Biomarkers of PTSD: military applications and considerations.
Lehrner, Amy; Yehuda, Rachel
2014-01-01
Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.
Clinical grade adult stem cell banking
Thirumala, Sreedhar; Goebel, W Scott
2009-01-01
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678
Clinical uses of liver stem cells.
Dan, Yock Young
2012-01-01
Liver transplantation offers a definitive cure for many liver and metabolic diseases. However, the complex invasive procedure and paucity of donor liver graft organs limit its clinical applicability. Liver stem cells provide a potentially limitless source of cells that would be useful for a variety of clinical applications. These stem cells or hepatocytes generated from them can be used in cellular transplantation, bioartificial liver devices and drug testing in the development of new drugs. In this chapter, we review the technical aspects of clinical applications of liver stem cells and the progress made to date in the clinical setting. The difficulties and challenges of realizing the potential of these cells are discussed.
Applications of mid-infrared spectroscopy in the clinical laboratory setting.
De Bruyne, Sander; Speeckaert, Marijn M; Delanghe, Joris R
2018-01-01
Fourier transform mid-infrared (MIR-FTIR) spectroscopy is a nondestructive, label-free, highly sensitive and specific technique that provides complete information on the chemical composition of biological samples. The technique both can offer fundamental structural information and serve as a quantitative analysis tool. Therefore, it has many potential applications in different fields of clinical laboratory science. Although considerable technological progress has been made to promote biomedical applications of this powerful analytical technique, most clinical laboratory analyses are based on spectroscopic measurements in the visible or ultraviolet (UV) spectrum and the potential role of FTIR spectroscopy still remains unexplored. In this review, we present some general principles of FTIR spectroscopy as a useful method to study molecules in specimens by MIR radiation together with a short overview of methods to interpret spectral data. We aim at illustrating the wide range of potential applications of the proposed technique in the clinical laboratory setting with a focus on its advantages and limitations and discussing the future directions. The reviewed applications of MIR spectroscopy include (1) quantification of clinical parameters in body fluids, (2) diagnosis and monitoring of cancer and other diseases by analysis of body fluids, cells, and tissues, (3) classification of clinically relevant microorganisms, and (4) analysis of kidney stones, nails, and faecal fat.
Potential drawbacks in cell-assisted lipotransfer: A systematic review of existing reports (Review)
HUANG, SHENG; ZHAO, WEILIANG; WANG, ZIHUA; TAO, KAI; LIU, XIAOYAN; CHANG, PENG
2016-01-01
Cell-assisted lipotransfer (CAL) has been widely used in various clinical applications, including breast augmentation following mammectomy, soft-tissue reconstruction and wound healing. However, the clinical application of CAL has been restricted due to the transplanted fat tissues being readily liquefied and absorbed. The present review examines 57 previously published studies involving CAL, including fat grafting or fat transfer with human adipose-stem cells in all known databases. Of these 57 articles, seven reported the clinical application of CAL. In the 57 studies, the majority of the fat tissues were obtained from the abdomen via liposuction of the seven clinical studies, four were performed in patients requiring breast augmentation, one in a patient requiring facial augmentation, one in a patient requiring soft tissue augmentation/reconstruction and one in a patient requiring fat in their upper arms. Despite the potential risks, there has been an increased demand for CAL in in cosmetic or aesthetic applications. Thus, criteria and guidelines are necessary for the clinical application of CAL technology. PMID:26677061
Bioimpedance imaging: an overview of potential clinical applications.
Bayford, Richard; Tizzard, Andrew
2012-10-21
Electrical Impedance Tomography (EIT) is an imaging technique based on multiple bio impedance measurements to produce a map (image) of impedance or changes in impedance across a region. Its origins lay in geophysics where it is still used to today. This review highlights potential clinical applications of EIT. Beginning with a brief overview of the underlying principles behind the modality, it describes the background research leading towards the development of the application of EIT for monitoring pulmonary function, detecting and localising tumours and monitoring brain function.
Medel, Ricky; Monteith, Stephen J.; Elias, W. Jeffrey; Eames, Matthew; Snell, John; Sheehan, Jason P.; Wintermark, Max; Jolesz, Ferenc A.; Kassell, Neal F.
2014-01-01
Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS) represents a novel combination of technologies that is actively being realized as a non-invasive therapeutic tool for a myriad of conditions. These applications are reviewed with a focus on neurological utilization. A combined search of Pubmed and Medline was performed to identify the key events and current status of MRgFUS, with a focus on neurological applications. MRgFUS signifies a potentially ideal device for the treatment of neurological diseases. As it is nearly real-time, it allows monitored provision of treatment location and energy deposition, is noninvasive, thereby limiting or eliminating disruption of normal tissue, provides focal delivery of therapeutic agents, enhances radiation delivery, and permits modulation of neural function. Multiple clinical applications are currently in clinical use and many more are under active preclinical investigation. The therapeutic potential of MRgFUS is expanding rapidly. Although clinically in its infancy, preclinical and early phase I clinical trials in neurosurgery suggest a promising future for MRgFUS. Further investigation is necessary to define its true potential and impact. PMID:22791029
Application of Platelet-Rich Plasma to Disorders of the Knee Joint
Mandelbaum, Bert R.; McIlwraith, C. Wayne
2013-01-01
Importance. The promising therapeutic potential and regenerative properties of platelet-rich plasma (PRP) have rapidly led to its widespread clinical use in musculoskeletal injury and disease. Although the basic scientific rationale surrounding PRP products is compelling, the clinical application has outpaced the research. Objective. The purpose of this article is to examine the current concepts around the basic science of PRP application, different preparation systems, and clinical application of PRP in disorders in the knee. Evidence Acquisition. A systematic search of PubMed for studies that evaluated the basic science, preparation and clinical application of platelet concentrates was performed. The search used terms, including platelet-rich plasma or PRP preparation, activation, use in the knee, cartilage, ligament, and meniscus. Studies found in the initial search and related studies were reviewed. Results. A comprehensive review of the literature supports the potential use of PRP both nonoperatively and intraoperatively, but highlights the absence of large clinical studies and the lack of standardization between method, product, and clinical efficacy. Conclusions and Relevance. In addition to the call for more randomized, controlled clinical studies to assess the clinical effect of PRP, at this point, it is necessary to investigate PRP product composition and eventually have the ability to tailor the therapeutic product for specific indications. PMID:26069674
Dwyer‐White, Molly; Doshi, Aalap; Hill, Mary; Pienta, Kenneth J.
2011-01-01
Abstract Recruiting volunteers into clinical research remains a significant challenge for many clinical research study teams, thus the Michigan Institute for Clinical and Health Research (MICHR) at the University of Michigan developed UMClinicalStudies (http://www.UMClinicalStudies.org)—a Web application that links the community to a single gateway for clinical research. UMClinicalStudies (formerly named “Engage”) is an integral piece of MICHR’s efforts to increase clinical research participation in order to advance medical discoveries. Despite the initial success of the application, barriers to research participation remain, including the applications accessibility for potential research volunteers and study team members. In response, new initiatives were instigated to identify user needs, in order to broaden the ability to simultaneously assist researchers in recruitment activities, while also aiding potential volunteers in the exploration of and participation in clinical research opportunities. To do this, improvements to the interface and functionality were identified and implemented for both the public and the research audiences through extensive system analysis, and through the application of human computer interactivity processes, resulting in significant improvements in usability and ultimately research volunteerism, indicating that utilizing such technology is pivotal in reaching broader audiences for clinical trial participation. Clin Trans Sci 2011; Volume 4: 363–368 PMID:22029810
Quo Vadis medycyno regeneracyjna?
Ratajczak, Mariusz Z.; Suszyńska, Malwina
2013-01-01
There are presented the most important sources of pluripotent stem cells for potential application in the regenerative medicine. This review summarizes also advantages and disadvantages for potential application of these cells in clinical medicine. PMID:24068834
From Diagnosis to Treatment: Clinical Applications of Nanotechnology in Thoracic Surgery
Digesu, Christopher S.; Hofferberth, Sophie C.; Grinstaff, Mark W.; Colson, Yolonda L.
2016-01-01
Synopsis Nanotechnology is an emerging field of medicine with significant potential to become a powerful adjunct to cancer therapy, and in particular, thoracic surgery. Using the unique properties of several different nanometer-sized platforms, therapy can be delivered to tumors in a more targeted fashion, with less of the systemic toxicity associated with traditional chemotherapeutics. In addition to the packaged delivery of chemotherapeutic drugs, nanoparticles show potential to aid in the diagnosis, pre-operative characterization, and intraoperative localization of thoracic tumors and their lymphatics. With increasing interest in their clinical application, there is a rapid expansion of in vitro and in vivo studies being conducted that provide a better understanding of potential toxicities and hopes of broader clinical translation. Focused research into nanotechnology’s ability to deliver both diagnostics and therapeutics has led to the development of a field known as nanotheranostics which promises to improve the treatment of thoracic malignancies through enhanced tumor targeting, controlled drug delivery, and therapeutic monitoring. This article reviews the various types of nanoplatforms, their unique properties, and the potential for clinical application in thoracic surgery. PMID:27112260
Quo Vadis medycyno regeneracyjna?: Quo Vadis Regenerative Medicine?
Ratajczak, Mariusz Z; Suszyńska, Malwina
2013-07-01
There are presented the most important sources of pluripotent stem cells for potential application in the regenerative medicine. This review summarizes also advantages and disadvantages for potential application of these cells in clinical medicine.
Clinical Epidemiology Unit - overview of research areas
Clinical Epidemiology Unit (CEU) conducts etiologic research with potential clinical and public health applications, and leads studies evaluating population-based early detection and cancer prevention strategies
Clinical application of vestibular evoked myogenic potential (VEMP).
Murofushi, Toshihisa
2016-08-01
The author reviewed clinical aspects of vestibular evoked myogenic potentials (VEMPs). Now two types of VEMPs are available. The first one is cervical VEMP, which is recorded in the sternocleidomastoid muscle and predominantly reflects sacculo-collic reflex. The other is ocular VEMP, which is usually recorded below the lower eye lid and predominantly reflects utriculo-ocular reflex. VEMPs play important roles not only for assessment of common vestibular diseases but also for establishment of new clinical entities. Clinical application in Meniere's disease, vestibular neuritis, benign paroxysmal positional vertigo, vestibular migraine, idiopathic otolithic vertigo, and central vertigo/dizziness was reviewed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Jones, David R; McBlane, James W; McNaughton, Graham; Rajakumaraswamy, Nishanthan; Wydenbach, Kirsty
2013-01-01
The safety of trial subjects is the tenet that guides the regulatory assessment of a Clinical Trial Authorization application and applies equally to trials involving small molecules and those with biological/biotechnological products, including Advanced Therapy Medicinal Products. The objective of a regulator is to ensure that the potential risk faced by a trial subject is outweighed by the potential benefit to them from taking part in the trial. The focus of the application review is to assess whether risks have been identified and appropriate steps taken to alleviate these as much as possible. Other factors are also taken into account during a review, such as regulatory requirements, and emerging non-clinical and clinical data from other trials on the same or similar products. This paper examines the regulatory review process of a Clinical Trial Authorization application from the perspectives of Quality, Non-Clinical and Clinical Regulatory Assessors at the Medicines and Healthcare products Regulatory Agency. It should be noted that each perspective has highlighted specific issues from their individual competence and that these can be different between the disciplines. PMID:23216470
Medical laser application: translation into the clinics
NASA Astrophysics Data System (ADS)
Sroka, Ronald; Stepp, Herbert; Hennig, Georg; Brittenham, Gary M.; Rühm, Adrian; Lilge, Lothar
2015-06-01
Medical laser applications based on widespread research and development is a very dynamic and increasingly popular field from an ecological as well as an economic point of view. Conferences and personal communication are necessary to identify specific requests and potential unmet needs in this multi- and interdisciplinary discipline. Precise gathering of all information on innovative, new, or renewed techniques is necessary to design medical devices for introduction into clinical applications and finally to become established for routine treatment or diagnosis. Five examples of successfully addressed clinical requests are described to show the long-term endurance in developing light-based innovative clinical concepts and devices. Starting from laboratory medicine, a noninvasive approach to detect signals related to iron deficiency is shown. Based upon photosensitization, fluorescence-guided resection had been discovered, opening the door for photodynamic approaches for the treatment of brain cancer. Thermal laser application in the nasal cavity obtained clinical acceptance by the introduction of new laser wavelengths in clinical consciousness. Varicose veins can be treated by innovative endoluminal treatment methods, thus reducing side effects and saving time. Techniques and developments are presented with potential for diagnosis and treatment to improve the clinical situation for the benefit of the patient.
Biological Gene Delivery Vehicles: Beyond Viral Vectors
Seow, Yiqi; Wood, Matthew J
2009-01-01
Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications. PMID:19277019
Biological gene delivery vehicles: beyond viral vectors.
Seow, Yiqi; Wood, Matthew J
2009-05-01
Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications.
Prange-Lasonder, Gerdienke B; Radder, Bob; Kottink, Anke I R; Melendez-Calderon, Alejandro; Buurke, Jaap H; Rietman, Johan S
2017-07-01
Recent technological developments regarding wearable soft-robotic devices extend beyond the current application of rehabilitation robotics and enable unobtrusive support of the arms and hands during daily activities. In this light, the HandinMind (HiM) system was developed, comprising a soft-robotic, grip supporting glove with an added computer gaming environment. The present study aims to gain first insight into the feasibility of clinical application of the HiM system and its potential impact. In order to do so, both the direct influence of the HiM system on hand function as assistive device and its therapeutic potential, of either assistive or therapeutic use, were explored. A pilot randomized clinical trial was combined with a cross-sectional measurement (comparing performance with and without glove) at baseline in 5 chronic stroke patients, to investigate both the direct assistive and potential therapeutic effects of the HiM system. Extended use of the soft-robotic glove as assistive device at home or with dedicated gaming exercises in a clinical setting was applicable and feasible. A positive assistive effect of the soft-robotic glove was proposed for pinch strength and functional task performance 'lifting full cans' in most of the five participants. A potential therapeutic impact was suggested with predominantly improved hand strength in both participants with assistive use, and faster functional task performance in both participants with therapeutic application.
Spirulina in Clinical Practice: Evidence-Based Human Applications
Karkos, P. D.; Leong, S. C.; Karkos, C. D.; Sivaji, N.; Assimakopoulos, D. A.
2011-01-01
Spirulina or Arthrospira is a blue-green alga that became famous after it was successfully used by NASA as a dietary supplement for astronauts on space missions. It has the ability to modulate immune functions and exhibits anti-inflammatory properties by inhibiting the release of histamine by mast cells. Multiple studies investigating the efficacy and the potential clinical applications of Spirulina in treating several diseases have been performed and a few randomized controlled trials and systematic reviews suggest that this alga may improve several symptoms and may even have an anticancer, antiviral and antiallergic effects. Current and potential clinical applications, issues of safety, indications, side-effects and levels of evidence are addressed in this review. Areas of ongoing and future research are also discussed. PMID:18955364
Neuroprotective effect of lidocaine: is there clinical potential?
Leng, Tiandong; Gao, Xiuren; Dilger, James P; Lin, Jun
2016-01-01
Local anesthetic lidocaine has been shown to be protective in animal models of focal and global ischemia as well as in in vitro hypoxic models. Lidocaine has been tested in patients for its potential protective effect on postoperative cognitive dysfunction. This mini-review summarizes the laboratory and clinical evidences and discusses its clinical applications as neuroprotective agent. PMID:27186318
Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications.
Krumm, Patrick; Mangold, Stefanie; Gatidis, Sergios; Nikolaou, Konstantin; Nensa, Felix; Bamberg, Fabian; la Fougère, Christian
2018-05-01
Combined PET/MRI is a novel imaging method integrating the advances of functional and morphological MR imaging with PET applications that include assessment of myocardial viability, perfusion, metabolism of inflammatory tissue and tumors, as well as amyloid deposition imaging. As such, PET/MRI is a promising tool to detect and characterize ischemic and non-ischemic cardiomyopathies. To date, the greatest benefit may be expected for diagnostic evaluation of systemic diseases and cardiac masses that remain unclear in cardiac MRI, as well as for clinical and scientific studies in the setting of ischemic cardiomyopathies. Diagnosis and therapeutic monitoring of cardiac sarcoidosis has the potential of a possible 'killer-application' for combined cardiac PET/MRI. In this article, we review the current evidence and discuss current and potential future applications of cardiac PET/MRI.
Zhang, Melvyn; Bingham, Kathleen; Kantarovich, Karin; Laidlaw, Jennifer; Urbach, David; Sockalingam, Sanjeev; Ho, Roger
2016-04-30
Delirium is a common medical condition with a high prevalence in hospital settings. Effective delirium management requires a multi-component intervention, including the use of Interprofessional teams and evidence-based interventions at the point of care. One vehicle for increasing access of delirium practice tools at the point of care is E-health. There has been a paucity of studies describing the implementation of delirium related clinical application. The purpose of this current study is to acquire users' perceptions of the utility, feasibility and effectiveness of a smartphone application for delirium care in a general surgery unit. In addition, the authors aimed to elucidate the potential challenges with implementing this application. This quantitative study was conducted between January 2015 and June 2015 at the University Health Network, Toronto General Hospital site. Participants met inclusion criteria if they were clinical staff on the General Surgery Unit at the Toronto General Hospital site and had experience caring for patients with delirium. At the conclusion of the 4 weeks after the implementation of the intervention, participants were invited by email to participate in a focus group to discuss their perspectives related to using the delirium application Our findings identified several themes related to the implementation and use of this smartphone application in an acute care clinical setting. These themes will provide clinicians preparing to use a smartphone application to support delirium care with an implementation framework. This study is one of the first to demonstrate the potential utility of a smartphone application for delirium inter-professional education. While this technology does appeal to healthcare professionals, it is important to note potential implementation challenges. Our findings provide insights into these potential barriers and can be used to assist healthcare professionals considering the development and use of an inter-professional clinical care application in their setting.
The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation
Kim, Eun-Jung; Kim, Nayoun; Cho, Seok-Goo
2013-01-01
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT. PMID:23306700
Yager, Joel; Feinstein, Robert E
2017-04-01
Offering a new framework for understanding and studying basic dimensions of normal and abnormal human functioning and mental disorders, the National Institute of Mental Health (NIMH) has initiated the Research Domain Criteria (RDoC) project in which a series of higher order domains, representing major systems of emotion, cognition, motivation, and social behavior, and their constituent operationally defined constructs serve as organizing templates for further research and inquiry, eg, to discover validated biomarkers and endophenotypes. Cutting across traditional DSM diagnoses, the domains are defined as Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Systems for Social Processes, and Arousal/Regulatory Systems. To inform educators, trainees, and practitioners about RDoC, alert them to potential practical applications, and encourage their broad exploration in clinical settings, this article reviews the RDoC domains and their subsystem constructs with regard to potential current clinical considerations and applications. We describe ways in which the RDoC domains and constructs offer transdiagnostic frameworks for complementing traditional practice; suggest clinical questions to help elucidate salient information; and, translating RDoC domains and constructs headings into clinically friendly language, offer a template for the psychiatric review of systems that can serve in clinical notes. © Copyright 2017 Physicians Postgraduate Press, Inc.
Perspective on Clinical Application of Biomarkers in AKI
Mansour, Sherry G.
2017-01-01
Several biomarkers of renal injury have been identified but the utility of these biomarkers is largely confined to research studies, whereas widespread clinical applicability is limited. This is partly because the use of serum creatinine as the comparator has several limitations and restricts the full interpretation of biomarker performance. To highlight the potential for clinical application of biomarkers, the most pertinent biomarker data are summarized here, using clinically relevant scenarios in which biomarkers could assist with diagnostic and management dilemmas. The paradigms proposed in this review aim to enhance the clinical diagnosis, management, and prognosis of AKI through the combined use of available clinical markers and novel inflammatory, injury, and repair biomarkers. PMID:28220028
Hendriks, Saskia; Dondorp, Wybo; de Wert, Guido; Hamer, Geert; Repping, Sjoerd; Dancet, Eline A F
2015-01-01
Recent progress in the formation of artificial gametes, i.e. gametes generated from progenitors or somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction. In animals, live births have already been achieved using artificial gametes of varying (cell type) sources and biological research seems to be progressing steadily toward clinical application in humans. Artificial gametes could potentially help not only infertile heterosexual couples of reproductive age of which one or both partners lacks functional gametes, but also post-menopausal women and same-sex couples, to conceive a child who will be genetically related to them. But as clinical application of these new technologies may have wider societal consequences, a proactive consideration of the possible impact seems timely and important. This review aims to contribute to this by providing a systematic overview of the potential consequences of clinical application of artificial gametes anticipated by different stakeholders. The electronic database 'Medline/Pubmed' was systematically searched with medical subject heading terms (MesH) for articles published in English between January 1970 and December 2013. Articles were selected based on eligibility and reference lists of eligible studies were hand searched. The reported potential consequences of clinical application of artificial gametes were extracted from the articles and were grouped into categories by content analysis. Per category, we noted which stakeholders referred to which potential consequences, based on author affiliations and, if applicable, study participants. The systematic search yielded 2424 articles, and 84 studies were included after screening. Nine positive consequences, 21 specific consequences requiring consideration and 22 recommendations referring to clinical application of artificial gametes were documented. All positive consequences, consequences requiring consideration and recommendations could be categorized under the following eight objectives to be safeguarded during clinical application of artificial gametes: (i) timing the implementation of new treatments correctly, (ii) meeting 'plausible demands of patients', (iii) improving and safeguarding public health, (iv) promoting the progress of medical science in the interest of future patients, (v) providing treatments that are morally acceptable for the general public, (vi) controlling medical practice, (vii) offering treatments that allow acquisition of informed consent and (viii) funding treatments fairly. Professionals specialized in biomedical science, science journalists and professionals specialized in ethics all addressed these eight objectives on artificial gametes, whereas professionals specialized in law or political science addressed seven objectives. Although one study reported on the perspective of parents of under-aged patients on three objectives, the perspectives of patients themselves were not reported by the reviewed literature. Of course, clinical introduction of artificial gametes should only be considered on the basis of reassuring outcomes of appropriate preclinical effectiveness and safety studies. In addition, potential users' views on the desirability and acceptability of artificial gametes should be studied before clinical introduction. A societal debate including all stakeholders is needed to determine the relative importance of all arguments in favor of and against the introduction of artificial gametes into clinical practice. More broadly, establishing pre-implementation processes for new medical techniques is relevant for all fields of medicine. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hardmeier, Martin; Leocani, Letizia; Fuhr, Peter
2017-09-01
Evoked potentials (EP) characterize signal conduction in selected tracts of the central nervous system in a quantifiable way. Since alteration of signal conduction is the main mechanism of symptoms and signs in multiple sclerosis (MS), multimodal EP may serve as a representative measure of the functional impairment in MS. Moreover, EP have been shown to be predictive for disease course, and thus might help to select patient groups at high risk of progression for clinical trials. EP can detect deterioration, as well as improvement of impulse propagation, independently from the mechanism causing the change. Therefore, they are candidates for biomarkers with application in clinical phase-II trials. Applicability of EP in multicenter trials has been limited by different standards of registration and assessment.
Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions
Breakefield, Xandra O.; Leonard, Joshua N.
2015-01-01
This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury. PMID:25292428
From POEM to POET: Applications and perspectives for submucosal tunnel endoscopy.
Chiu, Philip W Y; Inoue, Haruhiro; Rösch, Thomas
2016-12-01
Recent advances in submucosal endoscopy have unlocked a new horizon for potential development in diagnostic and therapeutic endoscopy. Increasing evidence has demonstrated that peroral endoscopic myotomy (POEM) is not only clinically feasible and safe, but also has excellent results in symptomatic relief of achalasia. The success of submucosal endoscopy in performance of tumor resection has confirmed the potential of this new area in diagnostic and therapeutic endoscopy. This article reviews the current applications and evidence, from POEM to peroral endoscopic tunnel resection (POET), while exploring the possible future clinical applications in this field. © Georg Thieme Verlag KG Stuttgart · New York.
Swerdlow, Daniel R; Cleary, Kevin; Wilson, Emmanuel; Azizi-Koutenaei, Bamshad; Monfaredi, Reza
2017-04-01
Ultrasound imaging requires trained personnel. Advances in robotics and data transmission create the possibility of telesonography. This review introduces clinicians to current technical work in and potential applications of this developing capability. Telesonography offers advantages in hazardous or remote environments. Robotically assisted ultrasound can reduce stress injuries in sonographers and has potential utility during robotic surgery and interventional procedures.
7T: Physics, safety, and potential clinical applications.
Kraff, Oliver; Quick, Harald H
2017-12-01
With more than 60 installed magnetic resonance imaging (MRI) systems worldwide operating at a magnetic field strength of 7T or higher, ultrahigh-field (UHF) MRI has been established as a platform for clinically oriented research in recent years. Profound technical and methodological developments have helped overcome the inherent physical challenges of UHF radiofrequency (RF) signal homogenization in the human body. The ongoing development of dedicated RF coil arrays was pivotal in realizing UHF body MRI, beyond mere brain imaging applications. Another precondition to clinical application of 7T MRI is the safety testing of implants and the establishment of safety concepts. Against this backdrop, 7T MRI and MR spectroscopy (MRS) recently have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. This article provides an overview of the immanent physical challenges of 7T UHF MRI and discusses recent technical solutions and safety concepts. Furthermore, recent clinically oriented studies are highlighted that span a broad application spectrum from 7T UHF brain to body MRI. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1573-1589. © 2017 International Society for Magnetic Resonance in Medicine.
Orlenko, Alena; Moore, Jason H; Orzechowski, Patryk; Olson, Randal S; Cairns, Junmei; Caraballo, Pedro J; Weinshilboum, Richard M; Wang, Liewei; Breitenstein, Matthew K
2018-01-01
With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified the suggested association. Increased homocysteine is thought to be associated with vitamin B12 deficiency - evaluation for potential clinical relevance is suggested. While considerations for clinical metabolic profiling are recommended, including adjustment approaches for clinical confounders, AutoML presents an exciting tool to enhance clinical metabolic profiling and advance translational research endeavors.
Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation.
Paes, Bárbara Cristina Martins Fernandes; Moço, Pablo Diego; Pereira, Cristiano Gonçalves; Porto, Geciane Silveira; de Sousa Russo, Elisa Maria; Reis, Luiza Cunha Junqueira; Covas, Dimas Tadeu; Picanço-Castro, Virginia
2017-06-01
Ten years have passed since the first publication announcing the generation of induced pluripotent stem cells (iPSCs). Issues related to ethics, immune rejection, and cell availability seemed to be solved following this breakthrough. The development of iPSC technology allows advances in in vitro cell differentiation for cell therapy purpose and other clinical applications. This review provides a perspective on the iPSC potential for cell therapies, particularly for hematological applications. We discuss the advances in in vitro hematopoietic differentiation, the possibilities to employ iPSC in hematology studies, and their potential clinical application in hematologic diseases. The generation of red blood cells and functional T cells and the genome editing technology applied to mutation correction are also covered. We highlight some of the requirements and obstacles to be overcome before translating these cells from research to the clinic, for instance, iPSC variability, genotoxicity, the differentiation process, and engraftment. Also, we evaluate the patent landscape and compile the clinical trials in the field of pluripotent stem cells. Currently, we know much more about iPSC than in 2006, but there are still challenges that must be solved. A greater understanding of molecular mechanisms underlying the generation of hematopoietic stem cells is necessary to produce suitable and transplantable hematopoietic stem progenitor cells from iPSC.
Tan, Meng H; Bernstein, Steven J; Gendler, Stephen; Hanauer, David; Herman, William H
2016-03-01
A major challenge in conducting clinical trials/studies is the timely recruitment of eligible subjects. Our aim is to develop a Diabetes Research Registry (DRR) to facilitate recruitment by matching potential subjects interested in research with approved clinical studies using study entry criteria abstracted from their electronic health records (EHR). A committee with expertise in diabetes, quality improvement, information technology, and informatics designed and developed the DRR. Using a hybrid approach, we identified and consented patients interested in research, abstracted their EHRs to assess common eligibility criteria, and contacted them about their interest in participating in specific studies. Investigators submit their requests with study entry criteria to the DRR which then provides a list of potential subjects who may be directly contacted for their study. The DRR meets all local, regional and federal regulatory requirements. After 5 years, the DRR has over 5000 registrants. About 30% have type 1 diabetes and 70% have type 2 diabetes. There are almost equal proportions of men and women. During this period, 31 unique clinical studies from 19 unique investigators requested lists of potential subjects for their studies. Eleven grant applications from 10 unique investigators used aggregated counts of potentially eligible subjects in their applications. The DRR matches potential subjects interested in research with approved clinical studies using study entry criteria abstracted from their EHR. By providing large lists of potentially eligible study subjects quickly, the DRR facilitated recruitment in 31 clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Stenne, R; Hurlimann, T; Godard, Béatrice
2012-01-01
Nutrigenetics is a promising field, but the achievability of expected benefits is challenged by the methodological limitations that are associated with clinical research in that field. The mere existence of these limitations suggests that promises about potential outcomes may be premature. Thus, benefits claimed in scientific journal articles in which these limitations are not acknowledged might stimulate biohype. This article aims to examine whether nutrigenetics clinical research articles are a potential source of biohype. Of the 173 articles identified, 16 contained claims in which clinical applications were extrapolated from study results. The methodological limitations being incompletely acknowledged, these articles could potentially be a source of biohype.
Interpretation and use of natriuretic peptides in non-congestive heart failure settings.
Tsai, Shih-Hung; Lin, Yen-Yue; Chu, Shi-Jye; Hsu, Ching-Wang; Cheng, Shu-Meng
2010-03-01
Natriuretic peptides (NPs) have been found to be useful markers in differentiating acute dyspneic patients presenting to the emergency department (ED) and emerged as potent prognostic markers for patients with congestive heart failure (CHF). The best-established and widely used clinical application of BNP and NT-proBNP testing is for the emergent diagnosis of CHF in patients presenting with acute dyspnea. Nevertheless, elevated NPs levels can be found in many circumstances involving left ventricular (LV) dysfunction or hypertrophy; right ventricular (RV) dysfunction secondary to pulmonary diseases; cardiac inflammatory or infectious diseases; endocrinology diseases and high output status without decreased LV ejection fraction. Even in the absence of significant clinical evidence of volume overload or LV dysfunction, markedly elevated NP levels can be found in patients with multiple comorbidities with a certain degree of prognostic value. Potential clinical applications of NPs are expanded accompanied by emerging reports regarding screening the presence of secondary cardiac dysfunction; monitoring the therapeutic responses, risk stratifications and providing prognostic values in many settings. Clinicians need to have expanded knowledge regarding the interpretation of elevated NPs levels and potential clinical applications of NPs. Clinicians should recognize that currently the only reasonable application for routine practice is limited to differentiation of acute dyspnea, rule-out-diagnostic-tests, monitoring of therapeutic responses and prognosis of acute or decompensated CHF. The rationales as well the potential applications of NPs in these settings are discussed in this review article.
Interpretation and Use of Natriuretic Peptides in Non-Congestive Heart Failure Settings
Lin, Yen-Yue; Chu, Shi-Jye; Hsu, Ching-Wang; Cheng, Shu-Meng
2010-01-01
Natriuretic peptides (NPs) have been found to be useful markers in differentiating acute dyspneic patients presenting to the emergency department (ED) and emerged as potent prognostic markers for patients with congestive heart failure (CHF). The best-established and widely used clinical application of BNP and NT-proBNP testing is for the emergent diagnosis of CHF in patients presenting with acute dyspnea. Nevertheless, elevated NPs levels can be found in many circumstances involving left ventricular (LV) dysfunction or hypertrophy; right ventricular (RV) dysfunction secondary to pulmonary diseases; cardiac inflammatory or infectious diseases; endocrinology diseases and high output status without decreased LV ejection fraction. Even in the absence of significant clinical evidence of volume overload or LV dysfunction, markedly elevated NP levels can be found in patients with multiple comorbidities with a certain degree of prognostic value. Potential clinical applications of NPs are expanded accompanied by emerging reports regarding screening the presence of secondary cardiac dysfunction; monitoring the therapeutic responses, risk stratifications and providing prognostic values in many settings. Clinicians need to have expanded knowledge regarding the interpretation of elevated NPs levels and potential clinical applications of NPs. Clinicians should recognize that currently the only reasonable application for routine practice is limited to differentiation of acute dyspnea, rule-out-diagnostic-tests, monitoring of therapeutic responses and prognosis of acute or decompensated CHF. The rationales as well the potential applications of NPs in these settings are discussed in this review article. PMID:20191004
Mobile Clinical Decision Support Systems in Our Hands - Great Potential but also a Concern.
Masic, Izet; Begic, Edin
2016-01-01
Due to the powerful computer resources as well as the availability of today's mobile devices, a special field of mobile systems for clinical decision support in medicine has been developed. The benefits of these applications (systems) are: availability of necessary hardware (mobile phones, tablets and phablets are widespread, and can be purchased at a relatively affordable price), availability of mobile applications (free or for a "small" amount of money) and also mobile applications are tailored for easy use and save time of clinicians in their daily work. In these systems lies a huge potential, and certainly a great economic benefit, so this issue must be approached multidisciplinary.
Clinical applications of breath testing
Paschke, Kelly M; Mashir, Alquam
2010-01-01
Breath testing has the potential to benefit the medical field as a cost-effective, non-invasive diagnostic tool for diseases of the lung and beyond. With growing evidence of clinical worth, standardization of methods, and new sensor and detection technologies the stage is set for breath testing to gain considerable attention and wider application in upcoming years. PMID:21173863
Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction
Khattab, Ahmad; Islam, Mohammad Ariful; Hweij, Khaled Abou; Zeitouny, Joya; Waters, Renae; Sayegh, Malek; Hossain, Md Monowar; Paul, Arghya
2015-01-01
Cardiac tissue damage due to myocardial infarction (MI) is one of the leading causes of mortality worldwide. The available treatments of MI include pharmaceutical therapy, medical device implants, and organ transplants, all of which have severe limitations including high invasiveness, scarcity of donor organs, thrombosis or stenosis of devices, immune rejection, and prolonged hospitalization time. Injectable hydrogels have emerged as a promising solution for in situ cardiac tissue repair in infarcted hearts after MI. In this review, an overview of various natural and synthetic hydrogels for potential application as injectable hydrogels in cardiac tissue repair and regeneration is presented. The review starts with brief discussions about the pathology of MI, its current clinical treatments and their limitations, and the emergence of injectable hydrogels as a potential solution for post MI cardiac regeneration. It then summarizes various hydrogels, their compositions, structures and properties for potential application in post MI cardiac repair, and recent advancements in the application of injectable hydrogels in treatment of MI. Finally, the current challenges associated with the clinical application of injectable hydrogels to MI and their potential solutions are discussed to help guide the future research on injectable hydrogels for translational therapeutic applications in regeneration of cardiac tissue after MI. PMID:27668147
Application and Exploration of Big Data Mining in Clinical Medicine.
Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling
2016-03-20
To review theories and technologies of big data mining and their application in clinical medicine. Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster-Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Big data mining has the potential to play an important role in clinical medicine.
The Promise of Neurotechnology in Clinical Translational Science.
White, Susan W; Richey, John A; Gracanin, Denis; Bell, Martha Ann; LaConte, Stephen; Coffman, Marika; Trubanova, Andrea; Kim, Inyoung
2015-09-01
Neurotechnology is broadly defined as a set of devices used to understand neural processes and applications that can potentially facilitate the brain's ability to repair itself. In the past decade, an increasingly explicit understanding of basic biological mechanisms of brain-related illnesses has produced applications that allow a direct yet noninvasive method to index and manipulate the functioning of the human nervous system. Clinical scientists are poised to apply this technology to assess, treat, and better understand complex socioemotional processes that underlie many forms of psychopathology. In this review, we describe the potential benefits and hurdles, both technical and methodological, of neurotechnology in the context of clinical dysfunction. We also offer a framework for developing and evaluating neurotechnologies that is intended to expedite progress at the nexus of clinical science and neural interface designs by providing a comprehensive vocabulary to describe the necessary features of neurotechnology in the clinic.
The Promise of Neurotechnology in Clinical Translational Science
White, Susan W.; Richey, John A.; Gracanin, Denis; Bell, Martha Ann; LaConte, Stephen; Coffman, Marika; Trubanova, Andrea; Kim, Inyoung
2014-01-01
Neurotechnology is broadly defined as a set of devices used to understand neural processes and applications that can potentially facilitate the brain’s ability to repair itself. In the past decade, an increasingly explicit understanding of basic biological mechanisms of brain-related illnesses has produced applications that allow a direct yet noninvasive method to index and manipulate the functioning of the human nervous system. Clinical scientists are poised to apply this technology to assess, treat, and better understand complex socioemotional processes that underlie many forms of psychopathology. In this review, we describe the potential benefits and hurdles, both technical and methodological, of neurotechnology in the context of clinical dysfunction. We also offer a framework for developing and evaluating neurotechnologies that is intended to expedite progress at the nexus of clinical science and neural interface designs by providing a comprehensive vocabulary to describe the necessary features of neurotechnology in the clinic. PMID:26504676
Implications of pharmacogenomics for drug development and clinical practice.
Ginsburg, Geoffrey S; Konstance, Richard P; Allsbrook, Jennifer S; Schulman, Kevin A
2005-11-14
Pharmacogenomics is likely to be among the first clinical applications of the Human Genome Project and is certain to have an enormous impact on the clinical practice of medicine. Herein, we discuss the potential implications of pharmacogenomics on the drug development process, including drug safety, productivity, market segmentation, market expansion, differentiation, and personalized health care. We also review 3 challenges facing the translation of pharmacogenomics into clinical practice: dependence on information technology, limited health care financing, and the scientific uncertainty surrounding validation of specific applications of the technology. To our knowledge, there is currently no formal agenda to promote and cultivate innovation, to develop progressive information technology, or to obtain the financing that would be required to advance the use of pharmacogenomic technologies in patient care. Although the potential of these technologies is driving change in the development of clinical sciences, it remains to be seen which health care systems level needs will be addressed.
Clinical applications of bioactive milk components
Newburg, David S.
2015-01-01
Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications. PMID:26011900
Clinical applications of bioactive milk components.
Hill, David R; Newburg, David S
2015-07-01
Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications.
Clinical Applications of Resting State Functional Connectivity
Fox, Michael D.; Greicius, Michael
2010-01-01
During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm. PMID:20592951
Toxicity of inorganic nanomaterials in biomedical imaging.
Li, Jinxia; Chang, Xueling; Chen, Xiaoxia; Gu, Zhanjun; Zhao, Feng; Chai, Zhifang; Zhao, Yuliang
2014-01-01
Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Fino, Edita; Mazzetti, Michela
2018-04-23
Smartphone applications are considered as the prime candidate for the purposes of large-scale, low-cost and long-term sleep monitoring. How reliable and scientifically grounded is smartphone-based assessment of healthy and disturbed sleep remains a key issue in this direction. Here we offer a review of validation studies of sleep applications to the aim of providing some guidance in terms of their reliability to assess sleep in healthy and clinical populations, and stimulating further examination of their potential for clinical use and improved sleep hygiene. Electronic literature review was conducted on Pubmed. Eleven validation studies published since 2012 were identified, evaluating smartphone applications' performance compared to standard methods of sleep assessment in healthy and clinical samples. Studies with healthy populations show that most sleep applications meet or exceed accuracy levels of wrist-based actigraphy in sleep-wake cycle discrimination, whereas performance levels drop in individuals with low sleep efficiency (SE) and in clinical populations, mirroring actigraphy results. Poor correlation with polysomnography (PSG) sleep sub-stages is reported by most accelerometer-based apps. However, multiple parameter-based applications (i.e., EarlySense, SleepAp) showed good capability in detection of sleep-wake stages and sleep-related breathing disorders (SRBD) like obstructive sleep apnea (OSA) respectively with values similar to PSG. While the reviewed evidence suggests a potential role of smartphone sleep applications in pre-screening of SRBD, more experimental studies are warranted to assess their reliability in sleep-wake detection particularly. Apps' utility in post treatment follow-up at home or as an adjunct to the sleep diary in clinical setting is also stressed.
[Latest development in mass spectrometry for clinical application].
Takino, Masahiko
2013-09-01
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.
Sen, Anish N; Gopinath, Shankar P; Robertson, Claudia S
2016-07-01
Near-infrared spectroscopy (NIRS) is a technique by which the interaction between light in the near-infrared spectrum and matter can be quantitatively measured to provide information about the particular chromophore. Study into the clinical application of NIRS for traumatic brain injury (TBI) began in the 1990s with early reports of the ability to detect intracranial hematomas using NIRS. We highlight the advances in clinical applications of NIRS over the past two decades as they relate to TBI. We discuss recent studies evaluating NIRS techniques for intracranial hematoma detection, followed by the clinical application of NIRS in intracranial pressure and brain oxygenation measurement, and conclude with a summary of potential future uses of NIRS in TBI patient management.
Ethical and Safety Issues of Stem Cell-Based Therapy.
Volarevic, Vladislav; Markovic, Bojana Simovic; Gazdic, Marina; Volarevic, Ana; Jovicic, Nemanja; Arsenijevic, Nebojsa; Armstrong, Lyle; Djonov, Valentin; Lako, Majlinda; Stojkovic, Miodrag
2018-01-01
Results obtained from completed and on-going clinical studies indicate huge therapeutic potential of stem cell-based therapy in the treatment of degenerative, autoimmune and genetic disorders. However, clinical application of stem cells raises numerous ethical and safety concerns. In this review, we provide an overview of the most important ethical issues in stem cell therapy, as a contribution to the controversial debate about their clinical usage in regenerative and transplantation medicine. We describe ethical challenges regarding human embryonic stem cell (hESC) research, emphasizing that ethical dilemma involving the destruction of a human embryo is a major factor that may have limited the development of hESC-based clinical therapies. With previous derivation of induced pluripotent stem cells (iPSCs) this problem has been overcome, however current perspectives regarding clinical translation of iPSCs still remain. Unlimited differentiation potential of iPSCs which can be used in human reproductive cloning, as a risk for generation of genetically engineered human embryos and human-animal chimeras, is major ethical issue, while undesired differentiation and malignant transformation are major safety issues. Although clinical application of mesenchymal stem cells (MSCs) has shown beneficial effects in the therapy of autoimmune and chronic inflammatory diseases, the ability to promote tumor growth and metastasis and overestimated therapeutic potential of MSCs still provide concerns for the field of regenerative medicine. This review offers stem cell scientists, clinicians and patient's useful information and could be used as a starting point for more in-depth analysis of ethical and safety issues related to clinical application of stem cells.
Ethical and Safety Issues of Stem Cell-Based Therapy
Volarevic, Vladislav; Markovic, Bojana Simovic; Gazdic, Marina; Volarevic, Ana; Jovicic, Nemanja; Arsenijevic, Nebojsa; Armstrong, Lyle; Djonov, Valentin; Lako, Majlinda; Stojkovic, Miodrag
2018-01-01
Results obtained from completed and on-going clinical studies indicate huge therapeutic potential of stem cell-based therapy in the treatment of degenerative, autoimmune and genetic disorders. However, clinical application of stem cells raises numerous ethical and safety concerns. In this review, we provide an overview of the most important ethical issues in stem cell therapy, as a contribution to the controversial debate about their clinical usage in regenerative and transplantation medicine. We describe ethical challenges regarding human embryonic stem cell (hESC) research, emphasizing that ethical dilemma involving the destruction of a human embryo is a major factor that may have limited the development of hESC-based clinical therapies. With previous derivation of induced pluripotent stem cells (iPSCs) this problem has been overcome, however current perspectives regarding clinical translation of iPSCs still remain. Unlimited differentiation potential of iPSCs which can be used in human reproductive cloning, as a risk for generation of genetically engineered human embryos and human-animal chimeras, is major ethical issue, while undesired differentiation and malignant transformation are major safety issues. Although clinical application of mesenchymal stem cells (MSCs) has shown beneficial effects in the therapy of autoimmune and chronic inflammatory diseases, the ability to promote tumor growth and metastasis and overestimated therapeutic potential of MSCs still provide concerns for the field of regenerative medicine. This review offers stem cell scientists, clinicians and patient's useful information and could be used as a starting point for more in-depth analysis of ethical and safety issues related to clinical application of stem cells. PMID:29333086
Clinical Utility and Future Applications of PET/CT and PET/CMR in Cardiology
Pan, Jonathan A.; Salerno, Michael
2016-01-01
Over the past several years, there have been major advances in cardiovascular positron emission tomography (PET) in combination with either computed tomography (CT) or, more recently, cardiovascular magnetic resonance (CMR). These multi-modality approaches have significant potential to leverage the strengths of each modality to improve the characterization of a variety of cardiovascular diseases and to predict clinical outcomes. This review will discuss current developments and potential future uses of PET/CT and PET/CMR for cardiovascular applications, which promise to add significant incremental benefits to the data provided by each modality alone. PMID:27598207
Casarin, Maísa; Pazinatto, Josiele; Santos, Roberto Christ Vianna; Zanatta, Fabricio Batistin
2018-02-01
This is a systematic review of clinical and laboratory studies evaluating the effect of Melaleuca alternifolia on periodontopathogens, dental plaque, gingivitis, periodontitis, and inflammatory responses. The PubMed, Cochrane, Web of science, Bireme, Lilacs, Prospero, Open Grey, and Clinical Trials databases were searched to identify potentially eligible studies through October 2016. Of 1,654 potentially eligible studies, 25 were included in the systematic review. Their methodology was evaluated through the Cochrane Handbook for clinical studies and the GRADE system for in vivo/in vitro studies. Although clinical studies must be interpreted with caution due to methodological limitations, laboratory studies have found promising results. In vitro evidences showed that M. alternifolia has bactericidal and bacteriostatic effects against the most prevalent periodontopathogens. Clinical studies found comparable effects to chlorhexidine 0.12% in reducing gingival inflammation, although the antiplaque effect was lower. M. alternifolia also showed antioxidant properties, which are beneficial to the host, allied to the reduction on immune-inflammatory responses to pathogens. This systematic review suggests that the M. alternifolia has potential anti-inflammatory and antimicrobial properties, which can be easily applied to the periodontal tissues. However, further clinical trials are needed to elucidate the clinical relevance of its application. Copyright © 2017 John Wiley & Sons, Ltd.
The biophysical basis and clinical applications of rheoencephalography.
DOT National Transportation Integrated Search
1967-05-01
A method for screening large populations for asymptomatic but potentially incapacitating cerebrovascular disease has obvious application in aviation medicine. Rheoencephalography (REG), a simple, rapid and innocuous method of studying the cranial cir...
The present and future of nanotechnology in human health care.
Sahoo, S K; Parveen, S; Panda, J J
2007-03-01
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. The burgeoning new field of nanotechnology, opened up by rapid advances in science and technology, creates myriad new opportunities for advancing medical science and disease treatment in human health care. Applications of nanotechnology to medicine and physiology imply materials and devices designed to interact with the body at subcellular (i.e., molecular) scales with a high degree of specificity. This can be potentially translated into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic efficacy with minimal side effects. In this review the chief scientific and technical aspects of nanotechnology are introduced, and some of its potential clinical applications are discussed.
Gimba, E R; Tilli, T M
2013-04-30
Human osteopontin is subject to alternative splicing, which generates three isoforms, termed OPNa, OPNb and OPNc. These variants show specific expression and roles in different cell contexts. We present an overview of current knowledge of the expression profile of human OPN splicing isoforms (OPN-SIs), their tissue-specific roles, and the pathways mediating their functional properties in different pathophysiological conditions. We also describe their putative application as biomarkers, and their potential use as therapeutic targets by using antibodies, oligonucleotides or siRNA molecules. This synthesis provides new clues for a better understanding of human OPN splice variants, their roles in normal and pathological conditions, and their possible clinical applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Novel Applications of Metabolomics in Personalized Medicine: A Mini-Review.
Li, Bingbing; He, Xuyun; Jia, Wei; Li, Houkai
2017-07-13
Interindividual variability in drug responses and disease susceptibility is common in the clinic. Currently, personalized medicine is highly valued, the idea being to prescribe the right medicine to the right patient. Metabolomics has been increasingly applied in evaluating the therapeutic outcomes of clinical drugs by correlating the baseline metabolic profiles of patients with their responses, i.e., pharmacometabonomics, as well as prediction of disease susceptibility among population in advance, i.e., patient stratification. The accelerated advance in metabolomics technology pinpoints the huge potential of its application in personalized medicine. In current review, we discussed the novel applications of metabolomics with typical examples in evaluating drug therapy and patient stratification, and underlined the potential of metabolomics in personalized medicine in the future.
The application of ozone in dentistry: a systematic review of literature.
Azarpazhooh, Amir; Limeback, Hardy
2008-02-01
(1) To systematically review the clinical application and remineralization potentials of ozone in dentistry; (2) To summarize the available in vitro applications of ozone in dentistry. Ovid MEDLINE, CINAHL, etc. (up to April 2007). In vitro or in vivo English language publications, original studies, and reviews were included. Conference papers, abstracts, and posters were excluded. In vitro: Good evidence of ozone biocompatibility with human oral epithelial cells, gingival fibroblast, and periodontal cells; Conflicting evidence of antimicrobial efficacy of ozone but some evidence that ozone is effective in removing the microorganisms from dental unit water lines, the oral cavity, and dentures; Conflicting evidence for the application of ozone in endodontics; Insufficient evidence for the application of ozone in oral surgery and implantology; Good evidence of the prophylactic application of ozone in restorative dentistry prior to etching and the placement of dental sealants and restorations. In vivo: Despite the promising in vitro evidence, the clinical application of ozone in dentistry (so far in management of dental and root caries) has not achieved a strong level of efficacy and cost-effectiveness. While laboratory studies suggest a promising potential of ozone in dentistry, this has not been fully realised in clinical studies to date. More well designed and conducted double-blind randomised clinical trials with adequate sample size, limited or no loss to follow up, and carefully standardised methods of measurement and analyses are needed to evaluate the possible use of ozone as a treatment modality in dentistry.
EVOLUTION OF ENVIRONMENTAL IMMUNOCHEMISTRY
Enzyme-linked immunosorbent assays (ELISAs), initially developed for clinical applications, have made a tremendous impact as clinical diagnostic indicators. Pesticide chemists became attracted to the potential of these sensitive and selective methods in the 1970s. Thus, beg...
de Graaf, Gimon; Postmus, Douwe; Westerink, Jan; Buskens, Erik
2018-01-01
Translating prognostic and diagnostic biomarker candidates into clinical applications takes time, is very costly, and many candidates fail. It is therefore crucial to be able to select those biomarker candidates that have the highest chance of successfully being adopted in the clinic. This requires an early estimate of the potential clinical impact and commercial value. In this paper, we aim to demonstratively evaluate a set of novel biomarkers in terms of clinical impact and commercial value, using occurrence of cardiovascular disease (CVD) in type-2 diabetes (DM2) patients as a case study. We defined a clinical application for the novel biomarkers, and subsequently used data from a large cohort study in The Netherlands in a modeling exercise to assess the potential clinical impact and headroom for the biomarkers. The most likely application of the biomarkers would be to identify DM2 patients with a low CVD risk and subsequently withhold statin treatment. As a result, one additional CVD event in every 75 patients may be expected. The expected downstream savings resulted in a headroom for a point-of-care device ranging from €119.09 at a willingness to accept of €0 for one additional CVD event, to €0 at a willingness to accept of €15,614 or more. It is feasible to evaluate novel biomarkers on outcomes directly relevant to technological development and clinical adoption. Importantly, this may be attained at the same point in time and using the same data as used for the evaluation of association with disease and predictive power.
Li, Qiang; Zeng, Yanjun; Tang, Xiaoying
2010-06-01
In spite of some good successes and excellent researches of nickel-titanium shape memory alloy (NiTi-SMA) in reconstructive surgery, there are still serious limitations to the clinical applications of NiTi alloy today. The potential leakage of elements and ions could be toxic to cells, tissues and organs. This review discussed the properties, clinical applications, corrosion performance, biocompatibility, the possible preventive measures to improve corrosion resistance by surface/structure modifications and the long-term challenges of using SMAs.
Daruwalla, Zubin Jimmy; Wong, Keng Lin; Thambiah, Joseph
2014-06-05
The application of telemedicine has been described for its use in medical training and education, management of stroke patients, urologic surgeries, pediatric laparoscopic surgeries, clinical outreach, and the field of orthopedics. However, the usefulness of a secure, mobile telehealth application, and messaging platform has not been well described. A pilot study was conducted to implement a health insurance portability and accountability act (HIPAA) compliant form of communication between doctors in an orthopedic clinical setting and determine their reactions to MyDoc, a secure, mobile telehealth application, and messaging platform. By replacing current methods of communication through various mobile applications and text messaging services with MyDoc over a six week period, we gained feedback and determined user satisfaction with this innovative system from questionnaires handed to the program director, program coordinator, one trauma consultant, all orthopedic residents, and six non-orthopedic residents at the National University Hospital in Singapore. Almost everyone who completed the questionnaire strongly agreed that MyDoc should replace current systems of peer to peer communication in the hospital. The majority also felt that the quality of images, videos, and sound were excellent. Almost everyone agreed that they could communicate easily with each other and would feel comfortable doing so routinely. The majority felt that virtual consults through MyDoc should be made available to inpatients as well as outpatients to potentially lessen clinic loads and provide a secure manner in which patients can communicate with their primary teams any time convenient to both. It was also agreed by most that the potential of telerounding had advantages, especially on weekends as a supplement to normal rounds. Potential uses of MyDoc in an orthopedic clinical setting include HIPAA-compliant peer to peer communication, clinical outreach in the setting of trauma, supervision in the operating room or watching procedures being performed remotely, providing both patient and parent reassurance in pediatric orthopedic patients, and finally in the setting of outpatient clinics. With our pilot study having excellent results in terms of acceptance and satisfaction, the integration of a secure, mobile telehealth application, and messaging platform, not only in the orthopedic department but also the hospital in general, has an exciting and limitless potential. More so in this era where downsizing hospital costs is beneficial, doing so may also be mandatory in order to comply with the soon to be introduced personal data protection act.
Potential clinical applications of photoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosencwaig, A.
1982-09-01
Photoacoustic spectroscopy offers the opportunity for extending the exact science of noninvasive spectral analysis to intact medical substances such as tissues. Thermal-wave imaging offers the potential for microscopic imaging of thermal features in biological matter.
Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift.
Fu, Cynthia H Y; Costafreda, Sergi G
2013-09-01
Neuroimaging research has substantiated the functional and structural abnormalities underlying psychiatric disorders but has, thus far, failed to have a significant impact on clinical practice. Recently, neuroimaging-based diagnoses and clinical predictions derived from machine learning analysis have shown significant potential for clinical translation. This review introduces the key concepts of this approach, including how the multivariate integration of patterns of brain abnormalities is a crucial component. We survey recent findings that have potential application for diagnosis, in particular early and differential diagnoses in Alzheimer disease and schizophrenia, and the prediction of clinical response to treatment in depression. We discuss the specific clinical opportunities and the challenges for developing biomarkers for psychiatry in the absence of a diagnostic gold standard. We propose that longitudinal outcomes, such as early diagnosis and prediction of treatment response, offer definite opportunities for progress. We propose that efforts should be directed toward clinically challenging predictions in which neuroimaging may have added value, compared with the existing standard assessment. We conclude that diagnostic and prognostic biomarkers will be developed through the joint application of expert psychiatric knowledge in addition to advanced methods of analysis.
The epigenetics of prostate cancer diagnosis and prognosis: update on clinical applications.
Blute, Michael L; Damaschke, Nathan A; Jarrard, David F
2015-01-01
There is a major deficit in our ability to detect and predict the clinical behavior of prostate cancer (PCa). Epigenetic changes are associated with PCa development and progression. This review will focus on recent results in the clinical application of diagnostic and prognostic epigenetic markers. The development of high throughput technology has seen an enormous increase in the discovery of new markers that encompass epigenetic changes including those in DNA methylation and histone modifications. Application of these findings to urine and other biofluids, but also cancer and noncancerous prostate tissue, has resulted in new biomarkers. There has been a recent commercial development of a DNA methylation-based assay for identifying PCa risk from normal biopsy tissue. Other biomarkers are currently in the validation phase and encompass combinations of multiple genes. Epigenetic changes improve the specificity and sensitivity of PCa diagnosis and have the potential to help determine clinical prognosis. Additional studies will not only provide new and better biomarker candidates, but also have the potential to inform new therapeutic strategies given the reversibility of these processes.
Application and Exploration of Big Data Mining in Clinical Medicine
Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling
2016-01-01
Objective: To review theories and technologies of big data mining and their application in clinical medicine. Data Sources: Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Study Selection: Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. Results: This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster–Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Conclusion: Big data mining has the potential to play an important role in clinical medicine. PMID:26960378
Clinical use of three-dimensional video measurements of eye movements
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Black, F. O.; Wade, S.; Paloski, W. H. (Principal Investigator)
1998-01-01
Noninvasive measurements of three-dimensional eye position can be accurately achieved with video methods. A case study showing the potential clinical benefit of these enhanced measurements is presented along with some thoughts about technological advances, essential for clinical application, that are likely to occur in the next several years.
Research methods to change clinical practice for patients with rare cancers.
Billingham, Lucinda; Malottki, Kinga; Steven, Neil
2016-02-01
Rare cancers are a growing group as a result of reclassification of common cancers by molecular markers. There is therefore an increasing need to identify methods to assess interventions that are sufficiently robust to potentially affect clinical practice in this setting. Methods advocated for clinical trials in rare diseases are not necessarily applicable in rare cancers. This Series paper describes research methods that are relevant for rare cancers in relation to the range of incidence levels. Strategies that maximise recruitment, minimise sample size, or maximise the usefulness of the evidence could enable the application of conventional clinical trial design to rare cancer populations. Alternative designs that address specific challenges for rare cancers with the aim of potentially changing clinical practice include Bayesian designs, uncontrolled n-of-1 trials, and umbrella and basket trials. Pragmatic solutions must be sought to enable some level of evidence-based health care for patients with rare cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Artificial intelligence in medicine.
Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.
2004-01-01
INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167
Artificial intelligence in medicine.
Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J
2004-09-01
Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.
Intelligent Assistive Technology for Alzheimer's Disease and Other Dementias: A Systematic Review.
Ienca, Marcello; Fabrice, Jotterand; Elger, Bernice; Caon, Maurizio; Pappagallo, Alessandro Scoccia; Kressig, Reto W; Wangmo, Tenzin
2017-01-01
Intelligent assistive technologies (IATs) have the potential of offering innovative solutions to mitigate the global burden of dementia and provide new tools for dementia care. While technological opportunities multiply rapidly, clinical applications are rare as the technological potential of IATs remains inadequately translated into dementia care. In this article, the authors present the results of a systematic review and the resulting comprehensive technology index of IATs with application in dementia care. Computer science, engineering, and medical databases were extensively searched and the retrieved items were systematically reviewed. For each IAT, the authors examined their technological type, application, target population, model of development, and evidence of clinical validation. The findings reveal that the IAT spectrum is expanding rapidly in volume and variety over time, and encompasses intelligent systems supporting various assistive tasks and clinical uses. At the same time, the results confirm the persistence of structural limitations to successful adoption including partial lack of clinical validation and insufficient focus on patients' needs. This index is designed to orient clinicians and relevant stakeholders involved in the implementation and management of dementia care across the current capabilities, applications, and limitations of IATs and to facilitate the translation of medical engineering research into clinical practice. In addition, a discussion of the major methodological challenges and policy implications for the successful and ethically responsible implementation of IAT into dementia care is provided.
Integrated Warfighter Biodefense Program (IWBP)
2011-08-01
Distribution. Sincerely, Frank T. Abbott VP of Administration & Finance fta @quantumleap.us cc: Dr. Ganesh Vaidyanathan, Project Manager, Code 34...goals of IWBP. Areas of potential application include health care administration, clinical data analysis and health care research applications
From Diagnosis to Treatment: Clinical Applications of Nanotechnology in Thoracic Surgery.
Digesu, Christopher S; Hofferberth, Sophie C; Grinstaff, Mark W; Colson, Yolonda L
2016-05-01
Nanotechnology is an emerging field with potential as an adjunct to cancer therapy, particularly thoracic surgery. Therapy can be delivered to tumors in a more targeted fashion, with less systemic toxicity. Nanoparticles may aid in diagnosis, preoperative characterization, and intraoperative localization of thoracic tumors and their lymphatics. Focused research into nanotechnology's ability to deliver both diagnostics and therapeutics has led to the development of nanotheranostics, which promises to improve the treatment of thoracic malignancies through enhanced tumor targeting, controlled drug delivery, and therapeutic monitoring. This article reviews nanoplatforms, their unique properties, and the potential for clinical application in thoracic surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Nielsen, Matthew E; Birken, Sarah A
2018-05-01
The field of implementation science has been conventionally applied in the context of increasing the application of evidence-based practices into clinical care, given evidence of underusage of appropriate interventions in many settings. Increasingly, however, there is recognition of the potential for similar frameworks to inform efforts to reduce the application of ineffective or potentially harmful practices. In this article, we provide some examples of clinical scenarios in which the quality problem may be overuse and misuse, and review relevant theories and frameworks that may inform improvement activities. Copyright © 2018 Elsevier Inc. All rights reserved.
Berg, Jonathan S; Powell, Cynthia M
2015-10-05
Since newborn screening (NBS) began in the 1960s, technological advances have enabled its expansion to include an increasing number of disorders. Recent developments now make it possible to sequence an infant's genome relatively quickly and economically. Clinical application of whole-exome and whole-genome sequencing is expanding at a rapid pace but presents many challenges. Its utility in NBS has yet to be demonstrated and its application in the pediatric population requires examination, not only for potential clinical benefits, but also for the unique ethical challenges it presents. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Clinical application of neurotrophic factors: the potential for primary auditory neuron protection
Gillespie, Lisa N.; Shepherd, Robert K.
2007-01-01
Sensorineural hearing loss, as a result of damage to or destruction of the sensory epithelia within the cochlea, is a common cause of deafness. The subsequent degeneration of the neural elements within the inner ear may impinge upon the efficacy of the cochlear implant. Experimental studies have demonstrated that neurotrophic factors can prevent this degeneration in animal models of deafness, and can even provide functional benefits. Neurotrophic factor therapy may, therefore, provide similar protective effects in humans, resulting in improved speech perception outcomes among cochlear implant patients. There are, however, numerous issues pertaining to delivery techniques and treatment regimes which need to be addressed prior to any clinical application. This review considers these issues in view of the potential therapeutic application of neurotrophic factors within the auditory system. PMID:16262651
Functional optical coherence tomography: principles and progress
NASA Astrophysics Data System (ADS)
Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam
2015-05-01
In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies.
Functional Optical Coherence Tomography: Principles and Progress
Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam
2015-01-01
In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. PMID:25951836
Psychological woundedness and its evaluation in applications for clinical psychology training.
Ivey, Gavin; Partington, Theresa
2014-01-01
This paper reports on a qualitative study investigating clinical psychology programme selectors' perceptions of psychological 'woundedness' in the autobiographical narratives of applicants for clinical psychology training. Woundedness was here defined in terms of the ongoing or residual psychological impact of adverse experiences and psychic conflicts. Ten selectors were presented with a sample of applicants' written autobiographical narratives, differentiated by the conspicuous presence or absence of psychological woundedness. The selectors, who were not informed of the specific aims of the study, ranked applicant protocols and were interviewed individually about their impressions of the protocols and the criteria that they used to rank them. Most selectors were positively biased toward 'wounded' narratives and suspicious of those in which woundedness was manifestly absent. Although generally disposed to favour wounded applicants, how woundedness was presented, rather than the mere presence of it, was a discriminating feature in selectors' appraisal of wounded narratives. Selectors were concerned that unresolved woundedness may compromise applicants' professional boundaries, impair self-reflective capacity and lead to damaging countertransference enactments. The relative extent to which applicant woundedness appeared to be resolved was significant in selectors' assessment of applicants' clinical training potential. A distinction is thus proposed between obstructive and facilitative woundedness in clinical psychology applicants. A sample of clinical psychology programme selectors identified psychological woundedness as a significant feature in applicant autobiographies. Selectors favoured applicant autobiographies showing evidence of woundedness. The distinction between obstructive and facilitative woundedness is important in how the selector sample evaluated woundedness. Copyright © 2012 John Wiley & Sons, Ltd.
Thermophilic and alkaliphilic Actinobacteria: biology and potential applications
Shivlata, L.; Satyanarayana, Tulasi
2015-01-01
Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937
New perspectives of curcumin in cancer prevention
Park, Wungki; Amin, A.R.M Ruhul; Chen, Zhuo Georgia; Shin, Dong M.
2013-01-01
Numerous natural compounds have been extensively investigated for their potential for cancer prevention over decades. Curcumin, from Curcuma longa, is a highly promising natural compound that can be potentially used for chemoprevention of multiple cancers. Curcumin modulates multiple molecular pathways involved in the lengthy carcinogenesis process to exert its chemopreventive effects through several mechanisms: promoting apoptosis, inhibiting survival signals, scavenging reactive oxidative species (ROS), and reducing the inflammatory cancer microenvironment. Curcumin fulfills the characteristics for an ideal chemopreventive agent with its low toxicity, affordability, and easy accessibility. Nevertheless, the clinical application of curcumin is currently compromised by its poor bioavailability. Here we review the potential of curcumin in cancer prevention, its molecular targets, and action mechanisms. Finally, we suggest specific recommendations to improve its efficacy and bioavailability for clinical applications. PMID:23466484
TMS-EEG: From basic research to clinical applications
NASA Astrophysics Data System (ADS)
Hernandez-Pavon, Julio C.; Sarvas, Jukka; Ilmoniemi, Risto J.
2014-11-01
Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) is a powerful technique for non-invasively studying cortical excitability and connectivity. The combination of TMS and EEG has widely been used to perform basic research and recently has gained importance in different clinical applications. In this paper, we will describe the physical and biological principles of TMS-EEG and different applications in basic research and clinical applications. We will present methods based on independent component analysis (ICA) for studying the TMS-evoked EEG responses. These methods have the capability to remove and suppress large artifacts, making it feasible, for instance, to study language areas with TMS-EEG. We will discuss the different applications and limitations of TMS and TMS-EEG in clinical applications. Potential applications of TMS are presented, for instance in neurosurgical planning, depression and other neurological disorders. Advantages and disadvantages of TMS-EEG and its variants such as repetitive TMS (rTMS) are discussed in comparison to other brain stimulation and neuroimaging techniques. Finally, challenges that researchers face when using this technique will be summarized.
NOVEL OBSERVATIONS AND POTENTIAL APPLICATIONS USING DIGITAL INFRARED IRIS IMAGING
Roberts, Daniel K.; Lukic, Ana; Yang, Yongyi; Moroi, Sayoko E.; Wilensky, Jacob T.; Wernick, Miles N.
2017-01-01
Digital infrared (IR) iris photography using a modified digital camera system was carried out on about 300 subjects seen during routine clinical care and research at one facility. Since this image database offered opportunity to gain new insight into the potential utility of IR iris imaging, it was surveyed for unique image patterns. Then, a selection of photos was compiled that would illustrate the spectrum of this imaging experience. Potentially informative image patterns were observed in subjects with cataracts, diabetic retinopathy, Posner-Schlossman syndrome, iridociliary cysts, long anterior lens zonules, nevi, oculocutaneous albinism, pigment dispersion syndrome, pseudophakia, suspected vascular anomaly, and trauma. Image patterns were often unanticipated regardless of pre-existing information and suggest that IR iris imaging may have numerous potential clinical and research applications, some of which may still not be recognized. These observations suggest further development and study of this technology. PMID:19320317
Potential non-oncological applications of histone deacetylase inhibitors.
Ververis, Katherine; Karagiannis, Tom C
2011-01-01
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma.
Potential non-oncological applications of histone deacetylase inhibitors
Ververis, Katherine; Karagiannis, Tom C
2011-01-01
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma. PMID:22046487
Cell and tissue engineering and clinical applications: an overview.
Stoltz, J F; Bensoussan, D; Decot, V; Ciree, A; Netter, P; Gillet, P
2006-01-01
Most human tissues do not regenerate spontaneously; this is why cell therapies and tissue engineering are promising alternatives. The principle is simple: cells are collected in a patient and introduced in the damaged tissue or in a tridimentional porous support and harvested in a bioreactor in which the physico-chemical and mechanical parameters are controlled. Once the tissues (or the cells) are mature they may be implanted. In parallel, the development of biotherapies with stem cells is a field of research in turmoil given the hopes for clinical applications that it brings up. Embryonic stem cells are potentially more interesting since they are totipotent, but they can only be obtained at the very early stages of the embryo. The potential of adult stem cells is limited but isolating them induces no ethical problem and it has been known for more than 40 years that bone marrow does possess the regenerating functions of blood cells. Finally, the properties of foetal stem cells (blood cells from the umbilical cord) are forerunners of the haematopoietic system but the ability of these cells to participate to the formation of other tissues is more problematic. Another field for therapeutic research is that of dendritic cells, antigen presenting cells. Their efficiency in cell therapy relies on the initiation of specific immune responses. They represent a promising tool in the development of a protective immune response against antigens which the host is usually unable to generate an efficient response (melanomas, breast against cancer, prostate cancer, ..). Finally, gene therapy, has been nourishing high hopes but few clinical applications can be envisaged in the short term, although potential applications are multiple (haemophilia, myopathies, ..). A large number of clinical areas stand as candidates for clinical applications: leukaemia and cancers, cardiac insufficiency and vascular diseases, cartilage and bone repair, ligaments and tendons, liver diseases, ophthalmology, diabetes, neurological diseases (Parkinson, Huntington disease, ..), .. Various aspects of this new regenerative therapeutic medicine are developed in this work.
Review of functional near-infrared spectroscopy in neurorehabilitation
Mihara, Masahito; Miyai, Ichiro
2016-01-01
Abstract. We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain–computer interface and neurofeedback. PMID:27429995
Lasers in the in-vitro fertilization laboratory
NASA Astrophysics Data System (ADS)
Tadir, Yona; Neev, Joseph; Berns, Michael W.
1993-05-01
Laser beams are routinely used in the clinical practice of assisted reproduction. The main applications are in laparoscopic and hysteroscopic surgery. The potential applications of laser microbeams as a tool for gamete manipulations are studied and basic concepts are discussed.
Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R
2013-01-01
The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.
Engineered pharmabiotics with improved therapeutic potential.
Sleator, Roy D; Hill, Colin
2008-01-01
Although described for over a century, scientists and clinicians alike are only now beginning to realize the significant medical applications of probiotic cultures. Given the increasing commercial and clinical relevance of probiotics, improving their stress tolerance profile and ability to overcome the physiochemical defences of the host is an important biological goal. Patho-biotechnology describes the application of pathogen derived (ex vivo and in vivo) stress survival strategies for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications as well as the development of novel vaccine and drug delivery platforms.
The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification.
Wang, Hui; Shi, Tujin; Qian, Wei-Jun; Liu, Tao; Kagan, Jacob; Srivastava, Sudhir; Smith, Richard D; Rodland, Karin D; Camp, David G
2016-01-01
Mass spectrometry (MS) -based proteomics has become an indispensable tool with broad applications in systems biology and biomedical research. With recent advances in liquid chromatography (LC) and MS instrumentation, LC-MS is making increasingly significant contributions to clinical applications, especially in the area of cancer biomarker discovery and verification. To overcome challenges associated with analyses of clinical samples (for example, a wide dynamic range of protein concentrations in bodily fluids and the need to perform high throughput and accurate quantification of candidate biomarker proteins), significant efforts have been devoted to improve the overall performance of LC-MS-based clinical proteomics platforms. Reviewed here are the recent advances in LC-MS and its applications in cancer biomarker discovery and quantification, along with the potentials, limitations and future perspectives.
Cost-effective (gaming) motion and balance devices for functional assessment: Need or hype?
Bonnechère, B; Jansen, B; Van Sint Jan, S
2016-09-06
In the last decade, technological advances in the gaming industry have allowed the marketing of hardware for motion and balance control that is based on technological concepts similar to scientific and clinical equipment. Such hardware is attractive to researchers and clinicians for specific applications. However, some questions concerning their scientific value and the range of future potential applications have yet to be answered. This article attempts to present an objective analysis about the pros and cons of using such hardware for scientific and clinical purposes and calls for a constructive discussion based on scientific facts and practical clinical requests that are emerging from application fields. Copyright © 2016 Elsevier Ltd. All rights reserved.
The use of exer-learning games for rehabilitation in spa clinics at home.
Lucht, Martina; Krausser, Kati; Joerg, Daniel; Schwandt, Tobias
2012-01-01
This paper examines benefits of the exer-learning concept HOPSCOTCH for rehabilitation in spa clinics and at home. It describes a specific application to motivate obese patients in spa clinics for exercise. Furthermore results of an empirical study are reported where HOPSCOTCH was implemented in two spa clinics for a period of four weeks. The results of the study have shown that the concept is very convincing, but mainly depends on the content of the application; however the idea of HOPSCOTCH appeared to have a high potential to be used as a therapeutic agent in terms of motivation for exercise.
Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
Asaduzzaman Khan, Md.; Tania, Mousumi; Fu, Shangyi; Fu, Junjiang
2017-01-01
Thymoquinone is an anticancer phytochemical commonly found in black cumin. In this review, we discuss the potential of thymoquinone as anticancer molecule, its mechanism of action and future usage in clinical applications. Thymoquinone exhibits anticancer activity via numerous mechanisms of action, specifically by showing selective antioxidant and oxidant activity, interfering with DNA structure, affecting carcinogenic signaling molecules/pathways and immunomodulation. In vitro activity of thymoquinone has been further implicated in animal models of cancer; however, no clinical application has been proven yet. This is the optimum time to focus on clinical trials for developing thymoquinone as a future drug in cancer therapeutics. PMID:28881699
Thymoquinone, as an anticancer molecule: from basic research to clinical investigation.
Asaduzzaman Khan, Md; Tania, Mousumi; Fu, Shangyi; Fu, Junjiang
2017-08-01
Thymoquinone is an anticancer phytochemical commonly found in black cumin. In this review, we discuss the potential of thymoquinone as anticancer molecule, its mechanism of action and future usage in clinical applications. Thymoquinone exhibits anticancer activity via numerous mechanisms of action, specifically by showing selective antioxidant and oxidant activity, interfering with DNA structure, affecting carcinogenic signaling molecules/pathways and immunomodulation. In vitro activity of thymoquinone has been further implicated in animal models of cancer; however, no clinical application has been proven yet. This is the optimum time to focus on clinical trials for developing thymoquinone as a future drug in cancer therapeutics.
Alexander, John C; Minhajuddin, Abu; Joshi, Girish P
2017-08-01
Use of healthcare-related smartphone applications is common. However, there is concern that inaccurate information from these applications may lead patients to make erroneous healthcare decisions. The objective of this study is to study smartphone applications purporting to measure vital sign data using only onboard technology compared with monitors used routinely in clinical practice. This is a prospective trial comparing correlation between a clinically utilized vital sign monitor (Propaq CS, WelchAllyn, Skaneateles Falls, NY, USA) and four smartphone application-based monitors Instant Blood Pressure, Instant Blood Pressure Pro, Pulse Oximeter, and Pulse Oximeter Pro. We performed measurements of heart rate (HR), systolic blood pressures (SBP), diastolic blood pressure (DBP), and oxygen saturation (SpO 2 ) using standard monitor and four smartphone applications. Analysis of variance was used to compare measurements from the applications to the routine monitor. The study was completed on 100 healthy volunteers. Comparison of routine monitor with the smartphone applications shows significant differences in terms of HR, SpO 2 and DBP. The SBP values from the applications were not significantly different from those from the routine monitor, but had wide limits of agreement signifying a large degree of variation in the compared values. The degree of correlation between monitors routinely used in clinical practice and the smartphone-based applications studied is insufficient to recommend clinical utilization. This lack of correlation suggests that the applications evaluated do not provide clinically meaningful data. The inaccurate data provided by these applications can potentially contribute to patient harm.
Therapeutic potential of peptide toxins that target ion channels.
Beraud, Evelyne; Chandy, K George
2011-10-01
Traditional healthcare systems in China, India, Greece and the Middle East have for centuries exploited venomous creatures as a resource for medicines. This review focuses on one class of pharmacologically active compounds from venom, namely peptide toxins that target ion channels. We highlight their therapeutic potential and the specific channels they target. The field of therapeutic application is vast, including pain, inflammation, cancer, neurological disorders, cardioprotection, and autoimmune diseases. One of these peptides is in clinical use, and many others are in various stages of pre-clinical and clinical development.
2013-12-01
carcinoma (CRC) in IBD patients and experimental models. Nonetheless, the pathogenic link, interrelationship, and practical clinical application of these...and are continuing final data analysis and latest imaging studies. This project has potentially high impact because of the substantial incidence of...pathogenic link, interrelationship, and practical clinical application of these various theories of progression have remained elusive. We proposed that
An update on the clinical use of drug-coated balloons in percutaneous coronary interventions.
Cheng, Yanping; Leon, Martin B; Granada, Juan F
2016-06-01
Drug-coated balloons (DCB) promise to deliver anti-proliferative drugs and prevent restenosis leaving nothing behind. Although, randomized clinical trials have demonstrated their efficacy for the treatment of in-stent restenosis, clinical evidence supporting their use in other coronary applications is still lacking. This review summarizes the development status of clinically available DCB technologies and provides an update on the current data for their coronary use. Current generation DCB prevent restenosis by delivering paclitaxel particles on the surface of the vessel wall. Although clinically available technologies share a common mechanism of action, important differences in pharmacokinetic behavior and safety profiles do exist. Future technological improvements include the development of coatings displaying: high transfer efficiency; low particle embolization potential; and alternative drug formulations. Optimized balloon-based delivery systems and drug encapsulation technologies also promise to improve the technical limitations of current generation DCB. Although proving clinical superiority against DES may prove to be difficult in mainstream applications (i.e., de novo), new generation DCB technologies have the potential to achieve a strong position in the interventional field in clinical settings in which the efficacy of DES use is not proven or justified (i.e., bifurcations).
Bishop, Felicity L; Coghlan, Beverly; Geraghty, Adam Wa; Everitt, Hazel; Little, Paul; Holmes, Michelle M; Seretis, Dionysis; Lewith, George
2017-06-30
Placebo effects can be clinically meaningful but are seldom fully exploited in clinical practice. This review aimed to facilitate translational research by producing a taxonomy of techniques that could augment placebo analgesia in clinical practice. Literature review and survey. We systematically analysed methods which could plausibly be used to elicit placebo effects in 169 clinical and laboratory-based studies involving non-malignant pain, drawn from seven systematic reviews. In a validation exercise, we surveyed 33 leading placebo researchers (mean 12 years’ research experience, SD 9.8), who were asked to comment on and add to the draft taxonomy derived from the literature. The final taxonomy defines 30 procedures that may contribute to placebo effects in clinical and experimental research, proposes 60 possible clinical applications and classifies procedures into five domains: the patient’s characteristics and belief (5 procedures and 11 clinical applications), the practitioner’s characteristics and beliefs (2 procedures and 4 clinical applications), the healthcare setting (8 procedures and 13 clinical applications), treatment characteristics (8 procedures and 14 clinical applications) and the patientâ€"practitioner interaction (7 procedures and 18 clinical applications). The taxonomy provides a preliminary and novel tool with potential to guide translational research aiming to harness placebo effects for patient benefit in practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
An overview of PET/MR, focused on clinical applications.
Catalano, Onofrio Antonio; Masch, William Roger; Catana, Ciprian; Mahmood, Umar; Sahani, Dushyant Vasudeo; Gee, Michael Stanley; Menezes, Leon; Soricelli, Andrea; Salvatore, Marco; Gervais, Debra; Rosen, Bruce Robert
2017-02-01
Hybrid PET/MR scanners are innovative imaging devices that simultaneously or sequentially acquire and fuse anatomical and functional data from magnetic resonance (MR) with metabolic information from positron emission tomography (PET) (Delso et al. in J Nucl Med 52:1914-1922, 2011; Zaidi et al. in Phys Med Biol 56:3091-3106, 2011). Hybrid PET/MR scanners have the potential to greatly impact not only on medical research but also, and more importantly, on patient management. Although their clinical applications are still under investigation, the increased worldwide availability of PET/MR scanners, and the growing published literature are important determinants in their rising utilization for primarily clinical applications. In this manuscript, we provide a summary of the physical features of PET/MR, including its limitations, which are most relevant to clinical PET/MR implementation and to interpretation. Thereafter, we discuss the most important current and emergent clinical applications of such hybrid technology in the abdomen and pelvis, both in the field of oncologic and non-oncologic imaging, and we provide, when possible, a comparison with clinically consolidated imaging techniques, like for example PET/CT.
Induced pluripotent stem cells in hematology: current and future applications
Focosi, D; Amabile, G; Di Ruscio, A; Quaranta, P; Tenen, D G; Pistello, M
2014-01-01
Reprogramming somatic cells into induced pluripotent stem (iPS) cells is nowadays approaching effectiveness and clinical grade. Potential uses of this technology include predictive toxicology, drug screening, pathogenetic studies and transplantation. Here, we review the basis of current iPS cell technology and potential applications in hematology, ranging from disease modeling of congenital and acquired hemopathies to hematopoietic stem and other blood cell transplantation. PMID:24813079
Magnetic particle imaging: from proof of principle to preclinical applications
NASA Astrophysics Data System (ADS)
Knopp, T.; Gdaniec, N.; Möddel, M.
2017-07-01
Tomographic imaging has become a mandatory tool for the diagnosis of a majority of diseases in clinical routine. Since each method has its pros and cons, a variety of them is regularly used in clinics to satisfy all application needs. Magnetic particle imaging (MPI) is a relatively new tomographic imaging technique that images magnetic nanoparticles with a high spatiotemporal resolution in a quantitative way, and in turn is highly suited for vascular and targeted imaging. MPI was introduced in 2005 and now enters the preclinical research phase, where medical researchers get access to this new technology and exploit its potential under physiological conditions. Within this paper, we review the development of MPI since its introduction in 2005. Besides an in-depth description of the basic principles, we provide detailed discussions on imaging sequences, reconstruction algorithms, scanner instrumentation and potential medical applications.
Managing the potential and pitfalls during clinical translation of emerging stem cell therapies
2014-01-01
We are moving into a new era of stem cell research where many possibilities for treatment of degenerative, chronic and/or fatal diseases and injuries are becoming primed for clinical trial. These reports have led millions of people worldwide to hope that regenerative medicine is about to revolutionise biomedicine: either through transplantation of cells grown in the laboratory, or by finding ways to stimulate a patient’s intrinsic stem cells to repair diseased and damaged organs. While major contributions of stem cells to drug discovery, safety and efficacy testing, as well as modelling ‘diseases in a dish’ are also expected, it is the in vivo use of stem cells that has captured the general public’s attention. However, public misconceptions of stem cell potential and applications can leave patients vulnerable to the influences of profit driven entities selling unproven treatments without solid scientific basis or appropriate clinical testing or follow up. This review provides a brief history of stem cell clinical translation together with an overview of the properties, potential, and current clinical application of various stem cell types. In doing so it presents a clearer picture of the inherent risks and opportunities associated with stem cell research translation, and thus offers a framework to help realise invested expectations more quickly, safely and effectively. PMID:24949190
ERIC Educational Resources Information Center
Popp, Jennifer K.; Walker, Stacy E.
2017-01-01
Context: Patient encounters related to acute care skills rarely occur in clinical education, leaving a potential gap in students' skills and confidence. Objective: Investigate the effects of an acute care simulation requiring football helmet facemask removal on clinical skill application and confidence in athletic training students. Design:…
Ameredes, Bill T
2011-04-01
Biomarkers ranging from simple to sophisticated have been used by man for many years of his existence. The main use for biomarkers over that time has been to assess relative states health and well-being, including the presence of functional limitations that presage debilitation and even death. In recent years, there has been intense interest in the development of non-invasive biomarkers to accurately predict disease state and progression, as well as potential drug therapy to assist in early mitigation of morbidity and possibly, forestall premature mortality. The development of biomarkers of airway status has followed a similar pattern, and in recent years, several biomarkers have followed the progression from basic and pre-clinical development, to clinical/translational application, and finally to potential clinical therapeutic application. Inherent in this progression is the refinement of technology that has allowed measurement of these biomarkers in a fast, convenient, and reliable fashion, such that they can be obtainable within a clinical practice setting, to allow the physician to make treatment decisions for diseases such as asthma and COPD. While the clinical therapeutic application of airway biomarkers such as exhaled nitric oxide and β(2)-adrenoreceptor Arg-16 polymorphism are still in their infancy, they have followed this common pathway of development, and now will require some years of application to demonstrate their true utility as predictive biomarkers of airway status and treatment response. Copyright © 2010 Elsevier Ltd. All rights reserved.
Big data analytics to improve cardiovascular care: promise and challenges.
Rumsfeld, John S; Joynt, Karen E; Maddox, Thomas M
2016-06-01
The potential for big data analytics to improve cardiovascular quality of care and patient outcomes is tremendous. However, the application of big data in health care is at a nascent stage, and the evidence to date demonstrating that big data analytics will improve care and outcomes is scant. This Review provides an overview of the data sources and methods that comprise big data analytics, and describes eight areas of application of big data analytics to improve cardiovascular care, including predictive modelling for risk and resource use, population management, drug and medical device safety surveillance, disease and treatment heterogeneity, precision medicine and clinical decision support, quality of care and performance measurement, and public health and research applications. We also delineate the important challenges for big data applications in cardiovascular care, including the need for evidence of effectiveness and safety, the methodological issues such as data quality and validation, and the critical importance of clinical integration and proof of clinical utility. If big data analytics are shown to improve quality of care and patient outcomes, and can be successfully implemented in cardiovascular practice, big data will fulfil its potential as an important component of a learning health-care system.
CRISPR/Cas9: at the cutting edge of hepatology
Pankowicz, Francis P; Jarrett, Kelsey E; Lagor, William R; Bissig, Karl-Dimiter
2018-01-01
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome engineering has revolutionised biomedical science and we are standing on the cusp of medical transformation. The therapeutic potential of this technology is tremendous, however, its translation to the clinic will be challenging. In this article, we review recent progress using this genome editing technology and explore its potential uses in studying and treating diseases of the liver. We discuss the development of new research tools and animal models as well as potential clinical applications, strategies and challenges. PMID:28487442
Developments in laser Doppler blood perfusion monitoring
NASA Astrophysics Data System (ADS)
Leahy, Martin J.; de Mul, Frits F. M.; Nilsson, Gert E.; Maniewski, Roman; Liebert, Adam
2003-03-01
This paper reviews the development and use of laser Doppler perfusion monitors and imagers. Despite their great success and almost universal applicability in microcirculation research, they have had great difficulty in converting to widespread clinical application. The enormous interest in microvascular blood perfusion coupled with the 'ease of use' of the technique has led to 2000+ publications citing its use. However, useful results can only be achieved with an understanding of the basic principles of the instrumentation and its application in the various clinical disciplines. The basic technical background is explored and definitions of blood perfusion and laser Doppler perfusion are established. The calibration method is then described together with potential routes to standardisation. A guide to the limitations in application of the technique gives the user a clear indication of what can be achieved in new studies as well as possible inadequacy in some published investigations. Finally some clinical applications have found acceptability and these will be explored.
Laurencin, Cato T; Ashe, Keshia M; Henry, Nicole; Kan, Ho Man; Lo, Kevin W-H
2014-06-01
Stimulation of bone regeneration using growth factors is a promising approach for musculoskeletal regenerative engineering. However, common limitations with protein growth factors, such as high manufacturing costs, protein instability, contamination issues, and unwanted immunogenic responses of the host reduce potential clinical applications. New strategies for bone regeneration that involve inexpensive and stable small molecules can obviate these problems and have a significant impact on the treatment of skeletal injury and diseases. Over the past decade, a large number of small molecules with the potential of regenerating skeletal tissue have been reported in the literature. Here, we review this literature, paying specific attention to the prospects for small molecule-based bone-regenerative engineering. We also review the preclinical study of small molecules associated with bone regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gewirtz, Henry
2017-12-01
This review focuses on clinical studies concerning assessment of coronary microvascular and conduit vessel function primarily in the context of acute and sub acute myocardial infarction (MI). The ability of quantitative PET measurements of myocardial blood flow (MBF) to delineate underlying pathophysiology and assist in clinical decision making in this setting is discussed. Likewise, considered are physiological metrics fractional flow reserve, coronary flow reserve, index of microvascular resistance (FFR, CFR, IMR) obtained from invasive studies performed in the cardiac catheterization laboratory, typically at the time of PCI for MI. The role both of invasive studies and cardiac magnetic resonance (CMR) imaging in assessing microvascular function, a key determinant of prognosis, is reviewed. The interface between quantitative PET MBF measurements and underlying pathophysiology, as demonstrated both by invasive and CMR methodology, is discussed in the context of optimal interpretation of the quantitative PET MBF exam and its potential clinical applications.
MR-guided focused ultrasound surgery, present and future
Schlesinger, David; Benedict, Stanley; Diederich, Chris; Gedroyc, Wladyslaw; Klibanov, Alexander; Larner, James
2013-01-01
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20/20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice. PMID:23927296
Endotoxemia: methods of detection and clinical correlates.
Hurley, J C
1995-01-01
As an assay for endotoxin, the Limulus amebocyte lysate assay has several desirable properties: sensitivity, specificity, and potential for adaptation to a quantitative format. Several modifications have been developed to enhance its potential for clinical application. The modifications that allow quantitative measurement of endotoxin and also improve its application to blood samples are described in this review. In fluids other than blood, the detection of endotoxin with the Limulus amebocyte lysate assay can be used as an aid to identify the presence of gram-negative bacteria, and the assay has established utility. With blood, however, there are a range of factors that interfere with the detection of endotoxemia and there are disparate views with respect to the diagnostic and prognostic significance of the test results. In general, the clinical significance of the finding of endotoxemia broadly parallels the frequency and importance of gram-negative sepsis in the patient groups studied and a decline in endotoxin levels accompanies clinical improvement. However, with therapies designed to reduce levels of endotoxin, or to antagonize its effects, it is unclear whether clinical improvement occurs as a consequence of changes in the levels of endotoxemia. PMID:7621402
Mandell, Jacob C; Khurana, Bharti; Folio, Les R; Hyun, Hyewon; Smith, Stacy E; Dunne, Ruth M; Andriole, Katherine P
2017-06-01
A methodology is described using Adobe Photoshop and Adobe Extendscript to process DICOM images with a Relative Attenuation-Dependent Image Overlay (RADIO) algorithm to visualize the full dynamic range of CT in one view, without requiring a change in window and level settings. The potential clinical uses for such an algorithm are described in a pictorial overview, including applications in emergency radiology, oncologic imaging, and nuclear medicine and molecular imaging.
NASA Astrophysics Data System (ADS)
Wang, Ruikang K.; Baran, Utku; Choi, Woo J.
2016-02-01
Optical coherence tomography (OCT) based microangiography (OMAG) is a new imaging technique enabling the visualization of blood flow within microcirculatory tissue beds in vivo with high resolution. In this talk, the concept and advantages of OMAG will be discussed and its potential clinical applications in the dermatology will be shown, demonstrating its usefulness in the clinical monitoring and therapeutic treatment of various skin pathologies, e.g. acne, port wine stain and wound healing.
Timms, John F; Hale, Oliver J; Cramer, Rainer
2016-06-01
The last 20 years have seen significant improvements in the analytical capabilities of biological mass spectrometry (MS). Studies using advanced MS have resulted in new insights into cell biology and the etiology of diseases as well as its use in clinical applications. This review discusses recent developments in MS-based technologies and their cancer-related applications with a focus on proteomics. It also discusses the issues around translating the research findings to the clinic and provides an outline of where the field is moving. Expert commentary: Proteomics has been problematic to adapt for the clinical setting. However, MS-based techniques continue to demonstrate potential in novel clinical uses beyond classical cancer proteomics.
Clinical applications of preimplantation genetic testing.
Brezina, Paul R; Kutteh, William H
2015-02-19
Genetic diagnostic technologies are rapidly changing the way medicine is practiced. Preimplantation genetic testing is a well established application of genetic testing within the context of in vitro fertilization cycles. It involves obtaining a cell(s) from a developing embryo in culture, which is then subjected to genetic diagnostic analysis; the resulting information is used to guide which embryos are transferred into the uterus. The potential applications and use of this technology have increased in recent years. Experts agree that preimplantation genetic diagnosis is clinically appropriate for many known genetic disorders. However, some applications of such testing, such as preimplantation genetic screening for aneuploidy, remain controversial. Clinical data suggest that preimplantation genetic screening may be useful, but further studies are needed to quantify the size of the effect and who would benefit most. © BMJ Publishing Group Ltd 2015.
Behavioral economics and empirical public policy.
Hursh, Steven R; Roma, Peter G
2013-01-01
The application of economics principles to the analysis of behavior has yielded novel insights on value and choice across contexts ranging from laboratory animal research to clinical populations to national trends of global impact. Recent innovations in demand curve methods provide a credible means of quantitatively comparing qualitatively different reinforcers as well as quantifying the choice relations between concurrently available reinforcers. The potential of the behavioral economic approach to inform public policy is illustrated with examples from basic research, pre-clinical behavioral pharmacology, and clinical drug abuse research as well as emerging applications to public transportation and social behavior. Behavioral Economics can serve as a broadly applicable conceptual, methodological, and analytical framework for the development and evaluation of empirical public policy. © Society for the Experimental Analysis of Behavior.
Emerging Non-Cancer Applications of Therapeutic Ultrasound
O’Reilly, Meaghan A.; Hynynen, Kullervo
2015-01-01
Ultrasound therapy has been investigated for over half a century. Ultrasound can act on tissue through a variety of mechanisms, including thermal, shockwave and cavitation mechanisms, and through these can elicit different responses. Ultrasound therapy can provide a non-invasive or minimally invasive treatment option, and ultrasound technology has advanced to the point where devices can be developed to investigate a wide range of applications. This review focuses on non-cancer, clinical applications of therapeutic ultrasound, with an emphasis on treatments that have recently reached clinical investigations, and preclinical research programs that have great potential to impact patient care. PMID:25792225
Method of App Selection for Healthcare Providers Based on Consumer Needs.
Lee, Jisan; Kim, Jeongeun
2018-01-01
Mobile device applications can be used to manage health. However, healthcare providers hesitate to use them because selection methods that consider the needs of health consumers and identify the most appropriate application are rare. This study aimed to create an effective method of identifying applications that address user needs. Women experiencing dysmenorrhea and premenstrual syndrome were the targeted users. First, we searched for related applications from two major sources of mobile applications. Brainstorming, mind mapping, and persona and scenario techniques were used to create a checklist of relevant criteria, which was used to rate the applications. Of the 2784 applications found, 369 were analyzed quantitatively. Of those, five of the top candidates were evaluated by three groups: application experts, clinical experts, and potential users. All three groups ranked one application the highest; however, the remaining rankings differed. The results of this study suggest that the method created is useful because it considers not only the needs of various users but also the knowledge of application and clinical experts. This study proposes a method for finding and using the best among existing applications and highlights the need for nurses who can understand and combine opinions of users and application and clinical experts.
Ultrasound Molecular Imaging: Moving Towards Clinical Translation
Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K.
2015-01-01
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. PMID:25851932
Ultrasound molecular imaging: Moving toward clinical translation.
Abou-Elkacem, Lotfi; Bachawal, Sunitha V; Willmann, Jürgen K
2015-09-01
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sclerostin Antibody Therapy for the Treatment of Osteoporosis: Clinical Prospects and Challenges
MacNabb, Claire; Patton, D.; Hayes, J. S.
2016-01-01
It is estimated that over 200 million adults worldwide have osteoporosis, a disease that has increasing socioeconomic impact reflected by unsustainable costs associated with disability, fracture management, hospital stays, and treatment. Existing therapeutic treatments for osteoporosis are associated with a variety of issues relating to use, clinical predictability, and health risks. Consequently, additional novel therapeutic targets are increasingly sought. A promising therapeutic candidate is sclerostin, a Wnt pathway antagonist and, as such, a negative regulator of bone formation. Sclerostin antibody treatment has demonstrated efficacy and superiority compared to other anabolic treatments for increasing bone formation in both preclinical and clinical settings. Accordingly, it has been suggested that sclerostin antibody treatment is set to achieve market approval by 2017 and aggressively compete as the gold standard for osteoporotic treatment by 2021. In anticipation of phase III trial results which may potentially signify a significant step in achieving market approval here, we review the preclinical and clinical emergence of sclerostin antibody therapies for both osteoporosis and alternative applications. Potential clinical challenges are also explored as well as ongoing developments that may impact on the eventual clinical application of sclerostin antibodies as an effective treatment of osteoporosis. PMID:27313945
Clinical metabolomics paves the way towards future healthcare strategies
Collino, Sebastiano; Martin, François‐Pierre J.; Rezzi, Serge
2013-01-01
Metabolomics is recognized as a powerful top‐down system biological approach to understand genetic‐environment‐health paradigms paving new avenues to identify clinically relevant biomarkers. It is nowadays commonly used in clinical applications shedding new light on physiological regulatory processes of complex mammalian systems with regard to disease aetiology, diagnostic stratification and, potentially, mechanism of action of therapeutic solutions. A key feature of metabolomics lies in its ability to underpin the complex metabolic interactions of the host with its commensal microbial partners providing a new way to define individual and population phenotypes. This review aims at describing recent applications of metabolomics in clinical fields with insight into diseases, diagnostics/monitoring and improvement of homeostatic metabolic regulation. PMID:22348240
Binase and other microbial RNases as potential anticancer agents.
Makarov, Alexander A; Kolchinsky, Alexander; Ilinskaya, Olga N
2008-08-01
Some RNases possess preferential cytotoxicity against malignant cells. The best known of these RNases, onconase, was isolated from frog oocytes and is in clinical trials as anticancer therapy. Here we propose an alternative platform for anticancer therapy based on T1 RNases of microbial origin, in particular binase from Bacillus intermedius and RNase Sa from Streptomyces aureofaciens. We discuss their advantages and the most promising directions of research for their potential clinical applications. (c) 2008 Wiley Periodicals, Inc.
Amnion-derived stem cells: in quest of clinical applications
2011-01-01
In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research. PMID:21596003
The clinical application of teaching people about pain.
Louw, Adriaan; Zimney, Kory; O'Hotto, Christine; Hilton, Sandra
2016-07-01
Teaching people about the neurobiology and neurophysiology of their pain experience has a therapeutic effect and has been referred to as pain neuroscience education (PNE). Various high-quality randomized controlled trials and systematic reviews have shown increasing efficacy of PNE decreasing pain, disability, pain catastrophization, movement restrictions, and healthcare utilization. Research studies, however, by virtue of their design, are very controlled environments and, therefore, in contrast to the ever-increasing evidence for PNE, little is known about the clinical application of this emerging therapy. In contrast, case studies, case series, and expert opinion and perspectives by authorities in the world of pain science provide clinicians with a glimpse into potential "real" clinical application of PNE in the face of the ever-increasing chronic pain epidemic. By taking the material from the randomized controlled trials, systematic reviews, case series, case studies, and expert opinion, this article aims to provide a proposed layout of the clinical application of PNE. The article systematically discusses key elements of PNE including examination, educational content, and delivery methods, merging of PNE with movement, goal setting, and progression. This perspectives article concludes with a call for research into the clinical application of PNE.
Food allergy: opportunities and challenges in the clinical practice of allergy and immunology.
James, John M
2004-10-01
Food allergy offers numerous opportunities and challenges for the allergy and clinical immunology specialist. Physicians with board certification in allergy and clinical immunology should be the main source of reliable clinical information to educate patients with food-related disorders. There has been a wealth of reliable information published related to food allergy that can be utilized by health care providers in clinical practice. This includes information about the cross-reactivity of food allergens, the evaluation of potential new therapies, and the practical application of new diagnostic methods and management strategies. This article addresses some of the new developments in food allergy, with an emphasis on cross-reactvity of food allergens, recombinant food allergens, and potential future therapies for food allergy.
Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications
Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu
2017-01-01
The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809
Advanced Neuroimaging in Traumatic Brain Injury
Edlow, Brian L.; Wu, Ona
2013-01-01
Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization and interpretation. PMID:23361483
Meenakshisundaram, Guruguhan; Eteshola, Edward; Pandian, Ramasamy P.; Bratasz, Anna; Kuppusamy, Periannan
2009-01-01
Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) is a promising probe for biological electron paramagnetic resonance (EPR) oximetry and is being developed for clinical use. However, clinical applicability of LiNc-BuO may be hindered by potential limitations associated with biocompatibility, biodegradation, and migration of individual crystals in tissue. To overcome these limitations, we have encapsulated LiNc-BuO crystals in polydimethyl siloxane (PDMS), an oxygen-permeable and bioinert polymer, to fabricate conveniently implantable and retrievable oxygen-sensing chips. Encapsulation was performed by a simple cast-molding process, giving appreciable control over size, shape, thickness and spin density of chips. The in vitro oxygen response of the chip was linear, reproducible, and not significantly different from that of unencapsulated crystals. Cast-molding of the structurally-flexible PDMS enabled the fabrication of chips with tailored spin densities, and ensured non-exposure of embedded LiNc-BuO, mitigating potential biocompatibility/toxicological concerns. Our results establish PDMS-encapsulated LiNc-BuO as a promising candidate for further biological evaluation and potential clinical application. PMID:19291409
Meta-Analysis: Application to Clinical Dentistry and Dental Education.
ERIC Educational Resources Information Center
Cohen, Peter A.
1992-01-01
Meta-analysis is proposed as an effective alternative to conventional narrative review for extracting trends from research findings. This type of analysis is explained, advantages over more traditional review techniques are discussed, basic procedures and limitations are outlined, and potential applications in dental education and clinical…
Managing hazardous waste in the clinical laboratory.
Hoeltge, G A
1989-09-01
Clinical laboratories generate wastes that present chemical and biologic hazards. Ignitable, corrosive, reactive, toxic, and infectious potentials must be contained and minimized. A summary of these problems and an overview of the applicable regulations are presented. A checklist of activities to facilitate the annual review of the hazardous waste program is provided.
The applicability of Lean and Six Sigma techniques to clinical and translational research.
Schweikhart, Sharon A; Dembe, Allard E
2009-10-01
Lean and Six Sigma are business management strategies commonly used in production industries to improve process efficiency and quality. During the past decade, these process improvement techniques increasingly have been applied outside the manufacturing sector, for example, in health care and in software development. This article concerns the potential use of Lean and Six Sigma in improving the processes involved in clinical and translational research. Improving quality, avoiding delays and errors, and speeding up the time to implementation of biomedical discoveries are prime objectives of the National Institutes of Health (NIH) Roadmap for Medical Research and the NIH's Clinical and Translational Science Award program. This article presents a description of the main principles, practices, and methods used in Lean and Six Sigma. Available literature involving applications of Lean and Six Sigma to health care, laboratory science, and clinical and translational research is reviewed. Specific issues concerning the use of these techniques in different phases of translational research are identified. Examples of Lean and Six Sigma applications that are being planned at a current Clinical and Translational Science Award site are provided, which could potentially be replicated elsewhere. We describe how different process improvement approaches are best adapted for particular translational research phases. Lean and Six Sigma process improvement methods are well suited to help achieve NIH's goal of making clinical and translational research more efficient and cost-effective, enhancing the quality of the research, and facilitating the successful adoption of biomedical research findings into practice.
Big Data Analytic, Big Step for Patient Management and Care in Puerto Rico.
Borrero, Ernesto E
2018-01-01
This letter provides an overview of the application of big data in health care system to improve quality of care, including predictive modelling for risk and resource use, precision medicine and clinical decision support, quality of care and performance measurement, public health and research applications, among others. The author delineates the tremendous potential for big data analytics and discuss how it can be successfully implemented in clinical practice, as an important component of a learning health-care system.
Potential and problems in ultrasound-responsive drug delivery systems
Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping
2013-01-01
Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531
MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, T.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-01: 3D Dosimetry in the Clinic: Background and Motivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiner, L.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-02: 3D Dosimetry in the Clinic: IMRT Technique Validation in Sweden
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceberg, S.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
Gamification and Multimedia for Medical Education: A Landscape Review.
McCoy, Lise; Lewis, Joy H; Dalton, David
2016-01-01
Medical education is rapidly evolving. Students enter medical school with a high level of technological literacy and an expectation for instructional variety in the curriculum. In response, many medical schools now incorporate technology-enhanced active learning and multimedia education applications. Education games, medical mobile applications, and virtual patient simulations are together termed gamified training platforms. To review available literature for the benefits of using gamified training platforms for medical education (both preclinical and clinical) and training. Also, to identify platforms suitable for these purposes with links to multimedia content. Peer-reviewed literature, commercially published media, and grey literature were searched to compile an archive of recently published scientific evaluations of gamified training platforms for medical education. Specific educational games, mobile applications, and virtual simulations useful for preclinical and clinical training were identified and categorized. Available evidence was summarized as it related to potential educational advantages of the identified platforms for medical education. Overall, improved learning outcomes have been demonstrated with virtual patient simulations. Games have the potential to promote learning, increase engagement, allow for real-word application, and enhance collaboration. They can also provide opportunities for risk-free clinical decision making, distance training, learning analytics, and swift feedback. A total of 5 electronic games and 4 mobile applications were identified for preclinical training, and 5 electronic games, 10 mobile applications, and 12 virtual patient simulation tools were identified for clinical training. Nine additional gamified, virtual environment training tools not commercially available were also identified. Many published studies suggest possible benefits from using gamified media in medical curriculum. This is a rapidly growing field. More research is required to rigorously evaluate the specific educational benefits of these interventions. This archive of hyperlinked tools can be used as a resource for all levels of medical trainees, providers, and educators.
Stem cell sources for regenerative medicine.
Riazi, Ali M; Kwon, Sarah Y; Stanford, William L
2009-01-01
Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.
Schrijver, Iris; Aziz, Nazneen; Farkas, Daniel H; Furtado, Manohar; Gonzalez, Andrea Ferreira; Greiner, Timothy C; Grody, Wayne W; Hambuch, Tina; Kalman, Lisa; Kant, Jeffrey A; Klein, Roger D; Leonard, Debra G B; Lubin, Ira M; Mao, Rong; Nagan, Narasimhan; Pratt, Victoria M; Sobel, Mark E; Voelkerding, Karl V; Gibson, Jane S
2012-11-01
This report of the Whole Genome Analysis group of the Association for Molecular Pathology illuminates the opportunities and challenges associated with clinical diagnostic genome sequencing. With the reality of clinical application of next-generation sequencing, technical aspects of molecular testing can be accomplished at greater speed and with higher volume, while much information is obtained. Although this testing is a next logical step for molecular pathology laboratories, the potential impact on the diagnostic process and clinical correlations is extraordinary and clinical interpretation will be challenging. We review the rapidly evolving technologies; provide application examples; discuss aspects of clinical utility, ethics, and consent; and address the analytic, postanalytic, and professional implications. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications
Castro-Manrreza, Marta E.; Montesinos, Juan J.
2015-01-01
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD). PMID:25961059
Paper-Based Quantification of Male Fertility Potential.
Nosrati, Reza; Gong, Max M; San Gabriel, Maria C; Pedraza, Claudio E; Zini, Armand; Sinton, David
2016-03-01
More than 70 million couples worldwide are affected by infertility, with male-factor infertility accounting for about half of the cases. Semen analysis is critical for determining male fertility potential, but conventional testing is costly and complex. Here, we demonstrate a paper-based microfluidic approach to quantify male fertility potential, simultaneously measuring 3 critical semen parameters in 10 min: live and motile sperm concentrations and sperm motility. The device measures the colorimetric change of yellow tetrazolium dye to purple formazan by the diaphorase flavoprotein enzyme present in metabolically active human sperm to quantify live and motile sperm concentration. Sperm motility was determined as the ratio of motile to live sperm. We assessed the performance of the device by use of clinical semen samples, in parallel with standard clinical approaches. Detection limits of 8.46 and 15.18 million/mL were achieved for live and motile sperm concentrations, respectively. The live and motile sperm concentrations and motility values from our device correlated with those of the standard clinical approaches (R(2) ≥ 0.84). In all cases, our device provided 100% agreement in terms of clinical outcome. The device was also robust and could tolerate conditions of high absolute humidity (22.8 g/m(3)) up to 16 weeks when packaged with desiccant. Our device outperforms existing commercial paper-based assays by quantitatively measuring live and motile sperm concentrations and motility, in only 10 min. This approach is applicable to current clinical practices as well as self-diagnostic applications. © 2015 American Association for Clinical Chemistry.
Collaborative Documentation in Mental Health: Applications to Rehabilitation Counseling
ERIC Educational Resources Information Center
Sheehan, Lindsay; Lewicki, Todd
2016-01-01
Purpose: In this article, the emerging practice of collaborative documentation (CD) in community mental health care and its applications to rehabilitation counseling were explored. CD has the potential to promote greater client empowerment, clinical transparency, and documentation efficiency and quality; however, the CD process is not well…
Mobile Tablet Use among Academic Physicians and Trainees
Sclafani, Joseph; Tirrell, Timothy F.
2014-01-01
The rapid adoption rate and integration of mobile technology (tablet computing devices and smartphones) by physicians is reshaping the current clinical landscape. These devices have sparked an evolution in a variety of arenas, including educational media dissemination, remote patient data access and point of care applications. Quantifying usage patterns of clinical applications of mobile technology is of interest to understand how these technologies are shaping current clinical care. A digital survey examining mobile tablet and associated application usage was administered via email to all ACGME training programs. Data regarding respondent specialty, level of training, and habits of tablet usage were collected and analyzed. 40 % of respondents used a tablet, of which the iPad was the most popular. Nearly half of the tablet owners reported using the tablet in clinical settings; the most commonly used application types were point of care and electronic medical record access. Increased level of training was associated with decreased support for mobile computing improving physician capabilities and patient interactions. There was strong and consistent desire for institutional support of mobile computing and integration of mobile computing technology into medical education. While many physicians are currently purchasing mobile devices, often without institutional support, successful integration of these devices into the clinical setting is still developing. Potential reasons behind the low adoption rate may include interference of technology in doctor-patient interactions or the lack of appropriate applications available for download. However, the results convincingly demonstrate that physicians recognize a potential utility in mobile computing, indicated by their desire for institutional support and integration of mobile technology into medical education. It is likely that the use of tablet computers in clinical practice will expand in the future. Thus, we believe medical institutions, providers, educators, and developers should collaborate in ways that enhance the efficacy, reliability, and safety of integrating these devices into daily medical practice. PMID:23321961
A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery
Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan
2018-01-01
Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting. PMID:29503698
A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery.
Cho, Woojin; Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan
2018-02-01
Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting.
Exploring the Potential of Predictive Analytics and Big Data in Emergency Care.
Janke, Alexander T; Overbeek, Daniel L; Kocher, Keith E; Levy, Phillip D
2016-02-01
Clinical research often focuses on resource-intensive causal inference, whereas the potential of predictive analytics with constantly increasing big data sources remains largely unexplored. Basic prediction, divorced from causal inference, is much easier with big data. Emergency care may benefit from this simpler application of big data. Historically, predictive analytics have played an important role in emergency care as simple heuristics for risk stratification. These tools generally follow a standard approach: parsimonious criteria, easy computability, and independent validation with distinct populations. Simplicity in a prediction tool is valuable, but technological advances make it no longer a necessity. Emergency care could benefit from clinical predictions built using data science tools with abundant potential input variables available in electronic medical records. Patients' risks could be stratified more precisely with large pools of data and lower resource requirements for comparing each clinical encounter to those that came before it, benefiting clinical decisionmaking and health systems operations. The largest value of predictive analytics comes early in the clinical encounter, in which diagnostic and prognostic uncertainty are high and resource-committing decisions need to be made. We propose an agenda for widening the application of predictive analytics in emergency care. Throughout, we express cautious optimism because there are myriad challenges related to database infrastructure, practitioner uptake, and patient acceptance. The quality of routinely compiled clinical data will remain an important limitation. Complementing big data sources with prospective data may be necessary if predictive analytics are to achieve their full potential to improve care quality in the emergency department. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Demiris, G; Thompson, H J
2012-01-01
This paper highlights the potential of smart home applications to not only assess mobility determinants for older adults in the home environment but also provide the opportunity for tailored interventions. We present a theoretical framework for assessing mobility parameters and utilizing this information to enable behavior change based on the Health Belief Model. We discuss examples that showcase the potential of smart home systems to not only measure but also improve mobility for community dwelling older adults. Mobility is a complex construct that cannot be addressed with a single monitoring approach or a single intervention. Instead, tailored interventions that address specific needs and behaviors of individuals and take into consideration preferences of older adults and potentially their social network are needed to effectively enforce positive behavior change. Smart home systems have the ability to capture details of one's daily living that could otherwise not be easily obtained; however, such data repositories alone are not sufficient to improve clinical outcomes if appropriate mechanisms for data mining and analysis, as well as tailored response systems are not in place. Unleashing the potential of smart home applications to measure and improve mobility has the potential of transforming elder care and providing potentially cost-effective tools to support independence for older adults. A technologically driven smart home application can maximize its clinical relevance by pursuing interactive features that can lead to behavior change.
Instructional Storytelling: Application of the Clinical Judgment Model in Nursing.
Timbrell, Jessica
2017-05-01
Little is known about the teaching and learning implications of instructional storytelling (IST) in nursing education or its potential connection to nursing theory. The literature establishes storytelling as a powerful teaching-learning method in the educational, business, humanities, and health sectors, but little exploration exists that is specific to nursing. An example of a story demonstrating application of the domains of Tanner's clinical judgment model links storytelling with learning outcomes appropriate for the novice nursing student. Application of Tanner's clinical judgment model offers consistency of learning experience while preserving the creativity inherent in IST. Further research into student learning outcomes achievement using IST is warranted as a step toward establishing best practices with IST in nursing education. [J Nurs Educ. 2017;56(5):305-308.]. Copyright 2017, SLACK Incorporated.
Realising the Promise of Cancer Predisposition Genes
Rahman, Nazneen
2016-01-01
Genes in which germline mutations confer high or moderate increased risks of cancer are called cancer predisposition genes (CPG). Over 100 CPGs have been identified providing important scientific insights in many areas, particularly mechanisms of cancer causation. Moreover, clinical utilisation of CPGs has had substantial impact in diagnosis, optimised management and prevention of cancer. The recent transformative advances in DNA sequencing bring the promise of many more CPG discoveries and greater, broader clinical applications. However, there is also considerable potential for incorrect inferences and inappropriate clinical applications. Realising the promise of cancer predisposition genes for science and medicine will thus require careful navigation. PMID:24429628
Loechelt, Brett J; Green, Michael; Gottlieb, Peter A; Blumberg, Emily; Weinberg, Adriana; Quinlan, Scott; Baden, Lindsey R
2015-09-01
Significant progress has been made in the development, investigation, and clinical application of immunosuppressive agents to treat a variety of autoimmune disorders. The expansion of clinical applications of these new agents requires the performance of large multicenter clinical trials. These large clinical trials are particularly important as one considers these agents for the treatment of type 1 diabetes, which although autoimmune in its pathogenesis, is not classically treated as an autoimmune disorder. Although these agents hold promise for amelioration or cure of this disease, they have the potential to facilitate infectious complications. There are limited data regarding the prospective assessment of infectious risks with these agents in trials of this nature. Pediatric subjects may be at greater risk due to the higher likelihood of primary infection. A subgroup of experts associated with TrialNet (a National Institutes of Health [NIH]-funded Type 1 diabetes mellitus research network) with expertise in infectious diseases, immunology, and diagnostics developed an approach for screening and monitoring of immunosuppression-associated infections for prospective use in clinical trials. The goals of these recommendations are to provide a structured approach to monitor for infections, to identify specific laboratory testing and surveillance methods, and to consider therapies for treatment of these potential complications. Prospective evaluations of these infectious risks allow for greater scientific rigor in the evaluation of risk, which must be balanced with the potential benefits of these therapies. Our experience supports an important role for investigators with expertise in infections in immunocompromised individuals in protocol development of immunosuppressive trials in type 1diabetes and potentially other autoimmune diseases.
[Research Progress of CircRNA and Its Application Prospect in Forensic Medicine].
Tu, C Y; Jin, K D; Shao, C C; Liu, B N; Zhang, Y Q; Xie, J H; Shen, Y W
2018-02-01
Circular RNA (circRNA) is a type of noncoding RNA with tissue specificity and high stability, which forms a closed continuous loop and is abundantly expressed in tissue cells. According to recent research, the regulatory function of circRNA elucidating in the occurrence and development of disease shows a potential for diagnosing clinical disease and revealing disease mechanism. This paper reviews the biological characteristics, analysis methods of circRNA and its research progress in clinical application as biomarker, and outlooks its application in the field of forensic medicine. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Verschuren, Jeffrey J W; Trompet, Stella; Wessels, Judith A M; Guchelaar, Henk-Jan; de Maat, Moniek P M; Simoons, Maarten L; Jukema, J Wouter
2012-01-01
Pharmacogenetics is the search for heritable genetic polymorphisms that influence responses to drug therapy. The most important application of pharmacogenetics is to guide choosing agents with the greatest potential of efficacy and smallest risk of adverse drug reactions. Many studies focusing on drug-gene interactions have been published in recent years, some of which led to adaptation of FDA recommendations, indicating that we are on the verge of the clinical application of genetic information in drug therapy. This systematic review provides a comprehensive overview of the current knowledge on pharmacogenetics of all major drug classes currently used in the treatment of cardiovascular diseases.
Terahertz otoscope and potential for diagnosing otitis media
Ji, Young Bin; Moon, In-Seok; Bark, Hyeon Sang; Kim, Sang Hoon; Park, Dong Woo; Noh, Sam Kyu; Huh, Yong-Min; Suh, Jin-Seok; Oh, Seung Jae; Jeon, Tae-In
2016-01-01
We designed and fabricated a novel terahertz (THz) otoscope to help physicians to diagnose otitis media (OM) with both THz diagnostics and conventional optical diagnostics. We verified the potential of this tool for diagnosing OM using mouse skin tissue and a human tympanic membrane samples prior to clinical application. PMID:27446647
Discerning trends in multiplex immunoassay technology with potential for resource-limited settings.
Gordon, Julian; Michel, Gerd
2012-04-01
In the search for more powerful tools for diagnoses of endemic diseases in resource-limited settings, we have been analyzing technologies with potential applicability. Increasingly, the process focuses on readily accessible bodily fluids combined with increasingly powerful multiplex capabilities to unambiguously diagnose a condition without resorting to reliance on a sophisticated reference laboratory. Although these technological advances may well have important implications for the sensitive and specific detection of disease, to date their clinical utility has not been demonstrated, especially in resource-limited settings. Furthermore, many emerging technological developments are in fields of physics or engineering, which are not readily available to or intelligible to clinicians or clinical laboratory scientists. This review provides a look at technology trends that could have applicability to high-sensitivity multiplexed immunoassays in resource-limited settings. Various technologies are explained and assessed according to potential for reaching relevant limits of cost, sensitivity, and multiplex capability. Frequently, such work is reported in technical journals not normally read by clinical scientists, and the authors make enthusiastic claims for the potential of their technology while ignoring potential pitfalls. Thus it is important to draw attention to technical hurdles that authors may not be publicizing. Immunochromatographic assays, optical methods including those involving waveguides, electrochemical methods, magnetorestrictive methods, and field-effect transistor methods based on nanotubes, nanowires, and nanoribbons reveal possibilities as next-generation technologies.
ERIC Educational Resources Information Center
Faust, Kyle A.; Faust, David; Baker, Aaron M.; Meyer, Joseph F.
2012-01-01
Even when relatively infrequent, deviant response sets, such as defensive and careless responding, can have remarkably robust effects on individual and group data and thereby distort clinical evaluations and research outcomes. Given such potential adverse impacts and the widespread use of self-report measures when appraising addictions and…
Van Nieuwenhove, I; Tytgat, L; Ryx, M; Blondeel, P; Stillaert, F; Thienpont, H; Ottevaere, H; Dubruel, P; Van Vlierberghe, S
2017-11-01
There is a clear and urgent clinical need to develop soft tissue fillers that outperform the materials currently used for adipose tissue reconstruction. Recently, extensive research has been performed within this field of adipose tissue engineering as the commercially available products and the currently existing techniques are concomitant with several disadvantages. Commercial products are highly expensive and associated with an imposing need for repeated injections. Lipofilling or free fat transfer has an unpredictable outcome with respect to cell survival and potential resorption of the fat grafts. Therefore, researchers are predominantly investigating two challenging adipose tissue engineering strategies: in situ injectable materials and porous 3D printed scaffolds. The present work provides an overview of current research encompassing synthetic, biopolymer-based and extracellular matrix-derived materials with a clear focus on emerging fabrication technologies and developments realized throughout the last decade. Moreover, clinical relevance of the most promising materials will be discussed, together with potential concerns associated with their application in the clinic. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mechanisms and applications of interleukins in cancer immunotherapy.
Anestakis, Doxakis; Petanidis, Savvas; Kalyvas, Spyridon; Nday, Christiane M; Tsave, Olga; Kioseoglou, Efrosini; Salifoglou, Athanasios
2015-01-13
Over the past years, advances in cancer immunotherapy have resulted in innovative and novel approaches in molecular cancer diagnostics and cancer therapeutic procedures. However, due to tumor heterogeneity and inter-tumoral discrepancy in tumor immunity, the clinical benefits are quite restricted. The goal of this review is to evaluate the major cytokines-interleukins involved in cancer immunotherapy and project their basic biochemical and clinical applications. Emphasis will be given to new cytokines in pre-clinical development, and potential directions for future investigation using cytokines. Furthermore, current interleukin-based approaches and clinical trial data from combination cancer immunotherapies will also be discussed. It appears that continuously increasing comprehension of cytokine-induced effects, cancer stemness, immunoediting, immune-surveillance as well as understanding of molecular interactions emerging in the tumor microenvironment and involving microRNAs, autophagy, epithelial-mesenchymal transition (EMT), inflammation, and DNA methylation processes may hold much promise in improving anti-tumor immunity. To this end, the emerging in-depth knowledge supports further studies on optimal synergistic combinations and additional adjuvant therapies to realize the full potential of cytokines as immunotherapeutic agents.
Application of the MALDI Biotyper to clinical microbiology: progress and potential.
Kostrzewa, Markus
2018-03-01
The introduction of the MALDI Biotyper in laboratories substantially changed microbiology practice, this has been called a revolution. The system accelerated diagnostic while costs were reduced and accuracy was increased. In just a few years MALDI-TOF MS became the first-line identification tool for microorganisms. Ten years after its introduction, more than 2000 MALDI Biotyper systems are installed in laboratories which are performing routine diagnostic, and the number is still increasing. Areas covered: This article summarises changes in clinical microbiology introduced by the MALDI Biotyper and its effects, as it has been published in peer reviewed articles found in PubMed. Further, the potential of novel developments to increase the value of the system is described. Expert commentary: The MALDI Biotyper has significantly improved clinical microbiology in the area of microorganism identification. Now new developments and applications, e.g. for typing and resistance testing, might further increase its value in clinical microbiology. The systems might get the central diagnostic analyser which is getting integrated into the widely automated microbiology laboratories of the future.
Helper-Dependent Adenoviral Vectors.
Rosewell, Amanda; Vetrini, Francesco; Ng, Philip
2011-10-29
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.
Helper-Dependent Adenoviral Vectors
Rosewell, Amanda; Vetrini, Francesco; Ng, Philip
2012-01-01
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology. PMID:24533227
An introduction to metabolomics and its potential application in veterinary science.
Jones, Oliver A H; Cheung, Victoria L
2007-10-01
Metabolomics has been found to be applicable to a wide range of fields, including the study of gene function, toxicology, plant sciences, environmental analysis, clinical diagnostics, nutrition, and the discrimination of organism genotypes. This approach combines high-throughput sample analysis with computer-assisted multivariate pattern-recognition techniques. It is increasingly being deployed in toxico- and pharmacokinetic studies in the pharmaceutical industry, especially during the safety assessment of candidate drugs in human medicine. However, despite the potential of this technique to reduce both costs and the numbers of animals used for research, examples of the application of metabolomics in veterinary research are, thus far, rare. Here we give an introduction to metabolomics and discuss its potential in the field of veterinary science.
Clinical applications of the functional connectome
Castellanos, F. Xavier; Di Martino, Adriana; Craddock, R. Cameron; Mehta, Ashesh D.; Milham, Michael P.
2013-01-01
Central to the development of clinical applications of functional connectomics for neurology and psychiatry is the discovery and validation of biomarkers. Resting state fMRI (R-fMRI) is emerging as a mainstream approach for imaging-based biomarker identification, detecting variations in the functional connectome that can be attributed to clinical variables (e.g., diagnostic status). Despite growing enthusiasm, many challenges remain. Here, we assess evidence of the readiness of R-fMRI based functional connectomics to lead to clinically meaningful biomarker identification through the lens of the criteria used to evaluate clinical tests (i.e., validity, reliability, sensitivity, specificity, and applicability). We focus on current R-fMRI-based prediction efforts, and survey R-fMRI used for neurosurgical planning. We identify gaps and needs for R-fMRI-based biomarker identification, highlighting the potential of emerging conceptual, analytical and cultural innovations (e.g., the Research Domain Criteria Project (RDoC), open science initiatives, and Big Data) to address them. Additionally, we note the need to expand future efforts beyond identification of biomarkers for disease status alone to include clinical variables related to risk, expected treatment response and prognosis. PMID:23631991
Clinical translation of controlled protein delivery systems for tissue engineering.
Spiller, Kara L; Vunjak-Novakovic, Gordana
2015-04-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed.
Clinical translation of controlled protein delivery systems for tissue engineering
Spiller, Kara L.; Vunjak-Novakovic, Gordana
2013-01-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed. PMID:25787736
Edwards, Eric S; Edwards, Evan T; Simons, F Estelle R; North, Robert
2015-05-01
The systematic application of human factors engineering (HFE) principles to the development of drug-device combination products, including epinephrine auto-injectors (EAIs), has the potential to improve the effectiveness and safety of drug administration. A PubMed search was performed to assess the role of HFE in the development of drug-device combination products. The following keywords were used in different combinations: 'human factors engineering,' 'human factors,' 'medical products,' 'epinephrine/adrenaline auto-injector,' 'healthcare' and 'patient safety.' This review provides a summary of HFE principles and their application to the development of drug-device combination products as advised by the US FDA. It also describes the HFE process that was applied to the development of Auvi-Q, a novel EAI, highlighting specific steps that occurred during the product-development program. For drug-device combination products, device labeling and usability are critical and have the potential to impact clinical outcomes. Application of HFE principles to the development of drug-delivery devices has the potential to improve product quality and reliability, reduce risk and improve patient safety when applied early in the development process. Additional clinical and real-world studies will confirm whether the application of HFE has helped to develop an EAI that better meets the needs of patients at risk of anaphylaxis.
Kobayashi, Masanori; Hyu, Hyon Suong
2010-01-01
Due to its excellent biocompatibility and mechanical properties, various different applications of polyvinyl alcohol-hydrogels (PVA-H) has been attempted in many fields. In the field of orthopedic surgery, we have been engaged for long time in research on the clinical applications of PVA-H as a artificial cartilage, and have performed many basic experiments on the mechanical properties, synthesis of PVA-H, and developed orthopedic implants using PVA-H. From these studies, many applications of artificial articular cartilage, intervertbral disc and artificial meniscus etc. have been developed. This review will present the overview of the applications and recent advances of PVA-H cartilages, and discuss clinical potential of PVA-H for orthopedics implant.
Hu, Ye; Fine, Daniel H.; Tasciotti, Ennio; Bouamrani, Ali; Ferrari, Mauro
2010-01-01
The real-time, personalized and highly sensitive early-stage diagnosis of disease remains an important challenge in modern medicine. With the ability to interact with matter at the nanoscale, the development of nanotechnology architectures and materials could potentially extend subcellular and molecular detection beyond the limits of conventional diagnostic modalities. At the very least, nanotechnology should be able to dramatically accelerate biomarker discovery, as well as facilitate disease monitoring, especially of maladies presenting a high degree of molecular and compositional heterogeneity. This article gives an overview of several of the most promising nanodevices and nanomaterials along with their applications in clinical practice. Significant work to adapt nanoscale materials and devices to clinical applications involving large interdisciplinary collaborations is already underway with the potential for nanotechnology to become an important enabling diagnostic technology. PMID:20229595
Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications.
Smith, Jay; Finnoff, Jonathan T
2009-02-01
Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurological and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared to other available imaging modalities; (2) describe how ultrasound machines produce images using sound waves; (3) discuss the steps necessary to acquire and optimize an ultrasound image; (4) understand the difference ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones; and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound. Part 2 of this 2-part article will focus on the clinical applications of musculoskeletal ultrasound in clinical practice, including the ultrasonographic appearance of normal and abnormal tissues as well as specific diagnostic and interventional applications in major body regions.
microRNAs as cancer therapeutics: A step closer to clinical application.
Catela Ivkovic, Tina; Voss, Gjendine; Cornella, Helena; Ceder, Yvonne
2017-10-28
During the last decades, basic and translational research has enabled great improvements in the clinical management of cancer. However, scarcity of complete remission and many drug-induced toxicities are still a major problem in the clinics. Recently, microRNAs (miRNAs) have emerged as promising therapeutic targets due to their involvement in cancer development and progression. Their extraordinary regulatory potential, which enables regulation of entire signalling networks within the cells, makes them an interesting tool for the development of cancer therapeutics. In this review we will focus on miRNAs with experimentally proven therapeutic potential, and discuss recent advances in the technical development and clinical evaluation of miRNA-based therapeutic agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field
Halib, Nadia; Perrone, Francesca; Dapas, Barbara; Farra, Rossella; Abrami, Michela; Chiarappa, Gianluca; Forte, Giancarlo; Zanconati, Fabrizio; Pozzato, Gabriele; Murena, Luigi; Fiotti, Nicola; Lapasin, Romano; Cansolino, Laura; Grassi, Gabriele
2017-01-01
Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field. PMID:28825682
MO-B-BRB-00: Three Dimensional Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbott, G.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
Kamarajan, Chella; Pandey, Ashwini K.; Chorlian, David B.; Porjesz, Bernice
2014-01-01
The use of current source density (CSD), the Laplacian of the scalp surface voltage, to map the electrical activity of the brain is a powerful method in studies of cognitive and affective phenomena. During the last few decades, mapping of CSD has been successfully applied to characterize several neuropsychiatric conditions such as alcoholism, schizophrenia, depression, anxiety disorders, childhood/developmental disorders, and neurological conditions (i.e., epilepsy and brain lesions) using electrophysiological data from resting state and during cognitive performance. Use of CSD and Laplacian measures has proven effective in elucidating topographic and activation differences between groups: i) patients with a specific diagnosis vs. healthy controls, ii) subjects at high risk for a specific diagnosis vs. low risk or normal controls, and iii) patients with specific symptom(s) vs. patients without these symptom(s). The present review outlines and summarizes the studies that have employed CSD measures in investigating several neuropsychiatric conditions. The advantages and potential of CSD-based methods in clinical and research applications along with some of the limitations inherent in the CSD-based methods are discussed in the review, as well as future directions to expand the implementation of CSD to other potential clinical applications. As CSD methods have proved to be more advantageous than using scalp potential data to understand topographic and source activations, its clinical applications offer promising potential, not only for a better understanding of a range of psychiatric conditions, but also for a variety of focal neurological disorders, including epilepsy and other conditions involving brain lesions and surgical interventions. PMID:25448264
Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment
Zhang, Zhen; Qian, Hanqing; Yang, Mi; Li, Rutian; Hu, Jing; Li, Li; Yu, Lixia; Liu, Baorui; Qian, Xiaoping
2017-01-01
Gambogic acid (GA) is expected to be a potential new antitumor drug, but its poor aqueous solubility and inevitable side effects limit its clinical application. Despite these inhe rent defects, various nanocarriers can be used to promote the solubility and tumor targeting of GA, improving antitumor efficiency. In addition, a cell membrane-coated nanoparticle platform that was reported recently, unites the customizability and flexibility of a synthetic copolymer, as well as the functionality and complexity of natural membrane, and is a new synthetic biomimetic nanocarrier with improved stability and biocompatibility. Here, we combined poly(lactic-co-glycolic acid) (PLGA) with red blood-cell membrane (RBCm), and evaluated whether GA-loaded RBCm nanoparticles can retain and improve the antitumor efficacy of GA with relatively lower toxicity in colorectal cancer treatment compared with free GA. We also confirmed the stability, biocompatibility, passive targeting, and few side effects of RBCm-GA/PLGA nanoparticles. We expect to provide a new drug carrier in the treatment of colorectal cancer, which has strong clinical application prospects. In addition, the potential antitumor drug GA and other similar drugs could achieve broader clinical applications via this biomimetic nanocarrier. PMID:28280328
Blood biomarkers in Alzheimer's disease.
Altuna-Azkargorta, M; Mendioroz-Iriarte, M
2018-05-08
The early diagnosis of Alzheimer's disease (AD) via the use of biomarkers could facilitate the implementation and monitoring of early therapeutic interventions with the potential capacity to significantly modify the course of the disease. Classic cerebrospinal fluid biomarkers and approved structural and functional neuroimaging have a limited clinical application given their invasive nature and/or high cost. The identification of more accessible and less costly biomarkers, such as blood biomarkers, would facilitate application in clinical practice. We present a literature review of the main blood biochemical biomarkers with potential use for diagnosing Alzheimer's disease. Blood biomarkers are cost and time effective with regard to cerebrospinal fluid biomarkers. However, the immediate applicability of blood biochemical biomarkers in clinical practice is not very likely. The main limitations come from the difficulties in measuring and standardising thresholds between different laboratories and in failures to replicate results. Among all the molecules studied, apoptosis and neurodegeneration biomarkers and the biomarker panels obtained through omics approaches, such as isolated or combined metabolomics, offer the most promising results. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Clinical oncologic applications of PET/MRI: a new horizon
Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R
2014-01-01
Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986
ERIC Educational Resources Information Center
Ledford, Christy J. W.; Womack, Jasmyne J.; Rider, Heather A.; Seehusen, Angela B.; Conner, Stephen J.; Lauters, Rebecca A.; Hodge, Joshua A.
2018-01-01
Background: As pregnant mothers increasingly engage in shared decision making regarding prenatal decisions, such as induction of labor, the patient's level of activation may influence pregnancy outcomes. One potential tool to increase patient activation in the clinical setting is mobile applications. However, research is limited in comparing…
Craik, Charles S.; Page, Michael J.; Madison, Edwin L.
2015-01-01
Proteases are an expanding class of drugs that hold great promise. The U.S. FDA (Food and Drug Administration) has approved 12 protease therapies, and a number of next generation or completely new proteases are in clinical development. Although they are a well-recognized class of targets for inhibitors, proteases themselves have not typically been considered as a drug class despite their application in the clinic over the last several decades; initially as plasma fractions and later as purified products. Although the predominant use of proteases has been in treating cardiovascular disease, they are also emerging as useful agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis and other diseases. In the present review, we outline the history of proteases as therapeutics, provide an overview of their current clinical application, and describe several approaches to improve and expand their clinical application. Undoubtedly, our ability to harness proteolysis for disease treatment will increase with our understanding of protease biology and the molecular mechanisms responsible. New technologies for rationally engineering proteases, as well as improved delivery options, will expand greatly the potential applications of these enzymes. The recognition that proteases are, in fact, an established class of safe and efficacious drugs will stimulate investigation of additional therapeutic applications for these enzymes. Proteases therefore have a bright future as a distinct therapeutic class with diverse clinical applications. PMID:21406063
O'Connor, Siobhan; Andrews, Tom
2016-01-01
Nurse educators are exploring different mobile technologies to provide additional support to nursing students in clinical practice. However, the view of nursing students on the use of smartphone applications (apps) to enhance clinical education has not been explored. This proposed study will use a self-reported questionnaire to examine the opinions of nursing students on the current and potential use of smartphone apps when training in clinical settings. Descriptive and inferential statistics will be performed on the quantitative data. Qualitative data from open ended questions will be thematically analysed using the framework approach. This will be the first study to examine the use of smartphone apps as a support in clinical teaching from a students' perspective. Their opinion is vital if the right mobile technology is to be designed and implemented.
The Applicability of Lean and Six Sigma Techniques to Clinical and Translational Research
Schweikhart, Sharon A.; Dembe, Allard E
2010-01-01
Background Lean and Six Sigma are business management strategies commonly used in production industries to improve process efficiency and quality. During the past decade, these process improvement techniques increasingly have been applied outside of the manufacturing sector, for example, in health care and in software development. This article concerns the potential use of Lean and Six Sigma to improve the processes involved in clinical and translational research. Improving quality, avoiding delays and errors, and speeding up the time to implementation of biomedical discoveries are prime objectives of the NIH Roadmap for Biomedical Research and the NIH Clinical and Translational Science Award (CTSA) program. Methods This article presents a description of the main principles, practices, and methodologies used in Lean and Six Sigma. Available literature involving applications of Lean and Six Sigma to health care, laboratory science, and clinical and translational research is reviewed. Specific issues concerning the use of these techniques in different phases of translational research are identified. Results Examples are provided of Lean and Six Sigma applications that are being planned at a current CTSA site, which could potentially be replicated elsewhere. We describe how different process improvement approaches are best adapted for particularly translational research phases. Conclusions Lean and Six Sigma process improvement methodologies are well suited to help achieve NIH’s goal of making clinical and translational research more efficient and cost-effective, enhancing the quality of the research, and facilitating the successful adoption of biomedical research findings into practice. PMID:19730130
Rhinoplasty planning with an iPhone app: analysis of otolaryngologists response.
Larrosa, Francesc; Dura, Maria J; Roura, Josep; Hernandez, Anabella
2013-09-01
The field of medical applications is currently one of the most dynamic in medicine due to the great potential for improving clinical practice they hold. However, clinicians' opinion around their usability in daily clinical care has not been thoroughly addressed. This study aimed to analyze the otolaryngologists response to a rhinoplasty application. It was designed as a survey of 21 otolaryngologists with regards to a rhinoplasty planning application for the iPhone with the capacity to project potential surgery outcomes through tactile morphing software compared to a photo tracing method used as the gold standard. The participants were asked to rate the usefulness of the two technologies on a visual analog scale from 0-10. Questions addressed included four topics: physician-patient communication; imaging process time; perceived usefulness for preoperative planning; and perceived usefulness for surgery. A one sample t-test was applied to compare the scores of both methods for each question. The test subjects (mean age 43.21 years) rated the utility of the iPhone application as superior to that of the photo tracing method (p < 0.05) concluding that the iPhone application could facilitate an immediate preliminary analysis of the options for nasal improvement.
Boyer, S A
1999-01-01
There is an alternative to classroom lecture that provides faster, more complete instruction and introduces the learner to clinical application of skills in a safe environment. This teaching style uses multiple media to present professional, published resources that provide excellent quality, topic-specific information. The benefits of this type of teaching/learning module include improved use of student and instructor time, scheduling advantages, increased learning, revenue generation potential, and student empowerment. With this approach, a strong, sound educational base is built, and each course includes some degree or form of clinical application as a key component.
Clinical application of bio ceramics
NASA Astrophysics Data System (ADS)
Anu, Sharma; Gayatri, Sharma
2016-05-01
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Clinical application of bio ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
'Bioengineered Bugs' - a patho-biotechnology approach to probiotic research and applications.
Sleator, Roy D; Hill, Colin
2008-01-01
Given the increasing commercial and clinical relevance of probiotic cultures, improving their stress tolerance profile and ability to overcome the physiochemical defences of the host is an important biological goal. Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, interact with the immune system and modulate essential host systems. The 'Patho-biotechnology' concept promotes the exploitation of these valuable traits for the design of more technologically robust and effective probiotic cultures with potentially improved biotechnological and clinical applications, as well as the development of novel vaccine and drug delivery platforms.
Current and Future Clinical Applications of Zinc Transporter-8 in Type 1 Diabetes Mellitus
Yi, Bo; Huang, Gan; Zhou, Zhi-Guang
2015-01-01
Objective: To evaluate the utility of zinc transporter-8 (ZnT8) in the improvement of type 1 diabetes mellitus (T1DM) diagnosis and prediction, and to explore whether ZnT8 is a potential therapeutic target in T1DM. Data Sources: A search was conducted within the medical database PubMed for relevant articles published from 2001 to 2015. The search terms are as follows: “ZnT8,” “type 1 diabetes,” “latent autoimmune diabetes in adults,” “type 2 diabetes,” “islet autoantibodies,” “zinc supplement,” “T cells,” “β cell,” “immune therapy.” We also searched the reference lists of selected articles. Study Selection: English-language original articles and critical reviews concerning ZnT8 and the clinical applications of islet autoantibodies in diabetes were reviewed. Results: The basic function of ZnT8 is maintaining intracellular zinc homeostasis, which modulates the process of insulin biosynthesis, storage, and secretion. Autoantibodies against ZnT8 (ZnT8A) and ZnT8-specific T cells are the reliable biomarkers for the identification, stratification, and characterization of T1DM. Additionally, the results from the animal models and clinical trials have shown that ZnT8 is a diabetogenic antigen, suggesting the possibility of ZnT8-specific immunotherapy as an alternative for T1DM therapy. Conclusions: ZnT8 is a novel islet autoantigen with a widely potential for clinical applications in T1DM. However, before the large-scale clinical applications, there are still many problems to be solved. PMID:26315089
Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications
Lourenço, Célia; Turner, Claire
2014-01-01
Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. “Breath fingerprinting”, indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles. PMID:24957037
Molecular hydrogen in sports medicine: new therapeutic perspectives.
Ostojic, S M
2015-04-01
In the past 2 decades, molecular hydrogen emerged as a novel therapeutic agent, with antioxidant, anti-inflammatory and anti-apoptotic effects demonstrated in plethora of animal disease models and human studies. Beneficial effects of molecular hydrogen in clinical environment are observed especially in oxidative stress-mediated diseases, such as diabetes mellitus, brain stem infarction, rheumatoid arthritis, or neurodegenerative diseases. A number of more recent studies have reported that molecular hydrogen affects cell signal transduction and acts as an alkalizing agent, with these newly identified mechanisms of action having the potential to widen its application in clinical medicine even further. In particular, hydrogen therapy may be an effective and specific innovative treatment for exercise-induced oxidative stress and sports injury, with potential for the improvement of exercise performance. This review will summarize recent research findings regarding the clinical aspects of molecular hydrogen use, emphasizing its application in the field of sports medicine. © Georg Thieme Verlag KG Stuttgart · New York.
Breath analysis in disease diagnosis: methodological considerations and applications.
Lourenço, Célia; Turner, Claire
2014-06-20
Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. "Breath fingerprinting", indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles.
Biomedically relevant circuit-design strategies in mammalian synthetic biology
Bacchus, William; Aubel, Dominique; Fussenegger, Martin
2013-01-01
The development and progress in synthetic biology has been remarkable. Although still in its infancy, synthetic biology has achieved much during the past decade. Improvements in genetic circuit design have increased the potential for clinical applicability of synthetic biology research. What began as simple transcriptional gene switches has rapidly developed into a variety of complex regulatory circuits based on the transcriptional, translational and post-translational regulation. Instead of compounds with potential pharmacologic side effects, the inducer molecules now used are metabolites of the human body and even members of native cell signaling pathways. In this review, we address recent progress in mammalian synthetic biology circuit design and focus on how novel designs push synthetic biology toward clinical implementation. Groundbreaking research on the implementation of optogenetics and intercellular communications is addressed, as particularly optogenetics provides unprecedented opportunities for clinical application. Along with an increase in synthetic network complexity, multicellular systems are now being used to provide a platform for next-generation circuit design. PMID:24061539
Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C
2017-10-18
Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.
Practical Applications of Digital Pathology.
Saeed-Vafa, Daryoush; Magliocco, Anthony M
2015-04-01
Virtual microscopy and advances in machine learning have paved the way for the ever-expanding field of digital pathology. Multiple image-based computing environments capable of performing automated quantitative and morphological analyses are the foundation on which digital pathology is built. The applications for digital pathology in the clinical setting are numerous and are explored along with the digital software environments themselves, as well as the different analytical modalities specific to digital pathology. Prospective studies, case-control analyses, meta-analyses, and detailed descriptions of software environments were explored that pertained to digital pathology and its use in the clinical setting. Many different software environments have advanced platforms capable of improving digital pathology and potentially influencing clinical decisions. The potential of digital pathology is vast, particularly with the introduction of numerous software environments available for use. With all the digital pathology tools available as well as those in development, the field will continue to advance, particularly in the era of personalized medicine, providing health care professionals with more precise prognostic information as well as helping them guide treatment decisions.
Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.
2014-01-01
The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089
Clinical Applications of Hallucinogens: A Review
Garcia-Romeu, Albert; Kersgaard, Brennan; Addy, Peter H.
2016-01-01
Hallucinogens fall into several different classes, as broadly defined by pharmacological mechanism of action, and chemical structure. These include psychedelics, entactogens, dissociatives, and other atypical hallucinogens. Although these classes do not share a common primary mechanism of action, they do exhibit important similarities in their ability to occasion temporary but profound alterations of consciousness, involving acute changes in somatic, perceptual, cognitive, and affective processes. Such effects likely contribute to their recreational use. However, a growing body of evidence indicates that these drugs may have therapeutic applications beyond their potential for abuse. This review will present data on several classes of hallucinogens with a particular focus on psychedelics, entactogens, and dissociatives, for which clinical utility has been most extensively documented. Information on each class is presented in turn, tracing relevant historical insights, highlighting similarities and differences between the classes from the molecular to the behavioral level, and presenting the most up-to-date information on clinically oriented research with these substances, with important ramifications for their potential therapeutic value. PMID:27454674
Mesenchymal stem cell therapy in cats: Current knowledge and future potential.
Quimby, Jessica M; Borjesson, Dori L
2018-03-01
Practical relevance: Stem cell therapy is an innovative field of scientific investigation with tremendous potential for clinical application in veterinary medicine. Based on the known desirable immunomodulatory properties of mesenchymal stem cells, this therapy holds promise for the treatment of a variety of inflammatory diseases in cats. This review details our current understanding of feline stem cell biology and proposed mechanism of action. Studies performed in feline clinical trials for diseases including gingivostomatitis, chronic enteropathy, asthma and kidney disease are summarized, with the goal of providing an overview of the current status of this treatment modality and its potential for the future.
de Carvalho, Elias César Araujo; Batilana, Adelia Portero; Simkins, Julie; Martins, Henrique; Shah, Jatin; Rajgor, Dimple; Shah, Anand; Rockart, Scott; Pietrobon, Ricardo
2010-02-19
Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.
Data Science in Radiology: A Path Forward.
Aerts, Hugo J W L
2018-02-01
Artificial intelligence (AI), especially deep learning, has the potential to fundamentally alter clinical radiology. AI algorithms, which excel in quantifying complex patterns in data, have shown remarkable progress in applications ranging from self-driving cars to speech recognition. The AI application within radiology, known as radiomics, can provide detailed quantifications of the radiographic characteristics of underlying tissues. This information can be used throughout the clinical care path to improve diagnosis and treatment planning, as well as assess treatment response. This tremendous potential for clinical translation has led to a vast increase in the number of research studies being conducted in the field, a number that is expected to rise sharply in the future. Many studies have reported robust and meaningful findings; however, a growing number also suffer from flawed experimental or analytic designs. Such errors could not only result in invalid discoveries, but also may lead others to perpetuate similar flaws in their own work. This perspective article aims to increase awareness of the issue, identify potential reasons why this is happening, and provide a path forward. Clin Cancer Res; 24(3); 532-4. ©2017 AACR . ©2017 American Association for Cancer Research.
An Electromechanical Model for the Cochlear Microphonic
NASA Astrophysics Data System (ADS)
Teal, Paul D.; Lineton, Ben; Elliott, Stephen J.
2011-11-01
The first of the many electrical signals generated in the ear, nerves and brain as a response to a sound incident on the ear is the cochlear microphonic (CM). The CM is generated by the hair cells of the cochlea, primarily the outer hairs cells. The potentials of this signal are a nonlinear filtered version of the acoustic pressure at the tympanic membrane. The CM signal has been used very little in recent years for clinical audiology and audiological research. This is because of uncertainty in interpreting the CM signal as a diagnostic measure, and also because of the difficulty of obtaining the signal, which has usually required the use of a transtympanic electrode. There are however, several potential clinical and research applications for acquisition of the CM. To promote understanding of the CM, and potential clinical application, a model is presented which can account for the generation of the cochlear microphonic signal. The model incorporates micro-mechanical and macro-mechanical aspects of previously published models of the basilar membrane and reticular lamina, as well as cochlear fluid mechanics, piezoelectric activity and capacitance of the outer hair cells. It also models the electrical coupling of signals along the scalae.
Hutchinson, J Ciaran; Shelmerdine, Susan C; Simcock, Ian C; Sebire, Neil J; Arthurs, Owen J
2017-07-01
Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.
Lectins and their application to clinical microbiology.
Slifkin, M; Doyle, R J
1990-01-01
Lectins are generally associated with plant or animal components, selectively bind carbohydrates, and interact with procaryotic and eucaryotic cells. Lectins have various specificities that are associated with their ability to interact with acetylaminocarbohydrates, aminocarbohydrates, sialic acids, hexoses, pentoses, and as other carbohydrates. Microbial surfaces generally contain many of the sugar residues that react with lectins. Lectins are presently used in the clinical laboratory to type blood cells and are used in a wide spectrum of applications, including, in part, as carriers of chemotherapeutic agents, as mitogens, for fractionation of animal cells, and for investigations of cellular surfaces. Numerous studies have shown that lectins can be used to identify rapidly certain microorganisms isolated from a clinical specimen or directly in a clinical specimen. Lectins have been demonstrated to be important diagnostic reagents in the major realms of clinical microbiology. Thus, they have been applied in bacteriology, mycology, mycobacteriology, and virology for the identification and/or differentiation of various microorganisms. Lectins have been used successfully as epidemiologic as well as taxonomic markers of specific microorganisms. Lectins provide the clinical microbiologist with cost-effective and potential diagnostic reagents. This review describes the applications of lectins in clinical microbiology. Images PMID:2200603
Lantibiotics produced by Actinobacteria and their potential applications (a review).
Gomes, Karen Machado; Duarte, Rafael Silva; de Freire Bastos, Maria do Carmo
2017-02-01
The phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumour cells and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.
Left ventricular fluid mechanics: the long way from theoretical models to clinical applications.
Pedrizzetti, Gianni; Domenichini, Federico
2015-01-01
The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed.
PhotoExam: adoption of an iOS-based clinical image capture application at Mayo Clinic.
Wyatt, Kirk D; Willaert, Brian N; Pallagi, Peter J; Uribe, Richard A; Yiannias, James A; Hellmich, Thomas R
2017-12-01
Mayo Clinic developed an internal iOS-based, point-of-care clinical image capture application for clinicians. We aimed to assess the adoption and utilization of the application at Mayo Clinic. Metadata of 22,784 photos of 6417 patients taken by 606 users over 8040 clinical encounters between 3/1/2015 and 10/31/2015 were analyzed. A random sample of photos from 100 clinical encounters was assessed for quality using a five-item rubric. Use of traditional medical photography services before and after application launch were compared. The largest group of users was residents/fellows, accounting for 31% of users but only 18% of all photos. Attending physicians accounted for 29% of users and 30% of photos. Nurses accounted for 14% of users and 28% of photos. Surgical specialties had the most users (36% of users), followed by dermatology (14% of users); however, dermatology accounted for 54% of all photos, and surgery accounted for 26% of photos. Images received an average of 91% of possible points on the quality scoring rubric. Most frequent reasons for missing points were the location on the body not clearly being demonstrated (19% of encounters) and the perspective/scale not being clearly demonstrated (12% of encounters). There was no discernible pre-post effect of the application's launch on use of traditional medical photography services. Point-of-care clinical photography is a growing phenomenon with potential to become the new standard of care. Patient and provider attitudes and the impact on patient outcomes remain unclear. © 2017 The International Society of Dermatology.
The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Shi, Tujin; Qian, Wei-Jun
2015-12-04
Mass spectrometry-based proteomics has become an indispensable tool in biomedical research with broad applications ranging from fundamental biology, systems biology, and biomarker discovery. Recent advances in LC-MS have made it become a major technology in clinical applications, especially in cancer biomarker discovery and verification. To overcome the challenges associated with the analysis of clinical samples, such as extremely wide dynamic range of protein concentrations in biofluids and the need to perform high throughput and accurate quantification, significant efforts have been devoted to improve the overall performance of LC-MS bases clinical proteomics. In this review, we summarize the recent advances inmore » LC-MS in the aspect of cancer biomarker discovery and quantification, and discuss its potentials, limitations, and future perspectives.« less
Steiner, Carine; Ducret, Axel; Tille, Jean-Christophe; Thomas, Marlene; McKee, Thomas A; Rubbia-Brandt, Laura A; Scherl, Alexander; Lescuyer, Pierre; Cutler, Paul
2014-01-01
Proteomic analysis of tissues has advanced in recent years as instruments and methodologies have evolved. The ability to retrieve peptides from formalin-fixed paraffin-embedded tissues followed by shotgun or targeted proteomic analysis is offering new opportunities in biomedical research. In particular, access to large collections of clinically annotated samples should enable the detailed analysis of pathologically relevant tissues in a manner previously considered unfeasible. In this paper, we review the current status of proteomic analysis of formalin-fixed paraffin-embedded tissues with a particular focus on targeted approaches and the potential for this technique to be used in clinical research and clinical diagnosis. We also discuss the limitations and perspectives of the technique, particularly with regard to application in clinical diagnosis and drug discovery. PMID:24339433
Clinical application of plasma thermograms. Utility, practical approaches and considerations.
Garbett, Nichola C; Mekmaysy, Chongkham S; DeLeeuw, Lynn; Chaires, Jonathan B
2015-04-01
Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modification underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article. Copyright © 2014 Elsevier Inc. All rights reserved.
Clinical application of plasma thermograms. Utility, practical approaches and considerations
Garbett, Nichola C.; Mekmaysy, Chongkham S.; DeLeeuw, Lynn; Chaires, Jonathan B.
2014-01-01
Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modifications underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article. PMID:25448297
Properties of skin stem cells and their potential clinical applications in modern dermatology.
Niezgoda, Anna; Niezgoda, Piotr; Nowowiejska, Laura; Białecka, Agnieszka; Męcińska-Jundziłł, Kaja; Adamska, Urszula; Czajkowski, Rafał
2017-06-01
Stem cells play an important role in medical science, and scientists are investing large sums in order to perform sophisticated studies designed to establish potential clinical applications of stem cells. Growing experience has enabled researchers to determine the precise nature of stem cell division. Although the properties of this particular population of cells have been known and used for some time, mainly with regards to bone marrow-derived mesenchymal stem cell transplantation, we now face a significant challenge in implementing the practical use of skin-derived precursors, making it possible to avoid the necessity for patients to undergo invasive procedures in order to obtain stem cells from bone marrow. Multiple trials have so far been performed, bringing hope for the treatment of disorders previously considered untreatable. Patients suffering from a number of dermatological diseases, including malignant melanoma, systemic lupus erythematosus, vitiligo, alopecia or junctional epidermolysis bullosa, may benefit from treatment based on stem cells. The aim of this review is to summarize available data on stem cells and their potential applications in the treatment of dermatological disorders. The work described is based on data published up to the end of September 2016.
Loechelt, Brett J.; Green, Michael; Gottlieb, Peter A.; Blumberg, Emily; Weinberg, Adriana; Quinlan, Scott; Baden, Lindsey R.
2015-01-01
Significant progress has been made in the development, investigation, and clinical application of immunosuppressive agents to treat a variety of autoimmune disorders. The expansion of clinical applications of these new agents requires the performance of large multicenter clinical trials. These large clinical trials are particularly important as one considers these agents for the treatment of type 1 diabetes, which although autoimmune in its pathogenesis, is not classically treated as an autoimmune disorder. Although these agents hold promise for amelioration or cure of this disease, they have the potential to facilitate infectious complications. There are limited data regarding the prospective assessment of infectious risks with these agents in trials of this nature. Pediatric subjects may be at greater risk due to the higher likelihood of primary infection. A subgroup of experts associated with TrialNet (a National Institutes of Health [NIH]-funded Type 1 diabetes mellitus research network) with expertise in infectious diseases, immunology, and diagnostics developed an approach for screening and monitoring of immunosuppression-associated infections for prospective use in clinical trials. The goals of these recommendations are to provide a structured approach to monitor for infections, to identify specific laboratory testing and surveillance methods, and to consider therapies for treatment of these potential complications. Prospective evaluations of these infectious risks allow for greater scientific rigor in the evaluation of risk, which must be balanced with the potential benefits of these therapies. Our experience supports an important role for investigators with expertise in infections in immunocompromised individuals in protocol development of immunosuppressive trials in type 1diabetes and potentially other autoimmune diseases. PMID:26336066
Hong, So Gun; Dunbar, Cynthia E; Winkler, Thomas
2013-02-01
Induced pluripotent stem cells (iPSCs) have great potential for regenerative medicine as well as for basic and translational research. However, following the initial excitement over the enormous prospects of this technology, several reports uncovered serious concerns regarding its safety for clinical applications and reproducibility for laboratory applications such as disease modeling or drug screening. In particular, the genomic integrity of iPSCs is the focus of extensive research. Epigenetic remodeling, aberrant expression of reprogramming factors, clonal selection, and prolonged in vitro culture are potential pathways for acquiring genomic alterations. In this review, we will critically discuss current reprogramming technologies particularly in the context of genotoxicity, and the consequences of these alternations for the potential applications of reprogrammed cells. In addition, current strategies of genetic modification of iPSCs, as well as applicable suicide strategies to control the risk of iPSC-based therapies will be introduced.
Demner-Fushman, D; Elhadad, N
2016-11-10
This paper reviews work over the past two years in Natural Language Processing (NLP) applied to clinical and consumer-generated texts. We included any application or methodological publication that leverages text to facilitate healthcare and address the health-related needs of consumers and populations. Many important developments in clinical text processing, both foundational and task-oriented, were addressed in community- wide evaluations and discussed in corresponding special issues that are referenced in this review. These focused issues and in-depth reviews of several other active research areas, such as pharmacovigilance and summarization, allowed us to discuss in greater depth disease modeling and predictive analytics using clinical texts, and text analysis in social media for healthcare quality assessment, trends towards online interventions based on rapid analysis of health-related posts, and consumer health question answering, among other issues. Our analysis shows that although clinical NLP continues to advance towards practical applications and more NLP methods are used in large-scale live health information applications, more needs to be done to make NLP use in clinical applications a routine widespread reality. Progress in clinical NLP is mirrored by developments in social media text analysis: the research is moving from capturing trends to addressing individual health-related posts, thus showing potential to become a tool for precision medicine and a valuable addition to the standard healthcare quality evaluation tools.
Riboh, Jonathan C; Saltzman, Bryan M; Yanke, Adam B; Cole, Brian J
2016-09-01
Amniotic membrane (AM)-derived products have been successfully used in ophthalmology, plastic surgery, and wound care, but little is known about their potential applications in orthopaedic sports medicine. To provide an updated review of the basic science and preclinical and clinical data supporting the use of AM-derived products and to review their current applications in sports medicine. Systematic review. A systematic search of the literature was conducted using the Medline, EMBASE, and Cochrane databases. The search term amniotic membrane was used alone and in conjunction with stem cell, orthopaedic, tissue engineering, scaffold, and sports medicine. The search identified 6870 articles, 80 of which, after screening of the titles and abstracts, were considered relevant to this study. Fifty-five articles described the anatomy, basic science, and nonorthopaedic applications of AM-derived products. Twenty-five articles described preclinical and clinical trials of AM-derived products for orthopaedic sports medicine. Because the level of evidence obtained from this search was not adequate for systematic review or meta-analysis, a current concepts review on the anatomy, physiology, and clinical uses of AM-derived products is presented. Amniotic membranes have many promising applications in sports medicine. They are a source of pluripotent cells, highly organized collagen, antifibrotic and anti-inflammatory cytokines, immunomodulators, and matrix proteins. These properties may make it beneficial when applied as tissue engineering scaffolds, improving tissue organization in healing, and treatment of the arthritic joint. The current body of evidence in sports medicine is heavily biased toward in vitro and animal studies, with little to no human clinical data. Nonetheless, 14 companies or distributors offer commercial AM products. The preparation and formulation of these products alter their biological and mechanical properties, and a thorough understanding of these differences will help guide the use of AM-derived products in sports medicine research. © 2015 The Author(s).
Mesenchymal stem cell-based therapy in kidney transplantation.
Chen, Cheng; Hou, Jianquan
2016-02-07
Kidney transplantation is the best treatment for end-stage renal disease, but its implementation is limited by organ shortage and immune rejection. Side effects of current immunosuppressive drugs, such as nephrotoxicity, opportunistic infection, and tumorigenic potential, influence long-term graft outcomes. In recent years, continued research and subsequent discoveries concerning the properties and potential utilization of mesenchymal stem cells (MSCs) have aroused considerable interest and expectations. Biological characteristics of MSCs, including multi-lineage differentiation, homing potential, paracrine effect and immunomodulation, have opened new horizons for applications in kidney transplantation. However, many studies have shown that the biological activity of MSCs depends on internal inflammatory conditions, and the safety and efficacy of the clinical application of MSCs remain controversial. This review summarizes the findings of a large number of studies and aims to provide an objective viewpoint based on a comprehensive analysis of the presently established benefits and obstacles of implementing MSC-based therapy in kidney transplantation, and to promote its clinical translation.
Human cord blood applications in cell therapy: looking back and look ahead.
Zhou, Hongyan; Chang, Stephen; Rao, Mahendra
2012-08-01
Human umbilical cord blood (UCB) has been used as a reliable source of stem cells for blood-borne diseases and disorders. Recent advances in cell reprogramming technology to produce induced pluripotent stem (iPS) cells, which can be differentiated to multiple adult cell types, has further expanded the potential of cord blood cell therapy for treatment of non-blood-borne diseases. However, in order to harness this breakthrough technology and to provide clinical-grade cells for the patient, standardization of iPS production and differentiation, and good manufacturing practice (GMP) need to be employed. UCB is an ethical source of stem cells and has been used to treat diseases including leukemia, cancer and blood disorders. The development of iPS cell technology could potentially greatly increase the application of cord blood cells as a treatment for a broader range of diseases, UCB-iPS banks could, therefore, be a valuable complementary source of clinical-grade cells for cell therapy. The current applicability of GMP to UCB and UCB-iPS cell-based cell therapy will be discussed. Although cord blood stem cell therapies have been practiced for decades, UCB-iPS cell therapies are a new innovation currently in development. Successful clinical applications of such novel cell therapies will depend on the production of GMP-compliant cells and the establishment of cell banks.
Explicit versus implicit evaluation to detect inappropriate medication use in geriatric outpatients.
Bahat, Gulistan; Ilhan, Birkan; Bay, Ilker; Kilic, Cihan; Kucukdagli, Pinar; Oren, Meryem Merve; Karan, Mehmet Akif
2018-04-19
The rates and reasons why clinicians decide not to follow recommendations from explicit-criteria have been studied scarce. We aimed to compare STOPP version 2 representing one of the most commonly used excplicit tool with the implicit comprehensive geriatric assessment mediated clinical evaluation considered as gold standard. Two hundred and six (n = 206) outpatients ≥65 years old were included. The study was designed as retrospective, cross-sectional, and randomised. STOPP version 2 criteria were systematically used to assess pre-admission treatments followed by implicit clinical evaluation regarding two questions: Were the STOPP criteria recommendations valid for the individual patient and were there any potentially inappropriate-prescription other than depicted by STOPP version 2 criteria? The underlying reason(s) and associated clinical-features were noted. About 62.6% potentially inappropriate-prescriptions were identified (0.6 per-subject) according to systematic application of STOPP v2 while it was 53.4% (0.5 potentially inappropriate-prescriptions per subject) by clinician's application of STOPP v2. Prevalence of non-compliance was 14.7% in 18 (21.7%) of 83 patients identified by systematic application. Suggestion to stop a drug was not accepted because of need of treatment despite likelihood of anticipated side-effects in about 2/3 and with no-anticipated side-effects in about 1/3 of non-compliances. Not following STOPP v2 was significantly associated with lower functional level. According to clinician's implicit-evaluation, there were an extra 59.2% potentially inappropriate-prescriptions (0.6 per subject) in 80 (38.8%) patients yielding a total of 112.6% potentially inappropriate-prescription. Most of the STOPP v2 directed drug cessations are decided valid by the clinicians. In patients with higher functional dependency, it is likely that they are not followed due to palliation focussed care/patient-family preferences. There may be as much as STOPP v2 identified potentially inappropriate-prescriptions by implicit evaluation in a significant percent of geriatric patients signifying need for comprehensive geriatric evaluation in practice.
Physical basics of endovenous laser treatment and potential of innovative developments
NASA Astrophysics Data System (ADS)
Sroka, R.; Esipova, A.; Schmedt, C. G.
2017-04-01
During the last decade, endoluminal laser treatment (ELT) has been rapidly developing. Protocols using radially emitting ELT fibres in combination with infrared laser light show clinical advantages over the bare-fibre technique and near infrared irradiation. Although the clinical response rate is high several side effects occurred. Innovative light application systems and feedback systems are therefore being under development to potentially improve the clinical situation. The irradiation patterns of bare fibres and radially emitting 1-ring and 2-ring fibres were measured using the goniometer technique. The device robustness, device handling and tissue effects were investigated using the established ox-foot-model. Furthermore, temperature measurements were performed either intraluminal within the irradiation field using a tiny temperature sensor and on the outer surface of the vessel wall by means of a thermocamera. All fibres showed sufficient mechanical and thermal robustness. The destruction threshold is far beyond the light powers employed during clinical application. The 1-ring fibre showed very high peak temperatures for a short time, while the 2-ring-fibre hold its somewhat lower maximum temperature for a longer time. Both forms of energy application resulted in the desired shrinkage and destruction effect. In this regard, the handling of the 2-ring fibre appears subjectively more convenient with reduced sticking-related problems. Acute tissue effects could be investigated to improve the understanding especially of the interaction between handling, maneuvers and tissue effects. The 2-ring radially emitting fibre in combination with IR laser light and specific application parameters showed improved handling and safety features.
Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter
2014-01-01
Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922
Hurdles to clinical translation of human induced pluripotent stem cells
Neofytou, Evgenios; O’Brien, Connor Galen; Couture, Larry A.; Wu, Joseph C.
2015-01-01
Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss potential solutions that could help overcome them. Furthermore, we discuss the use of allogeneic versus autologous stem cell products, including a review of their respective advantages and disadvantages, major clinical requirements, quality standards, time lines, and costs of clinical grade development. PMID:26132109
Hurdles to clinical translation of human induced pluripotent stem cells.
Neofytou, Evgenios; O'Brien, Connor Galen; Couture, Larry A; Wu, Joseph C
2015-07-01
Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss potential solutions that could help overcome them. Furthermore, we discuss the use of allogeneic versus autologous stem cell products, including a review of their respective advantages and disadvantages, major clinical requirements, quality standards, time lines, and costs of clinical grade development.
Noiri, Eisei; Tsukahara, Hirokazu
2005-05-01
Investigations of the mechanisms involved in the onset and progression of diabetes have recently confronted the role of reactive oxygen species (ROS) and oxidative stress. Prolonged exposure to hyperglycemic conditions induces nonenzymatic glycation of protein via the so-called Maillard reaction, resulting in Schiff-base products and Amadori products that engender ROS production. These processes initiate and exacerbate micro- and macrovascular complications in diabetes. Increased oxidative stress is induced by excessive ROS production and inadequate antioxidant defenses. Recently, oxidative stress status markers have been associated directly with the severity and prognosis of diabetes. To examine oxidative stress, reliable and high-throughput methods are needed to examine large numbers of clinical samples. The emerging availability of enzyme-linked immunosorbent assay (ELISA) for oxidative stress status markers allows its application to assessment of various pathophysiologic conditions, including diabetes. This review outlines the recent achievements of ELISA application for clinical studies elucidating oxidative stress. It introduces the potential applicability of ELISA for investigating oxidative stress in diabetes.
[Tissue printing; the potential application of 3D printing in medicine].
Visser, Jetze; Melchels, Ferry P W; Dhert, Wouter J A; Malda, Jos
2013-01-01
Complex structures based on a digital blueprint can be created using a 3D printer. As this blueprint can be created using patient imaging data, there are many potential patient-specific applications of 3D printing in medicine. Individually printed metal implants and synthetic devices are currently being used on a limited scale in clinical practice. Researchers in the field of regenerative medicine are now going a step further by printing a combination of cells, growth factors and biomaterials. This process is known as 'bioprinting'. It can be used to copy the complex organization of natural tissue required to repair or replace damaged tissues or organs. The technique needs to be optimized, however, and more knowledge is required regarding the development of printed living constructs into functional tissues before 'tissue from the printer' can be clinically applied.
Applications of aerospace technology in biology and medicine
NASA Technical Reports Server (NTRS)
Brown, J. N.
1974-01-01
The results of the medically related activities of the NASA Application Team Program at the Research Triangle Institute are presented. The RTI team, a multidisciplinary team of scientists and engineers, acted as an information and technology interface between NASA and individuals, institutions, and agencies involved in biomedical research and clinical medicine. The Team has identified 40 new problems for investigation, has accomplished 7 technology applications, 6 potential technology application, 4 impacts, has closed 54 old problems, and has a total of 47 problems under active investigation.
The Role of Platelet Rich Plasma (PRP) and Other Biologics for Rotator Cuff Repair.
Greenspoon, Joshua A; Moulton, Samuel G; Millett, Peter J; Petri, Maximilian
2016-01-01
Surgical treatment of rotator cuff tears has consistently demonstrated good clinical and functional outcomes. However, in some cases, the rotator cuff fails to heal. While improvements in rotator cuff constructs and biomechanics have been made, the role of biologics to aid healing is currently being investigated. A selective literature search was performed and personal surgical experiences are reported. Biologic augmentation of rotator cuff repairs can for example be performed wtableith platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs). Clinical results on PRP application have been controversial. Application of MSCs has shown promise in animal studies, but clinical data on its effectiveness is presently lacking. The role of Matrix Metalloproteinase (MMP) inhibitors is another interesting field for potential targeted drug therapy after rotator cuff repair. Large randomized clinical studies need to confirm the benefit of these approaches, in order to eventually lower retear rates and improve clinical outcomes after rotator cuff repair.
Ferrer-Dufol, Ana; Menao-Guillen, Sebastian
2009-04-10
The relationship between basic research and its potential clinical applications is often a difficult subject. Clinical toxicology has always been very dependent on experimental research whose usefulness has been impaired by the existence of huge differences in the toxicity expression of different substances, inter- and intra-species which make it difficult to predict clinical effects in humans. The new methods in molecular biology developed in the last decades are furnishing very useful tools to study some of the more relevant molecules implied in toxicokinetic and toxicodynamic processes. We aim to show some meaningful examples of how recent research developments with genes and proteins have clear applications to understand significant clinical matters, such as inter-individual variations in susceptibility to chemicals, and other phenomena related to the way some substances act to induce variations in the expression and functionality of these targets.
Shadrack, Daniel M; Swai, Hulda S; Munissi, Joan J E; Mubofu, Egid B; Nyandoro, Stephen S
2018-06-12
Clinical applications of many small molecules are limited due to poor solubility and lack of controlled release besides lack of other desirable properties. Experimental and computational studies have reported on the therapeutic potential of polyamidoamine (PAMAM) dendrimers as solubility enhancers in pre-clinical and clinical settings. Besides formulation strategies, factors such as pH, PAMAM dendrimer generation, PAMAM dendrimer concentration, nature of the PAMAM core, special ligand and surface modifications of PAMAM dendrimer have an influence on drug solubility and other recommendable pharmacological properties. This review, therefore, compiles the recently reported applications of PAMAM dendrimers in pre-clinical and clinical uses as enhancers of solubility and other desirable properties such as sustained and controlled release, bioavailability, bio-distribution, toxicity reduction or enhancement, and targeted delivery of small molecules with emphasis on cancer treatment.
The value of item response theory in clinical assessment: a review.
Thomas, Michael L
2011-09-01
Item response theory (IRT) and related latent variable models represent modern psychometric theory, the successor to classical test theory in psychological assessment. Although IRT has become prevalent in the measurement of ability and achievement, its contributions to clinical domains have been less extensive. Applications of IRT to clinical assessment are reviewed to appraise its current and potential value. Benefits of IRT include comprehensive analyses and reduction of measurement error, creation of computer adaptive tests, meaningful scaling of latent variables, objective calibration and equating, evaluation of test and item bias, greater accuracy in the assessment of change due to therapeutic intervention, and evaluation of model and person fit. The theory may soon reinvent the manner in which tests are selected, developed, and scored. Although challenges remain to the widespread implementation of IRT, its application to clinical assessment holds great promise. Recommendations for research, test development, and clinical practice are provided.
Application and Miniaturization of Linear and Nonlinear Raman Microscopy for Biomedical Imaging
NASA Astrophysics Data System (ADS)
Mittal, Richa
Current diagnostics for several disorders rely on surgical biopsy or evaluation of ex vivo bodily fluids, which have numerous drawbacks. We evaluated the potential for vibrational techniques (both linear and nonlinear Raman) as a reliable and noninvasive diagnostic tool. Raman spectroscopy is an optical technique for molecular analysis that has been used extensively in various biomedical applications. Based on demonstrated capabilities of Raman spectroscopy we evaluated the potential of the technique for providing a noninvasive diagnosis of mucopolysaccharidosis (MPS). These studies show that Raman spectroscopy can detect subtle changes in tissue biochemistry. In applications where sub-micrometer visualization of tissue compositional change is required, a transition from spectroscopy to high quality imaging is necessary. Nonlinear vibrational microscopy is sensitive to the same molecular vibrations as linear Raman, but features fast imaging capabilities. Coherent Raman scattering when combined with other nonlinear optical (NLO) techniques (like two-photon excited fluorescence and second harmonic generation) forms a collection of advanced optical techniques that provide noninvasive chemical contrast at submicron resolution. This capability to examine tissues without external molecular agents is driving the NLO approach towards clinical applications. However, the unique imaging capabilities of NLO microscopy are accompanied by complex instrument requirements. Clinical examination requires portable imaging systems for rapid inspection of tissues. Optical components utilized in NLO microscopy would then need substantial miniaturization and optimization to enable in vivo use. The challenges in designing compact microscope objective lenses and laser beam scanning mechanisms are discussed. The development of multimodal NLO probes for imaging oral cavity tissue is presented. Our prototype has been examined for ex vivo tissue imaging based on intrinsic fluorescence and SHG contrast. These studies show a potential for multiphoton compact probes to be used for real time imaging in the clinic.
DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes.
Fokina, Alesya A; Stetsenko, Dmitry A; François, Jean-Christophe
2015-05-01
Ongoing studies on the inhibition of gene expression at the mRNA level have identified several types of specific inhibitors such as antisense oligonucleotides, small interfering RNA, ribozymes and DNAzymes (Dz). After its discovery in 1997, the 10-23 Dz (which can cleave RNA efficiently and site-specifically, has flexible design, is independent from cell mechanisms, does not require expensive chemical modifications for effective use in vivo) has been employed to downregulate a range of therapeutically important genes. Recently, 10-23 Dzs have taken their first steps into clinical trials. This review focuses predominantly on Dz applications as potential antiviral, antibacterial, anti-cancer and anti-inflammatory agents as well as for the treatment of cardiovascular disease and diseases of CNS, summarizing results of their clinical trials up to the present day. In comparison with antisense oligonucleotides and small interfering RNAs, Dzs do not usually show off-target effects due to their high specificity and lack of immunogenicity in vivo. As more results of clinical trials carried out so far are gradually becoming available, Dzs may turn out to be safe and well-tolerated therapeutics in humans. Therefore, there is a good chance that we may witness a deoxyribozyme drug reaching the clinic in the near future.
Capoccia, Massimo; Marconi, Silvia; Singh, Sanjeet Avtaar; Pisanelli, Domenico M; De Lazzari, Claudio
2018-05-02
Modelling and simulation may become clinically applicable tools for detailed evaluation of the cardiovascular system and clinical decision-making to guide therapeutic intervention. Models based on pressure-volume relationship and zero-dimensional representation of the cardiovascular system may be a suitable choice given their simplicity and versatility. This approach has great potential for application in heart failure where the impact of left ventricular assist devices has played a significant role as a bridge to transplant and more recently as a long-term solution for non eligible candidates. We sought to investigate the value of simulation in the context of three heart failure patients with a view to predict or guide further management. CARDIOSIM © was the software used for this purpose. The study was based on retrospective analysis of haemodynamic data previously discussed at a multidisciplinary meeting. The outcome of the simulations addressed the value of a more quantitative approach in the clinical decision process. Although previous experience, co-morbidities and the risk of potentially fatal complications play a role in clinical decision-making, patient-specific modelling may become a daily approach for selection and optimisation of device-based treatment for heart failure patients. Willingness to adopt this integrated approach may be the key to further progress.
Watterson, Claire; Lanevschi, Anne; Horner, Judith; Louden, Calvert
2009-01-01
Recently, in early clinical development, a few biologics and small molecules intended as antitumor or anti-inflammatory agents have caused a severe adverse pro-inflammatory systemic reaction also known as systemic inflammatory response syndrome (SIRS). This toxicity could result from expected pharmacological effects of a therapeutic antibody and/or from interaction with antigens expressed on cells/tissues other than the intended target. Clinical monitoring of SIRS is challenging because of the narrow diagnostic window to institute a successful intervening therapeutic strategy prior to acute circulatory collapse. Furthermore, for these classes of therapeutic agents, studies in animals have low predictive ability to identify potential human hazards. In vitro screens with human cells, though promising, need further development. Therefore, identification of improved preclinical diagnostic markers of SIRS will enable clinicians to select applicable markers for clinical testing and avoid potentially catastrophic events. There is limited preclinical toxicology data describing the interspecies performance of acute-phase proteins because the response time, type, and duration of major acute-phase proteins vary significantly between species. This review will attempt to address this intellectual gap, as well as the use and applicability of acute-phase proteins as preclinical to clinical translational biomarkers of SIRS.
Vavken, Patrick; Ganal-Antonio, Anne Kathleen B.; Quidde, Julia; Shen, Francis H.; Chapman, Jens R.; Samartzis, Dino
2015-01-01
Study Design A broad narrative review. Objectives Outcome assessment in spinal disorders is imperative to help monitor the safety and efficacy of the treatment in an effort to change the clinical practice and improve patient outcomes. The following article, part two of a two-part series, discusses the various outcome tools and instruments utilized to address spinal disorders and their management. Methods A thorough review of the peer-reviewed literature was performed, irrespective of language, addressing outcome research, instruments and tools, and applications. Results Numerous articles addressing the development and implementation of health-related quality-of-life, neck and low back pain, overall pain, spinal deformity, and other condition-specific outcome instruments have been reported. Their applications in the context of the clinical trial studies, the economic analyses, and overall evidence-based orthopedics have been noted. Additional issues regarding the problems and potential sources of bias utilizing outcomes scales and the concept of minimally clinically important difference were discussed. Conclusion Continuing research needs to assess the outcome instruments and tools used in the clinical outcome assessment for spinal disorders. Understanding the fundamental principles in spinal outcome assessment may also advance the field of “personalized spine care.” PMID:26225283
Roadblocks en route to the clinical application of induced pluripotent stem cells.
Lowry, William E; Quan, William L
2010-03-01
Since the first studies of human embryonic stem cells (hESCs) and, more recently, human induced pluripotent stem cells (hiPSCs), the stem-cell field has been abuzz with the promise that these pluripotent populations will one day be a powerful therapeutic tool. Although it has been proposed that hiPSCs will supersede hESCs with respect to their research and/or clinical potential because of the ease of their derivation and the ability to create immunologically matched iPSCs for each individual patient, recent evidence suggests that iPSCs in fact have several underappreciated characteristics that might mean they are less suitable for clinical application. Continuing research is revealing the similarities, differences and deficiencies of various pluripotent stem-cell populations, and suggests that many years will pass before the clinical utility of hESCs and hiPSCs is realized. There are a plethora of ethical, logistical and technical roadblocks on the route to the clinical application of pluripotent stem cells, particularly of iPSCs. In this Essay, we discuss what we believe are important issues that should be considered when attempting to bring hiPSC-based technology to the clinic.
Applicable or non-applicable: investigations of clinical heterogeneity in systematic reviews.
Chess, Laura E; Gagnier, Joel J
2016-02-17
Clinical heterogeneity can be defined as differences in participant characteristics, types or timing of outcome measurements and intervention characteristics. Clinical heterogeneity in systematic reviews has the possibility to significantly affect statistical heterogeneity leading to inaccurate conclusions and misled decision making. The aim of this study is to identify to what extent investigators are assessing clinical heterogeneity in both Cochrane and non-Cochrane systematic reviews. The most recent 100 systematic reviews from the top five journals in medicine-JAMA, Archives of Internal Medicine, British Medical Journal, The Lancet, and PLOS Medicine-and the 100 most recently published and/or updated systematic reviews from Cochrane were collected. Various defined items of clinical heterogeneity were extracted from the included reviews. Investigators used chi-squared tests, logarithmic modeling and linear regressions to determine if the presence of such items served as a predictor for clinical heterogeneity when comparing Cochrane to non-Cochrane reviews. Extracted variables include number of studies, number of participants, presence of quantitative synthesis, exploration of clinical heterogeneity, heterogeneous characteristics explored, basis and methods used for investigating clinical heterogeneity, plotting/visual aids, author contact, inferences from clinical heterogeneity investigation, reporting assessment, and the presence of a priori or post-hoc analysis. A total of 317 systematic reviews were considered, of which 199 were in the final analysis. A total of 81% of Cochrane reviews and 90% of non-Cochrane reviews explored characteristics that are considered aspects of clinical heterogeneity and also described the methods they planned to use to investigate the influence of those characteristics. Only 1% of non-Cochrane reviews and 8% of Cochrane reviews explored the clinical characteristics they initially chose as potential for clinical heterogeneity. Very few studies mentioned clinician training, compliance, brand, co-interventions, dose route, ethnicity, prognostic markers and psychosocial variables as covariates to investigate as potentially clinically heterogeneous. Addressing aspects of clinical heterogeneity was not different between Cochrane and non-Cochrane reviews. The ability to quantify and compare the clinical differences of trials within a meta-analysis is crucial to determining its applicability and use in clinical practice. Despite Cochrane Collaboration emphasis on methodology, the proportion of reviews that assess clinical heterogeneity is less than those of non-Cochrane reviews. Our assessment reveals that there is room for improvement in assessing clinical heterogeneity in both Cochrane and non-Cochrane reviews.
From bench to bedside and to health policies: ethics in translational research.
Petrini, C
2011-01-01
Translation of biomedical research knowledge to effective clinical treatment is essential to the public good. The first level of translation ("from bench to bedside") corresponds to efficacy studies under controlled conditions with careful attention to internal validity (clinical research). The second level is the translation of results from clinical studies into everyday clinical practice and health decision making. The article summarises the ethical issues involved in the translation of biomedical research advances to clinical applications and to clinical practice. In particular, the article synthesizes theory from clinical ethics, operational design, and philosophy to examine the unique bioethical issues raised by the recent focus on translational research. In this framework safety of study participants and balancing of risk due to treatment with the potential benefits of the research are crucial: in clinical research there is a danger that the emphasis on advancements in scientific knowledge might prevail over the protection of the people who participate in research. These issues involve basic scientists, clinicians and bioethicists because of their application to comparative effectiveness research, clinical trials and evidence-based medicine, as well basic biomedical research.
Xia, Xianping; Wang, Yun; Cai, Shuizhou; Xie, Changsheng; Zhu, Changhong
2009-01-01
Copper/low-density polyethylene (Cu/LDPE) nanocomposite intrauterine device (IUD) is an implanted medicinal device that must be sterilized before use. Sterilization processes act either chemically or physically, leading to a lethal change in the structure or function of organic macromolecules in microorganisms. Given the nature of their action, sterilization might also attack the macromolecules of polymers by the same mechanisms, resulting in changes in surface functional groups and in the internal structure of the polymer. If sterilization leads to changes in surface functional groups and in the internal structure of the LDPE matrix, which will influence the mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs, potential clinical application will be limited. Therefore, it is necessary to study the influence of ethylene oxide sterilization on the potential clinical application of novel Cu/LDPE nanocomposite IUDs. The influence of ethylene oxide sterilization on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs was studied using differential scanning calorimetry, attenuated total reflection Fourier transform infrared spectroscopy, tensile testing and absorbance measurement. Ethylene oxide sterilization did not have any influence on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite intrauterine devices. Ethylene oxide sterilization will not affect the potential application of novel Cu/LDPE nanocomposite IUDs.
Infectious Disease Issues in Xenotransplantation
Boneva, Roumiana S.; Folks, Thomas M.; Chapman, Louisa E.
2001-01-01
Xenotransplantation, the transplantation of living organs, tissues, or cells from one species to another, is viewed as a potential solution to the existing shortage of human organs for transplantation. While whole-organ xenotransplantation is still in the preclinical stage, cellular xenotransplantation and extracorporeal perfusion applications are showing promise in early clinical trials. Advances in immunosuppressive therapy, gene engineering, and cloning of animals bring a broader array of xenotransplantation protocols closer to clinical trials. Despite several potential advantages over allotransplantation, xenotransplantation encompasses a number of problems. Immunologic rejection remains the primary hindrance. The potential to introduce infections across species barriers, another major concern, is the main focus of this review. Nonhuman primates are unlikely to be a main source for xenotransplantation products despite their phylogenetic proximity to humans. Genetically engineered pigs, bred under special conditions, are currently envisaged as the major source. Thus far, there has been no evidence for human infections caused by pig xenotransplantation products. However, the existence of xenotropic endogenous retroviruses and the clinical evidence of long-lasting porcine cell microchimerism indicate the potential for xenogeneic infections. Thus, further trials should continue under regulatory oversight, with close clinical and laboratory monitoring for potential xenogeneic infections. PMID:11148000
Mesenchymal stem cells for bone repair and metabolic bone diseases.
Undale, Anita H; Westendorf, Jennifer J; Yaszemski, Michael J; Khosla, Sundeep
2009-10-01
Human mesenchymal stem cells offer a potential alternative to embryonic stem cells in clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues, including bone, cartilage, fat, and other tissues of mesenchymal origin, makes them an attractive candidate for clinical applications. Patients who experience fracture nonunion and metabolic bone diseases, such as osteogenesis imperfecta and hypophosphatasia, have benefited from human mesenchymal stem cell therapy. Because of their ability to modulate immune responses, allogeneic transplant of these cells may be feasible without a substantial risk of immune rejection. The field of regenerative medicine is still facing considerable challenges; however, with the progress achieved thus far, the promise of stem cell therapy as a viable option for fracture nonunion and metabolic bone diseases is closer to reality. In this review, we update the biology and clinical applicability of human mesenchymal stem cells for bone repair and metabolic bone diseases.
Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis
Liu, Xuan
2017-01-01
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis. PMID:29207528
Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis.
Liu, Xuan; Jiang, Hui
2017-12-04
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.
Dwyer, Christopher P; McKenna-Plumley, Phoebe E; Durand, Hannah; Gormley, Emer M; Slattery, Brian W; Harney, Owen M; MacNeela, Padraig; McGuire, Brian E
2017-09-01
Though there is wide support for the application of biopsychosocial perspectives in clinical judgement of chronic pain cases, such perspectives are often overlooked due to either inadequate training or attitudes favoring a biomedical approach. Recent research has indicated that despite such explanations, both established general practitioners (GP) and medical students account for some psychosocial factors when making clinical judgements regarding chronic pain cases, but report not being likely to apply these in real-world, clinical settings due to numerous factors, including available time with patients. Thus, it is evident that a greater understanding of clinical judgement-making processes and the factors that affect application of these processes is required, particularly regarding chronic pain. The aims of the current study were to investigate medical students' conceptualizations of the factors that influence application of a biopsychosocial approach to clinical judgement-making in cases of chronic pain using interactive management (IM), model the relationships among these factors, and make recommendations to chronic pain treatment policy in light of the findings. The current study used IM to identify and model factors that influence the application of a biopsychosocial approach to clinical judgement-making in cases of chronic pain, based on medical students' conceptualizations of these factors. Two university classrooms. IM is a systems thinking and action mapping strategy used to aid groups in developing outcomes regarding complex issues, through integrating contributions from individuals with diverse views, backgrounds, and perspectives. IM commonly utilizes the nominal group technique and interpretive structural modeling, which in this context were employed to help medical students identify, clarify, and model influences on the application of biopsychosocial perspectives in treating chronic pain patients. Results of IM group work revealed 7 core biopsychosocial approach application categories: GP attitudes, cost, GP knowledge, time, patient-doctor relationship, biomedical factors. and patient perception. GP attitudes was the most critical driver of all other competencies in the system, with cost and GP knowledge revealed as secondary drivers. Potential differences in level of prior biopsychosocial perspective knowledge across participants and a potentially small sample size (though consistent with past research and appropriate for an exploratory study of this nature - for purposes of achieving the depth and richness of the deliberation and qualitative insights revealed by participants using the IM methodology). Results from this study may be used to both recommend further research on the identified factors influencing application of biopsychosocial perspectives in treatment of chronic pain and support amendment to extant health care policy, particularly with respect to cost, GP attitudes, and knowledge. Though this research claims neither that the influences identified are the only influences on biopsychosocial application, nor the order of their importance, the research does contribute to an on-going effort to better understand the factors that influence doctors in their treatment of chronic pain.Key words: Chronic pain, biopsychosocial, medical education, clinical judgement, interactive management, pain management.
Vallabhajosula, Shankar
2007-11-01
Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on regulatory compliance in addition to documentation of potential safety and efficacy by various investigators.
'Shovel-Ready' applications of stem cell advances for pediatric heart disease.
Files, Matthew D; Boucek, Robert J
2012-10-01
The past decade has seen remarkable advances in the field of stem cell biology. Many new technologies and applications are passing the translational phase and likely will soon be relevant for the clinical pediatric cardiologist. This review will focus on two advances in basic science that are now translating into clinical trials. The first advance is the recognition, characterization, and recent therapeutic application of resident cardiac progenitor cells (CPCs). Early results of adult trials and scattered case reports in pediatric patients support expanding CPC-based trials for end-stage heart failure in pediatric patients. The relative abundance of CPCs in the neonate and young child offers greater potential benefits in heart failure treatment than has been realized to date. The second advance is the technology of induced pluripotent stem cells (iPSCs), which reprograms differentiated somatic cells to an undifferentiated embryonic-like state. When iPSCs are differentiated into cardiomyocytes, they model a patient's specific disease, test pharmaceuticals, and potentially provide an autologous source for cell-based therapy. The therapeutic recruitment and/or replacement of CPCs has potential for enhancing cardiac repair and regeneration in children with heart failure. Use of iPSCs to model heart disease holds great potential to gain new insights into diagnosis, pathophysiology, and disease-specific management for genetic-based cardiovascular diseases that are prevalent in pediatric patients.
Repurposing historical control clinical trial data to provide safety context.
Bhuyan, Prakash; Desai, Jigar; Louis, Matthew St; Carlsson, Martin; Bowen, Edward; Danielson, Mark; Cantor, Michael N
2016-02-01
Billions of dollars spent, millions of subject-hours of clinical trial experience and an abundance of archived study-level data, yet why are historical data underutilized? We propose that historical data can be aggregated to provide safety, background incidence rate and context to improve the evaluation of new medicinal products. Here, we describe the development and application of the eControls database, which is derived from the control arms of studies of licensed products, and discuss the challenges and potential solutions to the proper application of historical data to help interpret product safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technology needs for the development of the accommodative intraocular lens
NASA Astrophysics Data System (ADS)
Nishi, Okihiro
2010-02-01
Refilling the lens capsule while preserving capsular integrity offers the potential to restore ocular accommodation. There are two persisting problems in capsular bag refilling for possible clinical application: Leakage of the injectable material through the capsular opening and capsular opacification. Numerous attempts for solving these cardinal problems have not been proven to be clinically applicable. Recently, we developed a novel capsular bag refilling procedure using a novel accommodative intraocular lens that serves as an optic as well as a plug for sealing the capsular opening. The procedure and the results of monkey experiments will be presented.
Ng, K H; Peh, W C G
2010-02-01
A technical note is a short article giving a brief description of a specific development, technique or procedure, or it may describe a modification of an existing technique, procedure or device applicable to medicine. The technique, procedure or device described should have practical value and should contribute to clinical diagnosis or management. It could also present a software tool, or an experimental or computational method. Technical notes are variously referred to as technical innovations or technical developments. The main criteria for publication will be the novelty of concepts involved, the validity of the technique and its potential for clinical applications.
Moll, Guido; Geißler, Sven; Catar, Rusan; Ignatowicz, Lech; Hoogduijn, Martin J; Strunk, Dirk; Bieback, Karen; Ringdén, Olle
2016-01-01
Mesenchymal stromal cells (MSCs) harbor great therapeutic potential for numerous diseases. From early clinical trials, success and failure analysis, bench-to-bedside and back-to-bench approaches, there has been a great gain in knowledge, still leaving a number of questions to be answered regarding optimal manufacturing and quality of MSCs for clinical application. For treatment of many acute indications, cryobanking may remain a prerequisite, but great uncertainty exists considering the therapeutic value of freshly thawed (thawed) and continuously cultured (fresh) MSCs. The field has seen an explosion of new literature lately, outlining the relevance of the topic. MSCs appear to have compromised immunomodulatory activity directly after thawing for clinical application. This may provide a possible explanation for failure of early clinical trials. It is not clear if and how quickly MSCs recover their full therapeutic activity, and if the "cryo stun effect" is relevant for clinical success. Here, we will share our latest insights into the relevance of these observations for clinical practice that will be discussed in the context of the published literature. We argue that the differences of fresh and thawed MSCs are limited but significant. A key issue in evaluating potency differences is the time point of analysis after thawing. To date, prospective double-blinded randomized clinical studies to evaluate potency of both products are lacking, although recent progress was made with preclinical assessment. We suggest refocusing therapeutic MSC development on potency and safety assays with close resemblance of the clinical reality.
Clinical Trials Shed Light on Minority Health
... determine whether FDA approves a manufacturer’s application for marketing approval. "Potential racial, ethnic and other differences in ... patient advocates and the scientific community to discuss strategies for increasing the participation of women and minorities ...
Conditionally replicative adenovirus for gastrointestinal cancers.
Yamamoto, Masato
2004-08-01
The clinical outcome of advanced gastrointestinal (GI) cancers (especially pancreatic and oesophageal cancers) is dismal, despite the advance of conventional therapeutic strategies. Cancer gene therapy is a category of new therapeutics, among which conditionally replicative adenovirus (CRAd) is one promising strategy to overcome existing obstacles of cancer gene therapy. Various CRAds have been developed for GI cancer treatment by taking advantage of the replication biology of adenovirus. Some CRAds have already been tested in clinical trials, but have fallen short of initial expectations. Concerns for clinical applicability include therapeutic potency, replication selectivity and interval end points in clinical trials. In addition, improvement of experimental animal models is needed for a deeper understanding of CRAd biology. Despite these obstacles, CRAds continue to be an exciting area of investigation with great potential for clinical utility. Further virological and oncological research will eventually lead to full realisation of the therapeutic potential of CRAds in the field of GI cancers.
Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.
Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth
2018-04-04
Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.
Exploring the Potential of Direct-To-Consumer Genomic Test Data for Predicting Adverse Drug Events.
Zhang, Patrick M; Sarkar, Indra Neil
2018-01-01
Recent technological advancements in genetic testing and the growing accessibility of public genomic data provide researchers with a unique avenue to approach personalized medicine. This feasibility study examined the potential of direct-to-consumer (DTC) genomic tests (focusing on 23andMe) in research and clinical applications. In particular, we combined population genetics information from the Personal Genome Project with adverse event reports from AEOLUS and pharmacogenetic information from PharmGKB. Primarily, associations between drugs based on co-occurring genetic variations and associations between variants and adverse events were used to assess the potential for leveraging single nucleotide polymorphism information from 23andMe. The results of this study suggest potential clinical uses of DTC tests in light of potential drug interactions. Furthermore, the results suggest great potential for analyzing associations at a population level to facilitate knowledge discovery in the realm of predicting adverse drug events.
Genetic testing in the epilepsies—Report of the ILAE Genetics Commission
Ottman, Ruth; Hirose, Shinichi; Jain, Satish; Lerche, Holger; Lopes-Cendes, Iscia; Noebels, Jeffrey L.; Serratosa, José; Zara, Federico; Scheffer, Ingrid E.
2010-01-01
SUMMARY In this report, the International League Against Epilepsy (ILAE) Genetics Commission discusses essential issues to be considered with regard to clinical genetic testing in the epilepsies. Genetic research on the epilepsies has led to the identification of more than 20 genes with a major effect on susceptibility to idiopathic epilepsies. The most important potential clinical application of these discoveries is genetic testing: the use of genetic information, either to clarify the diagnosis in people already known or suspected to have epilepsy (diagnostic testing), or to predict onset of epilepsy in people at risk because of a family history (predictive testing). Although genetic testing has many potential benefits, it also has potential harms, and assessment of these potential benefits and harms in particular situations is complex. Moreover, many treating clinicians are unfamiliar with the types of tests available, how to access them, how to decide whether they should be offered, and what measures should be used to maximize benefit and minimize harm to their patients. Because the field is moving rapidly, with new information emerging practically every day, we present a framework for considering the clinical utility of genetic testing that can be applied to many different syndromes and clinical contexts. Given the current state of knowledge, genetic testing has high0020clinical utility in few clinical contexts, but in some of these it carries implications for daily clinical practice. PMID:20100225
Advances in Clinical and Biomedical Applications of Photoacoustic Imaging
Su, Jimmy L.; Wang, Bo; Wilson, Katheryne E.; Bayer, Carolyn L.; Chen, Yun-Sheng; Kim, Seungsoo; Homan, Kimberly A.; Emelianov, Stanislav Y.
2010-01-01
Importance of the field Photoacoustic imaging is an imaging modality that derives image contrast from the optical absorption coefficient of the tissue being imaged. The imaging technique is able to differentiate between healthy and diseased tissue with either deeper penetration or higher resolution than other functional imaging modalities currently available. From a clinical standpoint, photoacoustic imaging has demonstrated safety and effectiveness in diagnosing diseased tissue regions using either endogenous tissue contrast or exogenous contrast agents. Furthermore, the potential of photoacoustic imaging has been demonstrated in various therapeutic interventions ranging from drug delivery and release to image-guided therapy and monitoring. Areas covered in this review This article reviews the current state of photoacoustic imaging in biomedicine from a technological perspective, highlights various biomedical and clinical applications of photoacoustic imaging, and gives insights on future directions. What the reader will gain Readers will learn about the various applications of photoacoustic imaging, as well as the various contrast agents that can be used to assist photoacoustic imaging. This review will highlight both pre-clinical and clinical uses for photoacoustic imaging, as well as discuss some of the challenges that must be addressed to move photoacoustic imaging into the clinical realm. Take home message Photoacoustic imaging offers unique advantages over existing imaging modalities. The imaging field is broad with many exciting applications for detecting and diagnosing diseased tissue or processes. Photoacoustics is also used in therapeutic applications to identify and characterize the pathology and then to monitor the treatment. Although the technology is still in its infancy, much work has been done in the pre-clinical arena, and photoacoustic imaging is fast approaching the clinical setting. PMID:21344060
Clinical application of a modern high-definition head-mounted display in sonography.
Takeshita, Hideki; Kihara, Kazunori; Yoshida, Soichiro; Higuchi, Saori; Ito, Masaya; Nakanishi, Yasukazu; Kijima, Toshiki; Ishioka, Junichiro; Matsuoka, Yoh; Numao, Noboru; Saito, Kazutaka; Fujii, Yasuhisa
2014-08-01
Because of the remarkably improved image quality and wearability of modern head-mounted displays, a monitoring system using a head-mounted display rather than a fixed-site monitor for sonographic scanning has the potential to improve the diagnostic performance and lessen the examiner's physical burden during a sonographic examination. In a preclinical setting, 2 head-mounted displays, the HMZ-T2 (Sony Corporation, Tokyo, Japan) and the Wrap1200 (Vuzix Corporation, Rochester, NY), were found to be applicable to sonography. In a clinical setting, the feasibility of the HMZ-T2 was shown by its good image quality and acceptable wearability. This modern device is appropriate for clinical use in sonography. © 2014 by the American Institute of Ultrasound in Medicine.
C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.
Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo
2013-11-01
C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.
Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications
Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.
2015-01-01
Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547
MRI-powered biomedical devices.
Hovet, Sierra; Ren, Hongliang; Xu, Sheng; Wood, Bradford; Tokuda, Junichi; Tse, Zion Tsz Ho
2017-11-16
Magnetic resonance imaging (MRI) is beneficial for imaging-guided procedures because it provides higher resolution images and better soft tissue contrast than computed tomography (CT), ultrasound, and X-ray. MRI can be used to streamline diagnostics and treatment because it does not require patients to be repositioned between scans of different areas of the body. It is even possible to use MRI to visualize, power, and control medical devices inside the human body to access remote locations and perform minimally invasive procedures. Therefore, MR conditional medical devices have the potential to improve a wide variety of medical procedures; this potential is explored in terms of practical considerations pertaining to clinical applications and the MRI environment. Recent advancements in this field are introduced with a review of clinically relevant research in the areas of interventional tools, endovascular microbots, and closed-loop controlled MRI robots. Challenges related to technology and clinical feasibility are discussed, including MRI based propulsion and control, navigation of medical devices through the human body, clinical adoptability, and regulatory issues. The development of MRI-powered medical devices is an emerging field, but the potential clinical impact of these devices is promising.
Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications.
La Francesca, Saverio
2012-01-01
The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.
Prospects and applications of nanobiotechnology: a medical perspective.
Fakruddin, Md; Hossain, Zakir; Afroz, Hafsa
2012-07-20
Nanobiotechnology is the application of nanotechnology in biological fields. Nanotechnology is a multidisciplinary field that currently recruits approach, technology and facility available in conventional as well as advanced avenues of engineering, physics, chemistry and biology. A comprehensive review of the literature on the principles, limitations, challenges, improvements and applications of nanotechnology in medical science was performed. Nanobiotechnology has multitude of potentials for advancing medical science thereby improving health care practices around the world. Many novel nanoparticles and nanodevices are expected to be used, with an enormous positive impact on human health. While true clinical applications of nanotechnology are still practically inexistent, a significant number of promising medical projects are in an advanced experimental stage. Implementation of nanotechnology in medicine and physiology means that mechanisms and devices are so technically designed that they can interact with sub-cellular (i.e. molecular) levels of the body with a high degree of specificity. Thus therapeutic efficacy can be achieved to maximum with minimal side effects by means of the targeted cell or tissue-specific clinical intervention. More detailed research and careful clinical trials are still required to introduce diverse components of nanobiotechnology in random clinical applications with success. Ethical and moral concerns also need to be addressed in parallel with the new developments.
Prospects and applications of nanobiotechnology: a medical perspective
2012-01-01
Background Nanobiotechnology is the application of nanotechnology in biological fields. Nanotechnology is a multidisciplinary field that currently recruits approach, technology and facility available in conventional as well as advanced avenues of engineering, physics, chemistry and biology. Method A comprehensive review of the literature on the principles, limitations, challenges, improvements and applications of nanotechnology in medical science was performed. Results Nanobiotechnology has multitude of potentials for advancing medical science thereby improving health care practices around the world. Many novel nanoparticles and nanodevices are expected to be used, with an enormous positive impact on human health. While true clinical applications of nanotechnology are still practically inexistent, a significant number of promising medical projects are in an advanced experimental stage. Implementation of nanotechnology in medicine and physiology means that mechanisms and devices are so technically designed that they can interact with sub-cellular (i.e. molecular) levels of the body with a high degree of specificity. Thus therapeutic efficacy can be achieved to maximum with minimal side effects by means of the targeted cell or tissue-specific clinical intervention. Conclusion More detailed research and careful clinical trials are still required to introduce diverse components of nanobiotechnology in random clinical applications with success. Ethical and moral concerns also need to be addressed in parallel with the new developments. PMID:22817658
Shaikh, Faiq; Franc, Benjamin; Allen, Erastus; Sala, Evis; Awan, Omer; Hendrata, Kenneth; Halabi, Safwan; Mohiuddin, Sohaib; Malik, Sana; Hadley, Dexter; Shrestha, Rasu
2018-03-01
Enterprise imaging has channeled various technological innovations to the field of clinical radiology, ranging from advanced imaging equipment and postacquisition iterative reconstruction tools to image analysis and computer-aided detection tools. More recently, the advancement in the field of quantitative image analysis coupled with machine learning-based data analytics, classification, and integration has ushered in the era of radiomics, a paradigm shift that holds tremendous potential in clinical decision support as well as drug discovery. However, there are important issues to consider to incorporate radiomics into a clinically applicable system and a commercially viable solution. In this two-part series, we offer insights into the development of the translational pipeline for radiomics from methodology to clinical implementation (Part 1) and from that point to enterprise development (Part 2). In Part 2 of this two-part series, we study the components of the strategy pipeline, from clinical implementation to building enterprise solutions. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Semper, Julie; Halvorson, Betty; Hersh, Mary; Torres, Clare; Lillington, Linda
2016-01-01
The aim of the study was to describe the clinical nurse specialist role in developing and implementing a staff nurse education program to promote practice accountability using peer review principles. Peer review is essential for professional nursing practice demanding a significant culture change. Clinical nurse specialists in a Magnet-designated community hospital were charged with developing a staff nurse peer review education program. Peer review is a recognized mechanism of professional self-regulation to ensure delivery of quality care. The American Nurses Association strongly urges incorporating peer review in professional nursing practice models. Clinical nurse specialists play a critical role in educating staff nurses about practice accountability. Clinical nurse specialists developed an education program guided by the American Nurses Association's principles of peer review. A baseline needs assessment identified potential barriers and learning needs. Content incorporated tools and strategies to build communication skills, collaboration, practice change, and peer accountability. The education program resulted in increased staff nurse knowledge about peer review and application of peer review principles in practice. Clinical nurse specialists played a critical role in helping staff nurses understand peer review and its application to practice. The clinical nurse specialist role will continue to be important in sustaining the application of peer review principles in practice.
A technical guide to tDCS, and related non-invasive brain stimulation tools.
Woods, A J; Antal, A; Bikson, M; Boggio, P S; Brunoni, A R; Celnik, P; Cohen, L G; Fregni, F; Herrmann, C S; Kappenman, E S; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, P C; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, M A
2016-02-01
Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.
Acoustic Droplet Vaporization in Biology and Medicine
Pitt, William G.
2013-01-01
This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV) in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU) sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles. PMID:24350267
High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk
Hafiane, Anouar; Genest, Jacques
2015-01-01
Plasma high density lipoprotein cholesterol (HDL) comprises a heterogeneous family of lipoprotein species, differing in surface charge, size and lipid and protein compositions. While HDL cholesterol (C) mass is a strong, graded and coherent biomarker of cardiovascular risk, genetic and clinical trial data suggest that the simple measurement of HDL-C may not be causal in preventing atherosclerosis nor reflect HDL functionality. Indeed, the measurement of HDL-C may be a biomarker of cardiovascular health. To assess the issue of HDL function as a potential therapeutic target, robust and simple analytical methods are required. The complex pleiotropic effects of HDL make the development of a single measurement challenging. Development of laboratory assays that accurately HDL function must be developed validated and brought to high-throughput for clinical purposes. This review discusses the limitations of current laboratory technologies for methods that separate and quantify HDL and potential application to predict CVD, with an emphasis on emergent approaches as potential biomarkers in clinical practice. PMID:26674734
The therapeutic potential of miRNAs in cardiac fibrosis: where do we stand?
Wijnen, Wino J; Pinto, Yigal M; Creemers, Esther E
2013-12-01
Recent developments in basic and clinical science have turned the spotlight to miRNAs for their potential therapeutic efficacy. Since their discovery in 1993, it has become clear that miRNAs act as posttranscriptional regulators of protein expression. Their clinical potential was further highlighted by the results of miRNA-based interventions in small laboratory animals. More importantly, their therapeutic effectiveness has been shown recently in phase 2a clinical studies in patients with hepatitis C virus infection, where inhibition of miRNA-122 showed prolonged and dose-dependent viral suppression. A recent study surprisingly revealed the presence of plant-derived miRNAs in the blood of healthy humans. This finding opens up the possibility to explore miRNA-mediated therapeutics derived from (genetically modified) food. Having arrived at this point in our understanding of miRNAs, we provide an overview of current evidence and future potential of miRNA-based therapeutics, focusing on their application in cardiac fibrosis.
Liquid biopsies come of age: towards implementation of circulating tumour DNA.
Wan, Jonathan C M; Massie, Charles; Garcia-Corbacho, Javier; Mouliere, Florent; Brenton, James D; Caldas, Carlos; Pacey, Simon; Baird, Richard; Rosenfeld, Nitzan
2017-04-01
Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a 'liquid biopsy' for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.
Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer.
Yang, Wanli; Ma, Jiaojiao; Zhou, Wei; Cao, Bo; Zhou, Xin; Yang, Zhiping; Zhang, Hongwei; Zhao, Qingchuan; Fan, Daiming; Hong, Liu
2017-11-01
Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.
Rockey, William M; Hernandez, Frank J; Huang, Sheng-You; Cao, Song; Howell, Craig A; Thomas, Gregory S; Liu, Xiu Ying; Lapteva, Natalia; Spencer, David M; McNamara, James O; Zou, Xiaoqin; Chen, Shi-Jie; Giangrande, Paloma H
2011-10-01
RNA aptamers represent an emerging class of pharmaceuticals with great potential for targeted cancer diagnostics and therapy. Several RNA aptamers that bind cancer cell-surface antigens with high affinity and specificity have been described. However, their clinical potential has yet to be realized. A significant obstacle to the clinical adoption of RNA aptamers is the high cost of manufacturing long RNA sequences through chemical synthesis. Therapeutic aptamers are often truncated postselection by using a trial-and-error process, which is time consuming and inefficient. Here, we used a "rational truncation" approach guided by RNA structural prediction and protein/RNA docking algorithms that enabled us to substantially truncateA9, an RNA aptamer to prostate-specific membrane antigen (PSMA),with great potential for targeted therapeutics. This truncated PSMA aptamer (A9L; 41mer) retains binding activity, functionality, and is amenable to large-scale chemical synthesis for future clinical applications. In addition, the modeled RNA tertiary structure and protein/RNA docking predictions revealed key nucleotides within the aptamer critical for binding to PSMA and inhibiting its enzymatic activity. Finally, this work highlights the utility of existing RNA structural prediction and protein docking techniques that may be generally applicable to developing RNA aptamers optimized for therapeutic use.
Elhadad, N.
2016-01-01
Summary Objectives This paper reviews work over the past two years in Natural Language Processing (NLP) applied to clinical and consumer-generated texts. Methods We included any application or methodological publication that leverages text to facilitate healthcare and address the health-related needs of consumers and populations. Results Many important developments in clinical text processing, both foundational and task-oriented, were addressed in community-wide evaluations and discussed in corresponding special issues that are referenced in this review. These focused issues and in-depth reviews of several other active research areas, such as pharmacovigilance and summarization, allowed us to discuss in greater depth disease modeling and predictive analytics using clinical texts, and text analysis in social media for healthcare quality assessment, trends towards online interventions based on rapid analysis of health-related posts, and consumer health question answering, among other issues. Conclusions Our analysis shows that although clinical NLP continues to advance towards practical applications and more NLP methods are used in large-scale live health information applications, more needs to be done to make NLP use in clinical applications a routine widespread reality. Progress in clinical NLP is mirrored by developments in social media text analysis: the research is moving from capturing trends to addressing individual health-related posts, thus showing potential to become a tool for precision medicine and a valuable addition to the standard healthcare quality evaluation tools. PMID:27830255
Moving receptor redirected adoptive cell therapy toward fine tuning of antitumor responses.
Chicaybam, Leonardo; Bonamino, Martin Hernan
2014-10-01
Adoptive cell transfer (ACT) is emerging as a powerful modality of cancer treatment. While ACT has proved able to induce massive clinical responses, genetic modification of T lymphocytes further improved clinical responses obtained. One of the major current limitations of ACT is the inability to discern healthy from malignant cells, leading to on target/off tumor responses that can limit its application. We here discuss some of the approaches currently under development and potential solutions to circumvent these limitations and extend this potentially curative therapy to different tumors by targeting a variety of antigens.
Artificial Intelligence in Surgery: Promises and Perils.
Hashimoto, Daniel A; Rosman, Guy; Rus, Daniela; Meireles, Ozanan R
2018-07-01
The aim of this review was to summarize major topics in artificial intelligence (AI), including their applications and limitations in surgery. This paper reviews the key capabilities of AI to help surgeons understand and critically evaluate new AI applications and to contribute to new developments. AI is composed of various subfields that each provide potential solutions to clinical problems. Each of the core subfields of AI reviewed in this piece has also been used in other industries such as the autonomous car, social networks, and deep learning computers. A review of AI papers across computer science, statistics, and medical sources was conducted to identify key concepts and techniques within AI that are driving innovation across industries, including surgery. Limitations and challenges of working with AI were also reviewed. Four main subfields of AI were defined: (1) machine learning, (2) artificial neural networks, (3) natural language processing, and (4) computer vision. Their current and future applications to surgical practice were introduced, including big data analytics and clinical decision support systems. The implications of AI for surgeons and the role of surgeons in advancing the technology to optimize clinical effectiveness were discussed. Surgeons are well positioned to help integrate AI into modern practice. Surgeons should partner with data scientists to capture data across phases of care and to provide clinical context, for AI has the potential to revolutionize the way surgery is taught and practiced with the promise of a future optimized for the highest quality patient care.
The PEACE project review of clinical instruments for hospice and palliative care.
Hanson, Laura C; Scheunemann, Leslie P; Zimmerman, Sheryl; Rokoske, Franziska S; Schenck, Anna P
2010-10-01
Hospice and palliative care organizations are expanding their use of standardized instruments and other approaches to measure quality. We undertook a systematic review and evaluation of published patient-level instruments for potential application in hospice and palliative care clinical quality measurement. We searched prior reviews and computerized reference databases from 1990 through February 2007 for studies of instruments relevant to physical, psychological, social, cultural, spiritual, or ethical aspects of palliative care, or measuring prognosis, function or continuity of care. Publications were selected for full review if they provided evidence of psychometric properties or practical application of an instrument tested in or appropriate for a hospice or palliative care population. Selected instruments were evaluated and scored for scientific soundness and potential application in clinical quality measurement. The search found 1427 publications, with 229 selected for full manuscript review. Manuscripts provided information on 129 instruments which were evaluated using a structured scoring guide for psychometric properties. Thirty-nine instruments scoring near or above the 75th percentile were recommended. Most instruments covered multiple domains or focused on care for physical symptoms, psychological or social aspects of care. Few instruments were available to measure cultural aspects of care, structure and process of care, and continuity of care. Numerous patient-level instruments are available to measure physical, psychological and social aspects of palliative care with adequate evidence for scientific soundness and practical clinical use for quality improvement and research. Other aspects of palliative care may benefit from further instrument development research.
Jonnal, Ravi S; Kocaoglu, Omer P; Zawadzki, Robert J; Liu, Zhuolin; Miller, Donald T; Werner, John S
2016-07-01
Optical coherence tomography (OCT) has enabled "virtual biopsy" of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings.
The Impact of eHealth on the Quality and Safety of Healthcare
NASA Astrophysics Data System (ADS)
Majeed, Azeem; Black, Ashly; Car, Josip; Anandan, Chantelle; Cresswell, Kathrin; McKinstry, Brian; Pagliari, Claudia; Procter, Rob; Sheikh, Aziz
There is considerable interest in using information technology (IT) to enhance the quality and safety of healthcare. We undertook a systematic literature review to assess the impact of eHealth applications on the quality and safety of healthcare. We retrieved 46,349 potentially relevant publications, from which we selected 67 relevant systematic reviews for inclusion. The literature was found to be poorly collated and of variable quality in its methodology, reporting and utility. We categorised eHealth applications into three main areas: i). storing, managing and transmission of data; ii). supporting clinical decision-making; and iii). facilitating care from a distance. We found that relative to the potential benefits noted within the literature, little empirical evidence exists in support of these applications. Of the few studies revealing the clearest evidence of benefits, many are from academic clinical centres where developers of new applications have also been directly associated with their evaluation. It is therefore unclear how effective these applications would be if deployed outside the environment in which they were developed. Our review of the impact of eHealth applications on quality and safety of healthcare demonstrated a vast gap between the postulated and empirically demonstrated benefits. In addition, there is a lack of robust research on risks and costs. Consequently, the cost-effectiveness of these interventions has yet to be demonstrated.
Long Non-Coding RNA as Potential Biomarker for Prostate Cancer: Is It Making a Difference?
Deng, Junli; Tang, Jie; Wang, Guo; Zhu, Yuan-Shan
2017-03-07
Whole genome transcriptomic analyses have identified numerous long non-coding RNA (lncRNA) transcripts that are increasingly implicated in cancer biology. LncRNAs are found to promote essential cancer cell functions such as proliferation, invasion, and metastasis, with the potential to serve as novel biomarkers of various cancers and to further reveal uncharacterized aspects of tumor biology. However, the biological and molecular mechanisms as well as the clinical applications of lncRNAs in diverse diseases are not completely understood, and remain to be fully explored. LncRNAs may be critical players and regulators in prostate cancer carcinogenesis and progression, and could serve as potential biomarkers for prostate cancer. This review focuses on lncRNA biomarkers that are already available for clinical use and provides an overview of lncRNA biomarkers that are under investigation for clinical development in prostate cancer.
Double peak sensory nerve action potentials to single stimuli in nerve conduction studies.
Leote, Joao; Pereira, Pedro; Valls-Sole, Josep
2017-05-01
In humans, sensory nerve action potentials (SNAPs) can show 2 separate deflections, i.e., double peak potentials (DPp), which necessarily means that 1 peak is delayed with respect to the other. DPps may have various origins and be due to either physical or physiological properties. We review the nature of commonly encountered DPps in clinical practice, provide the most likely interpretations for their physiological origin, and assess their reproducibility and clinical utility. We classified the DPps into 3 categories: (1) simultaneous anodal and cathodal stimulation. (2) simultaneous recording from 2 different nerves at the same site, and (3) SNAP desynchronization. Although the recording of DPps is not a standardized neurophysiological method, their study brings interesting cues about the physiology of nerve stimulation and paves the way for clinical application of such an observation. Muscle Nerve 55: 619-625, 2017. © 2016 Wiley Periodicals, Inc.
Zhang, Mingyuan; Velasco, Ferdinand T.; Musser, R. Clayton; Kawamoto, Kensaku
2013-01-01
Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale. PMID:24551426
NASA Astrophysics Data System (ADS)
Sgrignani, Jacopo; De Luca, Filomena; Torosyan, Hayarpi; Docquier, Jean-Denis; Duan, Da; Novati, Beatrice; Prati, Fabio; Colombo, Giorgio; Grazioso, Giovanni
2016-10-01
β-Lactamases are bacterial enzymes conferring resistance to β-lactam antibiotics in clinically-relevant pathogens, and represent relevant drug targets. Recently, the identification of new boronic acids (i.e. RPX7009) paved the way to the clinical application of these molecules as potential drugs. Here, we screened in silico a library of 1400 boronic acids as potential AmpC β-lactamase inhibitors. Six of the most promising candidates were evaluated in biochemical assays leading to the identification of potent inhibitors of clinically-relevant β-lactamases like AmpC, KPC-2 and CTX-M-15. One of the selected compounds showed nanomolar K i value with the clinically-relevant KPC-2 carbapenemase, while another one exhibited broad spectrum inhibition, being also active on Enterobacter AmpC and the OXA-48 class D carbapenemase.
Saffron in phytotherapy: pharmacology and clinical uses.
Schmidt, Mathias; Betti, Georges; Hensel, Andreas
2007-01-01
Saffron (stigmata of Crocus sativus L.) has been used for medicinal purposes for millennia. Throughout history, uses against cancer and depressive mood can regularly be identified. These applications have also been in the focus of modern research. Promising and selective anti-cancer effects have been observed in vitro and in vivo, but not yet in clinical trials. Antidepressant effects were found in vivo and in clinical pilot studies. Saffron extracts thus have the potential to make a major contribution to rational phytotherapy.
Clinical applications of hallucinogens: A review.
Garcia-Romeu, Albert; Kersgaard, Brennan; Addy, Peter H
2016-08-01
Hallucinogens fall into several different classes, as broadly defined by pharmacological mechanism of action, and chemical structure. These include psychedelics, entactogens, dissociatives, and other atypical hallucinogens. Although these classes do not share a common primary mechanism of action, they do exhibit important similarities in their ability to occasion temporary but profound alterations of consciousness, involving acute changes in somatic, perceptual, cognitive, and affective processes. Such effects likely contribute to their recreational use. However, a growing body of evidence indicates that these drugs may have therapeutic applications beyond their potential for abuse. This review will present data on several classes of hallucinogens with a particular focus on psychedelics, entactogens, and dissociatives, for which clinical utility has been most extensively documented. Information on each class is presented in turn, tracing relevant historical insights, highlighting similarities and differences between the classes from the molecular to the behavioral level, and presenting the most up-to-date information on clinically oriented research with these substances, with important ramifications for their potential therapeutic value. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Engineering stem cells for future medicine.
Ricotti, Leonardo; Menciassi, Arianna
2013-03-01
Despite their great potential in regenerative medicine applications, stem cells (especially pluripotent ones) currently show a limited clinical success, partly due to a lack of biological knowledge, but also due to a lack of specific and advanced technological instruments able to overcome the current boundaries of stem cell functional maturation and safe/effective therapeutic delivery. This paper aims at describing recent insights, current limitations, and future horizons related to therapeutic stem cells, by analyzing the potential of different bioengineering disciplines in bringing stem cells toward a safe clinical use. First, we clarify how and why stem cells should be properly engineered and which could be in a near future the challenges and the benefits connected with this process. Second, we identify different routes toward stem cell differentiation and functional maturation, relying on chemical, mechanical, topographical, and direct/indirect physical stimulation. Third, we highlight how multiscale modeling could strongly support and optimize stem cell engineering. Finally, we focus on future robotic tools that could provide an added value to the extent of translating basic biological knowledge into clinical applications, by developing ad hoc enabling technologies for stem cell delivery and control.
Potential applications of optical coherence tomography angiography in glaucoma.
Dastiridou, Anna; Chopra, Vikas
2018-05-01
Optical coherence tomography angiography (OCTA) is a novel, noninvasive imaging modality that allows assessment of the retinal and choroidal vasculature. The scope of this review is to summarize recent studies using OCTA in glaucoma and highlight potential applications of this new technology in the field of glaucoma. OCTA studies have shown that retinal vascular changes may not develop solely as a result of advanced glaucoma damage. OCTA-derived measurements have provided evidence for lower retinal vascular densities at the optic nerve head, peripapillary and macula in preperimetric-glaucoma and early-glaucoma, as well as, in more advanced glaucoma, in comparison to with normal eyes. OCTA is a novel imaging modality that has already started to expand our knowledge base regarding the role of ocular blood flow in glaucoma. Future studies will better elucidate the role of OCTA-derived measurements in clinical practice, research, and clinical trials in glaucoma.
Clinical Application of Induced Pluripotent Stem Cells in Cardiovascular Medicine.
Chi, Hong-jie; Gao, Song; Yang, Xin-chun; Cai, Jun; Zhao, Wen-shu; Sun, Hao; Geng, Yong-Jian
2015-01-01
Induced pluripotent stem cells (iPSCs) are generated by reprogramming human somatic cells through the overexpression of four transcription factors: Oct4, Sox2, Klf4 and c-Myc. iPSCs are capable of indefinite self-renewal, and they can differentiate into almost any type of cell in the body. These cells therefore offer a highly valuable therapeutic strategy for tissue repair and regeneration. Recent experimental and preclinical research has revealed their potential for cardiovascular disease diagnosis, drug screening and cellular replacement therapy. Nevertheless, significant challenges remain in terms of the development and clinical application of human iPSCs. Here, we review current progress in research related to patient-specific iPSCs for ex vivo modeling of cardiovascular disorders and drug screening, and explore the potential of human iPSCs for use in the field of cardiovascular regenerative medicine. © 2015 S. Karger AG, Basel.
Gut microbiota in autoimmunity: potential for clinical applications.
Kim, Donghyun; Yoo, Seung-Ah; Kim, Wan-Uk
2016-11-01
Microbial habitation in the human body begins immediately after birth, and adults are colonized by microbes outnumbering human cells by a factor of ten. Especially, intestinal track is a living space for diverse microbial species that have coevolved symbiotically. A principal function of the gut microbiota is to protect the host from harmful bacteria and to provide benefits for the host through several mechanisms, including direct competition for limited nutrients, training of host immune systems to recognize specifically foreign materials and conversion of otherwise indigestible food into energy and absorbable nutrients. Therefore, gut dysbiosis, a bacterial imbalance state, is related with the pathogenesis of various host diseases including autoimmune diseases. In the current review, we highlight the importance of gut microbiota in the normal health and autoimmune diseases. We also discuss regulation of gut dysbiosis and future direction for potential clinical applications, including treatment and diagnostics of autoimmune diseases.
Testing the limits: cautions and concerns regarding the new Wechsler IQ and Memory scales.
Loring, David W; Bauer, Russell M
2010-02-23
The Wechsler Adult Intelligence Scale (WAIS) and the Wechsler Memory Scale (WMS) are 2 of the most common psychological tests used in clinical care and research in neurology. Newly revised versions of both instruments (WAIS-IV and WMS-IV) have recently been published and are increasingly being adopted by the neuropsychology community. There have been significant changes in the structure and content of both scales, leading to the potential for inaccurate patient classification if algorithms developed using their predecessors are employed. There are presently insufficient clinical data in neurologic populations to insure their appropriate application to neuropsychological evaluations. We provide a perspective on these important new neuropsychological instruments, comment on the pressures to adopt these tests in the absence of an appropriate evidence base supporting their incremental validity, and describe the potential negative impact on both patient care and continuing research applications.
van Oostendorp, S E; Tan, E C T H; Geeraedts, L M G
2016-09-13
Exsanguination following trauma is potentially preventable. Extremity tourniquets have been successfully implemented in military and civilian prehospital care. Prehospital control of bleeding from the torso and junctional area's remains challenging but offers a great potential to improve survival rates. This review aims to provide an overview of potential treatment options in both clinical as preclinical state of research on truncal and junctional bleeding. Since many options have been developed for application in the military primarily, translation to the civilian situation is discussed. Medline (via Pubmed) and Embase were searched to identify known and potential prehospital treatment options. Search terms were|: haemorrhage/hemorrhage, exsanguination, junctional, truncal, intra-abdominal, intrathoracic, intervention, haemostasis/hemostasis, prehospital, en route, junctional tourniquet, REBOA, resuscitative thoracotomy, emergency thoracotomy, pelvic binder, pelvic sheet, circumferential. Treatment options were listed per anatomical site: axilla, groin, thorax, abdomen and pelvis Also, the available evidence was graded in (pre) clinical stadia of research. Identified treatment options were wound clamps, injectable haemostatic sponges, pelvic circumferential stabilizers, resuscitative thoracotomy, resuscitative endovascular balloon occlusion of the aorta (REBOA), intra-abdominal gas insufflation, intra-abdominal self-expanding foam, junctional and truncal tourniquets. A total of 70 papers on these aforementioned options was retrieved. No clinical reports on injectable haemostatic sponges, intra-abdominal insufflation or self-expanding foam injections and one type of junctional tourniquets were available. Options to stop truncal and junctional traumatic haemorrhage in the prehospital arena are evolving and may offer a potentially great survival advantage. Because of differences in injury pattern, time to definitive care, different prehospital scenario's and level of proficiency of care providers; successful translation of various military applications to the civilian situation has to be awaited. Overall, the level of evidence on the retrieved adjuncts is extremely low.
Development and Potential Applications of CRISPR-Cas9 Genome Editing Technology in Sarcoma
Liu, Tang; Shen, Jacson K.; Li, Zhihong; Choy, Edwin; Hornicek, Francis J.; Duan, Zhenfeng
2016-01-01
Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA-guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area. PMID:26806808
Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma.
Liu, Tang; Shen, Jacson K; Li, Zhihong; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng
2016-04-01
Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA-guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dykstra, Jordan A.; Facile, Tiffany; Patrick, Ryan J.; Francis, Kevin R.; Milanovich, Samuel; Weimer, Jill M.
2017-01-01
Abstract Due to their capacity to self‐renew, proliferate and generate multi‐lineage cells, adult‐derived stem cells offer great potential for use in regenerative therapies to stop and/or reverse degenerative diseases such as diabetes, heart failure, Alzheimer's disease and others. However, these subsets of cells can be isolated from different niches, each with differing potential for therapeutic applications. The stromal vascular fraction (SVF), a stem cell enriched and adipose‐derived cell population, has garnered interest as a therapeutic in regenerative medicine due to its ability to secrete paracrine factors that accelerate endogenous repair, ease of accessibility and lack of identified major adverse effects. Thus, one can easily understand the rush to employ adipose‐derived SVF to treat human disease. Perhaps faster than any other cell preparation, SVF is making its way to clinics worldwide, while critical preclinical research needed to establish SVF safety, efficacy and optimal, standardized clinical procedures are underway. Here, we will provide an overview of the current knowledge driving this phenomenon, its regulatory issues and existing studies, and propose potential unmapped applications. Stem Cells Translational Medicine 2017;6:1096–1108 PMID:28186685
Focused ultrasound guided relocation of kidney stones.
Abrol, Nitin; Kekre, Nitin S
2015-01-01
Complete removal of all fragments is the goal of any intervention for urinary stones. This is more important in lower pole stones where gravity and spatial orientation of lower pole infundibulum may hinder spontaneous passage of fragments. Various adjuvant therapies (inversion, diuresis, percussion, oral citrate, etc.) are described to enhance stone-free rate but are not widely accepted. Focused ultrasound-guided relocation of fragments is a recently described technique aimed at improving results of intervention for stone disease. Purpose of this review is to discuss development of this technology and its potential clinical applications. Pubmed search was made using key words "Focused ultrasound" and "kidney stone". All English language articles were reviewed by title. Relevant studies describing development and application of focused ultrasound in renal stones were selected for review. Focused ultrasound has proven its efficacy in successfully relocating up to 8 mm stone fragments in vitro and in pigs. Relocation is independent of stone composition. The latest model allows imaging and therapy with a single handheld probe facilitating its use by single operator. The acoustic energy delivered by the new prototype is even less than that used for extracorporeal shock wave lithotripsy. Therapeutic exposure has not caused thermal injury in pig kidneys. Focused ultrasound-guided relocation of stones is feasible. Though it is safe in application in pigs, technology is awaiting approval for clinical testing in human beings. This technology has many potential clinical applications in the management of stone disease.
Wunder, Sophia; Hunold, Alexander; Fiedler, Patrique; Schlegelmilch, Falk; Schellhorn, Klaus; Haueisen, Jens
2018-05-08
Neuromodulation induced by transcranial electric stimulation (TES) exhibited promising potential for clinical practice. However, the underlying mechanisms remain subject of research. The combination of TES and electroencephalography (EEG) offers great potential for investigating these mechanisms and brain function in general, especially when performed simultaneously. In conventional applications, the combination of EEG and TES suffers from limitations on the electrode level (gel for electrode-skin interface) and the usability level (preparation time, reproducibility of positioning). To overcome these limitations, we designed a bifunctional cap for simultaneous TES-EEG applications. We used novel electrode materials, namely textile stimulation electrodes and dry EEG electrodes integrated in a flexible textile cap. We verified the functionality of this cap by analysing the effect of TES on visual evoked potentials (VEPs). In accordance with previous reports using standard TES, the amplitude of the N75 component was significantly decreased post-stimulation, indicating the feasibility of using this novel flexible cap for simultaneous TES and EEG. Further, we found a significant reduction of the P100 component only during TES, indicating a different brain modulation effect during and after TES. In conclusion, the novel bifunctional cap offers a novel tool for simultaneous TES-EEG applications in clinical research, therapy monitoring and closed-loop stimulation.
Medical student appraisal: applications for bedside patient education.
Markman, T M; Sampognaro, P J; Mitchell, S L; Weeks, S R; Khalifian, S; Dattilo, J R
2013-01-01
Medical students are often afforded the privilege of counselling patients. In the past resources were limited to pen and paper or anatomic models. The evolution of mobile applications allows for limitless access to resources that facilitate bedside patient education. To evaluate the utility of six applications in patient education and promote awareness of implementing mobile resources in clinical care. Six medical students rotating on various clerkships evaluated a total of six mobile applications. Strengths, limitations, and suggested uses in clinical care were identified. Applications included Meditoons™, VisiblePatient™, DrawMD™, CardioTeach™, Visual Anatomy™, and 360° Patient Education Suite™. Data was generated from narrative responses supplied by each student during their evaluation period. Bedside teaching was enhanced by professional illustrations and animations depicting anatomy and pathophysiology. Impromptu teaching was facilitated, as resources were conveniently available on a student's smartphone or tablet. The ability to annotate and modify images and subsequently email to patients was an extraordinary improvement in provider-patient communication. Universal limitations included small smartphone screens and the novelty of new technology. Mobile applications have the potential to greatly enhance patient education and simultaneously build rapport. Endless opportunities exist for their integration in clinical practice, particularly for new diagnoses, consent for procedures, and at time of discharge. Providers should be encouraged to try new applications and utilize them with patients.
A review of the clinical implications of bisphosphonates in dentistry.
Borromeo, G L; Tsao, C E; Darby, I B; Ebeling, P R
2011-03-01
Bisphosphonates are drugs that suppress bone turnover and are commonly prescribed to prevent skeletal related events in malignancy and for benign bone diseases such as osteoporosis. Bisphosphonate associated jaw osteonecrosis (ONJ) is a potentially debilitating, yet poorly understood condition. A literature review was undertaken to review the dental clinical implications of bisphosphonates. The present paper briefly describes the postulated pathophysiology of ONJ and conditions with similar clinical presentations. The implications of bisphosphonates for implantology, periodontology, orthodontics and endodontics are reviewed. Whilst bisphosphonates have potential positive applications in some clinical settings, periodontology particularly, further clinical research is limited by the risk of ONJ. Prevention and management are reviewed, including guidelines for reducing cumulative intravenous bisphosphonate dose, cessation of bisphosphonates prior to invasive dental treatment or after ONJ development, and the use of serum beta-CTX-1 in assessing risk. In the context of substantial uncertainty, the implications of bisphosphonate use in the dental clinical setting are still being determined. © 2010 Australian Dental Association.
Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart.
Cluitmans, Matthijs; Karel, Joël; Bonizzi, Pietro; Volders, Paul; Westra, Ronald; Peeters, Ralf
2018-05-12
We investigated a novel sparsity-based regularization method in the wavelet domain of the inverse problem of electrocardiography that aims at preserving the spatiotemporal characteristics of heart-surface potentials. In three normal, anesthetized dogs, electrodes were implanted around the epicardium and body-surface electrodes were attached to the torso. Potential recordings were obtained simultaneously on the body surface and on the epicardium. A CT scan was used to digitize a homogeneous geometry which consisted of the body-surface electrodes and the epicardial surface. A novel multitask elastic-net-based method was introduced to regularize the ill-posed inverse problem. The method simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Performance was assessed in terms of quality of reconstructed epicardial potentials, estimated activation and recovery time, and estimated locations of pacing, and compared with performance of Tikhonov zeroth-order regularization. Results in the wavelet domain obtained higher sparsity than those in the time domain. Epicardial potentials were non-invasively reconstructed with higher accuracy than with Tikhonov zeroth-order regularization (p < 0.05), and recovery times were improved (p < 0.05). No significant improvement was found in terms of activation times and localization of origin of pacing. Next to improved estimation of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias, this novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions. Graphical Abstract The inverse problem of electrocardiography is to reconstruct heart-surface potentials from recorded bodysurface electrocardiograms (ECGs) and a torso-heart geometry. However, it is ill-posed and solving it requires additional constraints for regularization. We introduce a regularization method that simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Our approach reconstructs epicardial (heart-surface) potentials with higher accuracy than common methods. It also improves the reconstruction of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias. This novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions.
Engineering Stem Cells for Biomedical Applications
Yin, Perry T.; Han, Edward
2018-01-01
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134
Efficient numerical modeling of the cornea, and applications
NASA Astrophysics Data System (ADS)
Gonzalez, L.; Navarro, Rafael M.; Hdez-Matamoros, J. L.
2004-10-01
Corneal topography has shown to be an essential tool in the ophthalmology clinic both in diagnosis and custom treatments (refractive surgery, keratoplastia), having also a strong potential in optometry. The post processing and analysis of corneal elevation, or local curvature data, is a necessary step to refine the data and also to extract relevant information for the clinician. In this context a parametric cornea model is proposed consisting of a surface described mathematically by two terms: one general ellipsoid corresponding to a regular base surface, expressed by a general quadric term located at an arbitrary position and free orientation in 3D space and a second term, described by a Zernike polynomial expansion, which accounts for irregularities and departures from the basic geometry. The model has been validated obtaining better adjustment of experimental data than other previous models. Among other potential applications, here we present the determination of the optical axis of the cornea by transforming the general quadric to its canonical form. This has permitted us to perform 3D registration of corneal topographical maps to improve the signal-to-noise ratio. Other basic and clinical applications are also explored.
Das, Ratul Kumar; Brar, Satinder Kaur; Verma, Mausam
2016-04-01
Several lines of evidence have demonstrated the potential biomedical applications of fumaric acid (FA) and its ester derivatives against many human disease conditions. Fumaric acid esters (FAEs) have been licensed for the systemic treatment of the immune-mediated disease psoriasis. Biogen Idec Inc. announced about the safety and efficacy of the formulation FAE (BG-12) for treating RRMS (relapsing-remitting multiple sclerosis). Another FAE formulation DMF (dimethyl fumarate) was found to be capable of reduction in inflammatory cardiac conditions, such as autoimmune myocarditis and ischemia and reperfusion. DMF has also been reported to be effective as a potential neuroprotectant against the HIV-associated neurocognitive disorders (HAND). Many in vivo studies carried out on rat and mice models indicated inhibitory effects of fumaric acid on carcinogenesis of different origins. Moreover, FAEs has emerged as an important matrix ingredient in the fabrication of biodegradable scaffolds for tissue engineering applications. Drug delivery vehicles composed of FAEs have shown promising results in delivering some leading drug molecules. Apart from these specific applications and findings, many more studies on FAEs have revealed new therapeutic potentials with the scope of clinical applications. However, until now, this scattered vital information has not been written into a collective account and analyzed for minute details. The aim of this paper is to review the advancement made in the biomedical application of FA and FAEs and to focus on the clinical investigation and molecular interpretation of the beneficial effects of FA and FAEs. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Data for Cancer Comparative Effectiveness Research: Past, Present, and Future Potential
Meyer, Anne-Marie; Carpenter, William R; Abernethy, Amy P.; Stürmer, Til; Kosorok, Michael R.
2012-01-01
Background Comparative effectiveness research (CER) can efficiently and rapidly generate new scientific evidence and address knowledge gaps, reduce clinical uncertainty, and guide health care choices. Much of the potential in CER is driven by the application of novel methods to analyze existing data. Despite its potential, several challenges must be identified and overcome so that CER may be improved, accelerated, and expeditiously implemented into the broad spectrum of cancer care and clinical practice. Methods To identify and characterize the challenges to cancer CER, we reviewed the literature and conducted semi-structured interviews with 41 cancer CER researchers at the Agency for Healthcare Research and Quality (AHRQ)'s Developing Evidence to Inform Decisions about Effectiveness (DEcIDE) Cancer CER Consortium. Results A number of datasets for cancer CER were identified and differentiated into an ontology of eight categories, and characterized in terms of strengths, weaknesses, and utility. Several themes emerged during development of this ontology and discussions with CER researchers. Dominant among them was accelerating cancer CER and promoting the acceptance of findings, which will necessitate transcending disciplinary silos to incorporate diverse perspectives and expertise. Multidisciplinary collaboration is required including those with expertise in non-experimental data, outcomes research, clinical trials, epidemiology, generalist and specialty medicine, survivorship, informatics, data, and methods, among others. Conclusions Recommendations highlight the systematic, collaborative identification of critical measures; application of more rigorous study design and sampling methods; policy-level resolution of issues in data ownership, governance, access, and cost; and development and application of consistent standards for data security, privacy, and confidentiality. PMID:22517505
Data for cancer comparative effectiveness research: past, present, and future potential.
Meyer, Anne-Marie; Carpenter, William R; Abernethy, Amy P; Stürmer, Til; Kosorok, Michael R
2012-11-01
Comparative effectiveness research (CER) can efficiently and rapidly generate new scientific evidence and address knowledge gaps, reduce clinical uncertainty, and guide health care choices. Much of the potential in CER is driven by the application of novel methods to analyze existing data. Despite its potential, several challenges must be identified and overcome so that CER may be improved, accelerated, and expeditiously implemented into the broad spectrum of cancer care and clinical practice. To identify and characterize the challenges to cancer CER, the authors reviewed the literature and conducted semistructured interviews with 41 cancer CER researchers at the Agency for Healthcare Research and Quality's Developing Evidence to Inform Decisions about Effectiveness (DEcIDE) Cancer CER Consortium. Several data sets for cancer CER were identified and differentiated into an ontology of 8 categories and were characterized in terms of strengths, weaknesses, and utility. Several themes emerged during the development of this ontology and discussions with CER researchers. Dominant among them was accelerating cancer CER and promoting the acceptance of findings, which will necessitate transcending disciplinary silos to incorporate diverse perspectives and expertise. Multidisciplinary collaboration is required, including those with expertise in nonexperimental data, statistics, outcomes research, clinical trials, epidemiology, generalist and specialty medicine, survivorship, informatics, data, and methods, among others. Recommendations highlight the systematic, collaborative identification of critical measures; application of more rigorous study design and sampling methods; policy-level resolution of issues in data ownership, governance, access, and cost; and development and application of consistent standards for data security, privacy, and confidentiality. Copyright © 2012 American Cancer Society.
Yuksel, Mustafa; Dogac, Asuman
2011-07-01
Medical devices are essential to the practice of modern healthcare services. Their benefits will increase if clinical software applications can seamlessly acquire the medical device data. The need to represent medical device observations in a format that can be consumable by clinical applications has already been recognized by the industry. Yet, the solutions proposed involve bilateral mappings from the ISO/IEEE 11073 Domain Information Model (DIM) to specific message or document standards. Considering that there are many different types of clinical applications such as the electronic health record and the personal health record systems, the clinical workflows, and the clinical decision support systems each conforming to different standard interfaces, detailing a mapping mechanism for every one of them introduces significant work and, thus, limits the potential health benefits of medical devices. In this paper, to facilitate the interoperability of clinical applications and the medical device data, we use the ISO/IEEE 11073 DIM to derive an HL7 v3 Refined Message Information Model (RMIM) of the medical device domain from the HL7 v3 Reference Information Mode (RIM). This makes it possible to trace the medical device data back to a standard common denominator, that is, HL7 v3 RIM from which all the other medical domains under HL7 v3 are derived. Hence, once the medical device data are obtained in the RMIM format, it can easily be transformed into HL7-based standard interfaces through XML transformations because these interfaces all have their building blocks from the same RIM. To demonstrate this, we provide the mappings from the developed RMIM to some of the widely used HL7 v3-based standard interfaces.
Compact, Automated, Frequency-Agile Microspectrofluorimeter
NASA Technical Reports Server (NTRS)
Fernandez, Salvador M.; Guignon, Ernest F.
1995-01-01
Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.
McKenna, Brian G; Simpson, Alexander I F; Coverdale, John H
2006-01-01
The aim of this article is to outline best practice management strategies for nurses during the clinical application of civil commitment of mentally ill persons. A thorough literature search on 'coercion' and 'civil commitment' was undertaken using MEDLINE, CINAHL and PSYCHINFO. Published and unpublished research undertaken by the authors in New Zealand on this topic was drawn upon. This research considered the use of civil commitment during admission to acute mental health services, acute forensic mental health services and community mental health services. The experience of coercion by service users coincides with the degree of restriction associated with the service they are involved in. Socio-demographic factors, clinical factors and the experience of coercive events have little bearing on the amount of coercion experienced. Rather it is the pattern of communication and the use of 'procedural justice' that has the potential to ameliorate the amount of perceived coercion. 'Procedural justice' aligns with the emphasis placed on the therapeutic relationship in mental health nursing and is an important consideration for nurses during the clinical application of civil commitment.
Utilising the Intel RealSense Camera for Measuring Health Outcomes in Clinical Research.
Siena, Francesco Luke; Byrom, Bill; Watts, Paul; Breedon, Philip
2018-02-05
Applications utilising 3D Camera technologies for the measurement of health outcomes in the health and wellness sector continues to expand. The Intel® RealSense™ is one of the leading 3D depth sensing cameras currently available on the market and aligns itself for use in many applications, including robotics, automation, and medical systems. One of the most prominent areas is the production of interactive solutions for rehabilitation which includes gait analysis and facial tracking. Advancements in depth camera technology has resulted in a noticeable increase in the integration of these technologies into portable platforms, suggesting significant future potential for pervasive in-clinic and field based health assessment solutions. This paper reviews the Intel RealSense technology's technical capabilities and discusses its application to clinical research and includes examples where the Intel RealSense camera range has been used for the measurement of health outcomes. This review supports the use of the technology to develop robust, objective movement and mobility-based endpoints to enable accurate tracking of the effects of treatment interventions in clinical trials.
Liquid Biopsy in Head and Neck Cancer: Promises and Challenges.
Nonaka, T; Wong, D T W
2018-06-01
Head and neck cancer is the sixth most common cancer worldwide. It remains one of the leading causes of death, and its early detection is crucial. Liquid biopsy has emerged as a promising tool for detecting and monitoring the disease status of patients with early and advanced cancers. Circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomal miRNAs have received enormous attention because of their apparent clinical implications. Analyses of these circulating biomarkers have paved the way for novel therapeutic approaches and precision medicine. A growing number of reports have implicated the use of circulating biomarkers for detection, treatment planning, response monitoring, and prognosis assessment. Although these new biomarkers can provide a wide range of possible clinical applications, no validated circulating biomarkers have yet been integrated into clinical practice for head and neck cancer. In this review, we summarize the current knowledge of circulating biomarkers in this field, focusing on their feasibility, limitations, and key areas of clinical applications. We also highlight recent advances in salivary diagnostics and their potential application in head and neck cancer.
Pharmacogenetic studies of antidepressant response: how far from the clinic?
Perlis, Roy H
2007-03-01
Because the US FDA has begun to focus on disclosure of pharmacogenetic testing results in applications for new drug approval and review of existing drugs (see, eg, http://www.fda.gov/OHRMS/DOCKETS/AC/05/slides/2005-4194S1_Slide-Index.htm), the application of such testing in a clinical setting is likely to increase substantially. Instead of small cohorts of patients, potentially nearly every participant in the large pivotal trials required for drug approval could help inform the future application of that drug. Psychiatry as a whole, and antidepressant prescribing ni particular, stands to benefit in the near term from the identification of newer treatment targets that may overcome some of the limitations of current therapeutics. On the other hand, despite the excitement about the rapid pace of development in psychiatric pharmacogenetics, a number of key issues remain to be addressed before these discoveries are applied in a clinical setting. Close coordination will be required between those who study treatment efficacy and effectiveness and those who study genetic variation in populations to ensure that studies yield results that have scientific importance and clinical importance as well.
Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U
2015-06-01
These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles.
Yu, Kyung-Rok; Natanson, Hannah; Dunbar, Cynthia E
2016-10-01
Hematopoietic stem and progenitor cells (HSPCs) have great therapeutic potential because of their ability to both self-renew and differentiate. It has been proposed that, given their unique properties, a small number of genetically modified HSPCs could accomplish lifelong, corrective reconstitution of the entire hematopoietic system in patients with various hematologic disorders. Scientists have demonstrated that gene addition therapies-targeted to HSPCs and using integrating retroviral vectors-possess clear clinical benefits in multiple diseases, among them immunodeficiencies, storage disorders, and hemoglobinopathies. Scientists attempting to develop clinically relevant gene therapy protocols have, however, encountered a number of unexpected hurdles because of their incomplete knowledge of target cells, genomic control, and gene transfer technologies. Targeted gene-editing technologies using engineered nucleases such as ZFN, TALEN, and/or CRISPR/Cas9 RGEN show great clinical promise, allowing for the site-specific correction of disease-causing mutations-a process with important applications in autosomal dominant or dominant-negative genetic disorders. The relative simplicity of the CRISPR/Cas9 system, in particular, has sparked an exponential increase in the scientific community's interest in and use of these gene-editing technologies. In this minireview, we discuss the specific applications of gene-editing technologies in human HSPCs, as informed by prior experience with gene addition strategies. HSPCs are desirable but challenging targets; the specific mechanisms these cells evolved to protect themselves from DNA damage render them potentially more susceptible to oncogenesis, especially given their ability to self-renew and their long-term proliferative potential. We further review scientists' experience with gene-editing technologies to date, focusing on strategies to move these techniques toward implementation in safe and effective clinical trials.
Shtrichman, R; Germanguz, I; Itskovitz-Eldor, J
2013-06-01
Human induced pluripotent stem cells (hiPSCs) have great potential as a robust source of progenitors for regenerative medicine. The novel technology also enables the derivation of patient-specific cells for applications to personalized medicine, such as for personal drug screening and toxicology. However, the biological characteristics of iPSCs are not yet fully understood and their similarity to human embryonic stem cells (hESCs) is still unresolved. Variations among iPSCs, resulting from their original tissue or cell source, and from the experimental protocols used for their derivation, significantly affect epigenetic properties and differentiation potential. Here we review the potential of iPSCs for regenerative and personalized medicine, and assess their expression pattern, epigenetic memory and differentiation capabilities in relation to their parental tissue source. We also summarize the patient-specific iPSCs that have been derived for applications in biological research and drug discovery; and review risks that must be overcome in order to use iPSC technology for clinical applications.
de Peppo, Giuseppe Maria; Sladkova, Martina; Sjövall, Peter; Palmquist, Anders; Oudina, Karim; Hyllner, Johan; Thomsen, Peter; Petite, Hervé; Karlsson, Camilla
2013-01-01
Bone tissue engineering represents a promising strategy to obviate bone deficiencies, allowing the ex vivo construction of bone substitutes with unprecedented potential in the clinical practice. Considering that in the human body cells are constantly stimulated by chemical and mechanical stimuli, the use of bioreactor is emerging as an essential factor for providing the proper environment for the reproducible and large-scale production of the engineered substitutes. Human mesenchymal stem cells (hMSCs) are experimentally relevant cells but, regardless the encouraging results reported after culture under dynamic conditions in bioreactors, show important limitations for tissue engineering applications, especially considering their limited proliferative potential, loss of functionality following protracted expansion, and decline in cellular fitness associated with aging. On the other hand, we previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold great potential to provide a homogenous and unlimited source of cells for bone engineering applications. Based on prior scientific evidence using different types of stem cells, in the present study we hypothesized that dynamic culture of hES-MPs in a packed bed/column bioreactor had the potential to affect proliferation, expression of genes involved in osteogenic differentiation, and matrix mineralization, therefore resulting in increased bone-like tissue formation. The reported findings suggest that hES-MPs constitute a suitable alternative cell source to hMSCs and hold great potential for the construction of bone substitutes for tissue engineering applications in clinical settings.
Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R
2014-07-01
Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms. Copyright © 2014 Elsevier Inc. All rights reserved.
PET-CMR in heart failure - synergistic or redundant imaging?
Quail, Michael A; Sinusas, Albert J
2017-07-01
Imaging in heart failure (HF) provides data for diagnosis, prognosis and disease monitoring. Both MRI and nuclear imaging techniques have been successfully used for this purpose in HF. Positron Emission Tomography-Cardiac Magnetic Resonance (PET-CMR) is an example of a new multimodality diagnostic imaging technique with potential applications in HF. The threshold for adopting a new diagnostic tool to clinical practice must necessarily be high, lest they exacerbate costs without improving care. New modalities must demonstrate clinical superiority, or at least equivalence, combined with another important advantage, such as lower cost or improved patient safety. The purpose of this review is to outline the current status of multimodality PET-CMR with regard to HF applications, and determine whether the clinical utility of this new technology justifies the cost.
[NEW PROGRESS OF ACELLULAR FISH SKIN AS NOVEL TISSUE ENGINEERED SCAFFOLD].
Wei, Xiaojuan; Wang, Nanping; He, Lan; Guo, Xiuyu; Gu, Qisheng
2016-11-08
To review the recent research progress of acellular fish skin as a tissue engineered scaffold, and to analyze the feasibility and risk management in clinical application. The research and development, application status of acellular fish skin as a tissue engineered scaffold were comprehensively analyzed, and then several key points were put forward. Acellular fish skin has a huge potential in clinical practice as novel acellular extracellular matrix, but there have been no related research reports up to now in China. As an emerging point of translational medicine, investigation of acellular fish skin is mainly focused on artificial skin, surgical patch, and wound dressings. Development of acellular fish skin-based new products is concerned to be clinical feasible and necessary, but a lot of applied basic researches should be carried out.
DEVELOPING AN IPAD® APPLICATION FOR DATA COLLECTION IN A RHEUMATOLOGY RESEARCH CLINIC.
Kaka, Hussam; Ayearst, Renise; Tran, Maithy; Touma, Zahi; Bagovich, Maria; Vinik, Ophir; Somaily, Mansour; Haddad, Amir; Gladman, Dafna D; Chandran, Vinod
2015-01-01
Clinical research data are often collected on paper and later inputted onto an electronic database. This method is time consuming and potentially introduces errors. Therefore, to make primary data collection more efficient and less error prone we aimed to develop a touch-screen application for data collection in a psoriatic arthritis research clinic and compared it with the pre-existing paper-based system. We developed a Web application using Java and optimized it for the iPad®. It highlights missing fields for physicians in real time, and only permits submission of data collection form after corrections are made. For its evaluation, seven physicians participated, and before each patient visit they were randomly assigned paper or iPad® data entry. Number of errors, length of visit, and time between clinic visit and completion of data entry were measured. A total of 106 patients seen in the clinic who agreed to participate were randomly assigned to be evaluated by clinic physicians using the iPad® (fifty-three patients) or a paper protocol (fifty-three patients). On average, 3.34 omissions were found per paper form, of which 2.24 would have been detected on the iPad®. The iPad® increased the mean patient encounter time from 37.2 minutes to 46.5 minutes, but eliminated delay between a clinic visit and its data entry. Entering data using the iPad® application makes the patient encounter slightly longer, but reduces "missing fields." It also eliminates the delay between clinic visit and data entry thus improving the efficiency of clinical data capture in a research setting.
GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy.
Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak
2015-01-01
Stem cells, which can be derived from different sources, demonstrate promising therapeutic evidences for cellular therapies. Among various types of stem cell, mesenchymal stem cells are one of the most common stem cells that are used in cellular therapy. Human subcutaneous adipose tissue provides an easy accessible source of mesenchymal stem cells with some considerable advantages. Accordingly, various preclinical and clinical investigations have shown enormous potential of adipose-derived stromal cells in regenerative medicine. Consequently, increasing clinical applications of these cells has elucidated the importance of safety concerns regarding clinical transplantation. Therefore, clinical-grade preparation of adipose-derived stromal cells in accordance with current good manufacturing practice guidelines is an essential part of their clinical applications to ensure the safety, quality, characteristics, and identity of cell products. Additionally, GMP-compliant cell manufacturing involves several issues to provide a quality assurance system during translation from the basic stem cell sciences into clinical investigations and applications. On the other hand, advanced cellular therapy requires extensive validation, process control, and documentation. It also evidently elucidates the critical importance of production methods and probable risks. Therefore, implementation of a quality management and assurance system in accordance with GMP guidelines can greatly reduce these risks particularly in the higher-risk category or "more than minimally manipulated" products.
Origins and outlook of interoceptive exposure.
Boettcher, Hannah; Brake, C Alex; Barlow, David H
2016-12-01
Interoceptive exposure (IE) is a behavioral intervention that reduces anxiety sensitivity and distress associated with somatic sensations. In this discussion, we describe the history, current applications and additional clinical potential of IE. We review the origins of IE and its historical application to panic disorder, as well as the accumulating evidence for transdiagnostic application to other disorders including post-traumatic stress disorder, social anxiety disorder, specific phobias and physical disorders. Then, we discuss ways in which IE could contribute to the treatment of additional disorders. IE is well-established in the treatment of panic disorder and increasingly used to target anxiety-provoking physical sensations in other disorders. Research and clinical evidence suggests that anxiety sensitivity is present across a range of disorders, and may actually be one variation on a broader phenomenon of interoceptive sensitivity, or anxiety focused on physical sensations that have been conditioned to unpleasant emotional states. Moreover, somatic symptoms are central to the experience of most emotions and may contribute to avoidant coping, a maintenance factor for disorders of emotion. IE has potential as a transdiagnostic intervention targeting interoceptive sensitivity in disorders such as depression and eating disorders. Nevertheless, IE is underutilized by clinicians in practice. Recent research in inhibitory learning and extinction suggests strategies for maximizing the effectiveness of IE. This review is not exhaustive in nature, and systematic research on transdiagnostic applications of IE remains scarce. IE is a potentially powerful yet understudied transdiagnostic intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gaur, Meenakshi; Dobke, Marek; Lunyak, Victoria V
2017-01-20
Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology.
Gaur, Meenakshi; Dobke, Marek; Lunyak, Victoria V.
2017-01-01
Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology. PMID:28117680
Elastography in clinical practice.
Barr, Richard G
2014-11-01
Elastography is a new technique that evaluates tissue stiffness. There are two elastography methods, strain and shear wave elastography. Both techniques are being used to evaluate a wide range of applications in medical imaging. Elastography of breast masses and prostates have been shown to have high accuracy for characterizing masses and can significantly decrease the need for biopsies. Shear wave elastography has been shown to be able to detect and grade liver fibrosis and may decrease the need for liver biopsy. Evaluation of other organs is still preliminary. This article reviews the principles of elastography and its potential clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Systemic inflammatory response syndrome (SIRS)
Balk, Robert A
2014-01-01
The concept of a systemic inflammatory response syndrome (SIRS) to describe the complex pathophysiologic response to an insult such as infection, trauma, burns, pancreatitis, or a variety of other injuries came from a 1991 consensus conference charged with the task of developing an easy-to-apply set of clinical parameters to aid in the early identification of potential candidates to enter into clinical trials to evaluate new treatments for sepsis. There was recognition that a diverse group of injuries produced a common inflammatory response in the host and provided attractive targets for new anti-inflammatory molecules designed to prevent further propagation and/or provide specific treatment. Effective application of these new anti-inflammatory strategies necessitated identification of early clinical markers that could be assessed in real-time and were likely to define a population of patients that would have a beneficial response to the targeted intervention. It was felt that early clinical manifestations might be more readily available to clinicians than more sophisticated and specific assays for inflammatory substances that were systemically released by the network of injurious inflammatory events. Therefore, the early definition of a systemic inflammatory response syndrome (SIRS) was built upon a foundation of basic clinical and laboratory abnormalities that were readily available in almost all clinical settings. With further refinement, it was hoped, that this definition would have a high degree of sensitivity, coupled with a reasonable degree of specificity. This manuscript reviews the derivation, application, utilization, potential benefits, and speculation regarding the future of the SIRS definition. PMID:24280933
The detection of oral cancer using differential pathlength spectroscopy
NASA Astrophysics Data System (ADS)
Sterenborg, H. J. C. M.; Kanick, S.; de Visscher, S.; Witjes, M.; Amelink, A.
2010-02-01
The development of optical techniques for non-invasive diagnosis of cancer is an ongoing challenge to biomedical optics. For head and neck cancer we see two main fields of potential application 1) Screening for second primaries in patients with a history of oral cancer. This requires imaging techniques or an approach where a larger area can be scanned quickly. 2) Distinguishing potentially malignant visible primary lesions from benign ones. Here fiberoptic point measurements can be used as the location of the lesion is known. This presentation will focus on point measurement techniques. Various techniques for point measurements have been developed and investigated clinically for different applications. Differential Pathlength Spectroscopy is a recently developed fiberoptic point measurement technique that measures scattered light in a broad spectrum. Due to the specific fiberoptic geometry we measure only scattered photons that have travelled a predetermined pathlength. This allows us to analyse the spectrum mathematically and translate the measured curve into a set of parameters that are related to the microvasculature and to the intracellular morphology. DPS has been extensively evaluated on optical phantoms and tested clinically in various clinical applications. The first measurements in biopsy proven squamous cell carcinoma showed significant changes in both vascular and morphological parameters. Measurements on thick keratinized lesions however failed to generate any vascular signatures. This is related to the sampling depth of the standard optical fibers used. Recently we developed a fiberoptic probe with a ~1 mm sampling depth. Measurements on several leukoplakias showed that with this new probe we sample just below the keratin layer and can obtain vascular signatures. The results of a first set of clinical measurements will be presented and the significance for clinical diagnostics will be discussed.
Quimby, J M; Dow, S W
2015-06-01
Stem cell therapy is an innovative field of scientific investigation with tremendous potential for clinical application that holds promise for the treatment of a variety of diseases in veterinary medicine. Based on the known desirable properties of mesenchymal stem cells, the therapy has potential for treatment of both acute kidney injury and chronic kidney disease in cats. This review details terminology commonly used in this field of study, sources of mesenchymal stem cells and their proposed mechanism of action particularly as it relates to renal repair. Studies performed in rodent models of chronic kidney disease and feline clinical trial results are also summarized with the aim of providing an overview of the current status of this treatment modality and its potential for the future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integrating pharmacogenomics into pharmacy practice via medication therapy management.
Reiss, Susan M
2011-01-01
To explore the application and integration of pharmacogenomics in pharmacy clinical practice via medication therapy management (MTM) to improve patient care. Department of Health & Human Services (HHS) Personalized Health Care Initiative, Food and Drug Administration (FDA) pharmacogenomics activity, and findings from the Utilizing E-Prescribing Technologies to Integrate Pharmacogenomics into Prescribing and Dispensing Practices Stakeholder Workshop, convened by the American Pharmacists Association (APhA) on March 5, 2009. Participants at the Stakeholder Workshop included diverse representatives from pharmacy, medicine, pathology, health information technology (HIT), standards, science, academia, government, and others with a key interest in the clinical application of pharmacogenomics. In 2006, HHS initiated the Personalized Health Care Initiative with the goal of building the foundation for the delivery of gene-based care, which may prove to be more effective for large patient subpopulations. In the years since the initiative was launched, drug manufacturers and FDA have begun to incorporate pharmacogenomic data and applications of this information into the drug development, labeling, and approval processes. New applications and processes for using this emerging pharmacogenomics data are needed to effectively integrate this information into clinical practice. Building from the findings of a stakeholder workshop convened by APhA and the advancement of the pharmacist's collaborative role in patient care through MTM, emerging roles for pharmacists using pharmacogenomic information to improve patient care are taking hold. Realizing the potential role of the pharmacist in pharmacogenomics through MTM will require connectivity of pharmacists into the electronic health record infrastructure to permit the exchange of pertinent health information among all members of a patient's health care team. Addressing current barriers, concerns, and system limitations and developing an effective infrastructure will be necessary for pharmacogenomics to achieve its true potential. To achieve integration of pharmacogenomics into clinical practice via MTM, the pharmacy profession must define a process for the application of pharmacogenomic data into pharmacy clinical practice that is aligned with MTM service delivery, develop a viable business model for these practices, and encourage and direct the development of HIT solutions that support the pharmacist's role in this emerging field.
Developing a clinically viable angle-resolved low coherence interferometry optical biopsy system
NASA Astrophysics Data System (ADS)
Pyhtila, John W.
2007-12-01
Non-invasive optical biopsy techniques, which interrogate tissue in situ, offer a potential method to improve the detection of dysplasia, a pre-cancerous tissue state. Specifically, monitoring of Barrett's esophagus (BE) patients for dysplasia, currently done through systematic biopsy, can be improved by increasing the proportion of at-risk tissue examined. Angle-resolved low coherence interferometry (a/LCI) is an optical spectroscopic technique which measures the depth resolved nuclear morphology of tissue, a key biomarker for identifying dysplasia. Using an animal carcinogenesis model, it was shown that a/LCI can detect dysplasia with great sensitivity and specificity. However, for the clinical application of a/LCI, numerous hurdles must be overcome. This dissertation presents the development of three new a/LCI systems which incrementally address the three main obstacles preventing the clinical application of a/LCI. First, data acquisition time is reduced by implementing a frequency-domain detection scheme using an imaging spectrograph that collects the complete depth resolved angular scattering distribution in parallel. This advance reduces data collection time to a clinically acceptable 40 ms. Second, a fiber probe is developed to enable the endoscopic application of a/LCI. The probe incorporates a single fiber for delivering light and a coherent fiber bundle for collecting the angular distribution of scattered light. Third, a portable device is created through miniaturization of the optical design, and a flexible fiber probe is created using polarization maintaining fiber to deliver the light. These advances allow for the clinical application of the system to ex vivo human tissue samples. The performance of each described system is evaluated through a number of validation studies, including the sizing of polystyrene microspheres, a typical model used in light scattering studies, and the measurement of in vitro cell nuclear diameters, accomplished with sub-wavelength precision and accuracy. The culmination of this work is the first human study using a/LCI in which it is demonstrated that a/LCI depth resolved nuclear morphology measurements provide an excellent means to identify dysplasia in BE patients. The described results demonstrate the great potential for the in vivo application of a/LCI as a targeting mechanism for the detection of dysplasia in Barrett's esophagus patients.
Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco
2017-01-01
Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications. PMID:29259970
Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco
2017-01-01
Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications.
Nanotechnology applications in medicine and dentistry.
Gupta, Jyoti
2011-05-01
Nanotechnology, or nanoscience, refers to the research and development of an applied science at the atomic, molecular, or macromolecular levels (i.e. molecular engineering, manufacturing). The prefix "nano" is defined as a unit of measurement in which the characteristic dimension is one billionth of a unit. Although the nanoscale is small in size, its potential is vast. As nanotechnology expands in other fields, clinicians, scientists, and manufacturers are working to discover the uses and advances in biomedical sciences. Applications of nanotechnology in medical and dental fields have only approached the horizon with opportunities and possibilities for the future that can only be limited by our imagination. This paper provides an early glimpse of nanotechnology applications in medicine and dentistry to illustrate their potentially far-reaching impacts on clinical practice. It also narrates the safety issues concerning nanotechnology applications. © 2011 Blackwell Publishing Asia Pty Ltd.
Concise Review: Process Development Considerations for Cell Therapy
Brieva, Thomas; Raviv, Lior; Rowley, Jon; Niss, Knut; Brandwein, Harvey; Oh, Steve; Karnieli, Ohad
2015-01-01
The development of robust and well-characterized methods of production of cell therapies has become increasingly important as therapies advance through clinical trials toward approval. A successful cell therapy will be a consistent, safe, and effective cell product, regardless of the cell type or application. Process development strategies can be developed to gain efficiency while maintaining or improving safety and quality profiles. This review presents an introduction to the process development challenges of cell therapies and describes some of the tools available to address production issues. This article will provide a summary of what should be considered to efficiently advance a cellular therapy from the research stage through clinical trials and finally toward commercialization. The identification of the basic questions that affect process development is summarized in the target product profile, and considerations for process optimization are discussed. The goal is to identify potential manufacturing concerns early in the process so they may be addressed effectively and thus increase the probability that a therapy will be successful. Significance The present study contributes to the field of cell therapy by providing a resource for those transitioning a potential therapy from the research stage to clinical and commercial applications. It provides the necessary steps that, when followed, can result in successful therapies from both a clinical and commercial perspective. PMID:26315572
Adoption of telemedicine in Scottish remote and rural general practices: a qualitative study.
King, Gerry; Richards, Helen; Godden, David
2007-01-01
We conducted a qualitative interview study to explore the factors that have facilitated and prevented the adoption of telemedicine in general practice in remote and rural Scotland. Face-to-face interviews were carried out with general practitioners (GPs) and practice nurses in 26 of Scotland's most remote practices and five of the seven most rural health boards. The interview study found that GPs were more positive about the use of computers and telemedicine than nurses. Although electronic access to simple data, such as laboratory results, had become widely accepted, most respondents had very little experience of more sophisticated telemedicine applications, such as videoconferencing. There was widespread scepticism about the potential usefulness of clinical applications of telemedicine, although it was perceived to have potential benefit in facilitating access to educational resources. A number of barriers to the adoption of telemedicine were reported, including concerns that videoconferencing could diminish the quality of communication in educational and clinical settings, and that telemedicine would not fit easily with the organizational routines of the practices. Policy-makers should prioritize strategies to develop educational programmes, as these are more likely to succeed than clinical initiatives. It may then follow that clinicians will see opportunities for use in their clinical work.
Gianazza, Erica; Tremoli, Elena; Banfi, Cristina
2014-12-01
Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.
TREATING HEMOGLOBINOPATHIES USING GENE CORRECTION APPROACHES: PROMISES AND CHALLENGES
Cottle, Renee N.; Lee, Ciaran M.; Bao, Gang
2016-01-01
Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed. PMID:27314256
A conceptual model of transference and its psychotherapeutic application.
Corradi, Richard B
2006-01-01
The tendency to repeat formative human relationships in later life, a universal developmental characteristic, is referred to as transference when it occurs in the doctor-patient relationship. Its systematic therapeutic application in psychiatry has historically been associated with classical psychoanalysis. As psychoanalysis has lost its cachet, and as drug treatment has replaced psychotherapy as psychiatry's major treatment modality, the therapeutic potential of transference risks being neglected. This is to the great detriment of psychiatric patients. Knowledge of the power of transference and expertise in its clinical use in psychotherapy should be the most powerful tool in the psychiatric therapeutic armamentarium. This article discusses a concept of transference that the author has found effective, both in clinical practice and in teaching about transference to psychiatric residents. The article delineates a psychology of transference, discusses its universal applicability to the whole of the psychotherapeutic process, and utilizes case material to illustrate principles of its application.
Han, Yanfu; Sun, Tianjun; Tao, Ran; Han, Yanqing; Liu, Jing
2017-03-24
Nowadays, wound healing delay due to diabetes is considered to be closely related to the accumulation of advanced glycation end products (AGEs). Although mesenchymal stem cells (MSCs) exhibit positive effects on diabetic wound healing, related mechanisms are still not fully elucidated. It has been reported that MSCs can improve the activity of autophagy in injured tissues, thereby playing an important role in wound healing. The autophagy induced by MSCs may be beneficial to diabetic wound healing via removing AGEs, which provide new ideas for clinical treatment of diabetic wounds with the potential of broad application prospects. In this study, the current research situation and application prospect of umbilical cord-derived MSCs on the clearance of AGEs in diabetic wound were reviewed.
Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences
Yu, Junying; Hu, Kejin; Smuga-Otto, Kim; Tian, Shulan; Stewart, Ron; Slukvin, Igor I.; Thomson, James A.
2009-01-01
Reprogramming differentiated human cells to induced pluripotent stem (iPS) cells has applications in basic biology, drug development, and transplantation. Human iPS cell derivation previously required vectors that integrate into the genome, which can create mutations and limit the utility of the cells in both research and clinical applications. Here we describe the derivation of human iPS cells using non-integrating episomal vectors. After removal of the episome, iPS cells completely free of vector and transgene sequences are derived that are similar to human embryonic stem (ES) cells in proliferative and developmental potential. These results demonstrate that reprogramming human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors, and removes one obstacle to the clinical application of human iPS cells. PMID:19325077
Pilot clinical application of an adaptive robotic system for young children with autism
Bekele, Esubalew; Crittendon, Julie A; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E
2013-01-01
It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small group of preschool children with autism spectrum disorders (n = 6) and a control group (n = 6). Children in both groups spent more time looking at the humanoid robot and were able to achieve a high level of accuracy across trials. However, across groups, children required higher levels of prompting to successfully orient within robot-administered trials. The results highlight both the potential benefits of closed-loop adaptive robotic systems as well as current limitations of existing humanoid-robotic platforms. PMID:24104517
Biocatalytic production of D-tagatose: A potential rare sugar with versatile applications.
Jayamuthunagai, J; Gautam, P; Srisowmeya, G; Chakravarthy, M
2017-11-02
D-tagatose is a naturally existing rare monosaccharide having prebiotic properties. Minimal absorption, low metabolizing energy, and unique clinical properties are the characteristics of D-tagatose. D-tagatose gained international attention by matching the purpose of alternate sweeteners that is much needed for the control of diabetes among world population. Recent efforts in understanding tagatose bioconversion have generated essential information regarding its production and application. This article reviews the evolution of D-tagatose as an important rare sugar by appreciable improvements in production results and its significant applications resulted of its unique physical, chemical, biological, and clinical properties thus considering it an appropriate product for requisite improvements in technical viability. Based on current knowledge and technology projections, the commercialization of D-tagatose rare sugar as food additive is close to reality.
Liang, Xie-Er; Chen, Yong-Peng
2017-01-01
Abstract Evaluation of the extent and progression of liver fibrosis and cirrhosis is of critical importance in the management and prognosis of patients with chronic hepatitis B. Due to the limitation of liver biopsy, non-invasive methods, especially liver stiffness measurement (LSM) by vibration controlled transient elastography, have been developed and widely applied for liver fibrosis assessment. LSM aims to reduce, but not to substitute, the need for liver biopsy for fibrosis/cirrhosis diagnosis. While LSM may have potential utility in monitoring treatment response, its applications in prediction of liver complications in terms of portal hypertension and esophageal varices, as well as disease prognosis, have been gradually validated. Here, we review the latest clinical applications of LSM in patients with chronic hepatitis B. PMID:29226103
[R-ALERGO. Allergy-healthy routes in Valencia].
Temes Cordovez, Rafael R; Moya Fuero, Alfonso; Martí Garrido, Jaume; Perales Chordá, Carolina; Díaz Palacios, Miguel; Hernández Fernández de Rojas, Dolores
2016-01-01
R-ALERGO is a project developed by researchers from the Universitat Politècnica de València and the Hospital Universitario La Fe (Valencia, Spain). The main objective of the project is to create a mobile application identifying, within the city of Valencia, the most favorable routes for allergic individuals. The application is developed using nine environmental variables with a potential effect on the development of clinical manifestations in allergic individuals. The application combines the use of spatial analysis based on network technology and implemented with a geographic information system software. The first 01 version is under evaluation for a Healthy app hallmark. The next step in this project is to design a clinical validation process to test its usefulness in allergic individuals. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.
Arboleya, Silvia; Ruas-Madiedo, Patricia; Margolles, Abelardo; Solís, Gonzalo; Salminen, Seppo; de Los Reyes-Gavilán, Clara G; Gueimonde, Miguel
2011-09-01
Most of the current commercial probiotic strains have not been selected for specific applications, but rather on the basis of their technological potential for use in diverse applications. Therefore, by selecting them from appropriate sources, depending on the target population, it is likely that better performing strains may be identified. Few strains have been specifically selected for human neonates, where the applications of probiotics may have a great positive impact. Breast-milk constitutes an interesting source of potentially probiotic bifidobacteria for inclusion in infant formulas and foods targeted to both pre-term and full-term infants. In this study six Bifidobacterium strains isolated from breast-milk were phenotypically and genotypically characterised according to international guidelines for probiotics. In addition, different in vitro tests were used to assess the safety and probiotic potential of the strains. Although clinical data would be needed before drawing any conclusion on the probiotic properties of the strains, our results indicate that some of them may have probiotic potential for their inclusion in products targeting infants. Copyright © 2010 Elsevier B.V. All rights reserved.
Progress in oral personalized medicine: contribution of 'omics'.
Glurich, Ingrid; Acharya, Amit; Brilliant, Murray H; Shukla, Sanjay K
2015-01-01
Precision medicine (PM), representing clinically applicable personalized medicine, proactively integrates and interprets multidimensional personal health data, including clinical, 'omics', and environmental profiles, into clinical practice. Realization of PM remains in progress. The focus of this review is to provide a descriptive narrative overview of: 1) the current status of oral personalized medicine; and 2) recent advances in genomics and related 'omic' and emerging research domains contributing to advancing oral-systemic PM, with special emphasis on current understanding of oral microbiomes. A scan of peer-reviewed literature describing oral PM or 'omic'-based research conducted on humans/data published in English within the last 5 years in journals indexed in the PubMed database was conducted using mesh search terms. An evidence-based approach was used to report on recent advances with potential to advance PM in the context of historical critical and systematic reviews to delineate current state-of-the-art technologies. Special focus was placed on oral microbiome research associated with health and disease states, emerging research domains, and technological advances, which are positioning realization of PM. This review summarizes: 1) evolving conceptualization of personalized medicine; 2) emerging insight into roles of oral infectious and inflammatory processes as contributors to both oral and systemic diseases; 3) community shifts in microbiota that may contribute to disease; 4) evidence pointing to new uncharacterized potential oral pathogens; 5) advances in technological approaches to 'omics' research that will accelerate PM; 6) emerging research domains that expand insights into host-microbe interaction including inter-kingdom communication, systems and network analysis, and salivaomics; and 7) advances in informatics and big data analysis capabilities to facilitate interpretation of host and microbiome-associated datasets. Furthermore, progress in clinically applicable screening assays and biomarker definition to inform clinical care are briefly explored. Advancement of oral PM currently remains in research and discovery phases. Although substantive progress has been made in advancing the understanding of the role of microbiome dynamics in health and disease and is being leveraged to advance early efforts at clinical translation, further research is required to discern interpretable constituency patterns in the complex interactions of these microbial communities in health and disease. Advances in biotechnology and bioinformatics facilitating novel approaches to rapid analysis and interpretation of large datasets are providing new insights into oral health and disease, potentiating clinical application and advancing realization of PM within the next decade.
Mobile application for diabetes self-management in China: Do they fit for older adults?
Gao, Chenchen; Zhou, Lanshu; Liu, Zhihui; Wang, Haocen; Bowers, Barbara
2017-05-01
Despite the exponential proliferation of Chinese diabetes applications, none are designed to meet the needs of the largest potential user population. The purpose of this study is to examine the features and contents of Chinese diabetes mobile applications in terms of their suitability for use by older adults with diabetes. A search of the Apple application store and the 360 Mobile Assistant was conducted to identify Chinese diabetes applications. Next, we compared the features and contents of all the included and most popular diabetes applications with both the International Diabetes Federation (IDF) clinical guideline and recommended usability criteria for older adults respectively. Seventy-one diabetes apps were randomly selected (from a pool of 552 diabetes apps) and reviewed. The features of most apps failed to include content areas of known importance for managing diabetes in older adults. Usability of all tested applications was rated moderate to good. Designing maximally effective medical applications would benefit from attention to both usability and content guidelines targeted for the largest potential user population. Despite the preponderance of older adults in the potential user group, failing to consider the relevance of content, in addition to usability for the specific population will ultimately limit the usefulness of the app. Copyright © 2017 Elsevier B.V. All rights reserved.
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M.
2014-01-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, via and Investigational New Drug (IND) application, into early phase clinical trials. The roadmap describes four key areas; basic and preclinical research, resource development, translational research and good manufacturing practice (GMP), and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value using a model of the relevant disease. During resource development the appropriate specialists and the required expertise to bring this product into the clinic are identified (e.g., researchers, regulatory specialists, GMP manufacturing staff, clinicians, and clinical trials staff, etc.). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase the plan to translate the research product into a clinical grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States this is done by filing an IND application with the Food and Drug Administration. The NHLBI-funded Production Assistance for Cellular Therapies (PACT) program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five PACT facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly, and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. PMID:25484311
González-Ferrer, A; Peleg, M; Marcos, M; Maldonado, J A
2016-07-01
Delivering patient-specific decision-support based on computer-interpretable guidelines (CIGs) requires mapping CIG clinical statements (data items, clinical recommendations) into patients' data. This is most effectively done via intermediate data schemas, which enable querying the data according to the semantics of a shared standard intermediate schema. This study aims to evaluate the use of HL7 virtual medical record (vMR) and openEHR archetypes as intermediate schemas for capturing clinical statements from CIGs that are mappable to electronic health records (EHRs) containing patient data and patient-specific recommendations. Using qualitative research methods, we analyzed the encoding of ten representative clinical statements taken from two CIGs used in real decision-support systems into two health information models (openEHR archetypes and HL7 vMR instances) by four experienced informaticians. Discussion among the modelers about each case study example greatly increased our understanding of the capabilities of these standards, which we share in this educational paper. Differing in content and structure, the openEHR archetypes were found to contain a greater level of representational detail and structure while the vMR representations took fewer steps to complete. The use of openEHR in the encoding of CIG clinical statements could potentially facilitate applications other than decision-support, including intelligent data analysis and integration of additional properties of data items from existing EHRs. On the other hand, due to their smaller size and fewer details, the use of vMR potentially supports quicker mapping of EHR data into clinical statements.
Schuttner, Linnaea; Sindano, Ntazana; Theis, Mathew; Zue, Cory; Joseph, Jessica; Chilengi, Roma; Chi, Benjamin H; Stringer, Jeffrey S A; Chintu, Namwinga
2014-08-01
Mobile health (m-health) utilizes widespread access to mobile phone technologies to expand health services. Community health workers (CHWs) provide first-level contact with health facilities; combining CHW efforts with m-health may be an avenue for improving primary care services. As part of a primary care improvement project, a pilot CHW program was developed using a mobile phone-based application for outreach, referral, and follow-up between the clinic and community in rural Zambia. The program was implemented at six primary care sites. Computers were installed at clinics for data entry, and data were transmitted to central servers. In the field, using a mobile phone to send data and receive follow-up requests, CHWs conducted household health surveillance visits, referred individuals to clinic, and followed up clinic patients. From January to April 2011, 24 CHWs surveyed 6,197 households with 33,304 inhabitants. Of 15,539 clinic visits, 1,173 (8%) had a follow-up visit indicated and transmitted via a mobile phone to designated CHWs. CHWs performed one or more follow-ups on 74% (n=871) of active requests and obtained outcomes on 63% (n=741). From all community visits combined, CHWs referred 840 individuals to a clinic. CHWs completed all planned aspects of surveillance and outreach, demonstrating feasibility. Components of this pilot project may aid clinical care in rural settings and have potential for epidemiologic and health system applications. Thus, m-health has the potential to improve service outreach, guide activities, and facilitate data collection in Zambia.
NASA Astrophysics Data System (ADS)
Giardiello, Marco; Liptrott, Neill J.; McDonald, Tom O.; Moss, Darren; Siccardi, Marco; Martin, Phil; Smith, Darren; Gurjar, Rohan; Rannard, Steve P.; Owen, Andrew
2016-10-01
Considerable scope exists to vary the physical and chemical properties of nanoparticles, with subsequent impact on biological interactions; however, no accelerated process to access large nanoparticle material space is currently available, hampering the development of new nanomedicines. In particular, no clinically available nanotherapies exist for HIV populations and conventional paediatric HIV medicines are poorly available; one current paediatric formulation utilizes high ethanol concentrations to solubilize lopinavir, a poorly soluble antiretroviral. Here we apply accelerated nanomedicine discovery to generate a potential aqueous paediatric HIV nanotherapy, with clinical translation and regulatory approval for human evaluation. Our rapid small-scale screening approach yields large libraries of solid drug nanoparticles (160 individual components) targeting oral dose. Screening uses 1 mg of drug compound per library member and iterative pharmacological and chemical evaluation establishes potential candidates for progression through to clinical manufacture. The wide applicability of our strategy has implications for multiple therapy development programmes.
Analgesia and Opioids: A Pharmacogenetics Shortlist for Implementation in Clinical Practice.
Matic, Maja; de Wildt, Saskia N; Tibboel, Dick; van Schaik, Ron H N
2017-07-01
The use of opioids to alleviate pain is complicated by the risk of severe adverse events and the large variability in dose requirements. Pharmacogenetics (PGx) could possibly be used to tailor pain medication based on an individual's genetic background. Many potential genetic markers have been described, and the importance of genetic predisposition in opioid efficacy and toxicity has been demonstrated in knockout mouse models and human twin studies. Such predictors are especially of value for neonates and young children, in whom the assessment of efficacy or side effects is complicated by the inability of the patient to communicate this properly. The current problem is determining which of the many potential candidates to focus on for clinical implementation. We systematically searched publications on PGx for opioids in 5 databases, aiming to identify PGx markers with sufficient robust data and high enough occurrence for potential clinical application. The initial search yielded 4257 unique citations, eventually resulting in 852 relevant articles covering 24 genes. From these genes, we evaluated the evidence and selected the most promising 10 markers: cytochrome P450 family 2 subfamily D member 6 ( CYP2D6 ), cytochrome P450 family 3 subfamily A member 4 ( CYP3A4 ), cytochrome P450 family 3 subfamily A member 5 ( CYP3A5 ), UDP glucuronosyltransferase family 2 member B7 ( UGT2B7 ), ATP binding cassette subfamily B member 1 ( ABCB1 ), ATP binding cassette subfamily C member 3 ( ABCC3 ), solute carrier family 22 member 1 ( SLC22A1 ), opioid receptor kappa 1 ( OPRM1 ), catechol- O -methyltransferase ( COMT ), and potassium voltage-gated channel subfamily J member 6 ( KCNJ6 ). Treatment guidelines based on genotype are already available only for CYP2D6 . The application of PGx in the management of pain with opioids has the potential to improve therapy. We provide a shortlist of 10 genes that are the most promising markers for clinical use in this context. © 2016 American Association for Clinical Chemistry.
Lytvyn, Yuliya; Bjornstad, Petter; Udell, Jacob A; Lovshin, Julie A; Cherney, David Z I
2017-10-24
Despite current established therapy, heart failure (HF) remains a leading cause of hospitalization and mortality worldwide. Novel therapeutic targets are therefore needed to improve the prognosis of patients with HF. The EMPA-REG OUTCOME trial ([Empagliflozin] Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) demonstrated significant reductions in mortality and HF hospitalization risk in patients with type 2 diabetes mellitus (T2D) and cardiovascular disease with the antihyperglycemic agent, empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor. The CANVAS trial (Canagliflozin Cardiovascular Assessment Study) subsequently reported a reduction in 3-point major adverse cardiovascular events and HF hospitalization risk. Although SGLT2 inhibition may have potential application beyond T2D, including HF, the mechanisms responsible for the cardioprotective effects of SGLT2 inhibitors remain incompletely understood. SGLT2 inhibition promotes natriuresis and osmotic diuresis, leading to plasma volume contraction and reduced preload, and decreases in blood pressure, arterial stiffness, and afterload as well, thereby improving subendocardial blood flow in patients with HF. SGLT2 inhibition is also associated with preservation of renal function. Based on data from mechanistic studies and clinical trials, large clinical trials with SGLT2 inhibitors are now investigating the potential use of SGLT2 inhibition in patients who have HF with and without T2D. Accordingly, in this review, we summarize the key pharmacodynamic effects of SGLT2 inhibitors and the clinical evidence that support the rationale for the use of SGLT2 inhibitors in patients with HF who have T2D. Because these favorable effects presumably occur independent of blood glucose lowering, we also explore the potential use of SGLT2 inhibition in patients without T2D with HF or at risk of HF, such as in patients with coronary artery disease or hypertension. Finally, we provide a detailed overview and summary of ongoing cardiovascular outcome trials with SGLT2 inhibitors. © 2017 American Heart Association, Inc.
Greenes, R A
1991-11-01
Education and decision-support resources useful to radiologists are proliferating for the personal computer/workstation user or are potentially accessible via high-speed networks. These resources are typically made available through a set of application programs that tend to be developed in isolation and operate independently. Nonetheless, there is a growing need for an integrated environment for access to these resources in the context of professional work, during clinical problem-solving and decision-making activities, and for use in conjunction with other information resources. New application development environments are required to provide these capabilities. One such architecture for applications, which we have implemented in a prototype environment called DeSyGNER, is based on separately delineating the component information resources required for an application, termed entities, and the user interface and organizational paradigms, or composition methods, by which the entities are used to provide particular kinds of capability. Examples include composition methods to support query, book browsing, hyperlinking, tutorials, simulations, or question/answer testing. Future steps must address true integration of such applications with existing clinical information systems. We believe that the most viable approach for evolving this capability is based on the use of new software engineering methodologies, open systems, client-server communication, and delineation of standard message protocols.
Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois
2012-01-01
Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499
Induced pluripotent stem cells--alchemist's tale or clinical reality?
Rashid, S Tamir; Vallier, Ludovic
2010-08-13
Following Shinya Yamanaka's first report describing the reprogramming of fibroblasts into stem cells over three years ago, some sceptics initially drew analogies between this new field of research and the quasi-mystical practice of 'alchemy'. Unlike the alchemist, however, stem cell researchers have rigorously tested and repeated experiments, proving their very own brand of cellular 'alchemy' to be a reality, with potentially massive implications for the study of human biology and clinical medicine. These investigations have resulted in an explosion of related publications and initiated the field of stem cell research known as 'induced pluripotency'. In this review, we give an account of the historical development, current technologies and potential clinical applications of induced pluripotency and conclude with a perspective on the possible future directions for this dynamic field.
A contemporary perspective on techniques for the clinical assessment of alveolar bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausmann, E.
1990-03-01
Radiographic techniques, traditional ones as well as newer ones under development, for clinically assessing alveolar bone are critically assessed. Traditional intraoral radiography is reexamined, in particular with regard to the accuracy with which the alveolar crest is seen. Evidence is presented for a more accurate representation of the alveolar crest on bitewings rather than periapical films. Application in periodontics of newer radiographic techniques, subtraction radiography, and single and dual photon aborptiometry presently under clinical development are discussed in regard to their potential and limitations. Similarly, radiopharmaceuticals to evaluate the metabolic status of alveolar bone are discussed as well as themore » potential for using analyses of gingival crevice fluid as a window for assessment of alveolar crest metabolism. 46 references.« less
Therapeutic applications of circadian rhythms for the cardiovascular system
Tsimakouridze, Elena V.; Alibhai, Faisal J.; Martino, Tami A.
2015-01-01
The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for example the diurnal variation of heart rate, blood pressure, and timing of onset of adverse cardiovascular events such as heart attack and sudden cardiac death. Over the past decade, the circadian clock mechanism has emerged as a crucial factor regulating these daily fluctuations. Most recently, these studies have led to a growing clinical appreciation that targeting circadian biology offers a novel therapeutic approach toward cardiovascular (and other) diseases. Here we describe leading-edge therapeutic applications of circadian biology including (1) timing of therapy to maximize efficacy in treating heart disease (chronotherapy); (2) novel biomarkers discovered by testing for genomic, proteomic, metabolomic, or other factors at different times of day and night (chronobiomarkers); and (3) novel pharmacologic compounds that target the circadian mechanism with potential clinical applications (new chronobiology drugs). Cardiovascular disease remains a leading cause of death worldwide and new approaches in the management and treatment of heart disease are clearly warranted and can benefit patients clinically. PMID:25941487
Ten years since the discovery of iPS cells: The current state of their clinical application.
Aznar, J; Tudela, J
On the 10-year anniversary of the discovery of induced pluripotent stem cells, we review the main results from their various fields of application, the obstacles encountered during experimentation and the potential applications in clinical practice. The efficacy of induced pluripotent cells in clinical experimentation can be equated to that of human embryonic stem cells; however, unlike stem cells, induced pluripotent cells do not involve the severe ethical difficulties entailed by the need to destroy human embryos to obtain them. The finding of these cells, which was in its day a true scientific milestone worthy of a Nobel Prize in Medicine, is currently enveloped by light and shadow: high hopes for regenerative medicine versus the, as of yet, poorly controlled risks of unpredictable reactions, both in the processes of dedifferentiation and subsequent differentiation to the cell strains employed for therapeutic or experimentation goals. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Integrating DXplain into a clinical information system using the World Wide Web.
Elhanan, G; Socratous, S A; Cimino, J J
1996-01-01
The World Wide Web(WWW) offers a cross-platform environment and standard protocols that enable integration of various applications available on the Internet. The authors use the Web to facilitate interaction between their Web-based Clinical Information System and a decision-support system-DXplain, at the Massachusetts General Hospital-using local architecture and Common Gateway Interface programs. The current application translates patients laboratory test results into DXplain's terms to generate diagnostic hypotheses. Two different access methods are utilized for this model; Hypertext Transfer Protocol (HTTP) and TCP/IP function calls. While clinical aspects cannot be evaluated as yet, the model demonstrates the potential of Web-based applications for interaction and integration and how local architecture, with a controlled vocabulary server, can further facilitate such integration. This model serves to demonstrate some of the limitations of the current WWW technology and identifies issues such as control over Web resources and their utilization and liability issues as possible obstacles for further integration.
Fluorescence fluctuation spectroscopy for clinical applications
NASA Astrophysics Data System (ADS)
Olson, Eben
Fluorescence correlation spectroscopy (FCS) and the related techniques of brightness analysis have become standard tools in biological and biophysical research. By analyzing the statistics of fluorescence emitted from a restricted volume, a number of parameters including concentrations, diffusion coefficients and chemical reaction rates can be determined. The single-molecule sensitivity, spectral selectivity, small sample volume and non-perturbative measurement mechanism of FCS make it an excellent technique for the study of molecular interactions. However, its adoption outside of the research laboratory has been limited. Potential reasons for this include the cost and complexity of the required apparatus. In this work, the application of fluorescence fluctuation analysis to several clinical problems is considered. Optical designs for FCS instruments which reduce the cost and increase alignment tolerance are presented. Brightness analysis of heterogenous systems, with application to the characterization of protein aggregates and multimer distributions, is considered. Methods for FCS-based assays of two clinically relevant proteins, von Willebrand factor and haptoglobin, are presented as well.
Improved biological performance of magnesium by micro-arc oxidation
Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.
2014-01-01
Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917
A promising biodegradable magnesium alloy suitable for clinical vascular stent application
Mao, Lin; shen, Li; Chen, Jiahui; Zhang, Xiaobo; Kwak, Minsuk; Wu, Yu; Fan, Rong; Zhang, Lei; Pei, Jia; Yuan, Guangyin; Song, Chengli; Ge, Junbo; Ding, Wenjiang
2017-01-01
We report a Mg alloy Mg-2.2Nd-0.1Zn-0.4Zr (wt.%, denoted as JDBM-2) showing great potential in clinical vascular stent application by integrating the advantages of traditional medical stainless steel and polymer. This alloy exhibits high yield strength and elongation of 276 ± 6 MPa and 34.3 ± 3.4% respectively. The JDBM-2 with a stable degradation surface results in a highly homogeneous degradation mechanism and long-term structural and mechanical durability. In vitro cytotoxicity test of the Mg extract via human vascular endothelial cells (HUVECs) indicates that the corrosion products are well tolerated by the tested cells and potentially negligible toxic effect on arterial vessel walls. This alloy also exhibits compromised foreign body response (FBR) determined by human peripheral blood derived macrophage adhesion, foreign body giant cell (FBGC) formation and inflammatory cytokine and chemokine secretion. Finally, vascular stents manufactured from the JDBM-2 were implanted into rabbits for long-term evaluation. The results confirm excellent tissue compatibility and up to 6-month structural and mechanical integrity of the stent in vivo. Thus, the JDBM-2 stent with up to 6-month structural and mechanical integrity and excellent tissue compatibility represents a major breakthrough in this field and a promising alternative to traditional medical stainless steel and polymer for the clinical application. PMID:28397881
Wuchter, Patrick; Bieback, Karen; Schrezenmeier, Hubert; Bornhäuser, Martin; Müller, Lutz P; Bönig, Halvard; Wagner, Wolfgang; Meisel, Roland; Pavel, Petra; Tonn, Torsten; Lang, Peter; Müller, Ingo; Renner, Matthias; Malcherek, Georg; Saffrich, Rainer; Buss, Eike C; Horn, Patrick; Rojewski, Markus; Schmitt, Anita; Ho, Anthony D; Sanzenbacher, Ralf; Schmitt, Michael
2015-02-01
Human mesenchymal stem or stromal cells (MSCs) represent a potential resource not only for regenerative medicine but also for immunomodulatory cell therapies. The application of different MSC culture protocols has significantly hampered the comparability of experimental and clinical data from different laboratories and has posed a major obstacle for multicenter clinical trials. Manufacturing of cell products for clinical application in the European Community must be conducted in compliance with Good Manufacturing Practice and requires a manufacturing license. In Germany, the Paul-Ehrlich-Institut as the Federal Authority for Vaccines and Biomedicines is critically involved in the approval process. This report summarizes a consensus meeting between researchers, clinicians and regulatory experts on standard quality requirements for MSC production. The strategy for quality control testing depends on the product's cell composition, the manufacturing process and the indication and target patient population. Important quality criteria in this sense are, among others, the immunophenotype of the cells, composition of the culture medium and the risk for malignant transformation, as well as aging and the immunosuppressive potential of the manufactured MSCs. This position paper intends to provide relevant information to interested parties regarding these criteria to foster the development of scientifically valid and harmonized quality standards and to support approval of MSC-based investigational medicinal products. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
The emerging role of nanotechnology in cell and organ transplantation
Tasciotti, Ennio; Cabrera, Fernando J.; Evangelopoulos, Michael; Martinez, Jonathan O.; Thekkedath, Usha R.; Kloc, Malgorzata; Ghobrial, Rafik M.; Li, Xian C.; Grattoni, Alessandro; Ferrari, Mauro
2016-01-01
Transplantation is often the only choice many patients have when suffering from end stage organ failure. Although the quality of life improves after transplantation, challenges such as organ shortages, necessary immunosuppression with associated complications and chronic graft rejection limits its wide clinical application. Nanotechnology has emerged in the past two decades as a field with the potential to satisfy clinical needs in the area of targeted and sustained drug delivery, non-invasive imaging, and tissue engineering. In this paper, we provide an overview of popular nanotechnologies and a summary of the current and potential uses of nanotechnology in cell and organ transplantation. PMID:27257995
Mass spectrometry-based proteomics for translational research: a technical overview.
Paulo, Joao A; Kadiyala, Vivek; Banks, Peter A; Steen, Hanno; Conwell, Darwin L
2012-03-01
Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease.
Characteristics of erythrocyte-derived microvesicles and its relation with atherosclerosis.
Li, Kai-Yin; Zheng, Lei; Wang, Qian; Hu, Yan-Wei
2016-12-01
Microvesicles are formed under many circumstances, especially in atheromatous plaques. Erythrocyte-derived microvesicles (ErMVs) have been proved to promote atherosclerosis by promoting hypercoagulation, mediating inflammation and inducing cell adhesion. Several clinical studies have reported potential roles of ErMVs in cardiovascular disease diagnosis, but the current understanding of ErMVs remains insufficient. In this paper, we will review current research on the formation and degradation of ErMVs and the possible effects of ErMVs in atherosclerosis, discuss potential clinical applications in cardiovascular disease, and hope to raise awareness of the relation with atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mass Spectrometry-Based Proteomics for Translational Research: A Technical Overview
Paulo, Joao A.; Kadiyala, Vivek; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.
2012-01-01
Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease. PMID:22461744
NASA Astrophysics Data System (ADS)
Hideghéty, K.; Szabó, E. R.; Polanek, R.; Szabó, Z.; Ughy, B.; Brunner, S.; Tőkés, T.
2017-03-01
There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in the release of three high LET alpha particles. These promising, innovative approaches for cancer therapy present huge challenges for dose calculation, dosimetry and for investigation of the biological effects. The planned LDPA (photons, VHEE, protons, carbon ions) at ELI facilities has the unique property of ultra-high dose rate (> Gy/s-10), short pulses, and at ELI-ALPS high repetition rate, have the potential to develop and establish encouraging novel methods working towards compact hospital-based clinical applications.
NASA Astrophysics Data System (ADS)
Luo, Fang; Gu, Jiangyong; Zhang, Xinzhuang; Chen, Lirong; Cao, Liang; Li, Na; Wang, Zhenzhong; Xiao, Wei; Xu, Xiaojie
2015-05-01
ReDuNing injection (RDN) is a patented traditional Chinese medicine, and the components of it were proven to have antiviral and important anti-inflammatory activities. Several reports showed that RDN had potential effects in the treatment of influenza and pneumonia. Though there were several experimental reports about RDN, the experimental results were not enough and complete due to that it was difficult to predict and verify the effect of RDN for a large number of human diseases. Here we employed multiscale model by integrating molecular docking, network pharmacology and the clinical symptoms information of diseases and explored the interaction mechanism of RDN on human diseases. Meanwhile, we analyzed the relation among the drug molecules, target proteins, biological pathways, human diseases and the clinical symptoms about it. Then we predicted potential active ingredients of RDN, the potential target proteins, the key pathways and related diseases. These attempts may offer several new insights to understand the pharmacological properties of RDN and provide benefit for its new clinical applications and research.
Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects
Pei, Yanping; Liu, Huan; Yang, Yi; Yang, Yanwei
2018-01-01
N-Acetylcysteine (NAC), a cysteine prodrug and glutathione (GSH) precursor, has been used for several decades in clinical therapeutic practices as a mucolytic agent and for the treatment of disorders associated with GSH deficiency. Other therapeutic activities of NAC include inhibition of inflammation/NF-κB signaling and expression of proinflammatory cytokines. N-Acetylcysteine is also a nonantibiotic compound possessing antimicrobial property and exerts anticarcinogenic and antimutagenic effects against certain types of cancer. Recently, studies describing potentially important biological and pharmacological activities of NAC have stimulated interests in using NAC-based therapeutics for oral health care. The present review focused on the biological activities of NAC and its potential oral applications. The potential side effects of NAC and formulations for drug delivery were also discussed, with the intent of advancing NAC-associated treatment modalities in oral medicine. PMID:29849877
Barkhausen, Jörg; Kahn, Thomas; Krombach, Gabriele A; Kuhl, Christiane K; Lotz, Joachim; Maintz, David; Ricke, Jens; Schönberg, Stefan O; Vogl, Thomas J; Wacker, Frank K
2017-07-01
Background MRI is attractive for the guiding and monitoring of interventional procedures due to its high intrinsic soft tissue contrast and the possibility to measure physiologic parameters like flow and cardiac function. Method The current status of interventional MRI for the clinical routine was analyzed. Results The effort needed for the development of MR-safe monitoring systems and instruments initially resulted in the application of interventional MRI only for procedures that could not be performed by other means. Accordingly, biopsy of lesions in the breast, which are not detectable by other modalities, has been performed under MRI guidance for decades. Currently, biopsies of the prostate under MRI guidance are established in a similar fashion. At many sites blind biopsy has already been replaced by MR-guided biopsy or at least by the fusion of MR images with ultrasound. Cardiovascular interventions are performed at several centers for ablation as a treatment for atrial fibrillation. Conclusion Interventional MRI has been established in the clinical routine for a variety of indications. Broader application can be expected in the clinical routine in the future owing to the multiple advantages compared to other techniques. Key points · Due to the significant technical effort, MR-guided interventions are only recommended in the long term for regions in which MRI either facilitates or greatly improves the intervention.. · Breast biopsy of otherwise undetectable target lesions has long been established in the clinical routine. Prostate biopsy is currently being introduced in the clinical routine for similar reasons. Other methods such as MR-guided focused ultrasound for the treatment of uterine fibroids or tumor ablation of metastases represent alternative methods and are offered in many places.. · Endovascular MR-guided interventions offer advantages for a number of indications and have already been clinically established for the treatment of children with congenital heart defects and for atrial ablation at individual centers. Greater application can be expected in the future.. Citation format · Barkhausen J, Kahn T, Krombach GA et al. White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 1: General Application. Fortschr Röntgenstr 2017; 189: 611 - 623. © Georg Thieme Verlag KG Stuttgart · New York.
Delays in new drug applications in Japan and industrial R&D strategies.
Hirai, Y; Kinoshita, H; Kusama, M; Yasuda, K; Sugiyama, Y; Ono, S
2010-02-01
The gap between Japan and both the United States (US) and the European Union (EU) with regard to access to new drugs is becoming a major issue in Japan. We analyzed the time lags involved in new drug application (NDA) and biological license application submissions in Japan, the US, and the EU in order to identify the causes of delayed access. The time lag related to submission of applications ("submission lag") was longer for in-licensed products and for non-Japanese companies. Factors related to costs of clinical studies and potential volumes of sales were not associated with the submission lag. A bridging strategy (extrapolative use of foreign clinical data in the clinical data package based on International Conference on Harmonisation guideline E5) seemed to reduce submission lag, but the association between the two diminished when the cause-and-effect relationship was specifically investigated. These results suggest that multinational companies are likely to place more emphasis on the choice of development strategies that successfully lead to their goal rather than on direct costs and expected sales when deciding to introduce their pharmaceutical products in Japan. Our findings indicate that the clinical development guidances that helps pharmaceutical companies decide on investment and strategies are also the key to narrowing the gap in access to new drugs.
Chorpita, Bruce F; Bernstein, Adam; Daleiden, Eric L
2008-03-01
This paper illustrates the application of design principles for tools that structure clinical decision-making. If the effort to implement evidence-based practices in community services organizations is to be effective, attention must be paid to the decision-making context in which such treatments are delivered. Clinical research trials commonly occur in an environment characterized by structured decision making and expert supports. Technology has great potential to serve mental health organizations by supporting these potentially important contextual features of the research environment, through organization and reporting of clinical data into interpretable information to support decisions and anchor decision-making procedures. This article describes one example of a behavioral health reporting system designed to facilitate clinical and administrative use of evidence-based practices. The design processes underlying this system-mapping of decision points and distillation of performance information at the individual, caseload, and organizational levels-can be implemented to support clinical practice in a wide variety of settings.
Augmented reality for personalized nanomedicines.
Lee, Yugyung; Lee, Chi H
As our understanding of onset and progress of diseases at the genetic and molecular level rapidly progresses, the potential of advanced technologies, such as 3D-printing, Socially-Assistive Robots (SARs) or augmented reality (AR), that are applied to personalized nanomedicines (PNMs) to alleviate pathological conditions, has become more prominent. Among advanced technologies, AR in particular has the greatest potential to address those challenges and facilitate the translation of PNMs into formidable clinical application of personalized therapy. As AR is about to adapt additional new methods, such as speech, voice recognition, eye tracing and motion tracking, to enable interaction with host response or biological systems in 3-D space, a combination of multiple approaches to accommodate varying environmental conditions, such as public noise and atmosphere brightness, will be explored to improve its therapeutic outcomes in clinical applications. For instance, AR glasses still being developed by Facebook or Microsoft will serve as new platform that can provide people with the health information they are interested in or various measures through which they can interact with medical services. This review has addressed the current progress and impact of AR on PNMs and its application to the biomedical field. Special emphasis is placed on the application of AR based PNMs to the treatment strategies against senior care, drug addiction and medication adherence. Published by Elsevier Inc.
Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.
Longo, Dario Livio; Stefania, Rachele; Aime, Silvio; Oraevsky, Alexander
2017-08-07
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.
Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications
Longo, Dario Livio; Aime, Silvio
2017-01-01
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents. PMID:28783106
A survey of GPU-based medical image computing techniques
Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming
2012-01-01
Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080
Lee, Cody S.; Bishop, Elliot S.; Zhang, Ruyi; Yu, Xinyi; Farina, Evan M.; Yan, Shujuan; Zhao, Chen; Zheng, Zongyue; Shu, Yi; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; Ho, Sherwin; Athiviraham, Aravind; Lee, Michael J.; Wolf, Jennifer Moriatis; Reid, Russell R.; He, Tong-Chuan
2017-01-01
With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine. PMID:28944281
Virtual reality case-specific rehearsal in temporal bone surgery: a preliminary evaluation.
Arora, Asit; Swords, Chloe; Khemani, Sam; Awad, Zaid; Darzi, Ara; Singh, Arvind; Tolley, Neil
2014-01-01
1. To investigate the feasibility of performing case-specific surgical rehearsal using a virtual reality temporal bone simulator. 2. To identify potential clinical applications in temporal bone surgery. Prospective assessment study. St Mary's Hospital, Imperial College NHS Trust, London UK. Sixteen participants consisting of a trainer and trainee group. Twenty-four cadaver temporal bones were CT-scanned and uploaded onto the Voxelman simulator. Sixteen participants performed a 90-min temporal bone dissection on the generic simulation model followed by 3 dissection tasks on the case simulation and cadaver models. Case rehearsal was assessed for feasibility. Clinical applications and usefulness were evaluated using a 5-point Likert-type scale. The upload process required a semi-automated system. Average time for upload was 20 min. Suboptimal reconstruction occurred in 21% of cases arising when the mastoid process and ossicular chain were not captured (n = 2) or when artefact was generated (n = 3). Case rehearsal rated highly (Likert score >4) for confidence (75%), facilitating planning (75%) and training (94%). Potential clinical applications for case rehearsal include ossicular chain surgery, cochlear implantation and congenital anomalies. Case rehearsal of cholesteatoma surgery is not possible on the current platform due to suboptimal soft tissue representation. The process of uploading CT data onto a virtual reality temporal bone simulator to perform surgical rehearsal is feasible using a semi-automated system. Further clinical evaluation is warranted to assess the benefit of performing patient-specific surgical rehearsal in selected procedures. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.
2016-01-01
Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507
Mass spectrometry in the palm of your hand: future applications of in vivo tissue analysis.
Fox, Simon A; Farah, Camile S
2018-05-21
Assessment and diagnosis of oral mucosal disorders continues to present clinical challenges with conventional methodologies being time consuming and hampered by subjectivity. These considerations also apply to surgical excision of malignant and potentially malignant lesions where accurate assessment of margins is critical to patient outcomes. These clinical needs are driving the development of new technologies which can enable rapid diagnosis based upon characteristic molecular profiles identified through clinical science. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics
NASA Astrophysics Data System (ADS)
Luk, Brian Tsengchi
The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial interactions between membranes and synthetic nanoparticles, and how the membrane coating technique faithfully translates the complexities of natural cellular membranes to the nanoscale. The following three sections explore potential therapeutic applications of membrane-coated nanoparticles for targeted drug delivery, biodetoxification, and immunomodulation. Ultimately, cell membrane-cloaked nanoparticles have the potential to significantly change the landscape of nanomedicine. The novel applications presented in this thesis are just a few of many examples currently being researched, with countless more avenues waiting to be explored.
Kellis, Spencer; Sorensen, Larry; Darvas, Felix; Sayres, Conor; O'Neill, Kevin; Brown, Richard B; House, Paul; Ojemann, Jeff; Greger, Bradley
2016-01-01
Electrocorticography grids have been used to study and diagnose neural pathophysiology for over 50 years, and recently have been used for various neural prosthetic applications. Here we provide evidence that micro-scale electrodes are better suited for studying cortical pathology and function, and for implementing neural prostheses. This work compares dynamics in space, time, and frequency of cortical field potentials recorded by three types of electrodes: electrocorticographic (ECoG) electrodes, non-penetrating micro-ECoG (μECoG) electrodes that use microelectrodes and have tighter interelectrode spacing; and penetrating microelectrodes (MEA) that penetrate the cortex to record single- or multiunit activity (SUA or MUA) and local field potentials (LFP). While the finest spatial scales are found in LFPs recorded intracortically, we found that LFP recorded from μECoG electrodes demonstrate scales of linear similarity (i.e., correlation, coherence, and phase) closer to the intracortical electrodes than the clinical ECoG electrodes. We conclude that LFPs can be recorded intracortically and epicortically at finer scales than clinical ECoG electrodes are capable of capturing. Recorded with appropriately scaled electrodes and grids, field potentials expose a more detailed representation of cortical network activity, enabling advanced analyses of cortical pathology and demanding applications such as brain-computer interfaces. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Ye, Mei-na; Yang, Ming; Cheng, Yi-qin; Wang, Bing; Zhu, Ying; Xia, Ya-ru; Meng, Tian; Chen, Hao; Chen, Li-ying; Cheng, Hong-feng
2015-04-01
To evaluate the safety and the clinical value of external use of jiuyi Powder (JP) in treating plasma cell mastitis using partial least-squares discriminant analysis (PLSDA). Totally 50 patients with plasma cell mastitis treated by external use of JP were observed and biochemical examinations of blood and urine detected before application, at day 4 after application, at day 1 and 14 after discontinuation. Blood mercury and urinary mercury were detected before application, at day 1, 4, and 7 after application, at day 1 and 14 after discontinuation. Urinary mercury was also detected at 28 after discontinuation and 3 months after discontinuation. The information of wound, days of external application and the total dosage of external application were recorded before application, at day 1, 4, and 7 after application, as well as at day 1 after discontinuation. Then a discriminant model covering potential safety factors was set up by PLSDA after screening safety indices with important effects. The applicability of the model was assessed using area under ROC curve. Potential safety factors were assessed using variable importance in the projection (VIP). Urinary β2-microglobulin (β2-MG), urinary N-acetyl-β-D-glucosaminidase (NAG), 24 h urinary protein, and urinary α1-microglobulin (α1-MG) were greatly affected by external use of JP in treating plasma cell mastitis. The accuracy rate of PLSDA discriminate model was 74. 00%. The sensitivity, specificity, and the area under ROC curve was 0. 7826, 0. 7037, and 0. 8084, respectively. Three factors with greater effect on the potential safety were screened as follows: pre-application volume of the sore cavity, days of external application, and the total dosage of external application. PLSDA method could be used in analyzing bioinformation of clinical Chinese medicine. Urinary β2-MG and urinary NAG were two main safety monitoring indices. Days of external application and the total dosage of external application were main factors influencing blood mercury and urine mercury. A safety classification simulation model of treating plasma cell mastitis by external therapy of JP was established by the two factors, which could be used to assess the safety of external application of JP to some extent.
Smartphone applications: A contemporary resource for dermatopathology
Hanna, Matthew G.; Parwani, Anil V.; Pantanowitz, Liron; Punjabi, Vinod; Singh, Rajendra
2015-01-01
Introduction: Smartphone applications in medicine are becoming increasingly prevalent. Given that most pathologists and pathology trainees today use smartphones, an obvious modality for pathology education is through smartphone applications. “MyDermPath” is a novel smartphone application that was developed as an interactive reference tool for dermatology and dermatopathology, available for iOS and Android. Materials and Methods: “MyDermPath” was developed using Apple Xcode and Google Android SDK. Dermatology images (static and virtual slides) were annotated and configured into an algorithmic format. Each image comprised educational data (diagnosis, clinical information, histopathology, special stains, differential diagnosis, clinical management, linked PubMed references). Added functionality included personal note taking, pop quiz, and image upload capabilities. A website was created (http://mydermpath.com) to mirror the app. Results: The application was released in August 2011 and updated in November 2013. More than 1,100 reference diagnoses, with over 2,000 images are available via the application and website. The application has been downloaded approximately 14,000 times. The application is available for use on iOS and Android platforms. Conclusions: Smartphone applications have tremendous potential for advancing pathology education. “MyDermPath” represents an interactive reference tool for dermatology and dermatopathologists. PMID:26284155
Smartphone applications: A contemporary resource for dermatopathology.
Hanna, Matthew G; Parwani, Anil V; Pantanowitz, Liron; Punjabi, Vinod; Singh, Rajendra
2015-01-01
Smartphone applications in medicine are becoming increasingly prevalent. Given that most pathologists and pathology trainees today use smartphones, an obvious modality for pathology education is through smartphone applications. "MyDermPath" is a novel smartphone application that was developed as an interactive reference tool for dermatology and dermatopathology, available for iOS and Android. "MyDermPath" was developed using Apple Xcode and Google Android SDK. Dermatology images (static and virtual slides) were annotated and configured into an algorithmic format. Each image comprised educational data (diagnosis, clinical information, histopathology, special stains, differential diagnosis, clinical management, linked PubMed references). Added functionality included personal note taking, pop quiz, and image upload capabilities. A website was created (http://mydermpath.com) to mirror the app. The application was released in August 2011 and updated in November 2013. More than 1,100 reference diagnoses, with over 2,000 images are available via the application and website. The application has been downloaded approximately 14,000 times. The application is available for use on iOS and Android platforms. Smartphone applications have tremendous potential for advancing pathology education. "MyDermPath" represents an interactive reference tool for dermatology and dermatopathologists.
Moeller, Antje; Ask, Kjetil; Warburton, David; Gauldie, Jack; Kolb, Martin
2008-01-01
Different animal models of pulmonary fibrosis have been developed to investigate potential therapies for idiopathic pulmonary fibrosis (IPF). The most common is the bleomycin model in rodents (mouse, rat and hamster). Over the years, numerous agents have been shown to inhibit fibrosis in this model. However, to date none of these compounds are used in the clinical management of IPF and none has shown a comparable antifibrotic effect in humans. We performed a systematic review of publications on drug efficacy studies in the bleomycin model to evaluate the value of this model regarding transferability to clinical use. Between 1980 and 2006 we identified 246 experimental studies describing beneficial antifibrotic compounds in the bleomycin model. In 221 of the studies we found enough details about the timing of drug application to allow inter-study comparison. 211 of those used a preventive regimen (drug given ≤ day 7 after last bleomycin application), only 10 were therapeutic trials (> 7 days after last bleomycin application). It is critical to distinguish between drugs interfering with the inflammatory and early fibrogenic response from those preventing progression of fibrosis, the latter likely much more meaningful for clinical application. All potential antifibrotic compounds should be evaluated in the phase of established fibrosis rather than in the early period of bleomycin-induced inflammation for assessment of its antifibrotic properties. Further care should be taken in extrapolation of drugs successfully tested in the bleomycin model due to partial reversibility of bleomycin induced fibrosis over time. The use of alternative and more robust animal models, which better reflect human IPF, is warranted. PMID:17936056
Realizing the Potential of Mobile Mental Health: New Methods for New Data in Psychiatry
Staples, Patrick; Onnela, Jukka-Pekka
2015-01-01
Smartphones are now ubiquitous and can be harnessed to offer psychiatry a wealth of real-time data regarding patient behavior, self-reported symptoms, and even physiology. The data collected from smartphones meet the three criteria of big data: velocity, volume, and variety. Although these data have tremendous potential, transforming them into clinically valid and useful information requires using new tools and methods as a part of assessment in psychiatry. In this paper, we introduce and explore numerous analytical methods and tools from the computational and statistical sciences that appear readily applicable to psychiatric data collected using smartphones. By matching smartphone data with appropriate statistical methods, psychiatry can better realize the potential of mobile mental health and empower both patients and providers with novel clinical tools. PMID:26073363
Beaver, Julia A.; Tzou, Abraham; Blumenthal, Gideon M.; McKee, Amy E.; Kim, Geoffrey; Pazdur, Richard; Philip, Reena
2016-01-01
As technologies evolve, and diagnostics move from detection of single biomarkers toward complex signatures, an increase in the clinical use and regulatory submission of complex signatures is anticipated. However, to date, no complex signatures have been approved as companion diagnostics. In this article, we will describe the potential benefit of complex signatures and their unique regulatory challenges including analytical performance validation, complex signature simulation, and clinical performance evaluation. We also will review the potential regulatory pathways for clearance, approval, or acceptance of complex signatures by the U.S. Food and Drug Administration (FDA). These regulatory pathways include regulations applicable to in vitro diagnostic devices, including companion diagnostic devices, the potential for labeling as a complementary diagnostic, and the biomarker qualification program. PMID:27993967
Advances in the application of MRI to amyotrophic lateral sclerosis
Turner, Martin R; Modo, Michel
2011-01-01
Importance of the field With the emergence of therapeutic candidates for the incurable and rapidly progressive neurodegenerative condition of amyotrophic lateral sclerosis (ALS), it will be essential to develop easily obtainable biomarkers for diagnosis, as well as monitoring, in a disease where clinical examination remains the predominant diagnostic tool. Magnetic resonance imaging (MRI) has greatly developed over the past thirty years since its initial introduction to neuroscience. With multi-modal applications, MRI is now offering exciting opportunities to develop practical biomarkers in ALS. Areas covered in this review The historical application of MRI to the field of ALS, its state-of-the-art and future aspirations will be reviewed. Specifically, the significance and limitations of structural MRI to detect gross morphological tissue changes in relation to clinical presentation will be discussed. The more recent application of diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), functional and resting-state MRI (fMRI & R-fMRI) will be contrasted in relation to these more conventional MRI assessments. Finally, future aspirations will be sketched out in providing a more disease mechanism-based molecular MRI. What the reader will gain This review will equip the reader with an overview of the application of MRI to ALS and illustrate its potential to develop biomarkers. This discussion is exemplified by key studies, demonstrating the strengths and limitations of each modality. The reader will gain an expert opinion on both the current and future developments of MR imaging in ALS. Take home message MR imaging generates potential diagnostic, prognostic and therapeutic monitoring biomarkers of ALS. The emerging fusion of structural, functional and potentially molecular imaging will improve our understanding of wider cerebral connectivity and holds the promise of biomarkers sensitive to the earliest changes. PMID:21516259
Potential of Electrospun Nanofibers for Biomedical and Dental Applications
Zafar, Muhammad; Najeeb, Shariq; Khurshid, Zohaib; Vazirzadeh, Masoud; Zohaib, Sana; Najeeb, Bilal; Sefat, Farshid
2016-01-01
Electrospinning is a versatile technique that has gained popularity for various biomedical applications in recent years. Electrospinning is being used for fabricating nanofibers for various biomedical and dental applications such as tooth regeneration, wound healing and prevention of dental caries. Electrospun materials have the benefits of unique properties for instance, high surface area to volume ratio, enhanced cellular interactions, protein absorption to facilitate binding sites for cell receptors. Extensive research has been conducted to explore the potential of electrospun nanofibers for repair and regeneration of various dental and oral tissues including dental pulp, dentin, periodontal tissues, oral mucosa and skeletal tissues. However, there are a few limitations of electrospinning hindering the progress of these materials to practical or clinical applications. In terms of biomaterials aspects, the better understanding of controlled fabrication, properties and functioning of electrospun materials is required to overcome the limitations. More in vivo studies are definitely required to evaluate the biocompatibility of electrospun scaffolds. Furthermore, mechanical properties of such scaffolds should be enhanced so that they resist mechanical stresses during tissue regeneration applications. The objective of this article is to review the current progress of electrospun nanofibers for biomedical and dental applications. In addition, various aspects of electrospun materials in relation to potential dental applications have been discussed. PMID:28787871
Potential applications of Erbium:YAG laser in periodontics.
Ishikawa, Isao; Aoki, Akira; Takasaki, Aristeo Atsushi
2004-08-01
Since lasers were introduced for the treatment of oral diseases, there has been considerable advancement in technology. As a result, numerous laser systems are currently available for oral use. Neodymium:Yttrium-Aluminum:Garnet (Nd:YAG), carbon dioxide (CO(2)) laser and the semiconductor Diode lasers have already been approved by the US Food and Drug Administration for soft tissue treatment in oral cavity. The Erbium:YAG (Er:YAG) laser was approved in 1997 for hard tissue treatment in dentistry and recent studies have reported positive results. This suggests that the Er:YAG laser system is a promising apparatus, which will be able to revolutionize and improve dental practice, in particular periodontal treatment. In this mini-review, we would like to describe the positive characteristics of the Er:YAG laser which indicate its potential as a new treatment modality in periodontics. Recent findings are summarized briefly to evaluate the potential of the Er:YAG laser for clinical application in periodontics. The Er:YAG laser possesses suitable characteristics for oral soft and hard tissue ablation. Recently, it has been applied for effective elimination of granulation tissue, gingival melanin pigmentation and gingival discoloration. Contouring and cutting of bone with minimal damage and even or faster healing can also be performed with this laser. In addition, irradiation with the Er:YAG laser has a bactericidal effect with reduction of lipopolysaccharide, high ability of plaque and calculus removal, with the effect limited to a very thin layer of the surface and is effective for implant maintenance. The Er:YAG laser seems to be an effective tool for periodontal therapy, however, further clinical and basic investigations are required to confirm its clinical application. Copyright Blackwell Munksgaard, 2004
A new specimen management system using RFID technology.
Shim, Hun; Uh, Young; Lee, Seung Hwan; Yoon, Young Ro
2011-12-01
The specimen management system with barcode needs to be improved in order to solve inherent problems in work performance. This study describes the application of Radio Frequency Identification (RFID) which is the solution for the problems associated with specimen labeling and management. A new specimen management system and architecture with RFID technology for clinical laboratory was designed. The suggested system was tested in various conditions such as durability to temperature and aspect of effective utilization of new work flow under a virtual hospital clinical laboratory environment. This system demonstrates its potential application in clinical laboratories for improving work flow and specimen management. The suggested specimen management system with RFID technology has advantages in comparison to the traditional specimen management system with barcode in the aspect of mass specimen processing, robust durability of temperature, humidity changes, and effective specimen tracking.
Liquid biopsy genotyping in lung cancer: ready for clinical utility?
Huang, Wei-Lun; Chen, Yi-Lin; Yang, Szu-Chun; Ho, Chung-Liang; Wei, Fang; Wong, David T; Su, Wu-Chou; Lin, Chien-Chung
2017-03-14
Liquid biopsy is a blood test that detects evidence of cancer cells or tumor DNA in the circulation. Despite complicated collection methods and the requirement for technique-dependent platforms, it has generated substantial interest due, in part, to its potential to detect driver oncogenes such as epidermal growth factor receptor (EGFR) mutants in lung cancer. This technology is advancing rapidly and is being incorporated into numerous EGFR tyrosine kinase inhibitor (EGFR-TKI) development programs. It appears ready for integration into clinical care. Recent studies have demonstrated that biological fluids such as saliva and urine can also be used for detecting EGFR mutant DNA through application other user-friendly techniques. This review focuses on the clinical application of liquid biopsies to lung cancer genotyping, including EGFR and other targets of genotype-directed therapy and compares multiple platforms used for liquid biopsy.
Clinical Application of High-intensity Focused Ultrasound in Cancer Therapy
Hsiao, Yi-Hsuan; Kuo, Shou-Jen; Tsai, Horng-Der; Chou, Ming-Chih; Yeh, Guang-Perng
2016-01-01
The treatment of cancer is an important issue in both developing and developed countries. Clinical use of ultrasound in cancer is not only for the diagnosis but also for the treatment. Focused ultrasound surgery (FUS) is a noninvasive technique. By using the combination of high-intensity focused ultrasound (HIFU) and imaging method, FUS has the potential to ablate tumor lesions precisely. The main mechanisms of HIFU ablation involve mechanical and thermal effects. Recent advances in HIFU have increased its popularity. Some promising results were achieved in managing various malignancies, including pancreas, prostate, liver, kidney, breast and bone. Other applications include brain tumor ablation and disruption of the blood-brain barrier. We aim at briefly outlining the clinical utility of FUS as a noninvasive technique for a variety of types of cancer treatment. PMID:26918034
Insights into defibrotide: an updated review.
Morabito, F; Gentile, M; Gay, F; Bringhen, S; Mazzone, C; Vigna, E; Musto, P; Di Raimondo, F; Palumbo, A
2009-06-01
Defibrotide is a polydisperse oligonucleotide with antiatherosclerotic, anti-inflammatory, anti-ischaemic, pro-fibrinolytic and antithrombotic actions without significant systemic anticoagulant effects. It has been used in the treatment of various cardiovascular disorders, and especially in endothelial complications of allogeneic stem-cell transplantation. We reviewed the published work for the mechanism of action and clinical use of defibrotide to consolidate data and to describe new applications of this drug. We reviewed the most relevant papers on defibrotide published from November 1982 to January 2008. (selected through PubMed), and used recent meeting abstracts as sources for this review. Reports have suggested that defibrotide has clinical efficacy for treatment and prophylaxis of hepatic sinusoidal obstruction syndrome occurring after stem-cell transplantation. Animal models have clearly shown the potential antineoplastic effect of this drug. Further clinical investigations are needed to clarify this new application.
The revolution of personalized psychiatry: will technology make it happen sooner?
Perna, G; Grassi, M; Caldirola, D; Nemeroff, C B
2018-04-01
Personalized medicine (PM) aims to establish a new approach in clinical decision-making, based upon a patient's individual profile in order to tailor treatment to each patient's characteristics. Although this has become a focus of the discussion also in the psychiatric field, with evidence of its high potential coming from several proof-of-concept studies, nearly no tools have been developed by now that are ready to be applied in clinical practice. In this paper, we discuss recent technological advances that can make a shift toward a clinical application of the PM paradigm. We focus specifically on those technologies that allow both the collection of massive as much as real-time data, i.e., electronic medical records and smart wearable devices, and to achieve relevant predictions using these data, i.e. the application of machine learning techniques.
Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease*
Good, David M.; Zürbig, Petra; Argilés, Àngel; Bauer, Hartwig W.; Behrens, Georg; Coon, Joshua J.; Dakna, Mohammed; Decramer, Stéphane; Delles, Christian; Dominiczak, Anna F.; Ehrich, Jochen H. H.; Eitner, Frank; Fliser, Danilo; Frommberger, Moritz; Ganser, Arnold; Girolami, Mark A.; Golovko, Igor; Gwinner, Wilfried; Haubitz, Marion; Herget-Rosenthal, Stefan; Jankowski, Joachim; Jahn, Holger; Jerums, George; Julian, Bruce A.; Kellmann, Markus; Kliem, Volker; Kolch, Walter; Krolewski, Andrzej S.; Luppi, Mario; Massy, Ziad; Melter, Michael; Neusüss, Christian; Novak, Jan; Peter, Karlheinz; Rossing, Kasper; Rupprecht, Harald; Schanstra, Joost P.; Schiffer, Eric; Stolzenburg, Jens-Uwe; Tarnow, Lise; Theodorescu, Dan; Thongboonkerd, Visith; Vanholder, Raymond; Weissinger, Eva M.; Mischak, Harald; Schmitt-Kopplin, Philippe
2010-01-01
Because of its availability, ease of collection, and correlation with physiology and pathology, urine is an attractive source for clinical proteomics/peptidomics. However, the lack of comparable data sets from large cohorts has greatly hindered the development of clinical proteomics. Here, we report the establishment of a reproducible, high resolution method for peptidome analysis of naturally occurring human urinary peptides and proteins, ranging from 800 to 17,000 Da, using samples from 3,600 individuals analyzed by capillary electrophoresis coupled to MS. All processed data were deposited in an Structured Query Language (SQL) database. This database currently contains 5,010 relevant unique urinary peptides that serve as a pool of potential classifiers for diagnosis and monitoring of various diseases. As an example, by using this source of information, we were able to define urinary peptide biomarkers for chronic kidney diseases, allowing diagnosis of these diseases with high accuracy. Application of the chronic kidney disease-specific biomarker set to an independent test cohort in the subsequent replication phase resulted in 85.5% sensitivity and 100% specificity. These results indicate the potential usefulness of capillary electrophoresis coupled to MS for clinical applications in the analysis of naturally occurring urinary peptides. PMID:20616184
VIP: an integrated pipeline for metagenomics of virus identification and discovery
Li, Yang; Wang, Hao; Nie, Kai; Zhang, Chen; Zhang, Yi; Wang, Ji; Niu, Peihua; Ma, Xuejun
2016-01-01
Identification and discovery of viruses using next-generation sequencing technology is a fast-developing area with potential wide application in clinical diagnostics, public health monitoring and novel virus discovery. However, tremendous sequence data from NGS study has posed great challenge both in accuracy and velocity for application of NGS study. Here we describe VIP (“Virus Identification Pipeline”), a one-touch computational pipeline for virus identification and discovery from metagenomic NGS data. VIP performs the following steps to achieve its goal: (i) map and filter out background-related reads, (ii) extensive classification of reads on the basis of nucleotide and remote amino acid homology, (iii) multiple k-mer based de novo assembly and phylogenetic analysis to provide evolutionary insight. We validated the feasibility and veracity of this pipeline with sequencing results of various types of clinical samples and public datasets. VIP has also contributed to timely virus diagnosis (~10 min) in acutely ill patients, demonstrating its potential in the performance of unbiased NGS-based clinical studies with demand of short turnaround time. VIP is released under GPLv3 and is available for free download at: https://github.com/keylabivdc/VIP. PMID:27026381
Concise Review: Workshop Review: Understanding and Assessing the Risks of Stem Cell-Based Therapies
Heslop, James A.; Hammond, Thomas G.; Santeramo, Ilaria; Tort Piella, Agnès; Hopp, Isabel; Zhou, Jing; Baty, Roua; Graziano, Enrique I.; Proto Marco, Bernabé; Caron, Alexis; Sköld, Patrik; Andrews, Peter W.; Baxter, Melissa A.; Hay, David C.; Hamdam, Junnat; Sharpe, Michaela E.; Patel, Sara; Jones, David R.; Reinhardt, Jens; Danen, Erik H.J.; Ben-David, Uri; Stacey, Glyn; Björquist, Petter; Piner, Jacqueline; Mills, John; Rowe, Cliff; Pellegrini, Giovanni; Sethu, Swaminathan; Antoine, Daniel J.; Cross, Michael J.; Murray, Patricia; Williams, Dominic P.; Kitteringham, Neil R.; Park, B. Kevin
2015-01-01
The field of stem cell therapeutics is moving ever closer to widespread application in the clinic. However, despite the undoubted potential held by these therapies, the balance between risk and benefit remains difficult to predict. As in any new field, a lack of previous application in man and gaps in the underlying science mean that regulators and investigators continue to look for a balance between minimizing potential risk and ensuring therapies are not needlessly kept from patients. Here, we attempt to identify the important safety issues, assessing the current advances in scientific knowledge and how they may translate to clinical therapeutic strategies in the identification and management of these risks. We also investigate the tools and techniques currently available to researchers during preclinical and clinical development of stem cell products, their utility and limitations, and how these tools may be strategically used in the development of these therapies. We conclude that ensuring safety through cutting-edge science and robust assays, coupled with regular and open discussions between regulators and academic/industrial investigators, is likely to prove the most fruitful route to ensuring the safest possible development of new products. PMID:25722427
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, A; Samost, A; Viswanathan, A
Purpose: To investigate the hazards in cervical-cancer HDR brachytherapy using a novel hazard-analysis technique, System Theoretic Process Analysis (STPA). The applicability and benefit of STPA to the field of radiation oncology is demonstrated. Methods: We analyzed the tandem and ring HDR procedure through observations, discussions with physicists and physicians, and the use of a previously developed process map. Controllers and their respective control actions were identified and arranged into a hierarchical control model of the system, modeling the workflow from applicator insertion through initiating treatment delivery. We then used the STPA process to identify potentially unsafe control actions. Scenarios weremore » then generated from the identified unsafe control actions and used to develop recommendations for system safety constraints. Results: 10 controllers were identified and included in the final model. From these controllers 32 potentially unsafe control actions were identified, leading to more than 120 potential accident scenarios, including both clinical errors (e.g., using outdated imaging studies for planning), and managerial-based incidents (e.g., unsafe equipment, budget, or staffing decisions). Constraints identified from those scenarios include common themes, such as the need for appropriate feedback to give the controllers an adequate mental model to maintain safe boundaries of operations. As an example, one finding was that the likelihood of the potential accident scenario of the applicator breaking during insertion might be reduced by establishing a feedback loop of equipment-usage metrics and equipment-failure reports to the management controller. Conclusion: The utility of STPA in analyzing system hazards in a clinical brachytherapy system was demonstrated. This technique, rooted in system theory, identified scenarios both technical/clinical and managerial in nature. These results suggest that STPA can be successfully used to analyze safety in brachytherapy and may prove to be an alternative to other hazard analysis techniques.« less
Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.
Manso, Adriana P; Carvalho, Ricardo M
2017-10-01
Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.
Wipfli, Rolf; Teodoro, Douglas; Sarrey, Everlyne; Walesa, Magali; Lovis, Christian
2013-01-01
Background Working in a clinical environment requires unfettered mobility. This is especially true for nurses who are always on the move providing patients’ care in different locations. Since the introduction of clinical information systems in hospitals, this mobility has often been considered hampered by interactions with computers. The popularity of personal mobile assistants such as smartphones makes it possible to gain easy access to clinical data anywhere. Objective To identify the challenges involved in the deployment of clinical applications on handheld devices and to share our solutions to these problems. Methods A team of experts underwent an iterative development process of a mobile application prototype that aimed to improve the mobility of nurses during their daily clinical activities. Through the process, challenges inherent to mobile platforms have emerged. These issues have been classified, focusing on factors related to ensuring information safety and quality, as well as pleasant and efficient user experiences. Results The team identified five main challenges related to the deployment of clinical mobile applications and presents solutions to overcome each of them: (1) Financial: Equipping every care giver with a new mobile device requires substantial investment that can be lowered if users use their personal device instead, (2) Hardware: The constraints inherent to the clinical environment made us choose the mobile device with the best tradeoff between size and portability, (3) Communication: the connection of the mobile application with any existing clinical information systems (CIS) is insured by a bridge formatting the information appropriately, (4) Security: In order to guarantee the confidentiality and safety of the data, the amount of data stored on the device is minimized, and (5) User interface: The design of our user interface relied on homogeneity, hierarchy, and indexicality principles to prevent an increase in data acquisition errors. Conclusions The introduction of nomadic computing often raises enthusiastic reactions from users, but several challenges due to specific constraints of mobile platforms must be overcome. The ease of development of mobile applications and their rapid spread should not overshadow the real challenges of clinical applications and the potential threats for patient safety and the liability of people and organizations using them. For example, careful attention must be given to the overall architecture of the system and to user interfaces. If these precautions are not taken, it can easily lead to unexpected failures such as an increased number of input errors, loss of data, or decreased efficiency. PMID:25100680
Ehrler, Frederic; Wipfli, Rolf; Teodoro, Douglas; Sarrey, Everlyne; Walesa, Magali; Lovis, Christian
2013-06-12
Working in a clinical environment requires unfettered mobility. This is especially true for nurses who are always on the move providing patients' care in different locations. Since the introduction of clinical information systems in hospitals, this mobility has often been considered hampered by interactions with computers. The popularity of personal mobile assistants such as smartphones makes it possible to gain easy access to clinical data anywhere. To identify the challenges involved in the deployment of clinical applications on handheld devices and to share our solutions to these problems. A team of experts underwent an iterative development process of a mobile application prototype that aimed to improve the mobility of nurses during their daily clinical activities. Through the process, challenges inherent to mobile platforms have emerged. These issues have been classified, focusing on factors related to ensuring information safety and quality, as well as pleasant and efficient user experiences. The team identified five main challenges related to the deployment of clinical mobile applications and presents solutions to overcome each of them: (1) Financial: Equipping every care giver with a new mobile device requires substantial investment that can be lowered if users use their personal device instead, (2) Hardware: The constraints inherent to the clinical environment made us choose the mobile device with the best tradeoff between size and portability, (3) Communication: the connection of the mobile application with any existing clinical information systems (CIS) is insured by a bridge formatting the information appropriately, (4) Security: In order to guarantee the confidentiality and safety of the data, the amount of data stored on the device is minimized, and (5) User interface: The design of our user interface relied on homogeneity, hierarchy, and indexicality principles to prevent an increase in data acquisition errors. The introduction of nomadic computing often raises enthusiastic reactions from users, but several challenges due to specific constraints of mobile platforms must be overcome. The ease of development of mobile applications and their rapid spread should not overshadow the real challenges of clinical applications and the potential threats for patient safety and the liability of people and organizations using them. For example, careful attention must be given to the overall architecture of the system and to user interfaces. If these precautions are not taken, it can easily lead to unexpected failures such as an increased number of input errors, loss of data, or decreased efficiency.
Kim, Dana; Kim, Young-Sam; Shin, Dong Wun; Park, Chang-Shin
2016-01-01
No disease-modifying therapies (DMT) for neurodegenerative diseases (NDs) have been established, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD). It is unclear why candidate drugs that successfully demonstrate therapeutic effects in animal models fail to show disease-modifying effects in clinical trials. To overcome this hurdle, patients with homogeneous pathologies should be detected as early as possible. The early detection of AD patients using sufficiently tested biomarkers could demonstrate the potential usefulness of combining biomarkers with clinical measures as a diagnostic tool. Cerebrospinal fluid (CSF) biomarkers for NDs are being incorporated in clinical trials designed with the aim of detecting patients earlier, evaluating target engagement, collecting homogeneous patients, facilitating prevention trials, and testing the potential of surrogate markers relative to clinical measures. In this review we summarize the latest information on CSF biomarkers in NDs, particularly AD and PD, and their use in clinical trials. The large number of issues related to CSF biomarker measurements and applications has resulted in relatively few clinical trials on CSF biomarkers being conducted. However, the available CSF biomarker data obtained in clinical trials support the advantages of incorporating CSF biomarkers in clinical trials, even though the data have mostly been obtained in AD trials. We describe the current issues with and ongoing efforts for the use of CSF biomarkers in clinical trials and the plans to harness CSF biomarkers for the development of DMT and clinical routines. This effort requires nationwide, global, and multidisciplinary efforts in academia, industry, and regulatory agencies to facilitate a new era. PMID:27819412
Kim, Dana; Kim, Young Sam; Shin, Dong Wun; Park, Chang Shin; Kang, Ju Hee
2016-10-01
No disease-modifying therapies (DMT) for neurodegenerative diseases (NDs) have been established, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD). It is unclear why candidate drugs that successfully demonstrate therapeutic effects in animal models fail to show disease-modifying effects in clinical trials. To overcome this hurdle, patients with homogeneous pathologies should be detected as early as possible. The early detection of AD patients using sufficiently tested biomarkers could demonstrate the potential usefulness of combining biomarkers with clinical measures as a diagnostic tool. Cerebrospinal fluid (CSF) biomarkers for NDs are being incorporated in clinical trials designed with the aim of detecting patients earlier, evaluating target engagement, collecting homogeneous patients, facilitating prevention trials, and testing the potential of surrogate markers relative to clinical measures. In this review we summarize the latest information on CSF biomarkers in NDs, particularly AD and PD, and their use in clinical trials. The large number of issues related to CSF biomarker measurements and applications has resulted in relatively few clinical trials on CSF biomarkers being conducted. However, the available CSF biomarker data obtained in clinical trials support the advantages of incorporating CSF biomarkers in clinical trials, even though the data have mostly been obtained in AD trials. We describe the current issues with and ongoing efforts for the use of CSF biomarkers in clinical trials and the plans to harness CSF biomarkers for the development of DMT and clinical routines. This effort requires nationwide, global, and multidisciplinary efforts in academia, industry, and regulatory agencies to facilitate a new era.
Use of the false discovery rate for evaluating clinical safety data.
Mehrotra, Devan V; Heyse, Joseph F
2004-06-01
Clinical adverse experience (AE) data are routinely evaluated using between group P values for every AE encountered within each of several body systems. If the P values are reported and interpreted without multiplicity considerations, there is a potential for an excess of false positive findings. Procedures based on confidence interval estimates of treatment effects have the same potential for false positive findings as P value methods. Excess false positive findings can needlessly complicate the safety profile of a safe drug or vaccine. Accordingly, we propose a novel method for addressing multiplicity in the evaluation of adverse experience data arising in clinical trial settings. The method involves a two-step application of adjusted P values based on the Benjamini and Hochberg false discovery rate (FDR). Data from three moderate to large vaccine trials are used to illustrate our proposed 'Double FDR' approach, and to reinforce the potential impact of failing to account for multiplicity. This work was in collaboration with the late Professor John W. Tukey who coined the term 'Double FDR'.
The promising potential of menstrual stem cells for antenatal diagnosis and cell therapy.
Khoury, Maroun; Alcayaga-Miranda, Francisca; Illanes, Sebastián E; Figueroa, Fernando E
2014-01-01
Menstrual-derived stem cells (MenSCs) are a new source of mesenchymal stem cells isolated from the menstrual fluid. Currently, there is a growing interest in their clinical potential due to fact that they are multipotent, highly proliferative, and easy to obtain in a non-invasive manner. Sampling can be repeated periodically in a simplified and reproducible manner devoid of complications that no existing cell source can match. MenSCs are also free of ethical dilemmas, and display novel properties with regard to presently known adult derived stem cells. This review details their distinctive biological properties regarding immunophenotype and function, proliferation rate, differentiation potential, and paracrine effects mediated by secreted factors. Their possible role in antenatal diagnosis is also discussed. While more insight on their immunomodulatory and diagnostic properties is needed, the impact of clinical and epidemiological factors, such as age, use of contraceptives, or hormonal status still requires further investigations to properly assess their current and future use in clinical application and diagnosis.
Fluorescence analysis of ubiquinone and its application in quality control of medical supplies
NASA Astrophysics Data System (ADS)
Timofeeva, Elvira O.; Gorbunova, Elena V.; Chertov, Aleksandr N.
2017-02-01
The presence of antioxidant issues such as redox potential imbalance in human body is a very important question for modern clinical diagnostics. Implementation of fluorescence analysis into optical diagnostics of such wide distributed in a human body antioxidant as ubiquinone is one of the steps for development of the device with a view to clinical diagnostics of redox potential. Recording of fluorescence was carried out with spectrometer using UV irradiation source with thin band (max at 287 and 330 nm) as a background radiation. Concentrations of ubiquinone from 0.25 to 2.5 mmol/l in explored samples were used for investigation. Recording data was processed using correlation analysis and differential analytical technique. The fourth derivative spectrum of fluorescence spectrum provided the basis for a multicomponent analysis of the solutions. As a technique in clinical diagnostics fluorescence analysis with processing method including differential spectrophotometry, it is step forward towards redox potential calculation and quality control in pharmacy for better health care.
Broad, Lisa M.; Mogg, Adrian J.; Eberle, Elizabeth; Tolley, Marcia; Li, Dominic L.; Knopp, Kelly L.
2016-01-01
Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP (Transient Receptor Potential) super-family. It is a relatively underexplored member of the thermo-TRP sub-family (Figure 1), however, genetic mutations and use of gene knock-outs and selective pharmacological tools are helping to provide insights into its role and therapeutic potential. TRPV3 is highly expressed in skin, where it is implicated in skin physiology and pathophysiology, thermo-sensing and nociception. Gain of function TRPV3 mutations in rodent and man have enabled the role of TRPV3 in skin health and disease to be particularly well defined. Pre-clinical studies provide some rationale to support development of TRPV3 antagonists for therapeutic application for the treatment of inflammatory skin conditions, itch and pain. However, to date, only one compound directed towards block of the TRPV3 receptor (GRC15300) has progressed into clinical trials. Currently, there are no known clinical trials in progress employing a TRPV3 antagonist. PMID:27618069
Risk Factors and Biomarkers of Age-Related Macular Degeneration
Lambert, Nathan G.; Singh, Malkit K.; ElShelmani, Hanan; Mansergh, Fiona C.; Wride, Michael A.; Padilla, Maximilian; Keegan, David; Hogg, Ruth E.; Ambati, Balamurali K.
2016-01-01
A biomarker can be a substance or structure measured in body parts, fluids or products that can affect or predict disease incidence. As age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, much research and effort has been invested in the identification of different biomarkers to predict disease incidence, identify at risk individuals, elucidate causative pathophysiological etiologies, guide screening, monitoring and treatment parameters, and predict disease outcomes. To date, a host of genetic, environmental, proteomic, and cellular targets have been identified as both risk factors and potential biomarkers for AMD. Despite this, their use has been confined to research settings and has not yet crossed into the clinical arena. A greater understanding of these factors and their use as potential biomarkers for AMD can guide future research and clinical practice. This article will discuss known risk factors and novel, potential biomarkers of AMD in addition to their application in both academic and clinical settings. PMID:27156982
The promise of circulating tumor cells for precision cancer therapy.
Hwang, William L; Hwang, Katie L; Miyamoto, David T
2016-12-01
The rapidly growing array of therapeutic options in cancer requires informative biomarkers to guide the rational selection and precision application of appropriate therapies. Circulating biomarkers such as circulating tumor cells have immense potential as noninvasive, serial 'liquid biopsies' that may be more representative of the complete spectrum of a patient's individual malignancy than spatially and temporally restricted tumor biopsies. In this review, we discuss the current state-of-the-art in the isolation and molecular characterization of circulating tumor cells as well as their utility in a wide range of clinical applications such as prognostics, treatment monitoring and identification of novel therapeutic targets and resistance mechanisms to enable real-time adjustments in the clinical management of cancer.
Zheng, Difan; Chen, Haiquan
2016-06-20
With the advances of technology, great progresses have been made in liquid biopsy in recent years. Liquid biopsy is currently playing a more and more important role in early diagnosis and treatment of cancer. Compared with traditional tissue biopsy, liquid biopsy is more popular in clinical practice due to its non-invasiveness, convenience and high repeatability. It has huge potential in the future. This review introduces circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) as the most important objects in liquid biopsy, mainly focusing on their history, biological characteristics, detection technologies, limitations and applications in non-small cell lung cancer.
Convection-enhanced delivery to the central nervous system.
Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H
2015-03-01
Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.
Clinical Applications for EPs in the ICU.
Koenig, Matthew A; Kaplan, Peter W
2015-12-01
In critically ill patients, evoked potential (EP) testing is an important tool for measuring neurologic function, signal transmission, and secondary processing of sensory information in real time. Evoked potential measures conduction along the peripheral and central sensory pathways with longer-latency potentials representing more complex thalamocortical and intracortical processing. In critically ill patients with limited neurologic exams, EP provides a window into brain function and the potential for recovery of consciousness. The most common EP modalities in clinical use in the intensive care unit include somatosensory evoked potentials, brainstem auditory EPs, and cortical event-related potentials. The primary indications for EP in critically ill patients are prognostication in anoxic-ischemic or traumatic coma, monitoring for neurologic improvement or decline, and confirmation of brain death. Somatosensory evoked potentials had become an important prognostic tool for coma recovery, especially in comatose survivors of cardiac arrest. In this population, the bilateral absence of cortical somatosensory evoked potentials has nearly 100% specificity for death or persistent vegetative state. Historically, EP has been regarded as a negative prognostic test, that is, the absence of cortical potentials is associated with poor outcomes while the presence cortical potentials are prognostically indeterminate. In recent studies, the presence of middle-latency and long-latency potentials as well as the amplitude of cortical potentials is more specific for good outcomes. Event-related potentials, particularly mismatch negativity of complex auditory patterns, is emerging as an important positive prognostic test in patients under comatose. Multimodality predictive algorithms that combine somatosensory evoked potentials, event-related potentials, and clinical and radiographic factors are gaining favor for coma prognostication.
Iterative integral parameter identification of a respiratory mechanics model.
Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey
2012-07-18
Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
Kulle, A E; Welzel, M; Holterhus, P-M; Riepe, F G
2011-10-01
Liquid-chromatography - tandem mass spectrometry (LC-MS/MS) is becoming the method of choice for clinical steroid analysis. In most instances, it has the advantage of higher sensitivity, better reproducibility and greater specificity than commercial immunoassay techniques. The method requires only minimal sample preparation and a small sample volume. Furthermore, it has the potential to analyze multiple steroids simultaneously. Modern instruments guarantee high throughput, allowing an affordable price for the individual assay. All this makes LC-MS/MS an attractive method for use in a clinical setting. Reliable reference ranges for the detected analytes are the pre-requisite for their clinical use. If these are available, LC-MS/MS can find application in congenital disorders of steroid metabolism, such as congenital adrenal hyperplasia, disorders of sex development and disorders of salt homeostasis, as well as in acquired disorders of steroid metabolism, such as primary aldosteronism, Cushing's disease, Addison's disease, and hyperandrogenemia, as well as in psychiatric disease states such as depression or anxiety disorders. The principles of LC-MS/MS for steroid measurement, the pros and cons of LC-MS/MS compared with conventional immunoassays and the possible applications in clinical routine, with a special focus on pediatric endocrinology needs, are discussed here.
Pilot clinical application of an adaptive robotic system for young children with autism.
Bekele, Esubalew; Crittendon, Julie A; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E
2014-07-01
It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small group of preschool children with autism spectrum disorders (n = 6) and a control group (n = 6). Children in both groups spent more time looking at the humanoid robot and were able to achieve a high level of accuracy across trials. However, across groups, children required higher levels of prompting to successfully orient within robot-administered trials. The results highlight both the potential benefits of closed-loop adaptive robotic systems as well as current limitations of existing humanoid-robotic platforms. © The Author(s) 2013.
Therapeutic Applications of Herbal Medicines for Cancer Patients
Yin, Shu-Yi; Wei, Wen-Chi; Jian, Feng-Yin; Yang, Ning-Sun
2013-01-01
Medicinal herbs and their derivative phytocompounds are being increasingly recognized as useful complementary treatments for cancer. A large volume of clinical studies have reported the beneficial effects of herbal medicines on the survival, immune modulation, and quality of life (QOL) of cancer patients, when these herbal medicines are used in combination with conventional therapeutics. Here, we briefly review some examples of clinical studies that investigated the use of herbal medicines for various cancers and the development of randomized controlled trials (RCTs) in this emerging research area. In addition, we also report recent studies on the biochemical and cellular mechanisms of herbal medicines in specific tumor microenvironments and the potential application of specific phytochemicals in cell-based cancer vaccine systems. This review should provide useful technological support for evidence-based application of herbal medicines in cancer therapy. PMID:23956768
Mertz, Leslie
2016-01-01
Interest in stem cells escalated in 2006 when scientists figured out how to reprogram some specialized adult cells to assume a stem-cell-like state. Called induced pluripotent stem cells (iPSCs), these cells opened the door to a range of potential applications, including generating cells and tissues to replace those that are faulty or missing in patients with cancer, diabetes, cardiovascular disease, or other maladies (Figure 1). Visions of new treatments and even cures for debilitating and fatal illnesses proliferated, and some of that work is well under way (see "A Wealth of Research"). Now, ten years later, those visions are looking more like real possibilities as research moves from the lab to the clinic and expands toward a greater understanding of the basic science behind stem cells and its applications.
Granins as disease-biomarkers: translational potential for psychiatric and neurological disorders.
Bartolomucci, A; Pasinetti, G M; Salton, S R J
2010-09-29
The identification of biomarkers represents a fundamental medical advance that can lead to an improved understanding of disease pathogenesis, and holds the potential to define surrogate diagnostic and prognostic endpoints. Because of the inherent difficulties in assessing brain function in patients and objectively identifying neurological and cognitive/emotional symptoms, future application of biomarkers to neurological and psychiatric disorders is extremely desirable. This article discusses the biomarker potential of the granin family, a group of acidic proteins present in the secretory granules of a wide variety of endocrine, neuronal and neuroendocrine cells: chromogranin A (CgA), CgB, Secretogranin II (SgII), SgIII, HISL-19 antigen, 7B2, NESP55, VGF and ProSAAS. Their relative abundance, functional significance, and secretion into the cerebrospinal fluid (CSF), saliva, and the general circulation have made granins tractable targets as biomarkers for many diseases of neuronal and endocrine origin, recently impacting diagnosis of a number of neurological and psychiatric disorders including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, frontotemporal dementia, and schizophrenia. Although research has not yet validated the clinical utility of granins as surrogate endpoints for the progression or treatment of neurological or psychiatric disease, a growing body of experimental evidence indicates that the use of granins as biomarkers might be of great potential clinical interest. Advances that further elucidate the mechanism(s) of action of granins, coupled with improvements in biomarker technology and direct clinical application, should increase the translational effectiveness of this family of proteins in disease diagnosis and drug discovery. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Developments in low level light therapy (LLLT) for dentistry.
Carroll, James D; Milward, Michael R; Cooper, Paul R; Hadis, Mohammed; Palin, William M
2014-05-01
Low level light/laser therapy (LLLT) is the direct application of light to stimulate cell responses (photobiomodulation) in order to promote tissue healing, reduce inflammation and induce analgesia. There have been significant studies demonstrating its application and efficacy at many sites within the body and for treatment of a range of musculoskeletal injuries, degenerative diseases and dysfunction, however, its use on oral tissues has, to date, been limited. The purpose of this review is to consider the potential for LLLT in dental and oral applications by providing background information on its mechanism of action and delivery parameters and by drawing parallels with its treatment use in analogous cells and tissues from other sites of the body. A literature search on Medline was performed on laser and light treatments in a range of dental/orofacial applications from 2010 to March 2013. The search results were filtered for LLLT relevance. The clinical papers were then arranged to eight broad dental/orofacial categories and reviewed. The initial search returned 2778 results, when filtered this was reduced to 153. 41 were review papers or editorials, 65 clinical and 47 laboratory studies. Of all the publications, 130 reported a positive effect in terms of pain relief, fast healing or other improvement in symptoms or appearance and 23 reported inconclusive or negative outcomes. Direct application of light as a therapeutic intervention within the oral cavity (rather than photodynamic therapies, which utilize photosensitizing solutions) has thus far received minimal attention. Data from the limited studies that have been performed which relate to the oral cavity indicate that LLLT may be a reliable, safe and novel approach to treating a range of oral and dental disorders and in particular for those which there is an unmet clinical need. The potential benefits of LLLT that have been demonstrated in many healthcare fields and include improved healing, reduced inflammation and pain control, which suggest considerable potential for its use in oral tissues. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Engineering Stem Cells for Biomedical Applications.
Yin, Perry T; Han, Edward; Lee, Ki-Bum
2016-01-07
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preclinical Development of Cell-Based Products: a European Regulatory Science Perspective.
McBlane, James W; Phul, Parvinder; Sharpe, Michaela
2018-06-25
This article describes preclinical development of cell-based medicinal products for European markets and discusses European regulatory mechanisms open to developers to aid successful product development. Cell-based medicinal products are diverse, including cells that are autologous or allogeneic, have been genetically modified, or not, or expanded ex vivo, and applied systemically or to an anatomical site different to that of their origin; comments applicable to one product may not be applicable to others, so bespoke development is needed, for all elements - quality, preclinical and clinical. After establishing how the product is produced, proof of potential for therapeutic efficacy, and then safety, of the product need to be determined. This includes understanding biodistribution, persistence and toxicity, including potential for malignant transformation. These elements need to be considered in the context of the intended clinical development. This article describes regulatory mechanisms available to developers to support product development that aim to resolve scientific issues prior to marketing authorization application, to enable patients to have faster access to the product than would otherwise be the case. Developers are encouraged to be aware of both the scientific issues and regulatory mechanisms to ensure patients can be supplied with these products.
Xue, Shenghui; Qiao, Jingjuan; Pu, Fan; Cameron, Mathew; Yang, Jenny J.
2014-01-01
Magnetic resonance imaging (MRI) of disease biomarkers, especially cancer biomarkers, could potentially improve our understanding of the disease and drug activity during preclinical and clinical drug treatment and patient stratification. MRI contrast agents with high relaxivity and targeting capability to tumor biomarkers are highly required. Extensive work has been done to develop MRI contrast agents. However, only a few limited literatures report that protein residues can function as ligands to bind Gd3+ with high binding affinity, selectivity, and relaxivity. In this paper, we focus on reporting our current progress on designing a novel class of protein-based Gd3+ MRI contrast agents (ProCAs) equipped with several desirable capabilities for in vivo application of MRI of tumor biomarkers. We will first discuss our strategy for improving the relaxivity by a novel protein-based design. We then discuss the effect of increased relaxivity of ProCAs on improving the detection limits for MRI contrast agent, especially for in vivo application. We will further report our efforts to improve in vivo imaging capability and our achievement in molecular imaging of cancer biomarkers with potential preclinical and clinical applications. PMID:23335551
Gonçalves, R. M.; Barrias, C. C.
2017-01-01
Human mesenchymal stem/stromal cells (hMSCs) have generated great interest in regenerative medicine mainly due to their multidifferentiation potential and immunomodulatory role. Although hMSC can be obtained from different tissues, the number of available cells is always low for clinical applications, thus requiring in vitro expansion. Most of the current protocols for hMSC expansion make use of fetal bovine serum (FBS) as a nutrient-rich supplement. However, regulatory guidelines encourage novel xeno-free alternatives to define safer and standardized protocols for hMSC expansion that preserve their intrinsic therapeutic potential. Since hMSCs are adherent cells, the attachment surface and cell-adhesive components also play a crucial role on their successful expansion. This review focuses on the advantages/disadvantages of FBS-free media and surfaces/coatings that avoid the use of animal serum, overcoming ethical issues and improving the expansion of hMSC for clinical applications in a safe and reproducible way. PMID:29158740
Evaluative studies in nuclear medicine research. Progress report, October 1, 1979-June 30, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potchen, E.J.
Effort since the last progress report (September 1979) has been directed toward assessing the potential short and long term benefits of continued development and application and medical research of emission computed tomograhy (ECT). This report contains a review of existing ECT technology, including functional descriptions of current and proposed image systems, for both sngle-photon ECT (SPECT) and positron ECT (PECT) approaches. Medical research and clinical topics to which ECT has been, or may be, applied are presented. One such area of investigation involves the effects of stroke. The application of ECT to laboratory research, and to clinical diagnosis and prognosis,more » of stroke may result in improved management of the disease. An illustration of the potential savings in the cost of management of stroke due to the effects of applied ECT research is included. The results represent a compilation of data collected from conversations with, and conference presentations by, ECT users, researchers and image system designers, and from a review of the literature.« less
NASA Astrophysics Data System (ADS)
Saavedra, Joseph E.; Keefer, Larry K.
2002-12-01
Nitric oxide-generating ions of the nitrogen-diazeniumdiolate class with the general structure R1R2N-[N(O)NO]1 have been prepared by exposing primary, secondary, and polyamines to nitric oxide (NO). The resulting complexes regenerate bioactive NO at physiological pH with half-lives ranging from 2 seconds to 20 hours. An important goal in our research is to deliver NO to a specific organ or cell type where it is needed without affecting other NO-sensitive parts of the anatomy. By taking advantage of the remarkable chemical versatility of diazeniumdiolates, we have developed general strategies to prepare either tissue-selective NO donor drugs or materials containing NO delivery agents that can be physically placed near the target sites. Inhibition of blood coagulation, induction of penile erection, relief of pulmonary hypertension, and reversal of cerebral vasospasm are a few examples of their potential clinical applications.
In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection
Ahrens, Eric T.; Zhong, Jia
2013-01-01
This article is a brief survey of preclinical in vivo cell tracking methods and applications using perfluorocarbon (PFC) probes and fluorine-19 (19F) MRI detection. Detection of the 19F signal offers high cell specificity and quantification abilities in spin-density weighted MR images. We discuss the compositions of matter, methods, and applications of PFC-based cell tracking using ex vivo and in situ PFC labeling in preclinical studies of inflammation and cellular therapeutics. We will also address potential applicability of 19F cell tracking to clinical trials. PMID:23606473
Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Nagy, Eniko; Sipos, Pál
2004-01-01
The rapid development of inorganic medical chemistry opens enormous potential for various applications of a range of inorganic substances in the medicine. Thus inorganic chemistry offers real possibilities to pharmaceutical industries, which used to be dominated by organic chemistry alone. The field has particularly been stimulated by the success-story of cisplatin, which is the World's best selling anticancer drug. Nowadays orally administered Pt(IV) complexes with reduced toxicity, and activity against resistant tumors are on various phases of clinical trial.
[The Abbreviated Injury Scale (AIS). Options and problems in application].
Haasper, C; Junge, M; Ernstberger, A; Brehme, H; Hannawald, L; Langer, C; Nehmzow, J; Otte, D; Sander, U; Krettek, C; Zwipp, H
2010-05-01
The new AIS (Abbreviated Injury Scale) was released with an update by the AAAM (Association for the Advancement of Automotive Medicine) in 2008. It is a universal scoring system in the field of trauma applicable in clinic and research. In engineering it is used as a classification system for vehicle safety. The AIS can therefore be considered as an international, interdisciplinary and universal code of injury severity. This review focuses on a historical overview, potential applications and new coding options in the current version and also outlines the associated problems.
Smith, Hadley Stevens; Swint, J Michael; Lalani, Seema R; Yamal, Jose-Miguel; de Oliveira Otto, Marcia C; Castellanos, Stephan; Taylor, Amy; Lee, Brendan H; Russell, Heidi V
2018-05-14
Availability of clinical genomic sequencing (CGS) has generated questions about the value of genome and exome sequencing as a diagnostic tool. Analysis of reported CGS application can inform uptake and direct further research. This scoping literature review aims to synthesize evidence on the clinical and economic impact of CGS. PubMed, Embase, and Cochrane were searched for peer-reviewed articles published between 2009 and 2017 on diagnostic CGS for infant and pediatric patients. Articles were classified according to sample size and whether economic evaluation was a primary research objective. Data on patient characteristics, clinical setting, and outcomes were extracted and narratively synthesized. Of 171 included articles, 131 were case reports, 40 were aggregate analyses, and 4 had a primary economic evaluation aim. Diagnostic yield was the only consistently reported outcome. Median diagnostic yield in aggregate analyses was 33.2% but varied by broad clinical categories and test type. Reported CGS use has rapidly increased and spans diverse clinical settings and patient phenotypes. Economic evaluations support the cost-saving potential of diagnostic CGS. Multidisciplinary implementation research, including more robust outcome measurement and economic evaluation, is needed to demonstrate clinical utility and cost-effectiveness of CGS.
Zhang, Wei; Chen, Longkun; Chen, Jialin; Wang, Lingshuang; Gui, Xuexian; Ran, Jisheng; Xu, Guowei; Zhao, Hongshi; Zeng, Mengfeng; Ji, Junfeng; Qian, Li; Zhou, Jianda; Ouyang, Hongwei; Zou, Xiaohui
2017-05-01
Due to its excellent biological and mechanical properties, silk fibroin has been intensively explored for tissue engineering and regenerative medicine applications. However, lack of translational evidence has hampered its clinical application for tissue repair. Here a silk fibroin film is developed and its translational potential is investigated for skin repair by performing comprehensive preclinical and clinical studies to fully evaluate its safety and effectiveness. The silk fibroin film fabricated using all green chemistry approaches demonstrates remarkable characteristics, including transmittance, fluid handling capacity, moisture vapor permeability, waterproofness, bacterial barrier properties, and biocompatibility. In vivo rabbit full-thickness skin defect study shows that the silk fibroin film effectively reduces the average wound healing time with better skin regeneration compared with the commercial wound dressings. Subsequent assessment in porcine model confirms its long-term safety and effectiveness for full-thickness skin defects. Finally, a randomized single-blind parallel controlled clinical trial with 71 patients shows that the silk fibroin film significantly reduces the time to wound healing and incidence of adverse events compared to commercial dressing. Therefore, the study provides systematic preclinical and clinical evidence that the silk fibroin film promotes wound healing thereby establishing a foundation towards its application for skin repair and regeneration in the clinic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Responsive Biomaterials: Advances in Materials Based on Shape-Memory Polymers.
Hardy, John G; Palma, Matteo; Wind, Shalom J; Biggs, Manus J
2016-07-01
Shape-memory polymers (SMPs) are morphologically responsive materials with potential for a variety of biomedical applications, particularly as devices for minimally invasive surgery and the delivery of therapeutics and cells for tissue engineering. A brief introduction to SMPs is followed by a discussion of the current progress toward the development of SMP-based biomaterials for clinically relevant biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Lancaster, F. W., Ed.; Smith, Linda C., Ed.
Some of the 12 conference papers presented in this proceedings focus on the present and potential capabilities of artificial intelligence and expert systems as they relate to a wide range of library applications, including descriptive cataloging, technical services, collection development, subject indexing, reference services, database searching,…
Applications of CRISPR/Cas9 in retinal degenerative diseases
Peng, Ying-Qian; Tang, Luo-Sheng; Yoshida, Shigeo; Zhou, Ye-Di
2017-01-01
Gene therapy is a potentially effective treatment for retinal degenerative diseases. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been developed as a new genome-editing tool in ophthalmic studies. Recent advances in researches showed that CRISPR/Cas9 has been applied in generating animal models as well as gene therapy in vivo of retinitis pigmentosa (RP) and leber congenital amaurosis (LCA). It has also been shown as a potential attempt for clinic by combining with other technologies such as adeno-associated virus (AAV) and induced pluripotent stem cells (iPSCs). In this review, we highlight the main points of further prospect of using CRISPR/Cas9 in targeting retinal degeneration. We also emphasize the potential applications of this technique in treating retinal degenerative diseases. PMID:28503441
Puchades-Carrasco, Leonor; Palomino-Schätzlein, Martina; Pérez-Rambla, Clara; Pineda-Lucena, Antonio
2016-05-01
Metabolomics, a systems biology approach focused on the global study of the metabolome, offers a tremendous potential in the analysis of clinical samples. Among other applications, metabolomics enables mapping of biochemical alterations involved in the pathogenesis of diseases, and offers the opportunity to noninvasively identify diagnostic, prognostic and predictive biomarkers that could translate into early therapeutic interventions. Particularly, metabolomics by Nuclear Magnetic Resonance (NMR) has the ability to simultaneously detect and structurally characterize an abundance of metabolic components, even when their identities are unknown. Analysis of the data generated using this experimental approach requires the application of statistical and bioinformatics tools for the correct interpretation of the results. This review focuses on the different steps involved in the metabolomics characterization of biofluids for clinical applications, ranging from the design of the study to the biological interpretation of the results. Particular emphasis is devoted to the specific procedures required for the processing and interpretation of NMR data with a focus on the identification of clinically relevant biomarkers. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Personal digital assistant use by nurse practitioners: a descriptive study.
Stroud, Sally D; Smith, Carol A; Erkel, Elizabeth A
2009-01-01
We sought to describe the prevalence and patterns of use of personal digital assistants (PDAs) among active nurse practitioners (NPs). A descriptive correlational survey was conducted among NPs in the United States (N = 126). Participants were randomly selected from members of the American Academy of Nurse Practitioners who had listed a practice site on their application. Sixty-four percent of participants used PDAs. A drug reference was reported to be the most useful and frequently installed application. A large majority of PDA users believed that PDA use supported clinical decision making (91%), promoted patient safety (89%), and increased productivity (75%). Sixty-two percent predicted that PDA use would change their practice within the next 5 years. As innovative PDA applications with potential to improve patient outcomes become increasingly available, handheld computer skills will be a fundamental practice competency. To prevent errors in clinical decision making with quick access to PDA reference materials, NPs must critically evaluate the legitimacy and worth of PDA software programs. There is a critical need to evaluate the effectiveness of PDA use in clinical settings and develop an evidence base to guide use of the PDA in solving clinical problems.
[Stem cell-based cardiac regeneration after myocardial infarction].
Reinsch, M; Weinberger, F
2018-03-01
Myocardial infarction leads to an irreversible loss of vital myocardial cells. The transplantation of new cardiomyocytes into the heart was first described over 20 years ago and represents a straightforward approach to remuscularize a damaged heart. Due to the lack of human cells a clinical application seemed ambitious; however, dramatic progress in stem cell biology over the last two decades has paved the way towards a clinical application. This is especially important as the prognosis for patients with terminal heart failure is still poor. The transplantation of either cardiomyocytes or engineered heart tissue derived from pluripotent stem cells (either embryonic stem cells or induced pluripotent stem cells) might represent a new regenerative approach. Transplantation of either cells or tissue constructs has now been evaluated in several preclinical models, which have demonstrated that an injured heart can be (partially) remuscularized; however, major hurdles towards a clinical application are the transplantation-related occurrence of arrhythmia, the potential tumorigenicity of pluripotent cells and the required immunosuppression. Several groups are working hard to solve these problems and we are optimistic that the first clinical studies will take place within the next few years.
Mulugeta, Lealem; Drach, Andrew; Erdemir, Ahmet; Hunt, C. A.; Horner, Marc; Ku, Joy P.; Myers Jr., Jerry G.; Vadigepalli, Rajanikanth; Lytton, William W.
2018-01-01
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations. PMID:29713272
Mulugeta, Lealem; Drach, Andrew; Erdemir, Ahmet; Hunt, C A; Horner, Marc; Ku, Joy P; Myers, Jerry G; Vadigepalli, Rajanikanth; Lytton, William W
2018-01-01
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations.
Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics
Goel, Shreya; Chen, Feng; Cai, Weibo
2013-01-01
Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles. PMID:24106015
Three-dimensional printing: changing clinical care or just a passing fad?
Ryan, Justin; Gregg, Chelsea; Frakes, David; Pophal, Stephen
2017-01-01
Advances in medical imaging and three-dimensional (3D) reconstruction software have enabled a proliferation of 3D modeling and 3D printing for clinical applications. In particular, 3D printing has garnered an extraordinary media presence over the past few years. There is growing optimism that 3D printing can address patient specificity and complexity for improved interventional and surgical planning. Will this relatively untested technology bring about a paradigm shift in the clinical environment, or is it just a transient fad? Case studies and series centered around 3D printing are omnipresent in clinical and engineering journals. These primarily qualitative studies support the potential efficacy of the emerging technology. Few studies analyze the value of 3D printing, weighing its potential benefits against increasing costs (e.g., institutional overhead, labor, and materials). Clinical integration of 3D printing is growing rapidly, and its adoption into clinical practice presents unique workflow challenges. There are numerous clinical trials on the horizon that will finally help to elucidate the measured impact of 3D printing on clinical outcomes through quantitative analyses of clinical and economic metrics. The contrived integration of 3D printing into clinical practice seems all but certain as the value of this technology becomes more and more evident.
Innovation in pediatric clinical education: application of the essential competencies.
Kenyon, Lisa K; Birkmeier, Marisa; Anderson, Deborah K; Martin, Kathy
2015-01-01
At the Section on Pediatrics Education Summit in July 2012, consensus was achieved on 5 essential core competencies (ECCs) that represent a knowledge base essential to all graduates of professional physical therapist education programs. This article offers suggestions for how clinical instructors (CIs) might use the ECCs to identify student needs and guide student learning during a pediatric clinical education experience. Pediatric CIs potentially might choose to use the ECCs as a reference tool in clinical education to help (1) organize and develop general, clinic-specific clinical education objectives, (2) develop and plan individualized student learning experiences, (3) identify student needs, and (4) show progression of student learning from beginner to intermediate to entry level. The ECCs may offer CIs insights into the role of pediatric clinical education in professional physical therapist education.
Applications of Three-Dimensional Printing in Surgery.
Li, Chi; Cheung, Tsz Fung; Fan, Vei Chen; Sin, Kin Man; Wong, Chrisity Wai Yan; Leung, Gilberto Ka Kit
2017-02-01
Three-dimensional (3D) printing is a rapidly advancing technology in the field of surgery. This article reviews its contemporary applications in 3 aspects of surgery, namely, surgical planning, implants and prostheses, and education and training. Three-dimensional printing technology can contribute to surgical planning by depicting precise personalized anatomy and thus a potential improvement in surgical outcome. For implants and prosthesis, the technology might overcome the limitations of conventional methods such as visual discrepancy from the recipient's body and unmatching anatomy. In addition, 3D printing technology could be integrated into medical school curriculum, supplementing the conventional cadaver-based education and training in anatomy and surgery. Future potential applications of 3D printing in surgery, mainly in the areas of skin, nerve, and vascular graft preparation as well as ear reconstruction, are also discussed. Numerous trials and studies are still ongoing. However, scientists and clinicians are still encountering some limitations of the technology including high cost, long processing time, unsatisfactory mechanical properties, and suboptimal accuracy. These limitations might potentially hamper the applications of this technology in daily clinical practice.
Exploring a model-driven architecture (MDA) approach to health care information systems development.
Raghupathi, Wullianallur; Umar, Amjad
2008-05-01
To explore the potential of the model-driven architecture (MDA) in health care information systems development. An MDA is conceptualized and developed for a health clinic system to track patient information. A prototype of the MDA is implemented using an advanced MDA tool. The UML provides the underlying modeling support in the form of the class diagram. The PIM to PSM transformation rules are applied to generate the prototype application from the model. The result of the research is a complete MDA methodology to developing health care information systems. Additional insights gained include development of transformation rules and documentation of the challenges in the application of MDA to health care. Design guidelines for future MDA applications are described. The model has the potential for generalizability. The overall approach supports limited interoperability and portability. The research demonstrates the applicability of the MDA approach to health care information systems development. When properly implemented, it has the potential to overcome the challenges of platform (vendor) dependency, lack of open standards, interoperability, portability, scalability, and the high cost of implementation.
Assessing the current state of dental informatics in saudi arabia: the new frontier.
Al-Nasser, Lubna; Al-Ehaideb, Ali; Househ, Mowafa
2014-01-01
Dental informatics is an emerging field that has the potential to transform the dental profession. This study aims to summarize the current applications of dental informatics in Saudi Arabia and to identify the challenges facing expansion of dental informatics in the Saudi context. Search for published articles and specialized forum entries was conducted, as well as interviews with dental professionals familiar with the topic. Results indicated that digital radiography/analysis and administrative management of dental practice are the commonest applications used. Applications in Saudi dental education included: web-based learning systems, computer-based assessments and virtual technology for clinical skills' teaching. Patients' education software, electronic dental/oral health records and the potential of dental research output from electronic databases are yet to be achieved in Saudi Arabia. Challenges facing Saudi dental informatics include: lack of IT infrastructure/support, social acceptability and financial cost. Several initiatives are taken towards the research in dental informatics. Still, more investments are needed to fully achieve the potential of various application of informatics in dental education, practice and research.
Hope, Anna E; Sugarman, Laurence I
2015-01-01
This article presents a new frame for understanding hypnosis and its clinical applications. Despite great potential to transform health and care, hypnosis research and clinical integration is impaired in part by centuries of misrepresentation and ignorance about its demonstrated efficacy. The authors contend that advances in the field are primarily encumbered by the lack of distinct boundaries and definitions. Here, hypnosis, trance, and mind are all redefined and grounded in biological, neurological, and psychological phenomena. Solutions are proposed for boundary and language problems associated with hypnosis. The biological role of novelty stimulating an orienting response that, in turn, potentiates systemic plasticity forms the basis for trance. Hypnosis is merely the skill set that perpetuates and influences trance. This formulation meshes with many aspects of Milton Erickson's legacy and Ernest Rossi's recent theory of mind and health. Implications of this hypothesis for clinical skills, professional training, and research are discussed.
Transfer of knowledge and skills: some implications for nursing and nurse education.
Lauder, W; Reynolds, W; Angus, N
1999-08-01
The construct of transfer has enormous importance to nursing as it begins to highlight potential problems in the transfer of knowledge and skills from the campus to the clinical area, from one part of the clinical area to another (e.g. surgical to medical), and from community to the clinical area. Thus, any adequate conceptualization of transfer must account for problems of practice-practice transfer as well as theory-practice transfer. These potential problems are the concern of educators, students and managers who have a responsibility for agency nurses and bank nurses who may find themselves in different specialities on a regular basis. Transfer has relevance to a whole raft of other issues ranging from the application of theories to nursing practice, through to the validity of claims that courses which develop intellectual skills prepare nurses for lifelong learning.
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M
2015-04-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Obeso, Ignacio; Cerasa, Antonio; Quattrone, Aldo
2015-01-01
Repetitive transcranial magnetic stimulation (rTMS) is a safe and painless method for stimulating cortical neurons. In neurological realm, rTMS has prevalently been applied to understand pathophysiological mechanisms underlying movement disorders. However, this tool has also the potential to be translated into a clinically applicable therapeutic use. Several available studies supported this hypothesis, but differences in protocols, clinical enrollment, and variability of rTMS effects across individuals complicate better understanding of efficient clinical protocols. The aim of this present review is to discuss to what extent the evidence provided by the therapeutic use of rTMS may be generalized. In particular, we attempted to define optimal cortical regions and stimulation protocols that have been demonstrated to maximize the effectiveness seen in the actual literature for the three most prevalent hyperkinetic movement disorders: Parkinson's disease (PD) with levodopa-induced dyskinesias (LIDs), essential tremor (ET) and dystonia. A total of 28 rTMS studies met our search criteria. Despite clinical and methodological differences, overall these studies demonstrated that therapeutic applications of rTMS to "normalize" pathologically decreased or increased levels of cortical activity have given moderate progress in patient's quality of life. Moreover, the present literature suggests that altered pathophysiology in hyperkinetic movement disorders establishes motor, premotor or cerebellar structures as candidate regions to reset cortico-subcortical pathways back to normal. Although rTMS has the potential to become a powerful tool for ameliorating the clinical outcome of hyperkinetic neurological patients, until now there is not a clear consensus on optimal protocols for these motor disorders. Well-controlled multicenter randomized clinical trials with high numbers of patients are urgently required.
England, Christopher G; Ng, Chin F; van Berkel, Victor; Frieboes, Hermann B
2015-01-01
Lung cancer remains a leading cause of death. Current treatment options are generally ineffective, highlighting the dire need for novel approaches. While numerous biologically-active chemotherapeutics have been discovered in the last two decades, biological barriers including minimal water solubility, stability, and cellular resistance hinder in vivo effectiveness. To overcome these limitations, nanoparticles have been designed to deliver chemotherapeutics selectively to cancerous tissue while minimizing pharmacokinetics hindrance. Numerous studies are underway analyzing the efficacy of nanoparticles in drug delivery, theranostic applications, and photothermal therapy. However, while nanoparticles have shown efficacy in treating some cancers, their potential toxicity and lack of targeting may hinder clinical potential. With the aim to help sort through these issues, we conduct a review to describe recent applications of nanotherapeutics for the treatment and diagnosis of lung cancer. We first provide a detailed background of statistics, etiology, histological classification, staging, diagnosis, and current treatment options. This is followed by a description of current applications of nanotherapeutics, focusing primarily on results published during the past five years. The potential toxicity associated with nanoparticles is evaluated, revealing inconclusive information which highlights the need for further studies. Lastly, recent advances in mathematical modeling and computational simulation have shown potential in predicting tumor response to nanotherapeutics. Thus, although nanoparticles have shown promise in treating lung cancer, further multi-disciplinary studies to quantify optimal dosages and assess possible toxicity are still needed. To this end, nanotherapeutic options currently in clinical trials offer hope to help address some of these critical issues.
Current applications of human pluripotent stem cells: possibilities and challenges.
Ho, Pai-Jiun; Yen, Men-Luh; Yet, Shaw-Fang; Yen, B Linju
2012-01-01
Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.
Applications of Mesenchymal Stem Cells in Sinus Lift Augmentation as a Dental Implant Technology.
Parnia, Feridoun; Yazdani, Javad; Maleki Dizaj, Solmaz
2018-01-01
The potential application of stem cell biology in human dentistry is a new and emerging field of research. The objective of the current review was to study the efficiency of mesenchymal stem cells (MSCs) in sinus lift augmentation (SLA). A literature review was performed in PubMed Central using MeSH keywords such as sinus lift, MSCs, dental implants, and augmentation. The searches involved full-text papers written in English, published in the past 10 years (2007-2017). The review included in vitro and in vivo studies on the use of MSCs in SLA. Electronic searching provided 45 titles, and among them, 8 papers were chosen as suitable based on the inclusion requirements of this review. The reviewed studies have revealed the potential of MSCs in SLA. According to these papers, stem cell therapy combined with different biomaterials may considerably improve bone regeneration in previous steps of dental implantation and may veritably lead to efficient clinical usages in the recent future. However, the identification of an ideal source of stem cells as well as long-term studies is vital to assess the success rate of this technology. Further clinical trials are also needed to approve the potential of MSCs in SLA.
Hunter, Gary W; Dweik, Raed A
2010-01-01
The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed. PMID:20622933
Pham, Clarabelle T; Gibb, Catherine L; Mittinty, Murthy N; Fitridge, Robert A; Marshall, Villis R; Karnon, Jonathan D
2016-10-01
A physician-led clinic for the preoperative optimization and management of high-risk surgical patients was implemented in a South Australian public hospital in 2008. This study aimed to estimate the costs and effects of the clinic using a mixed retrospective and prospective observational study design. Alternative propensity score estimation methods were applied to retrospective routinely collected administrative and clinical data, using weighted and matched cohorts. Supplementary survey-based prospective data were collected to inform the analysis of the retrospective data and reduce potential unmeasured confounding. Using weighted cohorts, clinic patients had a significantly longer mean length of stay and higher mean cost. With the matched cohorts, reducing the calliper width resulted in a shorter mean length of stay in the clinic group, but the costs remained significantly higher. The prospective data indicated potential unmeasured confounding in all analyses other than in the most tightly matched cohorts. The application of alternative propensity-based approaches to a large sample of retrospective data, supplemented with a smaller sample of prospective data, informed a pragmatic approach to reducing potential observed and unmeasured confounding in an evaluation of a physician-led preoperative clinic. The need to generate tightly matched cohorts to reduce the potential for unmeasured confounding indicates that significant uncertainty remains around the effects of the clinic. This study illustrates the value of mixed retrospective and prospective observational study designs but also underlines the need to prospectively plan for the evaluation of costs and effects alongside the implementation of significant service innovations. © 2016 John Wiley & Sons, Ltd.
Banerjee, Kacoli; Banerjee, Shubhadeep; Mandal, Mahitosh
2017-04-01
Recent endeavors in exploiting vast array of natural phytochemicals to ameliorate colorectal cancer led us to investigate apigenin, a naturally occurring dietary flavone as a potential chemo-therapeutic agent. The present study focuses on establishing apigenin as a potential chemotherapeutic agent for alleviating colorectal cancer and reports the development of a stable liposomal nanocarrier with high encapsulation of the hydrophobic flavone apigenin for enhanced chemotherapeutic effects. The enhanced pharmacological activity of apigenin has been assigned to its ability to interact and subsequently influence membrane properties which also resulted in optimal yield of a stable, rigidified, non-leaky nano-carrier with ideal release kinetics. Extensive testing of drug and its liposomal counterpart for potential clinical chemotherapeutic applications yielded hemocompatibility and cytocompatibility with normal fibroblast cells while enhanced antineoplastic activity was observed in tumor xenograft model. The increased chemotherapeutic potential of liposomal apigenin highlights the clinical potential of apigenin-based vesicles. Copyright © 2016 Elsevier Inc. All rights reserved.
Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza
2015-01-01
Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.
Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael
2010-01-01
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
Sparse Reconstruction Techniques in MRI: Methods, Applications, and Challenges to Clinical Adoption
Yang, Alice Chieh-Yu; Kretzler, Madison; Sudarski, Sonja; Gulani, Vikas; Seiberlich, Nicole
2016-01-01
The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance Imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be employed to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR imaging, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold-standards, are discussed. PMID:27003227
Modulation of hepcidin to treat iron deregulation: potential clinical applications
Blanchette, Nicole L.; Manz, David H.; Torti, Frank M.
2016-01-01
The secreted peptide hormone hepcidin regulates systemic and local iron homeostasis through degradation of the iron exporter ferroportin. Dysregulation of hepcidin leads to altered iron homeostasis and development of pathological disorders including hemochromatosis, and iron loading and iron restrictive anemias. Therapeutic modulation of hepcidin is a promising method to ameliorate these conditions. Several approaches have been taken to enhance or reduce the effects of hepcidin in vitro and in vivo. Based on these approaches, hepcidin modulating drugs have been developed and are undergoing clinical evaluation. In this article we review the rationale for development of these drugs, the data concerning their safety and efficacy, their therapeutic uses, and potential future prospects. PMID:26669208
Parto, Parham; Lavie, Carl J; Arena, Ross; Bond, Samantha; Popovic, Dejana; Ventura, Hector O
2016-11-01
The prevalence of obesity among adults and children worldwide has reached epic proportions and has become a major independent risk factor for the development of heart failure (HF), in addition to a contributor of hypertension and cardiovascular disease. The implications of obesity in the development of HF involve adverse effects on cardiac structure and function. Despite all of this, in the setting of chronic HF, excess body mass is associated with improved clinical outcomes, demonstrating the presence of an obesity paradox. In this review, we will discuss the gender differences, global application, potential mechanisms and role of interventions based on fitness and purposeful weight loss as potential therapeutic strategies.
Azelaic Acid: Evidence-based Update on Mechanism of Action and Clinical Application.
Schulte, Brian C; Wu, Wesley; Rosen, Ted
2015-09-01
Azelaic acid is a complex molecule with many diverse activities. The latter include anti-infective and anti-inflammatory action. The agent also inhibits follicular keratinization and epidermal melanogenesis. Due to the wide variety of biological activities, azelaic acid has been utilized as a management tool in a broad spectrum of disease states and cutaneous disorders. This paper reviews the clinical utility of azelaic acid, noting the quality of the evidence supporting each potential use.
Dhawan, Atam P
2016-01-01
Recent advances in biosensors, medical instrumentation, and information processing and communication technologies (ICT) have enabled significant improvements in healthcare. However, these technologies have been mainly applied in clinical environments, such as hospitals and healthcare facilities, under managed care by well-trained and specialized individuals. The global challenge of providing quality healthcare at affordable cost leads to the proposed paradigm of P reventive, Personalized, and Precision Medicine that requires a seamless use of technology and infrastructure support for patients and healthcare providers at point-of-care (POC) locations including homes, semi or pre-clinical facilities, and hospitals. The complexity of the global healthcare challenge necessitates strong collaborative interdisciplinary synergies involving all stakeholder groups including academia, federal research institutions, industry, regulatory agencies, and clinical communities. It is critical to evolve with collaborative efforts on the translation of research to technology development toward clinical validation and potential healthcare applications. This special issue is focused on technology innovation and translational research for POC applications with potential impact in improving global healthcare in the respective areas. Some of these papers were presented at the NIH-IEEE Strategic Conference on Healthcare Innovations and POC Technologies for Precision Medicine (HI-POCT) held at the NIH on November 9-10, 2015. The papers included in the Special Issue provide a spectrum of critical issues and collaborative resources on translational research of advanced POC devices and ICT into global healthcare environment.
Lee, Jinho; Geiss, Gary K; Demirkan, Gokhan; Vellano, Christopher P; Filanoski, Brian; Lu, Yiling; Ju, Zhenlin; Yu, Shuangxing; Guo, Huifang; Bogatzki, Lisa Y; Carter, Warren; Meredith, Rhonda K; Krishnamurthy, Savitri; Ding, Zhiyong; Beechem, Joseph M; Mills, Gordon B
2018-06-01
Molecular analysis of tumors forms the basis for personalized cancer medicine and increasingly guides patient selection for targeted therapy. Future opportunities for personalized medicine are highlighted by the measurement of protein expression levels via immunohistochemistry, protein arrays, and other approaches; however, sample type, sample quantity, batch effects, and "time to result" are limiting factors for clinical application. Here, we present a development pipeline for a novel multiplexed DNA-labeled antibody platform which digitally quantifies protein expression from lysate samples. We implemented a rigorous validation process for each antibody and show that the platform is amenable to multiple protocols covering nitrocellulose and plate-based methods. Results are highly reproducible across technical and biological replicates, and there are no observed "batch effects" which are common for most multiplex molecular assays. Tests from basal and perturbed cancer cell lines indicate that this platform is comparable to orthogonal proteomic assays such as Reverse-Phase Protein Array, and applicable to measuring the pharmacodynamic effects of clinically-relevant cancer therapeutics. Furthermore, we demonstrate the potential clinical utility of the platform with protein profiling from breast cancer patient samples to identify molecular subtypes. Together, these findings highlight the potential of this platform for enhancing our understanding of cancer biology in a clinical translation setting. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Jiang, Long; Wang, Lu-Ya; Cheng, Xiao-Shu
2018-06-13
Familial hypercholesterolemia (FH) is an autosomal-dominant disorder that is characterized by high plasma low-density lipoprotein cholesterol (LDL-c) levels and an increased risk of cardiovascular disease. Despite the use of high-dose statins and the recent addition of proprotein convertase subtilisin/kexin type 9 inhibitors as a treatment option, many patients with homozygous FH fail to achieve optimal reductions of LDL-c levels. Gene therapy has become one of the most promising research directions for contemporary life sciences and is a potential treatment option for FH. Recent studies have confirmed the efficacy of a recombinant adeno-associated virus 8 vector expressing the human LDL-c receptor gene in a mouse model, and this vector is currently in phase 2 clinical trials. Much progress has also been achieved in the fields of antisense oligonucleotide- and small interfering RNA-based gene therapies, which are in phase 1-2 clinical trials. In addition, novel approaches, such as the use of minicircle DNA vectors, microRNAs, long non-coding RNAs, and the CRISPR/Cas9 gene-editing system, have shown great potential for FH therapy. However, the delivery system, immunogenicity, accuracy, and specificity of gene therapies limit their clinical applications. In this article, we discuss the current status of gene therapy and recent advances that will likely affect the clinical application of gene therapy for the treatment of FH.
Baldwin, Austin S; Denman, Deanna C; Sala, Margarita; Marks, Emily G; Shay, L Aubree; Fuller, Sobha; Persaud, Donna; Lee, Simon Craddock; Skinner, Celette Sugg; Wiebe, Deborah J; Tiro, Jasmin A
2017-04-01
Self-persuasion is an effective behavior change strategy, but has not been translated for low-income, less educated, uninsured populations attending safety-net clinics or to promote human papillomavirus (HPV) vaccination. We developed a tablet-based application (in English and Spanish) to elicit parental self-persuasion for adolescent HPV vaccination and evaluated its feasibility in a safety-net population. Parents (N=45) of age-eligible adolescents used the self-persuasion application. Then, during cognitive interviews, staff gathered quantitative and qualitative feedback on the self-persuasion tasks including parental decision stage. The self-persuasion tasks were rated as easy to complete and helpful. We identified six question prompts rated as uniformly helpful, not difficult to answer, and generated non-redundant responses from participants. Among the 33 parents with unvaccinated adolescents, 27 (81.8%) reported deciding to get their adolescent vaccinated after completing the self-persuasion tasks. The self-persuasion application was feasible and resulted in a change in parents' decision stage. Future studies can now test the efficacy of the tablet-based application on HPV vaccination. The self-persuasion application facilitates verbalization of reasons for HPV vaccination in low literacy, safety-net settings. This self-administered application has the potential to be more easily incorporated into clinical practice than other patient education approaches. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Therapeutic Applications of the Mobile Phone
ERIC Educational Resources Information Center
Preziosa, Alessandra; Grassi, Alessandra; Gaggioli, Andrea; Riva, Giuseppe
2009-01-01
As the availability of new communication technologies increases, mental health professionals have incorporated these innovations into their practice and research. Up to now several studies have presented promising results in using the power and convenience of the Internet for clinical care. While multiple contributions focus on the potential and…
The Challenge and Potential of Metagenomics in the Clinic
Mulcahy-O’Grady, Heidi; Workentine, Matthew L.
2016-01-01
The bacteria, fungi, and viruses that live on and in us have a tremendous impact on our day-to-day health and are often linked to many diseases, including autoimmune disorders and infections. Diagnosing and treating these disorders relies on accurate identification and characterization of the microbial community. Current sequencing technologies allow the sequencing of the entire nucleic acid complement of a sample providing an accurate snapshot of the community members present in addition to the full genetic potential of that microbial community. There are a number of clinical applications that stand to benefit from these data sets, such as the rapid identification of pathogens present in a sample. Other applications include the identification of antibiotic-resistance genes, diagnosis and treatment of gastrointestinal disorders, and many other diseases associated with bacterial, viral, and fungal microbiomes. Metagenomics also allows the physician to probe more complex phenotypes such as microbial dysbiosis with intestinal disorders and disruptions of the skin microbiome that may be associated with skin disorders. Many of these disorders are not associated with a single pathogen but emerge as a result of complex ecological interactions within microbiota. Currently, we understand very little about these complex phenotypes, yet clearly they are important and in some cases, as with fecal microbiota transplants in Clostridium difficile infections, treating the microbiome of the patient is effective. Here, we give an overview of metagenomics and discuss a number of areas where metagenomics is applicable in the clinic, and progress being made in these areas. This includes (1) the identification of unknown pathogens, and those pathogens particularly hard to culture, (2) utilizing functional information and gene content to understand complex infections such as Clostridium difficile, and (3) predicting antimicrobial resistance of the community using genetic determinants of resistance identified from the sequencing data. All of these applications rely on sophisticated computational tools, and we also discuss the importance of skilled bioinformatic support for the implementation and use of metagenomics in the clinic. PMID:26870044
Erwin, Paul Campbell; Sheeler, Lorinda; Lott, John M
2009-01-01
An outbreak of foodborne hepatitis A infection compelled two regional health departments in eastern Tennessee to implement an emergency mass clinic for providing hepatitis immune serum globulin (ISG) to several thousand potentially exposed people. For the mass clinic framework, we utilized the smallpox post-event clinic plans of the Centers for Disease Control and Prevention (CDC), although the plans had only been exercised for smallpox. Following CDC's guidelines for staffing and organizing the mass clinic, we provided 5,038 doses of ISG during a total of 24 hours of clinic operation, using 3,467 person-hours, or 1.45 ISG doses per person-hour-very close to the 1.58 doses per person-hour targeted in CDC's smallpox post-event clinic plans. The mass clinic showed that CDC's smallpox post-event clinic guidelines were feasible, practical, and adaptable to other mass clinic situations.
Takeda, Taizo; Takeda, Setsuko; Kakigi, Akinobu; Okada, Teruhiko; Nishioka, Rie; Taguchi, Daizo
2006-08-01
V2-antagonist (OPC-31260 (OPC)) application to the scala tympani reduced endolymphatic hydrops. In the present study, we investigated whether systemic administration or local infusion via the round window (RW application) of OPC would be more suitable for clinical use. In Experiment 1, the increase ratios of the cross-sectional area of the scala media of experimentally induced endolymphatic hydrops were quantitatively assessed among four groups of non-OPC application, RW application of xanthan gum, systemic application of OPC and RW application of OPC. In Experiment 2, the effects of systemic and RW applications of OPC on plasma vasopressin (p-VP) concentrations and plasma osmolality (p-OSM) were investigated. In Experiment 3, endocochlear DC potential (EP) was measured in guinea pigs with the RW application of OPC. Electron microscopic observations of the stria vascularis and the hair cells were also made. Both systemic and RW applications of OPC significantly reduced endolymphatic hydrops. However, systemic application resulted in the distension of the Reissner's membrane in the non-operated ear, which seemed to be caused by elevated p-VP levels resulting from the systemic application of OPC. In contrast, RW application of OPC produced no apparent toxic effects in the inner ear, as indicated electrophysiological or morphological changes. Thus, drug delivery via the round window is more useful for the clinical application of OPC for medical decompression.
Study on traditional Chinese medicine theory of lung being connected with large intestine.
Liu, Ping; Wang, Ping; Tian, Daizhi; Liu, Junfeng; Chen, Gang; Liu, Songlin
2012-09-01
The theory of lung being connected with large intestine, which is a major topic in Traditional Chinese Medicine (TCM), has guided clinical practice for thousands of years in China. In this study, we analyzed the history, main contents, clinical application, and material basis of the theory, to attempt to improve the potential clinical significance of "lung being connected with large intestine" in China. The lung being connected with large intestine was first described in "Huang Di Nei Jing", and formed one of the basic theories of TCM. For thousands of years, the majority of TCM practitioners explored this theory continuously, leading to its development and use as an important theory in the guidance of TCM clinics In the last decade, researchers in the field of integrated TCM and Western medicine have studied clinical applications and biomedical mechanisms with experimental methods to explore the implications of the theory. With the further development of science and technology, research concerning the theory of lung being connected with large intestine will be greatly stimulated and contribute to the modernization of TCM.
The road ahead: working towards effective clinical translation of myocardial gene therapies
Katz, Michael G; Fargnoli, Anthony S; Williams, Richard D; Bridges, Charles R
2014-01-01
During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression. PMID:24341816
A CAD System for Hemorrhagic Stroke.
Nowinski, Wieslaw L; Qian, Guoyu; Hanley, Daniel F
2014-09-01
Computer-aided detection/diagnosis (CAD) is a key component of routine clinical practice, increasingly used for detection, interpretation, quantification and decision support. Despite a critical need, there is no clinically accepted CAD system for stroke yet. Here we introduce a CAD system for hemorrhagic stroke. This CAD system segments, quantifies, and displays hematoma in 2D/3D, and supports evacuation of hemorrhage by thrombolytic treatment monitoring progression and quantifying clot removal. It supports seven-step workflow: select patient, add a new study, process patient's scans, show segmentation results, plot hematoma volumes, show 3D synchronized time series hematomas, and generate report. The system architecture contains four components: library, tools, application with user interface, and hematoma segmentation algorithm. The tools include a contour editor, 3D surface modeler, 3D volume measure, histogramming, hematoma volume plot, and 3D synchronized time-series hematoma display. The CAD system has been designed and implemented in C++. It has also been employed in the CLEAR and MISTIE phase-III, multicenter clinical trials. This stroke CAD system is potentially useful in research and clinical applications, particularly for clinical trials.
Applications of nanotechnology in dermatology.
DeLouise, Lisa A
2012-03-01
What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintentional nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature suggest that the positive benefit of engineered nanoparticles for use in cosmetics and as tools for understanding skin biology and curing skin disease outweigh potential toxicity concerns. Discoveries reported in this journal are highlighted. This review begins with a general introduction to the field of nanotechnology and nanomedicine. This is followed by a discussion of the current state of understanding of nanoparticle skin penetration and their use in three therapeutic applications. Challenges that must be overcome to derive clinical benefit from the application of nanotechnology to skin are discussed last, providing perspective on the significant opportunity that exists for future studies in investigative dermatology.
Applications of Nanotechnology in Dermatology
DeLouise, Lisa A.
2014-01-01
What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintended nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature suggest that the positive benefit of engineered nanoparticles for use in cosmetics and as tools for understanding skin biology and curing skin disease, out weigh potential toxicity concerns. Discoveries reported in this journal are highlighted. This review begins with a general introduction to the field of nanotechnology and nanomedicine. This is followed by a discussion of the current state of understanding of nanoparticle skin penetration and their use in three different therapeutic applications. Challenges that must be overcome to derive clinical benefit from the application of nanotechnology to skin are discussed last, providing perspective on the significant opportunity that exists for future studies in investigative dermatology. PMID:22217738
Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy
2018-04-30
Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Visualizing blood vessel trees in three dimensions: clinical applications
NASA Astrophysics Data System (ADS)
Bullitt, Elizabeth; Aylward, Stephen
2005-04-01
A connected network of blood vessels surrounds and permeates almost every organ of the human body. The ability to define detailed blood vessel trees enables a variety of clinical applications. This paper discusses four such applications and some of the visualization challenges inherent to each. Guidance of endovascular surgery: 3D vessel trees offer important information unavailable by traditional x-ray projection views. How best to combine the 2- and 3D image information is unknown. Planning/guidance of tumor surgery: During tumor resection it is critical to know which blood vessels can be interrupted safely and which cannot. Providing efficient, clear information to the surgeon together with measures of uncertainty in both segmentation and registration can be a complex problem. Vessel-based registration: Vessel-based registration allows pre-and intraoperative images to be registered rapidly. The approach both provides a potential solution to a difficult clinical dilemma and offers a variety of visualization opportunities. Diagnosis/staging of disease: Almost every disease affects blood vessel morphology. The statistical analysis of vessel shape may thus prove to be an important tool in the noninvasive analysis of disease. A plethora of information is available that must be presented meaningfully to the clinician. As medical image analysis methods increase in sophistication, an increasing amount of useful information of varying types will become available to the clinician. New methods must be developed to present a potentially bewildering amount of complex data to individuals who are often accustomed to viewing only tissue slices or flat projection views.
Pupillary motility: bringing neuroscience to the psychiatry clinic of the future.
Graur, Simona; Siegle, Greg
2013-08-01
Modern pupillometry has expanded the study and utility of pupil responses in many new domains, including psychiatry, particularly for understanding aspects of cognitive and emotional information processing. Here, we review the applications of pupillometry in psychiatry for understanding patients' information processing styles, predicting treatment, and augmenting function. In the past year pupillometry has been shown to be useful in specifying cognitive/affective occurrences during experimental tasks and informing clinical diagnoses. Such studies demonstrate the potential of pupillary motility to be used in clinical psychiatry much as it has been in neurology for the past century.
Developing and delivering clinical pharmacology in pharmaceutical companies.
Richards, Duncan
2012-06-01
The challenges of developing new medicines are well known. Effective application of clinical pharmacology expertise is vital to the successful evaluation of potential new medicines. In drug development, this depends on effective integration of diverse skills. Many of these are currently in short supply, but through innovative partnerships between industry and academia there is an opportunity to reinvigorate the discipline by nurturing these key skills to the benefit of both partners. Specific areas of focus should be experimental medicine, modelling and simulation, and translational skills. © 2012 The Author. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Found in translation: Integrating laboratory and clinical oncology research
Wagner, H
2008-01-01
Translational research in medicine aims to inform the clinic and the laboratory with the results of each other’s work, and to bring promising and validated new therapies into clinical application. While laudable in intent, this is complicated in practice and the current state of translational research in cancer shows both striking success stories and examples of the numerous potential obstacles as well as opportunities for delays and errors in translation. This paper reviews the premises, promises, and problems of translational research with a focus on radiation oncology and suggests opportunities for improvements in future research design. PMID:21611010
Myung, Ja Hye; Park, Sin-Jung; Wang, Andrew Z; Hong, Seungpyo
2017-12-13
Circulating tumor cells (CTCs) have received a great deal of scientific and clinical attention as a biomarker for diagnosis and prognosis of many types of cancer. Given their potential significance in clinics, a variety of detection methods, utilizing the recent advances in nanotechnology and microfluidics, have been introduced in an effort of achieving clinically significant detection of CTCs. However, effective detection and isolation of CTCs still remain a tremendous challenge due to their extreme rarity and phenotypic heterogeneity. Among many approaches that are currently under development, this review paper focuses on a unique, promising approach that takes advantages of naturally occurring processes achievable through application of nanotechnology to realize significant improvement in sensitivity and specificity of CTC capture. We provide an overview of successful outcome of this biomimetic CTC capture system in detection of tumor cells from in vitro, in vivo, and clinical pilot studies. We also emphasize the clinical impact of CTCs as biomarkers in cancer diagnosis and predictive prognosis, which provides a cost-effective, minimally invasive method that potentially replaces or supplements existing methods such as imaging technologies and solid tissue biopsy. In addition, their potential prognostic values as treatment guidelines and that ultimately help to realize personalized therapy are discussed. Copyright © 2017. Published by Elsevier B.V.
Zhang, Yi-Fan; Gou, Ling; Tian, Yu; Li, Tian-Chang; Zhang, Mao; Li, Jing-Song
2016-05-01
Clinical decision support (CDS) systems provide clinicians and other health care stakeholders with patient-specific assessments or recommendations to aid in the clinical decision-making process. Despite their demonstrated potential for improving health care quality, the widespread availability of CDS systems has been limited mainly by the difficulty and cost of sharing CDS knowledge among heterogeneous healthcare information systems. The purpose of this study was to design and develop a sharable clinical decision support (S-CDS) system that meets this challenge. The fundamental knowledge base consists of independent and reusable knowledge modules (KMs) to meet core CDS needs, wherein each KM is semantically well defined based on the standard information model, terminologies, and representation formalisms. A semantic web service framework was developed to identify, access, and leverage these KMs across diverse CDS applications and care settings. The S-CDS system has been validated in two distinct client CDS applications. Model-level evaluation results confirmed coherent knowledge representation. Application-level evaluation results reached an overall accuracy of 98.66 % and a completeness of 96.98 %. The evaluation results demonstrated the technical feasibility and application prospect of our approach. Compared with other CDS engineering efforts, our approach facilitates system development and implementation and improves system maintainability, scalability and efficiency, which contribute to the widespread adoption of effective CDS within the healthcare domain.
Recent technological updates and clinical applications of induced pluripotent stem cells.
Diecke, Sebastian; Jung, Seung Min; Lee, Jaecheol; Ju, Ji Hyeon
2014-09-01
Induced pluripotent stem cells (iPSCs) were first described in 2006 and have since emerged as a promising cell source for clinical applications. The rapid progression in iPSC technology is still ongoing and directed toward increasing the efficacy of iPSC production and reducing the immunogenic and tumorigenic potential of these cells. Enormous efforts have been made to apply iPSC-based technology in the clinic, for drug screening approaches and cell replacement therapy. Moreover, disease modeling using patient-specific iPSCs continues to expand our knowledge regarding the pathophysiology and prospective treatment of rare disorders. Furthermore, autologous stem cell therapy with patient-specific iPSCs shows great propensity for the minimization of immune reactions and the provision of a limitless supply of cells for transplantation. In this review, we discuss the recent updates in iPSC technology and the use of iPSCs in disease modeling and regenerative medicine.
Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.
Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S
2014-01-01
Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.
Liquid biopsy genotyping in lung cancer: ready for clinical utility?
Ho, Chung-Liang; Wei, Fang; Wong, David T.; Su, Wu-Chou; Lin, Chien-Chung
2017-01-01
Liquid biopsy is a blood test that detects evidence of cancer cells or tumor DNA in the circulation. Despite complicated collection methods and the requirement for technique-dependent platforms, it has generated substantial interest due, in part, to its potential to detect driver oncogenes such as epidermal growth factor receptor (EGFR) mutants in lung cancer. This technology is advancing rapidly and is being incorporated into numerous EGFR tyrosine kinase inhibitor (EGFR-TKI) development programs. It appears ready for integration into clinical care. Recent studies have demonstrated that biological fluids such as saliva and urine can also be used for detecting EGFR mutant DNA through application other user-friendly techniques. This review focuses on the clinical application of liquid biopsies to lung cancer genotyping, including EGFR and other targets of genotype-directed therapy and compares multiple platforms used for liquid biopsy. PMID:28099915
Imaging of femoroacetabular impingement-current concepts
Albers, Christoph E.; Wambeek, Nicholas; Hanke, Markus S.; Schmaranzer, Florian; Prosser, Gareth H.; Yates, Piers J.
2016-01-01
Following the recognition of femoroacetabular impingement (FAI) as a clinical entity, diagnostic tools have continuously evolved. While the diagnosis of FAI is primarily made based on the patients’ history and clinical examination, imaging of FAI is indispensable. Routine diagnostic work-up consists of a set of plain radiographs, magnetic resonance imaging (MRI) and MR-arthrography. Recent advances in MRI technology include biochemically sensitive sequences bearing the potential to detect degenerative changes of the hip joint at an early stage prior to their appearance on conventional imaging modalities. Computed tomography may serve as an adjunct. Advantages of CT include superior bone to soft tissue contrast, making CT applicable for image-guiding software tools that allow evaluation of the underlying dynamic mechanisms causing FAI. This article provides a summary of current concepts of imaging in FAI and a review of the literature on recent advances, and their application to clinical practice. PMID:29632685
Application of exercise ECG stress test in the current high cost modern-era healthcare system.
Vaidya, Gaurang Nandkishor
Exercise electrocardiogram (ECG) tests boasts of being more widely available, less resource intensive, lower cost and absence of radiation. In the presence of a normal baseline ECG, an exercise ECG test is able to generate a reliable and reproducible result almost comparable to Technitium-99m sestamibi perfusion imaging. Exercise ECG changes when combined with other clinical parameters obtained during the test has the potential to allow effective redistribution of scarce resources by excluding low risk patients with significant accuracy. As we look towards a future of rising healthcare costs, increased prevalence of cardiovascular disease and the need for proper allocation of limited resources; exercise ECG test offers low cost, vital and reliable disease interpretation. This article highlights the physiology of the exercise ECG test, patient selection, effective interpretation, describe previously reported scores and their clinical application in today's clinical practice. Copyright © 2017. Published by Elsevier B.V.
Structural equation modeling in pediatric psychology: overview and review of applications.
Nelson, Timothy D; Aylward, Brandon S; Steele, Ric G
2008-08-01
To describe the use of structural equation modeling (SEM) in the Journal of Pediatric Psychology (JPP) and to discuss the usefulness of SEM applications in pediatric psychology research. The use of SEM in JPP between 1997 and 2006 was examined and compared to leading journals in clinical psychology, clinical child psychology, and child development. SEM techniques were used in <4% of the empirical articles appearing in JPP between 1997 and 2006. SEM was used less frequently in JPP than in other clinically relevant journals over the past 10 years. However, results indicated a recent increase in JPP studies employing SEM techniques. SEM is an under-utilized class of techniques within pediatric psychology research, although investigations employing these methods are becoming more prevalent. Despite its infrequent use to date, SEM is a potentially useful tool for advancing pediatric psychology research with a number of advantages over traditional statistical methods.
Hodges, Romilly E; Minich, Deanna M
2015-01-01
Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent.
Hodges, Romilly E.; Minich, Deanna M.
2015-01-01
Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent. PMID:26167297
Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo.
Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V
2012-08-01
At present, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures that provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high-resolution images, but also is safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically relevant depths, ideal for imaging soft tissues. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, thereby enabling multimodality imaging with complementary contrast. Here we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and show its ability to image internal organs in vivo, thus illustrating its potential clinical application.
Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo
Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.
2013-01-01
Presently, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures which provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high resolution images, it is also safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically-specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically-relevant depths, ideal for soft tissue imaging. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, enabling multi-modality imaging with complementary contrast. Here, we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and demonstrate its ability to image internal organs in vivo, illustrating its potential clinical application. PMID:22797808
Biosensors in Clinical Practice: Focus on Oncohematology
Fracchiolla, Nicola S.; Artuso, Silvia; Cortelezzi, Agostino
2013-01-01
Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice. PMID:23673681
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Erin Shammel; Burnum-Johnson, Kristin E.; Jacobs, Jon M.
Rapid diagnosis of disease states using less invasive, safer, and more clinically acceptable approaches than presently employed is an imperative goal for the field of medicine. While mass spectrometry (MS)-based proteomics approaches have attempted to meet these objectives, challenges such as the enormous dynamic range of protein concentrations in clinically relevant biofluid samples coupled with the need to address human biodiversity have slowed their employment. Herein, we report on the use of a new platform that addresses these challenges by coupling technical advances in rapid gas phase multiplexed ion mobility spectrometry (IMS) separations [1, 2] with liquid chromatography (LC) andmore » MS to dramatically increase measurement sensitivity and throughput, further enabling future MS-based clinical applications. An initial application of the LC-IMS-MS platform for the analysis of blood serum samples from stratified post-liver transplant patients with recurrent fibrosis progression illustrates its potential utility for disease characterization and use in personalized medicine [3, 4].« less
Heslop, Emma; Csimma, Cristina; Straub, Volker; McCall, John; Nagaraju, Kanneboyina; Wagner, Kathryn R; Caizergues, Didier; Korinthenberg, Rudolf; Flanigan, Kevin M; Kaufmann, Petra; McNeil, Elizabeth; Mendell, Jerry; Hesterlee, Sharon; Wells, Dominic J; Bushby, Kate
2015-04-23
Despite multiple publications on potential therapies for neuromuscular diseases (NMD) in cell and animal models only a handful reach clinical trials. The ability to prioritise drug development according to objective criteria is particularly critical in rare diseases with large unmet needs and a limited numbers of patients who can be enrolled into clinical trials. TREAT-NMD Advisory Committee for Therapeutics (TACT) was established to provide independent and objective guidance on the preclinical and development pathway of potential therapies (whether novel or repurposed) for NMD.We present our experience in the establishment and operation of the TACT. TACT provides a unique resource of recognized experts from multiple disciplines. The goal of each TACT review is to help the sponsor to position the candidate compound along a realistic and well-informed plan to clinical trials, and eventual registration. The reviews and subsequent recommendations are focused on generating meaningful and rigorous data that can enable clear go/no-go decisions and facilitate longer term funding or partnering opportunities. The review process thereby acts to comment on viability, de-risking the process of proceeding on a development programme.To date TACT has held 10 review meeting and reviewed 29 program applications in several rare neuromuscular diseases: Of the 29 programs reviewed, 19 were from industry and 10 were from academia; 15 were for novel compounds and 14 were for repurposed drugs; 16 were small molecules and 13 were biologics; 14 were preclinical stage applications and 15 were clinical stage applications. 3 had received Orphan drug designation from European Medicines Agency and 3 from Food and Drug Administration. A number of recurrent themes emerged over the course of the reviews and we found that applicants frequently require advice and education on issues concerned with preclinical standard operating procedures, interactions with regulatory agencies, formulation, repurposing, clinical trial design, manufacturing and ethics.Over the 5 years since its establishment TACT has amassed a body of experience that can be extrapolated to other groups of rare diseases to improve the community's chances of successfully bringing new rare disease drugs to registration and ultimately to market.
Magnetic hydrogel nanocomposites and composite nanoparticles--a review of recent patented works.
Daniel-da-Silva, Ana L; Carvalho, Rui S; Trindade, Tito
2013-06-01
Magnetic hydrogel nanocomposites and composite nanoparticles form a class of soft materials with remote controllable properties that have attracted great attention due to their potential use in diverse applications. These include medical applications such as controlled drug delivery, clinical imaging and cancer hyperthermia and ecological applications as well, such as wastewater treatment. The present review provides an overview of the patents disclosed and research work developed in the last decade on magnetic hydrogel nanocomposites and magnetic hydrogel composite nanoparticles envisaging the above mentioned applications. In this context, recent patented advances on chemical methods for the preparation of bulk hydrogel nanocomposites and composite nanoparticles will be reviewed.
Review of MR Elastography Applications and Recent Developments
Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.
2012-01-01
The technique of MR elastography (MRE) has emerged as a useful modality for quantitatively imaging the mechanical properties of soft tissues in vivo. Recently, MRE has been introduced as a clinical tool for evaluating chronic liver disease, but many other potential applications are being explored. These applications include measuring tissue changes associated with diseases of the liver, breast, brain, heart, and skeletal muscle including both focal lesions (e.g., hepatic, breast, and brain tumors) and diffuse diseases (e.g., fibrosis and multiple sclerosis). The purpose of this review article is to summarize some of the recent developments of MRE and to highlight some emerging applications. PMID:22987755
Engineering growth factors for regenerative medicine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.
Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less