with other techniques will be a powerful tool to study plant interactions of these B. amyloliquefaciens biocontrol agents to further understand the requirements for successful interactions and improvement of plant properties.

  1. Global changes in gene expression of grapefruit peel tissue in response to the yeast biocontrol agent Metschnikowia fructicola.

    PubMed

    Hershkovitz, Vera; Ben-Dayan, Clarita; Raphael, Ginat; Pasmanik-Chor, Metsada; Liu, Jia; Belausov, Eduard; Aly, Radi; Wisniewski, Michael; Droby, Samir

    2012-05-01

    To gain a better understanding of the molecular changes taking place in citrus fruit tissue following the application of the yeast biocontrol agent Metschnikowia fructicola, microarray analysis was performed on grapefruit surface wounds using an Affymetrix Citrus GeneChip. Using a cut-off of P < 0.05 and a 1.5-fold change difference as biologically significant, the data indicated that 1007 putative unigenes showed significant expression changes following wounding and yeast application relative to wounded controls. Microarray results of selected genes were validated by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). The data indicated that yeast application induced the expression of the genes encoding Respiratory burst oxidase (Rbo), mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase (MAPKK), G-proteins, chitinase (CHI), phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS) and 4-coumarate-CoA ligase (4CL). In contrast, three genes, peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT), were down-regulated in grapefruit peel tissue treated with yeast cells. Moreover, suppression was correlated with significantly higher levels of hydrogen peroxide, superoxide anion and hydroxyl radical production in yeast-treated surface wounds. Interestingly, large amounts of hydrogen peroxide were detected inside yeast cells recovered from wounded fruit tissue, indicating the ability of the yeast to activate reactive oxygen species when it is in contact with plant tissue. This study provides the first global picture of gene expression changes in grapefruit in response to the yeast antagonist M. fructicola. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  2. Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex.

    PubMed

    Degenkolb, Thomas; Fog Nielsen, Kristian; Dieckmann, Ralf; Branco-Rocha, Fabiano; Chaverri, Priscila; Samuels, Gary J; Thrane, Ulf; von Döhren, Hans; Vilcinskas, Andreas; Brückner, Hans

    2015-04-01

    The production of bioactive polypeptides (peptaibiotics) in vivo is a sophisticated adaptation strategy of both mycoparasitic and saprotrophic Trichoderma species for colonizing and defending their natural habitats. This feature is of major practical importance, as the detection of peptaibiotics in plant-protective Trichoderma species, which are successfully used against economically relevant bacterial and fungal plant pathogens, certainly contributes to a better understanding of these complex antagonistic interactions. We analyzed five commercial biocontrol agents (BCAs), namely Canna(®) , Trichosan(®) , Vitalin(®) , Promot(®) WP, and TrichoMax(®) , formulated with recently described species of the Trichoderma harzianum complex, viz. T. afroharzianum, T. simmonsii, and T. guizhouense. By using the well-established, HPLC/MS-based peptaibiomics approach, it could unequivocally be demonstrated that all of these formulations contained new and recurrent peptaibols, i.e., peptaibiotics carrying an acetylated N-terminus, the C-terminus of which is reduced to a 1,2-amino alcohol. Their chain lengths, including the amino alcohol, were 11, 14, and 18 residues, respectively. Peptaibols were also to be the dominating secondary metabolites in plate cultures of the four strains obtained from four of the Trichoderma- based BCAs, contributing 95% of the UHPLC-UV/VIS peak areas and 99% of the total ion count MS peak area from solid media. Furthermore, species-specific hydrophobins, as well as non-peptaibiotic secondary metabolites, were detected, the latter being known for their antifungal, siderophore, or plant-growth-promoting activities. Notably, none of the isolates produced low-molecular weight mycotoxins.

  3. Biocontrol agents of Botrytis cinerea tested in climate chambers by making artificial infection on tomato leafs.

    PubMed

    Gielen, S; Aerts, R; Seels, B

    2004-01-01

    To reduce the use of chemical agents, that are causing damage to the environment, in the fight against Botrytis cinerea, different BCA's were tested for their possibility to control Botrytis cinerea in a biological way. In order to investigate the effectiveness of the different micro organisms and Elot-Vis, experiments were carried out in climate chambers with 5 weeks old tomato plants. Leafs on the plant were inoculated with drops of a suspension that contained spores of Botrytis cinerea. The possible antagonists that were tested in these experiments were Trichoderma harzianum (Trichodex), T. asperellum (Biofungus), T. hamatum (T382), Bacillus subtilis (Serenade and Phytovit) and Pseudomonas aeruginosa (7NSK2 and KMPCH). For all these different micro organisms the direct and the indirect influence on Botrytis cinerea was investigated. In tests where the direct influence of the antagonists was examined, the spores of the moulds or the bacteria were suspended together with spores of Botrytis cinerea and subsequently drops of this suspension were pippeted on the leafs. After a while by ideal circumstances for Botrytis cinerea the infections on the inoculated leafs were counted. For the indirect influence of the antagonists, also leafs of 5 weeks old tomato plants were inoculated with a suspension of Botrytis cinerea spores. The roots of the tomato plants that were used for testing the indirect influence were treated during there growth with a suspension of the antagonist to see if induced systemic resistance pathway (ISR) was activated. For testing the effectiveness of Elot-Vis, tomato plants were sprayed a few times with a solution of this product during their growth. Results of the climate chamber test of the plants that were treated with Elot-Vis, showed a reduction of Botrytis cinerea infections on the inoculated leafs. Biological control agents seem to be not always very effective against Botrytis cinerea. The biological control agents that are containing micro

  4. Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato.

    PubMed

    Solanki, Manoj Kumar; Singh, Rajesh Kumar; Srivastava, Supriya; Kumar, Sudheer; Kashyap, Prem Lal; Srivastava, Alok K

    2015-01-01

    To investigate the biocontrol mechanism of two antagonistic Bacillus strains (Bacillus subtilis MB14 and Bacillus amyloliquefaciens MB101), three in vitro antagonism assays were screened and the results were concluded that both strains inhibited Rhizoctonia solani growth in a similar manner by dual culture assay, but the maximum percent of inhibition only resulted with MB101 by volatile and diffusible metabolite assays. Moreover, cell free supernatant (CFS) of MB101 also showed significant (p > 0.05) growth inhibition as compared to MB14, when 10 and 20% CFS mix with the growth medium of R. solani. After in vitro-validation, both strains were evaluated under greenhouse and the results concluded that strain MB101 had significant biocontrol potential as compared to MB14. Strain MB101 was enhanced the plant height, biomass and chlorophyll content of tomato plant through a higher degree of root colonization. In field trials, strain MB101 showed higher lessening in root rot symptoms with significant fruit yield as compare to strain MB14 and infected control. Next to the field study, the presence of four antibiotic genes (srfAA, fenD, ituC, and bmyB) also concluded the antifungal nature of both Bacillus strains. Phylogenetic analysis of protein sequences revealed a close relatedness of three genes (srfAA, fenD, and ituC) with earlier reported sequences of B. subtilis and B. amyloliquefaciens. However, bmyB showed heterogeneity in among both strains (MB14 and MB101) and it may be concluded that higher degree of antagonism, root colonization and different antibiotic producing genes may play an important role in biocontrol mechanism of strain MB101.

  5. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease.

    PubMed

    Su, Zhen-Zhu; Mao, Li-Juan; Li, Na; Feng, Xiao-Xiao; Yuan, Zhi-Lin; Wang, Li-Wei; Lin, Fu-Cheng; Zhang, Chu-Long

    2013-01-01

    The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast.

  6. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents

    PubMed Central

    2012-01-01

    Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130

  7. The use of structural modelling to infer structure and function in biocontrol agents.

    PubMed

    Berry, Colin; Board, Jason

    2017-01-01

    Homology modelling can provide important insights into the structures of proteins when a related protein structure has already been solved. However, for many proteins, including a number of invertebrate-active toxins and accessory proteins, no such templates exist. In these cases, techniques of ab initio, template-independent modelling can be employed to generate models that may give insight into structure and function. In this overview, examples of both the problems and the potential benefits of ab initio techniques are illustrated. Consistent modelling results may indicate useful approximations to actual protein structures and can thus allow the generation of hypotheses regarding activity that can be tested experimentally.

  8. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7.

    PubMed

    Kamou, Nathalie N; Dubey, Mukesh; Tzelepis, Georgios; Menexes, Georgios; Papadakis, Emmanouil N; Karlsson, Magnus; Lagopodi, Anastasia L; Jensen, Dan Funck

    2016-05-01

    This study was carried out to assess the compatibility of the biocontrol fungus Clonostachys rosea IK726 with the phenazine-producing Pseudomonas chlororaphis ToZa7 or with the prodigiosin-producing Serratia rubidaea S55 against Fusarium oxysporum f. sp. radicis-lycopersici. The pathogen was inhibited by both strains in vitro, whereas C. rosea displayed high tolerance to S. rubidaea but not to P. chlororaphis. We hypothesized that this could be attributed to the ATP-binding cassette (ABC) proteins. The results of the reverse transcription quantitative PCR showed an induction of seven genes (abcB1, abcB20, abcB26, abcC12, abcC12, abcG8 and abcG25) from subfamilies B, C and G. In planta experiments showed a significant reduction in foot and root rot on tomato plants inoculated with C. rosea and P. chlororaphis. This study demonstrates the potential for combining different biocontrol agents and suggests an involvement of ABC transporters in secondary metabolite tolerance in C. rosea.

  9. Extract of Syringa oblata: A new biocontrol agent against tobacco bacterial wilt caused by Ralstonia solanacearum.

    PubMed

    Bai, Wanming; Kong, Fanyu; Lin, Yong; Zhang, Chengsheng

    2016-11-01

    Ralstonia solanacearum causes serious wilt disease in tobacco. To effectively control this disease, the antibacterial activity of 95% ethanol extracts from the flower buds of Syringa oblata was examined. Based on GC-MS analysis and an inhibition experiment against R. solanacearum, the main antibacterial component is eugenol. We further determined the effect of eugenol on the physiology, biochemistry, and cellular morphology of R. solanacearum. The results showed that eugenol can destroy wilt bacteria, leading to the disappearance of flagella, the leakage of contents, and the appearance of a cavity. SDS-PAGE showed that eugenol decreased protein content in R. solanacearum, reduced medium carbohydrate utilization, and inhibited CAT and SDH activity. The above results showed that eugenol had a significant inhibitory effect on R. solanacearum and this component has the potential to prevent tobacco bacterial wilt. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Essential oils from Algerian species of Mentha as new bio-control agents against phytopathogen strains.

    PubMed

    Benomari, Fatima Zahra; Andreu, Vanessa; Kotarba, Jules; Dib, Mohammed El Amine; Bertrand, Cédric; Muselli, Alain; Costa, Jean; Djabou, Nassim

    2017-09-02

    Chemical composition and antifungal activity of essential oils of Algerian Mentha species were studied. Chemical compositions of different Mentha species oils (Mentha rotundifolia, M. spicata, M. pulegium, and M. piperita) were investigated by capillary GC and GC/MS, and their antifungal activities were evaluated by means of paper disc diffusion method and minimum inhibitory concentration (MIC) assays. In total, 98 components from all Mentha species were identified. All oils were rich in monoterpene-oxygenated components. In addition, we reported fumigant antifungal activity of Algerian Mentha essential oils against four fungi: Botrytis cinerea, Penicillium expansum, Monilinia laxa, and M. fructigena. All oils demonstrated very good inhibition especially against B. cinerea, M. laxa, and M. fructigena. Both Monilinia fungi were extremely sensitive to all Algerian Mentha oils, which suggests that Mentha essential oils have the potential to be used as bio-pesticides to protect fruit trees, such as apple and pear trees, and provides an alternative to chemical pesticides.

  11. Marine yeasts as biocontrol agents and producers of bio-products.

    PubMed

    Chi, Zhen-Ming; Liu, Guanglei; Zhao, Shoufeng; Li, Jing; Peng, Ying

    2010-05-01

    As some species of marine yeasts can colonize intestine of marine animals, they can be used as probiotics. It has been reported that beta-glucans from marine yeast cells can be utilized as immuno-stimulants in marine animals. Some siderophores or killer toxins produced by marine yeasts have ability to inhibit growth of pathogenic bacteria or kill pathogenic yeasts in marine animals. The virulent factors from marine pathogens can be genetically displayed on marine yeast cells, and the yeast cells displaying the virulent factors can stimulate marine animals to produce specific antibody against the pathogens. Some marine yeast cells are rich in proteins and essential amino acids and can be used in nutrition for marine animals. The marine yeast cells rich in lipid can be used for biodiesel production. Recently, it has been reported that some strains of Yarrowia lipolytica isolated from marine environments can produce nanoparticles. Because many marine yeasts can remove organic pollutants and heavy metals, they can be applied to remediation of marine environments. It has been shown that the enzymes produced by some marine yeasts have many unique properties and many potential applications.

  12. Genetic Control of Plant Root Colonization by the Biocontrol agent, Pseudomonas fluorescens

    SciTech Connect

    Cole, Benjamin J.; Fletcher, Meghan; Waters, Jordan; Wetmore, Kelly; Blow, Matthew J.; Deutschbauer, Adam M.; Dangl, Jeffry L.; Visel, Axel

    2015-03-19

    Plant growth promoting rhizobacteria (PGPR) are a critical component of plant root ecosystems. PGPR promote plant growth by solubilizing inaccessible minerals, suppressing pathogenic microorganisms in the soil, and directly stimulating growth through hormone synthesis. Pseudomonas fluorescens is a well-established PGPR isolated from wheat roots that can also colonize the root system of the model plant, Arabidopsis thaliana. We have created barcoded transposon insertion mutant libraries suitable for genome-wide transposon-mediated mutagenesis followed by sequencing (TnSeq). These libraries consist of over 105 independent insertions, collectively providing loss-of-function mutants for nearly all genes in the P.fluorescens genome. Each insertion mutant can be unambiguously identified by a randomized 20 nucleotide sequence (barcode) engineered into the transposon sequence. We used these libraries in a gnotobiotic assay to examine the colonization ability of P.fluorescens on A.thaliana roots. Taking advantage of the ability to distinguish individual colonization events using barcode sequences, we assessed the timing and microbial concentration dependence of colonization of the rhizoplane niche. These data provide direct insight into the dynamics of plant root colonization in an in vivo system and define baseline parameters for the systematic identification of the bacterial genes and molecular pathways using TnSeq assays. Having determined parameters that facilitate potential colonization of roots by thousands of independent insertion mutants in a single assay, we are currently establishing a genome-wide functional map of genes required for root colonization in P.fluorescens. Importantly, the approach developed and optimized here for P.fluorescens>A.thaliana colonization will be applicable to a wide range of plant-microbe interactions, including biofuel feedstock plants and microbes known or hypothesized to impact on biofuel-relevant traits including biomass productivity

  13. Study on Interactions between the Major Apple Valsa Canker Pathogen Valsa mali and Its Biocontrol Agent Saccharothrix yanglingensis Hhs.015 Using RT-qPCR

    PubMed Central

    Fan, Dongying; Li, Yanfang; Zhao, Lingyun; Li, Zhengpeng; Huang, Lili; Yan, Xia

    2016-01-01

    The mechanism of biocontrol agent Saccharothrix yanglingensis Hhs.015 action against Valsa mali, a major apple Valsa canker pathogen, was examined using a novel, sensitive (minimum detection limit 100 pg/μL) and reliably RT-qPCR technique. Prior to lesion formation, total concentration of V. mali in the bark showed a significant decrease (p<0.05) after 24 h of Hhs.015 treatment. This was more pronounced at 48 and 96 h post treatment. After lesion formation, levels of V. mali remained constant at the boundary between infected and uninfected bark tissues, although the relative expansion rate of the lesion was significantly reduced (p<0.05). Gene expression levels of endo-polygalacturonase, a marker for fungal pathogenicity, were sharply reduced while host induced resistance callose synthase levels increased significantly (p<0.05) at the boundary bark at 9 d after Hhs.015 treatment. The results showed that biocontrol agent Hhs.015 prevented infection of V. mali by inhibiting pathogen growth, down-regulating pathogenicity factor expression and inducing a high level of host resistance. PMID:27611855

  14. Biocontrol potential of Lariophagus distinguendus (Hymenoptera: Pteromalidae) against Sitophilus granarius (Coleoptera: Curculionidae) at low temperatures: reproduction and parasitoid-induced mortality.

    PubMed

    Hansen, Lise Stengård

    2007-06-01

    Lariophagus distinguendus Forster (Hymenoptera: Pteromalidae) has been suggested as a biological control agent against the granary weevil, Sitophilus granarius (L.), in grain stores. Information on the effect of low temperatures prevailing in grain stores is necessary to be able to predict the potential of this parasitoid against S. granarius in temperate regions, where grain is cooled with ambient air to achieve safe storage conditions. The influence of constant temperatures of 16, 18, and 20 degrees C on life table parameters and parasitoid-induced mortality (PIM) was investigated in the laboratory. L. distinguendus is able to develop and reproduce at temperatures as low as 16 degrees C. The intrinsic rate of natural increase, rm, was 0.0182, 0.0222, and 0.0792 d(-1) at 16, 18, and 20 degrees C, respectively. The proportion of hosts killed due to parasitoid-induced mortality was highest at 20 degrees C. At this temperature, it amounted to 70% of the total mortality exerted by the parasitoid; at 18 and 16'C, it was 57 and 42% of the total, respectively. L. distinguendus is a promising biocontrol agent for grain stores in temperate regions because it is able to develop and reproduce at temperatures down to 16 degrees C; its development is quicker than that of its host, estimated from the literature; and it kills many hosts in addition to those used for reproduction.

  15. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases.

    PubMed

    Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

    2016-04-01

    This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Biocontrol Agents Increase the Specific Rate of Patulin Production by Penicillium expansum but Decrease the Disease and Total Patulin Contamination of Apples.

    PubMed

    Zheng, Xiangfeng; Yang, Qiya; Zhang, Xiaoyun; Apaliya, Maurice T; Ianiri, Giuseppe; Zhang, Hongyin; Castoria, Raffaello

    2017-01-01

    Synthetic fungicides are commonly employed for the control of postharvest diseases of fruits. However, due to health concerns about the use of these chemicals, alternative control methods including biocontrol based on antagonistic yeasts are gaining in popularity. In this study, we investigated the effects of two biocontrol yeasts, Rhodotorula mucilaginosa strain 3617 and Rhodotorula kratochvilovae strain LS11, on blue mold and patulin (PAT) contamination caused by Penicillium expansum strains PY and FS7 in artificially inoculated Fuji apples stored at 20°C for 9 days. To correlate the development of the P. expansum strains in yeast-treated and untreated apples with PAT production, we quantified their biomass in the infected fruits using a recently published quantitative real-time polymerase chain reaction method based on specific primers for patF, a gene from P. expansum that is involved in PAT biosynthesis. Both yeasts significantly reduced the disease incidence caused by the two strains of P. expansum up to 5-7 days of incubation, and lowered their biomass and the progression of symptoms up to 9 days. Interestingly, both yeasts strains increased the rate of PAT production (expressed as ng patulin/μg fungal DNA) by the two pathogenic strains. Nevertheless, both biocontrol agents reduced the total PAT contamination, especially in the case of P. expansum strain FS7, the higher PAT producer of the two tested P. expansum strains. Comparing between the yeast strains, R. kratochvilovae LS11 was more effective than R. mucilaginosa 3617 for the control of P. expansum.

  17. Biocontrol Agents Increase the Specific Rate of Patulin Production by Penicillium expansum but Decrease the Disease and Total Patulin Contamination of Apples

    PubMed Central

    Zheng, Xiangfeng; Yang, Qiya; Zhang, Xiaoyun; Apaliya, Maurice T.; Ianiri, Giuseppe; Zhang, Hongyin; Castoria, Raffaello

    2017-01-01

    Synthetic fungicides are commonly employed for the control of postharvest diseases of fruits. However, due to health concerns about the use of these chemicals, alternative control methods including biocontrol based on antagonistic yeasts are gaining in popularity. In this study, we investigated the effects of two biocontrol yeasts, Rhodotorula mucilaginosa strain 3617 and Rhodotorula kratochvilovae strain LS11, on blue mold and patulin (PAT) contamination caused by Penicillium expansum strains PY and FS7 in artificially inoculated Fuji apples stored at 20°C for 9 days. To correlate the development of the P. expansum strains in yeast-treated and untreated apples with PAT production, we quantified their biomass in the infected fruits using a recently published quantitative real-time polymerase chain reaction method based on specific primers for patF, a gene from P. expansum that is involved in PAT biosynthesis. Both yeasts significantly reduced the disease incidence caused by the two strains of P. expansum up to 5–7 days of incubation, and lowered their biomass and the progression of symptoms up to 9 days. Interestingly, both yeasts strains increased the rate of PAT production (expressed as ng patulin/μg fungal DNA) by the two pathogenic strains. Nevertheless, both biocontrol agents reduced the total PAT contamination, especially in the case of P. expansum strain FS7, the higher PAT producer of the two tested P. expansum strains. Comparing between the yeast strains, R. kratochvilovae LS11 was more effective than R. mucilaginosa 3617 for the control of P. expansum. PMID:28713362

  18. Shallot Aphids, Myzus ascalonicus, in Strawberry: Biocontrol Potential of Three Predators and Three Parasitoids

    PubMed Central

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  19. Shallot aphids, Myzus ascalonicus, in strawberry: biocontrol potential of three predators and three parasitoids.

    PubMed

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  20. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei

    PubMed Central

    Pérez, Esclaudys; Rubio, M. Belén; Cardoza, Rosa E.; Gutiérrez, Santiago; Bettiol, Wagner; Monte, Enrique; Hermosa, Rosa

    2015-01-01

    Species of Trichoderma exert direct biocontrol activity against soil-borne plant pathogens due to their ability to compete for nutrients and to inhibit or kill their targets through the production of antibiotics and/or hydrolytic enzymes. In addition to these abilities, Trichoderma spp. have beneficial effects for plants, including the stimulation of defenses and the promotion of growth. Here we study the role in biocontrol of the T. parareesei Tparo7 gene, encoding a chorismate mutase (CM), a shikimate pathway branch point leading to the production of aromatic amino acids, which are not only essential components of protein synthesis but also the precursors of a wide range of secondary metabolites. We isolated T. parareesei transformants with the Tparo7 gene silenced. Compared with the wild-type, decreased levels of Tparo7 expression in the silenced transformants were accompanied by reduced CM activity, lower growth rates on different culture media, and reduced mycoparasitic behavior against the phytopathogenic fungi Rhizoctonia solani, Fusarium oxysporum and Botrytis cinerea in dual cultures. By contrast, higher amounts of the aromatic metabolites tyrosol, 2-phenylethanol and salicylic acid were detected in supernatants from the silenced transformants, which were able to inhibit the growth of F. oxysporum and B. cinerea. In in vitro plant assays, Tparo7-silenced transformants also showed a reduced capacity to colonize tomato roots. The effect of Tparo7-silencing on tomato plant responses was examined in greenhouse assays. The growth of plants colonized by the silenced transformants was reduced and the plants exhibited an increased susceptibility to B. cinerea in comparison with the responses observed for control plants. In addition, the plants turned yellowish and were defective in jasmonic acid- and ethylene-regulated signaling pathways which was seen by expression analysis of lipoxygenase 1 (LOX1), ethylene-insensitive protein 2 (EIN2) and pathogenesis

  1. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei.

    PubMed

    Pérez, Esclaudys; Rubio, M Belén; Cardoza, Rosa E; Gutiérrez, Santiago; Bettiol, Wagner; Monte, Enrique; Hermosa, Rosa

    2015-01-01

    Species of Trichoderma exert direct biocontrol activity against soil-borne plant pathogens due to their ability to compete for nutrients and to inhibit or kill their targets through the production of antibiotics and/or hydrolytic enzymes. In addition to these abilities, Trichoderma spp. have beneficial effects for plants, including the stimulation of defenses and the promotion of growth. Here we study the role in biocontrol of the T. parareesei Tparo7 gene, encoding a chorismate mutase (CM), a shikimate pathway branch point leading to the production of aromatic amino acids, which are not only essential components of protein synthesis but also the precursors of a wide range of secondary metabolites. We isolated T. parareesei transformants with the Tparo7 gene silenced. Compared with the wild-type, decreased levels of Tparo7 expression in the silenced transformants were accompanied by reduced CM activity, lower growth rates on different culture media, and reduced mycoparasitic behavior against the phytopathogenic fungi Rhizoctonia solani, Fusarium oxysporum and Botrytis cinerea in dual cultures. By contrast, higher amounts of the aromatic metabolites tyrosol, 2-phenylethanol and salicylic acid were detected in supernatants from the silenced transformants, which were able to inhibit the growth of F. oxysporum and B. cinerea. In in vitro plant assays, Tparo7-silenced transformants also showed a reduced capacity to colonize tomato roots. The effect of Tparo7-silencing on tomato plant responses was examined in greenhouse assays. The growth of plants colonized by the silenced transformants was reduced and the plants exhibited an increased susceptibility to B. cinerea in comparison with the responses observed for control plants. In addition, the plants turned yellowish and were defective in jasmonic acid- and ethylene-regulated signaling pathways which was seen by expression analysis of lipoxygenase 1 (LOX1), ethylene-insensitive protein 2 (EIN2) and pathogenesis

  2. Miconia biocontrol: Where are we going and when will we get there?

    Treesearch

    M.T. Johnson

    2010-01-01

    We have made much progress in evaluating potential agents for biocontrol of miconia, and several appear likely to be suitable for future introduction to Hawaiÿi. Unfortunately, none of them is an obvious silver bullet. We face the challenge of prioritizing the existing candidates and inventing the combination of agents that will achieve our goals. Now is an opportune...

  3. Postharvest Biocontrol: Introspection and Paradigm Shifts

    USDA-ARS?s Scientific Manuscript database

    The use of postharvest biocontrol agents as an alternative to the synthetic, chemical fungicides on a widespread basis has many constraints. During the last twenty years, the field of postharvest biocontrol research has significantly grown and developed and seen the creation of several products. Des...

  4. The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of mandarin fruit.

    PubMed

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2016-09-01

    Strains belonging to Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans species were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic molds Penicillium digitatum and Penicillium italicum. Moreover, studies aimed at screening the antifungal activity of selected yeast strains in vivo conditions against P. digitatum and P. italicum, and investigated the efficacy of a polysaccharidic matrix, locust bean gum (LBG), enriched with the tested BCAs, in controlling postharvest decays in artificially inoculated mandarins. The population dynamics of BCAs on wounds and the magnitude of peroxidase (POD) and superoxide dismutase (SOD) in fruit tissues were also investigated after treatments of mandarins with antagonistic yeasts. W. anomalus BS91, M. pulcherrima MPR3 and A. pullulans PI1 provided excellent control of postharvest decays caused by P. digitatum and P. italicum on mandarins, both when the yeasts were used alone and in combination with LBG, which enhanced the yeast cell viability over time. Finally, the increased activity of POD and lower decrease in SOD activity in response to BCAs application in mandarin fruits confirmed their involvement in the biocontrol mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. An interspersed refuge for Sitodiplosis mosellana (Diptera: Cecidomyiidae) and a biocontrol agent Macroglenes penetrans (Hymenoptera: Pteromalidae) to manage crop resistance in wheat.

    PubMed

    Smith, M A H; Lamb, R J; Wise, I L; Olfert, O O

    2004-04-01

    An interspersed refuge of susceptible plants in a resistant, spring-sown wheat crop was tested as a strategy to protect crop resistance against evolution of virulence by the wheat midge Sitodiplosis mosellana (Géhin), and also to conserve a biocontrol agent Macroglenes penetrans(Kirby). Eight replicated field experiments were conducted using seed mixtures of 0, 5, 10, 15 and 100% or 0, 5 and 100% susceptible wheat with an agronomically similar wheat expressing the antibiotic resistance gene Sm1. The frequencies of eggs, mature larvae and parasitized larvae in susceptible and resistant wheat spikes, and midge-affected seeds in the harvest, were recorded for each plot. In susceptible wheat, insect densities and seed damage were typical of those in commercial wheat. In resistant wheat, few larvae completed development, 2% or less compared with about 80% in susceptible wheat, when larvae were sampled at maturity. This resistant wheat also deterred midge oviposition, reducing egg densities by 65% compared with susceptible wheat. The wheat midge and its parasitoid oviposited throughout the plots, and parasitism was density independent. The densities of mature midge larvae and parasitoids were in proportion to the size of the refuge. A 5% susceptible refuge produced about 41 mature larvae for each mature larva from the resistant wheat, and provided effective control of damage. An interspersed refuge of susceptible plants in resistant wheat is a promising strategy for sustaining resistance conferred by Sm1 and biocontrol of the wheat midge.

  6. Biocontrol Potentials of Antimicrobial Peptide Producing Bacillus Species: Multifaceted Antagonists for the Management of Stem Rot of Carnation Caused by Sclerotinia sclerotiorum

    PubMed Central

    Vinodkumar, S.; Nakkeeran, S.; Renukadevi, P.; Malathi, V. G.

    2017-01-01

    Bacillus species are widely exploited as biocontrol agents because of their efficiency in impeding various plant pathogens with multifaceted approach. In this study, Bacillus species were isolated from rhizosphere of various plants viz., carnations, cotton, turmeric, and bananas in Tamil Nadu state of India. Their potential to control the mycelial growth of Sclerotinia sclerotiorum was assessed in vitro by dual plate and partition plate techniques. B. amyloliquefaciens strain VB7 was much effective in inhibiting mycelial growth (45% inhibition of over control) and sclerotial production (100%). PCR detection of AMP genes revealed that B. amyloliquefaciens (VB7) had a maximum of 10 diverse antibiotic biosynthesis genes, namely, ituD, ipa14, bacA, bacD, bamC, sfP, spaC, spaS, alba, and albF, that resulted in production of the antibiotics iturin, bacilysin, bacillomycin, surfactin, subtilin, and subtilosin. Further, metabolites from B. amyloliquefaciens strains VB2 and VB7, associated with inhibition of S. sclerotiorum, were identified as phenols and fatty acids by gas chromatography mass spectrometry (GC-MS). Delivery of bacterial suspension of the effective strains of Bacillus spp. as root dip was found promising for the management of stem rot of cultivated carnations. Minimal percent disease incidence (4.6%) and maximum plant growth promotion was observed in the plants treated with B. amyloliquefaciens (VB7). PMID:28392780

  7. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains--an improved strategy for selecting biocontrol agents.

    PubMed

    Xue, Qing-Yun; Ding, Guo-Chun; Li, Shi-Mo; Yang, Yang; Lan, Cheng-Zhong; Guo, Jian-Hua; Smalla, Kornelia

    2013-02-01

    Bacterial wilt caused by Ralstonia solanacearum is a serious threat for agricultural production in China. Eight soil bacterial isolates with activity against R. solanacearum TM15 (biovar 3) were tested in this study for their in vitro activity towards ten genetically diverse R. solanacearum isolates from China. The results indicated that each antagonist showed remarkable differences in its ability to in vitro antagonize the ten different R. solanacearum strains. Strain XY21 (based on 16S rRNA gene sequencing affiliated to Serratia) was selected for further studies based on its in vitro antagonistic activity and its excellent rhizocompetence on tomato plants. Under greenhouse conditions XY21 mediated biocontrol of tomato wilt caused by seven different R. solanacearum strains ranged from 19 to 70 %. The establishment of XY21 and its effects on the bacterial community in the tomato rhizosphere were monitored by denaturing gradient gel electrophoresis of 16S rRNA gene fragments PCR-amplified from total community DNA. A positive correlation of the in vitro antagonistic activities of XY21 and the actual biocontrol efficacies towards seven genetically different R. solanacearum strains was found and further confirmed by the efficacy of XY21 in controlling bacterial wilt under field conditions.

  8. Host-pathogen-biocontrol agent interaction as affected by sequential application of Na2CO3 and CaCl2.

    PubMed

    Molinu, G M; Arras, G; Dore, A; Venditti, T; Petretto, A; D'Hallewin, G

    2009-01-01

    Among the alternatives to synthetic postharvest fungicides encouraging results have been reported with biocontrol agents, and on Citrus fruits, their efficacy was improved when co-applied with GRAS compounds or with physical means. Still, the reason for this increased efficacy has not been explained and therefore a study was performed using orange fruit (Citrus sinensis Osbec. cv 'Washington navel') as host, P. digitatum as the pathogen, a yeast (Pichia guiliermondii, isolate 5A) as the biocontrol agent, white 2% Na2CO3 (SC) and 1% CaCl2 were employed as GRAS compounds. When treatments were combined salts were applied sequentially, and SC preceded CaCl2 followed by the yeast. As a result of large scale trait with inoculated and un-inoculated fruit a clear beneficial interaction occurred when treatments were combined. SC exerted a direct fungistatic activity and an indirect one by inducing scoparone in host tissue. Also the isolate A5 induced the phytoalexin accumulation and when combined with SC a greater accumulation occurred within the first 7 days post-treatment. The application of CaCl2 alone had no effect on pathogenesis, while when combined with SC or with the yeast, decay was towered. The yeast growth on an amended medium was negatively affected by the addition of SC; while in vivo this effect was missing. The antagonist growth in vivo was enhanced when applied together with 1% CaCl2 also when applied with SC. The results reported improve our knowledge on the complex interactions among host, pathogen and the antagonist as affected by SC and CaCl2.

  9. Effect of temperature and water activity on spore germination and mycelial growth of three fungal biocontrol agents against water hyacinth (Eichhornia crassipes).

    PubMed

    Dagno, K; Lahlali, R; Diourté, M; Jijakli, M H

    2011-02-01

    To determine the effect of water activity (a(w) =0·880-0·960) and temperature (15-35°C) on the percentage of viable conidia and mycelial growth of three biocontrol agents effective against water hyacinth in Mali: Alternaria sp. isolate Mlb684, Fusarium sacchari isolate Mln799 and Cadophora malorum isolate Mln715. The fungi were grown in vitro on plates containing potato dextrose agar medium at different a(w) values (glycerol being added to adjust the a(w)). The percentage of viable conidia and radial growth rate decreased with decreasing water activity. Statistical analysis showed a significant effect of a(w), temperature and the a(w) × temperature interaction on mycelial growth (P<0·0001). Water activity emerged as the factor exerting the greatest influence. Differences were observed between the fungi tested, the C. malorum appearing more tolerant to low a(w) and the F. sacchari more tolerant to high temperature (35°C). Growth models predicting the combined effect of a(w) and temperature were developed and response surfaces generated, showing fairly good agreement with the experimental values. Our results confirm the previous finding that a(w) has a greater influence than temperature on fungal growth. Under most conditions, variation of environmental factors has a detrimental influence on the percentage of viable conidia and mycelial growth rate of fungal isolates. The developed models may contribute to predicting the best environmental conditions for use of these fungi as effective biocontrol agents against water hyacinth. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  10. Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01

    PubMed Central

    Lu, Cai Ge; Liu, Wei Cheng; Qiu, Ji Yan; Wang, Hui Min; Liu, Ting; De Liu, Wen

    2008-01-01

    Actinomyces strain A01 was isolated from soil of a vegetable field in the suburb of Beijing, China. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain A01 was identified as Streptomyces lydicus. In the antimicrobial spectrum test strain A01 presented a stable and strong inhibitory activity against several plant pathogenic fungi such as Fusarium oxysporum, Botrytis cinerea, Monilinia laxa, etc. However, no antibacterial activity was found. In pot experiments in greenhouse, the development of tomato gray mold was markedly suppressed by treatment with the fermentation broth of the strain A01, and the control efficacy was higher than those of Pyrimethanil and Polyoxin. A main antifungal compound (purity 99.503%) was obtained from the fermentation broth of strain A01 using column chromatography and HPLC. The chemical structural analysis with U V, IR, MS, and NMR confirmed that the compound produced by the strain A01 is natamycin, a polyene antibiotic produced by S. chattanovgensis, S. natalensis, and S. gilvosporeus, widely used as a natural biological preservative for food according to previous reports. The present study revealed a new producing strain of natamycin and its potential application as a biological control agent for fungal plant diseases. PMID:24031293

  11. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum

    PubMed Central

    Giorgio, Annalisa; De Stradis, Angelo; Lo Cantore, Pietro; Iacobellis, Nicola S.

    2015-01-01

    Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight (CBB) causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia. Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs). Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria, and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by hemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well. PMID:26500617

  12. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum.

    PubMed

    Giorgio, Annalisa; De Stradis, Angelo; Lo Cantore, Pietro; Iacobellis, Nicola S

    2015-01-01

    Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight (CBB) causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia. Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs). Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria, and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by hemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well.

  13. Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems.

    PubMed

    Chailleux, Anaïs; Mohl, Emily K; Teixeira Alves, Mickaël; Messelink, Gerben J; Desneux, Nicolas

    2014-12-01

    Understanding how arthropod pests and their natural enemies interact in complex agroecosystems is essential for pest management programmes. Theory predicts that prey sharing a predator, such as a biological control agent, can indirectly reduce each other's density at equilibrium (apparent competition). From this premise, we (i) discuss the complexity of indirect interactions among pests in agroecosystems and highlight the importance of natural enemy-mediated indirect interactions other than apparent competition, (ii) outline factors that affect the nature of enemy-mediated indirect interactions in the field and (iii) identify the way to manipulate enemy-mediated interactions for biological control. We argue that there is a need to increase the link between community ecology theory and biological control to develop better agroecological methods of crop protection via conservation biological control. In conclusion, we identify (i) interventions to be chosen depending on agroecosystem characteristics and (ii) several lines of research that will improve the potential for enemy-mediated indirect interactions to be applied to biological control. © 2014 Society of Chemical Industry.

  14. Potential for Biocontrol of Hairy Root Disease by a Paenibacillus Clade

    PubMed Central

    Bosmans, Lien; De Bruijn, Irene; Gerards, Saskia; Moerkens, Rob; Van Looveren, Lore; Wittemans, Lieve; Van Calenberge, Bart; Paeleman, Anneleen; Van Kerckhove, Stefan; De Mot, René; Rozenski, Jef; Rediers, Hans; Raaijmakers, Jos M.; Lievens, Bart

    2017-01-01

    Rhizogenic Agrobacterium biovar 1 is the causative agent of hairy root disease (HRD) in the hydroponic cultivation of tomato and cucumber causing significant losses in marketable yield. In order to prevent and control the disease chemical disinfectants such as hydrogen peroxide or hypochlorite are generally applied to sanitize the hydroponic system and/or hydroponic solution. However, effective control of HRD sometimes requires high disinfectant doses that may have phytotoxic effects. Moreover, several of these chemicals may be converted to unwanted by-products with human health hazards. Here we explored the potential of beneficial bacteria as a sustainable means to control HRD. A large collection of diverse bacterial genera was screened for antagonistic activity against rhizogenic Agrobacterium biovar 1 using the agar overlay assay. Out of more than 150 strains tested, only closely related Paenibacillus strains belonging to a particular clade showed antagonistic activity, representing the species P. illinoisensis, P. pabuli, P. taichungensis, P. tundrae, P. tylopili, P. xylanexedens, and P. xylanilyticus. Assessment of the spectrum of activity revealed that some strains were able to inhibit the growth of all 35 rhizogenic agrobacteria strains tested, while others were only active against part of the collection, suggesting a different mode of action. Preliminary characterization of the compounds involved in the antagonistic activity of two closely related Paenibacillus strains, tentatively identified as P. xylanexedens, revealed that they are water-soluble and have low molecular weight. Application of a combination of these strains in greenhouse conditions resulted in a significant reduction of HRD, indicating the great potential of these strains to control HRD. PMID:28382027

  15. Effect of heat shock treatment on stress tolerance and biocontrol efficacy of biocontrol yeasts

    USDA-ARS?s Scientific Manuscript database

    Several different species of yeasts have been used as biocontrol agents against postharvest diseases of fruits and vegetables. Our current research is directed to develop a better understanding of yeast biology in relation to biocontrol activity and to develop strategies to improve the efficacy of ...

  16. Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane

    PubMed Central

    Oslizlo, A; Stefanic, P; Vatovec, S; Beigot Glaser, S; Rupnik, M; Mandic-Mulec, I

    2015-01-01

    Bacillus subtilis is a widespread and diverse bacterium t exhibits a remarkable intraspecific diversity of the ComQXPA quorum-sensing (QS) system. This manifests in the existence of distinct communication groups (pherotypes) that can efficiently communicate within a group, but not between groups. Similar QS diversity was also found in other bacterial species, and its ecological and evolutionary meaning is still being explored. Here we further address the ComQXPA QS diversity among isolates from the tomato rhizoplane, a natural habitat of B. subtilis, where these bacteria likely exist in their vegetative form. Because this QS system regulates production of anti-pathogenic and biofilm-inducing substances such as surfactins, knowledge on cell–cell communication of this bacterium within rhizoplane is also important from the biocontrol perspective. We confirm the presence of pherotype diversity within B. subtilis strains isolated from a rhizoplane of a single plant. We also show that B. subtilis rhizoplane isolates show a remarkable diversity of surfactin production and potential plant growth promoting traits. Finally, we discover that effects of surfactin deletion on biofilm formation can be strain specific and unexpected in the light of current knowledge on its role it this process. PMID:25757097

  17. Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane.

    PubMed

    Oslizlo, A; Stefanic, P; Vatovec, S; Beigot Glaser, S; Rupnik, M; Mandic-Mulec, I

    2015-05-01

    Bacillus subtilis is a widespread and diverse bacterium t exhibits a remarkable intraspecific diversity of the ComQXPA quorum-sensing (QS) system. This manifests in the existence of distinct communication groups (pherotypes) that can efficiently communicate within a group, but not between groups. Similar QS diversity was also found in other bacterial species, and its ecological and evolutionary meaning is still being explored. Here we further address the ComQXPA QS diversity among isolates from the tomato rhizoplane, a natural habitat of B. subtilis, where these bacteria likely exist in their vegetative form. Because this QS system regulates production of anti-pathogenic and biofilm-inducing substances such as surfactins, knowledge on cell-cell communication of this bacterium within rhizoplane is also important from the biocontrol perspective. We confirm the presence of pherotype diversity within B. subtilis strains isolated from a rhizoplane of a single plant. We also show that B. subtilis rhizoplane isolates show a remarkable diversity of surfactin production and potential plant growth promoting traits. Finally, we discover that effects of surfactin deletion on biofilm formation can be strain specific and unexpected in the light of current knowledge on its role it this process.

  18. Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco.

    PubMed

    Ramette, Alban; Moënne-Loccoz, Yvan; Défago, Geneviève

    2006-03-01

    Pseudomonas populations producing the biocontrol compounds 2,4-diacetylphloroglucinol (Phl) and hydrogen cyanide (HCN) were found in the rhizosphere of tobacco both in Swiss soils suppressive to Thielaviopsis basicola and in their conducive counterparts. In this study, a collection of Phl+ HCN+Pseudomonas isolates from two suppressive and two conducive soils were used to assess whether suppressiveness could be linked to soil-specific properties of individual pseudomonads. The isolates were compared based on restriction analysis of the biocontrol genes phlD and hcnBC, enterobacterial repetitive intergenic consensus (ERIC)-PCR profiling and their biocontrol ability. Restriction analyses of phlD and hcnBC yielded very concordant relationships between the strains, and suggested significant population differentiation occurring at the soil level, regardless of soil suppressiveness status. This was corroborated by high strain diversity (ERIC-PCR) within each of the four soils and among isolates harboring the same phlD or hcnBC alleles. No correlation was found between the origin of the isolates and their biocontrol activity in vitro and in planta. Significant differences in T. basicola inhibition were however evidenced between the isolates when they were grouped according to their biocontrol alleles. Moreover, two main Pseudomonas lineages differing by the capacity to produce pyoluteorin were evidenced in the collection. Thus, Phl+ HCN+ pseudomonads from suppressive soils were not markedly different from those from nearby conducive soils. Therefore, as far as biocontrol pseudomonads are concerned, this work yields the hypothesis that the suppressiveness of Swiss soils may rely on the differential effects of environmental factors on the expression of key biocontrol genes in pseudomonads rather than differences in population structure of biocontrol Pseudomonas subcommunities or the biocontrol potential of individual Phl+ HCN+ pseudomonad strains.

  19. Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola

    PubMed Central

    Raoul des Essarts, Yannick; Cigna, Jérémy; Quêtu-Laurent, Angélique; Caron, Aline; Munier, Euphrasie; Beury-Cirou, Amélie

    2015-01-01

    Development of protection tools targeting Dickeya species is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against several Dickeya sp. and/or Pectobacterium sp. pathogens. Most of them belonged to the Pseudomonas and Bacillus genera. In vitro assays revealed a fitness decrease of the tested Dickeya sp. and Pectobacterium sp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated with Dickeya dianthicola revealed that a mix of three biocontrol agents, namely, Pseudomonas putida PA14H7 and Pseudomonas fluorescens PA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission of D. dianthicola to the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused by D. dianthicola on potato plants and tubers. PMID:26497457

  20. Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola.

    PubMed

    Raoul des Essarts, Yannick; Cigna, Jérémy; Quêtu-Laurent, Angélique; Caron, Aline; Munier, Euphrasie; Beury-Cirou, Amélie; Hélias, Valérie; Faure, Denis

    2015-10-23

    Development of protection tools targeting Dickeya species is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against several Dickeya sp. and/or Pectobacterium sp. pathogens. Most of them belonged to the Pseudomonas and Bacillus genera. In vitro assays revealed a fitness decrease of the tested Dickeya sp. and Pectobacterium sp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated with Dickeya dianthicola revealed that a mix of three biocontrol agents, namely, Pseudomonas putida PA14H7 and Pseudomonas fluorescens PA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission of D. dianthicola to the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused by D. dianthicola on potato plants and tubers.

  1. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1.

    PubMed

    Zhang, Xiaoyun; Li, Baoqing; Wang, Ye; Guo, Qinggang; Lu, Xiuyun; Li, Shezeng; Ma, Ping

    2013-11-01

    Bacillus atrophaeus CAB-1 displays a high inhibitory activity against various fungal pathogens and suppresses cucumber powdery mildew and tomato gray mold. We extracted and identified lipopeptides and secreted proteins and volatile compounds produced by strain CAB-1 to investigate the mechanisms involved in its biocontrol performance. In vitro assays indicated all three types of products contributed to the antagonistic activity against the fungal pathogen Botrytis cinerea. Each of these components also effectively prevented the occurrence of the cucumber powdery mildew caused by Sphaerotheca fuliginea under greenhouse conditions. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry revealed that the major bioactive lipopeptide was fengycin A (C15-C17). We isolated the crude-secreted proteins of CAB-1 and purified a fraction with antifungal activity. This protein sequence shared a high identity with a putative phage-related pre-neck appendage protein, which has not been reported as an antifungal factor. The volatile compounds produced by CAB-1 were complex, including a range of alcohols, phenols, amines, and alkane amides. O-anisaldehyde represented one of the most abundant volatiles with the highest inhibition on the mycelial growth of B. cinerea. To our knowledge, this is the first report on profiling three types of antifungal substances in Bacilli and demonstrating their contributions to plant disease control.

  2. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    USDA-ARS?s Scientific Manuscript database

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  3. Field observation on the efficacy of Toxorhynchites splendens (Wiedemann) as a biocontrol agent against Aedes albopictus (Skuse) larvae in a cemetery.

    PubMed

    Nyamah, M A; Sulaiman, S; Omar, B

    2011-08-01

    This study explored the efficacy of Toxorhynchites splendens, predator of Aedes albopictus as a biocontrol agent. There was a negative correlation between Ae. albopictus larval population and Tx. splendens larval population in ovitraps (r=-0.287, R²=0.0821). The correlation is higher between the mean number of Ae. albopictus larvae per ovitrap and the number of Tx. splendens larvae in an ovitrap (r=-0.987, R²=0.9737). Larvae of Tx. splendens were observed to co-exist with larvae of Ae. albopictus and Culex fuscocephala in the ovitraps placed in the study area. The existence of Tx. splendens larvae in the study area coincides with their habit, preferring to breed in bamboo stumps. A total of 480 ovitraps were inspected for 30-week study period and 281 ovitraps were positive with Ae. albopictus larvae respectively. There was a significant difference between numbers of ovitrap positive for Ae. albopictus larvae with number of Tx. splendens larvae in the ovitraps (ANOVA, F((4,475)) 2.655, p<0.05). Of 281 ovitraps positive with Ae. albopictus larvae, 255 ovitraps contained only one Tx. splendens larva each. Only one ovitrap contained four, the most number of Tx. splendens larvae (p< 0.05). Thus, Tx. splendens could be utilised as an alternative for dengue vector control programme.

  4. The development of genetic and molecular markers to register and commercialize Penicillium rubens (formerly Penicillium oxalicum) strain 212 as a biocontrol agent.

    PubMed

    Villarino, Maria; De Cal, Antonieta; Melgarejo, Paloma; Larena, Inmaculada; Espeso, Eduardo A

    2016-01-01

    Penicillium oxalicum strain 212 (PO212) is an effective biocontrol agent (BCA) against a large number of economically important fungal plant pathogens. For successful registration as a BCA in Europe, PO212 must be accurately identified. In this report, we describe the use of classical genetic and molecular markers to characterize and identify PO212 in order to understand its ecological role in the environment or host. We successfully generated pyrimidine (pyr-) auxotrophic mutants. In addition we also designed specific oligonucleotides for the pyrF gene at their untranslated regions for rapid and reliable identification and classification of strains of P. oxalicum and P. rubens, formerly P. chrysogenum. Using these DNA-based technologies, we found that PO212 is a strain of P. rubens, and is not a strain of P. oxalicum. This work presents PO212 as the unique P. rubens strain to be described as a BCA and the information contained here serves for its registration and commercialization in Europe. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Cloning and analysis of CoEXG1, a secreted 1,3-beta-glucanase of the yeast biocontrol agent Candida oleophila.

    PubMed

    Segal, Efrat; Yehuda, Hila; Droby, Samir; Wisniewski, Michael; Goldway, Martin

    2002-09-30

    Lytic enzymes may have a role in the biological control of fungi. The yeast biocontrol agent, Candida oleophila, is an excellent subject to research this matter. In the present study, CoEXG1, which encodes for a secreted 1,3-beta-glucanase, is the first gene to be cloned from C. oleophila. It was isolated from a partial genomic library and analysed. Its open reading frame and putative promoter were expressed in baker's yeast, Saccharomyces cerevisiae. The reading frame, expressed under the inducible GAL1 promoter, caused an increased secretion of beta-glucanase, and the putative promoter region activated the lacZ reporter gene, to which it was fused. Sequencing analysis revealed that CoEXG1 carries the signature pattern of the 5 glycohydrolases family and has a putative secretion leader, as well as a high degree of identity to yeast 1,3-beta-glucanases. The GenBank Accession No. of CoEXG1 is AF393806. Copyright 2002 John Wiley & Sons, Ltd.

  6. Biological studies on the snail intermediate hosts of schistosomiasis with a special emphasis on using larval echinostomes as biocontrol agent against larval schistosomes and snails.

    PubMed

    Rashed, A A

    2002-12-01

    The present investigation deals with the infectivity of the two snail intermediate hosts of schistosomiasis, Biomphalaria alexandrina and Bulinus truncatus collected from nine drains in Sharkia Governorate, Egypt. The rate of infection among the snails was general low being 0% in many drains. Regarding B. alexandrina, the rate of infection ranged from 4-16%, and in B. truncatus ranged from 4-8%. Infection with larval echinostomes was dominant over larval schistosomes in the two snail vectors. The distribution of larval schistosomes was restricted to the hepatopancreas of the two snail vectors, while larval echinostomes were distributed in head, foot, kidney, haemocoelic cavity, hepatopancreas...etc. The predation of larval schistosomes by larval echinostomes and the severe histopathological effects induced by larval ecbinostomes strongly enhances using them as biocontrol agent. The physico-chemical parameters and pollution condition in the drains seem to have no effect on the process of snails infectivity. It is concluded that larval echinostomes can resist the polluting conditions in the drain. The two snail vectors exhibit very minimal or rare host response against larval echinostomes. Probably, the toxicants and pollutants in the drain may act as stressor that makes the snails much more susceptible to infection by larval trematodes.

  7. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium.

    PubMed

    Zhang, Shumei; Jiang, Wei; Li, Jing; Meng, Liqiang; Cao, Xu; Hu, Jihua; Liu, Yushuai; Chen, Jingyu; Sha, Changqing

    2016-01-01

    Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains.

  8. Hrp- Mutants of Pseudomonas solanacearum as Potential Biocontrol Agents of Tomato Bacterial Wilt

    PubMed Central

    Frey, Pascal; Prior, Philippe; Marie, Corinne; Kotoujansky, Alain; Trigalet-Demery, Daniele; Trigalet, Andre

    1994-01-01

    There have been many attempts to control bacterial wilt with antagonistic bacteria or spontaneous nonpathogenic mutants of Pseudomonas solanacearum that lack the ability to colonize the host, but they have met with limited success. Since a large gene cluster (hrp) is involved in the pathogenicity of P. solanacearum, we developed a biological control strategy using genetically engineered Hrp- mutants of P. solanacearum. Three pathogenic strains collected in Guadeloupe (French West Indies) were rendered nonpathogenic by insertion of an ω-Km interposon within the hrp gene cluster of each strain. The resulting Hrp- mutants were tested for their ability to control bacterial wilt in challenge inoculation experiments conducted either under growth chamber conditions or under greenhouse conditions in Guadeloupe. Compared with the colonization by a pathogenic strain which spread throughout the tomato plant, colonization by the mutants was restricted to the roots and the lower part of the stems. The mutants did not reach the fruit. Moreover, the presence of the mutants did not affect fruit production. When the plants were challenge inoculated with a pathogenic strain, the presence of Hrp- mutants within the plants was correlated with a reduction in disease severity, although pathogenic bacteria colonized the stem tissue at a higher density than the nonpathogenic bacteria. Challenge inoculation experiments conducted under growth chamber conditions led, in some cases, to exclusion of the pathogenic strain from the aerial part of the plant, resulting in high protection rates. Furthermore, there was evidence that one of the pathogenic strains used for the challenge inoculations produced a bacteriocin that inhibited the in vitro growth of the nonpathogenic mutants. Images PMID:16349373

  9. Septoria hodgesii sp. nov.: A potential biocontrol agent for Myrica faya in Hawai‘i

    USGS Publications Warehouse

    Gardner, Donald E.

    1999-01-01

    Septoria hodgesii sp. nov. is described. This fungus is a common leaf pathogen of Myrica cerifera in the southeastern U.S., where it usually has been identified as S. myricae. It also has been shown by artificial inoculation to be pathogenic on M. faya, an introduced forest weed in Hawai'i. Comparison of S. hodgesii with the types of S. myricae, from M. cerifera and S. myricata, from M. gale, showes it to be distinct from both species.

  10. Brazilian peppertree seed-borne pathogen Neofusicoccum batangarum a potential biocontrol agent

    USDA-ARS?s Scientific Manuscript database

    The invasive exotic Brazilian peppertree, Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae) has become a serious threat to the delicate ecosystem of Everglades National Park. More than 4,000 acres land in the Hole-in-the-Donut (HID) area within the Park has been infested with Brazilian pep...

  11. Evaluation of Atoxigenic Strains of Aspergillus flavus as Potential Biocontrol Agents for Aflatoxin in Maize

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination resulting from maize infection by Aspergillus flavus is both an economic concern and public health concern. Therefore, strategies for controlling maize contamination are being investigated. Abilities of 11 naturally occurring atoxigenic strains in Nigeria to reduce aflatox...

  12. An alpha-glucosidase inhibitor from an endophytic Cladosporium sp. with potential as a biocontrol agent.

    PubMed

    Singh, Bahaderjeet; Kaur, Tamanreet; Kaur, Sanehdeep; Manhas, Rajesh K; Kaur, Amarjeet

    2015-02-01

    This study highlights the importance of alpha-glucosidase inhibitors as mechanisms for endophyte-mediated resistance to insect pests. One of the major benefits which endophytes confer on plants is providing resistance against insect pests. This built-in defense mechanism of the plant can be used for exploring ecofriendly strategies for pest control. In the present study, 34 endophytic fungi were isolated from Tinospora cordifolia and screened for their ability to produce alpha-glucosidase inhibitors. Maximum inhibitory activity was observed in an isolate from T. cordifolia (TN-9S), identified to be Cladosporium sp. The inhibitor was purified using chromatographic techniques. The insecticidal activity of the purified inhibitor was evaluated against Spodoptera litura. The inhibitor induced a significant mortality in the larvae of S. litura and adversely affected its survival and development. It also inhibited the activity of α-glycosidases in vivo in the gut of the larvae. The purified inhibitor was determined to be a phenolic compound with amine groups, demonstrating a noncompetitive type of inhibition in vitro. The production of the inhibitor was optimized. Response surface methodology (RSM) analysis revealed a significant interaction between dextrose and malt extract, with first-order effect of pH.

  13. Potential of predatory bacteria as biocontrol agents for foodborne and plant pathogens

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens such as Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, Shigella are responsible for frequent occurrences of illnesses and mortality in humans and produce losses. Pre-harvest yield losses and post-harvest decay on minimally processed produce (fruits, vegetables...

  14. Indirect effects of biocontrol of an invasive riparian plant (Tamarix) alters habitat and reduces herpetofauna abundance

    USGS Publications Warehouse

    Bateman, H.L.; Merritt, D.M.; Glenn, E.P.; Nagler, P.L.

    2014-01-01

    The biological control agent (tamarisk leaf beetle, Diorhabda spp.) is actively being used to defoliate exotic saltcedar or tamarisk (Tamarix spp.) in riparian ecosystems in western USA. The Virgin River in Arizona and Nevada is a system where tamarisk leaf beetle populations are spreading. Saltcedar biocontrol, like other control methods, has the potential to affect non-target species. Because amphibians and reptiles respond to vegetation changes in habitat and forage in areas where beetles are active, herpetofauna are model taxa to investigate potential impacts of biocontrol defoliation. Our objectives related herpetofauna abundance to vegetation cover and indices (normalized difference vegetation index, NDVI; enhanced vegetation index, EVI) and timing of biocontrol defoliation. We captured herpetofauna and ground-dwelling arthropods in trap arrays and measured vegetation using remotely sensed images and on-the-ground measurements at 16–21 sites 2 years before (2009–2010) and 2 years following (2011–2012) biocontrol defoliation. Following defoliation, riparian stands (including stands mixed with native and exotic trees and stands of monotypic exotic saltcedar) had significantly lower NDVI and EVI values and fewer captures of marked lizards. Total captures of herpetofauna (toads, lizards, and snakes) were related to higher vegetation cover and sites with a lower proportion of saltcedar. Our results suggest that effects of biocontrol defoliation are likely to be site-specific and depend upon the proportion of native riparian trees established prior to biocontrol introduction and defoliation. The mechanisms by which habitat structure, microclimate, and ultimately vertebrate species are affected by exotic plant biocontrol riparian areas should be a focus of natural-resource managers.

  15. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol.

    PubMed

    Gomaa, Eman Zakaria

    2012-02-01

    Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na(+), Mg(2+), Cu(2+), and Ca(2+) caused enhancement of enzyme activities whereas they were markedly inhibited by Zn(2+), Hg(2+), and Ag(+). In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.

  16. Impact of Cotesia flavipes (Hymenoptera: Braconidae) as an augmentative biocontrol agent for sugarcane borer (Lepidoptera: Crambidae) on rice

    USDA-ARS?s Scientific Manuscript database

    In an effort to find an appropriate biological control agent for release in rice, a 2-year field cage experiment was conducted in Beaumont, Texas to estimate parasitism of sugarcane borer, Diatraea saccharalis (F.), by Cotesia flavipes (Cameron). The effective search rate was 0.0049 square meter gro...

  17. Whole genome sequencing of the Braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest Tepritid fruit flies

    USDA-ARS?s Scientific Manuscript database

    The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis}). The goal of this study was to dev...

  18. Artificial diets for classical weed biocontrol agents-it's been done. The Cactoblastis cactorum story in the USA

    USDA-ARS?s Scientific Manuscript database

    The South American cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) is celebrated for its role as a biological control agent for weedy Opuntia spp., but its unintentional arrival in North America represents an economic and ecological threat to native Opuntia spp. in the U. S. and ...

  19. The SRAP based molecular diversity related to antifungal and antioxidant bioactive constituents for biocontrol potentials of Trichoderma against Sclerotium rolfsii Scc.

    PubMed

    Hirpara, Darshna G; Gajera, H P; Bhimani, R D; Golakiya, B A

    2016-08-01

    The study was performed to examine 11 isolates of Trichoderma for their bio-control potentials against Sclerotium rolfsii Sacc. causing stem rot in groundnut. The antagonists Trichoderma were subjected to sequence related amplified polymorphism (SRAP) based molecular diversity analysis and compared with their hardness to S. rolfsii with respect to secretary antifungal and antioxidant profile. T. virens NBAII Tvs 12 evident highest (87.91 %) growth inhibition of test pathogen followed by T. koningii MTCC 796 (67.03 %) at 7 days after inoculation (DAI). Microscopic study confirmed biocontrol mechanism as mycoparasitism for Tvs 12 and antibiosis for MTCC 796. The growth inhibition of test pathogen was significantly negatively correlated with sclerotia formation and lipid peroxidation during antagonism due to release of secretary bioactive antioxidants by antagonists to terminate oxidative burst generated by S. rolfsii and causing inhibition of sclerotium formation. The GC-MS profile identified antifungal and antioxidant constituents hexadecane, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-hexadecanesulfonyl chloride, and octadecane in potent antagonists Tvs 12; and nonacosane and octadecane in MTCC 796 along with two novel compounds 1-pentadecene and 1-heneicosyl formate for biocontrol activity. Molecular diversity of Trichoderma isolates associated with antagonistic activity was assessed by SRAP markers. The 115 primer combinations generate total 1328 amplified products of which, 1095 are shared polymorphic and 199 are unique polymorphic. The 15 SRAP combinations produced 18 bands to diagnose best antagonist Tvs 12 and 13 SRAP combinations generated 19 unique bands for identification of MTCC 796. The mycoparasitic antagonist Tvs 12 would be the best antagonist and released unique antifungal and antioxidant constituents to combat pathogen infection. The SRAP based genetic diversity indicates Tvs12 strain clustered with T. viride NBAII Tv23 and shared

  20. Suppression of the Biocontrol Agent Trichoderma harzianum by Mycelium of the Arbuscular Mycorrhizal Fungus Glomus intraradices in Root-Free Soil

    PubMed Central

    Green, Helge; Larsen, John; Olsson, Pål Axel; Jensen, Dan Funck; Jakobsen, Iver

    1999-01-01

    Trichoderma harzianum is an effective biocontrol agent against several fungal soilborne plant pathogens. However, possible adverse effects of this fungus on arbuscular mycorrhizal fungi might be a drawback in its use in plant protection. The objective of the present work was to examine the interaction between Glomus intraradices and T. harzianum in soil. The use of a compartmented growth system with root-free soil compartments enabled us to study fungal interactions without the interfering effects of roots. Growth of the fungi was monitored by measuring hyphal length and population densities, while specific fatty acid signatures were used as indicators of living fungal biomass. Hyphal 33P transport and β-glucuronidase (GUS) activity were used to monitor activity of G. intraradices and a GUS-transformed strain of T. harzianum, respectively. As growth and metabolism of T. harzianum are requirements for antagonism, the impact of wheat bran, added as an organic nutrient source for T. harzianum, was investigated. The presence of T. harzianum in root-free soil reduced root colonization by G. intraradices. The external hyphal length density of G. intraradices was reduced by the presence of T. harzianum in combination with wheat bran, but the living hyphal biomass, measured as the content of a membrane fatty acid, was not reduced. Hyphal 33P transport by G. intraradices also was not affected by T. harzianum. This suggests that T. harzianum exploited the dead mycelium but not the living biomass of G. intraradices. The presence of external mycelium of G. intraradices suppressed T. harzianum population development and GUS activity. Stimulation of the hyphal biomass of G. intraradices by organic amendment suggests that nutrient competition is a likely means of interaction. In conclusion, it seemed that growth of and phosphorus uptake by the external mycelium of G. intraradices were not affected by the antagonistic fungus T. harzianum; in contrast, T. harzianum was adversely

  1. wksl3, a New Biocontrol Agent for Salmonella enterica Serovars Enteritidis and Typhimurium in Foods: Characterization, Application, Sequence Analysis, and Oral Acute Toxicity Study

    PubMed Central

    Kang, Hyun-Wol; Kim, Jae-Won; Jung, Tae-Sung

    2013-01-01

    Of the Salmonella enterica serovars, S. Enteritidis and S. Typhimurium are responsible for most of the Salmonella outbreaks implicated in the consumption of contaminated foods in the Republic of Korea. Because of the widespread occurrence of antimicrobial-resistant Salmonella in foods and food processing environments, bacteriophages have recently surfaced as an alternative biocontrol tool. In this study, we isolated a virulent bacteriophage (wksl3) that could specifically infect S. Enteritidis, S. Typhimurium, and several additional serovars. Transmission electron microscopy revealed that phage wksl3 belongs to the family Siphoviridae. Complete genome sequence analysis and bioinformatic analysis revealed that the DNA of phage wksl3 is composed of 42,766 bp with 64 open reading frames. Since it does not encode any phage lysogeny factors, toxins, pathogen-related genes, or food-borne allergens, phage wksl3 may be considered a virulent phage with no side effects. Analysis of genetic similarities between phage wksl3 and four of its relatives (SS3e, vB_SenS-Ent1, SE2, and SETP3) allowed wksl3 to be categorized as a SETP3-like phage. A single-dose test of oral toxicity with BALB/c mice resulted in no abnormal clinical observations. Moreover, phage application to chicken skin at 8°C resulted in an about 2.5-log reduction in the number of Salmonella bacteria during the test period. The strong, stable lytic activity, the significant reduction of the number of S. Enteritidis bacteria after application to food, and the lack of clinical symptoms of this phage suggest that wksl3 may be a useful agent for the protection of foods against S. Enteritidis and S. Typhimurium contamination. PMID:23335772

  2. The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0.

    PubMed

    Schnider-Keel, U; Lejbølle, K B; Baehler, E; Haas, D; Keel, C

    2001-12-01

    A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and sigma(22)) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU'-'lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment.

  3. The Sigma Factor AlgU (AlgT) Controls Exopolysaccharide Production and Tolerance towards Desiccation and Osmotic Stress in the Biocontrol Agent Pseudomonas fluorescens CHA0

    PubMed Central

    Schnider-Keel, Ursula; Lejbølle, Kirsten Bang; Baehler, Eric; Haas, Dieter; Keel, Christoph

    2001-01-01

    A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and ς22) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU′-′lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment. PMID:11722923

  4. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula.

    PubMed

    Endersen, Lorraine; Buttimer, Colin; Nevin, Eoghan; Coffey, Aidan; Neve, Horst; Oliveira, Hugo; Lavigne, Rob; O'Mahony, Jim

    2017-07-17

    In recent years, the microbiological safety of powdered infant formula has gained increasing attention due to the identification of contaminating C. sakazakii and its epidemiological link with life-threatening neonatal infections. Current intervention strategies have fallen short of ensuring the production of infant formula that is free from C. sakazakii. In this study, we describe the isolation and characterisation of three bacteriophages (phages) and their application as a phage cocktail to inhibit the growth of C. sakazakii in different brands of infant formula, while also assessing the phages ability to prevent biofilm formation. All three phages, isolated from slurry, possess a relatively broad host range, verified by their ability to infect across genera and species. When all three phages were combined and used as part of a phage cocktail, 73% coverage was obtained across all Cronobacter strains tested. Optimum thermo-tolerance and pH stability were determined between 4°C-37°C, and pH6-8, respectively, well within the normal range of application of infant formula. Genome sequencing and analysis revealed all the phages to be free from lysogenic properties, a trait which renders each favourable for phage therapy applications. As such, the combined-phage preparation (3×10(8)pfu/mL) was found to possess a strong bactericidal effect on C. sakazakii/C. sakazakii LUX cells (≤10(4)cfu/mL), resulting in a significant reduction in cell numbers, to below the limit of detection (<10cfu/mL). This was observed following a 20h challenge in different brands of infant formula, where samples in the absence of the phage cocktail reached concentrations of ~10(9)cfu/mL. The phage cocktail also demonstrated promise in preventing the establishment of biofilm, as biofilm formation could not be detected for up to 48h post treatment. These results highlight the potential application of this phage preparation for biocontrol of C. sakazakii contamination in reconstituted infant

  6. Response to Thomas et al.: Biocontrol and indirect effects

    Treesearch

    Dean E. Pearson; Ragan M. Callaway

    2004-01-01

    In a recent TREE article [1], we identified three categories of unintended indirect effects that can arise from host-specific biological control agents: (i) ecological replacement; (ii) compensatory responses; and (iii) food-web interactions. Although our review focused on the biocontrol of plant pests, we suggested these concepts also apply to the biocontrol...

  7. Complete Genome Sequence of Biocontrol Strain Pseudomonas fluorescens LBUM223

    PubMed Central

    Roquigny, Roxane; Arseneault, Tanya; Gadkar, Vijay J.; Novinscak, Amy

    2015-01-01

    Pseudomonas fluorescens LBUM223 is a plant growth-promoting rhizobacterium (PGPR) with biocontrol activity against various plant pathogens. It produces the antimicrobial metabolite phenazine-1-carboxylic acid, which is involved in the biocontrol of Streptomyces scabies, the causal agent of common scab of potato. Here, we report the complete genome sequence of P. fluorescens LBUM223. PMID:25953163

  8. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere.

    PubMed

    Kong, Hyun Gi; Kim, Nam Hee; Lee, Seung Yeup; Lee, Seon-Woo

    2016-04-01

    Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.

  9. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere

    PubMed Central

    Kong, Hyun Gi; Kim, Nam Hee; Lee, Seung Yeup; Lee, Seon-Woo

    2016-01-01

    Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer. PMID:27147933

  10. Rodents as potential couriers for bioterrorism agents.

    PubMed

    Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J

    2013-09-01

    Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control.

  11. Potential of immunosuppressive agents in cerebral ischaemia

    PubMed Central

    Gupta, Yogendra Kumar; Chauhan, Anjali

    2011-01-01

    Ischaemic stroke is a disorder involving multiple mechanisms of injury progression including activation of glutamate receptors, release of proinflammatory cytokines, nitric oxide (NO), free oxygen radicals and proteases. Presently, recombinant tissue plasminogen activator (rtPA) is the only drug approved for the management of acute ischaemic stroke. This drug, however, is associated with limitations like narrow therapeutic window and increased risk of intracranial haemorrhage. A large number of therapeutic agents have been tested including N-methly-D-aspartate (NMDA) receptor antagonist, calcium channel blockers and antioxidants for management of stroke, but none has provided significant neuroprotection in clinical trials. Therefore, searching for other potentially effective drugs for ischaemic stroke management becomes important. Immunosuppressive agents with their wide array of mechanisms have potential as neuroprotectants. Corticosteroids, immunophilin ligands, mycophenolate mofetil and minocycline have shown protective effect on neurons by their direct actions or attenuating toxic effects of mediators of inflammation. This review focuses on the current status of corticosteroids, cyclosporine A, FK506, rapamycin, mycophenolate mofetil and minocycline in the experimental models of cerebral ischaemia. PMID:21321416

  12. Brucella as a potential agent of bioterrorism.

    PubMed

    Doganay, Gizem D; Doganay, Mehmet

    2013-04-01

    Perception on bioterrorism has changed after the deliberate release of anthrax by the postal system in the United States of America in 2001. Potential bioterrorism agents have been reclassified based on their dissemination, expected rate of mortality, availability, stability, and ability to lead a public panic. Brucella species can be easily cultured from infected animals and human materials. Also, it can be transferred, stored and disseminated easily. An intentional contamination of food with Brucella species could pose a threat with low mortality rate. Brucella spp. is highly infectious through aerosol route, making it an attractive pathogen to be used as a potential agent for biological warfare purposes. Recently, many studies have been concentrated on appropriate sampling of Brucella spp. from environment including finding ways for its early detection and development of new decontamination procedures such as new drugs and vaccines. There are many ongoing vaccine development studies; some of which recently received patents for detection and therapy of Brucella spp. However, there is still no available vaccine for humans. In this paper, recent developments and recent patents on brucellosis are reviewed and discussed.

  13. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast Pichia anomala for aflatoxin reduction

    USDA-ARS?s Scientific Manuscript database

    Pichia anomala WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of mycotoxin in the food chain...

  14. Susceptibility of Loxosceles sp. to the arthropod pathogenic fungus Metarhizium anisopliae: potential biocontrol of the brown spider.

    PubMed

    Beys-da-Silva, Walter O; Santi, Lucélia; Berger, Markus; Guimarães, Jorge A; Schrank, Augusto; Vainstein, Marilene H

    2013-01-01

    Loxosceles genus (brown spider) is an important pest with great impact on public health. Thus, more effective strategies for spider control are necessary. Three isolates of Metarhizium anisopliae fungus were tested for the control of Loxosceles sp. Metarhizium anisopliae isolate E6 was highly virulent to the Loxosceles sp. spider, causing 100% mortality at 10(9) conidia/ml after 12 days and 9 days for juvenile and adult spiders, respectively. This is the first report of the pathogenicity of M. anisopliae against a venomous arthropod. This fungus could offer an interesting alternative to reduce loxoscelism in future biocontrol strategies.

  15. Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products.

    PubMed

    Ladero, Victor; Gómez-Sordo, Carolina; Sánchez-Llana, Esther; Del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martín, M Cruz; Alvarez, Miguel A

    2016-01-01

    Biogenic amines (BAs) are low molecular weight nitrogenous compounds with biological activity, formed from amino acids by decarboxylation. BAs are naturally present in all living organisms playing essential roles. However, their accumulation in food through the metabolic activity of certain microorganisms constitutes a toxicological hazard. Among foods, cheeses accumulate some of the highest concentrations of BAs since they provide an ideal environment for their accumulation. Most of the methods proposed for reducing BAs in cheese, such as milk pasteurization, have not only failed to completely solve the problem, they also affect non-BA producing lactic acid bacteria, i.e., the bacteria that participate in the development of the organoleptic characteristics of cheese. Novel technologies specifically targeted against BA producers are therefore needed to control BA accumulation. Bacteriophages have been proposed as agents for specifically controlling the presence of foodborne pathogens in food. Due to its specificity, they could be used as a biotechnological tool targeted to reduce the population of BA-producing bacteria. The present work reports the isolation, from cheese, and the characterization of bacteriophage Q69, which infects specifically Enterococcus faecalis, the species mainly responsible of the accumulation of the BA tyramine in foods. Furthermore, its capacity to reduce the accumulation of tyramine in different conditions -including a model cheese- was proven. The obtained results open up the possibility of use bacteriophages to prevent BA accumulation in fermented foods.

  16. Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products

    PubMed Central

    Ladero, Victor; Gómez-Sordo, Carolina; Sánchez-Llana, Esther; del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martín, M. Cruz; Alvarez, Miguel A.

    2016-01-01

    Biogenic amines (BAs) are low molecular weight nitrogenous compounds with biological activity, formed from amino acids by decarboxylation. BAs are naturally present in all living organisms playing essential roles. However, their accumulation in food through the metabolic activity of certain microorganisms constitutes a toxicological hazard. Among foods, cheeses accumulate some of the highest concentrations of BAs since they provide an ideal environment for their accumulation. Most of the methods proposed for reducing BAs in cheese, such as milk pasteurization, have not only failed to completely solve the problem, they also affect non-BA producing lactic acid bacteria, i.e., the bacteria that participate in the development of the organoleptic characteristics of cheese. Novel technologies specifically targeted against BA producers are therefore needed to control BA accumulation. Bacteriophages have been proposed as agents for specifically controlling the presence of foodborne pathogens in food. Due to its specificity, they could be used as a biotechnological tool targeted to reduce the population of BA-producing bacteria. The present work reports the isolation, from cheese, and the characterization of bacteriophage Q69, which infects specifically Enterococcus faecalis, the species mainly responsible of the accumulation of the BA tyramine in foods. Furthermore, its capacity to reduce the accumulation of tyramine in different conditions –including a model cheese- was proven. The obtained results open up the possibility of use bacteriophages to prevent BA accumulation in fermented foods. PMID:27092117

  17. Biology and host preferences of Cryptorhynchus melastomae (Coleoptera: Curculionidae), a possible biocontrol agent for Miconia calvescens (Melastomataceae) in Hawaii

    Treesearch

    E. Reichert; M.T. Johnson; E. Chacon; R.S. Anderson; T.A. Wheeler

    2010-01-01

    The introduced plant Miconia calvescens (Melastomataceae) poses a grave threat to Hawaii's native ecosystems and biodiversity. One potential candidate for classical biological control is Cryptorhynchus melastomae (Coleoptera: Curculionidae: Cryptorhynchinae), a stem-boring weevil from Central and South America. This weevil...

  18. TRPV1 antagonists as potential antitussive agents.

    PubMed

    McLeod, Robbie L; Correll, Craig C; Jia, Yanlin; Anthes, John C

    2008-01-01

    Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign materials from the airways. However, when cough is exceptionally intense or when it is chronic and/or nonproductive it may require pharmacologic suppression. For many patients, antitussive therapies consist of OTC products with inconsequential efficacies. On the other hand, the prescription antitussive market is dominated by older opioid drugs such as codeine. Unfortunately, "codeine-like" drugs suppress cough at equivalent doses that also often produce significant ancillary liabilities such as GI constipation, sedation, and respiratory depression. Thus, the discovery of a novel and effective antitussive drug with an improved side effect profile relative to codeine would fulfill an unmet clinical need in the treatment of cough. Afferent pulmonary nerves are endowed with a multitude of potential receptor targets, including TRPV1, that could act to attenuate cough. The evidence linking TRPV1 to cough is convincing. TRPV1 receptors are found on sensory respiratory nerves that are important in the generation of the cough reflex. Isolated pulmonary vagal afferent nerves are responsive to TRPV1 stimulation. In vivo, TRPV1 agonists such as capsaicin elicit cough when aerosolized and delivered to the lungs. Pertinent to the debate on the potential use of TRPV1 antagonist as antitussive agents are the observations that airway afferent nerves become hypersensitive in diseased and inflamed lungs. For example, the sensitivity of capsaicin-induced cough responses following upper respiratory tract infection and in airway inflammatory diseases such as asthma and COPD is increased relative to that of control responses. Indeed, we have demonstrated that TRPV1 antagonism can attenuate antigen-induced cough in the allergic guinea pig. However, it remains to be determined if the emerging pharmacologic profile of TRPV1 antagonists will translate into a novel human antitussive drug. Current

  19. Plants' metabolites as potential antiobesity agents.

    PubMed

    Gooda Sahib, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Fawzi; Abdul Hamid, Azizah

    2012-01-01

    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research.

  20. Plants' Metabolites as Potential Antiobesity Agents

    PubMed Central

    Gooda Sahib, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Fawzi; Abdul Hamid, Azizah

    2012-01-01

    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research. PMID:22666121

  1. The roles of inoculants' carbon source use in the biocontrol of potato scab disease.

    PubMed

    Sun, Pingping; Zhao, Xinbei; Shangguan, Nini; Chang, Dongwei; Ma, Qing

    2015-04-01

    Despite the application of multiple strains in the biocontrol of plant diseases, multistrain inoculation is still constrained by its inconsistency in the field. Nutrients, especially carbons, play an important role in the biocontrol processes. However, little work has been done on the systematic estimation of inoculants' carbon source use on biocontrol efficacies in vivo. In the present study, 7 nonpathogenic Streptomyces strains alone and in different combinations were inoculated as biocontrol agents against the potato scab disease, under field conditions and greenhouse treatments. The influence of the inoculants' carbon source use properties on biocontrol efficacies was investigated. The results showed that increasing the number of inoculated strains did not necessarily result in greater biocontrol efficacy in vivo. However, single strains with higher growth rates or multiple strains with less carbon source competition had positive effects on the biocontrol efficacies. These findings may shed light on optimizing the consistent biocontrol of plant disease with the consideration of inoculants' carbon source use properties.

  2. Biocontrol of Rhizoctonia solani AG-2, the causal agent of damping-off by Muscodor cinnamomi CMU-Cib 461.

    PubMed

    Suwannarach, Nakarin; Kumla, Jaturong; Bussaban, Boonsom; Lumyong, Saisamorn

    2012-11-01

    Rhizoctonia solani is a damping-off pathogen that causes significant crop loss worldwide. In this study, the potential of Muscodor cinnamomi, a new species of endophytic fungus for controlling R. solani AG-2 damping-off disease of plant seedlings by biological fumigation was investigated. In vitro tests showed that M. cinnamomi volatile compounds inhibited mycelial growth of pathogens. Among nine solid media tested, rye grain was the best grain for inoculum production. An in vivo experiment of four seedlings, bird pepper, bush bean, garden pea and tomato were conducted. The results indicated that treatment with 30 g of M. cinnamomi inoculum was the minimum dose that caused complete control of damping-off symptoms of all seedlings after one month of planting. The R. solani-infested soil showed the lowest percentage of seed germination. In addition, M. cinnamomi did not cause any disease symptoms. From the results it is clear that M. cinnamomi is effective in controlling R. solani AG-2 both in vitro and in vivo.

  3. Polypodium leucotomos: a potential new photoprotective agent.

    PubMed

    Bhatia, Neal

    2015-04-01

    As the understanding of the immune system pathways, cytokine balances, and cellular interactions continues to expand, so must the potential applications of therapies that can impact the process of diseases instead of just controlling their symptoms. In the case of Polypodium leucotomos extract, which is derived from a tropical fern of the Polypodiaceae family, the future potential of applications in dermatology and beyond will be better understood as its incorporation into daily routines gives rise to the development of new regimens. Clinicians may position this agent as an option for daily maintenance, accept its use in combinations, or use it as a template for further development of oral supplementation that may evolve into a true immunomodulator. The antioxidant activity of P. leucotomos extract is primarily driven by caffeic acid and ferulic acid, resulting in the control of cutaneous responses to ultraviolet-induced erythema, in the interception of inflammatory mechanisms, and the promotion of other cytotoxic responses. Histologically, the impact of P. leucotomos extract induces an effect on the overall reduction of angiogenesis, photocarcinogenesis, and solar elastosis, while on the cellular level there are improvements in cell membrane integrity and elastin expression. Future applications for P. leucotomos extract could include the potential for photoprotective effects, and subsequent research efforts should focus on determining the optimal dosage regimen, duration of action, and utility of combinations with sunscreens, among other outcomes. Recently published data have also demonstrated how the antioxidant effects of oral P. leucotomos extract can delay tumor development in mice models, suggesting there might be a protective role that could be described with further clinical research. In addition, it is important to recognize the distinction between photoprotection and chemoprevention, in that there has yet to be any in vivo or controlled clinical trial

  4. Partial purification, characterization, and kinetic studies of a low-molecular-weight, alkali-tolerant chitinase enzyme from Bacillus subtilis JN032305, A potential biocontrol strain.

    PubMed

    Shivakumar, Srividya; Karmali, Anika Nayak; Ruhimbana, Charles

    2014-01-01

    A new alkalophilic low-molecular-mass chitinase of 14 kD from the potent biocontrol agent Bacillus subtilis JN032305 was partially purified and enzymology of the chitinase was studied. The enzyme showed optimal pH of 9.0 and temperature of 50°C. The enzyme was found stable during the 60-min incubation at 50 °C. The chitinase was inhibited by group specific agents like IAA, DAN, TLCK, and SDS and metal ions Mg(2+), Ca(2+), Fe(2+), Mn(2+), Ba(2+), and Hg(2+), whereas Zn(2+) did not show significant inhibitory effect against the chitinase. PMSF partially inhibited the enzyme. Substrates specificity tests indicated that the enzyme showed 75% of relative activity on glycol chitin, 58% on carboxymethylcellulose (CMC), 33% on chitin flakes, and 166% laminarin compared to that on colloidal chitin. The enzyme also hydrolyzed 4-methylumbelliferyl-N-acetyl-D-glucosaminide, indicating its chitobiase activity. The chitinase of this study has broad specificity, which could hydrolyze not only the glycosidic bond in GlcNAc-GlcNAc but also that of related carbohydrates with glycosidic linkages. The partially purified chitinase not only showed antifungal activity against Rhizoctonia solani and Colletotrichum gloeosporioides, two potent phytopathogens of chilli, but also increased the germination of chilli seeds when infected with the two potent phytopathogenic fungi.

  5. Nigella sativa: A Potential Antiosteoporotic Agent

    PubMed Central

    Shuid, Ahmad Nazrun; Mohamed, Norazlina; Mohamed, Isa Naina; Othman, Faizah; Suhaimi, Farihah; Mohd Ramli, Elvy Suhana; Muhammad, Norliza; Soelaiman, Ima Nirwana

    2012-01-01

    Nigella sativa seeds (NS) has been used traditionally for various illnesses. The most abundant and active component of NS is thymoquinone (TQ). Animal studies have shown that NS and TQ may be used for the treatment of diabetes-induced osteoporosis and for the promotion of fracture healing. The mechanism involved is unclear, but it was postulated that the antioxidative, and anti-inflammatory activities may play some roles in the treatment of osteoporosis as this bone disease has been linked to oxidative stress and inflammation. This paper highlights studies on the antiosteoporotic effects of NS and TQ, the mechanisms behind these effects and their safety profiles. NS and TQ were shown to inhibit inflammatory cytokines such as interleukin-1 and 6 and the transcription factor, nuclear factor κB. NS and TQ were found to be safe at the current dosage for supplementation in human with precautions in children and pregnant women. Both NS and TQ have shown potential as antiosteoporotic agent but more animal and clinical studies are required to further assess their antiosteoporotic efficacies. PMID:22973403

  6. Bioactive peroxides as potential therapeutic agents.

    PubMed

    Dembitsky, Valery M

    2008-02-01

    Present review describes research on more than 280 natural anticancer agents isolated from terrestrial and marine sources and synthetic biologically active peroxides. Intensive searches for new classes of pharmacologically potent agents produced by terrestrial and marine organisms have resulted in the discovery of dozens of compounds possessing high cytotoxic, antibacterial, antimalarial, and other activities as an important source of leads for drug discovery.

  7. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles

    USDA-ARS?s Scientific Manuscript database

    Bacillus velezensis RC 218 was originally isolated for the anthers of wheat as a potential antagonist of Fusarium graminearium, the causal agent of Fusarium head blight. It was demonstrated to have antagonist activity against the plant pathogen with in vitro and greenhouse assays. The current study ...

  8. Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review.

    PubMed

    Axel, Claudia; Zannini, Emanuele; Coffey, Aidan; Guo, Jiahui; Waters, Deborah M; Arendt, Elke K

    2012-10-01

    In times of increasing societal pressure to reduce the application of pesticides on crops, demands for environmentally friendly replacements have intensified. In the case of late blight, a devastating potato plant disease, the historically most widely known plant destroyer has been the oomycete Phytophthora infestans. To date, the most important strategy for control of this pathogen has been the frequent application of fungicides. Due to the aforementioned necessity to move away from traditional chemical treatments, many studies have focused on finding alternative ecofriendly biocontrol systems. In general, due to the different modes of actions (i.e. antagonistic effects or induction of plant defence mechanisms), the use of microorganisms as biological control agents has a definite potential. Amongst them, several species of lactic acid bacteria have been recognised as producers of bioactive metabolites which are functional against a broad spectrum of undesirable microorganisms, such as fungi, oomycetes and other bacteria. Thus, they may represent an interesting tool for the development of novel concepts in pest management. This review describes the present situation of late blight disease and summarises current literature regarding the biocontrol of the phytopathogen P. infestans using antagonistic microorganisms.

  9. Potential Role of Exoglucanase Genes (WaEXG1 and WaEXG2) in the Biocontrol Activity of Wickerhamomyces anomalus.

    PubMed

    Parafati, Lucia; Cirvilleri, Gabriella; Restuccia, Cristina; Wisniewski, Michael

    2016-11-05

    The use of yeasts, including Wickerhamomyces anomalus, as biocontrol agents of fungi responsible for postharvest diseases of fruits and vegetables has been investigated for the past two decades. Among a variety of mechanisms, the production of glucanases coded by the "killer genes" WaEXG1 and WaEXG2 have been reported to play a role in the ability of yeast to inhibit other fungi. The objective of the present study was to determine the expression of these genes by RT-qPCR, utilizing gene-specific primers, when W. anomalus was grown on grape berries and oranges that were either non-inoculated or inoculated with Botrytis cinerea or Penicillium digitatum, or in minimal media supplemented with cell walls of various plant pathogens and different amounts of glucose. Results indicated that WaEXG2 was more responsive than WaEXG1 to the nutritional environment (including the addition of glucose to cell wall-amended media) in vitro and appeared to play a greater role in the cellular metabolism of W. anomalus. WaEXG2 expression also appeared to be more responsive to the presence of cell walls of P. digitatum and B. cinerea than other fungal species, whereas the same level of induction was not seen in vivo when the yeast was grown in wounded/pathogen-inoculated fruits.

  10. Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita.

    PubMed

    Gan, Zhongwei; Yang, Jinkui; Tao, Nan; Liang, Lianming; Mi, Qili; Li, Juan; Zhang, Ke-Qin

    2007-10-01

    The nematophagous fungus Lecanicillium psalliotae (syn. Verticillium psalliotae) is a well-known biocontrol agent. In this study, a chitinase gene Lpchi1 was isolated for the first time from L. psalliotae using degenerate primers and DNA-walking technique. The cloned gene Lpchi1 encoding 423 amino acid residues shares a high degree of homology with other pathogenicity-related chitinases from entomopathogenic and mycoparasitic fungi. The complementary DNA sequence of the mature chitinase was amplified via reverse transcription polymerase chain reaction and expressed well in Pichia pastoris GS115. Through gel filtration, the recombinant chitinase was purified as a protein of ca. 45 kDa with an optimal activity at pH 7.0 and 37.6 degrees C. The purified chitinase LPCHI1 was found degrading chitinous components of eggs of the root-knot nematode Meloidogyne incognita and significantly influence its development. Moreover, our results also demonstrate that the protease Ver112 and the chitinase LPCHI1 from the same fungus interacted on the egg infection.

  11. Effect of rice husbandry on mosquito breeding at Mwea Rice Irrigation Scheme with reference to biocontrol strategies.

    PubMed

    Asimeng, E J; Mutinga, M J

    1993-03-01

    A study was carried out at Mwea Rice Irrigation Scheme, Kenya, to assess the impact of rice husbandry on mosquito breeding and identify indigenous biocontrol agents with potential for controlling mosquito breeding in the scheme. The study established a close relationship between the schedule of the farming practices (particularly the flooding phase) and mosquito breeding. Two groups of agents, entomopathogenic bacteria (Bacillus thuringiensis var. israelensis) and larvivorous fish, were identified. Laboratory evaluation of the agents produced encouraging results. The bacterial isolates showed broad-spectrum larvicidal potency against Anopheles, Culex and Aedes mosquito larvae and 2 of the fish species, Tilapia zilli and Oreochromis niloticus, demonstrated a strong predation for a mosquito larval diet. To facilitate their use in effective biocontrol strategies, the agents would require further evaluation under field conditions.

  12. Cyprinid herpesvirus 3 as a potential biological control agent for carp (Cyprinus carpio) in Australia: susceptibility of non-target species.

    PubMed

    McColl, K A; Sunarto, A; Slater, J; Bell, K; Asmus, M; Fulton, W; Hall, K; Brown, P; Gilligan, D; Hoad, J; Williams, L M; Crane, M St J

    2017-09-01

    Carp (Cyprinus carpio L.) is a pest species in Australian waterways, and cyprinid herpesvirus 3 (CyHV-3) is being considered as a potential biological control (biocontrol) agent. An important consideration for any such agent is its target specificity. In this study, the susceptibility to CyHV-3 of a range of non-target species (NTS) was tested. The NTS were as follows: 13 native Australian, and one introduced, fish species; a lamprey species; a crustacean; two native amphibian species (tadpole and mature stages); two native reptilian species; chickens; and laboratory mice. Animals were exposed to 100-1000 times the approximate minimum amount of CyHV-3 required to cause disease in carp by intraperitoneal and/or bath challenge, and then examined clinically each day over the course of 28 days post-challenge. There were no clinical signs, mortalities or histological evidence consistent with a viral infection in a wide taxonomic range of NTS. Furthermore, there was no molecular evidence of infection with CyHV-3, and, in particular, all RT-PCRs for viral mRNA were negative. As a consequence, the results encourage further investigation of CyHV-3 as a potential biocontrol agent that is specific for carp. © 2016 John Wiley & Sons Ltd.

  13. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth.

    PubMed

    Malan, Antoinette P; Knoetze, Rinus; Moore, Sean D

    2011-10-01

    A survey was conducted to determine the diversity and frequency of endemic entomopathogenic nematodes (EPN) in citrus orchards in the Western Cape, Eastern Cape and Mpumalanga provinces of South Africa. The main aim of the survey was to obtain nematodes as biological control agents against false codling moth (FCM), Thaumatotibia leucotreta, a key pest of citrus in South Africa. From a total of 202 samples, 35 (17%) tested positive for the presence of EPN. Of these, four isolates (11%) were found to be steinernematids, while 31 (89%) were heterorhabditids. Sequencing and characterisation of the internal transcribed spacer (ITS) region was used to identify all nematode isolates to species level. Morphometrics, morphology and biology of the infective juvenile (IJ) and the first-generation male were used to support molecular identification and characterisation. The Steinernema spp. identified were Steinernema khoisanae, Steinernema yirgalemense and Steinernema citrae. This is the first report of S. yirgalemense in South Africa, while for S. citrae it is the second new steinernematid to be identified from South Africa. Heterorhabditis species identified include Heterorhabditis bacteriophora, Heterorhabditis zealandica and an unknown species of Heterorhabditis. Laboratory bioassays, using 24-well bioassay disks, have shown isolates of all six species found during the survey, to be highly virulent against the last instar of FCM larvae. S. yirgalemense, at a concentration of 50IJs/FCM larva caused 100% mortality and 74% at a concentration of 200IJs/pupa. Using a sand bioassay, S. yirgalemense gave 93% control of cocooned pupae and emerging moths at a concentration of 20IJs/cm(2). This is the first report on the potential use of EPN to control the soil-borne life stages of FCM, which includes larvae, pupae and emerging moths. It was shown that emerging moths were infected with nematodes, which may aid in control and dispersal. Copyright © 2011 Elsevier Inc. All rights

  14. Trichoderma saturnisporum, a new biological control agent.

    PubMed

    Diánez Martínez, Fernando; Santos, Mila; Carretero, Francisco; Marín, Francisco

    2016-04-01

    Biocontrol agents (BCAs) could be a viable alternative to chemicals in the management of fungal crop diseases. Screening for potential biocontrol and plant growth promoter isolates from a soil in Cádiz (Spain) was conducted. Several isolates showed antagonism in in vitro tests to several plant pathogens. Two isolates of Trichoderma saturnisporum (Ascomycetes, Hypocreales) were identified by sequencing of the rDNA region. One isolate was selected for further in vivo plant growth promotion and biological control assays. Results indicate that substrate application of T. saturnisporum improved plant quality and showed biological control activity against Phytophthora capsici and Phytophthora parasitica (Peronosporales, Peronosporaceae). There are a few references to T. saturnisporum isolated from different media but not its ability to promote plant growth or biocontrol. This is the first report of T. saturnisporum as a seedling growth promoter and as biological control agent. © 2015 Society of Chemical Industry.

  15. Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0.

    PubMed

    Baehler, E; Bottiglieri, M; Péchy-Tarr, M; Maurhofer, M; Keel, C

    2005-01-01

    To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.

  16. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent.

  17. Rhizoma Coptidis: A Potential Cardiovascular Protective Agent

    PubMed Central

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Duangjai, Acharaporn; Saokaew, Surasak; Mehmood Khan, Tahir; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality in both the developed and developing world. Rhizoma coptidis (RC), known as Huang Lian in China, is the dried rhizome of medicinal plants from the family Ranunculaceae, such as Coptis chinensis Franch, C. deltoidea C.Y. Cheng et Hsiao, and C. teeta Wall which has been used by Chinese medicinal physicians for more than 2000 years. In China, RC is a common component in traditional medicines used to treat CVD associated problems including obesity, diabetes mellitus, hyperlipidemia, hyperglycemia and disorders of lipid metabolism. In recent years, numerous scientific studies have sought to investigate the biological properties of RC to provide scientific evidence for its traditional medical uses. RC has been found to exert significant beneficial effects on major risk factors for CVDs including anti-atherosclerotic effect, lipid-lowering effect, anti-obesity effect and anti-hepatic steatosis effect. It also has myocardioprotective effect as it provides protection from myocardial ischemia-reperfusion injury. These properties have been attributed to the presence of bioactive compounds contained in RC such as berberine, coptisine, palmatine, epiberberine, jatrorrhizine, and magnoflorine; all of which have been demonstrated to have cardioprotective effects on the various parameters contributing to the occurrence of CVD through a variety of pathways. The evidence available in the published literature indicates that RC is a herb with tremendous potential to reduce the risks of CVDs, and this review aims to summarize the cardioprotective properties of RC with reference to the published literature which overall indicates that RC is a herb with remarkable potential to reduce the risks and damage caused by CVDs. PMID:27774066

  18. Indirect effects of host-specific biological control agents

    Treesearch

    Dean E. Pearson; Ragan M. Callaway

    2003-01-01

    Biological control is a crucial tool in the battle against biological invasions, but biocontrol agents can have a deleterious impact on native species. Recognition of risks associated with host shifting has increased the emphasis on host specificity of biocontrol agents for invasive weeds. However, recent studies indicate host-specific biocontrol agents can...

  19. Biocontrol Ability and Action Mechanism of Starmerella bacillaris (Synonym Candida zemplinina) Isolated from Wine Musts against Gray Mold Disease Agent Botrytis cinerea on Grape and Their Effects on Alcoholic Fermentation.

    PubMed

    Lemos, Wilson J; Bovo, Barbara; Nadai, Chiara; Crosato, Giulia; Carlot, Milena; Favaron, Francesco; Giacomini, Alessio; Corich, Viviana

    2016-01-01

    Gray mold is one of the most important diseases of grapevine in temperate climates. This plant pathogen affects plant growth and reduces wine quality. The use of yeasts as biocontrol agents to apply in the vineyard have been investigated in recent years as an alternative to agrochemicals. In this work, fermenting musts obtained from overripe grape berries, therefore more susceptible to infection by fungal pathogens such as Botrytis cinerea, were considered for the selection of yeasts carrying antifungal activity. Thirty-six isolates were identified as Starmerella bacillaris, a species recently proven to be of enological interest. Among them 14 different strains were studied and antifungal activity against B. cinerea was demonstrated, for the first time, to be present in S. bacillaris species. The production of volatile organic compounds (VOCs), tested in vitro, was found to be the main responsible of S. bacillaris antifungal effects. All the strains were able to reduce B. cinerea decay on wounded grape berries artificially inoculated with gray mold. The colonization level of wound was very high reaching, after 5 days, a concentration of 10(6) cells per ml of grape juice obtained after berry crushing. At this cell concentration S. bacillaris strains were used to ferment synthetic and natural musts. The sequential yeast inoculation, performed by adding S. cerevisiae 48 h after S. bacillaris, was needed to complete sugar consumption and determined a significant increase in glicerol content and a reduction of ethanol and acetic acid concentrations. The high wound colonization ability, found in this work, together with the propensity to colonize grape berry and the interesting enological traits possessed by the selected S. bacillaris strains allow the use of this yeast as biocontrol agent on vine and grape berries with possible positive effects on must fermentation, although the presence of S. cerevisiae is needed to complete the fermentation process. This work

  20. Biocontrol Ability and Action Mechanism of Starmerella bacillaris (Synonym Candida zemplinina) Isolated from Wine Musts against Gray Mold Disease Agent Botrytis cinerea on Grape and Their Effects on Alcoholic Fermentation

    PubMed Central

    Lemos Junior, Wilson José Fernandes; Bovo, Barbara; Nadai, Chiara; Crosato, Giulia; Carlot, Milena; Favaron, Francesco; Giacomini, Alessio; Corich, Viviana

    2016-01-01

    Gray mold is one of the most important diseases of grapevine in temperate climates. This plant pathogen affects plant growth and reduces wine quality. The use of yeasts as biocontrol agents to apply in the vineyard have been investigated in recent years as an alternative to agrochemicals. In this work, fermenting musts obtained from overripe grape berries, therefore more susceptible to infection by fungal pathogens such as Botrytis cinerea, were considered for the selection of yeasts carrying antifungal activity. Thirty-six isolates were identified as Starmerella bacillaris, a species recently proven to be of enological interest. Among them 14 different strains were studied and antifungal activity against B. cinerea was demonstrated, for the first time, to be present in S. bacillaris species. The production of volatile organic compounds (VOCs), tested in vitro, was found to be the main responsible of S. bacillaris antifungal effects. All the strains were able to reduce B. cinerea decay on wounded grape berries artificially inoculated with gray mold. The colonization level of wound was very high reaching, after 5 days, a concentration of 106 cells per ml of grape juice obtained after berry crushing. At this cell concentration S. bacillaris strains were used to ferment synthetic and natural musts. The sequential yeast inoculation, performed by adding S. cerevisiae 48 h after S. bacillaris, was needed to complete sugar consumption and determined a significant increase in glicerol content and a reduction of ethanol and acetic acid concentrations. The high wound colonization ability, found in this work, together with the propensity to colonize grape berry and the interesting enological traits possessed by the selected S. bacillaris strains allow the use of this yeast as biocontrol agent on vine and grape berries with possible positive effects on must fermentation, although the presence of S. cerevisiae is needed to complete the fermentation process. This work introduces

  1. Can Plant Microbiome Studies Lead to Effective Biocontrol of Plant Diseases?

    PubMed

    Ellis, Jeffrey G

    2017-03-01

    In this review, the wisdom and efficacy of studies seeking disease attenuating microbes and microbiomes only in healthy plant communities is questioned and an alternative view is posited, namely that success in biocontrol of crop diseases may also come from studies of microbiota, or at least individual species isolates, associated with diseased plants. In support of this view, I summarize the current extensive knowledge of the biology behind what is probably the most successful biocontrol of a plant disease, namely the biocontrol of crown gall of stone fruit using non-pathogenic Rhizobium rhizogenes K84, in which the biocontrol agent itself came from a diseased plant.

  2. Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit.

    PubMed

    Ferraz, Luriany Pompeo; Cunha, Tatiane da; da Silva, Aline Caroline; Kupper, Katia Cristina

    2016-01-01

    Sour rot is a major postharvest disease of citrus fruit and is caused by the fungal pathogen Geotrichum citri-aurantii. A lack of chemicals certified for the control of this disease has led to the consideration of alternative methods and strategies, such as the use of yeasts as biocontrol agents. The purpose of the present study was to test the ability of yeasts isolated from leaves, flowers, fruit, and soil, and six Saccharomyces cerevisiae isolates to control citrus sour rot, to assess the mechanisms of action of the yeast isolates that were demonstrated to be effective for biocontrol, and to identify the most effective yeast isolates for the biocontrol of G. citri-aurantii. In in vivo assays, three yeast isolates (ACBL-23, ACBL-44, and ACBL-77) showed a potential for controlling sour rot in citrus fruits, both preventatively and curatively. Most of the eight yeast isolates that were assessed for a mechanism of action did not produce antifungal compounds in an amount sufficient to inhibit the growth of the pathogen. Additionally, nutrient competition among the yeast strains was not found to be a biocontrol strategy. Instead, killer activity and hydrolytic enzyme production were identified as the major mechanisms involved in the biocontrol activity of the yeasts. Isolates ACBL-23, ACBL-44, and ACBL-77, which controlled sour rot most effectively, were identified as Rhodotorula minuta, Candida azyma, and Aureobasidium pullulans, respectively. To our knowledge, this is the first report of the potential of C. azyma as a biological control agent against a postharvest pathogen and its ability to produce a killer toxin. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Spirostaphylotrichin W, a spirocyclic γ-lactam isolated from liquid culture of Pyrenophora semeniperda, a potential mycoherbicide for cheatgrass (Bromus tectorum) biocontrol

    Treesearch

    Marco Masia; Susan Meyer; Suzette Clement; Anna Andolfi; Alessio Cimmino; Antonio. Evidente

    2014-01-01

    A novel spirocyclic γ-lactam, named spirostaphylotrichin W (1), was isolated together with the well known and closely related spirostaphylotrichins A, C, D, R and V, as well as triticone E, from the liquid cultures of Pyrenophora semeniperda (anamorph: Drechslera), a seed pathogen proposed for cheatgrass (Bromus tectorum) biocontrol. Spirostaphylotrichin W was...

  4. Secretome of the Biocontrol Agent Metarhizium anisopliae Induced by the Cuticle of the Cotton Pest Dysdercus peruvianus Reveals New Insights into Infection

    PubMed Central

    2015-01-01

    Metarhizium anisopliae is an entomopathogenic fungus that has evolved specialized strategies to infect insect hosts. Here we analyzed secreted proteins related to Dysdercus peruvianus infection. Using shotgun proteomics, abundance changes in 71 proteins were identified after exposure to host cuticle. Among these proteins were classical fungal effectors secreted by pathogens to degrade physical barriers and alter host physiology. These include lipolytic enzymes, Pr1A, B, C, I, and J proteases, ROS-related proteins, oxidorreductases, and signaling proteins. Protein interaction networks were generated postulating interesting candidates for further studies, including Pr1C, based on possible functional interactions. On the basis of these results, we propose that M. anisopliae is degrading host components and actively secreting proteins to manage the physiology of the host. Interestingly, the secretion of these factors occurs in the absence of a host response. The findings presented here are an important step in understanding the host–pathogen interaction and developing more efficient biocontrol of D. peruvianus by M. anisopliae. PMID:24702058

  5. Recognition of a core fragment of Beauveria bassiana hydrophobin gene promoter (P hyd1) and its special use in improving fungal biocontrol potential

    PubMed Central

    Wang, Zheng-Liang; Ying, Sheng-Hua; Feng, Ming-Guang

    2013-01-01

    To identify a suitable promoter for use in engineering fungal entomopathogens to improve heterologous gene expression and fungal biocontrol potential, a 1798 bp promoter (Phyd1) upstream of Beauveria bassiana class I hydrophobin gene (hyd1) was optimized by upstream truncation and site-directed mutation. A truncated 1290 bp fragment (Phyd1-t1) drove eGFP expression in B. bassiana much more efficiently than full-length Phyd1. Further truncating Phyd1-t1 to 1179, 991 and 791 bp or mutating one of the binding domains of three transcription factors in Phyd1-t1 reduced significantly the expression of eGFP (enhanced green fluorescence protein). Under Phyd1-t1 control, eGFP was expressed more abundantly in conidiogenic cells and conidia than in mycelia. Therefore, Phyd1-t1 was used to integrate a bacterium-derived, insect midgut-specific toxin (vip3Aa1) gene into B. bassiana, yielding a transgenic strain (BbHV8) expressing 9.8-fold more toxin molecules in conidia than a counterpart strain (BbV28) expressing the toxin under the control of PgpdA, a promoter widely used for gene expression in fungi. Consequently, BbHV8 showed much higher per os virulence to Spodoptera litura larvae than BbV28 in standardized bioassays with normal conidia for both cuticle penetration and ingestion or heat-killed conidia for ingestion only. Conclusively, Phyd1-t1 is a useful tool for enhancing beneficial protein expression, such as vip3Aa1, in fungal conidia, which are the active ingredients of mycoinsecticides. PMID:22639846

  6. Recognition of a core fragment ofBeauveria bassiana hydrophobin gene promoter (P hyd1) and its special use in improving fungal biocontrol potential.

    PubMed

    Wang, Zheng-Liang; Ying, Sheng-Hua; Feng, Ming-Guang

    2013-01-01

    To identify a suitable promoter for use in engineering fungal entomopathogens to improve heterologous gene expression and fungal biocontrol potential, a 1798 bp promoter (P hyd1) upstream of Beauveria bassiana class I hydrophobin gene (hyd1) was optimized by upstream truncation and site-directed mutation. A truncated 1290 bp fragment (P hyd1-t1) drove eGFP expression in B. bassiana much more efficiently than full-length P hyd1. Further truncating P hyd1-t1 to 1179, 991 and 791 bp or mutating one of the binding domains of three transcription factors in P hyd1-t1 reduced significantly the expression of eGFP (enhanced green fluorescence protein). Under P hyd1-t1 control, eGFP was expressed more abundantly in conidiogenic cells and conidia than in mycelia. Therefore, P hyd1-t1 was used to integrate a bacterium-derived, insect midgut-specific toxin (vip3Aa1) gene into B. bassiana, yielding a transgenic strain (BbHV8) expressing 9.8-fold more toxin molecules in conidia than a counterpart strain (BbV28) expressing the toxin under the control of P gpdA, a promoter widely used for gene expression in fungi. Consequently, BbHV8 showed much higher per os virulence to Spodoptera litura larvae than BbV28 in standardized bioassays with normal conidia for both cuticle penetration and ingestion or heat-killed conidia for ingestion only. Conclusively, P hyd1-t1 is a useful tool for enhancing beneficial protein expression, such as vip3Aa1, in fungal conidia, which are the active ingredients of mycoinsecticides.

  7. Proactive Management of Fermentation and Formulation Interactions to Improve Biocontrol Product Performance

    USDA-ARS?s Scientific Manuscript database

    The key components of biocontrol product development—discovery, fermentation, and formulation—are interactively linked to each other and ultimately to product performance. To identify biocontrol agents suited for commercial development, our discovery programs utilize a cumulative ranking system tha...

  8. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles.

    PubMed

    Palazzini, Juan M; Dunlap, Christopher A; Bowman, Michael J; Chulze, Sofía N

    2016-11-01

    Bacillus subtilis RC 218 was originally isolated from wheat anthers as a potential antagonist of Fusarium graminearum, the causal agent of Fusarium head blight (FHB). It was demonstrated to have antagonist activity against the plant pathogen under in vitro and greenhouse assays. The current study extends characterizing B. subtilis RC 218 with a field study and genome sequencing. The field study demonstrated that B. subtilis RC 218 could reduce disease severity and the associated mycotoxin (deoxynivalenol) accumulation, under field conditions. The genome sequencing allowed us to accurately determine the taxonomy of the strain using a phylogenomic approach, which places it in the Bacillus velezensis clade. In addition, the draft genome allowed us to use bioinformatics to mine the genome for potential metabolites. The genome mining allowed us to identify 9 active secondary metabolites conserved by all B. velezensis strains and one additional secondary metabolite, the lantibiotic ericin, which is unique to this strain. This study represents the first confirmed production of ericin by a B. velezensis strain. The genome also allowed us to do a comparative genomics with its closest relatives and compare the secondary metabolite production of the publically available B. velezensis genomes. The results showed that the diversity in secondary metabolites of strains in the B. velezensis clade is driven by strains making different antibacterials.

  9. Lepidopterans as Potential Agents for the Biological Control of the Invasive Plant, Miconia calvescens

    PubMed Central

    Morais, Elisangela G.F.; Picanço, Marcelo C.; Semeão, Altair A.; Barreto, Robert W.; Rosado, Jander F.; Martins, Julio C.

    2012-01-01

    This work investigated eight species of Lepidoptera associated with Miconia calvescens DC. (Myrtales: Melastomataceae) in Brazil, including six defoliators, Salbia lotanalis Druce (Lepidoptera: Pyralidae), Druentia inscita Schaus (Mimallonidae), Antiblemma leucocyma Hampson (Noctuidae), three Limacodidae species, a fruit borer Carposina cardinata Meyrick (Carposinidae), and a damager of flowers Pleuroprucha rudimentaria Guenée (Geometridae). Based on host specificity and the damage caused to plants, S. lotanalis and D. inscita are the most promising species for biological control of M. calvescens. Furthermore, if C. cardinata and P. rudimentaria have host specificity in future tests, these caterpillars could also be considered as appropriate biocontrol agents. PMID:22938203

  10. [Bioterrorism, parasites as potential bioterrorism agents and biosecurity studies].

    PubMed

    Aksoy, Umit

    2006-01-01

    A variety of agents have a potential risk for being use as weapons of biological terrorism. However, the use of parasites as bioterrorism agents has not received so much attention. Parasites could contribute to the installation of fear in human population upon intentional addition to their food and water supplies. On the other hand, vector-borne parasites can also constitute risk of bioterrorism. Biosecurity issues are gaining importance as a consequence of globalization. Surveillance is critical in maintaining biosecurity and early detection of infectious disease agents is essential. In this review article, bioterrorism, the role of parasites as potential bioterrorism agents, studies on biosecurity and laboratory design for biosafety have been discussed under the light of recent literature.

  11. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

    PubMed

    Kim, Tae Jeong; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2013-01-01

    Potentials of hydrophilic and biocompatible ligand coated gadolinium oxide nanoparticles as multimodal imaging agents, drug carriers, and therapeutic agents are reviewed. First of all, they can be used as advanced T1 magnetic resonance imaging (MRI) contrast agents because they have r1 larger than those of Gd(III)-chelates due to a high density of Gd(III) per nanoparticle. They can be further functionalized by conjugating other imaging agents such as fluorescent imaging (FI), X-ray computed tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) agents. They can be also useful for drug carriers through morphology modifications. They themselves are also potential CT and ultrasound imaging (USI) contrast and thermal neutron capture therapeutic (NCT) agents, which are superior to commercial iodine compounds, air-filled albumin microspheres, and boron ((10)B) compounds, respectively. They, when conjugated with targeting agents such as antibodies and peptides, will provide enhanced images and be also very useful for diagnosis and therapy of diseases (so called theragnosis).

  12. Novel 2-Aminobenzamides as Potential Orally Active Antithrombotic Agents

    PubMed Central

    2012-01-01

    In an effort to develop potent antithrombotic agents, a series of novel 2-aminobenzamide derivatives were synthesized and screened for their in vivo antithrombotic activity. Among the 23 compounds tested, compound (8g) showed the most promising antithrombotic activity, which was comparable with clinically used aspirin or warfarin, but at variance with these standard drugs, 8g did not exhibit the increased bleeding time, suggesting its potential as a novel antithrombotic agent. PMID:24900559

  13. Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture ▿ †

    PubMed Central

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S.; Viterbo, Ada; Yarden, Oded

    2011-01-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents. PMID:21666030

  14. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture.

    PubMed

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S; Viterbo, Ada; Yarden, Oded

    2011-08-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents.

  15. Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant.

    PubMed

    Cabrefiga, J; Francés, J; Montesinos, E; Bonaterra, A

    2014-10-01

    To study the effect of lyoprotectants and osmoadaptation on viability of Pseudomonas fluorescens EPS62e during freeze-drying and storage and to evaluate the formulation in terms of efficacy in biocontrol and fitness on pear flowers. A wettable powder formulation of a biocontrol agent of fire blight was optimized by means of lyoprotectants and culture osmoadaptation. Freeze-drying was used to obtain dehydrated cells, and the best viability (70% of survival) was obtained using lactose as lyoprotectant. Survival during lyophilization was additionally improved using physiological adaptation of cells during cultivation under salt-amended medium (osmoadaptation). The procedure increased the survival of cells after freeze-drying attaining viability values close to a 100% in the lactose-formulated product (3 × 10(11) CFU g(-1) ), and through the storage period of 1 year at 4°C. The dry formulation showed also an improved biocontrol efficacy and survival of EPS62e on pear flowers under low relative humidity conditions. Cell viability after freeze-drying was improved using lactose as lyoprotectant combined with a procedure of osmoadaptation during cultivation. The powder-formulated product remained active for 12 months and retained biocontrol levels similar to that of fresh cells. The formulation showed an improved survival of EPS62e on flowers and an increase of the efficacy of biocontrol of fire blight at low relative humidity. The results have a potential value for commercial application in biocontrol agents not only of fire blight but also of other plant diseases. © 2014 The Society for Applied Microbiology.

  16. Appraisal of selected osmoprotectants and carriers for formulating Gram-negative biocontrol agents active against Fusarium dry rot on potatoes in storage

    USDA-ARS?s Scientific Manuscript database

    The production of a dry formulation containing a high titer of viable cells of a Gram-negative biological control agent is a challenging and critically important step in developing the agent into a commercial product. Producing a dry formulation using methods based on air-drying is especially attrac...

  17. Potential for biocontrol of melanized fungi by actinobacteria isolated from intertidal region of Ilha Do Mel, Paraná, Brazil.

    PubMed

    Dalitz, Camila de Araújo; Porsani, Mariana Vieira; Figel, Izabel Cristina; Pimentel, Ida C; Dalzoto, Patrícia R

    Actinobacteria occur in many environments and have the capacity to produce secondary metabolites with antibiotic potential. Identification and taxonomy of actinobacteria that produce antimicrobial substances is essential for the screening of new compounds, and sequencing of the 16S region of ribosomal DNA (rDNA), which is conserved and present in all bacteria, is an important method of identification. Melanized fungi are free-living organisms, which can also be pathogens of clinical importance. This work aimed to evaluate growth inhibition of melanized fungi by actinobacteria and to identify the latter to the species level. In this study, antimicrobial activity of 13 actinobacterial isolates from the genus Streptomyces was evaluated against seven melanized fungi of the genera Exophiala, Cladosporium, and Rhinocladiella. In all tests, all actinobacterial isolates showed inhibitory activity against all isolates of melanized fungi, and only one actinobacterial isolate had less efficient inhibitory activity. The 16S rDNA region of five previously unidentified actinobacterial isolates from Ilha do Mel, Paraná, Brazil, was sequenced; four of the isolates were identified as Streptomyces globisporus subsp. globisporus, and one isolate was identified as Streptomyces aureus. This work highlights the potential of actinobacteria with antifungal activity and their role in the pursuit of novel antimicrobial substances. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils.

    PubMed

    Gopalakrishnan, Subramaniam; Vadlamudi, Srinivas; Samineni, Srinivasan; Sameer Kumar, C V

    2016-01-01

    Seven strains of bacteria [Pseudomonas plecoglossicida SRI-156, Brevibacterium antiquum SRI-158, Bacillus altitudinis SRI-178, Enterobacter ludwigii SRI-211, E. ludwigii SRI-229, Acinetobacter tandoii SRI-305 and Pseudomonas monteilii SRI-360; demonstrated previously for control of charcoal rot disease in sorghum and plant growth-promotion (PGP) in rice] were evaluated for their PGP and biofortification traits in chickpea and pigeonpea under field conditions. When treated on seed, the seven selected bacteria significantly enhanced the shoot height and root length of both chickpea and pigeonpea over the un-inoculated control. Under field conditions, in both chickpea and pigeonpea, the plots inoculated with test bacteria enhanced the nodule number, nodule weight, root and shoot weights, pod number, pod weight, leaf weight, leaf area and grain yield over the un-inoculated control plots. Among the seven bacteria, SRI-229 was found to significantly and consistently enhance all the studied PGP and yield traits including nodule number (24 and 36%), nodule weight (11 and 44%), shoot weight (22 and 20%), root weight (23 and 16%) and grain yield (19 and 26%) for both chickpea and pigeonpea, respectively. When the harvested grains were evaluated for their mineral contents, iron (up to 18 and 12%), zinc (up to 23 and 5%), copper (up to 19 and 8%), manganese (up to 2 and 39%) and calcium (up to 22 and 11%) contents in chickpea and pigeonpea, respectively, were found enhanced in test bacteria inoculated plots over the un-inoculated control plots. This study further confirms that the selected bacterial isolates not only have the potential for PGP in cereals and legumes but also have the potential for biofortification of mineral nutrients.

  19. Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India.

    PubMed

    Saikia, R; Gogoi, D K; Mazumder, S; Yadav, A; Sarma, R K; Bora, T C; Gogoi, B K

    2011-03-20

    A bacterial strain designated as BPM3 isolated from mud of a natural hot water spring of Nambar Wild Life Sanctuary, Assam, India, strongly inhibited growth of phytopathogenic fungi (Fusarium oxysporum f. sp. ciceri, F. semitectum, Magnaporthe grisea and Rhizoctonia oryzae) and gram-positive bacterium (Staphylococcus aureus). The maximum growth and antagonistic activity was recorded at 30°C, pH 8.5 when starch and peptone were amended as carbon and nitrogen sources, respectively. In greenhouse experiment, this bacterium (BPM3) suppressed blast disease of rice by 30-67% and protected the weight loss by 35-56.5%. The maximum disease protection (67%) and weight loss protection (56.5%) were recorded when the bacterium was applied before 2 days of the pathogen inoculation. Antifungal and antibacterial compounds were isolated from the bacterium which also inhibited the growth of these targeted pathogens. The compounds were purified and on spectroscopic analysis of a purified fraction having R(f) 0.22 which showed strong antifungal and antibacterial activity indicated the presence of C-H, carbonyl group, dimethyl group, -CH(2) and methyl group. The bacterium was characterized by morphological, biochemical and molecular approaches and confirmed that the strain BPM3 is Brevibacillus laterosporus.

  20. Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots.

    PubMed Central

    Yuan, W M; Crawford, D L

    1995-01-01

    The actinomycete Streptomyces lydicus WYEC108 showed strong in vitro antagonism against various fungal plant pathogens in plate assays by producing extracellular antifungal metabolites. When Pythium ultimum or Rhizoctonia solani was grown in liquid medium with S. lydicus WYEC108, inhibition of growth of the fungi was observed. When WYEC108 spores or mycelia were used to coat pea seeds, the seeds were protected from invasion by P. ultimum in an oospore-enriched soil. While 100% of uncoated control seeds were infected by P. ultimum within 48 h after planting, less than 40% of coated seeds were infected. When the coated seeds were planted in soil 24 h prior to introduction of the pathogen, 96 h later, less than 30% of the germinating seeds were infected. Plant growth chamber studies were also carried out to test for plant growth effects and for suppression by S. lydicus WYEC108 of Pythium seed rot and root rot. When WYEC108 was applied as a spore-peat moss-sand formulation (10(8) CFU/g) to P. ultimum-infested sterile or nonsterile soil planted with pea and cotton seeds, significant increases in average plant stand, plant length, and plant weight were observed in both cases compared with untreated control plants grown in similar soils. WYEC108 hyphae colonized and were able to migrate downward with the root as it elongated. Over a period of 30 days, the population of WYEC108 colonized emerging roots of germinating seeds and remained stable (10(5) CFU/g) in the rhizosphere, whereas the nonrhizosphere population of WYEC108 declined at least 100-fold (from 10(5) to 10(3) or fewer CFU/g). The stability of the WYEC108 population incubated at 25 degrees C in the formulation, in sterile soil, and in nonsterile soil was also evaluated. In all three environments, the population of WYEC108 maintained its size for 90 days or more. When pea, cotton, and sweet corn seeds were placed into sterile and nonsterile soils containing 10(6) or more CFU of WYEC108 per g, it colonized the emerging roots. After a 1-week growing period, WYEC108 populations of 10(5) CFU/g (wet weight) of root were found on pea roots in the amended sterile soil environment versus 10(4) CFU/g in amended nonsterile soil. To further study the in vitro interaction between the streptomycete and P. ultimum, mycelia of WYEC108 were mixed with oospores of P. ultimum in agar, which was then used as a film to coat slide coverslips.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7487043

  1. Potential of a novel antibiotic, 2-methylheptyl isonicotinate, as a biocontrol agent against fusarial wilt of crucifers.

    PubMed

    Bordoloi, Gojen N; Kumari, Babita; Guha, Arijit; Thakur, Debajit; Bordoloi, Manabjyoti; Roy, Monoj K; Bora, Tarun C

    2002-03-01

    Screening for newer bioactive compounds from microbial metabolites resulted in the isolation of a novel antibiotic from the culture filtrate, Streptomyces sp 201, of a soil. The bioactive compound, with antifungal and antibacterial activity, was identified as 2-methylheptyl isonicotinate. The antifungal activity of live culture, culture broth and the isolated bioactive compound showed marked inhibition against dominant soil-borne phytopathogens such as Fusarium oxysporum Schlect, F moniliforme Sheldon, F semitectum Berkeley & Ravenel, F solani (Martius) Sacc and Rhizoctonia solani Kuehn. The compound had no effect on seed germination and seedling development as displayed by root and stem growth of the test plant species. In pot experiments with seedlings of cruciferous plants such as Raphanus sativus L (radish), Brassica campestris L (yellow mustard), Brassica oleracea var botrytis L (cauliflower), the antibiotic compound showed promising protective activity of 92% when seeds of the test plants were treated at a dose of 50 micrograms ml-1 prior to sowing. Seed treatment with a spore suspension (3 x 10(8) spores ml-1) of the Streptomyces sp 201 displayed protective activity in the range of 56-60%. Seeds coated with 2.5% methyl cellulose-amended spores of the antagonist showed protective activity in the range of 64-72%. Further, seed treatment with the culture filtrate of the antagonist also showed promising protective activity in the range of 64-84%.

  2. Field garden experiments to assess the host specificity of Aceria solstitialis (Acari: Eriophyoidea), potential biocontrol agent for Centaurea solstitialis (Asteraceae)

    USDA-ARS?s Scientific Manuscript database

    Centaurea solstitialis (yellow starthistle) is an annual noxious weed that currently infests millions of acres of rangelands, non-cultivated and natural areas in the Western USA. It displaces native plant communities reducing plant diversity and forage production for livestock and wildlife. Aceria s...

  3. Abrostola clarissa (Lepidoptera, Noctuidae), a new potential biocontrol agent for invasive swallow-worts, Vincetoxicum rossicum and V. nigrum

    USDA-ARS?s Scientific Manuscript database

    Pale and black swallow-worts (Vincetoxicum rossicum and V. nigrum; Apocynaceae, subfamily Asclepiadoideae), perennial vines native to Eurasia, are now invading natural and anthropogenic habitats in the northeastern U.S.A. and southeastern Canada, threatening natural biodiversity and increasing contr...

  4. Potential for using Verticillium albo-atrum as a biocontrol agent for tree-of-heaven (Ailanthus altissima)

    Treesearch

    Donald D. Davis; Matthew Kasson; Mark. Schall

    2011-01-01

    Extensive, unprecedented wilt and mortality of the highly invasive, exotic tree-of-heaven (Ailanthus altissima) occurred recently within mixed hardwood forests in south-central Pennsylvania. Until this study, the cause of the epidemic was unknown.

  5. Corynespora cassiicola f. sp. schinii, a potential biocontrol agent for the weed Schinus terebinthifolius in the United States

    USDA-ARS?s Scientific Manuscript database

    An isolate of Corynespora cassiicola was found in Brazil (state of Espírito Santo) causing a severe leaf spot and foliage blight on Schinus terebinthifolius (Anacardiaceae, Brazilian peppertree or ‘aroeira’) which is a major environmental weed in many tropical and sub-tropical areas of the globe, in...

  6. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot.

    PubMed

    Saravanakumar, Kandasamy; Li, Yaqian; Yu, Chuanjin; Wang, Qiang-Qiang; Wang, Meng; Sun, Jianan; Gao, Jin-Xin; Chen, Jie

    2017-05-11

    Fusarium stalk rot (FSR) caused by Fusarium graminearum (FG) significantly affects the productivity of maize grain crops. Application of agrochemicals to control the disease is harmful to environment. In this regard, use of biocontrol agent (BCA) is an alternative to agrochemicals. Although Trichoderma species are known as BCA, the selection of host-pathogen specific Trichoderma is essential for the successful field application. Hence, we screened a total of 100 Trichoderma isolates against FG, selected Trichoderma harzianum (CCTCC-RW0024) for greenhouse experiments and studied its effect on changes of maize rhizosphere microbiome and biocontrol of FSR. The strain CCTCC-RW0024 displayed high antagonistic activity (96.30%), disease reduction (86.66%), biocontrol-related enzyme and gene expression. The root colonization of the strain was confirmed by eGFP tagging and qRT-PCR analysis. Pyrosequencing revealed that exogenous inoculation of the strain in maize rhizosphere increased the plant growth promoting acidobacteria (18.4%), decreased 66% of FG, and also increased the plant growth. In addition, metabolites of this strain could interact with pathogenicity related transcriptional cofactor FgSWi6, thereby contributing to its inhibition. It is concluded that T. harzianum strain CCTCC-RW0024 is a potential BCA against FSR.

  7. Primary screen for potential sheep scab control agents.

    PubMed

    Dunn, J A; Prickett, J C; Collins, D A; Weaver, R J

    2016-07-15

    The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole).

  8. Stimulative effect of the fungal biocontrol agent Fusarium oxysporum f.sp. Striga on abundance of nitrifying prokaryotes in a maize rhizosphere

    NASA Astrophysics Data System (ADS)

    Musyoki, Mary; Enowashu, Esther; Zimmermann, Judith; Muema, Esther; Wainright, Henry; Vanlauwe, Bernard; Cadisch, Georg; Rasche, Frank

    2014-05-01

    The integration of resistant crop varieties and Fusarium oxysporum f.sp. strigae (Foxy-2) strains as biological control agent (BCA) has shown to be an effective control of the weed Striga hermonthica which is parasitic to several cereals (e.g., maize) cultivated in Sub-Saharan Africa. Most studies have examined the efficacy of the BCA and its interactions with host crops, while overlooking the interplay among key microorganisms in the soil nitrogen (N) cycle. Hence, we postulated that both Foxy-2 and Striga pose threats to the indigenous plant root-associated microbial communities involved in N cycling through direct or indirect competition for nutrients and that the application of high quality organic residues would compensate these effects. The primary objective of this study was thus to assess the potential impact of Foxy-2 on indigenous nitrifying prokaryotes in maize rhizosphere cultivated on two distinct soils (sandy Ferric Alisol versus clayey Humic Nitisol) obtained from Machanga and Embu, respectively, in central Kenya. These soils were treated with or without Foxy-2 and Striga; and in combination with high quality (i.e. CN ratio; 13, lignins, 8.9 % and polyphenols, 1.7 %) organic residues (i.e., Tithonia diversifolia) as N source. Using quantitative polymerase chain reaction (qPCR), we followed at three pre-defined sampling dates (14, 28 and 42 days after planting) the responses of ammonia-oxidizing archaea (AOA) and bacteria (AOB), total bacteria and archaea in four treatments of a rhizobox experiment: (i) Foxy-2 plus Striga (F+S), (ii) Striga only (C+S), (iii) Foxy-2 plus Striga plus Tithonia diversifolia residues (F+S+T), and (iv) a non-treated control (C). Overall, the treatment effects on soil microbial populations were, in comparison to the clayey Embu soil, more pronounced in the sandy Machanga soil. Contrary to our expectations, we observed a distinct stimulative, but no resource competition effect of Foxy-2 on the abundance of AOA, as well as

  9. Mustard: a potential agent of chemical warfare and terrorism.

    PubMed

    Saladi, R N; Smith, E; Persaud, A N

    2006-01-01

    As one of the most important vesicant agents, the destructive properties of mustards on the skin, eyes and respiratory system, combined with a lack of antidote, makes them effective weapons. Such weapons are inexpensive, easily obtainable and frequently stockpiled. Sulphur mustard (mustard gas) has been used as a chemical warfare agent in at least 10 conflicts. In this article, the use of mustard as a potential agent of chemical warfare and terrorism is outlined. The dose-dependent effects of acute sulphur mustard exposure on the skin, eyes, and respiratory system are described, as well as the possible extents of injuries, the mechanisms of action and the long-term complications. Prevention and management of mustard exposure are briefly discussed. The need for awareness and preparedness in the dermatological community regarding mustard exposure is emphasized.

  10. Whole-Genome Sequence of Pseudomonas fluorescens EK007-RG4, a Promising Biocontrol Agent against a Broad Range of Bacteria, Including the Fire Blight Bacterium Erwinia amylovora

    PubMed Central

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad; Taheri, Parissa; Kjøller, Annelise Helene; Brejnrod, Asker; Madsen, Jonas Stenløkke

    2017-01-01

    ABSTRACT Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora, the causal agent for fire blight disease, in addition to several other pathogenic and non-pathogenic bacteria. PMID:28360179

  11. Ceratapion basicorne (Illiger) (Coleoptera: Curculionidae): laboratory and open field trials to assess its specificity as biocontrol agent of Centaurea solstitialis (Asteraceae: Cardueae)

    USDA-ARS?s Scientific Manuscript database

    Prospective biological control agents generally must be demonstrated to not pose risks to non-target plants. Laboratory experiments evaluating host plant specificity are the most common method of evaluating such risk; however, they are constrained by limitations of space and number of replicates, gi...

  12. Weed biocontrol in the EU: from serendipity to strategy

    USDA-ARS?s Scientific Manuscript database

    Biological control of weeds is a globally-recognized approach to the management of the worst invasive plants in the world. Unfortunately, accidental introduction of agents account for most weed biocontrol in the EU, but do include a number of current or emerging successes. From the redistribution of...

  13. Nipah virus--a potential agent of bioterrorism?

    PubMed

    Lam, Sai-Kit

    2003-01-01

    Nipah virus, a newly emerging deadly paramyxovirus isolated during a large outbreak of viral encephalitis in Malaysia, has many of the physical attributes to serve as a potential agent of bioterrorism. The outbreak caused widespread panic and fear because of its high mortality and the inability to control the disease initially. There were considerable social disruptions and tremendous economic loss to an important pig-rearing industry. This highly virulent virus, believed to be introduced into pig farms by fruit bats, spread easily among pigs and was transmitted to humans who came into close contact with infected animals. From pigs, the virus was also transmitted to other animals such as dogs, cats, and horses. The Nipah virus has the potential to be considered an agent of bioterrorism.

  14. Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae

    PubMed Central

    Nam, Hyo-Song; Yang, Hyun-Ju; Oh, Byung Jun; Anderson, Anne J.; Kim, Young Cheol

    2016-01-01

    Most biocontrol agents for plant diseases have been isolated from sources such as soils and plants. As an alternative source, we examined the feces of tertiary larvae of the herbivorous rhino beetle, Allomyrina dichotoma for presence of biocontrol-active microbes. The initial screen was performed to detect antifungal activity against two common fungal plant pathogens. The strain with strongest antifungal activity was identified as Bacillus amyloliquefaciens KB3. The inhibitory activity of this strain correlated with lipopeptide productions, including iturin A and surfactin. Production of these surfactants in the KB3 isolate varied with the culture phase and growth medium used. In planta biocontrol activities of cell-free culture filtrates of KB3 were similar to those of the commercial biocontrol agent, B. subtilis QST-713. These results support the presence of microbes with the potential to inhibit fungal growth, such as plant pathogens, in diverse ecological niches. PMID:27298603

  15. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144.

    PubMed

    Figueredo, María Soledad; Tonelli, María Laura; Ibáñez, Fernando; Morla, Federico; Cerioni, Guillermo; Del Carmen Tordable, María; Fabra, Adriana

    2017-04-01

    Synergism between beneficial rhizobacteria and fungal pathogens is poorly understood. Therefore, evaluation of co-inoculation of bacteria that promote plant growth by different mechanisms in pathogen challenged plants would contribute to increase the knowledge about how plants manage interactions with different microorganisms. The goals of this work were a) to elucidate, in greenhouse experiments, the effect of co-inoculation of peanut with Bradyrhizobium sp. SEMIA6144 and the biocontrol agent Bacillus sp. CHEP5 on growth and symbiotic performance of Sclerotium rolfsii challenged plants, and b) to evaluate field performance of these bacteria in co-inoculated peanut plants. The capacity of Bacillus sp. CHEP5 to induce systemic resistance against S. rolfsii was not affected by the inoculation of Bradyrhizobium sp. SEMIA6144. This microsymbiont, protected peanut plants from the S. rolfsii detrimental effect, reducing the stem wilt incidence. However, disease incidence in plants inoculated with the isogenic mutant Bradyrhizobium sp. SEMIA6144 V2 (unable to produce Nod factors) was as high as in pathogen challenged plants. Therefore, Bradyrhizobium sp. SEMIA6144 Nod factors play a role in the systemic resistance against S. rolfsii. Bacillus sp. CHEP5 enhanced Bradyrhizobium sp. SEMIA6144 root surface colonization and improved its symbiotic behavior, even in S. rolfsii challenged plants. Results of field trials confirmed the Bacillus sp. CHEP5 ability to protect against fungal pathogens and to improve the yield of extra-large peanut seeds from 2.15% (in Río Cuarto) to 16.69% (in Las Vertientes), indicating that co-inoculation of beneficial rhizobacteria could be a useful strategy for the peanut production under sustainable agriculture system.

  16. Annona species (Annonaceae): a rich source of potential antitumor agents?

    PubMed

    Tundis, Rosa; Xiao, Jianbo; Loizzo, Monica R

    2017-06-01

    Plants have provided the basis of traditional medicine systems throughout the world for thousands of years and continue to yield molecules for new remedies. We analyzed studies published from 2009 to 2016 on the Annona species (Annonaceae), including A. coriacea, A. crassifolia, A. hypoglauca, A. muricata, A. squamosa, A. sylvatica, and A. vepretorum, as sources of potential antitumor agents. Here, we report and discuss the mechanisms of action and structure-activity relationships of the most active Annona constituents. Annonaceous acetogenins are one of the most promising classes of natural products, owing to their potential antitumor activity. However, their neurotoxicity should not be underestimated. © 2017 New York Academy of Sciences.

  17. Discovery of potential antipsychotic agents possessing pro-cognitive properties.

    PubMed

    Lameh, Jelveh; McFarland, Krista; Ohlsson, Jorgen; Ek, Fredrik; Piu, Fabrice; Burstein, Ethan S; Tabatabaei, Ali; Olsson, Roger; Bradley, Stefania Risso; Bonhaus, Douglas W

    2012-03-01

    Current antipsychotic drug therapies for schizophrenia have limited efficacy and are notably ineffective at addressing the cognitive deficits associated with this disorder. The present study was designed to develop effective antipsychotic agents that would also ameliorate the cognitive deficits associated with this disease. In vitro studies comprised of binding and functional assays were utilized to identify compounds with the receptor profile that could provide both antipsychotic and pro-cognitive features. Antipsychotic and cognitive models assessing in vivo activity of these compounds included locomotor activity assays and novel object recognition assays. We developed a series of potential antipsychotic agents with a novel receptor activity profile comprised of muscarinic M(1) receptor agonism in addition to dopamine D(2) antagonism and serotonin 5-HT(2A) inverse agonism. Like other antipsychotic agents, these compounds reverse both amphetamine and dizocilpine-induced hyperactivity in animals. In addition, unlike other antipsychotic drugs, these compounds demonstrate pro-cognitive actions in the novel object recognition assay. The dual attributes of antipsychotic and pro-cognitive actions distinguish these compounds from other antipsychotic drugs and suggest that these compounds are prototype molecules in the development of novel pro-cognitive antipsychotic agents.

  18. Potential for Water Salvage by Release of the Biocontrol Beetle, Diorhabda carinulata, on Tamarisk (Tamarix ramosissima) Dominated Western U.S. Rivers

    NASA Astrophysics Data System (ADS)

    Murray, R. S.; Nagler, P. L.; van Riper, C.; Bean, D.; Glenn, E. P.

    2009-12-01

    The biocontrol beetle, Diorhabda carinulata, has been widely released in the upper basin of the Colorado River to control Tamarisk in the western U.S. A primary motivation for beetle release is to salvage water that would otherwise be lost to transpiration by Tamarisk. We summarize preliminary findings of our assessment of tamarisk, beetle and avian phenology and tamarisk water usage. We used the Enhanced Vegetation Index (EVI) from the MODIS sensors on the Terra satellite to evaluate the prospects for water salvage at 15 riparian release sites in Utah, Colorado, Nevada and Wyoming. EVI was combined with meteorological data to estimate evapotranspiration (ET) at the release sites and in adjacent sites to which the beetle might have spread. ET was estimated at 16-day intervals from 2000 to 2008, encompassing pre-release and post-release periods at each site. Baseline ET rates tended to be low, from 2-6 mm d-1 in summer (less than half of potential ET). At 4 of 15 sites, ET rates estimated by MODIS EVI decreased markedly one to two years after release. At other sites, however, no decrease in ET was detected, and ET tended to recover to pre-release levels at affected sites. Ground observations confirmed that beetles were active at all sites following release, defoliating stands of Tamarisk over areas as large as 200 ha. Along approximately 300 km of the Dolores and Colorado Rivers, ground based monitoring of tamarisk defoliation and refoliation was done using hand held GPS units and GIS software. Monitoring here began at the time beetles entered the system in 2004. Selected sites (15 ha) were also monitored for beetle presence and life stage as well as tamarisk condition. Additional ground data collected at four sites on the Dolores River includes vegetation structure, composition and phenology as well as bird monitoring and productivity. The four sites are dominated by saltcedar, with components of willow and cottonwood. For the last 3 years, monthly monitoring of

  19. Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae).

    PubMed

    Garzón, A; Medina, P; Amor, F; Viñuela, E; Budia, F

    2015-08-01

    To further develop Integrated Pest Management (IPM) strategies against crop pests, it is important to evaluate the effects of insecticides on biological control agents. Therefore, we tested the toxicity and sublethal effects (fecundity and fertility) of flonicamid, flubendiamide, metaflumizone, spirotetramat, sulfoxaflor and deltamethrin on the natural enemies Chrysoperla carnea and Adalia bipunctata. The side effects of the active ingredients of the insecticides were evaluated with residual contact tests for the larvae and adults of these predators in the laboratory. Flonicamid, flubendiamide, metaflumizone and spirotetramat were innocuous to last instar larvae and adults of C. carnea and A. bipunctata. Sulfoxaflor was slightly toxic to adults of C. carnea and was highly toxic to the L4 larvae of A. bipunctata. For A. bipunctata, sulfoxaflor and deltamethrin were the most damaging compounds with a cumulative larval mortality of 100%. Deltamethrin was also the most toxic compound to larvae and adults of C. carnea. In accordance with the results obtained, the compounds flonicamid, flubendiamide, metaflumizone and spirotetramat might be incorporated into IPM programs in combination with these natural enemies for the control of particular greenhouse pests. Nevertheless, the use of sulfoxaflor and deltamethrin in IPM strategies should be taken into consideration when releasing either of these biological control agents, due to the toxic behavior observed under laboratory conditions. The need for developing sustainable approaches to combine the use of these insecticides and natural enemies within an IPM framework is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A pharmacological approach for the selection of potential anticancer agents.

    PubMed

    Double, John A

    2004-09-01

    Historically, the process of developing new anticancer agents was largely empirical. Today, because of improvements in our knowledge of the molecular processes involved in the development of cancer, the process of developing new agents is becoming more rational. Researchers from Cancer Research UK, the European Organisation for Research and Treatment of Cancer and the National Cancer Institute have shown that, by undertaking a pharmacological approach to the selection of potential anticancer agents, both meaningful antitumour data and an 80% reduction in animal usage can be obtained. It has also been demonstrated that a new pharmacological tool, the "hollow fibre system", in which tumour cells are grown in biocompatible fibres which are implanted into mice, can be used to produce meaningful antitumour data with pharmacodynamic endpoints. By increasing the amount of data that can be obtained from a single animal and opening up the possibility of eliminating the need for untreated control animals, the hollow fibre system has the potential to make a significant contribution to both reduction and refinement.

  1. Magnetic nanobeads as potential contrast agents for magnetic resonance imaging.

    PubMed

    Pablico-Lansigan, Michele H; Hickling, William J; Japp, Emily A; Rodriguez, Olga C; Ghosh, Anup; Albanese, Chris; Nishida, Maki; Van Keuren, Edward; Fricke, Stanley; Dollahon, Norman; Stoll, Sarah L

    2013-10-22

    Metal-oxo clusters have been used as building blocks to form hybrid nanomaterials and evaluated as potential MRI contrast agents. We have synthesized a biocompatible copolymer based on a water stable, nontoxic, mixed-metal-oxo cluster, Mn8Fe4O12(L)16(H2O)4, where L is acetate or vinyl benzoic acid, and styrene. The cluster alone was screened by NMR for relaxivity and was found to be a promising T2 contrast agent, with r1 = 2.3 mM(-1) s(-1) and r2 = 29.5 mM(-1) s(-1). Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. The metal-oxo cluster Mn8Fe4(VBA)16 (VBA = vinyl benzoic acid) can be copolymerized with styrene under miniemulsion conditions. Miniemulsion allows for the formation of nanometer-sized paramagnetic beads (~80 nm diameter), which were also evaluated as a contrast agent for MRI. These highly monodispersed, hybrid nanoparticles have enhanced properties, with the option for surface functionalization, making them a promising tool for biomedicine. Interestingly, both relaxivity measurements and MRI studies show that embedding the Mn8Fe4 core within a polymer matrix decreases r2 effects with little effect on r1, resulting in a positive T1 contrast enhancement.

  2. Draft Genome Sequence of a Biocontrol Rhizobacterium, Chryseobacterium kwangjuense Strain KJ1R5, Isolated from Pepper (Capsicum annuum)

    PubMed Central

    Jeong, Jin-Ju; Park, Hongjae; Park, Byeong Hyeok; Mannaa, Mohamed; Sang, Mee Kyung

    2016-01-01

    Strain KJ1R5 of the rhizobacterium Chryseobacterium kwangjuense is an effective biocontrol agent against Phytophthora blight of pepper caused by a destructive soilborne oomycete, Phytophthora capsici. Here, we present the draft genome sequence of strain KJ1R5, which contains genes related to biocontrol, plant growth promotion, and environmental stress adaptation. PMID:27103726

  3. Detection of potentially valuable polymorphisms in four group I intron insertion sites at the 3'-end of the LSU rDNA genes in biocontrol isolates of Metarhizium anisopliae

    PubMed Central

    Márquez, Marcela; Iturriaga, Enrique A; Quesada-Moraga, Enrique; Santiago-Álvarez, Cándido; Monte, Enrique; Hermosa, Rosa

    2006-01-01

    Background The entomopathogenic anamorphic fungus Metarhizum anisopliae is currently used as a biocontrol agent (BCA) of insects. In the present work, we analyzed the sequence data obtained from group I introns in the large subunit (LSU) of rDNA genes with a view to determining the genetic diversity present in an autochthonous collection of twenty-six M. anisopliae isolates selected as BCAs. Results DNA fragments corresponding to the 3'-end of the nuclear LSU rDNA genes of 26 M. anisopliae isolates were amplified by PCR. The amplicon sizes ranged from 0.8 to 3.4-kb. Four intron insertion sites, according to Escherichia coli J01695 numbering, were detected- Ec1921, Ec2066, Ec2449 and Ec2563- after sequencing and analysis of the PCR products. The presence/absence of introns allowed the 26 isolates to be distributed into seven genotypes. Nine of the isolates tested showed no introns, 4 had only one, 3 two, and 10 displayed three introns. The most frequent insertion sites were Ec1921 and Ec2449. Of the 26 isolates, 11 showed insertions at Ec2563 and a 1754-bp sequence was observed in ten of them. The most-parsimonious (MP) tree obtained from parsimony analysis of the introns revealed a main set containing four-groups that corresponded to the four insertion sites. Conclusion Four insertion sites of group I introns in the LSU rDNA genes allowed the establishment of seven genotypes among the twenty-six biocontrol isolates of M. anisopliae. Intron insertions at the Ec2563 site were observed for first time in this species. PMID:16978412

  4. Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis.

    PubMed

    Marten, P; Smalla, K; Berg, G

    2000-09-01

    Physiological and molecular fingerprints of biotechnologically relevant rhizobacteria are necessary for registration, patenting, recognition and quality checking of the strains. To characterize the biological control agent, Bacillus subtilis B2g, the strain was compared with other plant-associated B. subtilis isolates. Phenotypic characterization included biochemical and nutritional properties, in vitro activity and analysis of potential antagonistic mechanisms towards several plant pathogenic fungi. According to the phenotypic characteristics, it was not possible to differentiate the biocontrol agent from the other strains, although the enzymatic fingerprint was unique. Genotypic diversity among the isolates was characterized by molecular fingerprinting methods using REP-PCR (repetitive extragenomic palindromic PCR), and macrorestriction of genomic DNA and electrophoretic separation of DNA fragments by pulsed-field gel electrophoresis (PFGE). A protocol for PFGE analysis using restriction enzyme SfiI for B. subtilis was developed. PFGE typing of B. subtilis B2g resulted in a unique fingerprint. Therefore, it was possible to differentiate B. subtilis B2g, the biocontrol agent of Phytovit, from other antifungal B. subtilis isolates.

  5. Limited field establishment of a weed biocontrol agent, Floracarus perrepae (Acariformes: Eriophyidae), against Old World climbing fern in Florida--a possible role of mite resistant plant genotypes.

    PubMed

    Boughton, Anthony J; Pemberton, Robert W

    2011-12-01

    The leaflet galling mite Floracarus perrepae Knihinicki & Boczek was released on Lygodium microphyllum (Cav.) in 63 plots in Florida from 2008 to 2009. Mites transferred onto field plants in 34 plots, but failed to establish populations in the majority of plots. Leaflet galls were observed in only six plots, and in only two plots did mite populations persist for >12 mo. Rates of mite transfer onto field plants were similar for methods using direct transfer of galls versus approaches using passive transfer of mites from infested plants. Often leaflets on some L. microphyllum plants were heavily galled by F. perrepae, whereas leaflets on intertwined stems of other L. microphyllum plants were ungalled but exhibited a characteristic browning and scorching of the leaflet tips. Living mites were consistently present on the undersurface of scorched leaflet tips on ungalled plants, suggesting that this damage might be caused by mite feeding on L. microphyllum genotypes that did not support induction of leaflet galls. Plant nutritional status did not account for differences in galling response, because there were no differences in leaflet nitrogen between galled and ungalled stems. We review those factors known to affect the colonization of biological control agents, and discuss how they may have contributed to the lower than expected rate of F. perrepae establishment.

  6. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  7. Molecular markers discriminate closely related species, Encarsia diaspidicola and E. berlesei (Hymenoptera: Aphelinidae): Biocontrol candidate agents for white peach scale in Hawaii

    USDA-ARS?s Scientific Manuscript database

    The white peach scale, Pseudaulacaspis pentagona Targioni-Tozetti (Hemiptera: Diaspididae), is a serious economic pest of papaya in Hawaii. The endoparasitoid Encarsia diaspidicola Silvestri (Hymenoptera: Aphelinidae) was imported from Samoa into quarantine in Hawaii to be evaluated for potential r...

  8. Molecular markers discriminate closely related Encarsia spp. (E. diaspidicola and E. berlesei): candidate biocontrol agents for white peach scale in Hawaii

    USDA-ARS?s Scientific Manuscript database

    The white peach scale (WPS), Pseudaulacaspis pentagona Targioni-Tozetti (Hemiptera: Diaspididae) is a serious economic pest of papaya in Hawaii. In 2006, Encarsia diaspidicola Silvestri (Hymenoptera: Aphelinidae) was imported from Samoa to perform host-range studies. Another potential future candi...

  9. Biology of the introduced biocontrol agent Microctonus hyperodae (Hymenoptera: Braconidae) and its host Listronotus bonariensis (Coleoptera: Curculionidae) in northern New Zealand.

    PubMed

    Barker, Gary M

    2013-10-01

    The South American weevil Listronotus bonariensis (Kuschel) is an important pest of pastures in New Zealand. As a component of management strategies for this pest, the South American parasitoid Microctonus hyperodae Loan (Hymenoptera: Braconidae) was released in northern New Zealand during 1991 as a biological control agent. Over the subsequent 5-6 yr, the reproductive biology of M. hyperodae and its relationship to, and effects on, the reproductive phenology and fitness of L. bonariensis were studied at three sites. M. hyperodae was first recovered in the field in December 1991. Subsequently, the incidence of parasitism in L. bonariensis increased to seasonal maxima of 75-90%. There was variable synchrony between parasitoid generations and the two generations of its host, leading to marked seasonal variation in rates of parasitism and parasitoid abundance. Despite marked inter-year variation, abundance of host adult and egg populations declined in the presence of parasitoids. Parasitized host females had lower ovarian maturity scores, had lower egg loads, and exhibited less investment in wing muscle development than females that had escaped parasitism. There was almost complete elimination of egg maturation in parasitized females and these hosts contributed little to population recruitment. Rate of buildup and seasonal maxima in parasitism, frequency of superparasitism, adult abundances, and wing muscle development in adult L. bonariensis varied among the three sites in a manner that was only partially related to climate differences across the 1.83° gradient of latitude. Site effects were weak to absent in measures of reproductive condition in L. bonariensis females.

  10. Biology of the Introduced Biocontrol Agent Microctonus hyperodae (Hymenoptera: Braconidae) and Its Host Listronotus bonariensis (Coleoptera: Curculionidae) in Northern New Zealand.

    PubMed

    Barker, Gary M

    2013-09-30

    The South American weevil Listronotus bonariensis (Kuschel) is an important pest of pastures in New Zealand. As a component of management strategies for this pest, the South American parasitoid Microctonus hyperodae Loan (Hymenoptera: Braconidae) was released in northern New Zealand during 1991 as a biological control agent. Over the subsequent 5-6 yr, the reproductive biology of M. hyperodae and its relationship to, and effects on, the reproductive phenology and fitness of L. bonariensis were studied at three sites. M. hyperodae was first recovered in the field in December 1991. Subsequently, the incidence of parasitism in L. bonariensis increased to seasonal maxima of 75-90%. There was variable synchrony between parasitoid generations and the two generations of its host, leading to marked seasonal variation in rates of parasitism and parasitoid abundance. Despite marked inter-year variation, abundance of host adult and egg populations declined in the presence of parasitoids. Parasitized host females had lower ovarian maturity scores, had lower egg loads, and exhibited less investment in wing muscle development than females that had escaped parasitism. There was almost complete elimination of egg maturation in parasitized females and these hosts contributed little to population recruitment. Rate of buildup and seasonal maxima in parasitism, frequency of superparasitism, adult abundances, and wing muscle development in adult L. bonariensis varied among the three sites in a manner that was only partially related to climate differences across the 1.83° gradient of latitude. Site effects were weak to absent in measures of reproductive condition in L. bonariensis females.

  11. Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea.

    PubMed

    Wu, Qiong; Bai, Linquan; Liu, Weicheng; Li, Yingying; Lu, Caige; Li, Yaqian; Fu, Kehe; Yu, Chuanjin; Chen, Jie

    2013-04-01

    Streptomyces lydicus A01 and Trichoderma harzianum P1 are potential biocontrol agents of fungal diseases in plants. S. lydicus A01 produces natamycin to bind the ergosterol of the fungal cell membrane and inhibits the growth of Botrytis cinerea. T. harzianum P1, on the other hand, features high chitinase activity and decomposes the chitin in the cell wall of B. cinerea. To obtain the synergistic biocontrol effects of chitinase and natamycin on Botrytis cinerea, this study transformed the chit42 gene from T. harzianum P1 to S. lydicus A01. The conjugal transformant (CT) of S. lydicus A01 with the chit42 gene was detected using polymerase chain reaction (PCR). Associated chitinase activity and natamycin production were examined using the 3, 5-dinitrosalicylic acid (DNS) method and ultraviolet spectrophotometry, respectively. The S. lydicus A01-chit42 CT showed substantially higher chitinase activity and natamycin production than its wild type strain (WT). Consequently, the biocontrol effects of S. lydicus A01-chit42 CT on B. cinerea, including inhibition to spore germination and mycelial growth, were highly improved compared with those of the WT. Our research indicates that the biocontrol effect of Streptomyces can be highly improved by transforming the exogenous resistance gene, i.e. chit42 from Trichoderma, which not only enhances the production of antibiotics, but also provides a supplementary function by degrading the cell walls of the pathogens.

  12. Selection and evaluation of micro-organisms for biocontrol of Verticillium dahliae in olive.

    PubMed

    Varo, A; Raya-Ortega, M C; Trapero, A

    2016-09-01

    To identify potential biological control agents against Verticillium wilt in olive through a mass screening approach. A total of 47 strains and nine mixtures of micro-organisms were evaluated against Verticillium dahliae in a three stage screening: (i) in vitro, by the effect on the mycelial growth and spore germination of the pathogen; (ii) in natural infested soil, by the effect on the reduction of microsclerotia of the pathogen; (iii) in planta, by the effect on the infection of olive plants under controlled conditions. Various fungal and bacterial strains and mixtures inhibited the pathogen and showed consistent biocontrol activity against Verticillium wilt of olive. The screening has resulted in promising fungi and bacteria strains with antagonistic activity against Verticillium, such as two non-pathogenic Fusarium oxysporum, one Phoma sp., one Pseudomonas fluorescens and two mixtures of micro-organisms that may possess multiple modes of action. This study provides a practical basis for the potential use of selected strains as biocontrol agents for the protection of olive plants against V. dahliae infection. In addition, our study presented an effective method to evaluate antagonistic micro-organisms of V. dahliae in olive. © 2016 The Society for Applied Microbiology.

  13. 1,3,4-oxadiazole derivatives as potential biological agents.

    PubMed

    Sun, Juan; Makawana, Jigar A; Zhu, Hai-Liang

    2013-10-01

    The synthesis of novel compound libraries along with screening is a rapid and effective approach for the discovery of potential chemical agents, and it becomes an important method in pharmaceutical chemistry research. 1,3,4- oxadiazole derivatives as the typical heterocyclic compounds, exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel 1,3,4-oxadiazoles derivatives with antimicrobial, antitumor or antiviral activities during the past decade. In this review, we discussed the synthetic development of 1,3,4-oxadiazoles derivatives, and also the relevant bioactivity and their prospects as the potential chemical drugs.

  14. Enkephalinase inhibitors: potential agents for the management of pain.

    PubMed

    Thanawala, V; Kadam, V J; Ghosh, R

    2008-10-01

    Management of acute and chronic pain has always been a key area of clinical research. Enkephalinase inhibitors (EIs) seem to be promising as therapeutic agents having antinociceptive action. They additionally possess anticraving, antidiarrhoeal and antidepressant actions. The antinociceptive action of EIs has been reported for over a decade however, their therapeutic potential is yet to be effectively explored. EIs may be broadly classified as endogenous and those that are obtained synthetically. Endogenous EIs include peptides like spinorphin and opiorphin. And compounds like RB 101, RB 120, RB 3007 constitute the synthetically obtained EIs. Endogenous and synthetic inhibitors enkephalin degrading enzymes have been studied in vivo using standard animal models. The potential EI targets appear to be APN (Aminopeptidase N), NEP (Neutral endopeptidase), DPP-III (Dipeptidyl peptidase). EIs possess the advantage that they lack the opioid side effects. This article reviews the mechanisms by which EIs act and elucidates the pathways involved.

  15. Turning on the Radio: Epigenetic Inhibitors as Potential Radiopriming Agents

    PubMed Central

    Oronsky, Bryan; Scicinski, Jan; Kim, Michelle M.; Cabrales, Pedro; Salacz, Michael E.; Carter, Corey A.; Oronsky, Neil; Lybeck, Harry; Lybeck, Michelle; Larson, Christopher; Reid, Tony R.; Oronsky, Arnold

    2016-01-01

    First introduced during the late 1800s, radiation therapy is fundamental to the treatment of cancer. In developed countries, approximately 60% of all patients receive radiation therapy (also known as the sixty percenters), which makes radioresistance in cancer an important and, to date, unsolved, clinical problem. Unfortunately, the therapeutic refractoriness of solid tumors is the rule not the exception, and the ubiquity of resistance also extends to standard chemotherapy, molecularly targeted therapy and immunotherapy. Based on extrapolation from recent clinical inroads with epigenetic agents to prime refractory tumors for maximum sensitivity to concurrent or subsequent therapies, the radioresistant phenotype is potentially reversible, since aberrant epigenetic mechanisms are critical contributors to the evolution of resistant subpopulations of malignant cells. Within the framework of a syllogism, this review explores the emerging link between epigenetics and the development of radioresistance and makes the case that a strategy of pre- or co-treatment with epigenetic agents has the potential to, not only derepress inappropriately silenced genes, but also increase reactive oxygen species production, resulting in the restoration of radiosensitivity. PMID:27384589

  16. Artocarpus plants as a potential source of skin whitening agents.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-09-01

    Artocarpus plants have been a focus of constant attention due to the potential for skin whitening agents. In the in vitro experiment, compounds from the Artocarpus plants, such as artocarpanone, norartocarpetin, artocarpesin, artogomezianol, andalasin, artocarbene, and chlorophorin showed tyrosinase inhibitory activity. Structure-activity investigations revealed that the 4-substituted resorcinol moiety in these compounds was responsible for their potent inhibitory activities on tyrosinase. In the in vitro assay, using B16 melanoma cells, the prenylated polyphenols isolated from Artocarpus plants, such as artocarpin, cudraflavone C, 6-prenylapigenin, kuwanon C, norartocarpin, albanin A, cudraflavone B, and brosimone I showed potent inhibitory activity on melanin formation. Structure-activity investigations revealed that the introduction of an isoprenoid moiety to a non-isoprenoid-substituted polyphenol enhanced the inhibitory activity of melanin production in B16 melanoma cells. In the in vivo investigation, the extract of the wood of Artocarpus incisus and a representative isolated compound from it, artocarpin had a lightening effect on the skin of guinea pigs' backs. Other in vivo experiments using human volunteers have shown that water extract of Artocarpus lakoocha reduced the melanin formation in the skin of volunteers. These results indicate that the extracts of Artocarpus plants are potential sources for skin whitening agents.

  17. Mi-1.2, an R gene for aphid resistance in tomato, has direct negative effects on a zoophytophagous biocontrol agent, Orius insidiosus

    PubMed Central

    Pallipparambil, Godshen R.; Sayler, Ronald J.; Shapiro, Jeffrey P.; Thomas, Jean M. G.; Kring, Timothy J.; Goggin, Fiona L.

    2015-01-01

    Mi-1.2 is a single dominant gene in tomato that confers race-specific resistance against certain phloem-feeding herbivores including aphids, whiteflies, psyllids, and root-knot nematodes. Few prior studies have considered the potential non-target effects of race-specific resistance genes (R genes), and this paper evaluates the compatibility of Mi-mediated resistance in tomato with a beneficial zoophytophagous predator, Orius insidiosus (Say). In addition to preying on aphids and other pests, this piercing–sucking insect also feeds from the xylem, epidermis, and/or mesophyll, and oviposits within plant tissues. Comparison of O. insidiosus confined to isogenic tomato plants with and without Mi-1.2 revealed that immatures of O. insidiosus had lower survival on resistant plants even when the immatures were provisioned with prey that did not feed on the host plant. Molecular gut content analysis confirmed that adults and immatures of O. insidiosus feed on both resistant (Mi-1.2+) and susceptible (Mi-1.2–) genotypes, and bioassays suggest that resistance does not affect oviposition rates, plant sampling, or prey acceptance by O. insidiosus adults. These results demonstrate a direct negative impact of R-gene-mediated host plant resistance on a non-target beneficial species, and reveal that Mi-mediated resistance can impact organisms that do not feed on phloem sap. Through laser capture microdissection and RT-PCR, Mi-1.2 transcripts were detected in the epidermis and mesophyll as well as the phloem of tomato plants, consistent with our observations that Mi-mediated resistance is active outside the phloem. These results suggest that the mode of action and potential ecological impacts of Mi-mediated resistance are broader than previously assumed. PMID:25189594

  18. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Treesearch

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  19. Evaluation of labdane derivatives as potential anti-inflammatory agents.

    PubMed

    Girón, Natalia; Pérez-Sacau, Elisa; López-Fontal, Raquel; Amaro-Luis, Juan M; Hortelano, Sonsoles; Estevez-Braun, Ana; de Las Heras, Beatriz

    2010-07-01

    In the present study, a series of labdane derivatives (2-9) were prepared from labdanediol (1) and their potential as anti-inflammatory agents were evaluated on lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. All compounds were able to inhibit LPS-induced nitric oxide (NO), although compounds 1, 2, 5, 8 and 9 exhibited the most potent effects with a range of IC(50) values of 5-15 microM. Similarly to the inhibitory effects on NO release, these labdane derivatives also inhibited prostaglandin E(2) (PGE(2)) production. However, analysis of cell viability demonstrated that effects on NO release and (PGE(2)) production of compounds 1, 8 and 9 were due to citotoxicity, whereas compound 2 and 5 did not show any effect in the survival of RAW 264.7 macrophages. In addition to these in vitro data, compound 5 also showed anti-inflammatory activity in vivo, when tested in mice. They prevented the extent of swelling in the TPA-induced ear edema model and inhibited MPO activity, showing similar potency to that of the widely used anti-inflammatory drug indomethacin. These results indicate that compound 2 and in particular compound 5 might be used for the design of new anti-inflammatory agents. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  20. 3-Amidocoumarins as Potential Multifunctional Agents against Neurodegenerative Diseases.

    PubMed

    Matos, Maria João; Rodríguez-Enríquez, Fernanda; Borges, Fernanda; Santana, Lourdes; Uriarte, Eugenio; Estrada, Martín; Rodríguez-Franco, María Isabel; Laguna, Reyes; Viña, Dolores

    2015-12-01

    Monoamine oxidase (MAO) generates reactive oxygen species (ROS), which cause neuronal cell death, causing neurodegeneration. Agents that are able to concurrently inhibit MAO and scavenge free radicals represent promising multifunctional neuroprotective agents that could be used to delay or slow the progression of neurodegenerative diseases. In this work, variously substituted 3-amidocoumarins are described that exert neuroprotection in vitro against hydrogen peroxide in rat cortical neurons, as well as antioxidant activity in a 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) radical scavenging assay. Selective and reversible inhibitors of the MAO-B isoform were identified. Interestingly, in the case of the 3-benzamidocoumarins, substitution at position 4 with a hydroxy group abolishes MAO-B activity, but the compounds remain active in the neuroprotection model. Further evaluation of 3-heteroarylamide derivatives indicates that it is the nature of the heterocycle that determines the neuroprotective effects. Evaluation in a parallel artificial membrane permeability assay (PAMPA) highlighted the need to further improve the blood-brain barrier permeability of this compound class. However, the compounds described herein adhere to Lipinski's rule of five, suggesting that this novel scaffold has desirable properties for the development of potential drug candidates.

  1. Therapeutic potential of HMGB1-targeting agents in sepsis

    PubMed Central

    Wang, Haichao; Zhu, Shu; Zhou, Rongrong; Li, Wei; Sama, Andrew E.

    2008-01-01

    Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection. The inflammatory response is partly mediated by innate immune cells (such as macrophages, monocytes and neutrophils), which not only ingest and eliminate invading pathogens but also initiate an inflammatory response upon recognition of pathogen-associated molecular patterns (PAMPs). The prevailing theories of sepsis as a dysregulated inflammatory response, as manifested by excessive release of inflammatory mediators such as tumour necrosis factor and high-mobility group box 1 protein (HMGB1), are supported by extensive studies employing animal models of sepsis. Here we review emerging evidence that support extracellular HMGB1 as a late mediator of experimental sepsis, and discuss the therapeutic potential of several HMGB1-targeting agents (including neutralising antibodies and steroid-like tanshinones) in experimental sepsis. PMID:18980707

  2. Potential Anti-HIV Agents from Marine Resources: An Overview

    PubMed Central

    Vo, Thanh-Sang; Kim, Se-Kwon

    2010-01-01

    Human immunodeficiency virus (HIV) infection causes acquired immune deficiency syndrome (AIDS) and is a global public health issue. Anti-HIV therapy involving chemical drugs has improved the life quality of HIV/AIDS patients. However, emergence of HIV drug resistance, side effects and the necessity for long-term anti-HIV treatment are the main reasons for failure of anti-HIV therapy. Therefore, it is essential to isolate novel anti-HIV therapeutics from natural resources. Recently, a great deal of interest has been expressed regarding marine-derived anti-HIV agents such as phlorotannins, sulfated chitooligosaccharides, sulfated polysaccharides, lectins and bioactive peptides. This contribution presents an overview of anti-HIV therapeutics derived from marine resources and their potential application in HIV therapy. PMID:21339954

  3. Aptamer Oligonucleotides: Novel Potential Therapeutic Agents in Autoimmune Disease.

    PubMed

    Li, Weibin; Lan, Xiaopeng

    2015-08-01

    Aptamers are single-stranded deoxyribonucleic acid or ribonucleic acid oligonucleotides generated in vitro based on affinity for certain target molecules by a process known as Systematic Evolution of Ligands by Exponential Enrichment. Aptamers can bind their target molecules with high specificity and selectivity by means of structure compatibility, stacking of aromatic rings, electrostatic and van der Waals interactions, and hydrogen bonding. With several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch to batch variation, flexible modification and stability, lack of toxicity and low immunogenicity, aptamers are becoming promising novel diagnostic and therapeutic agents. This review focuses on the development of aptamers as potential therapeutics for autoimmune diseases, including diabetes mellitus, multiple sclerosis, rheumatoid arthritis, myasthenia gravis, and systemic lupus erythematosus.

  4. Synthesis, biological evaluation of chrysin derivatives as potential immunosuppressive agents.

    PubMed

    Lv, Peng-Cheng; Cai, Tian-Tian; Qian, Yong; Sun, Juan; Zhu, Hai-Liang

    2011-01-01

    A series of novel chrysin derivatives was firstly synthesized and evaluated on their immunosuppressive activity in the search for potential immunosuppressive agents. Among them, compounds 5c displayed the most potent immunosuppressive inhibitory activity with IC(50) of 0.78 μM, which was comparable to that of cyclosporin A (IC(50) = 0.06 μM). The preliminary mechanism of compound 5c inhibition effects was also detected by flow cytometry (FCM), and the compound exerted immunosuppressive activity via inducing the apoptosis of activated lymph node cells in a dose dependent manner. Furthermore, the estimated LD(50) (in mg/kg) in vivo of compound 5c is 738.2, which indicated that compound 5c was low toxic. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. Selection of the N-Acylhomoserine Lactone-Degrading Bacterium Alteromonas stellipolaris PQQ-42 and of Its Potential for Biocontrol in Aquaculture

    PubMed Central

    Torres, Marta; Rubio-Portillo, Esther; Antón, Josefa; Ramos-Esplá, Alfonso A.; Quesada, Emilia; Llamas, Inmaculada

    2016-01-01

    The production of virulence factors by many pathogenic microorganisms depends on the intercellular communication system called quorum sensing, which involves the production and release of signal molecules known as autoinducers. Based on this, new-therapeutic strategies have emerged for the treatment of a variety of infections, such as the enzymatic degradation of signaling molecules, known as quorum quenching (QQ). In this study, we present the screening of QQ activity amongst 450 strains isolated from a bivalve hatchery in Granada (Spain), and the selection of the strain PQQ-42, which degrades a wide range of N-acylhomoserine lactones (AHLs). The selected strain, identified as Alteromonas stellipolaris, degraded the accumulation of AHLs and reduced the production of protease and chitinase and swimming motility of a Vibrio species in co-cultivation experiments in vitro. In the bio-control experiment, strain PQQ-42 significantly reduced the pathogenicity of Vibrio mediterranei VibC-Oc-097 upon the coral Oculina patagonica showing a lower degree of tissue damage (29.25 ± 14.63%) in its presence, compared to when the coral was infected with V. mediterranei VibC-Oc-097 alone (77.53 ± 13.22%). Our results suggest that this AHL-degrading bacterium may have biotechnological applications in aquaculture. PMID:27242684

  6. Selection of the N-Acylhomoserine Lactone-Degrading Bacterium Alteromonas stellipolaris PQQ-42 and of Its Potential for Biocontrol in Aquaculture.

    PubMed

    Torres, Marta; Rubio-Portillo, Esther; Antón, Josefa; Ramos-Esplá, Alfonso A; Quesada, Emilia; Llamas, Inmaculada

    2016-01-01

    The production of virulence factors by many pathogenic microorganisms depends on the intercellular communication system called quorum sensing, which involves the production and release of signal molecules known as autoinducers. Based on this, new-therapeutic strategies have emerged for the treatment of a variety of infections, such as the enzymatic degradation of signaling molecules, known as quorum quenching (QQ). In this study, we present the screening of QQ activity amongst 450 strains isolated from a bivalve hatchery in Granada (Spain), and the selection of the strain PQQ-42, which degrades a wide range of N-acylhomoserine lactones (AHLs). The selected strain, identified as Alteromonas stellipolaris, degraded the accumulation of AHLs and reduced the production of protease and chitinase and swimming motility of a Vibrio species in co-cultivation experiments in vitro. In the bio-control experiment, strain PQQ-42 significantly reduced the pathogenicity of Vibrio mediterranei VibC-Oc-097 upon the coral Oculina patagonica showing a lower degree of tissue damage (29.25 ± 14.63%) in its presence, compared to when the coral was infected with V. mediterranei VibC-Oc-097 alone (77.53 ± 13.22%). Our results suggest that this AHL-degrading bacterium may have biotechnological applications in aquaculture.

  7. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce.

    PubMed

    Schreiter, Susanne; Ding, Guo-Chun; Grosch, Rita; Kropf, Siegfried; Antweiler, Kai; Smalla, Kornelia

    2014-12-01

    Bacterial biocontrol strains used as an alternative to chemical fungicides may influence bacterial communities in the rhizosphere and effects might differ depending on the soil type. Here we present baseline data on the effects of Pseudomonas jessenii RU47 on the bacterial community composition in the rhizosphere of lettuce grown in diluvial sand, alluvial loam and loess loam at the same field site. 16S rRNA gene fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. DGGE fingerprints revealed that in three consecutive years (2010-2012) RU47 had a slight but statistically significant effect on the bacterial community composition in one (2010), two (2011) or all the three soils (2012). However, these effects were much less pronounced compared with the influence of soil types. Additional pyrosequence analysis of samples from 2011 showed that significant changes in bacterial community compositions in response to RU47 inoculation occurred only in alluvial loam. Different taxonomic groups responded to the RU47 application depending on the soil type. Most remarkable was the increased relative abundance of OTUs belonging to the genera Bacillus and Paenibacillus in alluvial loam. Pyrosequencing allowed side-effects of the application of bacterial inoculants into the rhizosphere to be identified.

  8. Production Methods for Microbial Biocontrol Agents

    USDA-ARS?s Scientific Manuscript database

    A critical constraint to the commercial use of microbial biopesticides is the development of an economic production process. The production process must be cost-effective and yield a microbial propagule that is stable and efficacious under field conditions. Currently, the commercial production of ...

  9. Application of biocontrol agents in forest nurseries

    USDA-ARS?s Scientific Manuscript database

    Bare-root conifer seedling culture consists of growing seedlings (sown or transplanted) in soil, and is the predominant method for supplying America’s need for healthy regeneration stock to produce and sustain forests, wildlife food sources, fiber, wood products, paper, bio-pharmaceuticals and now p...

  10. Cows' milk fat components as potential anticarcinogenic agents.

    PubMed

    Parodi, P W

    1997-06-01

    The optimum approach to conquering cancer is prevention. Although the human diet contains components which promote cancer, it also contains components with the potential to prevent it. Recent research shows that milk fat contains a number of potential anticarcinogenic components including conjugated linoleic acid, sphingomyelin, butyric acid and ether lipids. Conjugated linoleic acid inhibited proliferation of human malignant melanoma, colorectal, breast and lung cancer cell lines. In animals, it reduced the incidence of chemically induced mouse epidermal tumors, mouse forestomach neoplasia and aberrant crypt foci in the rat colon. In a number of studies, conjugated linoleic acid, at near-physiological concentrations, inhibited mammary tumorigenesis independently of the amount and type of fat in the diet. In vitro studies showed that the milk phospholipid, sphingomyelin, through its biologically active metabolites ceramide and sphingosine, participates in three major antiproliferative pathways influencing oncogenesis, namely, inhibition of cell growth, and induction of differentiation and apoptosis. Mice fed sphingomyelin had fewer colon tumors and aberrant crypt foci than control animals. About one third of all milk triacylglycerols contain one molecule of butyric acid, a potent inhibitor of proliferation and inducer of differentiation and apoptosis in a wide range of neoplastic cell lines. Although butyrate produced by colonic fermentation is considered important for colon cancer protection, an animal study suggests dietary butyrate may inhibit mammary tumorigenesis. The dairy cow also has the ability to extract other potential anticarcinogenic agents such as beta-carotene, beta-ionone and gossypol from its feed and transfer them to milk. Animal studies comparing the tumorigenic potential of milk fat or butter with linoleic acid-rich vegetable oils or margarines are reviewed. They clearly show less tumor development with dairy products.

  11. Potential antifertility agents from plants: a comprehensive review.

    PubMed

    Kumar, Dinesh; Kumar, Ajay; Prakash, Om

    2012-03-06

    Traditional medicines are practiced worldwide for regulation fertility since ancient times. This review provides a comprehensive summary of medicinal flora inhabitating throughout the world regarding their traditional usage by various tribes/ethnic groups for fertility regulation in females. Bibliographic investigation was carried out by analyzing classical text books and peer reviewed papers, consulting worldwide accepted scientific databases from the last six decades. Plants/their parts/extracts traditionally used for abortion, contraception, emmenagogue and sterilization purposes have been considered as antifertility agents. Research status of selected potential plant species has been discussed. Further, compounds isolated from plants with attributed fertility regulating potentials are also classified into three categories: (a) phytoconstituents with anti-implantation activity, (b) phytoconstituents with abortifacient activity and (c) phytoconstituents with contraceptive activity. 577 plant species belonging to 122 families, traditionally used in fertility regulation in females, have been recorded, of which 298 plants have been mentioned as abortifacients (42%), 188 as contraceptives (31%), 149 as emmenagogues (24%), and 17 as sterilizers. Among 122 plant families, fabaceae constitutes 49.2%, asteraceae 40.98%, euphorbiaceae 19.7%, apiaceae 16.4%, poaceae 12.3%, labiateae 11.5%, and others in lesser proportion. Various plant parts used in fertility regulation include leaves (25%), roots (22%), fruits (15%), seeds (12%), stem/stem bark (37%), and flowers (4%). Some active compounds, isolated from about various plant species, have been reported to possess significant antifertility potential. This review clearly indicates that it is time to increase the number of experimental studies to find out novel potential chemical entities from such a vast array of unexploited plants having traditional role in fertility regulation. Also, the mechanisms of action by which

  12. Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12.

    PubMed

    Ryder, Lauren S; Harris, Beverley D; Soanes, Darren M; Kershaw, Michael J; Talbot, Nicholas J; Thornton, Christopher R

    2012-01-01

    Trichoderma species are ubiquitous soil fungi that hold enormous potential for the development of credible alternatives to agrochemicals and synthetic fertilizers in sustainable crop production. In this paper, we show that substantial improvements in plant productivity can be met by genetic modification of a plant-growth-promoting and biocontrol strain of Trichoderma hamatum, but that these improvements are obtained in the absence of disease pressure only. Using a quantitative monoclonal antibody-based ELISA, we show that an N-acetyl-β-d-glucosaminidase-deficient mutant of T. hamatum, generated by insertional mutagenesis of the corresponding gene, has impaired saprotrophic competitiveness during antagonistic interactions with Rhizoctonia solani in soil. Furthermore, its fitness as a biocontrol agent of the pre-emergence damping-off pathogen Sclerotinia sclerotiorum is significantly reduced, and its ability to promote plant growth is constrained by the presence of both pathogens. This work shows that while gains in T. hamatum-mediated plant-growth-promotion can be met through genetic manipulation of a single beneficial trait, such a modification has negative impacts on other aspects of its biology and ecology that contribute to its success as a saprotrophic competitor and antagonist of soil-borne pathogens. The work has important implications for fungal morphogenesis, demonstrating a clear link between hyphal architecture and secretory potential. Furthermore, it highlights the need for a holistic approach to the development of genetically modified Trichoderma strains for use as crop stimulants and biocontrol agents in plant agriculture.

  13. Viral biocontrol: grand experiments in disease emergence and evolution.

    PubMed

    Di Giallonardo, Francesca; Holmes, Edward C

    2015-02-01

    Although viral emergence is commonly associated with cross-species transmission, the processes and determinants of viral evolution in a novel host environment are poorly understood. We address key questions in virus emergence and evolution using data generated from two unique natural experiments: the deliberate release of myxoma virus (MYXV) and rabbit hemorrhagic disease virus (RHDV) as biological control (biocontrol) agents against the European rabbit in Australia, and which have been of enormous benefit to Australia's ecosystem and agricultural industries. Notably, although virulence evolution in MYXV and RHDV followed different trajectories, a strongly parallel evolutionary process was observed in Australia and Europe. These biocontrol agents were also characterized by a lack of transmission to nontarget host species, suggesting that there are major barriers to successful emergence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Viral biocontrol: grand experiments in disease emergence and evolution

    PubMed Central

    Di Giallonardo, Francesca; Holmes, Edward C.

    2014-01-01

    Although viral emergence is commonly associated with cross-species transmission, the processes and determinants of viral evolution in a novel host environment are poorly understood. We address key questions in virus emergence and evolution using data generated from two unique natural experiments: the deliberate release of myxoma virus (MYXV) and rabbit hemorrhagic disease virus (RHDV) as biological control (biocontrol) agents against the European rabbit in Australia, and which have been of enormous benefit to Australia’s ecosystem and agricultural industries. Notably, although virulence evolution in MYXV and RHDV followed different trajectories, a strongly parallel evolutionary process was observed in Australia and Europe. These biocontrol agents were also characterised by a lack of transmission to non-target host species, suggesting that there are major barriers to successful emergence. PMID:25455418

  15. The use of annual killifish in the biocontrol of the aquatic stages of mosquitoes in temporary bodies of fresh water; a potential new tool in vector control

    PubMed Central

    2010-01-01

    Background Mosquitoes that breed in temporary pools in remote areas that dry up seasonally are especially difficult to control through chemical or biological means. The annual killifish has been suggested as a means of eradicating the aquatic stages of mosquitoes in transient pools because they can maintain permanent populations in such habitats by undergoing suspended animation or diapause during the embryonic stages to survive periodic drought. However, very little is known about the predatory activity of annual killifish and their usefulness in mosquito control. Results The annual killifish, Nothobranchius guentheri, native to Tanzania, was used in this investigation. Food preference was tested under laboratory conditions by feeding juvenile killifish with 2nd instar mosquito larvae of Culex quinquefasciatus in the presence of alternative food sources, such as rotifers and chironomid larvae. Semi-field tests were conducted by introduction of hibernating killifish embryos and juvenile fish to artificial ponds in an outdoor open environment that allowed natural oviposition of Cx. quinquefasciatus. Food preference studies show that N. guentheri preferred to prey on mosquito larvae than either chironomid or rotifers. When hibernating killifish embryos were added to ponds simultaneously with the addition of freshwater, the embryos hatched and fed on mosquito larval population resulting in complete elimination of the immature stages. The introduction of juvenile fish to ponds with high density of mosquito larvae resulted in total eradication of the mosquito population due to predation by fish. Complete biocontrol of the mosquito larval population was achieved in the presence of 3 fish per m2 of pond surface area. Conclusions The annual killifish provides yet another tool that may be employed in the eradication diseases carried by mosquitoes through vector control, particularly in temporary bodies of freshwater. The fish can be conveniently transported in the absence

  16. The use of annual killifish in the biocontrol of the aquatic stages of mosquitoes in temporary bodies of fresh water; a potential new tool in vector control.

    PubMed

    Matias, Jonathan R; Adrias, Araceli Q

    2010-05-21

    Mosquitoes that breed in temporary pools in remote areas that dry up seasonally are especially difficult to control through chemical or biological means. The annual killifish has been suggested as a means of eradicating the aquatic stages of mosquitoes in transient pools because they can maintain permanent populations in such habitats by undergoing suspended animation or diapause during the embryonic stages to survive periodic drought. However, very little is known about the predatory activity of annual killifish and their usefulness in mosquito control. The annual killifish, Nothobranchius guentheri, native to Tanzania, was used in this investigation. Food preference was tested under laboratory conditions by feeding juvenile killifish with 2nd instar mosquito larvae of Culex quinquefasciatus in the presence of alternative food sources, such as rotifers and chironomid larvae. Semi-field tests were conducted by introduction of hibernating killifish embryos and juvenile fish to artificial ponds in an outdoor open environment that allowed natural oviposition of Cx. quinquefasciatus. Food preference studies show that N. guentheri preferred to prey on mosquito larvae than either chironomid or rotifers. When hibernating killifish embryos were added to ponds simultaneously with the addition of freshwater, the embryos hatched and fed on mosquito larval population resulting in complete elimination of the immature stages. The introduction of juvenile fish to ponds with high density of mosquito larvae resulted in total eradication of the mosquito population due to predation by fish. Complete biocontrol of the mosquito larval population was achieved in the presence of 3 fish per m2 of pond surface area. The annual killifish provides yet another tool that may be employed in the eradication diseases carried by mosquitoes through vector control, particularly in temporary bodies of freshwater. The fish can be conveniently transported in the absence of water in the form of

  17. Potential of Biological Agents in Decontamination of Agricultural Soil

    PubMed Central

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  18. Quercetin and rutin as potential agents antifungal against Cryptococcus spp.

    PubMed

    Oliveira, V M; Carraro, E; Auler, M E; Khalil, N M

    2016-01-01

    Amphotericin B is a fungicidal substance that is treatment of choice for most systemic fungal infections affecting as cryptococcosis the immunocompromised patients. However, severe side effects have limited the utility of this drug. The aim of this study was to evaluate the antifungal effect of the combination of amphotericin B with quercetin or rutin and as a protective of citotoxic effect. The antifungal activity to amphotericin B, quercetin and rutin alone and in combination was determined in Candida sp and Cryptococcus neoformans strains. Cytotoxicity test on erythrocytes was performed by spectrophotometric absorbance of hemoglobin. The amphotericin B MIC was reduced when used in combination with quercetin or rutin to C. neoformans ATCC strain and reduced when combined with rutin to a clinical isolate of C. neoformans. In addition, the combination of quercetin with amphotericin B may reduce the toxicity of amphotericin B to red blood cells. Our results suggest that quercetin and rutin are potential agents to combine with amphotericin B in order to reduce the amphotericin dose to lessen side effects and improve antifungal efficacy.

  19. Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

    PubMed Central

    Islam, Md. Asiful; Gan, Siew Hua; Khalil, Md. Ibrahim

    2014-01-01

    Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey's antibacterial activity on diabetic wound-related microorganisms and honey's clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims. PMID:25386217

  20. Novel 'soft' beta-blockers as potential safe antiglaucoma agents.

    PubMed

    Bodor, N; elKoussi, A

    1988-04-01

    A series of novel "soft" beta-blockers was designed and synthesized based on the "inactive metabolite approach". Accordingly, the acidic metabolite of metoprolol was converted into various lipophilic esters. The new compounds were tested for their effect on the intraocular pressure (IOP) of rabbits using the ultra-short acting beta-adrenergic antagonist "Esmolol" as a reference compound. Most of the tested compounds displayed a higher and a more prolonged ocular hypotensive activity than the reference methyl ester. The adamantaneethyl ester 2 emerged as the best potential candidate for ophthalmic use as an antiglaucoma agent. This compound exhibited an effective and long lasting ocular hypotensive activity without local irritation to the eye. At the same time, it showed a very fast rate of hydrolysis in human blood (t1/2 = 7.0 minutes) to the inactive acid metabolite. This makes possible effective separation of the desired ocular activity from unwanted systemic beta-blocking action. Unilateral treatment with 2 produced reduction in the IOP only in the treated eye, consistent with the mechanism proposed.

  1. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  2. Radioiodinated carnitine and acylcarnitine analogs as potential myocardial imaging agents

    SciTech Connect

    McConnell, D.S.

    1991-01-01

    R-carnitine is extremely important in mammalian energy metabolism. Gamma-butyrobetaine, the immediate biosynthetic precursor to R-carnitine, is synthesized in many organs. However, only liver can hydroxylate gamma-butyrobetaine to carnitine. Thus the transport of carnitine from its site of synthesis to the site of utilization is of utmost importance. Carnitine is found in highest concentration in cardiac and skeletal muscle, where it is required for the transport of fatty acids into the mitochondria. Before fatty acids are utilized as fuel for the myocyte by beta-oxidation, they are bound to carnitine as an acylcarnitine ester at the 3-hydroxyl, and transported across the micochondrial membranes. R,S-Carnitine has been shown to be taken up by myocytes. The author has begun a study on the use of carnitine derivatives as potential carriers for the site-specific delivery of radioiodine to bidning sites in the myocardium. Such agents labeled with a gamma-emitting nuclide such as iodine-123 would be useful for the noninvasive imaging of these tissues. The aim was to synthesize a variety of radiolabeled analogs of carnitine and acylcarnitine to address questions of transport, binding and availability for myocardial metabolism. These analogs consist of N-alkylated derivatives of carnitine, acylcarnitine esters as well as carnitine amides and ethers. One C-alkylated derivative showed interesting biodistribution, elevated myocardial uptake and competition with carnitine for binding in the myocardium.

  3. Fetal Globin Gene Inducers: Novel Agents & New Potential

    PubMed Central

    Perrine, Susan P.; Castaneda, Serguei A.; Chui, David H.; Faller, Douglas V.; Berenson, Ronald J.; Fucharoen, Suthat

    2013-01-01

    Inducing expression of endogenous fetal globin (γ-globin) gene expression to 60-70% of alpha globin synthesis produces β-thalassemia trait globin synthetic ratios and can reduce anemia to a mild level. Several classes of therapeutics have induced γ-globin expression in beta thalassemia patients and subsequently raised total hemoglobin levels, demonstrating proof-of-concept of the approach. Butyrate treatment eliminated transfusion requirements in formerly transfusion-dependent patients with treatment for as long as 7 years. However, prior generations were not readily applicable for widespread use. Currently, a novel oral dual-action therapeutic sodium 2,2-dimethylbutyrate is in clinical trials, an oral decitabine formulation is under development, and agents with complementary mechanisms of action can be applied in combined regimens. Identification of 3 major genetic trait loci which modulate clinical severity provides avenues for developing tailored regimens. These refinements offer renewed potential to apply fetal globin induction as a treatment approach in patient-friendly regimens that can be used world-wide. PMID:20712788

  4. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules.

  5. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

    PubMed Central

    Fassett, Robert G.; Coombes, Jeff S.

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin. PMID:21556169

  6. Astaxanthin: a potential therapeutic agent in cardiovascular disease.

    PubMed

    Fassett, Robert G; Coombes, Jeff S

    2011-03-21

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin.

  7. Potential of Biological Agents in Decontamination of Agricultural Soil.

    PubMed

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  8. Animal Venom Peptides: Potential for New Antimicrobial Agents.

    PubMed

    Primon-Barros, Muriel; José Macedo, Alexandre

    2017-01-01

    Microbial infections affect people worldwide, causing diseases with significant impact on public health, indicating the need for research and development of new antimicrobial agents. Animal venoms represent a vast and largely unexploited source of biologically active molecules with attractive candidates for the development of novel therapeutics. Venoms consist of complex mixtures of molecules, including antimicrobial peptides (AMPs). Since the discovery of AMPs, they have been studied as promising new antimicrobial drugs. Amongst the remarkable sources of AMPs with known antimicrobial activities are ants, bees, centipedes, cone snails, scorpions, snakes, spiders, and wasps. The antimicrobial tests against bacteria, protozoans, fungi and viruses using 170 different peptides isolated directly from crude venoms or cDNA libraries of venom glands are listed and discussed in this review, as well as hemolytic ativity. The potential of venoms as source of new compounds, including AMPs, is extensively discussed. Currently, there are six FDA-approved drugs and many others are undergoing preclinical and clinical trials. The search for antimicrobial "weapons" makes the AMPs from venoms promising candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Wasp Venom Toxins as a Potential Therapeutic Agent.

    PubMed

    Dongol, Yashad; Dhananjaya, Bhadrapara L; Shrestha, Rakesh K; Aryal, Gopi

    2016-01-01

    It is high time now to discover novel drugs due to the increasing rate of drug resistance by the pathogen organisms and target cells as well as the dependence or tolerance of the body towards the drug. As it is obvious that significant numbers of the modern day pharmaceuticals are derived from natural products, it is equally astonishing to accept that venoms of various origins have therapeutic potentials. Wasp venoms are also a rich source of therapeutically important toxins which includes short cationic peptides, kinins, polyamines and polyDNA viruses, to name a few indentified. Wasp venom cationic peptides, namely mastoparan and its analogs, show a very important potency as an antimicrobial and anticancer agents of the future. They have proven to be the better candidates due to their lesser toxic effects and higher selectivity upon chemical modification and charge optimization. They also have superiority over the conventional chemical drugs as the target cells very rarely develop resistance against them because these peptides primarily imparts its effect through biophysical interaction with the target cell membrane which is dependent upon the net charge of the peptide, its hydrophobicity and anionicity and fluidity of the target cell membranes. Besides, the other components of wasp venom such as kinins, polyamines and polyDNA viruses show various pharmacological promise in the treatment of pain, inflammatory disease, and neurodegenerative diseases such as epilepsy and aversion.

  10. Genome analysis of Cronobacter phage vB_CsaP_Ss1 reveals an endolysin with potential for biocontrol of Gram-negative bacterial pathogens.

    PubMed

    Endersen, Lorraine; Guinane, Caitriona M; Johnston, Christopher; Neve, Horst; Coffey, Aidan; Ross, R Paul; McAuliffe, Olivia; O'Mahony, Jim

    2015-02-01

    Bacteriophages and their derivatives are continuously gaining impetus as viable alternative therapeutic agents to control harmful multidrug-resistant bacterial pathogens, particularly in the food industry. The reduced efficacy of conventional antibiotics has resulted in a quest to find novel alternatives in the war against infectious disease. This study describes the full-genome sequence of Cronobacter phage vB_CsaP_Ss1, with subsequent cloning and expression of its endolysin, capable of hydrolysing Gram-negative peptidoglycan. Cronobacter phage vB_CsaP_Ss1 is composed of 42 205 bp of dsDNA with a G+C content of 46.1 mol%. A total of 57 ORFs were identified of which 18 could be assigned a putative function based on similarity to characterized proteins. The genome of Cronobacter phage vB_CsaP_Ss1 showed little similarity to any other bacteriophage genomes available in the database and thus was considered unique. In addition, functional analysis of the predicted endolysin (LysSs1) was also investigated. Zymographic experiments demonstrated the hydrolytic activity of LysSs1 against Gram-negative peptidoglycan, and this endolysin thus represents a novel candidate with potential for use against Gram-negative pathogens.

  11. What magnitude are observed non-target impacts from weed biocontrol?

    USDA-ARS?s Scientific Manuscript database

    A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a ...

  12. Novel role for reactive oxygen species (ROS) in host-antagonistic yeast-pathogen interactions in postharvest biocontrol systems

    USDA-ARS?s Scientific Manuscript database

    To achieve the full potential of postharvest biocontrol microorganisms as a viable commercial technology, fundamental knowledge on their mechanisms of action is crucial. After more than 20 years of postharvest biocontrol research, there is still limited understanding of interactions taking place be...

  13. Disulfiram attenuates osteoclast differentiation in vitro: a potential antiresorptive agent.

    PubMed

    Ying, Hua; Qin, An; Cheng, Tak S; Pavlos, Nathan J; Rea, Sarah; Dai, Kerong; Zheng, Ming H

    2015-01-01

    Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  14. Disulfiram Attenuates Osteoclast Differentiation In Vitro: A Potential Antiresorptive Agent

    PubMed Central

    Cheng, Tak S.; Pavlos, Nathan J.; Rea, Sarah; Dai, Kerong; Zheng, Ming H.

    2015-01-01

    Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  15. Biofertilization and Biocontrol in the fight against soilborne fungal root pathogens in Australian soils

    NASA Astrophysics Data System (ADS)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2015-04-01

    Control of soilborne fungal root pathogens that severely compromise cotton production and other crops worldwide has historically been through the use of synthetic fungicides and fertilizers, these often have hazardous implications for environmental and soil health. The search for sustainable alternatives has lead to heightened interest in biocontrol, using soil microorganisms that suppress the growth of phytopathogens directly and biofertilization, the use of microorganisms to increasing the nutrient availability in soils, increasing seedling vigour. Soil properties and consequently soil microbial properties are strongly impacted by agricultural practices, therefore we are isolating indigenous microorganisms from soils collected from ten different geographical locations within the Australian cotton-growing region. These differ vastly in soil type and management practices. Soils are being analysed to compare the abundance of phosphate solubilising, auxin producing and nitrogen cycling bacteria. Rhizospheric bacteria capable of plant growth promoting through a multiple actions are being isolated. In addition, a method for isolating soilborne fungal suppressive microbes directly from soil samples has been designed and is currently being used. Comparisons between agricultural practices and the plant growth promoting microbial component of soil microbiome will be reported on. We will discuss the microbial isolates identified, their modes of action and their potential use as biocontrol agents and/or biofertilizers in Australian cotton growing soils.

  16. Phenotypic and genetic characterization of Paecilomyces lilacinus strains with biocontrol activity against root-knot nematodes.

    PubMed

    Gunasekera, T S; Holland, R J; Gillings, M R; Briscoe, D A; Neethling, D C; Williams, K L; Nevalainen, K M

    2000-09-01

    Efficient selection of fungi for biological control of nematodes requires a series of screening assays. Assessment of genetic diversity in the candidate species maximizes the variety of the isolates tested and permits the assignment of a particular genotype with high nematophagous potential using a rapid novel assay. Molecular analyses also facilitate separation between isolates, allowing the identification of proprietary strains and trace biocontrol strains in the environment. The resistance of propagules to UV radiation is an important factor in the survival of a biocontrol agent. We have analyzed 15 strains of the nematophagous fungus Paecilomyces lilacinus using these principles. Arbitrarily primed DNA and allozyme assays were applied to place the isolates into genetic clusters, and demonstrated that some genetically related P. lilacinus strains exhibit widespread geographic distributions. When exposed to UV radiation, some weakly nematophagous strains were generally more susceptible than effective isolates. A microtitre tray-based assay used to screen the pathogenic activity of each isolate to Meloidogyne javanica egg masses revealed that the nematophagous ability varied between 37%-100%. However, there was no clear relationship between nematophagous ability and genetic clusters. Molecular characterizations revealed sufficient diversity to allow tracking of strains released into the environment.

  17. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus.

    PubMed

    McNeely, Damian; Chanyi, Ryan M; Dooley, James S; Moore, John E; Koval, Susan F

    2017-04-01

    Bdellovibrio and like organisms are predatory bacteria that have the unusual property of using the cytoplasmic constituents of other Gram-negative bacteria as nutrients. These predators may thus provide an alternative approach to the biocontrol of human and plant pathogens. Predators were isolated on Burkholderia cenocepacia K56-2 and J2315 as prey cells, in enrichment cultures with soil and sewage. Three isolates (DM7C, DM8A, and DM11A) were identified as Bdellovibrio bacteriovorus on the basis of morphology, a periplasmic life cycle, and 16S rRNA gene sequencing. The prey range of these isolates was tested on Burkholderia cepacia complex bacteria and several phytopathogenic bacteria of agricultural importance. Of 31 strains of the Burkholderia cepacia complex tested, only 4 were resistant to predation by strain DM7C. A subset of 9 of the prey tested were also susceptible to strains DM8A and DM11A. Of 12 phytopathogens tested, 4 were resistant to strains DM7C and DM8A, and only 2 were resistant to strain DM11A. Thus, Bdellovibrio bacteriovorus strains retrieved from environmental samples on 2 Burkholderia cenocepacia isolates from cystic fibrosis patients did not distinguish in their prey range between other isolates of that pathogen or phytopathogens. Such strains hold promise as potential wide-spectrum biocontrol agents.

  18. Four-trophic level food webs reveal the cascading impacts of an invasive plant targeted for biocontrol.

    PubMed

    López-Núñez, Francisco A; Heleno, Ruben H; Ribeiro, Sérgio; Marchante, Hélia; Marchante, Elizabete

    2017-03-01

    Biological invasions are a major threat to biodiversity and as such understanding their impacts is a research priority. Ecological networks provide a valuable tool to explore such impacts at the community level, and can be particularly insightful for planning and monitoring biocontrol programmes, including the potential for their seldom evaluated indirect non-target effects. Acacia longifolia is among the worst invasive species in Portugal, and has been recently targeted for biocontrol by a highly specific gall-wasp. Here we use an ambitious replicated network approach to: (1) identify the mechanisms by which direct and indirect impacts of A. longifolia can cascade from plants to higher trophic levels, including gallers, their parasitoids and inquilines; (2) reveal the structure of the interaction networks between plants, gallers, parasitoids and inquilines before the biocontrol; and (3) explore the potential for indirect interactions among gallers, including those established with the biocontrol agent, via apparent competition. Over a 15-month period, we collected 31,737 galls from native plants and identified all emerging insects, quantifying the interactions between 219 plant-, 49 galler-, 65 parasitoid- and 87 inquiline-species-one of the largest ecological networks to date. No galls were found on any of the 16 alien plant species. Invasion by A. longifolia caused an alarming simplification of plant communities, with cascading effects to higher trophic levels, namely: a decline of overall gall biomass, and on the richness, abundance and biomass of galler insects, their parasitoids, and inquilines. Correspondingly, we detected a significant decline in the richness of interactions between plants and galls. The invasion tended to increase overall interaction evenness by promoting the local extinction of the native plants that sustained more gall species. However, highly idiosyncratic responses hindered the detection of further consistent changes in network

  19. Biocontrol Activity of the Local Strain of Metschnikowia pulcherrima on Different Postharvest Pathogens.

    PubMed

    Türkel, Sezai; Korukluoğlu, Mihriban; Yavuz, Mümine

    2014-01-01

    The strains of the yeast Metschnikowia pulcherrima have strong biocontrol activity against various microorganisms. Biocontrol activity of M. pulcherrima largely depends on its iron immobilizing pigment pulcherrimin. Biocontrol activity of pulcherrimin producing strain, M. pulcherrima UMY15, isolated from local vineyards, was tested on different molds that cause food spoilage. M. pulcherrima UMY15 was a very effective biocontrol agent against Penicillium roqueforti, P. italicum, P. expansum, and Aspergillus oryzae in in-vitro plate tests. However, the inhibitory activity of M. pulcherrima UMY15 was less effective on Fusarium sp. and A. niger species in biocontrol assays. In addition, M. pulcherrima UMY15 strain completely inhibited the germination and mycelia growth of A. oryzae, A. parasiticus, and Fusarium sp. spores on artificial wounds of apples when they coinoculated with M. pulcherrima UMY15. Moreover, when coinoculated, M. pulcherrima UMY15 strain also inhibited the growth of P. roqueforti, P. italicum, P. expansum, A. oryzae, Fusarium sp., and Rhizopus sp. in grape juice, indicating that M. pulcherrima UMY15 can be used as a very effective biocontrol yeast against various species of postharvest pathogens, including Penicillium, Aspergillus, Fusarium, and Rhizopus.

  20. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications.

    PubMed

    Mark, Genevievel; Morrissey, John P; Higgins, P; O'gara, Fergal

    2006-05-01

    Exploitation of beneficial plant-microbe interactions in the rhizosphere can result in the promotion of plant health and have significant implications for low input sustainable agriculture applications such as biocontrol. Bacteria such as Bacillus and Pseudomonas, and fungi such as Trichoderma, have been developed as commercial biocontrol products. Registration of microbial inocualants as biocontrol agents in either the European Union or the United States requires production of extensive dossiers covering efficacy, safety and risk assessment. Despite the fact that a number of Pseudomonas biocontrol products have been marketed there are still some limitations hampering the development of this technology for widespread use in agriculture. Although many strains show good performance in specific trials, this is often not translated into consistent, effective biocontrol in diverse field situations. Advances in 'Omics' technology and the publication of complete genome sequences of a number of plant-associative bacterial strains, has facilitated investigations into the molecular basis underpinning the establishment of beneficial plant-microbe interactions in the rhizosphere. The understanding of these molecular signalling processes and the functions they regulate is fundamental to promoting beneficial microbe-plant interactions, to overcome existing limitations and to designing improved strategies for the development of novel Pseudmonas biocontrol inoculant consortia.

  1. Biocontrol Activity of the Local Strain of Metschnikowia pulcherrima on Different Postharvest Pathogens

    PubMed Central

    Türkel, Sezai; Korukluoğlu, Mihriban; Yavuz, Mümine

    2014-01-01

    The strains of the yeast Metschnikowia pulcherrima have strong biocontrol activity against various microorganisms. Biocontrol activity of M. pulcherrima largely depends on its iron immobilizing pigment pulcherrimin. Biocontrol activity of pulcherrimin producing strain, M. pulcherrima UMY15, isolated from local vineyards, was tested on different molds that cause food spoilage. M. pulcherrima UMY15 was a very effective biocontrol agent against Penicillium roqueforti, P. italicum, P. expansum, and Aspergillus oryzae in in-vitro plate tests. However, the inhibitory activity of M. pulcherrima UMY15 was less effective on Fusarium sp. and A. niger species in biocontrol assays. In addition, M. pulcherrima UMY15 strain completely inhibited the germination and mycelia growth of A. oryzae, A. parasiticus, and Fusarium sp. spores on artificial wounds of apples when they coinoculated with M. pulcherrima UMY15. Moreover, when coinoculated, M. pulcherrima UMY15 strain also inhibited the growth of P. roqueforti, P. italicum, P. expansum, A. oryzae, Fusarium sp., and Rhizopus sp. in grape juice, indicating that M. pulcherrima UMY15 can be used as a very effective biocontrol yeast against various species of postharvest pathogens, including Penicillium, Aspergillus, Fusarium, and Rhizopus. PMID:24860671

  2. Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae)

    PubMed Central

    Chandra, Goutam; Mandal, Samir K; Ghosh, Arup K; Das, Dipanwita; Banerjee, Siddhartha S; Chakraborty, Sumanta

    2008-01-01

    Background Problems associated with resistant mosquitoes and the effects on non-target species by chemicals, evoke a reason to find alternative methods to control mosquitoes, like the use of natural predators. In this regard, aquatic coleopterans have been explored less compared to other insect predators. In the present study, an evaluation of the role of the larvae of Acilius sulcatus Linnaeus 1758 (Coleoptera: Dytiscidae) as predator of mosquito immatures was made in the laboratory. Its efficacy under field condition was also determined to emphasize its potential as bio-control agent of mosquitoes. Methods In the laboratory, the predation potential of the larvae of A. sulcatus was assessed using the larvae of Culex quinquefasciatus Say 1823 (Diptera: Culicidae) as prey at varying predator and prey densities and available space. Under field conditions, the effectiveness of the larvae of A. sulcatus was evaluated through augmentative release in ten cemented tanks hosting immatures of different mosquito species at varying density. The dip density changes in the mosquito immatures were used as indicator for the effectiveness of A. sulcatus larvae. Results A single larva of A. sulcatus consumed on an average 34 IV instar larvae of Cx. quinquefasciatus in a 24 h period. It was observed that feeding rate of A. sulcatus did not differ between the light-on (6 a.m. – 6 p.m.), and dark (6 p.m. – 6 a.m.) phases, but decreased with the volume of water i.e., space availability. The prey consumption of the larvae of A. sulcatus differed significantly (P < 0.05) with different prey, predator and volume combinations, revealed through univariate ANOVA. The field study revealed a significant decrease (p < 0.05) in larval density of different species of mosquitoes after 30 days from the introduction of A. sulcatus larvae, while with the withdrawal, a significant increase (p < 0.05) in larval density was noted indicating the efficacy of A. sulcatus in regulating mosquito

  3. Diamondback moth in Ukraine: current status and potential for use biological control agents.

    PubMed

    Likar, Y; Stefanovska, T

    2009-01-01

    The Diamondback moth (DBM), Plutella xillostella (Linnaeus) (Lepidoptera: Plutellidae) is the insect pest damaging cabbage in Ukraine, especially in the Southern region. Biology, damage, population dynamics of diamondback moth and effect of natural enemies on the level of infestation of this pest by parasitoids and pathogens were studied in 2004-2007 in the laboratory and field conditions. Obtained results show that in general the pest has 2-3 generations, although up to 5-6 can evolve in the South. Fecundity and life longevity of Diamondback were studied on white cabbage, red cabbage, broccoli, cauliflower and two basic weeds: shepherd's purse and wild mustard. The host plant affects fecundity and life span of the diamondback moth. Fecundity differs significantly and is highest with white cabbage. Fauna of Diamondback moth parasitoids is quite rich. All stages are affected by numerous parasitoids and predators. Around 22 parasitoid species were recorded during the study. Overall parasitism ranged from 18% to 60% varying essentially between the areas. Apanteles (Cotesia) sp., Diadegma sp., Trichogramma sp. were most common in all areas. Steinernema sp., entomopathogenic nematodes are found to be natural enemies of diamondback moth. The range of natural enemies contributes significantly to the control of Diamondback moth. Conservation and augmentation of natural enemies should be used in IPM systems in order to control diamondback moth on cabbage. Entomopathogenic nematodes are prominent biocontrol agents.

  4. Physiological characteristics of the biocontrol yeast Pichia anomala J121.

    PubMed

    Fredlund, Elisabeth; Druvefors, Ulrika; Boysen, Marianne E; Lingsten, Karl-Johan; Schnürer, Johan

    2002-08-01

    The yeast Pichia anomala J121 prevents mold spoilage and enhances preservation of moist grain in malfunctioning storage systems. Development of P. anomala J121 as a biocontrol agent requires in-depth knowledge about its physiology. P. anomala J121 grew under strictly anaerobic conditions, at temperatures between 3 degrees C and 37 degrees C, at pH values between 2.0 and 12.4, and at a water activity of 0.92 (NaCl) and 0.85 (glycerol). It could assimilate a wide range of C- and N-sources and produce killer toxin. A selective medium containing starch, nitrate, acetic acid, and chloramphenicol was developed for P. anomala. P. anomala was equally sensitive as Candida albicans to common antifungal compounds. Growth ability at a range of environmental conditions contributes to the competitive ability of the biocontrol yeast P. anomala J121.

  5. Francisella tularensis as a potential agent of bioterrorism?

    PubMed

    Maurin, Max

    2015-02-01

    Francisella tularensis is a category A bioterrorism agent. It is the etiological agent of tularemia, a zoonotic disease found throughout the northern hemisphere. The intentional spread of F. tularensis aerosols would probably lead to severe and often fatal pneumonia cases, but also secondary cases from contaminated animals and environments. We are not ready to face such a situation. No vaccine is currently available. A few antibiotics are active against F. tularensis, but strains resistant to these antibiotics could be used in the context of bioterrorism. We need new therapeutic strategies to fight against category A bioterrorism agents, including development of new drugs inhibiting F. tularensis growth and/or virulence, or enhancing the host response to infection by this pathogen.

  6. Persistence and cell culturability of biocontrol strain Pseudomonas fluorescens CHA0 under plough pan conditions in soil and influence of the anaerobic regulator gene anr.

    PubMed

    Mascher, Fabio; Schnider-Keel, Ursula; Haas, Dieter; Défago, Geneviève; Moënne-Loccoz, Yvan

    2003-02-01

    Certain fluorescent pseudomonads can protect plants from soil-borne pathogens, and it is important to understand how these biocontrol agents survive in soil. The persistence of the biocontrol strain Pseudomonas fluorescens CHA0-Rif under plough pan conditions was assessed in non-sterile soil microcosms by counting total cells (immunofluorescence microscopy), intact cells (BacLight membrane permeability test), viable cells (Kogure's substrate-responsiveness test) and culturable cells (colony counts on selective plates) of the inoculant. Viable but non-culturable cells of CHA0-Rif (106 cells g-1 soil) were found in flooded microcosms amended with fermentable organic matter, in which the soil redox potential was low (plough pan conditions), in agreement with previous observations of plough pan samples from a field inoculated with CHA0-Rif. However, viable but non-culturable cells were not found in unamended flooded, amended unflooded or unamended unflooded (i.e. control) microcosms, suggesting that such cells resulted from exposure of CHA0-Rif to a combination of low redox potential and oxygen limitation in soil. CHA0-Rif is strictly aerobic. Its anaerobic regulator ANR is activated by low oxygen concentrations and it controls production of the biocontrol metabolite hydrogen cyanide under microaerophilic conditions. Under plough pan conditions, an anr-deficient mutant of CHA0-Rif and its complemented derivative displayed the same persistence pattern as CHA0-Rif, indicating that anr was not implicated in the formation of viable but non-culturable cells of this strain at the plough pan.

  7. Generalist-feeding subterranean mites as potential biological control agents of immature corn rootworms

    USDA-ARS?s Scientific Manuscript database

    Predatory mites are important components of subterranean food webs and may help regulate densities of agricultural pests, including western corn rootworms (Chrysomelidae: Diabrotica virgifera virgifera). Implementing conservation and/or classical biocontrol tactics could enhance densities of special...

  8. Nontarget herbivory by a weed biocontrol insect is limited to spillover, reducing the chance of population-level impacts.

    PubMed

    Catton, Haley A; Lalonde, Robert G; De Clerck-Floate, Rosemarie A

    2015-03-01

    Insects approved for classical biocontrol of weeds are often capable of using close relatives of their target weed for feeding, oviposition, or larval development, with reduced preference and performance. When nontarget herbivory occurs and is suspected to reduce survival, growth, or fecundity of individual plants, and insects are capable of reproducing on their nontarget host, characterization of spatial and temporal patterns of the occurrence and intensity of herbivory is valuable for predicting potential population-level effects. Here, we perform a novel post-release manipulative field experiment with a root-feeding biocontrol weevil, Mogulones crucifer, released in Canada to control the rangeland weed Cynoglossum officinale, to test for its ability to establish on the nontarget plant Hackelia micrantha. After Cynoglossum, M. crucifer exhibits its highest preference for and performance on Hackelia spp. We released M. crucifer on Canadian rangeland sites with naturally occurring populations of H. micrantha growing interspersed with the target weed or in the near absence of the target weed. Adult weevil feeding on surrounding plants was monitored for three summers after release (years 0, 1, and 2), and, subsequently, subsets of plants were destructively sampled to determine M. crucifer oviposition levels. Additional oviposition and larval development data were obtained from seven non-experimental sites where weevils were released zero, three, or four years earlier. M. crucifer was not detected on experimental sites without C. officinale after two years, and nontarget herbivory was restricted to rare, low-level spillover. Visible evidence of adult herbivory (i.e., scars on shoots) was associated with oviposition in 90% of targets but only 30% of nontarget plants. We infer, through ecological refuge theory, that nontarget population-level impacts from M. crucifer spillover are unlikely because of temporal, spatial, and probabilistic refuges from herbivory, and make

  9. Pseudomonas fluorescens F113 Mutant with Enhanced Competitive Colonization Ability and Improved Biocontrol Activity against Fungal Root Pathogens ▿

    PubMed Central

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-01-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible. PMID:21685161

  10. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens.

    PubMed

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-08-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.

  11. Synthesis of Potential Prophylactic Agents against Cyanide Intoxication

    DTIC Science & Technology

    1993-04-12

    compiles th« synthetic procedures described in reports submitted for quarters 9-12 of this contract. We have also colligated structures of all...tingle example of ihn compound class was submitted for biological evaluation this report period, and the physical properties of this agent (1) are...condensation of propiophenone »ith diethyl oxalate (Eq. II) The physical properties of these compounds are summarized in Table 2. a cr, 3 F 4 OCH3 5 CH3

  12. Analogues of [(triethylsilyl)ethynyl]estradiol as potential antifertility agents.

    PubMed

    Peters, R H; Crowe, D F; Avery, M A; Chong, W K; Tanabe, M

    1988-03-01

    Various 17 alpha-ethynylsteroids were prepared and derivatized as the corresponding triethylsilyl compounds 2-35, which were examined for a ratio of antifertility to estrogenic activity that would be more beneficial than that of the presently used agent. Among the triethylsilyl compounds evaluated, only 23 displayed this desired ratio, although two other compounds without the triethylsilyl moiety, 18 and 26, shared similar characteristics.

  13. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection.

    PubMed

    Zhang, Yu; Wang, Zehua; Chen, Huan; Chen, Zongtao; Tian, Yanping

    2014-07-01

    Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.

    PubMed

    Zeriouh, Houda; de Vicente, Antonio; Pérez-García, Alejandro; Romero, Diego

    2014-07-01

    The biocontrol activity of many Bacillus species has been traditionally related to the direct antagonism of pathogens. In previous works, we reported that B. subtilis strain UMAF6614 was an efficient biocontrol agent that produced bacillomycin, fengycin and surfactin lipopeptides. Bacillomycins and fengycins were shown to have antagonistic activity towards fungal and bacterial pathogens of cucurbits; however, the functionality of surfactin remained unclear. In this study, the role of surfactin in the biocontrol activity of this strain was investigated. We observed that a deficiency in surfactin production led to a partial reduction of disease suppression by this biocontrol agent, which coincided with a defect in biofilm formation and the colonization of the melon phylloplane. These effects were due to a dramatic reduction in the production of exopolysaccharide and the TasA protein, which are the two major components of the extracellular matrix. We propose that the biocontrol activity of this strain is the result of the coordinated action of the three families of lipopeptides. B. subtilis UMAF6614 produces surfactin to trigger biofilm formation on melon phylloplane, which ensures the long-term persistence and the adequate secretion of suppressive lipopeptides, bacillomycins and fengycins, which efficiently target pathogens. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    PubMed

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.

  16. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and >Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits.

    PubMed

    Kim, Young Soo; Balaraju, Kotnala; Jeon, Yongho

    In this study, plant growth-promoting rhizobacteria (PGPR) were evaluated as potential biocontrol agents against postharvest pathogens of apple fruits. In vitro bioassays revealed that, out of 30 isolates screened, isolates APEC136 and APEC170 had the most significant inhibitory effects against the mycelial growth of several fungal pathogens. Analysis of 16S ribosomal RNA (rRNA) sequences identified the two effective isolates as Paenibacillus polymyxa and Bacillus subtilis, respectively. The two strains showed greater growth in brain-heart infusion broth than in other growth media. Treatment of harvested apples with suspensions of either strain reduced the symptoms of anthracnose disease caused by two fungal pathogens, Colletotrichum gloeosporioides and Colletotrichum acutatum, and white rot disease caused by Botryosphaeria dothidea. Increased productions of amylase and protease by APEC136, and increased productions of chitinase, amylase, and protease by APEC170 might have been responsible for inhibiting mycelial growth. The isolates caused a greater reduction in the growth of white rot than of anthracnose. These results indicate that the isolates APEC136 and APEC170 are promising agents for the biocontrol of anthracnose and white rot diseases in apples after harvest, and suggest that these isolates may be useful in controlling these diseases under field conditions.

  17. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits*

    PubMed Central

    Kim, Young Soo; Balaraju, Kotnala; Jeon, Yongho

    2016-01-01

    In this study, plant growth-promoting rhizobacteria (PGPR) were evaluated as potential biocontrol agents against postharvest pathogens of apple fruits. In vitro bioassays revealed that, out of 30 isolates screened, isolates APEC136 and APEC170 had the most significant inhibitory effects against the mycelial growth of several fungal pathogens. Analysis of 16S ribosomal RNA (rRNA) sequences identified the two effective isolates as Paenibacillus polymyxa and Bacillus subtilis, respectively. The two strains showed greater growth in brain-heart infusion broth than in other growth media. Treatment of harvested apples with suspensions of either strain reduced the symptoms of anthracnose disease caused by two fungal pathogens, Colletotrichum gloeosporioides and Colletotrichum acutatum, and white rot disease caused by Botryosphaeria dothidea. Increased productions of amylase and protease by APEC136, and increased productions of chitinase, amylase, and protease by APEC170 might have been responsible for inhibiting mycelial growth. The isolates caused a greater reduction in the growth of white rot than of anthracnose. These results indicate that the isolates APEC136 and APEC170 are promising agents for the biocontrol of anthracnose and white rot diseases in apples after harvest, and suggest that these isolates may be useful in controlling these diseases under field conditions. PMID:27921398

  18. Killer activity of Saccharomyces cerevisiae strains: partial characterization and strategies to improve the biocontrol efficacy in winemaking.

    PubMed

    de Ullivarri, Miguel Fernández; Mendoza, Lucía M; Raya, Raúl R

    2014-11-01

    Killer yeasts are considered potential biocontrol agents to avoid or reduce wine spoilage by undesirable species. In this study two Saccharomyces cerevisiae strains (Cf8 and M12) producing killer toxin were partially characterized and new strategies to improve their activity in winemaking were evaluated. Killer toxins were characterized by biochemical tests and growth inhibition of sensitive yeasts. Also genes encoding killer toxin were detected in the chromosomes of both strains by PCR. Both toxins showed optimal activity and production at conditions used during the wine-making process (pH 3.5 and temperatures of 15-25 °C). In addition, production of both toxins was higher when a nitrogen source was added. To improve killer activity different strategies of inoculation were studied, with the sequential inoculation of killer strains the best combination to control the growth of undesired yeasts. Sequential inoculation of Cf8-M12 showed a 45 % increase of killer activity on sensitive S. cerevisiae and spoilage yeasts. In the presence of ethanol (5-12 %) and SO2 (50 mg/L) the killer activity of both toxins was increased, especially for toxin Cf8. Characteristics of both killer strains support their future application as starter cultures and biocontrol agents to produce wines of controlled quality.

  19. Microtubule-Stabilizing Agents as Potential Therapeutics for Neurodegenerative Disease

    PubMed Central

    Brunden, Kurt R.; Trojanowski, John Q.; Smith, Amos B.; Lee, Virginia M.-Y.; Ballatore, Carlo

    2014-01-01

    Microtubules (MTs)1, cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington’s disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders. PMID:24433963

  20. Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease.

    PubMed

    Brunden, Kurt R; Trojanowski, John Q; Smith, Amos B; Lee, Virginia M-Y; Ballatore, Carlo

    2014-09-15

    Microtubules (MTs), cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer's disease, frontotemporal lobar degeneration, and Parkinson's disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Monocarboxylate Transporter 1 Inhibitors as Potential Anticancer Agents

    PubMed Central

    2015-01-01

    Potent monocarboxylate transporter 1 inhibitors (MCT1) have been developed based on α-cyano-4-hydroxycinnamic acid template. Structure–activity relationship studies demonstrate that the introduction of p-N, N-dialkyl/diaryl, and o-methoxy groups into cyanocinnamic acid has maximal MCT1 inhibitory activity. Systemic toxicity studies in healthy ICR mice with few potent MCT1 inhibitors indicate normal body weight gains in treated animals. In vivo tumor growth inhibition studies in colorectal adenocarcinoma (WiDr cell line) in nude mice xenograft models establish that compound 27 exhibits single agent activity in inhibiting the tumor growth. PMID:26005533

  2. Monocarboxylate transporter 1 inhibitors as potential anticancer agents.

    PubMed

    Gurrapu, Shirisha; Jonnalagadda, Sravan K; Alam, Mohammad A; Nelson, Grady L; Sneve, Mary G; Drewes, Lester R; Mereddy, Venkatram R

    2015-05-14

    Potent monocarboxylate transporter 1 inhibitors (MCT1) have been developed based on α-cyano-4-hydroxycinnamic acid template. Structure-activity relationship studies demonstrate that the introduction of p-N, N-dialkyl/diaryl, and o-methoxy groups into cyanocinnamic acid has maximal MCT1 inhibitory activity. Systemic toxicity studies in healthy ICR mice with few potent MCT1 inhibitors indicate normal body weight gains in treated animals. In vivo tumor growth inhibition studies in colorectal adenocarcinoma (WiDr cell line) in nude mice xenograft models establish that compound 27 exhibits single agent activity in inhibiting the tumor growth.

  3. Non-peptidyl insulin mimetics as a potential antidiabetic agent.

    PubMed

    Nankar, Rakesh P; Doble, Mukesh

    2013-08-01

    Insulin has an important role in the maintenance of blood sugar. It is the only available therapeutic agent for the treatment of type 1 diabetes mellitus and there is a dire need for an oral substitute. Different categories of compounds including mono and di substituted benzoquinones, vanadium based compounds and natural products have been reported to cause insulin-like effects either by increasing phosphorylation of insulin receptor (IR) or inhibiting the protein tyrosine phosphatases. This review summarizes the development of various insulin mimetics with special emphasis on their structure-activity relationships and various biological actions they produce.

  4. Investigation of Vietnamese plants for potential anticancer agents

    PubMed Central

    Pérez, Lynette Bueno; Still, Patrick C.; Naman, C. Benjamin; Ren, Yulin; Pan, Li; Chai, Hee-Byung; Carcache de Blanco, Esperanza J.; Ninh, Tran Ngoc; Van Thanh, Bui; Swanson, Steven M.; Soejarto, Djaja D.

    2014-01-01

    Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities. PMID:25395897

  5. Effects of nutritional factors and soil addition on growth, longevity and fecundity of the tadpole shrimp Triops newberryi (Notostraca: Triopsidae), a potential biological control agent of immature mosquitoes.

    PubMed

    Su, T; Mulla, M S

    2001-06-01

    The notostracan tadpole shrimp (TPS) Triops newberryi Packard has potential to be used as a biocontrol agent of immature mosquitoes. Eggs, nymphal or adult shrimps are considered to be the stages for field introduction. To yield good growth of the shrimp and high production of shrimp eggs under artificial conditions, nutritional requirements of TPS for growth, survival and fecundity need to be elucidated. In the laboratory, we evaluated various nutritional and edaphic regimens, such as soil alone, mosquito larvae or rabbit pellets alone and various combinations of these three components for culturing. These factors influenced the growth, longevity and egg production profoundly. It was shown that the simulated natural conditions, i.e. full combination of all three factors, yielded the largest TPS with longest survival and highest egg production, followed by the combinations of any two components. Any single component, soil, mosquito larvae, or rabbit pellets, did not result in good growth, survival and egg production. By formulating optimal rearing substrates, this species of TPS will yield large numbers of all stages for experimentation and field introductions. Under optimal conditions, they mature in 7-8 days and survive for about one month. Each TPS is capable of producing up to 1,000 eggs during its lifetime. These studies developed nutritional regimens for TPS mass culturing procedures, where the eggs, nymphal and adult TPS can be mass cultured for field introduction and stocking in mosquito developmental sites.

  6. Pyrazoles as potential anti-angiogenesis agents: a contemporary overview

    PubMed Central

    Kasiotis, Konstantinos M.; Tzanetou, Evangelia N.; Haroutounian, Serkos A.

    2014-01-01

    Angiogenesis is a mulit-step process by which new blood vessels are formed from preexisting vasculature. It is a key rate limiting factor in tumor growth since new blood vessels are necessary to increase tumor size. In this context it has been shown that anti-angiogenic factors can be used in cancer therapy. Among the plethora of heterocyclic compounds administered as anti-angiogenesis agents, pyrazoles constitute one of the bottlenecks of this category. Currently, several pyrazole based compounds are administered or are in Phase II and III trials and new targets emerge. It is highly possible that the advent of the next two decades will lead to the discovery and use of additional pyrazoles whose anti-angiogenic profile will position them in the forefront of the battle of various malignancies. The present review is an attempt to focus on those pyrazoles that arise as anti-angiogenesis agents commenting both on the chemistry and bioactivity that these exhibit aiming to contribute to the perspectives that they hold for future research. PMID:25250310

  7. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury

    PubMed Central

    Hou, Jingang; Xue, Jianjie; Lee, Mira; Sung, Changkeun

    2017-01-01

    Trimethyltin (TMT) is a potent neurotoxicant that affects various regions within the central nervous system, including the neocortex, cerebellum, and hippocampus. In the present study, ginsenoside Rd was investigated as a candidate neuroprotective agent in a primary hippocampal neuron culture and mouse models. TMT induced neurotoxicity in a seven-day primary hippocampal neuron culture in a dose-dependent manner (2.5–10 µM). However, pre-treatment with 20 µg/ml ginsenoside Rd for 24 h reversed the toxic action. ICR mice were administered a single injection of 2 mg/kg body weight TMT. Apparent tremor seizure and impaired passive avoidance tests demonstrated significant differences when compared with a saline treated control group. Nissl staining was performed to evaluate the neuronal loss in the hippocampus. In addition, immunostaining of glial fibrillary acidic protein characterized the features of astroglial activation. These results demonstrated that TMT markedly induced Cornu Ammonis 1 subregion neuronal loss and reactive astrocytes in the hippocampus, indicating disrupted hippocampal function. Notably, ginsenoside Rd attenuated the tremor seizures and cognitive decline in behavioral tests. Additionally, significantly reduced neuronal loss (P=0.018) and active astroglials (P=0.003) were observed in the ginsenoside Rd treated group. Ginsenoside Rd prevented TMT-induced cell apoptosis via regulation of B-cell lymphoma 2 (Bcl-2), bcl-2-like protein 4 and caspase-3. These results demonstrate that ginsenoside may be developed as a neuroprotective agent to prevent TMT-induced neurotoxicity. PMID:28413642

  8. Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI.

    PubMed

    Van Roosbroeck, Ruben; Van Roy, Willem; Stakenborg, Tim; Trekker, Jesse; D'Hollander, Antoine; Dresselaers, Tom; Himmelreich, Uwe; Lammertyn, Jeroen; Lagae, Liesbet

    2014-03-25

    We present the top-down synthesis of a novel type of MRI T2 contrast agent with great control over size and shape using a colloidal lithography technique. The resulting synthetic antiferromagnetic nanoparticles (SAF-NPs) yield improved relaxivities compared to superparamagnetic iron oxide alternatives (SPIONs). For T2 weighted imaging, the outer sphere relaxation theory has shown that the sensitivity of a T2 contrast agent is dependent on the particle size with an optimal size that exceeds the superparamagnetic limit of SPIONs. With the use of the interlayer exchange coupling effect, the SAF-NPs presented here do not suffer from this limit. Adjusting the outer sphere relaxation theory for spherical particles to SAF-NPs, we show both theoretically and experimentally that the SAF-NP size can be optimized to reach the r2 maximum. With measured r2 values up to 355 s(-1) mM(-1), our SAF-NPs show better performance than commercial alternatives and are competitive with the state-of-the-art. This performance is confirmed in an in vitro MRI study on SKOV3 cells.

  9. Pyrazoles as potential anti-angiogenesis agents: A contemporary overview

    NASA Astrophysics Data System (ADS)

    Kasiotis, Konstantinos; Tzanetou, Evangelia; Haroutounian, Serkos

    2014-09-01

    Angiogenesis is a mulit-step process by which new blood vessels are formed from preexisting vasculature. It is a key rate limiting factor in tumor growth since new blood vessels are necessary to increase tumor size. In this context it has been shown that anti-angiogenic factors can be used in cancer therapy. Among the plethora of heterocyclic compounds administered as anti-angiogenesis agents, pyrazoles constitute one of the bottlenecks of this category. Currently several pyrazole based compounds are administered or are in Phase II and III trials and new targets emerge. It is highly possible that the advent of the next two decades will lead to the discovery and use of additional pyrazoles whose anti-angiogenic profile will position them in the forefront of the battle of various malignancies. The present review is an attempt to focus on those pyrazoles that arise as anti-angiogenesis agents commenting both on the chemistry and bioactivity that these exhibit aiming to contribute to the perspectives that they hold for future research.

  10. Trichoderma virens as a biocontrol of Toxocara canis: In vivo evaluation.

    PubMed

    de Souza Maia Filho, Fernando; da Silva Fonseca, Anelise Oliveira; Persici, Beatriz Maroneze; de Souza Silveira, Julia; Braga, Caroline Quintana; Pötter, Luciana; de Avila Botton, Sônia; Brayer Pereira, Daniela Isabel

    Microorganisms have been widely studied as biological control agents of parasites of medical and veterinary importance. Coprophagous arthropods, bacteria and fungi are among the different organisms evaluated as potential biological control agents. Nematophagous fungi capture and digest the free forms of nematodes in the soil. Due to its zoonotic potential, Toxocara canis have been brought to the attention of researchers. The aim of the present study was to determine whether the administration of embryonated T. canis eggs exposed to the nematophagous fungus Trichoderma virens reduces parasite infection in experimental animals. Embryonated T. canis eggs were exposed to T. virens mycelium for 15 days at 25°C. Subsequently, 100 fungus-exposed eggs were orally administered to 20 Swiss mice. As a positive control, another 20 mice received 100 embryonated eggs that were not exposed to the fungus. After 48h, the animals were killed, and heart, lungs and liver were harvested for the recovery of larvae. The organs of the animals that received embryonated T. canis eggs exposed to the fungus showed a lower mean larval recovery when compared with the animals that received embryonated eggs without fungus exposure (p<0.05). The exposure of T. canis eggs to T. virens reduces the experimental infection, demonstrating the potential of this nematophagous fungus as a biocontrol agent. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  12. Ag+ complexes as potential therapeutic agents in medicine and pharmacy.

    PubMed

    Hecel, Aleksandra; Kolkowska, Paulina; Krzywoszynska, Karolina; Szebesczyk, Agnieszka; Rowinska-Zyrek, Magdalena; Kozlowski, Henryk

    2017-09-20

    Silver is a non-essential element, with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, in particular as antibacterial and antifungal agents and in cancer therapy is discussed in detail. The most recent data on silver nanoparticles are also summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Potential radiosensitizing agents. 5. 2-Substituted benzimidazole derivatives

    SciTech Connect

    Gupta, R.P.; Larroquette, C.A.; Agrawal, K.C.

    1982-11-01

    A series of 2-substituted benzimidazoles and their derivatives have been synthesized and tested for their ability to selectively sensitize hypoxic Chinese hamster cells (V-79) toward the lethal effect of ionizing radiation. These compounds were prepared by reacting the 2-substituted benzimidazoles with 1,2-epoxy-3-methoxypropane in the presence of potassium carbonate. Reaction of the 2-nitro and 2-methylfonyl analogue with the epoxide also yielded a cyclized material, which was confirmed to be a benzimidazo(2,1-b)oxazole. In an attempt to increase the electron affinity, 5- or 6-nitro-2-substituted-benzimidazoles were also synthesized and then reacted with the epoxide to yield the corresponding 1-substituted derivatives. The results of the biological tests for the radiosensitizing activity of these agents against Chinese hamster cells (V-79) in culture indicated that the 2-nitro-substituted analogues were the most effective sensitizers in this series.

  14. Biocontrol of tomato plant diseases caused by Fusarium solani using a new isolated Aspergillus tubingensis CTM 507 glucose oxidase.

    PubMed

    Kriaa, Mouna; Hammami, Inès; Sahnoun, Mouna; Azebou, Manel Cheffi; Triki, Mohamed Ali; Kammoun, Radhouane

    2015-10-01

    The present study focuses on the potential of glucose oxidase (GOD) as a promising biocontrol agent for fungal plant pathogens. In fact, a new GOD producing fungus was isolated and identified as an Aspergillus tubingensis. GOD (125 AU) has been found to inhibit Fusarium solani growth and spore production. Indeed, GOD caused the reduction of spores, the formation of chlamydospores, the induction of mycelial cords and the vacuolization of mycelium. In vivo assays, GOD acted as a curative treatment capable of protecting the tomato plants against F. solani diseases. In fact, the incidence was null in the curative treatment with GOD and it is around 45% for the preventive treatment. The optimization of media composition and culture conditions led to a 2.6-fold enhancement in enzyme activity, reaching 81.48U/mL. This study has demonstrated that GOD is a potent antifungal agent that could be used as a new biofungicide to protect plants from diseases.

  15. Enteric MRI contrast agents: comparative study of five potential agents in humans.

    PubMed

    Tart, R P; Li, K C; Storm, B L; Rolfes, R J; Ang, P G

    1991-01-01

    We compared the effectiveness of 1 mM Geritol, 12% corn oil emulsion, Kaolin-pectin, single contrast oral barium sulfate, and effervescent granules as enteric magnetic resonance imaging (MRI) contrast agents. Five volunteers were recruited. Each volunteer ingested for examinations, separated by at least one week, either 500 ml of each of the liquid preparations or two packets of the CO2 granules (producing 400 ml of CO2 per packet). Abdominal MR images were then obtained using a 1.5 T Magnetom imager and SE 550/22, SE 2000/45/90 and FISP 40/18/40 degrees pulse sequences. The oil emulsions were best tolerated. Barium sulfate caused the greatest amount of nausea, followed by Geritol and Kaolin-pectin. With FISP 40/18/40 degrees, 60%-80% of the small bowel was well delineated using oil emulsion, Kaolin-pectin, or barium sulfate. We conclude that oil emulsion was by far the best enteric MR contrast agent in our study. Good delineation of the small bowel and pancreas can be achieved using oil emulsion and gradient echo pulse sequences. The lack of side-effects and the excellent taste make it highly acceptable to human subjects.

  16. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait.

    PubMed

    González-Sánchez, M Á; Pérez-Jiménez, R M; Pliego, C; Ramos, C; de Vicente, A; Cazorla, F M

    2010-07-01

    This study was undertaken to study bacterial strains obtained directly for their efficient direct control of the avocado white root rot, thus avoiding prescreening by any other possible mechanism of biocontrol which could bias the selection. A collection of 330 bacterial isolates was obtained from the roots and soil of healthy avocado trees. One hundred and forty-three representative bacterial isolates were tested in an avocado/Rosellinia test system, resulting in 22 presumptive protective strains, all of them identified mainly as Pseudomonas and Bacillus species. These 22 candidate strains were screened in a more accurate biocontrol trial, confirming protection of some strains (4 out of the 22). Analyses of the potential bacterial traits involved in the biocontrol activity suggest that different traits could act jointly in the final biocontrol response, but any of these traits were neither sufficient nor generalized for all the active bacteria. All the protective strains selected were antagonistic against some fungal root pathogens. Diverse bacteria with biocontrol activity could be obtained by a direct plant protection strategy of selection. All the biocontrol strains finally selected in this work were antagonistic, showing that antagonism is a prevalent trait in the biocontrol bacteria selected by a direct plant protection strategy. This is the first report on the isolation of biocontrol bacterial strains using direct plant protection strategy in the system avocado/Rosellinia. Characterization of selected biocontrol bacterial strains obtained by a direct plant protection strategy showed that antagonism is a prevalent trait in the selected strains in this experimental system. This suggests that antagonism could be used as useful strategy to select biocontrol strains. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  17. Yeast biocontrol of fungal spoilage of pears stored at low temperature.

    PubMed

    Robiglio, Andrea; Sosa, M Cristina; Lutz, M Cecilia; Lopes, Christian A; Sangorrín, Marcela P

    2011-06-30

    To reduce the use of fungicides, biological control with yeasts has been proposed in postharvest pears. Most studies of antagonists selection have been carried out at room temperature. However, in regions like North Patagonia where fruits are stored at -1/0 °C during 5-7 months the selection of potential antagonist agents must be carried out at low temperature. In this study, 75 yeast cultures were isolated from healthy pears from two Patagonian cold-storage packinghouses. Aureobasidium pullulans, Cryptococcus albidus, Cryptococcus difluens, Pichia membranifaciens, Pichia philogaea, Rhodotorula mucilaginosa and Saccharomyces cerevisiae yeast species were identified. Additionally, 13 indigenous isolates of Penicillium expansum and 10 isolates of Botrytis cinerea were obtained from diseased pears, characterized by aggressiveness and tested for sensitivity to postharvest fungicides. The yeasts were pre-selected for their ability to grow at low temperature. In a first biocontrol assay using the most aggressive and the most sensitive isolate of each pathogen, two epiphytic isolates of A. pullulans and R. mucilaginosa were the most promising isolates to be used as biocontrol agents. They reduced the decay incidence by P. expansum to 33% and the lesion diameter in 88% after 60 days of incubation in cold. Foreign commercial yeast used as a reference in assays, only reduced 30% of lesion diameter in the same conditions. Yeasts were not able to reduce the incidence of B. cinerea decay. The control activity of the best two yeasts was compared with the control caused by the fungicides in a second bioassay, obtaining higher levels of protection against P. expansum by the yeasts. These two regional yeasts isolates could be promising tools for the future development of commercial products for biological control.

  18. Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits.

    PubMed

    Tolaini, V; Zjalic, S; Reverberi, M; Fanelli, C; Fabbri, A A; Del Fiore, A; De Rossi, P; Ricelli, A

    2010-04-15

    Penicillium expansum is a post-harvest pathogen of apples which can produce the hazardous mycotoxin patulin. The yeast Cryptococcus laurentii (LS28) is a biocontrol agent able to colonize highly oxidative environments such as wounds in apples. In this study culture filtrates of the basidiomycete Lentinula edodes (LF23) were used to enhance the biocontrol activity of LS28. In vitro L. edodes culture filtrates improved the growth of C. laurentii and the activity of its catalase, superoxide dismutase and glutathione peroxidase, which play a key role in oxidant scavenging. In addition, LF23 also delayed P. expansum conidia germination. The biocontrol effect of LS28 used together with LF23 in wounded apples improved the inhibition of P. expansum growth and patulin production in comparison with LS28 alone, under both experimental and semi-commercial conditions. The biocontrol effect was confirmed by a semi-quantitative PCR analysis set up for monitoring the growth of P. expansum.

  19. Biological agents with potential for misuse: a historical perspective and defensive measures.

    PubMed

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  20. Neem components as potential agents for cancer prevention and treatment

    PubMed Central

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2016-01-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  1. Novel Oxadiazole Thioglycosides as Potential Anti-Acinetobacter Agents

    PubMed Central

    Akbari Dilmaghani, Karim; Nasuhi Pur, Fazel; Mahammad pour, Majid; Mahammad nejad, Jafar

    2016-01-01

    The glycosylation of 1,3,4-oxadiazole-2-thiones has been performed with peracetylated β-pyranosyl bromide in the presence of potassium carbonate. Deprotection of acetylated thioglycosides was necessary for increasing their antibacterial effects. The structures of nucleosides were confirmed by 1H NMR, 13C NMR and HRMS. The anomeric protons of nucleosides c1–4 were assigned to the doublet, confirming the β-configuration. The synthesized compounds were tested for their antimicrobial activity against Acinetobacter calcoaceticus (Gram-negetive) strain in-vitro in comparison with Ampicillin as a reference drug which is normally used for treating such infections. The synthetic compounds showed different inhibition zones against tested bacterial strain. Thioglycoside derivatives of 1,3,4-oxadiazole-2-thiones (c set) were more active against Acinetobacter calcoaceticus ATCC 23055 than “parent” 1,3,4-oxadiazole-2-thiones (a set), confirming the relation between glyco-conjugation and increasing of antiproliferative activity of antibiotic agents. The best result belonged to nucleoside bearing 2-furyl moiety in its heterocyclic nucleus (c4). The existence of m-PhNO2 group as Ar in structures of a set and their corresponding sugar derivatives decreased the antibacterial activity of them in comparison with the rest of synthetic compounds. PMID:28243273

  2. Thymol and eugenol derivatives as potential antileishmanial agents.

    PubMed

    de Morais, Selene Maia; Vila-Nova, Nadja Soares; Bevilaqua, Claudia Maria Leal; Rondon, Fernanda Cristina; Lobo, Carlos Henrique; de Alencar Araripe Noronha Moura, Arlindo; Sales, Antônia Débora; Rodrigues, Ana Paula Ribeiro; de Figuereido, José Ricardo; Campello, Claudio Cabral; Wilson, Mary E; de Andrade, Heitor Franco

    2014-11-01

    In Northeastern Brazil visceral leishmaniasis is endemic with lethal cases among humans and dogs. Treatment is toxic and 5-10% of humans die despite treatment. The aim of this work was to survey natural active compounds to find new molecules with high activity and low toxicity against Leishmania infantum chagasi. The compounds thymol and eugenol were chosen to be starting compounds to synthesize acetyl and benzoyl derivatives and to test their antileishmanial activity in vitro and in vivo against L. i. chagasi. A screening assay using luciferase-expressing promastigotes was used to measure the growth inhibition of promastigotes, and an ELISA in situ was performed to evaluate the growth inhibition of amastigote. For the in vivo assay, thymol and eugenol derivatives were given IP to BALB/c mice at 100mg/kg/day for 30 days. The thymol derivatives demonstrated the greater activity than the eugenol derivatives, and benzoyl-thymol was the best inhibitor (8.67 ± 0.28 μg/mL). All compounds demonstrated similar activity against amastigotes, and acetyl-thymol was more active than thymol and the positive control drug amphotericin B. Immunohistochemistry demonstrated the presence of Leishmania amastigote only in the spleen but not the liver of mice treated with acetyl-thymol. Thus, these synthesized derivatives demonstrated anti-leishmanial activity both in vitro and in vivo. These may constitute useful compounds to generate new agents for treatment of leishmaniasis.

  3. Thymol and eugenol derivatives as potential antileishmanial agents

    PubMed Central

    de Morais, Selene Maia; Vila-Nova, Nadja Soares; Bevilaqua, Claudia Maria Leal; Rondon, Fernanda Cristina; Lobo, Carlos Henrique; de Alencar Araripe Noronha Moura, Arlindo; Sales, Antônia Débora; Rodrigues, Ana Paula Ribeiro; de Figuereido, José Ricardo; Campello, Claudio Cabral; Wilson, Mary E.; de Andrade, Heitor Franco

    2016-01-01

    In Northeastern Brazil visceral leishmaniasis is endemic with lethal cases among humans and dogs. Treatment is toxic and 5–10% of humans die despite treatment. The aim of this work was to survey natural active compounds to find new molecules with high activity and low toxicity against Leishmania infantum chagasi. The compounds thymol and eugenol were chosen to be starting compounds to synthesize acetyl and benzoyl derivatives and to test their antileishmanial activity in vitro and in vivo against L. i. chagasi. A screening assay using luciferase-expressing promastigotes was used to measure the growth inhibition of promastigotes, and an ELISA in situ was performed to evaluate the growth inhibition of amastigote. For the in vivo assay, thymol and eugenol derivatives were given IP to BALB/c mice at 100 mg/kg/day for 30 days. The thymol derivatives demonstrated the greater activity than the eugenol derivatives, and benzoyl- thymol was the best inhibitor (8.67 ± 0.28 μg/mL). All compounds demonstrated similar activity against amastigotes, and acetyl-thymol was more active than thymol and the positive control drug amphotericin B. Immunohistochemistry demonstrated the presence of Leishmania amastigote only in the spleen but not the liver of mice treated with acetyl-thymol. Thus, these synthesized derivatives demonstrated anti-leishmanial activity both in vitro and in vivo. These may constitute useful compounds to generate new agents for treatment of leishmaniasis. PMID:25281268

  4. Potential serotonergic agents for the treatment of schizophrenia.

    PubMed

    Garay, Ricardo P; Bourin, Michel; de Paillette, Evelyne; Samalin, Ludovic; Hameg, Ahcène; Llorca, Pierre-Michel

    2016-01-01

    For the last 30 years, drugs targeting serotonin receptors (5-HTR) have been intensively investigated in schizophrenia. New drugs targeting 5-HTRs are under development in patients with schizophrenia. In this review, the authors describe the recent clinical trials for schizophrenia with selective serotonergic agents and provide an opinion on how the investigated drugs can help to fulfil current treatment needs. Clinical trials were found in US and EU clinical trial registries and in the medical literature. Relevant 5-HTR antagonists active in animal models of schizophrenia were also analysed. Antipsychotics reduce positive symptoms of schizophrenia (delusions, hallucinations and disordered thought), but have undesirable side effects. Moreover, satisfactory treatment of negative symptoms (apathy, poverty of speech, lack of interest in social interactions) and cognitive dysfunction is currently not available. The selective 5-HT2CR full agonist vabicaserin showed antipsychotic efficacy with fewer side effects than olanzapine. Adjunctive pimavanserin (a selective 5-HT2AR inverse agonist) facilitated antipsychotic dose and side-effect reductions. Selective 5-HT3R antagonists (ondansetron, tropisetron and granisetron) showed positive results on negative symptoms and/or cognitive impairments in phase II trials. Adjunctive ondansetron has now entered a phase III trial for such indications. Finally, 5-HTA5R and 5-HT7R antagonists have shown procognitive actions in animal models of schizophrenia. These novel serotonergic drugs seem promising for improving the current treatment of schizophrenia.

  5. Cotinine: a potential new therapeutic agent against Alzheimer's disease.

    PubMed

    Echeverria, Valentina; Zeitlin, Ross

    2012-07-01

    Tobacco smoking has been correlated with a lower incidence of Alzheimer's disease (AD). This negative correlation has been attributed to nicotine's properties. However, the undesired side-effects of nicotine and the absence of clear evidence of positive effects of this drug on the cognitive abilities of AD patients have decreased the enthusiasm for its therapeutic use. In this review, we discuss evidence showing that cotinine, the main metabolite of nicotine, has many of the beneficial effects but none of the negative side-effects of its precursor. Cotinine has been shown to be neuroprotective, to improve memory in primates as well as to prevent memory loss, and to lower amyloid-beta (Aβ)) burden in AD mice. In AD, cotinine's positive effect on memory is associated with the inhibition of Aβ aggregation, the stimulation of pro-survival factors such as Akt, and the inhibition of pro-apoptotic factors such as glycogen synthase kinase 3 beta (GSK3β). Because stimulation of the α7 nicotinic acetylcholine receptors (α7nAChRs) positively modulates these factors and memory, the involvement of these receptors in cotinine's effects are discussed. Because of its beneficial effects on brain function, good safety profile, and nonaddictive properties, cotinine may represent a new therapeutic agent against AD.

  6. Calcium fructoborate--potential anti-inflammatory agent.

    PubMed

    Scorei, Romulus Ion; Rotaru, Petre

    2011-12-01

    Calcium fructoborate is a boron-based nutritional supplement. Its chemical structure is similar to one of the natural forms of boron such as bis-manitol, bis-sorbitol, bis-fructose, and bis-sucrose borate complexes found in edible plants. In vitro studies revealed that calcium fructoborate is a superoxide ion scavenger and anti-inflammatory agent. It may influence macrophage production of inflammatory mediators, can be beneficial for the suppression of cytokine production, and inhibits progression of endotoxin-associated diseases, as well as the boric acid and other boron sources. The mechanisms by which calcium fructoborate exerts its beneficial anti-inflammatory effects are not entirely clear, but some of its molecular biological in vitro activities are understood: inhibition of the superoxide within the cell; inhibition of the interleukin-1β, interleukin-6, and nitric oxide release in the culture media; and increase of the tumor necrosis factor-α production. Also, calcium fructoborate has no effects on lipopolysaccharide-induced cyclooxygenase-2 protein express. The studies on animals and humans with a dose range of 1-7 mg calcium fructoborate (0.025-0.175 mg elemental boron)/kg body weight/day exhibited a good anti-inflammatory activity, and it also seemed to have negligible adverse effect on humans.

  7. Influence of potentially remineralizing agents on bleached enamel microhardness.

    PubMed

    Borges, Alessandra Bühler; Samezima, Leticia Yumi; Fonseca, Léila Pereira; Yui, Karen Cristina Kazue; Borges, Alexandre Luiz Souto; Torres, Carlos Rocha Gomes

    2009-01-01

    This study investigated the effect of the addition of calcium and fluoride into a 35% hydrogen peroxide gel on enamel surface and subsurface microhardness. Twenty extracted human third molars were sectioned to obtain enamel fragments and they were divided into four groups (n = 20) according to the bleaching treatment. Group 1 received no bleaching procedure (control). Group 2 was treated with a 35% hydrogen peroxide gel (Total Bleach), Groups 3 and 4 were bleached with Total Bleach modified by the addition of sodium fluoride and calcium chloride, respectively. The microhardness of the enamel surface was assessed using a Vickers microdurometer immediately after the bleaching treatment. The specimens were sectioned in the central portion, polished and evaluated to determine the microhardness of the enamel subsurface to a depth of 125 microm, with an interval of 25 microm between measures. There were significant differences among the groups. In terms of surface microhardness, the bleached group exhibited the lowest means, and the calcium-modified bleached group exhibited the highest means. Regarding subsurface microhardness, there were no significant differences among the groups for the depth and interaction factors. The bleached group exhibited the lowest means, and the calcium-modified bleached group presented the highest means. It was concluded that the bleaching treatment with 35% hydrogen peroxide significantly reduced the surface and subsurface microhardness of the enamel, and the addition of fluoride and calcium in the bleaching agent increased the microhardness means of the bleached enamel.

  8. Neem components as potential agents for cancer prevention and treatment.

    PubMed

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2014-08-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment.

  9. Yeasts from native Brazilian Cerrado plants: Occurrence, diversity and use in the biocontrol of citrus green mould.

    PubMed

    Sperandio, Eugenio Miranda; do Vale, Helson Mario Martins; Moreira, Geisianny Augusta Monteiro

    2015-11-01

    Yeasts are some of the most important postharvest biocontrol agents. Postharvest oranges frequently deteriorate due to green mould (Penicillium digitatum), which causes significant losses. The aims of this study were to determine the composition and diversity of yeasts on plants of the Brazilian Cerrado and to explore their potential for inhibiting citrus green mould. Leaves and fruit of Byrsonima crassifolia and Eugenia dysenterica were collected from Cerrado conservation areas, and thirty-five yeasts were isolated and identified by sequencing the D1-D2 domain of the rDNA large subunit (26S). The isolates represented the Aureobasidium, Meyerozyma, Candida, and Pichia genera. Three isolates identified as Aureobasidium pullulans exhibited potential for the control of P. digitatum in both in vitro and in vivo tests; these isolates reduced the incidence of disease and increased the storage time of fruit. Aureobasidium. pullulans has immense potential for the biological control of filamentous fungi.

  10. THE SYNTHESIS OF POTENTIAL ANTI-RADIATION AGENTS

    DTIC Science & Technology

    potentially capable of carrying it into nu leic acids, was completed. Since replacement of the sulfur of cysteamine with selenium does not destroy...products (2-aminoselenazolines and 2-selenoethylguanidines) were prepared. The bis Bunte salt of bis(2-mercaptoethyl)amine the doublearmed analog of cysteamine was synthesized. (Author)

  11. Interactions between conventional and organic farming for biocontrol services across the landscape.

    PubMed

    Bianchi, F J J A; Ives, A R; Schellhorn, N A

    2013-10-01

    While the area of organic crop production increases at a global scale, the potential interactions between pest management in organic and conventionally managed systems have so far received little attention. Here, we evaluate the landscape-level codependence of insecticide-based and natural enemy-based pest management using a simulation model for parasitoid-host interactions in landscapes consisting of conventionally and organically managed fields. In our simulations conventional management consists of broad-spectrum or selective insecticide application, while organic management involves no insecticides. Simulations indicate that insecticide use can easily result in lose-lose scenarios whereby both organically and conventionally managed fields suffer from increased pest loads as compared to a scenario where no insecticides are used, but that under some conditions insecticide use can be compatible with biocontrol. Simulations also suggest that the pathway to achieve the insecticide reduction without triggering additional pest pressure is not straightforward, because increasing the proportion of organically managed fields or reducing the spray frequency in conventional fields can potentially give rise to dramatic increases in pest load. The disruptive effect of insecticide use, however, can be mitigated by spatially clustering organic fields and using selective insecticides, although the effectiveness of this mitigation depends on the behavioral traits of the biocontrol agents. Poorly dispersing parasitoids and parasitoids with high attack rates required a lower amount of organically managed fields for effective pest suppression. Our findings show that the transition from a landscape dominated by conventionally managed crops to organic management has potential pitfalls; intermediate levels of organic management may lead to higher pest burdens than either low or high adoption of organic management.

  12. Characterization of biocontrol traits in the entomopathogenic nematode Heterorhabditis georgiana (Kesah strain), and phylogenetic analysis of the nematode's symbiotic bacteria.

    USDA-ARS?s Scientific Manuscript database

    Our objective was to estimate the biocontrol potential of the recently discovered entomopathogenic nematode species, Heterorhabditis georgiana (Kesha strain). Virulence and environmental tolerance were tested among several nematode species. Heterorhabditis georgiana expressed low or intermediate c...

  13. Repositioning of chlorambucil as a potential anti-schistosomal agent.

    PubMed

    Eissa, Maha M; Mossallam, Shereen F; Amer, Eglal I; Younis, Layla K; Rashed, Hoda A

    2017-02-01

    As parasites and cancer cells share many lifestyle and behavioral resemblances, repositioning of anti-cancerous agents as anti-parasitic is quite trendy, especially those sharing the same therapeutic targets. Therefore, the current study investigated the in vitro efficacy of ascending concentrations of chlorambucil (0.5-20μg/ml) against adult Schistosoma mansoni worms, over 72h. Additionally, its in vivo effects against the different developmental stages of the worm were assessed, after an oral dose of 2.5mg/kg/day for five successive days, through evaluating the worm load reduction and worms' morphological alterations and oogram changes. In addition to tissue egg count, a histopathological study of the liver was conducted. In vitro, chlorambucil demonstrated noticeable anti-schistosomal effects in the form of progressive reductions of the worms' viability in a dose dependent manner. Complete worm death was achieved at 72h incubation with 5μg/ml drug concentration. In vivo, chlorambucil induced a significant reduction in the total worm load against all developmental stages. Its highest impact was evident against the juvenile stage, where it induced 75.8% total worm load reduction, and 89.2% and 86.7% intestinal and hepatic egg counts reduction, respectively, along with ogram alterations. Besides, it induced significant shortening of both male and female worms and promoted an amelioration of hepatic histopathology. Results show that chlorambucil possesses favorable in vitro and in vivo anti-schistosomal activity. The highest in vivo efficacy was against the juvenile stage of S. mansoni, significantly superior to praziquantel, with extended potency to the adult stage. Further studies are recommended for chlorambucil target verification and to enhance its therapeutic efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The toxicology of bioregulators as potential agents of bioterrorism.

    PubMed

    Bokan, Slavko

    2005-06-01

    Bioregulators or modulators are biochemical compounds such as peptides, that occur naturally in organisms. Advances in biotechnology create the potential for the misuse of peptide bioregulators in offensive biological weapons programmes. Bioregulators are a new class of weapons that can damage the nervous system, alter mood, trigger psychological changes and kill. Over the last twenty years, neuroscience has produced an explosion of knowledge about receptor systems in the nerve cells that are of critical importance in receiving chemical transmitter substances released by other nerve cells. Bioregulators are closely related to substances normally found in the body that regulates normal biological processes. The potential military or terrorist use of bioregulators is similar to that of toxins. Together with increased research into toxins, the bioregulators have also been studied and synthesized. This paper presents a review of bioregulators that could be used in terrorist or other hostile activities.

  15. Selection and characterization of Argentine isolates of Trichoderma harzianum for effective biocontrol of Septoria leaf blotch of wheat.

    PubMed

    Stocco, Marina C; Mónaco, Cecilia I; Abramoff, Cecilia; Lampugnani, Gladys; Salerno, Graciela; Kripelz, Natalia; Cordo, Cristina A; Consolo, Verónica F

    2016-03-01

    Species of the genus Trichoderma are economically important as biocontrol agents, serving as a potential alternative to chemical control. The applicability of Trichoderma isolates to different ecozones will depend on the behavior of the strains selected from each zone. The present study was undertaken to isolate biocontrol populations of Trichoderma spp. from the Argentine wheat regions and to select and characterize the best strains of Trichoderma harzianum by means of molecular techniques. A total of 84 out of the 240 strains of Trichoderma were able to reduce the disease severity of the leaf blotch of wheat. Thirty-seven strains were selected for the reduction equal to or greater than 50% of the severity, compared with the control. The percentage values of reduction of the pycnidial coverage ranged between 45 and 80%. The same last strains were confirmed as T. harzianum by polymerase chain reaction amplification of internal transcribed spacers, followed by sequencing. Inter-simple sequence repeat was used to examine the genetic variability among isolates. This resulted in a total of 132 bands. Further numerical analysis revealed 19 haplotypes, grouped in three clusters (I, II, III). Shared strains, with different geographical origins and isolated in different years, were observed within each cluster. The origin of the isolates and the genetic group were partially related. All isolates from Paraná were in cluster I, all isolates from Lobería were in cluster II, and all isolates from Pergamino and Santa Fe were in cluster III. Our results suggest that the 37 native strains of T. harzianum are important in biocontrol programs and could be advantageous for the preparation of biopesticides adapted to the agroecological conditions of wheat culture.

  16. Myco-Biocontrol of Insect Pests: Factors Involved, Mechanism, and Regulation

    PubMed Central

    Sandhu, Sardul Singh; Sharma, Anil K.; Beniwal, Vikas; Goel, Gunjan; Batra, Priya; Kumar, Anil; Jaglan, Sundeep; Sharma, A. K.; Malhotra, Sonal

    2012-01-01

    The growing demand for reducing chemical inputs in agriculture and increased resistance to insecticides have provided great impetus to the development of alternative forms of insect-pest control. Myco-biocontrol offers an attractive alternative to the use of chemical pesticides. Myco-biocontrol agents are naturally occurring organisms which are perceived as less damaging to the environment. Their mode of action appears little complex which makes it highly unlikely that resistance could be developed to a biopesticide. Past research has shown some promise of the use of fungi as a selective pesticide. The current paper updates us about the recent progress in the field of myco-biocontrol of insect pests and their possible mechanism of action to further enhance our understanding about the biological control of insect pests. PMID:22567344

  17. Synthesis of genistein 2,3-anhydroglycoconjugates -- potential antiproliferative agents.

    PubMed

    Goj, Katarzyna; Rusin, Aleksandra; Szeja, Wiesław; Kitel, Radosław; Komor, Roman; Grynkiewicz, Grzegorz

    2012-01-01

    The title compounds, variously protected 2.3-anhydrosugars linked with genistein through an alkyl chain, were synthesized in a sequence of reactions. First step involved Ferrier rearragement of 3,4-di-O-acetyl-L-rhamnal with 3-bromopropanol to obtain 2,3-unsaturated bromoalkylglycosides. The next step was epoxidation with m-CPBA and finally these compounds were connected with genistein in reaction of 7-O-genistein tetra-butylamonium salt with 2,3-anhydro bromoalkylglycosides. Obtained glycoconjugates differ in orientation of an oxirane ring and the protecting group in a sugar moiety. All compounds were tested in vitro for antiproliferative potential in cancer cells.

  18. First polymer "ruthenium-cyclopentadienyl" complex as potential anticancer agent.

    PubMed

    Valente, Andreia; Garcia, Maria Helena; Marques, Fernanda; Miao, Yong; Rousseau, Cyril; Zinck, Philippe

    2013-10-01

    d-glucose end-capped polylactide ruthenium cyclopentadienyl complex (RuPMC) was newly synthesized by a straightforward method. RuPMC was tested against human MCF7 and MDAMB231 breast and A2780 ovarian adenocarcinoma revealing IC50 values in the micromolar range. A pH dependent hydrolysis is advanced by preliminary UV-visible spectroscopy. Cellular distribution studies showed that RuPMC is predominantly found in the nucleus and in the membrane. Data suggest potential application of RuPMC as a new drug delivery system for Ru(II)Cp compounds. © 2013.

  19. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-22

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.

  20. Potential Antiosteoporotic Agents from Plants: A Comprehensive Review

    PubMed Central

    Jia, Min; Nie, Yan; Cao, Da-Peng; Xue, Yun-Yun; Wang, Jie-Si; Zhao, Lu; Rahman, Khalid; Zhang, Qiao-Yan; Qin, Lu-Ping

    2012-01-01

    Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease. PMID:23365596

  1. Nutraceuticals as potential therapeutic agents for colon cancer: a review.

    PubMed

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M; Maniam, Gaanty Pragas; I