Sample records for potential cluster model

  1. Comparison of Cluster, Slab, and Analytic Potential Models for the Dimethyl Methylphosphonate (DMMP)/TiO2 (110) Intermolecular Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Tunega, Daniel; Xu, Lai

    2013-08-29

    In a previous study (J. Phys. Chem. C 2011, 115, 12403) cluster models for the TiO2 rutile (110) surface and MP2 calculations were used to develop an analytic potential energy function for dimethyl methylphosphonate (DMMP) interacting with this surface. In the work presented here, this analytic potential and MP2 cluster models are compared with DFT "slab" calculations for DMMP interacting with the TiO2 (110) surface and with DFT cluster models for the TiO2 (110) surface. The DFT slab calculations were performed with the PW91 and PBE functionals. The analytic potential gives DMMP/ TiO2 (110) potential energy curves in excellent agreementmore » with those obtained from the slab calculations. The cluster models for the TiO2 (110) surface, used for the MP2 calculations, were extended to DFT calculations with the B3LYP, PW91, and PBE functional. These DFT calculations do not give DMMP/TiO2 (110) interaction energies which agree with those from the DFT slab calculations. Analyses of the wave functions for these cluster models show that they do not accurately represent the HOMO and LUMO for the surface, which should be 2p and 3d orbitals, respectively, and the models also do not give an accurate band gap. The MP2 cluster models do not accurately represent the LUMO and that they give accurate DMMP/TiO2 (110) interaction energies is apparently fortuitous, arising from their highly inaccurate band gaps. Accurate cluster models, consisting of 7, 10, and 15 Ti-atoms and which have the correct HOMO and LUMO properties, are proposed. The work presented here illustrates the care that must be taken in "constructing" cluster models which accurately model surfaces.« less

  2. The effect of mining data k-means clustering toward students profile model drop out potential

    NASA Astrophysics Data System (ADS)

    Purba, Windania; Tamba, Saut; Saragih, Jepronel

    2018-04-01

    The high of student success and the low of student failure can reflect the quality of a college. One of the factors of fail students was drop out. To solve the problem, so mining data with K-means Clustering was applied. K-Means Clustering method would be implemented to clustering the drop out students potentially. Firstly the the result data would be clustering to get the information of all students condition. Based on the model taken was found that students who potentially drop out because of the unexciting students in learning, unsupported parents, diffident students and less of students behavior time. The result of process of K-Means Clustering could known that students who more potentially drop out were in Cluster 1 caused Credit Total System, Quality Total, and the lowest Grade Point Average (GPA) compared between cluster 2 and 3.

  3. Testing a generalized cubic Galileon gravity model with the Coma Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terukina, Ayumu; Yamamoto, Kazuhiro; Okabe, Nobuhiro

    2015-10-01

    We obtain a constraint on the parameters of a generalized cubic Galileon gravity model exhibiting the Vainshtein mechanism by using multi-wavelength observations of the Coma Cluster. The generalized cubic Galileon model is characterized by three parameters of the turning scale associated with the Vainshtein mechanism, and the amplitude of modifying a gravitational potential and a lensing potential. X-ray and Sunyaev-Zel'dovich (SZ) observations of the intra-cluster medium are sensitive to the gravitational potential, while the weak-lensing (WL) measurement is specified by the lensing potential. A joint fit of a complementary multi-wavelength dataset of X-ray, SZ and WL measurements enables us tomore » simultaneously constrain these three parameters of the generalized cubic Galileon model for the first time. We also find a degeneracy between the cluster mass parameters and the gravitational modification parameters, which is influential in the limit of the weak screening of the fifth force.« less

  4. Nuclear quantum effects in water clusters: the role of the molecular flexibility.

    PubMed

    González, Briesta S; Noya, Eva G; Vega, Carlos; Sesé, Luis M

    2010-02-25

    With the objective of establishing the importance of water flexibility in empirical models which explicitly include nuclear quantum effects, we have carried out path integral Monte Carlo simulations in water clusters with up to seven molecules. Two recently developed models have been used for comparison: the rigid TIP4PQ/2005 and the flexible q-TIP4P/F models, both inspired by the rigid TIP4P/2005 model. To obtain a starting configuration for our simulations, we have located the global minima for the rigid TIP4P/2005 and TIP4PQ/2005 models and for the flexible q-TIP4P/F model. All the structures are similar to those predicted by the rigid TIP4P potential showing that the charge distribution mainly determines the global minimum structure. For the flexible q-TIP4P/F model, we have studied the geometrical distortion upon isotopic substitution by studying tritiated water clusters. Our results show that tritiated water clusters exhibit an r(OT) distance shorter than the r(OH) distance in water clusters, not significant changes in the Phi(HOH) angle, and a lower average dipole moment than water clusters. We have also carried out classical simulations with the rigid TIP4PQ/2005 model showing that the rotational kinetic energy is greatly affected by quantum effects, but the translational kinetic energy is only slightly modified. The potential energy is also noticeably higher than in classical simulations. Finally, as a concluding remark, we have calculated the formation energies of water clusters using both models, finding that the formation energies predicted by the rigid TIP4PQ/2005 model are lower by roughly 0.6 kcal/mol than those of the flexible q-TIP4P/F model for clusters of moderate size, the origin of this difference coming mainly from the geometrical distortion of the water molecule in the clusters that causes an increase in the intramolecular potential energy.

  5. Control of clustered action potential firing in a mathematical model of entorhinal cortex stellate cells.

    PubMed

    Tait, Luke; Wedgwood, Kyle; Tsaneva-Atanasova, Krasimira; Brown, Jon T; Goodfellow, Marc

    2018-07-14

    The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia have revealed disruption of organised dorsoventral gradients in clustered action potential firing. To better understand the mechanisms underpinning these different dynamics, we study a conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture quantitative differences in clustered action potential firing patterns recorded from experimental models of tau pathology and healthy animals. The differential equation formulation of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP conductance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Galaxy cluster lensing masses in modified lensing potentials

    DOE PAGES

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; ...

    2015-10-28

    In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentrationmore » and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.« less

  7. Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron-Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis.

    PubMed

    Artz, Jacob H; Mulder, David W; Ratzloff, Michael W; Lubner, Carolyn E; Zadvornyy, Oleg A; LeVan, Axl X; Williams, S Garrett; Adams, Michael W W; Jones, Anne K; King, Paul W; Peters, John W

    2017-07-19

    An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H 2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (∼ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fd ox /Fd red ratio at which CpI can operate, consistent with the role of CpI in recycling Fd red that accumulates during fermentation. Subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.

  8. Scalar Potential Model progress

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2007-04-01

    Because observations of galaxies and clusters have been found inconsistent with General Relativity (GR), the focus of effort in developing a Scalar Potential Model (SPM) has been on the examination of galaxies and clusters. The SPM has been found to be consistent with cluster cellular structure, the flow of IGM from spiral galaxies to elliptical galaxies, intergalactic redshift without an expanding universe, discrete redshift, rotation curve (RC) data without dark matter, asymmetric RCs, galaxy central mass, galaxy central velocity dispersion, and the Pioneer Anomaly. In addition, the SPM suggests a model of past expansion, past contraction, and current expansion of the universe. GR corresponds to the SPM in the limit in which a flat and static scalar potential field replaces the Sources and Sinks such as between clusters and on the solar system scale which is small relative to the distance to a Source. The papers may be viewed at http://web.infoave.net/˜scjh/ .

  9. MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian

    2017-01-01

    We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.

  10. A "First Principles" Potential Energy Surface for Liquid Water from VRT Spectroscopy of Water Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, N; Leforestier, C; Saykally, R J

    We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface. VRT(ASP-W)III is shown to not only be a model of high ''spectroscopic'' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared to those from ab initio Molecular Dynamics, other potentials of ''spectroscopic'' accuracy, and to experiment. The results herein represent the first time that a ''spectroscopic'' potential surface is able to correctly model condensed phase properties of water.

  11. Exponential Potential versus Dark Matter

    DTIC Science & Technology

    1993-10-15

    scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the

  12. Nuclear Potential Clustering As a New Tool to Detect Patterns in High Dimensional Datasets

    NASA Astrophysics Data System (ADS)

    Tonkova, V.; Paulus, D.; Neeb, H.

    2013-02-01

    We present a new approach for the clustering of high dimensional data without prior assumptions about the structure of the underlying distribution. The proposed algorithm is based on a concept adapted from nuclear physics. To partition the data, we model the dynamic behaviour of nucleons interacting in an N-dimensional space. An adaptive nuclear potential, comprised of a short-range attractive (strong interaction) and a long-range repulsive term (Coulomb force) is assigned to each data point. By modelling the dynamics, nucleons that are densely distributed in space fuse to build nuclei (clusters) whereas single point clusters repel each other. The formation of clusters is completed when the system reaches the state of minimal potential energy. The data are then grouped according to the particles' final effective potential energy level. The performance of the algorithm is tested with several synthetic datasets showing that the proposed method can robustly identify clusters even when complex configurations are present. Furthermore, quantitative MRI data from 43 multiple sclerosis patients were analyzed, showing a reasonable splitting into subgroups according to the individual patients' disease grade. The good performance of the algorithm on such highly correlated non-spherical datasets, which are typical for MRI derived image features, shows that Nuclear Potential Clustering is a valuable tool for automated data analysis, not only in the MRI domain.

  13. Formation patterns of water clusters in CMK-3 and CMK-5 mesoporous carbons: a computational recognition study.

    PubMed

    Peng, Xuan; Jain, Surendra Kumar; Singh, Jayant Kumar; Liu, Anqi; Jin, Qibing

    2018-06-13

    Grand canonical Monte Carlo simulations are performed to study the adsorption of water in realistic CMK-3 and CMK-5 models at 300 K. The adsorption isotherms are characterized by negligible uptake at lower chemical potentials and complete pore filling once the threshold chemical potential is increased. Results for the isosteric heat of adsorption, radial distribution function (O-O and O-H), hydrogen bond statistics and the cluster size distribution of water molecules are presented. The snapshots of GCMC simulations in CMK-3 and CMK-5 models show that the adsorption happens via the formation of water clusters. For the CMK-3 model, it was found that the pore filling occurred via the formation of a single water cluster and a few very small clusters. The water cluster size increased with an increase in pore size of the CMK-3 model. For the CMK-5 model, it was found that the adsorption first occurred in the inner porosity (via cluster formation). There was no adsorption of water in the outer porosity during the filling of the inner porosity. After the inner porosity was completely filled, the water begins to fill the outer porosity. Snapshots from GCMC simulations of the CMK-5 model clearly show that the water adsorption in the outer porosity occurs via the formation and growth of clusters and there was no formation of layers of water in the porosity as seen for nonpolar fluids like nitrogen.

  14. On the calculation of the energies of dissociation, cohesion, vacancy formation, electron attachment, and the ionization potential of small metallic clusters containing a monovacancy

    NASA Astrophysics Data System (ADS)

    Pogosov, V. V.; Reva, V. I.

    2017-09-01

    In terms of the model of stable jellium, self-consistent calculations of spatial distributions of electrons and potentials, as well as of energies of dissociation, cohesion, vacancy formation, electron attachment, and ionization potentials of solid clusters of Mg N , Li N (with N ≤ 254 ) and of clusters containing a vacancy ( N ≥ 12) have been performed. The contribution of a monovacancy to the energy of the cluster and size dependences of its characteristics and of asymptotics have been discussed. Calculations have been performed using a SKIT-3 cluster at Glushkov Institute of Cybernetics, National Academy of Sciences, Ukraine (Rpeak = 7.4 Tflops).

  15. Semiempirical limits on the thermal conductivity of intracluster gas

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Hughes, John P.; Tucker, Wallace H.

    1992-01-01

    A semiempirical method for establishing lower limits on the thermal conductivity of hot gas in clusters of galaxies is described. The method is based on the observation that the X-ray imaging data (e.g., Einstein IPC) for clusters are well described by the hydrostatic-isothermal beta model, even for cooling flow clusters beyond about one core radius. In addition, there are strong indications that noncooling flow clusters (like the Coma Cluster) have a large central region (up to several core radii) of nearly constant gas temperature. This suggests that thermal conduction is an effective means of transporting and redistributing the thermal energy of the gas. This in turn has implications for the extent to which magnetic fields in the cluster are effective in reducing the thermal conductivity of the gas. Time-dependent hydrodynamic simulations for the gas in the Coma Cluster under two separate evolutionary scenarios are presented. One scenario assumes that the cluster potential is static and that the gas has an initial adiabatic distribution. The second scenario uses an evolving cluster potential. These models along with analytic results show that the thermal conductivity of the gas in the Coma Cluster cannot be less than 0.1 of full Spitzer conductivity. These models also show that high gas conductivity assists rather than hinders the development of radiative cooling in the central regions of clusters.

  16. A cluster expansion model for predicting activation barrier of atomic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit, E-mail: achatter@iitk.ac.in

    2013-06-15

    We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEBmore » results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog.« less

  17. Research on potential user identification model for electric energy substitution

    NASA Astrophysics Data System (ADS)

    Xia, Huaijian; Chen, Meiling; Lin, Haiying; Yang, Shuo; Miao, Bo; Zhu, Xinzhi

    2018-01-01

    The implementation of energy substitution plays an important role in promoting the development of energy conservation and emission reduction in china. Energy service management platform of alternative energy users based on the data in the enterprise production value, product output, coal and other energy consumption as a potential evaluation index, using principal component analysis model to simplify the formation of characteristic index, comprehensive index contains the original variables, and using fuzzy clustering model for the same industry user’s flexible classification. The comprehensive index number and user clustering classification based on constructed particle optimization neural network classification model based on the user, user can replace electric potential prediction. The results of an example show that the model can effectively predict the potential of users’ energy potential.

  18. A 'first principles' potential energy surface for liquid water from VRT spectroscopy of water clusters.

    PubMed

    Goldman, Nir; Leforestier, Claude; Saykally, R J

    2005-02-15

    We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface (the third fitting of the Anisotropic Site Potential with Woermer dispersion to vibration-rotation-tunnelling data). VRT(ASP-W)III is shown to not only be a model of high 'spectroscopic' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared with those from ab initio molecular dynamics, other potentials of 'spectroscopic' accuracy and with experiment. The results herein represent the first time to the authors' knowledge that a 'spectroscopic' potential surface is able to correctly model condensed phase properties of water.

  19. Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron–Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artz, Jacob H.; Mulder, David W.; Ratzloff, Michael W.

    An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H 2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentialsmore » for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (~ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fd ox/Fd red ratio at which CpI can operate, consistent with the role of CpI in recycling Fd redthat accumulates during fermentation. In conclusion, subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.« less

  20. Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron–Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis

    DOE PAGES

    Artz, Jacob H.; Mulder, David W.; Ratzloff, Michael W.; ...

    2017-06-21

    An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H 2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentialsmore » for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (~ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fd ox/Fd red ratio at which CpI can operate, consistent with the role of CpI in recycling Fd redthat accumulates during fermentation. In conclusion, subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.« less

  1. Limit on graviton mass from galaxy cluster Abell 1689

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu

    2018-02-01

    To date, the only limit on graviton mass using galaxy clusters was obtained by Goldhaber and Nieto in 1974, using the fact that the orbits of galaxy clusters are bound and closed, and extend up to 580 kpc. From positing that only a Newtonian potential gives rise to such stable bound orbits, a limit on the graviton mass m_g<10^{-29} eV was obtained (PRD 9,1119, 1974). Recently, it has been shown that one can obtain closed bound orbits for Yukawa potential (arXiv:1705.02444), thus invalidating the main ansatz used in Goldhaber and Nieto to obtain the graviton mass bound. In order to obtain a revised estimate using galaxy clusters, we use dynamical mass models of the Abell 1689 (A1689) galaxy cluster to check their compatibility with a Yukawa gravitational potential. We assume mass models for the gas, dark matter, and galaxies for A1689 from arXiv:1703.10219 and arXiv:1610.01543, who used this cluster to test various alternate gravity theories, which dispense with the need for dark matter. We quantify the deviations in the acceleration profile using these mass models assuming a Yukawa potential and that obtained assuming a Newtonian potential by calculating the χ^2 residuals between the two profiles. Our estimated bound on the graviton mass (m_g) is thereby given by, m_g < 1.37 × 10^{-29} eV or in terms of the graviton Compton wavelength of, λ_g>9.1 × 10^{19} km at 90% confidence level.

  2. To Aggregate or Not and Potentially Better Questions for Clustered Data: The Need for Hierarchical Linear Modeling in CTE Research

    ERIC Educational Resources Information Center

    Nimon, Kim

    2012-01-01

    Using state achievement data that are openly accessible, this paper demonstrates the application of hierarchical linear modeling within the context of career technical education research. Three prominent approaches to analyzing clustered data (i.e., modeling aggregated data, modeling disaggregated data, modeling hierarchical data) are discussed…

  3. On the use of big-bang method to generate low-energy structures of atomic clusters modeled with pair potentials of different ranges.

    PubMed

    Marques, J M C; Pais, A A C C; Abreu, P E

    2012-02-05

    The efficiency of the so-called big-bang method for the optimization of atomic clusters is analysed in detail for Morse pair potentials with different ranges; here, we have used Morse potentials with four different ranges, from long- ρ = 3) to short-ranged ρ = 14) interactions. Specifically, we study the efficacy of the method in discovering low-energy structures, including the putative global minimum, as a function of the potential range and the cluster size. A new global minimum structure for long-ranged ρ = 3) Morse potential at the cluster size of n= 240 is reported. The present results are useful to assess the maximum cluster size for each type of interaction where the global minimum can be discovered with a limited number of big-bang trials. Copyright © 2011 Wiley Periodicals, Inc.

  4. Study of lithium cation in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.

    PubMed

    Li, Xin; Yang, Zhong-Zhi

    2005-05-12

    We present a potential model for Li(+)-water clusters based on a combination of the atom-bond electronegativity equalization and molecular mechanics (ABEEM/MM) that is to take ABEEM charges of the cation and all atoms, bonds, and lone pairs of water molecules into the intermolecular electrostatic interaction term in molecular mechanics. The model allows point charges on cationic site and seven sites of an ABEEM-7P water molecule to fluctuate responding to the cluster geometry. The water molecules in the first sphere of Li(+) are strongly structured and there is obvious charge transfer between the cation and the water molecules; therefore, the charge constraint on the ionic cluster includes the charged constraint on the Li(+) and the first-shell water molecules and the charge neutrality constraint on each water molecule in the external hydration shells. The newly constructed potential model based on ABEEM/MM is first applied to ionic clusters and reproduces gas-phase state properties of Li(+)(H(2)O)(n) (n = 1-6 and 8) including optimized geometries, ABEEM charges, binding energies, frequencies, and so on, which are in fair agreement with those measured by available experiments and calculated by ab initio methods. Prospects and benefits introduced by this potential model are pointed out.

  5. Energy Characteristics of Small Metal Clusters Containing Vacancies

    NASA Astrophysics Data System (ADS)

    Reva, V. I.; Pogosov, V. V.

    2018-02-01

    Self-consistent calculations of spatial distributions of electrons, potentials, and energies of dissociation, cohesion, vacancy formation, and electron attachment, as well as the ionization potential of solid Al N , Na N clusters ( N ≥ 254), and clusters containing a vacancy ( N ≥ 12) have been performed using a model of stable jellium. The contribution of a monovacancy to the energy of the cluster, the size dependences of the characteristics, and their asymptotic forms have been considered. The calculations have been performed on the SKIT-3 cluster at the Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine (Rpeak = 7.4 Tflops).

  6. A spatial hazard model for cluster detection on continuous indicators of disease: application to somatic cell score.

    PubMed

    Gay, Emilie; Senoussi, Rachid; Barnouin, Jacques

    2007-01-01

    Methods for spatial cluster detection dealing with diseases quantified by continuous variables are few, whereas several diseases are better approached by continuous indicators. For example, subclinical mastitis of the dairy cow is evaluated using a continuous marker of udder inflammation, the somatic cell score (SCS). Consequently, this study proposed to analyze spatialized risk and cluster components of herd SCS through a new method based on a spatial hazard model. The dataset included annual SCS for 34 142 French dairy herds for the year 2000, and important SCS risk factors: mean parity, percentage of winter and spring calvings, and herd size. The model allowed the simultaneous estimation of the effects of known risk factors and of potential spatial clusters on SCS, and the mapping of the estimated clusters and their range. Mean parity and winter and spring calvings were significantly associated with subclinical mastitis risk. The model with the presence of 3 clusters was highly significant, and the 3 clusters were attractive, i.e. closeness to cluster center increased the occurrence of high SCS. The three localizations were the following: close to the city of Troyes in the northeast of France; around the city of Limoges in the center-west; and in the southwest close to the city of Tarbes. The semi-parametric method based on spatial hazard modeling applies to continuous variables, and takes account of both risk factors and potential heterogeneity of the background population. This tool allows a quantitative detection but assumes a spatially specified form for clusters.

  7. The effect of different distance measures in detecting outliers using clustering-based algorithm for circular regression model

    NASA Astrophysics Data System (ADS)

    Di, Nur Faraidah Muhammad; Satari, Siti Zanariah

    2017-05-01

    Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.

  8. Radiative capture of proton by ^{12}C at low energy

    NASA Astrophysics Data System (ADS)

    Irgaziev, Bakhadir Fayzullaevich; Nabi, Jameel-Un; Kabir, Abdul

    2018-07-01

    Within the framework of potential cluster model, astrophysical S-factor of radiative capture reaction ^{12}C (p,γ)^{13}N has been calculated in the two body cluster model for the energy range 0-1 MeV. The nuclear interaction in the initial and final states is described by the Woods-Saxon potential. The calculated astrophysical S-factor and rates are compared with known experimental results.

  9. A model of metastable dynamics during ongoing and evoked cortical activity

    NASA Astrophysics Data System (ADS)

    La Camera, Giancarlo

    The dynamics of simultaneously recorded spike trains in alert animals often evolve through temporal sequences of metastable states. Little is known about the network mechanisms responsible for the genesis of such sequences, or their potential role in neural coding. In the gustatory cortex of alert rates, state sequences can be observed also in the absence of overt sensory stimulation, and thus form the basis of the so-called `ongoing activity'. This activity is characterized by a partial degree of coordination among neurons, sharp transitions among states, and multi-stability of single neurons' firing rates. A recurrent spiking network model with clustered topology can account for both the spontaneous generation of state sequences and the (network-generated) multi-stability. In the model, each network state results from the activation of specific neural clusters with potentiated intra-cluster connections. A mean field solution of the model shows a large number of stable states, each characterized by a subset of simultaneously active clusters. The firing rate in each cluster during ongoing activity depends on the number of active clusters, so that the same neuron can have different firing rates depending on the state of the network. Because of dense intra-cluster connectivity and recurrent inhibition, in finite networks the stable states lose stability due to finite size effects. Simulations of the dynamics show that the model ensemble activity continuously hops among the different states, reproducing the ongoing dynamics observed in the data. Moreover, when probed with external stimuli, the model correctly predicts the quenching of single neuron multi-stability into bi-stability, the reduction of dimensionality of the population activity, the reduction of trial-to-trial variability, and a potential role for metastable states in the anticipation of expected events. Altogether, these results provide a unified mechanistic model of ongoing and evoked cortical dynamics. NSF IIS-1161852, NIDCD K25-DC013557, NIDCD R01-DC010389.

  10. Tidal radii and destruction rates of globular clusters in the Milky Way due to bulge-bar and disk shocking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Edmundo; Pichardo, Bárbara; Velázquez, Héctor

    2014-10-01

    We calculate orbits, tidal radii, and bulge-bar and disk shocking destruction rates for 63 globular clusters in our Galaxy. Orbits are integrated in both an axisymmetric and a nonaxisymmetric Galactic potential that includes a bar and a three-dimensional model for the spiral arms. With the use of a Monte Carlo scheme, we consider in our simulations observational uncertainties in the kinematical data of the clusters. In the analysis of destruction rates due to the bulge-bar, we consider the rigorous treatment of using the real Galactic cluster orbit instead of the usual linear trajectory employed in previous studies. We compare resultsmore » in both treatments. We find that the theoretical tidal radius computed in the nonaxisymmetric Galactic potential compares better with the observed tidal radius than that obtained in the axisymmetric potential. In both Galactic potentials, bulge-shocking destruction rates computed with a linear trajectory of a cluster at its perigalacticons give a good approximation of the result obtained with the real trajectory of the cluster. Bulge-shocking destruction rates for clusters with perigalacticons in the inner Galactic region are smaller in the nonaxisymmetric potential than those in the axisymmetric potential. For the majority of clusters with high orbital eccentricities (e > 0.5), their total bulge+disk destruction rates are smaller in the nonaxisymmetric potential.« less

  11. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) Atomic nuclei, (2) Metal clusters

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated ("jungle-like") structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonances in spherical sodium clusters Na8, Na20 and Na40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data.

  12. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    NASA Astrophysics Data System (ADS)

    Poursina, Mohammad; Anderson, Kurt S.

    2014-08-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.

  13. Sliding states of a soft-colloid cluster crystal: Cluster versus single-particle hopping

    NASA Astrophysics Data System (ADS)

    Rossini, Mirko; Consonni, Lorenzo; Stenco, Andrea; Reatto, Luciano; Manini, Nicola

    2018-05-01

    We study a two-dimensional model for interacting colloidal particles which displays spontaneous clustering. Within this model we investigate the competition between the pinning to a periodic corrugation potential and a sideways constant pulling force which would promote a sliding state. For a few sample particle densities and amplitudes of the periodic corrugation potential we investigate the depinning from the statically pinned to the dynamically sliding regime. This sliding state exhibits the competition between a dynamics where entire clusters are pulled from a minimum to the next and a dynamics where single colloids or smaller groups leave a cluster and move across the corrugation energy barrier to join the next cluster downstream in the force direction. Both kinds of sliding states can occur either coherently across the entire sample or asynchronously: the two regimes result in different average mobilities. Finite temperature tends to destroy separate sliding regimes, generating a smoother dependence of the mobility on the driving force.

  14. Cluster-model calculations of exotic decays from heavy nuclei

    NASA Astrophysics Data System (ADS)

    Buck, B.; Merchant, A. C.

    1989-05-01

    A cluster model employing a local, effective cluster-core potential is used to investigate exotic decay from heavy nuclei as a quantum tunneling phenomenon within a semiclassical approximation. Excellent agreement with all reported experimental measurements of the decay widths for 14C and 24Ne emission is obtained. As an added bonus, the width for alpha particle emission from 212Po is also calculated in good agreement with experiment.

  15. Simulation modeling for stratified breast cancer screening - a systematic review of cost and quality of life assumptions.

    PubMed

    Arnold, Matthias

    2017-12-02

    The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.

  16. Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj

    2018-04-01

    Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.

  17. Cluster management.

    PubMed

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  18. Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients.

    PubMed

    Torheim, Turid; Groendahl, Aurora R; Andersen, Erlend K F; Lyng, Heidi; Malinen, Eirik; Kvaal, Knut; Futsaether, Cecilia M

    2016-11-01

    Solid tumors are known to be spatially heterogeneous. Detection of treatment-resistant tumor regions can improve clinical outcome, by enabling implementation of strategies targeting such regions. In this study, K-means clustering was used to group voxels in dynamic contrast enhanced magnetic resonance images (DCE-MRI) of cervical cancers. The aim was to identify clusters reflecting treatment resistance that could be used for targeted radiotherapy with a dose-painting approach. Eighty-one patients with locally advanced cervical cancer underwent DCE-MRI prior to chemoradiotherapy. The resulting image time series were fitted to two pharmacokinetic models, the Tofts model (yielding parameters K trans and ν e ) and the Brix model (A Brix , k ep and k el ). K-means clustering was used to group similar voxels based on either the pharmacokinetic parameter maps or the relative signal increase (RSI) time series. The associations between voxel clusters and treatment outcome (measured as locoregional control) were evaluated using the volume fraction or the spatial distribution of each cluster. One voxel cluster based on the RSI time series was significantly related to locoregional control (adjusted p-value 0.048). This cluster consisted of low-enhancing voxels. We found that tumors with poor prognosis had this RSI-based cluster gathered into few patches, making this cluster a potential candidate for targeted radiotherapy. None of the voxels clusters based on Tofts or Brix parameter maps were significantly related to treatment outcome. We identified one group of tumor voxels significantly associated with locoregional relapse that could potentially be used for dose painting. This tumor voxel cluster was identified using the raw MRI time series rather than the pharmacokinetic maps.

  19. Ab Initio Study of KCl and AgCl Clusters.

    NASA Astrophysics Data System (ADS)

    McKeough, James; Hira, Ajit; Cathey, Tommy; Valdez, Alexandra

    This paper presents a theoretical study of molecular clusters that examines the chemical and physical properties of small KnCln and AgnCln clusters (n = 2 - 24). Due to combinations of attractive and repulsive long-range forces, such clusters exhibit structural and dynamical behavior different from that of homogeneous clusters. The potentially important role of these molecular species in biochemical and medicinal processes is widely known. This work applies the hybrid ab initio methods to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations were performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. Potential design of new medicinal drugs is explored. We will also investigate model and material dependence of the results. AMP program of the National Science Foundation.

  20. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE PAGES

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit; ...

    2017-07-01

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  1. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  2. Magnetic Properties of Strongly Correlated Hubbard Model and Quantum Spin-One Ferromagnets with Arbitrary Crystal-Field Potential: Linked Cluster Series Expansion Approach

    NASA Astrophysics Data System (ADS)

    Pan, Kok-Kwei

    We have generalized the linked cluster expansion method to solve more many-body quantum systems, such as quantum spin systems with crystal-field potentials and the Hubbard model. The technique sums up all connected diagrams to a certain order of the perturbative Hamiltonian. The modified multiple-site Wick reduction theorem and the simple tau dependence of the standard basis operators have been used to facilitate the evaluation of the integration procedures in the perturbation expansion. Computational methods are developed to calculate all terms in the series expansion. As a first example, the perturbation series expansion of thermodynamic quantities of the single-band Hubbard model has been obtained using a linked cluster series expansion technique. We have made corrections to all previous results of several papers (up to fourth order). The behaviors of the three dimensional simple cubic and body-centered cubic systems have been discussed from the qualitative analysis of the perturbation series up to fourth order. We have also calculated the sixth-order perturbation series of this model. As a second example, we present the magnetic properties of spin-one Heisenberg model with arbitrary crystal-field potential using a linked cluster series expansion. The calculation of the thermodynamic properties using this method covers the whole range of temperature, in both magnetically ordered and disordered phases. The series for the susceptibility and magnetization have been obtained up to fourth order for this model. The method sums up all perturbation terms to certain order and estimates the result using a well -developed and highly successful extrapolation method (the standard ratio method). The dependence of critical temperature on the crystal-field potential and the magnetization as a function of temperature and crystal-field potential are shown. The critical behaviors at zero temperature are also shown. The range of the crystal-field potential for Ni(2+) compounds is roughly estimated based on this model using known experimental results.

  3. X-ray constraints on the shape of the dark matter in five Abell clusters

    NASA Technical Reports Server (NTRS)

    Buote, David A.; Canizares, Claude R.

    1992-01-01

    X-ray observations obtained with the Einstein Observatory are used to constrain the shape of the dark matter in the inner regions of Abell clusters A401, A426, A1656, A2029, and A2199, each of which exhibits highly flattened optical isopleths. The dark matter is modeled as an ellipsoid with a mass density of about r exp -2. The possible shapes of the dark matter is constrained by comparing these model isophotes to the image isophotes. The X-ray isophotes, and therefore the gravitational potentials, have ellipticities of about 0.1-0.2. The dark matter within the central 1 Mpc is found to be substantially rounder for all the clusters. It is concluded that the shape of the galaxy distributions in these clusters traces neither the gravitational potential nor the gravitating matter.

  4. Comparative analysis of ArnCl2 (2 ? n ? 30) clusters taking into account molecular relaxation effects

    NASA Astrophysics Data System (ADS)

    Ferreira, G. G.; Borges, E.; Braga, J. P.; Belchior, J. C.

    Cluster structures are discussed in a nonrigid analysis, using a modified minima search method based on stochastic processes and classical dynamics simulations. The relaxation process is taken into account considering the internal motion of the Cl2 molecule. Cluster structures are compared with previous works in which the Cl2 molecule is assumed to be rigid. The interactions are modeled using pair potentials: the Aziz and Lennard-Jones potentials for the Ar==Ar interaction, a Morse potential for the Cl==Cl interaction, and a fully spherical/anisotropic Morse-Spline-van der Waals (MSV) potential for the Ar==Cl interaction. As expected, all calculated energies are lower than those obtained in a rigid approximation; one reason may be attributed to the nonrigid contributions of the internal motion of the Cl2 molecule. Finally, the growing processes in molecular clusters are discussed, and it is pointed out that the growing mechanism can be affected due to the nonrigid initial conditions of smaller clusters such as ArnCl2 (n ? 4 or 5), which are seeds for higher-order clusters.

  5. Discrete bivariate population balance modelling of heteroaggregation processes.

    PubMed

    Rollié, Sascha; Briesen, Heiko; Sundmacher, Kai

    2009-08-15

    Heteroaggregation in binary particle mixtures was simulated with a discrete population balance model in terms of two internal coordinates describing the particle properties. The considered particle species are of different size and zeta-potential. Property space is reduced with a semi-heuristic approach to enable an efficient solution. Aggregation rates are based on deterministic models for Brownian motion and stability, under consideration of DLVO interaction potentials. A charge-balance kernel is presented, relating the electrostatic surface potential to the property space by a simple charge balance. Parameter sensitivity with respect to the fractal dimension, aggregate size, hydrodynamic correction, ionic strength and absolute particle concentration was assessed. Results were compared to simulations with the literature kernel based on geometric coverage effects for clusters with heterogeneous surface properties. In both cases electrostatic phenomena, which dominate the aggregation process, show identical trends: impeded cluster-cluster aggregation at low particle mixing ratio (1:1), restabilisation at high mixing ratios (100:1) and formation of complex clusters for intermediate ratios (10:1). The particle mixing ratio controls the surface coverage extent of the larger particle species. Simulation results are compared to experimental flow cytometric data and show very satisfactory agreement.

  6. Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2013-01-01

    This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for…

  7. Spectral constraints on models of gas in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Henriksen, M. J.; Mushotzky, R.

    1985-01-01

    The HEAO 1A2 spectra of clusters of galaxies are used to determine the temperature profile which characterizes the X-ray emitting gas. Strong evidence of nonisothermality is found for the Coma, A85, and A1795 clusters. Properties of the cluster potential which binds the gas are calculated for a range of model parameters. The typical binding mass, if the gas is adiabatic, is 2-4E14 solar masses and is quite centrally concentrated. In addition, the Fe abundance in Coma is .26 + or - .06 solar, less than the typical value (.5) found for rich clusters. The results for the gas in Coma may imply a physical description of the cluster which is quite different from what was previously believed.

  8. Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements

    NASA Astrophysics Data System (ADS)

    Tchernin, C.; Bartelmann, M.; Huber, K.; Dekel, A.; Hurier, G.; Majer, C. L.; Meyer, S.; Zinger, E.; Eckert, D.; Meneghetti, M.; Merten, J.

    2018-06-01

    Context. The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. Aims: We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. Methods: We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a β-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. Results: The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. We also observe that the covariance matrix of the potential for Abell 2142 reconstructed from XMM-Newton data sensitively depends on the resolution of the deprojected grid and on the smoothing scale used in the deprojection. Conclusions: We show that the Richardson-Lucy deprojection method can be effectively applied on a grid and that the projected potential is well recovered from real and simulated data based on X-ray and SZ signal. The comparison between the reconstructed potentials from the different observables provides additional information on the validity of the assumptions as function of the projected radius.

  9. The impact of clustering of extreme European windstorm events on (re)insurance market portfolios

    NASA Astrophysics Data System (ADS)

    Mitchell-Wallace, Kirsten; Alvarez-Diaz, Teresa

    2010-05-01

    Traditionally the occurrence of windstorm loss events in Europe has been considered as independent. However, a number of significant losses close in space and time indicates that this assumption may need to be revised. Under particular atmospheric conditions multiple loss-causing cyclones can occur in succession, affecting similar geographic regions and, therefore, insurance markets. A notable example is of Lothar and Martin in France in December 1999. Although the existence of cyclone families is well-known by meteorologists, there has been limited research into occurrence of serial windstorms. However, climate modelling research is now providing the ability to explore the physical drivers of clustering, and to improve understanding of the hazard aspect of catastrophe modelling. While analytics tools, including catastrophe models, may incorporate assumptions regarding the influence of dependency through statistical means, the most recent research outputs provide a new strand of information with the potential to re-assess the probabilistic loss potential in light of clustering and to provide an additional view on probable maximum losses to windstorm-exposed portfolios across regions such as Northwest Europe. There is however, a need for the testing of these new techniques within operational (re)insurance applications, and this paper provide an overview of the most current clustering research, including the 2009 paper by Vitolo et. al., in relation to reinsurance risk modelling, and to assess the potential impact of such additional information on the overall risk assessment process. We examine the consequences of the serial clustering of extra-tropical cyclones demonstrated by Vitolo et al. (2009) from the perspective of a large European reinsurer, examining potential implications for: • Pricing • Accumulation And • Capital adequacy

  10. One-electron pseudo-potential investigation of NO(X2Π)-Arn clusters (n = 1,2,3,4)

    NASA Astrophysics Data System (ADS)

    Hammami, H.; Ben Mohamed, F. E.; Mohamed, D.; Ben El Hadj Rhouma, M.; Al Mogren, M. M.; Hochlaf, M.

    2017-10-01

    In this work, we investigate the minimal energy and low-lying isomers of the ground state of NOArn clusters using a hybrid pseudo-potential model, where a single electron quantum description is combined with the classical argon-argon pair potential and an expansion in terms of the Legendre polynomials. In such model, we use two centres of polarisation for NO+, where we considered for each nuclear configuration an analytic dipole polarisation for N+ and O+. The reliability of our model is checked by comparison of the NO(X2Π)-Ar potential energy surface with that deduced using the multireference configuration interaction (MRCI+Q) approach. The results of this formalism agree quite well with the MRCI ones over a wide range of nuclear arrangements.

  11. Cluster Analysis in Nursing Research: An Introduction, Historical Perspective, and Future Directions.

    PubMed

    Dunn, Heather; Quinn, Laurie; Corbridge, Susan J; Eldeirawi, Kamal; Kapella, Mary; Collins, Eileen G

    2017-05-01

    The use of cluster analysis in the nursing literature is limited to the creation of classifications of homogeneous groups and the discovery of new relationships. As such, it is important to provide clarity regarding its use and potential. The purpose of this article is to provide an introduction to distance-based, partitioning-based, and model-based cluster analysis methods commonly utilized in the nursing literature, provide a brief historical overview on the use of cluster analysis in nursing literature, and provide suggestions for future research. An electronic search included three bibliographic databases, PubMed, CINAHL and Web of Science. Key terms were cluster analysis and nursing. The use of cluster analysis in the nursing literature is increasing and expanding. The increased use of cluster analysis in the nursing literature is positioning this statistical method to result in insights that have the potential to change clinical practice.

  12. α-cluster states in 46,54Cr from double-folding potentials

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2017-10-01

    α-cluster states in 46Cr and 54Cr are investigated in the double-folding model. This study complements a recent similar work by Souza and Miyake, Eur. Phys. J. A 53, 146 (2017), which was based on a specially shaped potential. Excitation energies, reduced widths, intercluster separations, and intra-band transition strengths are calculated and compared to experimental values for the ground state bands in 46Cr and 54Cr . The α-cluster potential is also applied to elastic scattering at low and intermediate energies. Here, as a byproduct, a larger radial extent of the neutron density in 50Ti is found.

  13. Exploring the Dynamics of Exoplanetary Systems in a Young Stellar Cluster

    NASA Astrophysics Data System (ADS)

    Thornton, Jonathan Daniel; Glaser, Joseph Paul; Wall, Joshua Edward

    2018-01-01

    I describe a dynamical simulation of planetary systems in a young star cluster. One rather arbitrary aspect of cluster simulations is the choice of initial conditions. These are typically chosen from some standard model, such as Plummer or King, or from a “fractal” distribution to try to model young clumpy systems. Here I adopt the approach of realizing an initial cluster model directly from a detailed magnetohydrodynamical model of cluster formation from a 1000-solar-mass interstellar gas cloud, with magnetic fields and radiative and wind feedback from massive stars included self-consistently. The N-body simulation of the stars and planets starts once star formation is largely over and feedback has cleared much of the gas from the region where the newborn stars reside. It continues until the cluster dissolves in the galactic field. Of particular interest is what would happen to the free-floating planets created in the gas cloud simulation. Are they captured by a star or are they ejected from the cluster? This method of building a dynamical cluster simulation directly from the results of a cluster formation model allows us to better understand the evolution of young star clusters and enriches our understanding of extrasolar planet development in them. These simulations were performed within the AMUSE simulation framework, and combine N-body, multiples and background potential code.

  14. Large-scale motions in the universe: Using clusters of galaxies as tracers

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard

    1995-01-01

    Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).

  15. Clustering of European winter storms: A multi-model perspective

    NASA Astrophysics Data System (ADS)

    Renggli, Dominik; Buettner, Annemarie; Scherb, Anke; Straub, Daniel; Zimmerli, Peter

    2016-04-01

    The storm series over Europe in 1990 (Daria, Vivian, Wiebke, Herta) and 1999 (Anatol, Lothar, Martin) are very well known. Such clusters of severe events strongly affect the seasonally accumulated damage statistics. The (re)insurance industry has quantified clustering by using distribution assumptions deduced from the historical storm activity of the last 30 to 40 years. The use of storm series simulated by climate models has only started recently. Climate model runs can potentially represent 100s to 1000s of years, allowing a more detailed quantification of clustering than the history of the last few decades. However, it is unknown how sensitive the representation of clustering is to systematic biases. Using a multi-model ensemble allows quantifying that uncertainty. This work uses CMIP5 decadal ensemble hindcasts to study clustering of European winter storms from a multi-model perspective. An objective identification algorithm extracts winter storms (September to April) in the gridded 6-hourly wind data. Since the skill of European storm predictions is very limited on the decadal scale, the different hindcast runs are interpreted as independent realizations. As a consequence, the available hindcast ensemble represents several 1000 simulated storm seasons. The seasonal clustering of winter storms is quantified using the dispersion coefficient. The benchmark for the decadal prediction models is the 20th Century Reanalysis. The decadal prediction models are able to reproduce typical features of the clustering characteristics observed in the reanalysis data. Clustering occurs in all analyzed models over the North Atlantic and European region, in particular over Great Britain and Scandinavia as well as over Iberia (i.e. the exit regions of the North Atlantic storm track). Clustering is generally weaker in the models compared to reanalysis, although the differences between different models are substantial. In contrast to existing studies, clustering is driven by weak and moderate events, and not by extreme storms. Thus, the decision which climate model to use to quantify clustering can have a substantial impact on the risk assessment in the (re)insurance business.

  16. Using Cluster Bootstrapping to Analyze Nested Data With a Few Clusters.

    PubMed

    Huang, Francis L

    2018-04-01

    Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials are performed with a low number of clusters (~20 groups). Although multilevel models are often used to analyze nested data, researchers may be concerned of potentially biased results due to having only a few groups under study. Cluster bootstrapping has been suggested as an alternative procedure when analyzing clustered data though it has seen very little use in educational and psychological studies. Using a Monte Carlo simulation that varied the number of clusters, average cluster size, and intraclass correlations, we compared standard errors using cluster bootstrapping with those derived using ordinary least squares regression and multilevel models. Results indicate that cluster bootstrapping, though more computationally demanding, can be used as an alternative procedure for the analysis of clustered data when treatment effects at the group level are of primary interest. Supplementary material showing how to perform cluster bootstrapped regressions using R is also provided.

  17. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    PubMed

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation and decreased peak I Na at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na + channel distribution. In the intercalated disc computer model, redistributing the Na + channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na + channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac I Na , and our simulations reveal the functional role of the aggregation of Na + channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  18. An ab initio-based Er–He interatomic potential in hcp Er

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; ye, Yeting; Fan, K. M.

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations.more » The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.« less

  19. Methanol clusters (CH3OH)n: putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory.

    PubMed

    Kazachenko, Sergey; Bulusu, Satya; Thakkar, Ajit J

    2013-06-14

    Putative global minima are reported for methanol clusters (CH3OH)n with n ≤ 15. The predictions are based on global optimization of three intermolecular potential energy models followed by local optimization and single-point energy calculations using two variants of dispersion-corrected density functional theory. Recurring structural motifs include folded and/or twisted rings, folded rings with a short branch, and stacked rings. Many of the larger structures are stabilized by weak C-H···O bonds.

  20. Reduction potentials of heterometallic manganese–oxido cubane complexes modulated by redox-inactive metals

    PubMed Central

    Tsui, Emily Y.; Agapie, Theodor

    2013-01-01

    Understanding the effect of redox-inactive metals on the properties of biological and heterogeneous water oxidation catalysts is important both fundamentally and for improvement of future catalyst designs. In this work, heterometallic manganese–oxido cubane clusters [MMn3O4] (M = Sr2+, Zn2+, Sc3+, Y3+) structurally relevant to the oxygen-evolving complex (OEC) of photosystem II were prepared and characterized. The reduction potentials of these clusters and other related mixed metal manganese–tetraoxido complexes are correlated with the Lewis acidity of the apical redox-inactive metal in a manner similar to a related series of heterometallic manganese–dioxido clusters. The redox potentials of the [SrMn3O4] and [CaMn3O4] clusters are close, which is consistent with the observation that the OEC is functional only with one of these two metals. Considering our previous studies of [MMn3O2] moieties, the present results with more structurally accurate models of the OEC ([MMn3O4]) suggest a general relationship between the reduction potentials of heterometallic oxido clusters and the Lewis acidities of incorporated cations that applies to diverse structural motifs. These findings support proposals that one function of calcium in the OEC is to modulate the reduction potential of the cluster to allow electron transfer. PMID:23744039

  1. Generalization of Rindler Potential at Cluster Scales in Randers-Finslerian Spacetime: a Possible Explanation of the Bullet Cluster 1E0657-558?

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Li, Ming-Hua; Lin, Hai-Nan; Li, Xin

    2012-12-01

    The data of the Bullet Cluster 1E0657-558 released on November 15, 2006 reveal that the strong and weak gravitational lensing convergence κ-map has an 8σ offset from the Σ-map. The observed Σ-map is a direct measurement of the surface mass density of the Intracluster medium (ICM) gas. It accounts for 83% of the averaged mass-fraction of the system. This suggests a modified gravity theory at large distances different from Newton's inverse-square gravitational law. In this paper, as a cluster scale generalization of Grumiller's modified gravity model (Phys. Rev. Lett.105 (2010) 211303), we present a gravity model with a generalized linear Rindler potential in Randers-Finslerian spacetime without invoking any dark matter. The galactic limit of the model is qualitatively consistent with the MOND and Grumiller's. It yields approximately the flatness of the rotational velocity profile at the radial distance of several kpcs and gives the velocity scales for spiral galaxies at which the curves become flattened. Plots of convergence κ for a galaxy cluster show that the peak of the gravitational potential has chances to lie on the outskirts of the baryonic mass center. Assuming an isotropic and isothermal ICM gas profile with temperature T = 14.8 keV (which is the center value given by observations), we obtain a good match between the dynamical mass MT of the main cluster given by collisionless Boltzmann equation and that given by the King β-model. We also consider a Randers+dark matter scenario and a Λ-CDM model with the NFW dark matter distribution profile. We find that a mass ratio η between dark matter and baryonic matter about 6 fails to reproduce the observed convergence κ-map for the isothermal temperature T taking the observational center value.

  2. A multi-point perspective on the formation of polar cap arcs: kinetic modeling and observations by Cluster and TIMED

    NASA Astrophysics Data System (ADS)

    de Keyser, J. M.; Maggiolo, R.; Echim, M.; Simon, C.; Zhang, Y.; Trotignon, J.

    2010-12-01

    On April 1st, 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. Simultaneously, the Cluster spacecraft detects an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 600 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 300eV. The footprint of the magnetic field line on which the Cluster spacecraft are situated, is located just outside the GUVI field of view in the prolongation of the polar cap arc. This suggests that the upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at ionospheric altitudes corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The energy spectrum of the precipitating electrons provided by the model is introduced as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes like photoionisation and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are then compared to the optical observations by TIMED. Data and modeling results are consistent with quasi-static acceleration of precipitating magnetospheric electrons. We also discuss possible implications of our modeling results for optical observations of polar cap arcs.

  3. Quantum-Size Dependence of the Energy for Vacancy Formation in Charged Small Metal Clusters. Drop Model

    NASA Astrophysics Data System (ADS)

    Pogosov, V. V.; Reva, V. I.

    2018-04-01

    Self-consistent computations of the monovacancy formation energy are performed for Na N , Mg N , and Al N (12 < N ≤ 168) spherical clusters in the drop model for stable jelly. Scenarios of the Schottky vacancy formation and "bubble vacancy blowing" are considered. It is shown that the asymptotic behavior of the size dependences of the energy for the vacancy formation by these two mechanisms is different and the difference between the characteristics of a charged and neutral cluster is entirely determined by the difference between the ionization potentials of clusters and the energies of electron attachment to them.

  4. Using Unsupervised Learning to Unlock the Potential of Hydrologic Similarity

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Newman, A. J.

    2017-12-01

    By clustering environmental data into representative hydrologic response units (HRUs), hydrologic similarity aims to harness the covariance between a system's physical environment and its hydrologic response to create reduced-order models. This is the primary approach through which sub-grid hydrologic processes are represented in large-scale models (e.g., Earth System Models). Although the possibilities of hydrologic similarity are extensive, its practical implementations have been limited to 1-d bins of oversimplistic metrics of hydrologic response (e.g., topographic index)—this is a missed opportunity. In this presentation we will show how unsupervised learning is unlocking the potential of hydrologic similarity; clustering methods enable generalized frameworks to effectively and efficiently harness the petabytes of global environmental data to robustly characterize sub-grid heterogeneity in large-scale models. To illustrate the potential that unsupervised learning has towards advancing hydrologic similarity, we introduce a hierarchical clustering algorithm (HCA) that clusters very high resolution (30-100 meters) elevation, soil, climate, and land cover data to assemble a domain's representative HRUs. These HRUs are then used to parameterize the sub-grid heterogeneity in land surface models; for this study we use the GFDL LM4 model—the land component of the GFDL Earth System Model. To explore HCA and its impacts on the hydrologic system we use a ¼ grid cell in southeastern California as a test site. HCA is used to construct an ensemble of 9 different HRU configurations—each configuration has a different number of HRUs; for each ensemble member LM4 is run between 2002 and 2014 with a 26 year spinup. The analysis of the ensemble of model simulations show that: 1) clustering the high-dimensional environmental data space leads to a robust representation of the role of the physical environment in the coupled water, energy, and carbon cycles at a relatively low number of HRUs; 2) the reduced-order model with around 300 HRUs effectively reproduces the fully distributed model simulation (30 meters) with less than 1/1000 of computational expense; 3) assigning each grid cell of the fully distributed grid to an HRU via HCA enables novel visualization methods for large-scale models—this has significant implications for how these models are applied and evaluated. We will conclude by outlining the potential that this work has within operational prediction systems including numerical weather prediction, Earth System models, and Early Warning systems.

  5. Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback.

    PubMed

    Voit, G M; Bryan, G L

    2001-11-22

    Clusters of galaxies are thought to contain about ten times as much dark matter as baryonic matter. The dark component therefore dominates the gravitational potential of a cluster, and the baryons confined by this potential radiate X-rays with a luminosity that depends mainly on the gas density in the cluster's core. Predictions of the X-rays' properties based on models of cluster formation do not, however, agree with the observations. If the models ignore the condensation of cooling gas into stars and feedback from the associated supernovae, they overestimate the X-ray luminosity because the density of the core gas is too high. An early episode of uniformly distributed supernova feedback could rectify this by heating the uncondensed gas and therefore making it harder to compress into the core, but such a process seems to require an implausibly large number of supernovae. Here we show how radiative cooling of intergalactic gas and subsequent supernova heating conspire to eliminate highly compressible low-entropy gas from the intracluster medium. This brings the core entropy and X-ray luminosities of clusters into agreement with the observations, in a way that depends little on the efficiency of supernova heating in the early Universe.

  6. Mechanisms contributing to cluster formation in the inferior olivary nucleus in brainstem slices from postnatal mice

    PubMed Central

    Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik; Rekling, Jens C

    2014-01-01

    Abstract The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5–P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. Here, we studied the cluster-forming mechanism and find that clusters overlap extensively with an overlap distribution that resembles the distribution for a random overlap model. The average somatodendritic field size of single curly IO neurons was ∼6400 μm2, which is slightly smaller than the average IO cluster size. Eighty-seven neurons with overlapping dendrites were estimated to be contained in the principal olive mean cluster size, and about six non-overlapping curly IO neurons could be contained within the largest clusters. Clusters could also be induced by iontophoresis with glutamate. Induced clusters were inhibited by tetrodotoxin, carbenoxelone and 18β-glycyrrhetinic acid, suggesting that sodium action potentials and electrical coupling are involved in glutamate-induced cluster formation, which could also be induced by activation of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Spikelets and a small transient depolarizing response were observed during glutamate-induced cluster formation. Calcium transients spread with decreasing velocity during cluster formation, and somatic action potentials and cluster formation are accompanied by large dendritic calcium transients. In conclusion, cluster formation depends on gap junctions, sodium action potentials and spontaneous clusters occur randomly throughout the IO. The relative slow signal spread during cluster formation, combined with a strong dendritic influx of calcium, may signify that active dendritic properties contribute to cluster formation. PMID:24042500

  7. A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures.

    PubMed

    Totton, Tim S; Misquitta, Alston J; Kraft, Markus

    2012-03-28

    The clustering of polycyclic aromatic hydrocarbon (PAH) molecules is investigated in the context of soot particle inception and growth using an isotropic potential developed from the benchmark PAHAP potential. This potential is used to estimate equilibrium constants of dimerisation for five representative PAH molecules based on a statistical mechanics model. Molecular dynamics simulations are also performed to study the clustering of homomolecular systems at a range of temperatures. The results from both sets of calculations demonstrate that at flame temperatures pyrene (C(16)H(10)) dimerisation cannot be a key step in soot particle formation and that much larger molecules (e.g. circumcoronene, C(54)H(18)) are required to form small clusters at flame temperatures. The importance of using accurate descriptions of the intermolecular interactions is demonstrated by comparing results to those calculated with a popular literature potential with an order of magnitude variation in the level of clustering observed. By using an accurate intermolecular potential we are able to show that physical binding of PAH molecules based on van der Waals interactions alone can only be a viable soot inception mechanism if concentrations of large PAH molecules are significantly higher than currently thought.

  8. The Clusters - Collaborative Models of Sustainable Regional Development

    NASA Astrophysics Data System (ADS)

    Mănescu, Gabriel; Kifor, Claudiu

    2014-12-01

    The clusters are the subject of actions and of whole series of documents issued by national and international organizations, and, based on experience, many authorities promote the idea that because of the clusters, competitiveness increases, the workforce specializes, regional businesses and economies grow. The present paper is meant to be an insight into the initiatives of forming clusters in Romania. Starting from a comprehensive analysis of the development potential offered by each region of economic development, we present the main types of clusters grouped according to fields of activity and their overall objectives

  9. Molecular dynamics study of the melting of a supported 887-atom Pd decahedron.

    PubMed

    Schebarchov, D; Hendy, S C; Polak, W

    2009-04-08

    We employ classical molecular dynamics simulations to investigate the melting behaviour of a decahedral Pd(887) cluster on a single layer of graphite (graphene). The interaction between Pd atoms is modelled with an embedded-atom potential, while the adhesion of Pd atoms to the substrate is approximated with a Lennard-Jones potential. We find that the decahedral structure persists at temperatures close to the melting point, but that just below the melting transition, the cluster accommodates to the substrate by means of complete melting and then recrystallization into an fcc structure. These structural changes are in qualitative agreement with recently proposed models, and they verify the existence of an energy barrier preventing softly deposited clusters from 'wetting' the substrate at temperatures below the melting point.

  10. A scan statistic for binary outcome based on hypergeometric probability model, with an application to detecting spatial clusters of Japanese encephalitis.

    PubMed

    Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong

    2013-01-01

    As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.

  11. Neck formation and deformation effects in a preformed cluster model of exotic cluster decays

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Gupta, Raj K.

    1997-01-01

    Using the nuclear proximity approach and the two center nuclear shape parametrization, the interaction potential between two deformed and pole-to-pole oriented nuclei forming a necked configuration in the overlap region is calculated and its role is studied for the cluster decay half-lives. The barrier is found to move to a larger relative separation, with its proximity minimum lying in the neighborhood of the Q value of decay and its height and width reduced considerably. For cluster decay calculations in the preformed cluster model of Malik and Gupta, due to deformations and orientations of nuclei, the (empirical) preformation factor is found to get reduced considerably and agrees nicely with other model calculations known to be successful for their predictions of cluster decay half-lives. Comparison with the earlier case of nuclei treated as spheres suggests that the effects of both deformations and neck formation get compensated by choosing the position of cluster preformation and the inner classical turning point for penetrability calculations at the touching configuration of spherical nuclei.

  12. DIRECT N-BODY MODELING OF THE OLD OPEN CLUSTER NGC 188: A DETAILED COMPARISON OF THEORETICAL AND OBSERVED BINARY STAR AND BLUE STRAGGLER POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Hurley, Jarrod R.; Mathieu, Robert D., E-mail: a-geller@northwestern.edu, E-mail: mathieu@astro.wisc.edu, E-mail: jhurley@astro.swin.edu.au

    2013-01-01

    Following on from a recently completed radial-velocity survey of the old (7 Gyr) open cluster NGC 188 in which we studied in detail the solar-type hard binaries and blue stragglers of the cluster, here we investigate the dynamical evolution of NGC 188 through a sophisticated N-body model. Importantly, we employ the observed binary properties of the young (180 Myr) open cluster M35, where possible, to guide our choices for parameters of the initial binary population. We apply pre-main-sequence tidal circularization and a substantial increase to the main-sequence tidal circularization rate, both of which are necessary to match the observed tidalmore » circularization periods in the literature, including that of NGC 188. At 7 Gyr the main-sequence solar-type hard-binary population in the model matches that of NGC 188 in both binary frequency and distributions of orbital parameters. This agreement between the model and observations is in a large part due to the similarities between the NGC 188 and M35 solar-type binaries. Indeed, among the 7 Gyr main-sequence binaries in the model, only those with P {approx}> 1000 days begin to show potentially observable evidence for modifications by dynamical encounters, even after 7 Gyr of evolution within the star cluster. This emphasizes the importance of defining accurate initial conditions for star cluster models, which we propose is best accomplished through comparisons with observations of young open clusters like M35. Furthermore, this finding suggests that observations of the present-day binaries in even old open clusters can provide valuable information on their primordial binary populations. However, despite the model's success at matching the observed solar-type main-sequence population, the model underproduces blue stragglers and produces an overabundance of long-period circular main-sequence-white-dwarf binaries as compared with the true cluster. We explore several potential solutions to the paucity of blue stragglers and conclude that the model dramatically underproduces blue stragglers through mass-transfer processes. We suggest that common-envelope evolution may have been incorrectly imposed on the progenitors of the spurious long-period circular main-sequence-white-dwarf binaries, which perhaps instead should have gone through stable mass transfer to create blue stragglers, thereby bringing both the number and binary frequency of the blue straggler population in the model into agreement with the true blue stragglers in NGC 188. Thus, improvements in the physics of mass transfer and common-envelope evolution employed in the model may in fact solve both discrepancies with the observations. This project highlights the unique accessibility of open clusters to both comprehensive observational surveys and full-scale N-body simulations, both of which have only recently matured sufficiently to enable such a project, and underscores the importance of open clusters to the study of star cluster dynamics.« less

  13. Systematic study of α decay of nuclei around the Z =82 , N =126 shell closures within the cluster-formation model and proximity potential 1977 formalism

    NASA Astrophysics Data System (ADS)

    Deng, Jun-Gang; Zhao, Jie-Cheng; Chu, Peng-Cheng; Li, Xiao-Hua

    2018-04-01

    In the present work, we systematically study the α decay preformation factors Pα within the cluster-formation model and α decay half-lives by the proximity potential 1977 formalism for nuclei around Z =82 ,N =126 closed shells. The calculations show that the realistic Pα is linearly dependent on the product of valance protons (holes) and valance neutrons (holes) NpNn . It is consistent with our previous works [Sun et al., Phys. Rev. C 94, 024338 (2016), 10.1103/PhysRevC.94.024338; Deng et al., Phys. Rev. C 96, 024318 (2017), 10.1103/PhysRevC.96.024318], in which Pα are model dependent and extracted from the ratios of calculated α half-lives to experimental data. Combining with our previous works, we confirm that the valance proton-neutron interaction plays a key role in the α preformation for nuclei around Z =82 ,N =126 shell closures whether the Pα is model dependent or microcosmic. In addition, our calculated α decay half-lives by using the proximity potential 1977 formalism taking Pα evaluated by the cluster-formation model can well reproduce the experimental data and significantly reduce the errors.

  14. Cluster-based analysis of multi-model climate ensembles

    NASA Astrophysics Data System (ADS)

    Hyde, Richard; Hossaini, Ryan; Leeson, Amber A.

    2018-06-01

    Clustering - the automated grouping of similar data - can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model-observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-climate model (CCM) output of tropospheric ozone - an important greenhouse gas - from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ˜ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ˜ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere - where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and useful framework in which to assess and visualise model spread, offering insight into geographical areas of agreement among models and a measure of diversity across an ensemble. Finally, we discuss caveats of the clustering techniques and note that while we have focused on tropospheric ozone, the principles underlying the cluster-based MMMs are applicable to other prognostic variables from climate models.

  15. Validation of hierarchical cluster analysis for identification of bacterial species using 42 bacterial isolates

    NASA Astrophysics Data System (ADS)

    Ghebremedhin, Meron; Yesupriya, Shubha; Luka, Janos; Crane, Nicole J.

    2015-03-01

    Recent studies have demonstrated the potential advantages of the use of Raman spectroscopy in the biomedical field due to its rapidity and noninvasive nature. In this study, Raman spectroscopy is applied as a method for differentiating between bacteria isolates for Gram status and Genus species. We created models for identifying 28 bacterial isolates using spectra collected with a 785 nm laser excitation Raman spectroscopic system. In order to investigate the groupings of these samples, partial least squares discriminant analysis (PLSDA) and hierarchical cluster analysis (HCA) was implemented. In addition, cluster analyses of the isolates were performed using various data types consisting of, biochemical tests, gene sequence alignment, high resolution melt (HRM) analysis and antimicrobial susceptibility tests of minimum inhibitory concentration (MIC) and degree of antimicrobial resistance (SIR). In order to evaluate the ability of these models to correctly classify bacterial isolates using solely Raman spectroscopic data, a set of 14 validation samples were tested using the PLSDA models and consequently the HCA models. External cluster evaluation criteria of purity and Rand index were calculated at different taxonomic levels to compare the performance of clustering using Raman spectra as well as the other datasets. Results showed that Raman spectra performed comparably, and in some cases better than, the other data types with Rand index and purity values up to 0.933 and 0.947, respectively. This study clearly demonstrates that the discrimination of bacterial species using Raman spectroscopic data and hierarchical cluster analysis is possible and has the potential to be a powerful point-of-care tool in clinical settings.

  16. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes

    PubMed Central

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-01-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs. PMID:26046580

  17. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    PubMed

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-06-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  18. Light clusters and pasta phases in warm and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Avancini, Sidney S.; Ferreira, Márcio; Pais, Helena; Providência, Constança; Röpke, Gerd

    2017-04-01

    The pasta phases are calculated for warm stellar matter in a framework of relativistic mean-field models, including the possibility of light cluster formation. Results from three different semiclassical approaches are compared with a quantum statistical calculation. Light clusters are considered as point-like particles, and their abundances are determined from the minimization of the free energy. The couplings of the light clusters to mesons are determined from experimental chemical equilibrium constants and many-body quantum statistical calculations. The effect of these light clusters on the chemical potentials is also discussed. It is shown that, by including heavy clusters, light clusters are present up to larger nucleonic densities, although with smaller mass fractions.

  19. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Govind, Niranjan; Aprà, Edoardo

    In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent ofmore » nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.« less

  20. Atomic Cluster Ionization and Attosecond Generation at Long Wavelengths

    DTIC Science & Technology

    2015-10-31

    fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to graduating...order to investigate this we use a modified Lewenstein quantum model in which the cluster is represented by a 1D Coulomb potential for the parent ion

  1. Anharmonic resonance absorption of short laser pulses in clusters: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Mahalik, S. S.; Kundu, M.

    2016-12-01

    Linear resonance (LR) absorption of an intense 800 nm laser light in a nano-cluster requires a long laser pulse >100 fs when Mie-plasma frequency ( ω M ) of electrons in the expanding cluster matches the laser frequency (ω). For a short duration of the pulse, the condition for LR is not satisfied. In this case, it was shown by a model and particle-in-cell (PIC) simulations [Phys. Rev. Lett. 96, 123401 (2006)] that electrons absorb laser energy by anharmonic resonance (AHR) when the position-dependent frequency Ω [ r ( t ) ] of an electron in the self-consistent anharmonic potential of the cluster satisfies Ω [ r ( t ) ] = ω . However, AHR remains to be a debate and still obscure in multi-particle plasma simulations. Here, we identify AHR mechanism in a laser driven cluster using molecular dynamics (MD) simulations. By analyzing the trajectory of each MD electron and extracting its Ω [ r ( t ) ] in the self-generated anharmonic plasma potential, it is found that electron is outer ionized only when AHR is met. An anharmonic oscillator model, introduced here, brings out most of the features of MD electrons while passing the AHR. Thus, we not only bridge the gap between PIC simulations, analytical models, and MD calculations for the first time but also unequivocally prove that AHR process is a universal dominant collisionless mechanism of absorption in the short pulse regime or in the early time of longer pulses in clusters.

  2. Study on structures and properties of ammonia clusters (NH3)n (n=1-5) and liquid ammonia in terms of ab initio method and atom-bond electronegativity equalization method ammonia-8P fluctuating charge potential model.

    PubMed

    Yu, Ling; Yang, Zhong-Zhi

    2010-05-07

    Structures, binding energies, and vibrational frequencies of (NH(3))(n) (n=2-5) isomers and dynamical properties of liquid ammonia have been explored using a transferable intermolecular potential eight point model including fluctuating charges and flexible body based on a combination of the atom-bond electronegativity equalization and molecular (ABEEM) mechanics (ABEEM ammonia-8P) in this paper. The important feature of this model is to divide the charge sites of one ammonia molecule into eight points region containing four atoms, three sigma bonds, and a lone pair, and allows the charges in system to fluctuate responding to the ambient environment. Due to the explicit descriptions of charges and special treatment of hydrogen bonds, the results of equilibrium geometries, dipole moments, cluster interaction energies, vibrational frequencies for the gas phase of small ammonia clusters, and radial distribution function for liquid ammonia calculated with the ABEEM ammonia-8P potential model are in good agreement with those measured by available experiments and those obtained from high level ab initio calculations. The properties of ammonia dimer are studied in detail involving the structure and one-dimensional, two-dimensional potential energy surface. As for interaction energies, the root mean square deviation is 0.27 kcal/mol, and the linear correlation coefficient reaches 0.994.

  3. Special and general superatoms.

    PubMed

    Luo, Zhixun; Castleman, A Welford

    2014-10-21

    Bridging the gap between atoms and macroscopic matter, clusters continue to be a subject of increasing research interest. Among the realm of cluster investigations, an exciting development is the realization that chosen stable clusters can mimic the chemical behavior of an atom or a group of the periodic table of elements. This major finding known as a superatom concept was originated experimentally from the study of aluminum cluster reactivity conducted in 1989 by noting a dramatic size dependence of the reactivity where cluster anions containing a certain number of Al atoms were unreactive toward oxygen while the other species were etched away. This observation was well interpreted by shell closings on the basis of the jellium model, and the related concept (originally termed "unified atom") spawned a wide range of pioneering studies in the 1990s pertaining to the understanding of factors governing the properties of clusters. Under the inspiration of a superatom concept, advances in cluster science in finding stable species not only shed light on magic clusters (i.e., superatomic noble gas) but also enlightened the exploration of stable clusters to mimic the chemical behavior of atoms leading to the discovery of superhalogens, alkaline-earth metals, superalkalis, etc. Among them, certain clusters could enable isovalent isomorphism of precious metals, indicating application potential for inexpensive superatoms for industrial catalysis, while a few superalkalis were found to validate the interesting "harpoon mechanism" involved in the superatomic cluster reactivity; recently also found were the magnetic superatoms of which the cluster-assembled materials could be used in spin electronics. Up to now, extensive studies in cluster science have allowed the stability of superatomic clusters to be understood within a few models, including the jellium model, also aromaticity and Wade-Mingos rules depending on the geometry and metallicity of the cluster. However, the scope of application of the jellium model and modification of the theory to account for nonspherical symmetry and nonmetal-doped metal clusters are still illusive to be further developed. It is still worth mentioning that a superatom concept has also been introduced in ligand-stabilized metal clusters which could also follow the major shell-closing electron count for a spherical, square-well potential. By proposing a new concept named as special and general superatoms, herein we try to summarize all these investigations in series, expecting to provide an overview of this field with a primary focus on the joint undertakings which have given rise to the superatom concept. To be specific, for special superatoms, we limit to clusters under a strict jellium model and simply classify them into groups based on their valence electron counts. While for general superatoms we emphasize on nonmetal-doped metal clusters and ligand-stabilized metal clusters, as well as a few isovalent cluster systems. Hopefully this summary of special and general superatoms benefits the further development of cluster-related theory, and lights up the prospect of using them as building blocks of new materials with tailored properties, such as inexpensive isovalent systems for industrial catalysis, semiconductive superatoms for transistors, and magnetic superatoms for spin electronics.

  4. Application of the AMPLE cluster-and-truncate approach to NMR structures for molecular replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bibby, Jaclyn; Keegan, Ronan M.; Mayans, Olga

    2013-11-01

    Processing of NMR structures for molecular replacement by AMPLE works well. AMPLE is a program developed for clustering and truncating ab initio protein structure predictions into search models for molecular replacement. Here, it is shown that its core cluster-and-truncate methods also work well for processing NMR ensembles into search models. Rosetta remodelling helps to extend success to NMR structures bearing low sequence identity or high structural divergence from the target protein. Potential future routes to improved performance are considered and practical, general guidelines on using AMPLE are provided.

  5. Characteristic and factors of competitive maritime industry clusters in Indonesia

    NASA Astrophysics Data System (ADS)

    Marlyana, N.; Tontowi, A. E.; Yuniarto, H. A.

    2017-12-01

    Indonesia is situated in the strategic position between two oceans therefore is identified as a maritime state. The fact opens big opportunity to build a competitive maritime industry. However, potential factors to boost the competitive maritime industry still need to be explored. The objective of this paper is then to determine the main characteristics and potential factors of competitive maritime industry cluster. Qualitative analysis based on literature review has been carried out in two aspects. First, benchmarking analysis conducted to distinguish the most relevant factors of maritime clusters in several countries in Europe (Norway, Spain, South West of England) and Asia (China, South Korea, Malaysia). Seven key dimensions are used for this benchmarking. Secondly, the competitiveness of maritime clusters in Indonesia was diagnosed through a reconceptualization of Porter’s Diamond model. There were four interlinked of advanced factors in and between companies within clusters, which can be influenced in a proactive way by government.

  6. Cost comparison of centralized and decentralized wastewater management systems using optimization model.

    PubMed

    Jung, Youngmee Tiffany; Narayanan, N C; Cheng, Yu-Ling

    2018-05-01

    There is a growing interest in decentralized wastewater management (DWWM) as a potential alternative to centralized wastewater management (CWWM) in developing countries. However, the comparative cost of CWWM and DWWM is not well understood. In this study, the cost of cluster-type DWWM is simulated and compared to the cost of CWWM in Alibag, India. A three-step model is built to simulate a broad range of potential DWWM configurations with varying number and layout of cluster subsystems. The considered DWWM scheme consists of cluster subsystems, that each uses simplified sewer and DEWATS (Decentralized Wastewater Treatment Systems). We consider CWWM that uses conventional sewer and an activated sludge plant. The results show that the cost of DWWM can vary significantly with the number and layout of the comprising cluster subsystems. The cost of DWWM increased nonlinearly with increasing number of comprising clusters, mainly due to the loss in the economies of scale for DEWATS. For configurations with the same number of comprising cluster subsystems, the cost of DWWM varied by ±5% around the mean, depending on the layout of the cluster subsystems. In comparison to CWWM, DWWM was of lower cost than CWWM when configured with fewer than 16 clusters in Alibag, with significantly less operation and maintenance requirement, but with higher capital and land requirement for construction. The study demonstrates that cluster-type DWWM using simplified sewer and DEWATS may be a cost-competitive alternative to CWWM, when carefully configured to lower the cost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGES

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less

  8. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    PubMed

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  9. Efficient gradient-based Monte Carlo simulation of materials: Applications to amorphous Si and Fe and Ni clusters

    NASA Astrophysics Data System (ADS)

    Limbu, Dil; Biswas, Parthapratim

    We present a simple and efficient Monte-Carlo (MC) simulation of Iron (Fe) and Nickel (Ni) clusters with N =5-100 and amorphous Silicon (a-Si) starting from a random configuration. Using Sutton-Chen and Finnis-Sinclair potentials for Ni (in fcc lattice) and Fe (in bcc lattice), and Stillinger-Weber potential for a-Si, respectively, the total energy of the system is optimized by employing MC moves that include both the stochastic nature of MC simulations and the gradient of the potential function. For both iron and nickel clusters, the energy of the configurations is found to be very close to the values listed in the Cambridge Cluster Database, whereas the maximum force on each cluster is found to be much lower than the corresponding value obtained from the optimized structural configurations reported in the database. An extension of the method to model the amorphous state of Si is presented and the results are compared with experimental data and those obtained from other simulation methods. The work is partially supported by the NSF under Grant Number DMR 1507166.

  10. The Fate of Gas-rich Satellites in Clusters

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan

    2017-11-01

    We investigate the stellar mass-loss of gas-rich galaxies falling into clusters due to the change in the gravitational potential caused by the ram-pressure-stripping of their gas. We model the satellites with exponential stellar and gas disk profiles, assume rapid ram-pressure-stripping, and follow the stellar orbits in the shocked potential. Due to the change of the potential, the stars move from circular orbits to elliptical orbits with apocenters that are often outside the tidal radius, causing those stars to be stripped. We explore the impact of the redshift of infall, gas fraction, satellite halo mass, and cluster mass on this process. The puffing of the satellites makes them appear as ultra-diffuse galaxies, and the stripped stars contribute to the intracluster light. Our results show that these effects are most significant for less massive satellites, which have larger gas fractions when they are accreted into clusters. The preferential destruction of low-mass systems causes the red fraction of cluster galaxies to be smaller at lower masses, an observation that is otherwise difficult to explain.

  11. Traveling-cluster approximation for uncorrelated amorphous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, A.K.; Mills, R.; Kaplan, T.

    1984-11-15

    We have developed a formalism for including cluster effects in the one-electron Green's function for a positionally disordered (liquid or amorphous) system without any correlation among the scattering sites. This method is an extension of the technique known as the traveling-cluster approximation (TCA) originally obtained and applied to a substitutional alloy by Mills and Ratanavararaksa. We have also proved the appropriate fixed-point theorem, which guarantees, for a bounded local potential, that the self-consistent equations always converge upon iteration to a unique, Herglotz solution. To our knowledge, this is the only analytic theory for considering cluster effects. Furthermore, we have performedmore » some computer calculations in the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results have been compared with ''exact calculations'' (which, in principle, take into account all cluster effects) and with the coherent-potential approximation (CPA), which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA and yet, apparently, the pair approximation distorts some of the features of the exact results.« less

  12. Models of epidemics: when contact repetition and clustering should be included

    PubMed Central

    Smieszek, Timo; Fiebig, Lena; Scholz, Roland W

    2009-01-01

    Background The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread. Methods We compare two different types of individual-based models: One assumes random mixing without repetition of contacts, whereas the other assumes that the same contacts repeat day-by-day. The latter exists in two variants, with and without clustering. We systematically test and compare how the total size of an outbreak differs between these model types depending on the key parameters transmission probability, number of contacts per day, duration of the infectious period, different levels of clustering and varying proportions of repetitive contacts. Results The simulation runs under different parameter constellations provide the following results: The difference between both model types is highest for low numbers of contacts per day and low transmission probabilities. The number of contacts and the transmission probability have a higher influence on this difference than the duration of the infectious period. Even when only minor parts of the daily contacts are repetitive and clustered can there be relevant differences compared to a purely random mixing model. Conclusion We show that random mixing models provide acceptable estimates of the total outbreak size if the number of contacts per day is high or if the per-contact transmission probability is high, as seen in typical childhood diseases such as measles. In the case of very short infectious periods, for instance, as in Norovirus, models assuming repeating contacts will also behave similarly as random mixing models. If the number of daily contacts or the transmission probability is low, as assumed for MRSA or Ebola, particular consideration should be given to the actual structure of potentially contagious contacts when designing the model. PMID:19563624

  13. Exploring multicollinearity using a random matrix theory approach.

    PubMed

    Feher, Kristen; Whelan, James; Müller, Samuel

    2012-01-01

    Clustering of gene expression data is often done with the latent aim of dimension reduction, by finding groups of genes that have a common response to potentially unknown stimuli. However, what is poorly understood to date is the behaviour of a low dimensional signal embedded in high dimensions. This paper introduces a multicollinear model which is based on random matrix theory results, and shows potential for the characterisation of a gene cluster's correlation matrix. This model projects a one dimensional signal into many dimensions and is based on the spiked covariance model, but rather characterises the behaviour of the corresponding correlation matrix. The eigenspectrum of the correlation matrix is empirically examined by simulation, under the addition of noise to the original signal. The simulation results are then used to propose a dimension estimation procedure of clusters from data. Moreover, the simulation results warn against considering pairwise correlations in isolation, as the model provides a mechanism whereby a pair of genes with `low' correlation may simply be due to the interaction of high dimension and noise. Instead, collective information about all the variables is given by the eigenspectrum.

  14. Magnetic properties of Co-doped Nb clusters

    NASA Astrophysics Data System (ADS)

    Diaz-Bachs, A.; Peters, L.; Logemann, R.; Chernyy, V.; Bakker, J. M.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    Magnetic deflection experiments on isolated Co-doped Nb clusters demonstrate a strong size dependence of magnetic properties, with large magnetic moments in certain cluster sizes and fully nonmagnetic behavior of others. There are in principle two explanations for this behavior. Either the local moment at the Co site is absent or it is screened by the delocalized electrons of the cluster, i.e., the Kondo effect. In order to reveal the physical origin, first, we established the ground state geometry of the clusters by experimentally obtaining their vibrational spectra and comparing them with a density functional theory study. Then, we performed an analysis based on the Anderson impurity model. It appears that the nonmagnetic clusters are due to the absence of the local Co moment and not due to the Kondo effect. In addition, the magnetic behavior of the clusters can be understood from an inspection of their electronic structure. Here magnetism is favored when the effective hybridization around the chemical potential is small, while the absence of magnetism is signaled by a large effective hybridization around the chemical potential.

  15. The origin of and conditions for clustering in fluids with competing interactions

    NASA Astrophysics Data System (ADS)

    Jadrich, Ryan; Bollinger, Jonathan; Truskett, Thomas

    2015-03-01

    Fluids with competing short-range attractions and long-range repulsions exhibit a rich phase behavior characterized by intermediate range order (IRO), as quantified via the static structure factor. This phase behavior includes cluster formation depending upon density-controlled packing effects and the magnitude and range of the attractive and repulsive interactions. Such model systems mimic (to zeroth order) screened, charge-stabilized, aqueous colloidal dispersions of, e.g., proteins. We employ molecular dynamics simulations and integral equation theory to elucidate a more fundamental microscopic explanation for IRO-driven clustering. A simple criterion is identified that indicates when dynamic, amorphous clustering emerges in a polydisperse system, namely when the Ornstein-Zernike thermal correlation length in the system exceeds the repulsive potential tail range. Remarkably, this criterion also appears tightly correlated to crystalline cluster formation in a monodisperse system. Our new gauge is compared to another phenomenological condition for clustering which is when the IRO peak magnitude exceeds ~ 2.7. Ramifications of crystalline versus amorphous clustering are discussed and potential ways of using our new measure in experiment are put forward.

  16. Symptom Cluster Research With Biomarkers and Genetics Using Latent Class Analysis.

    PubMed

    Conley, Samantha

    2017-12-01

    The purpose of this article is to provide an overview of latent class analysis (LCA) and examples from symptom cluster research that includes biomarkers and genetics. A review of LCA with genetics and biomarkers was conducted using Medline, Embase, PubMed, and Google Scholar. LCA is a robust latent variable model used to cluster categorical data and allows for the determination of empirically determined symptom clusters. Researchers should consider using LCA to link empirically determined symptom clusters to biomarkers and genetics to better understand the underlying etiology of symptom clusters. The full potential of LCA in symptom cluster research has not yet been realized because it has been used in limited populations, and researchers have explored limited biologic pathways.

  17. Using hierarchical cluster models to systematically identify groups of jobs with similar occupational questionnaire response patterns to assist rule-based expert exposure assessment in population-based studies.

    PubMed

    Friesen, Melissa C; Shortreed, Susan M; Wheeler, David C; Burstyn, Igor; Vermeulen, Roel; Pronk, Anjoeka; Colt, Joanne S; Baris, Dalsu; Karagas, Margaret R; Schwenn, Molly; Johnson, Alison; Armenti, Karla R; Silverman, Debra T; Yu, Kai

    2015-05-01

    Rule-based expert exposure assessment based on questionnaire response patterns in population-based studies improves the transparency of the decisions. The number of unique response patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of patterns that need assessment using expert opinion, but each expert may identify different patterns of responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel exhaust exposure. Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster models to the diesel-related variables extracted from the occupational history and job- and industry-specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational history and module responses to diesel-relevant questions. For each subset, we varied the numbers of clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. Using previously made estimates of the probability (ordinal), intensity (µg m(-3) respirable elemental carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters' homogeneity (defined as >75% with the same estimate) was examined compared to a dichotomized probability estimate (<5 versus ≥5%; <50 versus ≥50%). Second, for the ordinal probability metric and continuous intensity and frequency metrics, we calculated the intraclass correlation coefficients (ICCs) between each job's estimate and the mean estimate for all jobs within the cluster. Within-cluster homogeneity increased when more clusters were used. For example, ≥80% of the clusters were homogeneous when 500 clusters were used. Similarly, ICCs were generally above 0.7 when ≥200 clusters were used, indicating minimal within-cluster variability. The most within-cluster variability was observed for the frequency metric (ICCs from 0.4 to 0.8). We estimated that using an expert to assign exposure at the cluster-level assignment and then to review each job in non-homogeneous clusters would require ~2000 decisions per expert, in contrast to evaluating 4255 unique questionnaire patterns or 14983 individual jobs. This proof-of-concept shows that using cluster models as a data reduction step to identify jobs with similar response patterns prior to obtaining expert ratings has the potential to aid rule-based assessment by systematically reducing the number of exposure decisions needed. While promising, additional research is needed to quantify the actual reduction in exposure decisions and the resulting homogeneity of exposure estimates within clusters for an exposure assessment effort that obtains cluster-level expert assessments as part of the assessment process. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  18. Using Hierarchical Cluster Models to Systematically Identify Groups of Jobs With Similar Occupational Questionnaire Response Patterns to Assist Rule-Based Expert Exposure Assessment in Population-Based Studies

    PubMed Central

    Friesen, Melissa C.; Shortreed, Susan M.; Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Pronk, Anjoeka; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Armenti, Karla R.; Silverman, Debra T.; Yu, Kai

    2015-01-01

    Objectives: Rule-based expert exposure assessment based on questionnaire response patterns in population-based studies improves the transparency of the decisions. The number of unique response patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of patterns that need assessment using expert opinion, but each expert may identify different patterns of responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel exhaust exposure. Methods: Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster models to the diesel-related variables extracted from the occupational history and job- and industry-specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational history and module responses to diesel-relevant questions. For each subset, we varied the numbers of clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. Using previously made estimates of the probability (ordinal), intensity (µg m−3 respirable elemental carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters’ homogeneity (defined as >75% with the same estimate) was examined compared to a dichotomized probability estimate (<5 versus ≥5%; <50 versus ≥50%). Second, for the ordinal probability metric and continuous intensity and frequency metrics, we calculated the intraclass correlation coefficients (ICCs) between each job’s estimate and the mean estimate for all jobs within the cluster. Results: Within-cluster homogeneity increased when more clusters were used. For example, ≥80% of the clusters were homogeneous when 500 clusters were used. Similarly, ICCs were generally above 0.7 when ≥200 clusters were used, indicating minimal within-cluster variability. The most within-cluster variability was observed for the frequency metric (ICCs from 0.4 to 0.8). We estimated that using an expert to assign exposure at the cluster-level assignment and then to review each job in non-homogeneous clusters would require ~2000 decisions per expert, in contrast to evaluating 4255 unique questionnaire patterns or 14983 individual jobs. Conclusions: This proof-of-concept shows that using cluster models as a data reduction step to identify jobs with similar response patterns prior to obtaining expert ratings has the potential to aid rule-based assessment by systematically reducing the number of exposure decisions needed. While promising, additional research is needed to quantify the actual reduction in exposure decisions and the resulting homogeneity of exposure estimates within clusters for an exposure assessment effort that obtains cluster-level expert assessments as part of the assessment process. PMID:25477475

  19. Structures of p -shell double-Λ hypernuclei studied with microscopic cluster models

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2018-03-01

    0 s -orbit Λ states in p -shell double-Λ hypernuclei (Z Λ Λ A ), Li Λ Λ 8 , Li Λ Λ 9 , Be Λ Λ 10 ,11 ,12 , B Λ Λ 12 ,13 , and C Λ Λ 14 are investigated. Microscopic cluster models are applied to core nuclear part and a potential model is adopted for Λ particles. The Λ -core potential is a folding potential obtained with effective G -matrix Λ -N interactions, which reasonably reproduce energy spectra of Z Λ A -1 . System dependence of the Λ -Λ binding energies is understood by the core polarization energy from nuclear size reduction. Reductions of nuclear sizes and E 2 transition strengths by Λ particles are also discussed.

  20. Use of advanced particle methods in modeling space propulsion and its supersonic expansions

    NASA Astrophysics Data System (ADS)

    Borner, Arnaud

    This research discusses the use of advanced kinetic particle methods such as Molecular Dynamics (MD) and direct simulation Monte Carlo (DSMC) to model space propulsion systems such as electrospray thrusters and their supersonic expansions. MD simulations are performed to model an electrospray thruster for the ionic liquid (IL) EMIM--BF4 using coarse-grained (CG) potentials. The model is initially featuring a constant electric field applied in the longitudinal direction. Two coarse-grained potentials are compared, and the effective-force CG (EFCG) potential is found to predict the formation of the Taylor cone, the cone-jet, and other extrusion modes for similar electric fields and mass flow rates observed in experiments of a IL fed capillary-tip-extractor system better than the simple CG potential. Later, one-dimensional and fully transient three-dimensional electric fields, the latter solving Poisson's equation to take into account the electric field due to space charge at each timestep, are computed by coupling the MD model to a Poisson solver. It is found that the inhomogeneous electric field as well as that of the IL space-charge improve agreement between modeling and experiment. The boundary conditions (BCs) are found to have a substantial impact on the potential and electric field, and the tip BC is introduced and compared to the two previous BCs, named plate and needle, showing good improvement by reducing unrealistically high radial electric fields generated in the vicinity of the capillary tip. The influence of the different boundary condition models on charged species currents as a function of the mass flow rate is studied, and it is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the MD simulations with the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Supersonic expansions to vacuum produce clusters of sufficiently small size that properties such as heat capacities and latent heat of evaporation cannot be described by bulk vapor thermodynamic values. Therefore, MD simulations are performed to compute the evaporation rate of small water clusters as a function of temperature and size and the rates are found to agree with Unimolecular Dissociation Theory (UDT) and Classical Nucleation Theory (CNT). The heat capacities and latent heat of vaporization obtained from Monte-Carlo Canonical-Ensemble (MCCE) simulations are used in DSMC simulations of two experiments that measured Rayleigh scattering and terminal dimer mole fraction of supersonic water-jet expansions. Water-cluster temperature and size are found to be influenced by the use of kinetic rather than thermodynamic heat-capacity and latent-heat values as well as the nucleation model. Additionally, MD simulations of water condensation in a one-dimensional free expansion are performed to simulate the conditions in the core of a plume. We find that the internal structure of the clusters formed depends on the stagnation temperature conditions. Clusters of sizes 21 and 324 are studied in detail, and their radial distribution functions (RDF) are computed and compared to reported RDFs for solid amorphous ice clusters. Dielectric properties of liquid water and water clusters are investigated, and the static dielectric constant, dipole moment autocorrelation function and relative permittivity are computed by means of MD simulations.

  1. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    NASA Astrophysics Data System (ADS)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  2. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    NASA Astrophysics Data System (ADS)

    Maggiolo, R.; Echim, M.; Wedlund, C. Simon; Zhang, Y.; Fontaine, D.; Lointier, G.; Trotignon, J.-G.

    2012-02-01

    On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi-static acceleration of electrons that generate a polar cap arc as they precipitate in the ionosphere. The detailed observations of the acceleration region by Cluster and the large scale image of the polar cap arc provided by TIMED are two different features of the same phenomenon. Combined together, they bring new light on the configuration of the high-latitude magnetosphere during prolonged periods of Northward IMF. Possible implications of the modelling results for optical observations of polar cap arcs are also discussed.

  3. Attempt to probe nuclear charge radii by cluster and proton emissions

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2013-05-01

    We deduce the rms nuclear charge radii for ground states of light and medium-mass nuclei from experimental data of cluster radioactivity and proton emission in a unified framework. On the basis of the density-dependent cluster model, the calculated decay half-lives are obtained within the modified two-potential approach. The charge distribution of emitted clusters in the cluster decay and that of daughter nuclei in the proton emission are determined to correspondingly reproduce the experimental half-lives within the folding model. The obtained charge distribution is then employed to give the rms charge radius of the studied nuclei. Satisfactory agreement between theory and experiment is achieved for available experimental data, and the present results are found to be consistent with theoretical estimations. This study is expected to be helpful in the future detection of nuclear sizes, especially for these exotic nuclei near the proton dripline.

  4. Isotopic equilibria in aqueous clusters at low temperatures: Insights from the MB-pol many-body potential

    NASA Astrophysics Data System (ADS)

    Videla, Pablo E.; Rossky, Peter J.; Laria, Daniel

    2018-02-01

    By combining path-integrals molecular dynamics simulations with the accurate MB-pol potential energy surface, we investigate the role of alternative potential models on isotopic fractionation ratios between H and D atoms at dangling positions in water clusters at low temperatures. Our results show clear stabilizations of the lighter isotope at dangling sites, characterized by free energy differences ΔG that become comparable to or larger than kBT for temperatures below ˜75 K. The comparison between these results to those previously reported using the empirical q-TIP4P/F water model [P. E. Videla et al., J. Phys. Chem. Lett. 5, 2375 (2014)] reveals that the latter Hamiltonian overestimates the H stabilization by ˜25%. Moreover, predictions from the MB-pol model are in much better agreement with measured results reported for similar isotope equilibria at ice surfaces. The dissection of the quantum kinetic energies into orthogonal directions shows that the dominant differences between the two models are to be found in the anharmonic characteristics of the potential energy surfaces along OH bond directions involved in hydrogen bonds.

  5. The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia

    NASA Astrophysics Data System (ADS)

    Martínez-Barbosa, C. A.; Brown, A. G. A.; Boekholt, T.; Portegies Zwart, S.; Antiche, E.; Antoja, T.

    2016-03-01

    We use self-consistent numerical simulations of the evolution and disruption of the Sun's birth cluster in the Milky Way potential to investigate the present-day phase-space distribution of the Sun's siblings. The simulations include the gravitational N-body forces within the cluster and the effects of stellar evolution on the cluster population. In addition, the gravitational forces due to the Milky Way potential are accounted for in a self-consistent manner. Our aim is to understand how the astrometric and radial velocity data from the Gaia mission can be used to pre-select solar sibling candidates. We vary the initial conditions of the Sun's birth cluster, as well as the parameters of the Galactic potential. In particular, we use different configurations and strengths of the bar and spiral arms. We show that the disruption time-scales of the cluster are insensitive to the details of the non-axisymmetric components of the Milky Way model and we make predictions, averaged over the different simulated possibilities, about the number of solar siblings that should appear in surveys such as Gaia or GALAH. We find a large variety of present-day phase-space distributions of solar siblings, which depend on the cluster initial conditions and the Milky Way model parameters. We show that nevertheless robust predictions can be made about the location of the solar siblings in the space of parallaxes (ϖ), proper motions (μ) and radial velocities (Vr). By calculating the ratio of the number of simulated solar siblings to that of the number of stars in a model Galactic disc, we find that this ratio is above 0.5 in the region given by: ϖ ≥ 5 mas, 4 ≤ μ ≤ 6 mas yr-1, and -2 ≤ Vr ≤ 0 km s-1. Selecting stars from this region should increase the probability of success in identifying solar siblings through follow-up observations. However the proposed pre-selection criterion is sensitive to our assumptions, in particular about the Galactic potential. Using a more realistic potential (e.g. including transient spiral structure and molecular clouds) would make the pre-selection of solar sibling candidates based on astrometric and radial velocity data very inefficient. This reinforces the need for large-scale surveys to determine precise astrophysical properties of stars, in particular their ages and chemical abundances, if we want to identify the solar family.

  6. Cosmological study with galaxy clusters detected by the Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Mak, Suet-Ying

    In this work, we present various studies to forecast the power of the galaxy clusters detected by the Sunyaev-Zel'dovich (SZ) effect in constraining cosmological models. The SZ effect is regarded as one of the new and promising technique to identify and study cluster physics. With the latest data being released in recent years from the SZ telescopes, it is essential to explore their potentials in providing cosmological information and investigate their relative strengths with respect to galaxy cluster data from X-ray and optical, as well as other cosmological probes such as Cosmic Microwave Background (CMB). One of the topics regard resolving the debate on the existence of an anomalous large scale bulk flow as measured from the kinetic SZ signal of galaxy clusters in the WMAP CMB data. We predict that if such measurement is done with the latest CMB data from the Planck satellite, the sensitivity will be improved by a factor of >5 and thus be able to provide an independent view of its existence. As it turns out, the Planck data, when using the technique developed in this work, find that the observed bulk flow amplitude is consistent with those expected from the LambdaCDM, which is in clear contradiction to the previous claim of a significant bulk flow detection in the WMAP data. We also forecast on the capability of the ongoing and future cluster surveys identified through thermal SZ (tSZ) in constraining three extended models to the LambdaCDM model: modified gravity f( R) model, primordial non-Gaussianity of density perturbation, and the presence of massive neutrinos. We do so by employing their effects on the cluster number count and power spectrum and using Fisher Matrix analysis to estimate the errors on the model parameters. We find that SZ cluster surveys can provide vital complementary information to those expected from non-cluster probes. Our results therefore give the confidence for pursuing these extended cosmological models with SZ clusters.

  7. Population Structure With Localized Haplotype Clusters

    PubMed Central

    Browning, Sharon R.; Weir, Bruce S.

    2010-01-01

    We propose a multilocus version of FST and a measure of haplotype diversity using localized haplotype clusters. Specifically, we use haplotype clusters identified with BEAGLE, which is a program implementing a hidden Markov model for localized haplotype clustering and performing several functions including inference of haplotype phase. We apply this methodology to HapMap phase 3 data. With this haplotype-cluster approach, African populations have highest diversity and lowest divergence from the ancestral population, East Asian populations have lowest diversity and highest divergence, and other populations (European, Indian, and Mexican) have intermediate levels of diversity and divergence. These relationships accord with expectation based on other studies and accepted models of human history. In contrast, the population-specific FST estimates obtained directly from single-nucleotide polymorphisms (SNPs) do not reflect such expected relationships. We show that ascertainment bias of SNPs has less impact on the proposed haplotype-cluster-based FST than on the SNP-based version, which provides a potential explanation for these results. Thus, these new measures of FST and haplotype-cluster diversity provide an important new tool for population genetic analysis of high-density SNP data. PMID:20457877

  8. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  9. Pivot method for global optimization: A study of structures and phase changes in water clusters

    NASA Astrophysics Data System (ADS)

    Nigra, Pablo Fernando

    In this thesis, we have carried out a study of water clusters. The research work has been developed in two stages. In the first stage, we have investigated the properties of water clusters at zero temperature by means of global optimization. The clusters were modeled by using two well known pairwise potentials having distinct characteristics. One is the Matsuoka-Clementi-Yoshimine potential (MCY) that is an ab initio fitted function based on a rigid-molecule model, the other is the Sillinger-Rahman potential (SR) which is an empirical function based on a flexible-molecule model. The algorithm used for the global optimization of the clusters was the pivot method, which was developed in our group. The results have shown that, under certain conditions, the pivot method may yield optimized structures which are related to one another in such a way that they seem to form structural families. The structures in a family can be thought of as formed from the aggregation of single units. The particular types of structures we have found are quasi-one dimensional tubes built from stacking cyclic units such as tetramers, pentamers, and hexamers. The binding energies of these tubes form sequences that span smooth curves with clear asymptotic behavior; therefore, we have also studied the sequences applying the Bulirsch-Stoer (BST) algorithm to accelerate convergence. In the second stage of the research work, we have studied the thermodynamic properties of a typical water cluster at finite temperatures. The selected cluster was the water octamer which exhibits a definite solid-liquid phase change. The water octamer also has several low lying energy cubic structures with large energetic barriers that cause ergodicity breaking in regular Monte Carlo simulations. For that reason we have simulated the octamer using paralell tempering Monte Carlo combined with the multihistogram method. This has permited us to calculate the heat capacity from very low temperatures up to T = 230 K. We have found the melting temperature to be 178.5 K. In addition, we have been able to estimate at 12 K the onset temperature of a solid-solid phase change between the two lowest energy lying isomers.

  10. Local density variation of gold nanoparticles in aquatic environments

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, F.; Shirazian, F.; Shahsavari, R.; Khoei, A. R.

    2016-10-01

    Gold (Au) nanoparticles are widely used in diagnosing cancer, imaging, and identification of therapeutic methods due to their particular quantum characteristics. This research presents different types of aqueous models and potentials used in TIP3P, to study the effect of the particle size and density of Au clusters in aquatic environments; so it can be useful to facilitate future investigation of the interaction of proteins with Au nanoparticles. The EAM potential is used to model the structure of gold clusters. It is observed that in the systems with identical gold/water density and different cluster radii, gold particles are distributed in aqueous environment almost identically. Thus, Au particles have identical local densities, and the root mean square displacement (RMSD) increases with a constant slope. However in systems with constant cluster radii and different gold/water densities, Au particle dispersion increases with density; as a result, the local density decreases and the RMSD increases with a larger slope. In such systems, the larger densities result in more blunted second peaks in gold-gold radial distribution functions, owing to more intermixing of the clusters and less FCC crystalline features at longer range, a mechanism that is mediated by the competing effects of gold-water and gold-gold interactions.

  11. A machine learning approach for ranking clusters of docked protein‐protein complexes by pairwise cluster comparison

    PubMed Central

    Pfeiffenberger, Erik; Chaleil, Raphael A.G.; Moal, Iain H.

    2017-01-01

    ABSTRACT Reliable identification of near‐native poses of docked protein–protein complexes is still an unsolved problem. The intrinsic heterogeneity of protein–protein interactions is challenging for traditional biophysical or knowledge based potentials and the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy member. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function) but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near‐native from incorrect clusters. The results show that our approach is able to identify clusters containing near‐native protein–protein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking performance. Proteins 2017; 85:528–543. © 2016 Wiley Periodicals, Inc. PMID:27935158

  12. Partially linearized external models to active-space coupled-cluster through connected hextuple excitations.

    PubMed

    Xu, Enhua; Ten-No, Seiichiro L

    2018-06-05

    Partially linearized external models to active-space coupled-cluster through hextuple excitations, for example, CC{SDtqph} L , CCSD{tqph} L , and CCSD{tqph} hyb, are implemented and compared with the full active-space CCSDtqph. The computational scaling of CCSDtqph coincides with that for the standard coupled-cluster singles and doubles (CCSD), yet with a much large prefactor. The approximate schemes to linearize the external excitations higher than doubles are significantly cheaper than the full CCSDtqph model. These models are applied to investigate the bond dissociation energies of diatomic molecules (HF, F 2 , CuH, and CuF), and the potential energy surfaces of the bond dissociation processes of HF, CuH, H 2 O, and C 2 H 4 . Among the approximate models, CCSD{tqph} hyb provides very accurate descriptions compared with CCSDtqph for all of the tested systems. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.

  14. YOUNG STELLAR CLUSTERS WITH A SCHUSTER MASS DISTRIBUTION. I. STATIONARY WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palous, Jan; Wuensch, Richard; Hueyotl-Zahuantitla, Filiberto

    2013-08-01

    Hydrodynamic models for spherically symmetric winds driven by young stellar clusters with a generalized Schuster stellar density profile are explored. For this we use both semi-analytic models and one-dimensional numerical simulations. We determine the properties of quasi-adiabatic and radiative stationary winds and define the radius at which the flow turns from subsonic to supersonic for all stellar density distributions. Strongly radiative winds significantly diminish their terminal speed and thus their mechanical luminosity is strongly reduced. This also reduces their potential negative feedback into their host galaxy interstellar medium. The critical luminosity above which radiative cooling becomes dominant within the clusters,more » leading to thermal instabilities which make the winds non-stationary, is determined, and its dependence on the star cluster density profile, core radius, and half-mass radius is discussed.« less

  15. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  16. *K-means and cluster models for cancer signatures.

    PubMed

    Kakushadze, Zura; Yu, Willie

    2017-09-01

    We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means' computational cost is a fraction of NMF's. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.

  17. Energetics of charged metal clusters containing vacancies

    NASA Astrophysics Data System (ADS)

    Pogosov, Valentin V.; Reva, Vitalii I.

    2018-01-01

    We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.

  18. Capture of a neutron to excited states of a {sup 9}Be nucleus taking into account resonance at 622 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubovichenko, S. B., E-mail: dubovichenko@gmail.com

    2013-10-15

    Radiative capture of a neutron to the ground and excited states of the 9Be nucleus is considered using the potential cluster model with forbidden states and with classification of cluster states by the Young schemes taking into account resonance at 622 keV for thermal and astrophysical energies.

  19. Regularity of beating of small clusters of embryonic chick ventricular heart-cells: experiment vs. stochastic single-channel population model

    NASA Astrophysics Data System (ADS)

    Krogh-Madsen, Trine; Kold Taylor, Louise; Skriver, Anne D.; Schaffer, Peter; Guevara, Michael R.

    2017-09-01

    The transmembrane potential is recorded from small isopotential clusters of 2-4 embryonic chick ventricular cells spontaneously generating action potentials. We analyze the cycle-to-cycle fluctuations in the time between successive action potentials (the interbeat interval or IBI). We also convert an existing model of electrical activity in the cluster, which is formulated as a Hodgkin-Huxley-like deterministic system of nonlinear ordinary differential equations describing five individual ionic currents, into a stochastic model consisting of a population of ˜20 000 independently and randomly gating ionic channels, with the randomness being set by a real physical stochastic process (radio static). This stochastic model, implemented using the Clay-DeFelice algorithm, reproduces the fluctuations seen experimentally: e.g., the coefficient of variation (standard deviation/mean) of IBI is 4.3% in the model vs. the 3.9% average value of the 17 clusters studied. The model also replicates all but one of several other quantitative measures of the experimental results, including the power spectrum and correlation integral of the voltage, as well as the histogram, Poincaré plot, serial correlation coefficients, power spectrum, detrended fluctuation analysis, approximate entropy, and sample entropy of IBI. The channel noise from one particular ionic current (IKs), which has channel kinetics that are relatively slow compared to that of the other currents, makes the major contribution to the fluctuations in IBI. Reproduction of the experimental coefficient of variation of IBI by adding a Gaussian white noise-current into the deterministic model necessitates using an unrealistically high noise-current amplitude. Indeed, a major implication of the modelling results is that, given the wide range of time-scales over which the various species of channels open and close, only a cell-specific stochastic model that is formulated taking into consideration the widely different ranges in the frequency content of the channel-noise produced by the opening and closing of several different types of channels will be able to reproduce precisely the various effects due to membrane noise seen in a particular electrophysiological preparation.

  20. A systemic investigation of hydrogen peroxide clusters (H2O2)n (n = 1-6) and liquid-state hydrogen peroxide: based on atom-bond electronegativity equalization method fused into molecular mechanics and molecular dynamics.

    PubMed

    Yu, Chun-Yang; Yang, Zhong-Zhi

    2011-03-31

    Hydrogen peroxide (HP) clusters (H(2)O(2))(n) (n = 1-6) and liquid-state HP have been systemically investigated by the newly constructed ABEEM/MM fluctuating charge model. Because of the explicit description of charge distribution and special treatment of the hydrogen-bond interaction region, the ABEEM/MM potential model gives reasonable properties of HP clusters, including geometries, interaction energies, and dipole moments, when comparing with the present ab initio results. Meanwhile, the average dipole moment, static dielectric constant, heats of vaporization, radial distribution function, and diffusion constant for the dynamic properties of liquid HP at 273 K and 1 atm are fairly consistent with the available experimental data. To the best of our knowledge, this is the first theoretical investigation of condensed HP. The properties of HP monomer are studied in detail involving the structure, torsion potentials, molecular orbital analysis, charge distribution, dipole moment, and vibrational frequency.

  1. Computer-assisted cytologic diagnosis in pancreatic FNA: An application of neural networks to image analysis.

    PubMed

    Momeni-Boroujeni, Amir; Yousefi, Elham; Somma, Jonathan

    2017-12-01

    Fine-needle aspiration (FNA) biopsy is an accurate method for the diagnosis of solid pancreatic masses. However, a significant number of cases still pose a diagnostic challenge. The authors have attempted to design a computer model to aid in the diagnosis of these biopsies. Images were captured of cell clusters on ThinPrep slides from 75 pancreatic FNA cases (20 malignant, 24 benign, and 31 atypical). A K-means clustering algorithm was used to segment the cell clusters into separable regions of interest before extracting features similar to those used for cytomorphologic assessment. A multilayer perceptron neural network (MNN) was trained and then tested for its ability to distinguish benign from malignant cases. A total of 277 images of cell clusters were obtained. K-means clustering identified 68,301 possible regions of interest overall. Features such as contour, perimeter, and area were found to be significantly different between malignant and benign images (P <.05). The MNN was 100% accurate for benign and malignant categories. The model's predictions from the atypical data set were 77% accurate. The results of the current study demonstrate that computer models can be used successfully to distinguish benign from malignant pancreatic cytology. The fact that the model can categorize atypical cases into benign or malignant with 77% accuracy highlights the great potential of this technology. Although further study is warranted to validate its clinical applications in pancreatic and perhaps other areas of cytology as well, the potential for improved patient outcomes using MNN for image analysis in pathology is significant. Cancer Cytopathol 2017;125:926-33. © 2017 American Cancer Society. © 2017 American Cancer Society.

  2. Multiscale Computer Simulation of Tensile and Compressive Strain in Polymer- Coated Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian

    2009-01-01

    While the low thermal conductivities of silica aerogels have made them of interest to the aerospace community as lightweight thermal insulation, the application of conformal polymer coatings to these gels increases their strength significantly, making them potentially useful as structural materials as well. In this work we perform multiscale computer simulations to investigate the tensile and compressive strain behavior of silica and polymer-coated silica aerogels. Aerogels are made up of clusters of interconnected particles of amorphous silica of less than bulk density. We simulate gel nanostructure using a Diffusion Limited Cluster Aggregation (DLCA) procedure, which produces aggregates that exhibit fractal dimensions similar to those observed in real aerogels. We have previously found that model gels obtained via DLCA exhibited stress-strain curves characteristic of the experimentally observed brittle failure. However, the strain energetics near the expected point of failure were not consistent with such failure. This shortcoming may be due to the fact that the DLCA process produces model gels that are lacking in closed-loop substructures, compared with real gels. Our model gels therefore contain an excess of dangling strands, which tend to unravel under tensile strain, producing non-brittle failure. To address this problem, we have incorporated a modification to the DLCA algorithm that specifically produces closed loops in the model gels. We obtain the strain energetics of interparticle connections via atomistic molecular statics, and abstract the collective energy of the atomic bonds into a Morse potential scaled to describe gel particle interactions. Polymer coatings are similarly described. We apply repeated small uniaxial strains to DLCA clusters, and allow relaxation of the center eighty percent of the cluster between strains. The simulations produce energetics and stress-strain curves for looped and nonlooped clusters, for a variety of densities and interaction parameters.

  3. Helium segregation on surfaces of plasma-exposed tungsten

    DOE PAGES

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; ...

    2016-01-21

    Here we report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He-n (1 <= n <= 7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides themore » thermodynamic driving force for surface segregation. Elastic interaction force induces drift fluxes of these mobile Hen clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. Moreover, these near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.« less

  4. Modeling the Dark Matter of Galaxy Clusters Using the Tensor-Vector-Scalar Theory of Alternate Gravity

    NASA Astrophysics Data System (ADS)

    Ragozzine, Brett

    The invocation of dark matter in the universe is predicated upon gravitational observations that cannot be explained by the amount of luminous matter that we detect. There is an ongoing debate over which gravitational model is correct. The work herein tests a prescription of gravity theory known as Tensor-Vector-Scalar and is based upon the work of Angus et al. (2007). We add upon this work by extending the sample of galaxy clusters to five and testing the accepted Navarro, Frenk & White (NFW) dark matter potential (Navarro et al., 1996). Our independent implementation of this method includes weak gravitational lensing analysis to determine the amount of dark matter in these galaxy clusters by calculating the gas fraction ƒgas = Mgas=Mtot. The ability of the Tensor-Vector-Scalar theory to predict a consistent ƒgas across all galaxy clusters is a measure of its liklihood of being the correct gravity model.

  5. Screening effects on 12C+12C fusion reaction

    NASA Astrophysics Data System (ADS)

    Koyuncu, F.; Soylu, A.

    2018-05-01

    One of the important reactions for nucleosynthesis in the carbon burning phase in high-mass stars is the 12C+12C fusion reaction. In this study, we investigate the influences of the nuclear potentials and screening effect on astrophysically interesting 12C+12C fusion reaction observables at sub-barrier energies by using the microscopic α–α double folding cluster (DFC) potential and the proximity potential. In order to model the screening effects on the experimental data, a more general exponential cosine screened Coulomb (MGECSC) potential including Debye and quantum plasma cases has been considered in the calculations for the 12C+12C fusion reaction. In the calculations of the reaction observables, the semi-classical Wentzel-Kramers-Brillouin (WKB) approach and coupled channel (CC) formalism have been used. Moreover, in order to investigate how the potentials between 12C nuclei produce molecular cluster states of 24Mg, the normalized resonant energy states of 24Mg cluster bands have been calculated for the DFC potential. By analyzing the results produced from the fusion of 12C+12C, it is found that taking into account the screening effects in terms of MGECSC is important for explaining the 12C+12C fusion data, and the microscopic DFC potential is better than the proximity potential in explaining the experimental data, also considering that clustering is dominant for the structure of the 24Mg nucleus. Supported by the Turkish Science and Research Council (TÜBİTAK) with (117R015)

  6. Orbits of Selected Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Pérez-Villegas, A.; Rossi, L.; Ortolani, S.; Casotto, S.; Barbuy, B.; Bica, E.

    2018-05-01

    We present orbit analysis for a sample of eight inner bulge globular clusters, together with one reference halo object. We used proper motion values derived from long time base CCD data. Orbits are integrated in both an axisymmetric model and a model including the Galactic bar potential. The inclusion of the bar proved to be essential for the description of the dynamical behaviour of the clusters. We use the Monte Carlo scheme to construct the initial conditions for each cluster, taking into account the uncertainties in the kinematical data and distances. The sample clusters show typically maximum height to the Galactic plane below 1.5 kpc, and develop rather eccentric orbits. Seven of the bulge sample clusters share the orbital properties of the bar/bulge, having perigalactic and apogalatic distances, and maximum vertical excursion from the Galactic plane inside the bar region. NGC 6540 instead shows a completely different orbital behaviour, having a dynamical signature of the thick disc. Both prograde and prograde-retrograde orbits with respect to the direction of the Galactic rotation were revealed, which might characterise a chaotic behaviour.

  7. Determining the Ages and Distances of 4 Open Clusters

    NASA Astrophysics Data System (ADS)

    Sawczynec, Erica A.; James D. Armstrong, Joe M. Ritter, Jeff Kuhn

    2018-01-01

    The study of nearby young open clusters can give insight into star formation and potentially the local rate of metal enrichment. Presented is a BVRI photometric analysis of 4 open clusters; NGC 2509, NGC 2483, NGC 2482, and NGC 6705, in order to reevaluate previously published ages and distances using modern CCD photometry, and newer stellar models. Observations were obtained from the Cerro Tololo node of the Las Cumbres Observatory 1.0 meter network. Color magnitude diagrams were compared to modeled isochrones and the updated ages and distances determined. An interesting stellar association was found in the color magnitude diagram of NGC 6705. The structure is suggestive of two epochs of stellar formation. Members of this structure were evaluated using the Gaia Archive in order to explore the possibility of a heterogeneous population. The status of NGC 2483 as an open cluster has been debated; however, it has been noted that there is a high concentration of Be stars found in the region. It is concluded that NGC 2483 is an open cluster.

  8. Epidemiological characteristics of reported sporadic and outbreak cases of E. coli O157 in people from Alberta, Canada (2000-2002): methodological challenges of comparing clustered to unclustered data.

    PubMed

    Pearl, D L; Louie, M; Chui, L; Doré, K; Grimsrud, K M; Martin, S W; Michel, P; Svenson, L W; McEwen, S A

    2008-04-01

    Using multivariable models, we compared whether there were significant differences between reported outbreak and sporadic cases in terms of their sex, age, and mode and site of disease transmission. We also determined the potential role of administrative, temporal, and spatial factors within these models. We compared a variety of approaches to account for clustering of cases in outbreaks including weighted logistic regression, random effects models, general estimating equations, robust variance estimates, and the random selection of one case from each outbreak. Age and mode of transmission were the only epidemiologically and statistically significant covariates in our final models using the above approaches. Weighing observations in a logistic regression model by the inverse of their outbreak size appeared to be a relatively robust and valid means for modelling these data. Some analytical techniques, designed to account for clustering, had difficulty converging or producing realistic measures of association.

  9. Structural disorder in the decagonal Al-Co-Ni. II. Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobas, Miroslav; Weber, Thomas; Steurer, Walter

    2005-06-01

    The hydrodynamic theory of phasonic and phononic disorder is applied successfully to describe the short-range disordered structure of a decagonal Al{sub 71.5}Co{sub 14.6}Ni{sub 13.9} quasicrystal (Edagawa phase, superstructure type I). Moreover, model calculations demonstrate that the main features of diffuse scattering can be equally well described by phasonic disorder and fivefold orientational disorder of clusters. The calculations allow us to distinguish the different cluster types published so far and the best agreement with experimental data could be achieved with the mirror-symmetric Abe cluster. Modeling of phason diffuse scattering associated with the S1 and S2 superstructure reflections indicate disorder of superclusters.more » The former show basically intercluster correlations inside quasiperiodic layers, while the latter exhibit intra- and inter-cluster correlations, both between adjacent and inside quasiperiodic layers. The feasibility, potential, and limits of the Patterson method in combination with the punch-and-fill method employed is shown on the example of a phasonic disordered rhombic Penrose tiling. A variation of the elastic constants does not change qualitatively the way phasonic disorder is realized in the local quasicrystalline structure. For the same model system it is also shown that phasonic fluctuations of the atomic surfaces yield average clusters in the cut space, which correspond to fivefold orientationally disordered clusters.« less

  10. Input clustering in the normal and learned circuits of adult barn owls.

    PubMed

    McBride, Thomas J; DeBello, William M

    2015-05-01

    Experience-dependent formation of synaptic input clusters can occur in juvenile brains. Whether this also occurs in adults is largely unknown. We previously reconstructed the normal and learned circuits of prism-adapted barn owls and found that changes in clustering of axo-dendritic contacts (putative synapses) predicted functional circuit strength. Here we asked whether comparable changes occurred in normal and prism-removed adults. Across all anatomical zones, no systematic differences in the primary metrics for within-branch or between-branch clustering were observed: 95-99% of contacts resided within clusters (<10-20 μm from nearest neighbor) regardless of circuit strength. Bouton volumes, a proxy measure of synaptic strength, were on average larger in the functionally strong zones, indicating that changes in synaptic efficacy contributed to the differences in circuit strength. Bootstrap analysis showed that the distribution of inter-contact distances strongly deviated from random not in the functionally strong zones but in those that had been strong during the sensitive period (60-250 d), indicating that clusters formed early in life were preserved regardless of current value. While cluster formation in juveniles appeared to require the production of new synapses, cluster formation in adults did not. In total, these results support a model in which high cluster dynamics in juveniles sculpt a potential connectivity map that is refined in adulthood. We propose that preservation of clusters in functionally weak adult circuits provides a storage mechanism for disused but potentially useful pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The employment of Support Vector Machine to classify high and low performance archers based on bio-physiological variables

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Amirul Abdullah, Muhammad; Hasnun Arif Hassan, Mohd; Khalil, Zubair

    2018-04-01

    The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. The bio-physiological variables namely resting heart rate, resting respiratory rate, resting diastolic blood pressure, resting systolic blood pressure, as well as calories intake, were measured prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models i.e. linear, quadratic and cubic kernel functions, were trained on the aforementioned variables. The k-means clustered the archers into high (HPA) and low potential archers (LPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy with a classification accuracy of 94% in comparison the other tested models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected bio-physiological variables examined.

  12. Shaping Globular Clusters with Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation, single and binary star evolution, galactic tides, and multi-body encounters. From their grid of models with varying input parameters, the authors then determine which fit best to NGC 3201s final observational properties.Surface brightness profiles for all globular-cluster models at late times compared to observations of NGC 3201 (yellow circles). Blue lines represent models with few retained black holes; black lines represent models with many retained black holes. [Kremer et al. 2018]Retention MattersKremer and collaborators find that the models that best represent NGC 3201 all retain more than 200 black holes at the end of the simulation; models that lost too many black holes due to natal kicks did not match observations of NGC 3201 as well. The models with large numbers of retained black holes also harbored binaries just like the one recently detected in NGC 3201.Models that retain few black holes, on the other hand, may instead be good descriptions of so-called core-collapsed globular clusters observed in the Milky Way. The authors demonstrate that these clusters could contain black holes in binaries with stars known as blue stragglers, which may also be detectable with radial velocity techniques.Kremer and collaborators results suggest that globular clusters similar to NGC 3201 contain hundreds of invisible black holes waiting to be discovered, and they indicate some of the differences in cluster properties caused by hosting such a large population of black holes. We can hope that future observations and modeling will continue to illuminate the complicated relationship between globular clusters and the black holes that live in them.CitationKyle Kremer et al 2018 ApJL 855 L15. doi:10.3847/2041-8213/aab26c

  13. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species.

    PubMed

    Adamek, Martina; Alanjary, Mohammad; Sales-Ortells, Helena; Goodfellow, Michael; Bull, Alan T; Winkler, Anika; Wibberg, Daniel; Kalinowski, Jörn; Ziemert, Nadine

    2018-06-01

    Genome mining tools have enabled us to predict biosynthetic gene clusters that might encode compounds with valuable functions for industrial and medical applications. With the continuously increasing number of genomes sequenced, we are confronted with an overwhelming number of predicted clusters. In order to guide the effective prioritization of biosynthetic gene clusters towards finding the most promising compounds, knowledge about diversity, phylogenetic relationships and distribution patterns of biosynthetic gene clusters is necessary. Here, we provide a comprehensive analysis of the model actinobacterial genus Amycolatopsis and its potential for the production of secondary metabolites. A phylogenetic characterization, together with a pan-genome analysis showed that within this highly diverse genus, four major lineages could be distinguished which differed in their potential to produce secondary metabolites. Furthermore, we were able to distinguish gene cluster families whose distribution correlated with phylogeny, indicating that vertical gene transfer plays a major role in the evolution of secondary metabolite gene clusters. Still, the vast majority of the diverse biosynthetic gene clusters were derived from clusters unique to the genus, and also unique in comparison to a database of known compounds. Our study on the locations of biosynthetic gene clusters in the genomes of Amycolatopsis' strains showed that clusters acquired by horizontal gene transfer tend to be incorporated into non-conserved regions of the genome thereby allowing us to distinguish core and hypervariable regions in Amycolatopsis genomes. Using a comparative genomics approach, it was possible to determine the potential of the genus Amycolatopsis to produce a huge diversity of secondary metabolites. Furthermore, the analysis demonstrates that horizontal and vertical gene transfer play an important role in the acquisition and maintenance of valuable secondary metabolites. Our results cast light on the interconnections between secondary metabolite gene clusters and provide a way to prioritize biosynthetic pathways in the search and discovery of novel compounds.

  14. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenz, Dominic A.; Likos, Christos N.; Blaak, Ronald

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, amore » transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed.« less

  15. Structure determination in 55-atom Li-Na and Na-K nanoalloys.

    PubMed

    Aguado, Andrés; López, José M

    2010-09-07

    The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.

  16. Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius

    NASA Astrophysics Data System (ADS)

    Ezer, C.; Bulbul, E.; Ercan, E.; Smith, R.; Bautz, M.; Loewenstein, M.; McDonald, M.; Miller, E.

    2017-10-01

    The deep potential well of the galaxy clusters confines all metals produced via supernova explosions within the intra-cluster medium (ICM). The radial distributions of these metals along the ICM are direct records of the metal enrichment history. In this work, we investigate the chemical enrichment history of Abell 3112 galaxy cluster from cluster's core to out to radius R_{200} (˜ 1470 kpc) by analyzing a deep 1.2 Ms Suzaku observations with overlapping 72 ks Chandra observations. The fraction of supernova explosions enriching the ICM is obtained by fitting the X-ray spectra with a robust snapec model implemented in XSPEC. The ratio of supernova type Ia explosions to the core collapse supernova explosions is found in the range 0.12 - 0.16 and uniformly distributed out to R_{200}. The uniform spatial distribution of supernova enrichment indicates an early metal enrichment between the epoch of z ˜ 2 - 3. We also observe that W7, CDD, and WDD SN Ia models equally better explain the highest signal-to-noise region compared to 2D delayed detonation model CDDT. We further report the first time temperature (3.37 ± 0.77 keV) and metallicity (0.22 ± 0.08 Z_{⊙}) measurements of this archetypal cluster at its virial radius.

  17. A New Approach for Simulating Galaxy Cluster Properties

    NASA Astrophysics Data System (ADS)

    Arieli, Y.; Rephaeli, Y.; Norman, M. L.

    2008-08-01

    We describe a subgrid model for including galaxies into hydrodynamical cosmological simulations of galaxy cluster evolution. Each galaxy construct—or galcon—is modeled as a physically extended object within which star formation, galactic winds, and ram pressure stripping of gas are modeled analytically. Galcons are initialized at high redshift (z ~ 3) after galaxy dark matter halos have formed but before the cluster has virialized. Each galcon moves self-consistently within the evolving cluster potential and injects mass, metals, and energy into intracluster (IC) gas through a well-resolved spherical interface layer. We have implemented galcons into the Enzo adaptive mesh refinement code and carried out a simulation of cluster formation in a ΛCDM universe. With our approach, we are able to economically follow the impact of a large number of galaxies on IC gas. We compare the results of the galcon simulation with a second, more standard simulation where star formation and feedback are treated using a popular heuristic prescription. One advantage of the galcon approach is explicit control over the star formation history of cluster galaxies. Using a galactic SFR derived from the cosmic star formation density, we find the galcon simulation produces a lower stellar fraction, a larger gas core radius, a more isothermal temperature profile, and a flatter metallicity gradient than the standard simulation, in better agreement with observations.

  18. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM.

    PubMed

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E

    2017-05-01

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au 144 (SCH 2 CH 2 Ph) 60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au 144 (SR) 60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. Copyright © 2017. Published by Elsevier B.V.

  19. Renormalized coupled cluster approaches in the cluster-in-molecule framework: predicting vertical electron binding energies of the anionic water clusters (H2O)(n)(-).

    PubMed

    Xu, Peng; Gordon, Mark S

    2014-09-04

    Anionic water clusters are generally considered to be extremely challenging to model using fragmentation approaches due to the diffuse nature of the excess electron distribution. The local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach combined with the completely renormalized CR-CC(2,3) method [abbreviated CIM/CR-CC(2,3)] is shown to be a viable alternative for computing the vertical electron binding energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter ζ set to 0.001, as a trade-off between accuracy and computational cost, demonstrates the reliability of predicting the VEBE, with an average percentage error of ∼15% compared to the full ab initio calculation at the same level of theory. The errors are predominantly from the electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-box type calculation with few threshold parameters to manipulate. The cluster sizes that can be studied by high-level ab initio methods are significantly increased in comparison with full CC calculations. Therefore, the VEBE computed by the CIM/CR-CC(2,3) method can be used as benchmarks for testing model potential approaches in small-to-intermediate-sized water clusters.

  20. Fascioliasis risk factors and space-time clusters in domestic ruminants in Bangladesh.

    PubMed

    Rahman, A K M Anisur; Islam, S K Shaheenur; Talukder, Md Hasanuzzaman; Hassan, Md Kumrul; Dhand, Navneet K; Ward, Michael P

    2017-05-08

    A retrospective observational study was conducted to identify fascioliasis hotspots, clusters, potential risk factors and to map fascioliasis risk in domestic ruminants in Bangladesh. Cases of fascioliasis in cattle, buffalo, sheep and goats from all districts in Bangladesh between 2011 and 2013 were identified via secondary surveillance data from the Department of Livestock Services' Epidemiology Unit. From each case report, date of report, species affected and district data were extracted. The total number of domestic ruminants in each district was used to calculate fascioliasis cases per ten thousand animals at risk per district, and this was used for cluster and hotspot analysis. Clustering was assessed with Moran's spatial autocorrelation statistic, hotspots with the local indicator of spatial association (LISA) statistic and space-time clusters with the scan statistic (Poisson model). The association between district fascioliasis prevalence and climate (temperature, precipitation), elevation, land cover and water bodies was investigated using a spatial regression model. A total of 1,723,971 cases of fascioliasis were reported in the three-year study period in cattle (1,164,560), goats (424,314), buffalo (88,924) and sheep (46,173). A total of nine hotspots were identified; one of these persisted in each of the three years. Only two local clusters were found. Five space-time clusters located within 22 districts were also identified. Annual risk maps of fascioliasis cases correlated with the hotspots and clusters detected. Cultivated and managed (P < 0.001) and artificial surface (P = 0.04) land cover areas, and elevation (P = 0.003) were positively and negatively associated with fascioliasis in Bangladesh, respectively. Results indicate that due to land use characteristics some areas of Bangladesh are at greater risk of fascioliasis. The potential risk factors, hot spots and clusters identified in this study can be used to guide science-based treatment and control decisions for fascioliasis in Bangladesh and in other similar geo-climatic zones throughout the world.

  1. Correlation study of sodium-atom chemisorption on the GaAs(110) surface

    NASA Astrophysics Data System (ADS)

    Song, K. M.; Khan, D. C.; Ray, A. K.

    1994-01-01

    Different possible adsorption sites of sodium atoms on a gallium arsenide surface have been investigated using ab initio self-consistent unrestricted Hartree-Fock total-energy cluster calculations with Hay-Wadt effective core potentials. The effects of electron correlation have been included by invoking the concepts of many-body perturbation theory and are found to be highly significant. We find that the Na-atom adsorption at a site modeled with an NaGa5As4H12 cluster is most favored energetically followed by Na adsorption at the site modeled with the NaGa4As5H12 cluster. The effects of charge transfer from Na to the GaAs surface as also possibilities of metallization are also analyzed and discussed.

  2. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation - II

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    2018-01-01

    The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.

  3. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    NASA Astrophysics Data System (ADS)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  4. Evolutionary models of rotating dense stellar systems: challenges in software and hardware

    NASA Astrophysics Data System (ADS)

    Fiestas, Jose

    2016-02-01

    We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of initial axisymmetry due to rotation. Central black hole seeds are alternatively included in our models, and black hole growth due to consumption of stellar matter is simulated until the central potential dominates the kinematics in the core. Goal is to study the long-term evolution (~ Gyr) of relaxed dense stellar systems, which deviate from spherical symmetry, their morphology and final kinematics. With this purpose, we developed a 2D Fokker-Planck analytical code, which results we confirm by detailed N-Body techniques, applying a high performance code, developed for GPU machines. We compare our models to available observations of galactic rotating globular clusters, and conclude that initial rotation modifies significantly the shape and lifetime of these systems, and can not be neglected in studying the evolution of globular clusters, and the galaxy itself.

  5. The application of k-Nearest Neighbour in the identification of high potential archers based on relative psychological coping skills variables

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Muaz Alim, Muhammad; Nasir, Ahmad Fakhri Ab

    2018-04-01

    The present study aims at classifying and predicting high and low potential archers from a collection of psychological coping skills variables trained on different k-Nearest Neighbour (k-NN) kernels. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. Psychological coping skills inventory which evaluates the archers level of related coping skills were filled out by the archers prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed k-NN models, i.e. fine, medium, coarse, cosine, cubic and weighted kernel functions, were trained on the psychological variables. The k-means clustered the archers into high psychologically prepared archers (HPPA) and low psychologically prepared archers (LPPA), respectively. It was demonstrated that the cosine k-NN model exhibited good accuracy and precision throughout the exercise with an accuracy of 94% and considerably fewer error rate for the prediction of the HPPA and the LPPA as compared to the rest of the models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected psychological coping skills variables examined which would consequently save time and energy during talent identification and development programme.

  6. Embedding Fragment ab Initio Model Potentials in CASSCF/CASPT2 Calculations of Doped Solids: Implementation and Applications.

    PubMed

    Swerts, Ben; Chibotaru, Liviu F; Lindh, Roland; Seijo, Luis; Barandiaran, Zoila; Clima, Sergiu; Pierloot, Kristin; Hendrickx, Marc F A

    2008-04-01

    In this article, we present a fragment model potential approach for the description of the crystalline environment as an extension of the use of embedding ab initio model potentials (AIMPs). The biggest limitation of the embedding AIMP method is the spherical nature of its model potentials. This poses problems as soon as the method is applied to crystals containing strongly covalently bonded structures with highly nonspherical electron densities. The newly proposed method addresses this problem by keeping the full electron density as its model potential, thus allowing one to group sets of covalently bonded atoms into fragments. The implementation in the MOLCAS 7.0 quantum chemistry package of the new method, which we call the embedding fragment ab inito model potential method (embedding FAIMP), is reported here, together with results of CASSCF/CASPT2 calculations. The developed methodology is applied for two test problems: (i) the investigation of the lowest ligand field states (2)A1 and (2)B1 of the Cr(V) defect in the YVO4 crystal and (ii) the investigation of the lowest ligand field and ligand-metal charge transfer (LMCT) states at the Mn(II) substitutional impurity doped into CaCO3. Comparison with similar calculations involving AIMPs for all environmental atoms, including those from covalently bounded units, shows that the FAIMP treatment of the YVO4 units surrounding the CrO4(3-) cluster increases the excitation energy (2)B1 → (2)A1 by ca. 1000 cm(-1) at the CASSCF level of calculation. In the case of the Mn(CO3)6(10-) cluster, the FAIMP treatment of the CO3(2-) units of the environment give smaller corrections, of ca. 100 cm(-1), for the ligand-field excitation energies, which is explained by the larger ligands of this cluster. However, the correction for the energy of the lowest LMCT transition is found to be ca. 600 cm(-1) for the CASSCF and ca. 1300 cm(-1) for the CASPT2 calculation.

  7. Detection of Clostridium difficile infection clusters, using the temporal scan statistic, in a community hospital in southern Ontario, Canada, 2006-2011.

    PubMed

    Faires, Meredith C; Pearl, David L; Ciccotelli, William A; Berke, Olaf; Reid-Smith, Richard J; Weese, J Scott

    2014-05-12

    In hospitals, Clostridium difficile infection (CDI) surveillance relies on unvalidated guidelines or threshold criteria to identify outbreaks. This can result in false-positive and -negative cluster alarms. The application of statistical methods to identify and understand CDI clusters may be a useful alternative or complement to standard surveillance techniques. The objectives of this study were to investigate the utility of the temporal scan statistic for detecting CDI clusters and determine if there are significant differences in the rate of CDI cases by month, season, and year in a community hospital. Bacteriology reports of patients identified with a CDI from August 2006 to February 2011 were collected. For patients detected with CDI from March 2010 to February 2011, stool specimens were obtained. Clostridium difficile isolates were characterized by ribotyping and investigated for the presence of toxin genes by PCR. CDI clusters were investigated using a retrospective temporal scan test statistic. Statistically significant clusters were compared to known CDI outbreaks within the hospital. A negative binomial regression model was used to identify associations between year, season, month and the rate of CDI cases. Overall, 86 CDI cases were identified. Eighteen specimens were analyzed and nine ribotypes were classified with ribotype 027 (n = 6) the most prevalent. The temporal scan statistic identified significant CDI clusters at the hospital (n = 5), service (n = 6), and ward (n = 4) levels (P ≤ 0.05). Three clusters were concordant with the one C. difficile outbreak identified by hospital personnel. Two clusters were identified as potential outbreaks. The negative binomial model indicated years 2007-2010 (P ≤ 0.05) had decreased CDI rates compared to 2006 and spring had an increased CDI rate compared to the fall (P = 0.023). Application of the temporal scan statistic identified several clusters, including potential outbreaks not detected by hospital personnel. The identification of time periods with decreased or increased CDI rates may have been a result of specific hospital events. Understanding the clustering of CDIs can aid in the interpretation of surveillance data and lead to the development of better early detection systems.

  8. Helium segregation on surfaces of plasma-exposed tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.

    2016-02-01

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1  ⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters’ drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.

  9. Function Clustering Self-Organization Maps (FCSOMs) for mining differentially expressed genes in Drosophila and its correlation with the growth medium.

    PubMed

    Liu, L L; Liu, M J; Ma, M

    2015-09-28

    The central task of this study was to mine the gene-to-medium relationship. Adequate knowledge of this relationship could potentially improve the accuracy of differentially expressed gene mining. One of the approaches to differentially expressed gene mining uses conventional clustering algorithms to identify the gene-to-medium relationship. Compared to conventional clustering algorithms, self-organization maps (SOMs) identify the nonlinear aspects of the gene-to-medium relationships by mapping the input space into another higher dimensional feature space. However, SOMs are not suitable for huge datasets consisting of millions of samples. Therefore, a new computational model, the Function Clustering Self-Organization Maps (FCSOMs), was developed. FCSOMs take advantage of the theory of granular computing as well as advanced statistical learning methodologies, and are built specifically for each information granule (a function cluster of genes), which are intelligently partitioned by the clustering algorithm provided by the DAVID_6.7 software platform. However, only the gene functions, and not their expression values, are considered in the fuzzy clustering algorithm of DAVID. Compared to the clustering algorithm of DAVID, these experimental results show a marked improvement in the accuracy of classification with the application of FCSOMs. FCSOMs can handle huge datasets and their complex classification problems, as each FCSOM (modeled for each function cluster) can be easily parallelized.

  10. Atomistic Simulation of Displacement Cascades in Zircon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devanathan, Ram; Weber, William J.; Corrales, Louis R.

    2002-05-06

    Low energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements were found to occur mainly in the O sublattice, and O replacements by a ring mechanism were predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects were found to occur. This Si-O-Si bridging is considerable in quenched liquid ZrSiO4.

  11. Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  12. Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  13. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters.

    PubMed

    Seyedsayamdost, Mohammad R

    2014-05-20

    Over the past decade, bacterial genome sequences have revealed an immense reservoir of biosynthetic gene clusters, sets of contiguous genes that have the potential to produce drugs or drug-like molecules. However, the majority of these gene clusters appear to be inactive for unknown reasons prompting terms such as "cryptic" or "silent" to describe them. Because natural products have been a major source of therapeutic molecules, methods that rationally activate these silent clusters would have a profound impact on drug discovery. Herein, a new strategy is outlined for awakening silent gene clusters using small molecule elicitors. In this method, a genetic reporter construct affords a facile read-out for activation of the silent cluster of interest, while high-throughput screening of small molecule libraries provides potential inducers. This approach was applied to two cryptic gene clusters in the pathogenic model Burkholderia thailandensis. The results not only demonstrate a prominent activation of these two clusters, but also reveal that the majority of elicitors are themselves antibiotics, most in common clinical use. Antibiotics, which kill B. thailandensis at high concentrations, act as inducers of secondary metabolism at low concentrations. One of these antibiotics, trimethoprim, served as a global activator of secondary metabolism by inducing at least five biosynthetic pathways. Further application of this strategy promises to uncover the regulatory networks that activate silent gene clusters while at the same time providing access to the vast array of cryptic molecules found in bacteria.

  14. Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer.

    PubMed

    Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir

    2012-08-20

    Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Optical potential from first principles

    DOE PAGES

    Rotureau, J.; Danielewicz, P.; Hagen, G.; ...

    2017-02-15

    Here, we develop a method to construct a microscopic optical potential from chiral interactions for nucleon-nucleus scattering. The optical potential is constructed by combining the Green’s function approach with the coupled-cluster method. To deal with the poles of the Green’s function along the real energy axis we employ a Berggren basis in the complex energy plane combined with the Lanczos method. Using this approach, we perform a proof-of-principle calculation of the optical potential for the elastic neutron scattering on 16O. For the computation of the ground-state of 16O, we use the coupled-cluster method in the singles-and-doubles approximation, while for themore » A ±1 nuclei we use particle-attached/removed equation-of-motion method truncated at two-particle-one-hole and one-particle-two-hole excitations, respectively. We verify the convergence of the optical potential and scattering phase shifts with respect to the model-space size and the number of discretized complex continuum states. We also investigate the absorptive component of the optical potential (which reflects the opening of inelastic channels) by computing its imaginary volume integral and find an almost negligible absorptive component at low-energies. To shed light on this result, we computed excited states of 16O using equation-of-motion coupled-cluster method with singles-and- doubles excitations and we found no low-lying excited states below 10 MeV. Furthermore, most excited states have a dominant two-particle-two-hole component, making higher-order particle-hole excitations necessary to achieve a precise description of these core-excited states. We conclude that the reduced absorption at low-energies can be attributed to the lack of correlations coming from the low-order cluster truncation in the employed coupled-cluster method.« less

  16. The orbital motion of the quintuplet cluster—a common origin for the arches and quintuplet clusters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolte, A.; Hußmann, B.; Habibi, M.

    2014-07-10

    We investigate the orbital motion of the Quintuplet cluster near the Galactic center with the aim of constraining formation scenarios of young, massive star clusters in nuclear environments. Three epochs of adaptive optics high-angular resolution imaging with the Keck/NIRC2 and Very Large Telescope/NAOS-CONICA systems were obtained over a time baseline of 5.8 yr, delivering an astrometric accuracy of 0.5-1 mas yr{sup –1}. Proper motions were derived in the cluster reference frame and were used to distinguish cluster members from the majority of the dense field star population toward the inner bulge. Fitting the cluster and field proper motion distributions withmore » two-dimensional (2D) Gaussian models, we derive the orbital motion of the cluster for the first time. The Quintuplet is moving with a 2D velocity of 132 ± 15 km s{sup –1} with respect to the field along the Galactic plane, which yields a three-dimensional orbital velocity of 167 ± 15 km s{sup –1} when combined with the previously known radial velocity. From a sample of 119 stars measured in three epochs, we derive an upper limit to the velocity dispersion of σ{sub 1D} < 10 km s{sup –1} in the core of the Quintuplet cluster. Knowledge of the three velocity components of the Quintuplet allows us to model the cluster orbit in the potential of the inner Galaxy. Under the assumption that the Quintuplet is located in the central 200 pc at the present time, these simulations exclude the possibility that the cluster is moving on a circular orbit. Comparing the Quintuplet's orbit with our earlier measurements of the Arches' orbit, we discuss the possibility that both clusters originated in the same area of the central molecular zone (CMZ). According to the model of Binney et al., two families of stable cloud orbits are located along the major and minor axes of the Galactic bar, named x1 and x2 orbits, respectively. The formation locus of these clusters is consistent with the outermost x2 orbit and might hint at cloud collisions at the transition region between the x1 and x2 orbital families located at the tip of the minor axis of the Galactic bar. The formation of young, massive star clusters in circumnuclear rings is discussed in the framework of the channeling in of dense gas by the bar potential. We conclude that the existence of a large-scale bar plays a major role in supporting ongoing star and cluster formation, not only in nearby spiral galaxies with circumnuclear rings, but also in the Milky Way's CMZ.« less

  17. The Evolution of the Globular Cluster System in a Triaxial Galaxy: Can a Galactic Nucleus Form by Globular Cluster Capture?

    NASA Astrophysics Data System (ADS)

    Capuzzo-Dolcetta, Roberto

    1993-10-01

    Among the possible phenomena inducing evolution of the globular cluster system in an elliptical galaxy, dynamical friction due to field stars and tidal disruption caused by a central nucleus is of crucial importance. The aim of this paper is the study of the evolution of the globular cluster system in a triaxial galaxy in the presence of these phenomena. In particular, the possibility is examined that some galactic nuclei have been formed by frictionally decayed globular clusters moving in a triaxial potential. We find that the initial rapid growth of the nucleus, due mainly to massive clusters on box orbits falling in a short time scale into the galactic center, is later slowed by tidal disruption induced by the nucleus itself on less massive clusters in the way described by Ostriker, Binney, and Saha. The efficiency of dynamical friction is such to carry to the center of the galaxy enough globular cluster mass available to form a compact nucleus, but the actual modes and results of cluster-cluster encounters in the central potential well are complicated phenomena which remains to be investigated. The mass of the resulting nucleus is determined by the mutual feedback of the described processes, together with the initial spatial, velocity, and mass distributions of the globular cluster family. The effect on the system mass function is studied, showing the development of a low- and high-mass turnover even with an initially flat mass function. Moreover, in this paper is discussed the possibility that the globular cluster fall to the galactic center has been a cause of primordial violent galactic activity. An application of the model to M31 is presented.

  18. An {alpha}-cluster model for {sub {Lambda}}{sup 9}Be spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filikhin, I. N., E-mail: ifilikhin@nccu.edu; Suslov, V. M.; Vlahovic, B.

    An {alpha}-cluster model is applied to study low-lying spectrum of the {sub {Lambda}}{sup 9}Be hypernucleus. The three-body {alpha}{alpha}{Lambda} problem is numerically solved by the Faddeev equations in configuration space using phenomenological pair potentials. We found a set of the potentials that reproduces experimental data for the ground state (1/2{sup +}) binding energy and excitation energy of the 5/2{sup +} and 3/2{sup +} states, simultaneously. This set includes the Ali-Bodmer potential of the version 'e' for {alpha}{alpha} and modified Tang-Herndon potential for {alpha}{Lambda} interactions. The spin-orbit {alpha}{Lambda} interaction is given by modified Scheerbaum potential. Low-lying energy levels are evaluated applying amore » variant of the analytical continuation method in the coupling constant. It is shown that the spectral properties of {sub {Lambda}}{sup 9}Be can be classified as an analog of {sup 9}Be spectrum with the exception of several 'genuine hypernuclear states'. This agrees qualitatively with previous studies. The results are compared with experimental data and new interpretation of the spectral structure is discussed.« less

  19. Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, David C.

    2006-10-15

    Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules,more » and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of binary homopolymer blends and diblock copolymer melts.« less

  20. A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure.

    PubMed

    Balzer, Laura B; Zheng, Wenjing; van der Laan, Mark J; Petersen, Maya L

    2018-01-01

    We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment.

  1. A screened independent atom model for the description of ion collisions from atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom

    2018-05-01

    We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.

  2. QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.

    PubMed

    Nilsen, Vegard; Wyller, John

    2016-01-01

    Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. © 2016 Society for Risk Analysis.

  3. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements from DR12 galaxy clustering – towards an accurate model

    DOE PAGES

    Chia -Hsun Chuang; Pellejero-Ibanez, Marco; Rodriguez-Torres, Sergio; ...

    2016-06-26

    We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the normalised growth rate f(z)σ 8(z), and the physical matter density Ω mh 2. In addition, we adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalize over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chainmore » analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis.« less

  4. Characteristics of airflow and particle deposition in COPD current smokers

    NASA Astrophysics Data System (ADS)

    Zou, Chunrui; Choi, Jiwoong; Haghighi, Babak; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    A recent imaging-based cluster analysis of computed tomography (CT) lung images in a chronic obstructive pulmonary disease (COPD) cohort identified four clusters, viz. disease sub-populations. Cluster 1 had relatively normal airway structures; Cluster 2 had wall thickening; Cluster 3 exhibited decreased wall thickness and luminal narrowing; Cluster 4 had a significant decrease of luminal diameter and a significant reduction of lung deformation, thus having relatively low pulmonary functions. To better understand the characteristics of airflow and particle deposition in these clusters, we performed computational fluid and particle dynamics analyses on representative cluster patients and healthy controls using CT-based airway models and subject-specific 3D-1D coupled boundary conditions. The results show that particle deposition in central airways of cluster 4 patients was noticeably increased especially with increasing particle size despite reduced vital capacity as compared to other clusters and healthy controls. This may be attributable in part to significant airway constriction in cluster 4. This study demonstrates the potential application of cluster-guided CFD analysis in disease populations. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837.

  5. Elastic scattering and breakup reactions of the exotic nucleus 8B on nuclear targets

    NASA Astrophysics Data System (ADS)

    Lukyanov, V. K.; Kadrev, D. N.; Antonov, A. N.; Zemlyanaya, E. V.; Lukyanov, K. V.; Gaidarov, M. K.; Spasova, K.

    2018-05-01

    Microscopic calculations of the optical potentials (OPs) and elastic scattering cross sections of the proton-rich nucleus 8B on 12C, 58Ni and 208Pb targets are presented. The density distributions of 8B obtained within the variational Monte Carlo (VMC) model and the three-cluster model (3CM) are used to construct the optical potentials (OP). The real part of the hybrid OP (ReOP) is calculated using the folding model with the direct and exchange terms included, while the imaginary part (ImOP) is obtained on the base of the high energy approximation (HEA). In addition, the cluster model, in which 8B consists of a proton halo and a 7Be core is applied to calculate the breakup cross sections of 8B on 9Be, 12C and 197Au targets, as well as the momentum distributions of 7Be fragments. A comparison with the available experimental data is made and a good agreement is obtained.

  6. Development of deformation band clusters in porous quartz sandstones - Contribution from microstructural analysis and numerical modeling

    NASA Astrophysics Data System (ADS)

    Philit, S.; Soliva, R.; Chemenda, A. I.

    2017-12-01

    Because sandstones form good reservoirs for hydrocarbon, water or C02 storage, the understanding of the deformation processes in sandstones is major. The deformation band clusters result from the localization of the deformation in porous sandstones under the form of gathered low-permeability cataclastic deformation bands. It has recently been shown that this localization is favored in extensional tectonics. The clusters measure tens to hundreds of meters in extent and propagate vertically as long as the sandstone is clean. Because the clusters can form several kilometers long networks, they are likely to hamper fluid flow during reservoir exploitation. Yet, the processes of band accumulation linked to the evolution of the clusters to a potential faulting are poorly understood. An integrated study coupling a microscopic analysis of the deformed granular material in clusters from 7 sites in the world and distinct element numerical modeling permits to propose a model for cluster growth. Our microscopic analysis reveals that the clusters display varying degree of cataclasis, with the most important degrees in the bands. This cataclasis is accompanied by porosity reduction (more reduced in thrust Andersonian regime), and increased Particle Size Distribution. This testifies of an important packing and implies an increased number of particle coordination. During deformation, the grain shape is both smoothened and roughened; the averaged values of the roundness and circularity indicate a rapid roughening of the clasts at the first stages of deformation followed by a slight smoothening. The roughening of the clasts in densely packed material induces high friction and strengthens the material. High residual porosity at some band edges suggests a local dilatant behavior of sheared material. Our distinct element numerical models and other particle models in the literature confirm this observation. The development of force chains with low particle coordination at these locations would weaken the stress resistance at the contact points. Hence, the cluster growth would be promoted by the successive localization of bands the edges of preexisting bands. Faulting could occur at any stage of the cluster development, probably favored along interfaces of minimized strength with smooth geometry.

  7. The Halo Boundary of Galaxy Clusters in the SDSS

    NASA Astrophysics Data System (ADS)

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; Adhikari, Susmita; Dalal, Neal; Kravtsov, Andrey; More, Surhud; Rozo, Eduardo; Rykoff, Eli; Sheth, Ravi K.

    2017-05-01

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  8. Search For Cosmic-Ray-Induced Gamma-Ray Emission In Galaxy Clusters

    DOE PAGES

    Ackermann, M.

    2014-04-30

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended γ-ray emission at the locations of 50 galaxy clusters in 4 years of Fermi-LAT data under the assumption of the universal cosmic-ray model proposed by Pinzke & Pfrommer (2010). We find an excess at a significance of 2.7 σ which uponmore » closer inspection is however correlated to individual excess emission towards three galaxy clusters: Abell 400, Abell 1367 and Abell 3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background (for example, radio galaxies within the clusters). Through the combined analysis of 50 clusters we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the cosmic-ray to thermal pressure ratio within the virial radius, R200, to be below 1.2-1.4% depending on the morphological classification. In addition we derive new limits on the γ-ray flux from individual clusters in our sample.« less

  9. Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; hide

    2014-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.

  10. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    NASA Astrophysics Data System (ADS)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  11. Impact of a star formation efficiency profile on the evolution of open clusters

    NASA Astrophysics Data System (ADS)

    Shukirgaliyev, B.; Parmentier, G.; Berczik, P.; Just, A.

    2017-09-01

    Aims: We study the effect of the instantaneous expulsion of residual star-forming gas on star clusters in which the residual gas has a density profile that is shallower than that of the embedded cluster. This configuration is expected if star formation proceeds with a given star-formation efficiency per free-fall time in a centrally concentrated molecular gas clump. Methods: We performed direct N-body simulations whose initial conditions were generated by the program "mkhalo" from the package "falcON", adapted for our models. Our model clusters initially had a Plummer profile and are in virial equilibrium with the gravitational potential of the cluster-forming clump. The residual gas contribution was computed based on a local-density driven clustered star formation model. Our simulations included mass loss by stellar evolution and the tidal field of a host galaxy. Results: We find that a star cluster with a minimum global star formation efficiency (SFE) of 15 percent is able to survive instantaneous gas expulsion and to produce a bound cluster. Its violent relaxation lasts no longer than 20 Myr, independently of its global SFE and initial stellar mass. At the end of violent relaxation, the bound fractions of the surviving clusters with the same global SFEs are similar, regardless of their initial stellar mass. Their subsequent lifetime in the gravitational field of the Galaxy depends on their bound stellar masses. Conclusions: We therefore conclude that the critical SFE needed to produce a bound cluster is 15 percent, which is roughly half the earlier estimates of 33 percent. Thus we have improved the survival likelihood of young clusters after instantaneous gas expulsion. Young clusters can now survive instantaneous gas expulsion with a global SFEs as low as the SFEs observed for embedded clusters in the solar neighborhood (15-30 percent). The reason is that the star cluster density profile is steeper than that of the residual gas. However, in terms of the effective SFE, measured by the virial ratio of the cluster at gas expulsion, our results are in agreement with previous studies.

  12. Development of an automated energy audit protocol for office buildings

    NASA Astrophysics Data System (ADS)

    Deb, Chirag

    This study aims to enhance the building energy audit process, and bring about reduction in time and cost requirements in the conduction of a full physical audit. For this, a total of 5 Energy Service Companies in Singapore have collaborated and provided energy audit reports for 62 office buildings. Several statistical techniques are adopted to analyse these reports. These techniques comprise cluster analysis and development of prediction models to predict energy savings for buildings. The cluster analysis shows that there are 3 clusters of buildings experiencing different levels of energy savings. To understand the effect of building variables on the change in EUI, a robust iterative process for selecting the appropriate variables is developed. The results show that the 4 variables of GFA, non-air-conditioning energy consumption, average chiller plant efficiency and installed capacity of chillers should be taken for clustering. This analysis is extended to the development of prediction models using linear regression and artificial neural networks (ANN). An exhaustive variable selection algorithm is developed to select the input variables for the two energy saving prediction models. The results show that the ANN prediction model can predict the energy saving potential of a given building with an accuracy of +/-14.8%.

  13. Density-functional theory study of ionic inhomogeneity in metal clusters using SC-ISJM

    NASA Astrophysics Data System (ADS)

    Payami, Mahmoud; Mahmoodi, Tahereh

    2017-12-01

    In this work we have applied the recently formulated self-compressed inhomogeneous stabilized jellium model [51] to describe the equilibrium electronic and geometric properties of atomic-closed-shell simple metal clusters of AlN (N = 13, 19, 43, 55, 79, 87, 135, 141), NaN, and CsN (N = 9, 15, 27, 51, 59, 65, 89, 113). To validate the results, we have also performed first-principles pseudo-potential calculations and used them as our reference. In the model, we have considered two regions consisting of ;surface; and ;inner; ones, the border separating them being sharp. This generalization makes possible to decouple the relaxations of different parts of the system. The results show that the present model correctly predicts the size reductions seen in most of the clusters. It also predicts increase in size of some clusters, as observed from first-principles results. Moreover, the changes in inter-layer distances, being as contractions or expansions, are in good agreement with the atomic simulation results. For a more realistic description of the properties, it is possible to improve the method of choosing the surface thicknesses or generalize the model to include more regions than just two.

  14. Synaptic clustering within dendrites: an emerging theory of memory formation

    PubMed Central

    Kastellakis, George; Cai, Denise J.; Mednick, Sara C.; Silva, Alcino J.; Poirazi, Panayiota

    2015-01-01

    It is generally accepted that complex memories are stored in distributed representations throughout the brain, however the mechanisms underlying these representations are not understood. Here, we review recent findings regarding the subcellular mechanisms implicated in memory formation, which provide evidence for a dendrite-centered theory of memory. Plasticity-related phenomena which affect synaptic properties, such as synaptic tagging and capture, synaptic clustering, branch strength potentiation and spinogenesis provide the foundation for a model of memory storage that relies heavily on processes operating at the dendrite level. The emerging picture suggests that clusters of functionally related synapses may serve as key computational and memory storage units in the brain. We discuss both experimental evidence and theoretical models that support this hypothesis and explore its advantages for neuronal function. PMID:25576663

  15. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells.

    PubMed

    Schweizer, Patrick A; Darche, Fabrice F; Ullrich, Nina D; Geschwill, Pascal; Greber, Boris; Rivinius, Rasmus; Seyler, Claudia; Müller-Decker, Karin; Draguhn, Andreas; Utikal, Jochen; Koenen, Michael; Katus, Hugo A; Thomas, Dierk

    2017-10-16

    Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10-12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70-90 beats/min) and were triggered by spontaneous Ca 2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN.

  16. Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects.

    PubMed

    Feder, Stephan; Sundermann, Benedikt; Wersching, Heike; Teuber, Anja; Kugel, Harald; Teismann, Henning; Heindel, Walter; Berger, Klaus; Pfleiderer, Bettina

    2017-11-01

    Combinations of resting-state fMRI and machine-learning techniques are increasingly employed to develop diagnostic models for mental disorders. However, little is known about the neurobiological heterogeneity of depression and diagnostic machine learning has mainly been tested in homogeneous samples. Our main objective was to explore the inherent structure of a diverse unipolar depression sample. The secondary objective was to assess, if such information can improve diagnostic classification. We analyzed data from 360 patients with unipolar depression and 360 non-depressed population controls, who were subdivided into two independent subsets. Cluster analyses (unsupervised learning) of functional connectivity were used to generate hypotheses about potential patient subgroups from the first subset. The relationship of clusters with demographical and clinical measures was assessed. Subsequently, diagnostic classifiers (supervised learning), which incorporated information about these putative depression subgroups, were trained. Exploratory cluster analyses revealed two weakly separable subgroups of depressed patients. These subgroups differed in the average duration of depression and in the proportion of patients with concurrently severe depression and anxiety symptoms. The diagnostic classification models performed at chance level. It remains unresolved, if subgroups represent distinct biological subtypes, variability of continuous clinical variables or in part an overfitting of sparsely structured data. Functional connectivity in unipolar depression is associated with general disease effects. Cluster analyses provide hypotheses about potential depression subtypes. Diagnostic models did not benefit from this additional information regarding heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Simple Epidemiological Dynamics Explain Phylogenetic Clustering of HIV from Patients with Recent Infection

    PubMed Central

    Volz, Erik M.; Koopman, James S.; Ward, Melissa J.; Brown, Andrew Leigh; Frost, Simon D. W.

    2012-01-01

    Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics. Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection (‘excess clustering’) and also tend to cluster with other recent HIV infections rather than chronic, established infections (‘excess co-clustering’), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled. PMID:22761556

  18. Radiation hydrodynamics of super star cluster formation

    NASA Astrophysics Data System (ADS)

    Tsang, Benny Tsz Ho; Milos Milosavljevic

    2018-01-01

    Throughout the history of the Universe, the nuclei of super star clusters represent the most active sites for star formation. The high densities of massive stars within the clusters produce intense radiation that imparts both energy and momentum on the surrounding star-forming gas. Theoretical claims based on idealized geometries have claimed the dominant role of radiation pressure in controlling the star formation activity within the clusters. In order for cluster formation simulations to be reliable, numerical schemes have to be able to model accurately the radiation flows through the gas clumps at the cluster nuclei with high density contrasts. With a hybrid Monte Carlo radiation transport module we developed, we performed 3D radiation hydrodynamical simulations of super star cluster formation in turbulent clouds. Furthermore, our Monte Carlo radiation treatment provides a native capability to produce synthetic observations, which allows us to predict observational indicators and to inform future observations. We found that radiation pressure has definite, but minor effects on limiting the gas supply for star formation, and the final mass of the most massive cluster is about one million solar masses. The ineffective forcing was due to the density variations inside the clusters, i.e. radiation takes the paths of low densities and avoids forcing on dense clumps. Compared to a radiation-free control run, we further found that the presence of radiation amplifies the density variations. The core of the resulting cluster has a high stellar density, about the threshold required for stellar collisions and merging. The very massive star that form from the stellar merging could continue to gain mass from the surrounding gas reservoir that is gravitationally confined by the deep potential of the cluster, seeding the potential formation of a massive black hole.

  19. Scalable properties of metal clusters: A comparative study of modern exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Koitz, Ralph; Soini, Thomas M.; Genest, Alexander; Trickey, S. B.; Rösch, Notker

    2012-07-01

    The performance of eight generalized gradient approximation exchange-correlation (xc) functionals is assessed by a series of scalar relativistic all-electron calculations on octahedral palladium model clusters Pdn with n = 13, 19, 38, 55, 79, 147 and the analogous clusters Aun (for n up through 79). For these model systems, we determined the cohesive energies and average bond lengths of the optimized octahedral structures. We extrapolate these values to the bulk limits and compare with the corresponding experimental values. While the well-established functionals BP, PBE, and PW91 are the most accurate at predicting energies, the more recent forms PBEsol, VMTsol, and VT{84}sol significantly improve the accuracy of geometries. The observed trends are largely similar for both Pd and Au. In the same spirit, we also studied the scalability of the ionization potentials and electron affinities of the Pd clusters, and extrapolated those quantities to estimates of the work function. Overall, the xc functionals can be classified into four distinct groups according to the accuracy of the computed parameters. These results allow a judicious selection of xc approximations for treating transition metal clusters.

  20. Modeling Aggregation Processes of Lennard-Jones particles Via Stochastic Networks

    NASA Astrophysics Data System (ADS)

    Forman, Yakir; Cameron, Maria

    2017-07-01

    We model an isothermal aggregation process of particles/atoms interacting according to the Lennard-Jones pair potential by mapping the energy landscapes of each cluster size N onto stochastic networks, computing transition probabilities from the network for an N-particle cluster to the one for N+1, and connecting these networks into a single joint network. The attachment rate is a control parameter. The resulting network representing the aggregation of up to 14 particles contains 6427 vertices. It is not only time-irreversible but also reducible. To analyze its transient dynamics, we introduce the sequence of the expected initial and pre-attachment distributions and compute them for a wide range of attachment rates and three values of temperature. As a result, we find the configurations most likely to be observed in the process of aggregation for each cluster size. We examine the attachment process and conduct a structural analysis of the sets of local energy minima for every cluster size. We show that both processes taking place in the network, attachment and relaxation, lead to the dominance of icosahedral packing in small (up to 14 atom) clusters.

  1. Recognizing patterns of visual field loss using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Yousefi, Siamak; Goldbaum, Michael H.; Zangwill, Linda M.; Medeiros, Felipe A.; Bowd, Christopher

    2014-03-01

    Glaucoma is a potentially blinding optic neuropathy that results in a decrease in visual sensitivity. Visual field abnormalities (decreased visual sensitivity on psychophysical tests) are the primary means of glaucoma diagnosis. One form of visual field testing is Frequency Doubling Technology (FDT) that tests sensitivity at 52 points within the visual field. Like other psychophysical tests used in clinical practice, FDT results yield specific patterns of defect indicative of the disease. We used Gaussian Mixture Model with Expectation Maximization (GEM), (EM is used to estimate the model parameters) to automatically separate FDT data into clusters of normal and abnormal eyes. Principal component analysis (PCA) was used to decompose each cluster into different axes (patterns). FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal (i.e., glaucomatous) FDT results, recruited from a university-based, longitudinal, multi-center, clinical study on glaucoma. The GEM input was the 52-point FDT threshold sensitivities for all eyes. The optimal GEM model separated the FDT fields into 3 clusters. Cluster 1 contained 94% normal fields (94% specificity) and clusters 2 and 3 combined, contained 77% abnormal fields (77% sensitivity). For clusters 1, 2 and 3 the optimal number of PCA-identified axes were 2, 2 and 5, respectively. GEM with PCA successfully separated FDT fields from healthy and glaucoma eyes and identified familiar glaucomatous patterns of loss.

  2. The impact of galaxy geometry and mass evolution on the survival of star clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie

    2014-04-01

    Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10{sup 10} M {sub ☉} to 10 × 10{sup 10} M {sub ☉} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk ofmore » identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.« less

  3. THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2013-02-20

    We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a clustermore » recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.« less

  4. Inherent Structure versus Geometric Metric for State Space Discretization

    PubMed Central

    Liu, Hanzhong; Li, Minghai; Fan, Jue; Huo, Shuanghong

    2016-01-01

    Inherent structure (IS) and geometry-based clustering methods are commonly used for analyzing molecular dynamics trajectories. ISs are obtained by minimizing the sampled conformations into local minima on potential/effective energy surface. The conformations that are minimized into the same energy basin belong to one cluster. We investigate the influence of the applications of these two methods of trajectory decomposition on our understanding of the thermodynamics and kinetics of alanine tetrapeptide. We find that at the micro cluster level, the IS approach and root-mean-square deviation (RMSD) based clustering method give totally different results. Depending on the local features of energy landscape, the conformations with close RMSDs can be minimized into different minima, while the conformations with large RMSDs could be minimized into the same basin. However, the relaxation timescales calculated based on the transition matrices built from the micro clusters are similar. The discrepancy at the micro cluster level leads to different macro clusters. Although the dynamic models established through both clustering methods are validated approximately Markovian, the IS approach seems to give a meaningful state space discretization at the macro cluster level. PMID:26915811

  5. Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)

    NASA Astrophysics Data System (ADS)

    Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik

    2016-09-01

    We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster-Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.

  6. Persistent Topology and Metastable State in Conformational Dynamics

    PubMed Central

    Chang, Huang-Wei; Bacallado, Sergio; Pande, Vijay S.; Carlsson, Gunnar E.

    2013-01-01

    The large amount of molecular dynamics simulation data produced by modern computational models brings big opportunities and challenges to researchers. Clustering algorithms play an important role in understanding biomolecular kinetics from the simulation data, especially under the Markov state model framework. However, the ruggedness of the free energy landscape in a biomolecular system makes common clustering algorithms very sensitive to perturbations of the data. Here, we introduce a data-exploratory tool which provides an overview of the clustering structure under different parameters. The proposed Multi-Persistent Clustering analysis combines insights from recent studies on the dynamics of systems with dominant metastable states with the concept of multi-dimensional persistence in computational topology. We propose to explore the clustering structure of the data based on its persistence on scale and density. The analysis provides a systematic way to discover clusters that are robust to perturbations of the data. The dominant states of the system can be chosen with confidence. For the clusters on the borderline, the user can choose to do more simulation or make a decision based on their structural characteristics. Furthermore, our multi-resolution analysis gives users information about the relative potential of the clusters and their hierarchical relationship. The effectiveness of the proposed method is illustrated in three biomolecules: alanine dipeptide, Villin headpiece, and the FiP35 WW domain. PMID:23565139

  7. Reexamining cluster radioactivity in trans-lead nuclei with consideration of specific density distributions in daughter nuclei and clusters

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2016-08-01

    We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.

  8. Analytical Tools for Investigating and Modeling Agent-Based Systems

    DTIC Science & Technology

    2005-06-01

    of Black Holes Cluster 10 : Juan M. Maldacena (1924), Journal of High Energy Physics Field theory models for tachyon and gauge field string dy...namics; Super-Poincare Invariant Superstring Field The- ory; Level Four Approximation to the Tachyon Potential in Superstring Field Theory; SO(32) Spinors

  9. Qualitative mechanism models and the rationalization of procedures

    NASA Technical Reports Server (NTRS)

    Farley, Arthur M.

    1989-01-01

    A qualitative, cluster-based approach to the representation of hydraulic systems is described and its potential for generating and explaining procedures is demonstrated. Many ideas are formalized and implemented as part of an interactive, computer-based system. The system allows for designing, displaying, and reasoning about hydraulic systems. The interactive system has an interface consisting of three windows: a design/control window, a cluster window, and a diagnosis/plan window. A qualitative mechanism model for the ORS (Orbital Refueling System) is presented to coordinate with ongoing research on this system being conducted at NASA Ames Research Center.

  10. Nuclear clustering and the electron screening puzzle

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Spitaleri, C.

    2018-01-01

    Electron screening changes appreciably the magnitude of astrophysical nuclear reactions within stars. This effect is also observed in laboratory experiments on Earth, where atomic electrons are present in the nuclear targets. Theoretical models were developed over the past 30 years and experimental measurements have been carried out to study electron screening in thermonuclear reactions. None of the theoretical models were able to explain the high values of the experimentally determined screening potentials. We explore the possibility that the "electron screening puzzle" is due to nuclear clusterization and polarization e_ects in the fusion reactions. We will discuss the supporting arguments for this scenario.

  11. Direct construction of mesoscopic models from microscopic simulations

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George Em

    2010-02-01

    Starting from microscopic molecular-dynamics (MD) simulations of constrained Lennard-Jones (LJ) clusters (with constant radius of gyration Rg ), we construct two mesoscopic models [Langevin dynamics and dissipative particle dynamics (DPD)] by coarse graining the LJ clusters into single particles. Both static and dynamic properties of the coarse-grained models are investigated and compared with the MD results. The effective mean force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce the equation of state of the atomistic systems within a wide density range but the radial distribution function only within the dilute and the semidilute regime. The friction force coefficients for both models are computed directly from the time-correlation function of the random force field of the microscopic system. For high density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When the many-body effect is not as pronounced (e.g., smaller Rg or semidilute system), the DPD model can reproduce the dynamic properties of the MD system.

  12. Methodology to assess and map the potential development of forest ecosystems exposed to climate change and atmospheric nitrogen deposition: A pilot study in Germany.

    PubMed

    Schröder, Winfried; Nickel, Stefan; Jenssen, Martin; Riediger, Jan

    2015-07-15

    A methodology for mapping ecosystems and their potential development under climate change and atmospheric nitrogen deposition was developed using examples from Germany. The methodology integrated data on vegetation, soil, climate change and atmospheric nitrogen deposition. These data were used to classify ecosystem types regarding six ecological functions and interrelated structures. Respective data covering 1961-1990 were used for reference. The assessment of functional and structural integrity relies on comparing a current or future state with an ecosystem type-specific reference. While current functions and structures of ecosystems were quantified by measurements, potential future developments were projected by geochemical soil modelling and data from a regional climate change model. The ecosystem types referenced the potential natural vegetation and were mapped using data on current tree species coverage and land use. In this manner, current ecosystem types were derived, which were related to data on elevation, soil texture, and climate for the years 1961-1990. These relations were quantified by Classification and Regression Trees, which were used to map the spatial patterns of ecosystem type clusters for 1961-1990. The climate data for these years were subsequently replaced by the results of a regional climate model for 1991-2010, 2011-2040, and 2041-2070. For each of these periods, one map of ecosystem type clusters was produced and evaluated with regard to the development of areal coverage of ecosystem type clusters over time. This evaluation of the structural aspects of ecological integrity at the national level was added by projecting potential future values of indicators for ecological functions at the site level by using the Very Simple Dynamic soil modelling technique based on climate data and two scenarios of nitrogen deposition as input. The results were compared to the reference and enabled an evaluation of site-specific ecosystem changes over time which proved to be both, positive and negative. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostedt, C.; Thomas, H.; Hoener, M.

    The interaction of intense extreme ultraviolet femtosecond laser pulses ({lambda}=32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10{sup 13} W/cm{sup 2}, we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find nomore » evidence for electron emission from plasma heating processes.« less

  14. Cluster folding analysis of 20Ne+16O elastic transfer

    NASA Astrophysics Data System (ADS)

    Hamada, Sh.; Keeley, N.; Kemper, K. W.; Rusek, K.

    2018-05-01

    The available experimental data for the 20Ne+16O system in the energy range where the effect of α -cluster transfer is well observed are reanalyzed using the cluster folding model. The cluster folding potential, which includes both real and imaginary terms, reproduces the data at forward angles and the inclusion of the 16O(20Ne,16O)20Ne elastic transfer process provides a satisfactory description of the backward angles. The spectroscopic factor for the 20Ne→16O+α overlap was extracted and compared with other values from the literature. The present results suggest that the (20Ne,16O ) reaction might be an alternative means of exploring the α -particle structure of nuclei.

  15. Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.

    PubMed

    Pliego, Josefredo R; Miguel, Elizabeth L M

    2013-05-02

    Absolute solvation free energy of the lithium cation in methanol was calculated by the cluster-continuum quasichemical theory of solvation. Clusters with up to five methanol molecules were investigated using X3LYP, MP2, and MP4 methods with DZVP, 6-311+G(2df,2p), TZVPP+diff, and QZVPP+diff basis sets and including the cluster solvation through the PCM and SMD continuum models. Our calculations have determined a value of -118.1 kcal mol(-1) for the solvation free energy of the lithium, in close agreement with a value of -116.6 kcal mol(-1) consistent with the TATB assumption. Using data of solvation and transfer free energy of a pair of ions, electrode potentials and pKa, we have obtained the solvation free energy of 25 ions in methanol. Our analysis leads to a value of -253.6 kcal mol(-1) for the solvation free energy of the proton, which can be compared with the value of -263.5 kcal mol(-1) obtained by Kelly et al. using the cluster pair approximation. Considering that this difference is due to the methanol surface potential, we have estimated that it corresponds to -0.429 V.

  16. An association between neighbourhood wealth inequality and HIV prevalence in sub-Saharan Africa.

    PubMed

    Brodish, Paul Henry

    2015-05-01

    This paper investigates whether community-level wealth inequality predicts HIV serostatus using DHS household survey and HIV biomarker data for men and women ages 15-59 pooled from six sub-Saharan African countries with HIV prevalence rates exceeding 5%. The analysis relates the binary dependent variable HIV-positive serostatus and two weighted aggregate predictors generated from the DHS Wealth Index: the Gini coefficient, and the ratio of the wealth of households in the top 20% wealth quintile to that of those in the bottom 20%. In separate multilevel logistic regression models, wealth inequality is used to predict HIV prevalence within each statistical enumeration area, controlling for known individual-level demographic predictors of HIV serostatus. Potential individual-level sexual behaviour mediating variables are added to assess attenuation, and ordered logit models investigate whether the effect is mediated through extramarital sexual partnerships. Both the cluster-level wealth Gini coefficient and wealth ratio significantly predict positive HIV serostatus: a 1 point increase in the cluster-level Gini coefficient and in the cluster-level wealth ratio is associated with a 2.35 and 1.3 times increased likelihood of being HIV positive, respectively, controlling for individual-level demographic predictors, and associations are stronger in models including only males. Adding sexual behaviour variables attenuates the effects of both inequality measures. Reporting eleven plus lifetime sexual partners increases the odds of being HIV positive over five-fold. The likelihood of having more extramarital partners is significantly higher in clusters with greater wealth inequality measured by the wealth ratio. Disaggregating logit models by sex indicates important risk behaviour differences. Household wealth inequality within DHS clusters predicts HIV serostatus, and the relationship is partially mediated by more extramarital partners. These results emphasize the importance of incorporating higher-level contextual factors, investigating behavioural mediators, and disaggregating by sex in assessing HIV risk in order to uncover potential mechanisms of action and points of preventive intervention.

  17. An association between neighborhood wealth inequality and HIV prevalence in sub-Saharan Africa

    PubMed Central

    Brodish, Paul Henry

    2016-01-01

    Summary This paper investigates whether community-level wealth inequality predicts HIV serostatus, using DHS household survey and HIV biomarker data for men and women ages 15-59 pooled from six sub-Saharan African countries with HIV prevalence rates exceeding five percent. The analysis relates the binary dependent variable HIV positive serostatus and two weighted aggregate predictors generated from the DHS Wealth Index: the Gini coefficient, and the ratio of the wealth of households in the top 20% wealth quintile to that of those in the bottom 20%. In separate multilevel logistic regression models, wealth inequality is used to predict HIV prevalence within each SEA, controlling for known individual-level demographic predictors of HIV serostatus. Potential individual-level sexual behavior mediating variables are added to assess attenuation, and ordered logit models investigate whether the effect is mediated through extramarital sexual partnerships. Both the cluster-level wealth Gini coefficient and wealth ratio significantly predict positive HIV serostatus: a 1 point increase in the cluster-level Gini coefficient and in the cluster-level wealth ratio is associated with a 2.35 and 1.3 times increased likelihood of being HIV positive, respectively, controlling for individual-level demographic predictors, and associations are stronger in models including only males. Adding sexual behavior variables attenuates the effects of both inequality measures. Reporting 11 plus lifetime sexual partners increases the odds of being HIV positive over five-fold. The likelihood of having more extramarital partners is significantly higher in clusters with greater wealth inequality measured by the wealth ratio. Disaggregating logit models by sex indicates important risk behavior differences. Household wealth inequality within DHS clusters predicts HIV serostatus, and the relationship is partially mediated by more extramarital partners. These results emphasize the importance of incorporating higher-level contextual factors, investigating behavioral mediators, and disaggregating by sex in assessing HIV risk in order to uncover potential mechanisms of action and points of preventive intervention PMID:24406021

  18. Potential, velocity, and density fields from redshift-distance samples: Application - Cosmography within 6000 kilometers per second

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund; Dekel, Avishai; Faber, Sandra M.; Dressler, Alan; Burstein, David

    1990-01-01

    A potential flow reconstruction algorithm has been applied to the real universe to reconstruct the three-dimensional potential, velocity, and mass density fields smoothed on large scales. The results are shown as maps of these fields, revealing the three-dimensional structure within 6000 km/s distance from the Local Group. The dominant structure is an extended deep potential well in the Hydra-Centaurus region, stretching across the Galactic plane toward Pavo, broadly confirming the Great Attractor (GA) model of Lynden-Bell et al. (1988). The Local Supercluster appears to be an extended ridge on the near flank of the GA, proceeding through the Virgo Southern Extension to the Virgo and Ursa Major clusters. The Virgo cluster and the Local Group are both falling toward the bottom of the GA potential well with peculiar velocities of 658 + or - 121 km/s and 565 + or - 125 km/s, respectively.

  19. A classical reactive potential for molecular clusters of sulphuric acid and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.

    2015-10-12

    We present a two state empirical valence bond (EVB) potential describing interactions between sulphuric acid and water molecules and designed to model proton transfer between them within a classical dynamical framework. The potential has been developed in order to study the properties of molecular clusters of these species, which are thought to be relevant to atmospheric aerosol nucleation. The particle swarm optimisation method has been used to fit the parameters of the EVB model to density functional theory (DFT) calculations. Features of the parametrised model and DFT data are compared and found to be in satisfactory agreement. In particular, itmore » is found that a single sulphuric acid molecule will donate a proton when clustered with four water molecules at 300 K and that this threshold is temperature dependent. SMK was supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; JLS and IJF were supported by the IMPACT scheme at University College London (UCL). We acknowledge the UCL Legion High Performance Computing Facility, and associated support services together with the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. JLS thanks Dr. Gregory Schenter, Dr. Theo Kurtén and Prof. Hanna Vehkamäki for important guidance and discussions.« less

  20. Chronic Obstructive Pulmonary Disease heterogeneity: challenges for health risk assessment, stratification and management.

    PubMed

    Roca, Josep; Vargas, Claudia; Cano, Isaac; Selivanov, Vitaly; Barreiro, Esther; Maier, Dieter; Falciani, Francesco; Wagner, Peter; Cascante, Marta; Garcia-Aymerich, Judith; Kalko, Susana; De Mas, Igor; Tegnér, Jesper; Escarrabill, Joan; Agustí, Alvar; Gomez-Cabrero, David

    2014-11-28

    Heterogeneity in clinical manifestations and disease progression in Chronic Obstructive Pulmonary Disease (COPD) lead to consequences for patient health risk assessment, stratification and management. Implicit with the classical "spill over" hypothesis is that COPD heterogeneity is driven by the pulmonary events of the disease. Alternatively, we hypothesized that COPD heterogeneities result from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering, each of them with their own dynamics. To explore the potential of a systems analysis of COPD heterogeneity focused on skeletal muscle dysfunction and on co-morbidity clustering aiming at generating predictive modeling with impact on patient management. To this end, strategies combining deterministic modeling and network medicine analyses of the Biobridge dataset were used to investigate the mechanisms of skeletal muscle dysfunction. An independent data driven analysis of co-morbidity clustering examining associated genes and pathways was performed using a large dataset (ICD9-CM data from Medicare, 13 million people). Finally, a targeted network analysis using the outcomes of the two approaches (skeletal muscle dysfunction and co-morbidity clustering) explored shared pathways between these phenomena. (1) Evidence of abnormal regulation of skeletal muscle bioenergetics and skeletal muscle remodeling showing a significant association with nitroso-redox disequilibrium was observed in COPD; (2) COPD patients presented higher risk for co-morbidity clustering than non-COPD patients increasing with ageing; and, (3) the on-going targeted network analyses suggests shared pathways between skeletal muscle dysfunction and co-morbidity clustering. The results indicate the high potential of a systems approach to address COPD heterogeneity. Significant knowledge gaps were identified that are relevant to shape strategies aiming at fostering 4P Medicine for patients with COPD.

  1. Three-cluster dynamics within an ab initio framework

    DOE PAGES

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core ( 4He) polarization effects.« less

  2. Predicting Student Actions in a Procedural Training Environment

    ERIC Educational Resources Information Center

    Riofrio-Luzcando, Diego; Ramirez, Jaime; Berrocal-Lobo, Marta

    2017-01-01

    Data mining is known to have a potential for predicting user performance. However, there are few studies that explore its potential for predicting student behavior in a procedural training environment. This paper presents a collective student model, which is built from past student logs. These logs are first grouped into clusters. Then, an…

  3. The dynamics of cyclone clustering in re-analysis and a high-resolution climate model

    NASA Astrophysics Data System (ADS)

    Priestley, Matthew; Pinto, Joaquim; Dacre, Helen; Shaffrey, Len

    2017-04-01

    Extratropical cyclones have a tendency to occur in groups (clusters) in the exit of the North Atlantic storm track during wintertime, potentially leading to widespread socioeconomic impacts. The Winter of 2013/14 was the stormiest on record for the UK and was characterised by the recurrent clustering of intense extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic 250 hPa jet with Rossby wave-breaking (RWB) on both flanks, pinning the jet in place. Here, we provide for the first time an analysis of all clustered events in 36 years of the ERA-Interim Re-analysis at three latitudes (45˚ N, 55˚ N, 65˚ N) encompassing various regions of Western Europe. The relationship between the occurrence of RWB and cyclone clustering is studied in detail. Clustering at 55˚ N is associated with an extended and anomalously strong jet flanked on both sides by RWB. However, clustering at 65(45)˚ N is associated with RWB to the south (north) of the jet, deflecting the jet northwards (southwards). A positive correlation was found between the intensity of the clustering and RWB occurrence to the north and south of the jet. However, there is considerable spread in these relationships. Finally, analysis has shown that the relationships identified in the re-analysis are also present in a high-resolution coupled global climate model (HiGEM). In particular, clustering is associated with the same dynamical conditions at each of our three latitudes in spite of the identified biases in frequency and intensity of RWB.

  4. Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species.

    PubMed

    Nguyen, Thao Thi; Lee, Hyun-Hee; Park, Inmyoung; Seo, Young-Su

    2018-02-01

    Type VI secretion system (T6SS) has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs) are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL) were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM) of T6SEs that possess markers for type VI effectors (MIX motif) (MIX T6SEs), 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.

  5. X-Ray Morphological Analysis of the Planck ESZ Clusters

    NASA Astrophysics Data System (ADS)

    Lovisari, Lorenzo; Forman, William R.; Jones, Christine; Ettori, Stefano; Andrade-Santos, Felipe; Arnaud, Monique; Démoclès, Jessica; Pratt, Gabriel W.; Randall, Scott; Kraft, Ralph

    2017-09-01

    X-ray observations show that galaxy clusters have a very large range of morphologies. The most disturbed systems, which are good to study how clusters form and grow and to test physical models, may potentially complicate cosmological studies because the cluster mass determination becomes more challenging. Thus, we need to understand the cluster properties of our samples to reduce possible biases. This is complicated by the fact that different experiments may detect different cluster populations. For example, Sunyaev-Zeldovich (SZ) selected cluster samples have been found to include a greater fraction of disturbed systems than X-ray selected samples. In this paper we determine eight morphological parameters for the Planck Early Sunyaev-Zeldovich (ESZ) objects observed with XMM-Newton. We found that two parameters, concentration and centroid shift, are the best to distinguish between relaxed and disturbed systems. For each parameter we provide the values that allow selecting the most relaxed or most disturbed objects from a sample. We found that there is no mass dependence on the cluster dynamical state. By comparing our results with what was obtained with REXCESS clusters, we also confirm that the ESZ clusters indeed tend to be more disturbed, as found by previous studies.

  6. X-Ray Morphological Analysis of the Planck ESZ Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovisari, Lorenzo; Forman, William R.; Jones, Christine

    2017-09-01

    X-ray observations show that galaxy clusters have a very large range of morphologies. The most disturbed systems, which are good to study how clusters form and grow and to test physical models, may potentially complicate cosmological studies because the cluster mass determination becomes more challenging. Thus, we need to understand the cluster properties of our samples to reduce possible biases. This is complicated by the fact that different experiments may detect different cluster populations. For example, Sunyaev–Zeldovich (SZ) selected cluster samples have been found to include a greater fraction of disturbed systems than X-ray selected samples. In this paper wemore » determine eight morphological parameters for the Planck Early Sunyaev–Zeldovich (ESZ) objects observed with XMM-Newton . We found that two parameters, concentration and centroid shift, are the best to distinguish between relaxed and disturbed systems. For each parameter we provide the values that allow selecting the most relaxed or most disturbed objects from a sample. We found that there is no mass dependence on the cluster dynamical state. By comparing our results with what was obtained with REXCESS clusters, we also confirm that the ESZ clusters indeed tend to be more disturbed, as found by previous studies.« less

  7. Distributed computing for membrane-based modeling of action potential propagation.

    PubMed

    Porras, D; Rogers, J M; Smith, W M; Pollard, A E

    2000-08-01

    Action potential propagation simulations with physiologic membrane currents and macroscopic tissue dimensions are computationally expensive. We, therefore, analyzed distributed computing schemes to reduce execution time in workstation clusters by parallelizing solutions with message passing. Four schemes were considered in two-dimensional monodomain simulations with the Beeler-Reuter membrane equations. Parallel speedups measured with each scheme were compared to theoretical speedups, recognizing the relationship between speedup and code portions that executed serially. A data decomposition scheme based on total ionic current provided the best performance. Analysis of communication latencies in that scheme led to a load-balancing algorithm in which measured speedups at 89 +/- 2% and 75 +/- 8% of theoretical speedups were achieved in homogeneous and heterogeneous clusters of workstations. Speedups in this scheme with the Luo-Rudy dynamic membrane equations exceeded 3.0 with eight distributed workstations. Cluster speedups were comparable to those measured during parallel execution on a shared memory machine.

  8. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowie, L.L.; Hu, E.M.

    1986-06-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound populationmore » of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation. 14 references.« less

  9. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Hu, E. M.

    1986-01-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation.

  10. The halo boundary of galaxy clusters in the SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  11. The Halo Boundary of Galaxy Clusters in the SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K.

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  12. The halo boundary of galaxy clusters in the SDSS

    DOE PAGES

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; ...

    2017-05-18

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  13. Emergence of increased frequency and severity of multiple infections by viruses due to spatial clustering of hosts

    NASA Astrophysics Data System (ADS)

    Taylor, Bradford P.; Penington, Catherine J.; Weitz, Joshua S.

    2016-12-01

    Multiple virus particles can infect a target host cell. Such multiple infections (MIs) have significant and varied ecological and evolutionary consequences for both virus and host populations. Yet, the in situ rates and drivers of MIs in virus-microbe systems remain largely unknown. Here, we develop an individual-based model (IBM) of virus-microbe dynamics to probe how spatial interactions drive the frequency and nature of MIs. In our IBMs, we identify increasingly spatially correlated clusters of viruses given sufficient decreases in viral movement. We also identify increasingly spatially correlated clusters of viruses and clusters of hosts given sufficient increases in viral infectivity. The emergence of clusters is associated with an increase in multiply infected hosts as compared to expectations from an analogous mean field model. We also observe long-tails in the distribution of the multiplicity of infection in contrast to mean field expectations that such events are exponentially rare. We show that increases in both the frequency and severity of MIs occur when viruses invade a cluster of uninfected microbes. We contend that population-scale enhancement of MI arises from an aggregate of invasion dynamics over a distribution of microbe cluster sizes. Our work highlights the need to consider spatially explicit interactions as a potentially key driver underlying the ecology and evolution of virus-microbe communities.

  14. A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data.

    PubMed

    Cui, Xiaodong; Meng, Jia; Zhang, Shaowu; Rao, Manjeet K; Chen, Yidong; Huang, Yufei

    2016-08-22

    The recent advent of the state-of-art high throughput sequencing technology, known as Methylated RNA Immunoprecipitation combined with RNA sequencing (MeRIP-seq) revolutionizes the area of mRNA epigenetics and enables the biologists and biomedical researchers to have a global view of N (6)-Methyladenosine (m(6)A) on transcriptome. Yet there is a significant need for new computation tools for processing and analysing MeRIP-Seq data to gain a further insight into the function and m(6)A mRNA methylation. We developed a novel algorithm and an open source R package ( http://compgenomics.utsa.edu/metcluster ) for uncovering the potential types of m(6)A methylation by clustering the degree of m(6)A methylation peaks in MeRIP-Seq data. This algorithm utilizes a hierarchical graphical model to model the reads account variance and the underlying clusters of the methylation peaks. Rigorous statistical inference is performed to estimate the model parameter and detect the number of clusters. MeTCluster is evaluated on both simulated and real MeRIP-seq datasets and the results demonstrate its high accuracy in characterizing the clusters of methylation peaks. Our algorithm was applied to two different sets of real MeRIP-seq datasets and reveals a novel pattern that methylation peaks with less peak enrichment tend to clustered in the 5' end of both in both mRNAs and lncRNAs, whereas those with higher peak enrichment are more likely to be distributed in CDS and towards the 3'end of mRNAs and lncRNAs. This result might suggest that m(6)A's functions could be location specific. In this paper, a novel hierarchical graphical model based algorithm was developed for clustering the enrichment of methylation peaks in MeRIP-seq data. MeTCluster is written in R and is publicly available.

  15. Some properties of solid helium and helium nanoclusters using the effective HFD-like interaction potential: Adsorption and desorption inside carbon nanotube

    NASA Astrophysics Data System (ADS)

    Abbaspour, M.; Akbarzadeh, H.; Banihashemi, S. Z.; Sotoudeh, A.

    2018-02-01

    We have calculated the zero equation of state of solid helium using a two-body Hartree-Fock dispersion (HFD)-like potential from molecular dynamics (MD) simulation. To take many-body forces into account, our simple and accurate empirical expression is used with the HFD-like potential without requiring an expensive three-body calculation. This potential model also includes the quantum effects for helium at low temperatures. The results indicate that our effective HFD-like potential improves the prediction of the classical two-body results to get better agreement with experiment than many other two-body and three-body potentials of helium reported in the literature. We have also simulated the adsorption and desorption processes of the (He)55, (He)147, (He)309, (He)561, and (He)923 icosahedral nanoclusters confined into the different armchair and zigzag CNTs from 0 to 50 K using our effective model. We have observed an interesting phenomenon at 0 K for helium. The nanoclusters adsorb to the inner CNT wall as a melting process. But, the heavier noble gas clusters (such as Ne and Xe) show the different behavior than the He clusters. They form a multilayered solid structure into the CNT at zero temperature and adsorb into the inner wall of the CNT at higher temperatures. Our results for He clusters show that the absolute value of the adsorption energy increases as the size of the nanocluster increases. The desorption process begins at a certain temperature and represents itself by a jump in the configurational energy values. We have also investigated the structural and dynamical properties of the confined helium nanoclusters during the adsorption and desorption processes at different temperatures.

  16. Equilibrium stellar systems with spindle singularities

    NASA Technical Reports Server (NTRS)

    Shapiro, Stuart L.; Teukolsky, Saul A.

    1992-01-01

    Equilibrium sequences of axisymmetric Newtonian clusters that tend toward singular states are constructed. The distribution functions are chosen to be of the form f = f(E, Jz). The numerical method then determines the density and gravitational potential self-consistently to satisfy Poisson's equation. For the prolate models, spindle singularities arise from the depletion of angular momentum near the symmetry axis. While the resulting density enhancement is confined to the region near the axis, the influence of the spindle extends much further out through its tidal gravitational field. Centrally condensed prolate clusters may contain strong-field regions even though the spindle mass is small and the mean cluster eccentricity is not extreme. While the calculations performed here are entirely Newtonian, the issue of singularities is an important topic in general relativity. Equilibrium solutions for relativistic star clusters can provide a testing ground for exploring this issue. The methods used in this paper for building nonspherical clusters can be extended to relativistic systems.

  17. Medium-induced change of the optical response of metal clusters in rare-gas matrices

    NASA Astrophysics Data System (ADS)

    Xuan, Fengyuan; Guet, Claude

    2017-10-01

    Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.

  18. Computational chemistry of modified [MFe3S4] and [M2Fe2S4] clusters: assessment of trends in electronic structure and properties.

    PubMed

    Jensen, Kasper P; Ooi, Bee-Lean; Christensen, Hans E M

    2008-12-18

    The aim of this work is to understand the molecular evolution of iron-sulfur clusters in terms of electronic structure and function. Metal-substituted models of biological [Fe(4)S(4)] clusters in oxidation states [M(x)Fe(4-x)S(4)](3+/2+/1+) have been studied by density functional theory (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pd, with x = 1 or 2). Most of these clusters have not been characterized before. For those that have been characterized experimentally, very good agreement is obtained, implying that also the predicted structures and properties of new clusters are accurate. Mean absolute errors are 0.024 A for bond lengths ([Fe(4)S(4)], [NiFe(3)S(4)], [CoFe(3)S(4)]) and 0.09 V for shifts in reduction potentials relative to the [Fe(4)S(4)] cluster. All structures form cuboidal geometries similar to the all-iron clusters, except the Pd-substituted clusters, which instead form highly distorted trigonal and tetragonal local sites in compromised, pseudocuboidal geometries. In contrast to other electron-transfer sites, cytochromes, blue copper proteins, and smaller iron-sulfur clusters, we find that the [Fe(4)S(4)] clusters are very insensitive to metal substitution, displaying quite small changes in reorganization energies and reduction potentials upon substitution. Thus, the [Fe(4)S(4)] clusters have an evolutionary advantage in being robust to pollution from other metals, still retaining function. We analyze in detail the electronic structure of individual clusters and rationalize spin couplings and redox activity. Often, several configurations are very close in energy, implying possible use as spin-crossover systems, and spin states are predicted accurately in all but one case ([CuFe(3)S(4)]). The results are anticipated to be helpful in defining new molecular systems with catalytic and magnetic properties.

  19. Force-balance model of suppression of multipolar division in cancer cells with extra centrosomes

    NASA Astrophysics Data System (ADS)

    Zhu, Jie

    2013-03-01

    Cancer cells often possess extra centrosomes which have the potential to cause cell death due to catastrophic multipolar division. Many cancer cells, however, are able to escape multipolar mitosis by clustering the extra centrosomes to form bipolar spindles. The mechanism of centrosome clustering is therefore of great interest to the development of anti-cancer drugs because the de-clustering of extra centrosomes provides an appealing way to eliminate cancer cells while keeping healthy cells intact. We present a physical model assuming 1) dynamic centrosomal microtubules interact with chromosomes by both pushing on chromosome arms and pulling along kinetochores; 2) these microtubules interact with force generators associated with actin/adhesion structures at the cell boundary; and 3) motors act on anti-parallel microtubules from different centrosomes. We find via computer simulations that chromosomes tend to aggregate near the cell center while centrosomes can be either clustered to form bipolar spindles or scattered to form multipolar spindles, depending on the strengths of relative forces, cell shape and adhesion geometry. The model predictions agree with data from cells plated on adhesive micropatterns and from biochemically or genetically perturbed cells. Furthermore, our model is able to explain various microtubule distributions in interphase cells on patterned substrates. This work was supported by NSF

  20. SU-G-TeP3-14: Three-Dimensional Cluster Model in Inhomogeneous Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, J; Penagaricano, J; Narayanasamy, G

    2016-06-15

    Purpose: We aim to investigate 3D cluster formation in inhomogeneous dose distribution to search for new models predicting radiation tissue damage and further leading to new optimization paradigm for radiotherapy planning. Methods: The aggregation of higher dose in the organ at risk (OAR) than a preset threshold was chosen as the cluster whose connectivity dictates the cluster structure. Upon the selection of the dose threshold, the fractional density defined as the fraction of voxels in the organ eligible to be part of the cluster was determined according to the dose volume histogram (DVH). A Monte Carlo method was implemented tomore » establish a case pertinent to the corresponding DVH. Ones and zeros were randomly assigned to each OAR voxel with the sampling probability equal to the fractional density. Ten thousand samples were randomly generated to ensure a sufficient number of cluster sets. A recursive cluster searching algorithm was developed to analyze the cluster with various connectivity choices like 1-, 2-, and 3-connectivity. The mean size of the largest cluster (MSLC) from the Monte Carlo samples was taken to be a function of the fractional density. Various OARs from clinical plans were included in the study. Results: Intensive Monte Carlo study demonstrates the inverse relationship between the MSLC and the cluster connectivity as anticipated and the cluster size does not change with fractional density linearly regardless of the connectivity types. An initially-slow-increase to exponential growth transition of the MSLC from low to high density was observed. The cluster sizes were found to vary within a large range and are relatively independent of the OARs. Conclusion: The Monte Carlo study revealed that the cluster size could serve as a suitable index of the tissue damage (percolation cluster) and the clinical outcome of the same DVH might be potentially different.« less

  1. Characterizing UT/LS O3 from Global Ozonesonde Profiles Using a Clustering Technique and Meteorological Reanalyses

    NASA Astrophysics Data System (ADS)

    Stauffer, R. M.; Thompson, A. M.

    2017-12-01

    Previous studies employing the self-organizing map (SOM) clustering technique to US ozonesonde data proved valuable for quantifying UT/LS O3 variability, and linking meteorological and chemical drivers to the shape of the ozone (O3) profile from the troposphere to the lower stratosphere. Focus has thus far been limited to specific geographical regions, but SOM has demonstrated the advantages of clustering over monthly climatological O3 averages, which mask day-to-day variability in the O3 profile and the correspondence between O3 and meteorology. We expand SOM to a global set of ozonesonde profiles, mostly from WOUDC, spanning 1980-present from 30 sites to evaluate global O3 climatologies and quantify links to geophysical processes for various meteorological regimes. Four clusters of O3 mixing ratio profiles are generated for each site, which show dominant profile shapes that correspond to site latitude. Offsets among O3 profile clusters and monthly O3 climatologies are 100s of ppbv in the UT/LS at higher latitude sites with active dynamics. Examination of meteorological reanalyses reveals a clear relationship among SOM clusters and covarying meteorological fields (geopotential height, potential vorticity, and tropopause height) for most sites. Tropical SOM clusters show marked dependence on velocity potential anomalies calculated from reanalysis winds, with low UT/LS O3 amounts corresponding to enhanced upper-level divergence, and vice versa. In addition to creating SOM cluster-based O3 climatologies, these results are meant to inform future approaches to validation of chemical transport models and satellite retrievals, which often struggle in the UT/LS region.

  2. Free energy of singular sticky-sphere clusters.

    PubMed

    Kallus, Yoav; Holmes-Cerfon, Miranda

    2017-02-01

    Networks of particles connected by springs model many condensed-matter systems, from colloids interacting with a short-range potential and complex fluids near jamming, to self-assembled lattices and various metamaterials. Under small thermal fluctuations the vibrational entropy of a ground state is given by the harmonic approximation if it has no zero-frequency vibrational modes, yet such singular modes are at the epicenter of many interesting behaviors in the systems above. We consider a system of N spherical particles, and directly account for the singularities that arise in the sticky limit where the pairwise interaction is strong and short ranged. Although the contribution to the partition function from singular clusters diverges in the limit, its asymptotic value can be calculated and depends on only two parameters, characterizing the depth and range of the potential. The result holds for systems that are second-order rigid, a geometric characterization that describes all known ground-state (rigid) sticky clusters. To illustrate the applications of our theory we address the question of emergence: how does crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate the partition functions of all known rigid clusters up to N≤21 and show the cluster landscape is dominated by hyperstatic clusters (those with more than 3N-6 contacts); singular and isostatic clusters are far less frequent, despite their extra vibrational and configurational entropies. Since the most hyperstatic clusters are close to fragments of a close-packed lattice, this underlies the emergence of order in sticky-sphere systems, even those as small as N=10.

  3. Free energy of singular sticky-sphere clusters

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav; Holmes-Cerfon, Miranda

    2017-02-01

    Networks of particles connected by springs model many condensed-matter systems, from colloids interacting with a short-range potential and complex fluids near jamming, to self-assembled lattices and various metamaterials. Under small thermal fluctuations the vibrational entropy of a ground state is given by the harmonic approximation if it has no zero-frequency vibrational modes, yet such singular modes are at the epicenter of many interesting behaviors in the systems above. We consider a system of N spherical particles, and directly account for the singularities that arise in the sticky limit where the pairwise interaction is strong and short ranged. Although the contribution to the partition function from singular clusters diverges in the limit, its asymptotic value can be calculated and depends on only two parameters, characterizing the depth and range of the potential. The result holds for systems that are second-order rigid, a geometric characterization that describes all known ground-state (rigid) sticky clusters. To illustrate the applications of our theory we address the question of emergence: how does crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate the partition functions of all known rigid clusters up to N ≤21 and show the cluster landscape is dominated by hyperstatic clusters (those with more than 3 N -6 contacts); singular and isostatic clusters are far less frequent, despite their extra vibrational and configurational entropies. Since the most hyperstatic clusters are close to fragments of a close-packed lattice, this underlies the emergence of order in sticky-sphere systems, even those as small as N =10 .

  4. Modelling clustering of vertically aligned carbon nanotube arrays.

    PubMed

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  5. Community trait overdispersion due to trophic interactions: concerns for assembly process inference

    PubMed Central

    Petchey, Owen L.

    2016-01-01

    The expected link between competitive exclusion and community trait overdispersion has been used to infer competition in local communities, and trait clustering has been interpreted as habitat filtering. Such community assembly process inference has received criticism for ignoring trophic interactions, as competition and trophic interactions might create similar trait patterns. While other theoretical studies have generally demonstrated the importance of predation for coexistence, ours provides the first quantitative demonstration of such effects on assembly process inference, using a trait-based ecological model to simulate the assembly of a competitive primary consumer community with and without the influence of trophic interactions. We quantified and contrasted trait dispersion/clustering of the competitive communities with the absence and presence of secondary consumers. Trophic interactions most often decreased trait clustering (i.e. increased dispersion) in the competitive communities due to evenly distributed invasions of secondary consumers and subsequent competitor extinctions over trait space. Furthermore, effects of trophic interactions were somewhat dependent on model parameters and clustering metric. These effects create considerable problems for process inference from trait distributions; one potential solution is to use more process-based and inclusive models in inference. PMID:27733548

  6. Detection of X-ray emission from distant clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Henry, J. P.; Branduardi, G.; Fabricant, D.; Feigelson, E.; Murray, S.; Tananbaum, H.; Briel, U.; Soltan, A.

    1979-01-01

    The paper reports the first extensive detection of X-ray emission from clusters of galaxies at cosmological distances. The properties of these objects are similar to those observed in objects at low redshifts. The 0.5-4.5 keV luminosities are in the range of less than 1 x 10 to the 43rd to 2 x 10 to the 45th ergs/s; the core radii are on the order of 0.5 Mpc; and Bautz-Morgan type I clusters are more luminous than types II or III. The observations are consistent with models assuming an evolving cluster potential and moderately efficient galaxy formation, but do not require them when observational selection is considered. X-ray observations of the 3C 295 cluster indicate that there is sufficient intergalactic medium to cause stripping of the cluster spirals, but the colors of these galaxies imply that they have not been stripped. A possible explanation of this discrepancy is discussed.

  7. Evolvement of preformation probability of alpha cluster decay of parent nuclei 84≤Z≤92 having N=126

    NASA Astrophysics Data System (ADS)

    Kaur, Rupinder; Singh, Bir Bikram; Kaur, Mandeep; Sandhu, B. S.; Kaur, Maninder

    2018-05-01

    The preformed cluster decay model (PCM) based on collective clusterisation approach of quantum mechanical fragmentation theory (QMFT) has been applied to study the ground state decay of trans-lead parent nuclei 84≤Z≤92 with N=126 emitting α cluster. Within PCM, the α cluster is assumed to be preborn with certain preformation probability P0α before tunneling the potential barrier with penetrability Pα. The nuclear structure information of the emitted α cluster is carried out by P0α . The present work reveals that the relative P0α found to increase as the Z number of parent nuclei moves away from magic proton shell closure i.e. Z=82. It is observed that Pα also increases, consequently, shorter half life T1/2 α of α cluster decay of parent nuclei with increasing Z. The PCM calculated results for the T1/2 α of parent nuclei under study are very well compared with available experimental data.

  8. Voltage-dependent cluster expansion for electrified solid-liquid interfaces: Application to the electrochemical deposition of transition metals

    NASA Astrophysics Data System (ADS)

    Weitzner, Stephen E.; Dabo, Ismaila

    2017-11-01

    The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.

  9. Clustering Genes of Common Evolutionary History

    PubMed Central

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-01-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent—due to events such as incomplete lineage sorting or horizontal gene transfer—it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such “process-agnostic” approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward’s method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta. We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  10. LCGTO-Xα model cluster study for the chemisorption of CO on twofold sites of Ni surfaces

    NASA Astrophysics Data System (ADS)

    Jörg, H.; Rösch, N.

    The cluster Ni 2CO is studied as a simplified model for the chemisorption of CO on twofold bridging sites of transition metal surfaces. Using the LCGTO-Xα method we have calculated the potential energy surface for the totally symmetric stretching motion keeping the Ni-Ni distance fixed at the bulk value. The minimum energy is found at a Ni-C distance of 1.72 Å and a C-O bond length of 1.19 Å. The vibrational frequency for the CO bond (1850 cm -1) shows reasonable agreement with EELS data (1810, 1870 cm -1), whereas the (Ni 2)-C frequency of 495 cm -1 is remarkably higher than the experimental values (380, 400 cm -1) indicating an overestimation of the chemisorption bond strength in this simple cluster model. The bonding between CO and Ni is analyzed using orbital correlations, ionization energies and Mulliken population analysis. Important bonding contributions from π backdonation are identified while the a 1 orbital manifold exhibits strong antibonding effects.

  11. LCGTO-Xα model cluster study for the chemisorption of CO on twofold sites of Ni surfaces

    NASA Astrophysics Data System (ADS)

    Jörg, H.; Rösch, N.

    1985-11-01

    The cluster Ni 2CO is studied as a simplified model for the chemisorption of CO on twofold bridging sites of transition metal surfaces. Using the LCGTO-Xα method we have calculated the potential energy surface for the totally symmetric stretching motion keeping the NiNi distance fixed at the bulk value. The minimum energy is found at a NiC distance of 1.72 Å and a CO bond length of 1.19 Å. The vibrational frequency for the CO bond (1850 cm -1) shows reasonable agreement with EELS data (1810, 1870 cm -1), whereas the (Ni 2)C frequency of 495 cm -1 is remarkably higher than the experimental values (380, 400 cm -1) indicating an overestimation of the chemisorption bond strength in this simple cluster model. The bonding between CO and Ni is analyzed using orbital correlations, ionization energies and Mulliken population analysis. Important bonding contributions from π backdonation are identified while the a 1orbital manifold exhibits strong antibonding effects.

  12. Computer-aided classification of breast microcalcification clusters: merging of features from image processing and radiologists

    NASA Astrophysics Data System (ADS)

    Lo, Joseph Y.; Gavrielides, Marios A.; Markey, Mia K.; Jesneck, Jonathan L.

    2003-05-01

    We developed an ensemble classifier for the task of computer-aided diagnosis of breast microcalcification clusters,which are very challenging to characterize for radiologists and computer models alike. The purpose of this study is to help radiologists identify whether suspicious calcification clusters are benign vs. malignant, such that they may potentially recommend fewer unnecessary biopsies for actually benign lesions. The data consists of mammographic features extracted by automated image processing algorithms as well as manually interpreted by radiologists according to a standardized lexicon. We used 292 cases from a publicly available mammography database. From each cases, we extracted 22 image processing features pertaining to lesion morphology, 5 radiologist features also pertaining to morphology, and the patient age. Linear discriminant analysis (LDA) models were designed using each of the three data types. Each local model performed poorly; the best was one based upon image processing features which yielded ROC area index AZ of 0.59 +/- 0.03 and partial AZ above 90% sensitivity of 0.08 +/- 0.03. We then developed ensemble models using different combinations of those data types, and these models all improved performance compared to the local models. The final ensemble model was based upon 5 features selected by stepwise LDA from all 28 available features. This ensemble performed with AZ of 0.69 +/- 0.03 and partial AZ of 0.21 +/- 0.04, which was statistically significantly better than the model based on the image processing features alone (p<0.001 and p=0.01 for full and partial AZ respectively). This demonstrated the value of the radiologist-extracted features as a source of information for this task. It also suggested there is potential for improved performance using this ensemble classifier approach to combine different sources of currently available data.

  13. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001).

    PubMed

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  14. Pendulum Motion in Main Parachute Clusters

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Machin, Ricardo A.

    2015-01-01

    The coupled dynamics of a cluster of parachutes to a payload are notoriously difficult to predict. Often the payload is designed to be insensitive to the range of attitude and rates that might occur, but spacecraft generally do not have the mass and volume budgeted for this robust of a design. The National Aeronautics and Space Administration (NASA) Orion Capsule Parachute Assembly System (CPAS) implements a cluster of three mains for landing. During testing of the Engineering Development Unit (EDU) design, it was discovered that with a cluster of two mains (a fault tolerance required for human rating) the capsule coupled to the parachute cluster could get into a limit cycle pendulum motion which would exceed the spacecraft landing capability. This pendulum phenomenon could not be predicted with the existing models and simulations. A three phased effort has been undertaken to understand the consequence of the pendulum motion observed, and explore potential design changes that would mitigate this phenomenon. This paper will review the early analysis that was performed of the pendulum motion observed during EDU testing, summarize the analysis ongoing to understand the root cause of the pendulum phenomenon, and discuss the modeling and testing that is being pursued to identify design changes that would mitigate the risk.

  15. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001)

    PubMed Central

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots. PMID:26285135

  16. Formation of novel rare-gas-containing molecules by molecular photodissociation in clusters.

    PubMed

    Cohen, A; Niv, M Y; Gerber, R B

    2001-01-01

    Recent work by Räsänen and coworkers showed that photolysis of hydrides in rare-gas matrices results in part in formation of novel, rare-gas-containing molecules. Thus, photolysis of HCl in Xe and of H2O in Xe result respectively in formation of HXeCl and HXeOH in the Xe matrices. Ab initio calculations show that the compounds HRgY so formed are stable in isolation, and that by the strength and nature of the bonding these are molecules, very different from the corresponding weakly bound clusters Rg...HY. This paper presents a study of the formation mechanism of HRgY following the photolysis of HY in clusters Rgn(HY). Calculations are described for HXeCl, as a representative example. Potential energy surfaces that govern the formation of HXeCl in the photolysis of HCl in xenon clusters are obtained, and the dynamics on these surfaces is analyzed, partly with insight from trajectories of molecular dynamics simulations. The potential surfaces are obtained by a new variant of the DIM (diatomics in molecules) and DIIS (diatomics in ionic systems) models. Non-adiabatic couplings are also obtained. The main results are: (1) Properties of HXeCl predicted by the DIM-DIIS model are in reasonable accord with results of ab initio calculations. (2) The potential along the isomerization path HXeCl-->Xe...HCl predicted by DIM is in semiquantitative accord with the ab initio results. (3) Surface-hopping molecular dynamics simulations of the process in clusters, with "on the fly" calculations of the DIM-DIIS potentials and non-adiabatic couplings are computationally feasible. (4) Formation of HXeCl, following photolysis of HCl in Xe54(HCl), requires cage-exit of the H atom as a precondition. The H atom and the Cl can then attack the same Xe atom on opposite sides, leading to charge transfer and production of the ionic HXeCl. (5) Non-adiabatic processes play an important role, both in the reagent configurations, and at the charge-transfer stage. The results open the way to predictions of the formation of new HRgY species.

  17. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    2016-03-28

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of termsmore » is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N{sub 2} problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree–Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT-n), and 3) via an excited state approximation through the equation of motion (EOM) approach (EOM-DCD, EOM-DCSD). The EOM-CC method is used to identify lower-energy CC solutions to overcome singularities in the CC potential energy curves. It is also shown that UHF based CC and DC methods behave very similarly in bond-breaking of N{sub 2}, and that using spatially broken but spin preserving SCF references makes the CCSD solutions better than those for DCSD.« less

  18. The contribution of dissolving star clusters to the population of ultra faint objects in the outer halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Gieles, Mark; Balbinot, Eduardo; Collins, Michelle L. M.

    2017-04-01

    In the last decade, several ultra faint objects (UFOs, MV ≳ -3.5) have been discovered in the outer halo of the Milky Way. For some of these objects, it is not clear whether they are star clusters or (ultra faint) dwarf galaxies. In this work, we quantify the contribution of star clusters to the population of UFOs. We extrapolated the mass and Galactocentric radius distribution of the globular clusters using a population model, finding that the Milky Way contains about 3.3^{+7.3}_{-1.6} star clusters with MV ≳ -3.5 and Galactocentric radius ≥20 kpc. To understand whether dissolving clusters can appear as UFOs, we run a suite of direct N-body models, varying the orbit, the Galactic potential, the binary fraction and the black hole (BH) natal kick velocities. In the analyses, we consider observational biases such as luminosity limit, field stars and line-of-sight projection. We find that star clusters contribute to both the compact and the extended population of UFOs: clusters without BHs appear compact with radii ˜5 pc, while clusters that retain their BHs after formation have radii ≳ 20 pc. The properties of the extended clusters are remarkably similar to those of dwarf galaxies: high-inferred mass-to-light ratios due to binaries, binary properties mildly affected by dynamical evolution, no observable mass segregation and flattened stellar mass function. We conclude that the slope of the stellar mass function as a function of Galactocentric radius and the presence/absence of cold streams can discriminate between dark matter-free and dark matter-dominated UFOs.

  19. Radio emission in the directions of cD and related galaxies in poor clusters. III. VLA observations at 20 cm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, J.O.; White, R.A.; Hough, D.H.

    1981-01-01

    VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approx.70%). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approx.25% of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies ismore » seen from rich to poor clusters. We speculate that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. We briefly discuss galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and x-ray emission.« less

  20. Radio emission in the directions of cD and related galaxies in poor clusters. III - VLA observations at 20 cm

    NASA Technical Reports Server (NTRS)

    Burns, J. O.; White, R. A.; Hough, D. H.

    1981-01-01

    VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approximately 70 percent). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approximately 25 percent of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies is seen from rich to poor clusters. It is speculated that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. Galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and X-ray emission are discussed

  1. Comparative study of displacement cascades simulated with 'magnetic' potentials and Mendelev-type potential in α-Fe

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2017-04-01

    Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.

  2. Full-potential theoretical investigations of electron inelastic mean free paths and extended x-ray absorption fine structure in molybdenum.

    PubMed

    Chantler, C T; Bourke, J D

    2014-04-09

    X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.

  3. Hierarchical Bayesian modeling of heterogeneous variances in average daily weight gain of commercial feedlot cattle.

    PubMed

    Cernicchiaro, N; Renter, D G; Xiang, S; White, B J; Bello, N M

    2013-06-01

    Variability in ADG of feedlot cattle can affect profits, thus making overall returns more unstable. Hence, knowledge of the factors that contribute to heterogeneity of variances in animal performance can help feedlot managers evaluate risks and minimize profit volatility when making managerial and economic decisions in commercial feedlots. The objectives of the present study were to evaluate heteroskedasticity, defined as heterogeneity of variances, in ADG of cohorts of commercial feedlot cattle, and to identify cattle demographic factors at feedlot arrival as potential sources of variance heterogeneity, accounting for cohort- and feedlot-level information in the data structure. An operational dataset compiled from 24,050 cohorts from 25 U. S. commercial feedlots in 2005 and 2006 was used for this study. Inference was based on a hierarchical Bayesian model implemented with Markov chain Monte Carlo, whereby cohorts were modeled at the residual level and feedlot-year clusters were modeled as random effects. Forward model selection based on deviance information criteria was used to screen potentially important explanatory variables for heteroskedasticity at cohort- and feedlot-year levels. The Bayesian modeling framework was preferred as it naturally accommodates the inherently hierarchical structure of feedlot data whereby cohorts are nested within feedlot-year clusters. Evidence for heterogeneity of variance components of ADG was substantial and primarily concentrated at the cohort level. Feedlot-year specific effects were, by far, the greatest contributors to ADG heteroskedasticity among cohorts, with an estimated ∼12-fold change in dispersion between most and least extreme feedlot-year clusters. In addition, identifiable demographic factors associated with greater heterogeneity of cohort-level variance included smaller cohort sizes, fewer days on feed, and greater arrival BW, as well as feedlot arrival during summer months. These results support that heterogeneity of variances in ADG is prevalent in feedlot performance and indicate potential sources of heteroskedasticity. Further investigation of factors associated with heteroskedasticity in feedlot performance is warranted to increase consistency and uniformity in commercial beef cattle production and subsequent profitability.

  4. Modulating STDP Balance Impacts the Dendritic Mosaic

    PubMed Central

    Iannella, Nicolangelo; Launey, Thomas

    2017-01-01

    The ability for cortical neurons to adapt their input/output characteristics and information processing capabilities ultimately relies on the interplay between synaptic plasticity, synapse location, and the nonlinear properties of the dendrite. Collectively, they shape both the strengths and spatial arrangements of convergent afferent inputs to neuronal dendrites. Recent experimental and theoretical studies support a clustered plasticity model, a view that synaptic plasticity promotes the formation of clusters or hotspots of synapses sharing similar properties. We have previously shown that spike timing-dependent plasticity (STDP) can lead to synaptic efficacies being arranged into spatially segregated clusters. This effectively partitions the dendritic tree into a tessellated imprint which we have called a dendritic mosaic. Here, using a biophysically detailed neuron model of a reconstructed layer 2/3 pyramidal cell and STDP learning, we investigated the impact of altered STDP balance on forming such a spatial organization. We show that cluster formation and extend depend on several factors, including the balance between potentiation and depression, the afferents' mean firing rate and crucially on the dendritic morphology. We find that STDP balance has an important role to play for this emergent mode of spatial organization since any imbalances lead to severe degradation- and in some case even destruction- of the mosaic. Our model suggests that, over a broad range of of STDP parameters, synaptic plasticity shapes the spatial arrangement of synapses, favoring the formation of clustered efficacy engrams. PMID:28649195

  5. Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Castin, N.; Becquart, C. S.; Malerba, L.

    2011-05-01

    An atomistic kinetic Monte Carlo (AKMC) method has been applied to study the stability and mobility of copper-vacancy clusters in Fe. This information, which cannot be obtained directly from experimental measurements, is needed to parameterise models describing the nanostructure evolution under irradiation of Fe alloys (e.g. model alloys for reactor pressure vessel steels). The physical reliability of the AKMC method has been improved by employing artificial intelligence techniques for the regression of the activation energies required by the model as input. These energies are calculated allowing for the effects of local chemistry and relaxation, using an interatomic potential fitted to reproduce them as accurately as possible and the nudged-elastic-band method. The model validation was based on comparison with available ab initio calculations for verification of the used cohesive model, as well as with other models and theories.

  6. An opinion-driven behavioral dynamics model for addictive behaviors

    NASA Astrophysics Data System (ADS)

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.

    2015-04-01

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.

  7. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran

    NASA Astrophysics Data System (ADS)

    Alizadeh, Bahram; Najjari, Saeid; Kadkhodaie-Ilkhchi, Ali

    2012-08-01

    Intelligent and statistical techniques were used to extract the hidden organic facies from well log responses in the Giant South Pars Gas Field, Persian Gulf, Iran. Kazhdomi Formation of Mid-Cretaceous and Kangan-Dalan Formations of Permo-Triassic Data were used for this purpose. Initially GR, SGR, CGR, THOR, POTA, NPHI and DT logs were applied to model the relationship between wireline logs and Total Organic Carbon (TOC) content using Artificial Neural Networks (ANN). The correlation coefficient (R2) between the measured and ANN predicted TOC equals to 89%. The performance of the model is measured by the Mean Squared Error function, which does not exceed 0.0073. Using Cluster Analysis technique and creating a binary hierarchical cluster tree the constructed TOC column of each formation was clustered into 5 organic facies according to their geochemical similarity. Later a second model with the accuracy of 84% was created by ANN to determine the specified clusters (facies) directly from well logs for quick cluster recognition in other wells of the studied field. Each created facies was correlated to its appropriate burial history curve. Hence each and every facies of a formation could be scrutinized separately and directly from its well logs, demonstrating the time and depth of oil or gas generation. Therefore potential production zone of Kazhdomi probable source rock and Kangan- Dalan reservoir formation could be identified while well logging operations (especially in LWD cases) were in progress. This could reduce uncertainty and save plenty of time and cost for oil industries and aid in the successful implementation of exploration and exploitation plans.

  8. Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks

    DOE PAGES

    Daloz, Anne S.; Camargo, S. J.; Kossin, J. P.; ...

    2015-02-11

    A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. Here, for both configurations, tracksmore » are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors’ results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Lastly, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.« less

  9. Constrained variation in Jastrow method at high density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, J.C.; Bishop, R.F.; Irvine, J.M.

    1976-11-01

    A method is derived for constraining the correlation function in a Jastrow variational calculation which permits the truncation of the cluster expansion after two-body terms, and which permits exact minimization of the two-body cluster by functional variation. This method is compared with one previously proposed by Pandharipande and is found to be superior both theoretically and practically. The method is tested both on liquid /sup 3/He, by using the Lennard--Jones potential, and on the model system of neutrons treated as Boltzmann particles (''homework'' problem). Good agreement is found both with experiment and with other calculations involving the explicit evaluation ofmore » higher-order terms in the cluster expansion. The method is then applied to a more realistic model of a neutron gas up to a density of 4 neutrons per F/sup 3/, and is found to give ground-state energies considerably lower than those of Pandharipande. (AIP)« less

  10. Interaction of polymer-coated silicon nanocrystals with lipid bilayers and surfactant interfaces

    NASA Astrophysics Data System (ADS)

    Elbaradei, Ahmed; Brown, Samuel L.; Miller, Joseph B.; May, Sylvio; Hobbie, Erik K.

    2016-10-01

    We use photoluminescence (PL) microscopy to measure the interaction between polyethylene-glycol-coated (PEGylated) silicon nanocrystals (SiNCs) and two model surfaces: lipid bilayers and surfactant interfaces. By characterizing the photostability, transport, and size-dependent emission of the PEGylated nanocrystal clusters, we demonstrate the retention of red PL suitable for detection and tracking with minimal blueshift after a year in an aqueous environment. The predominant interaction measured for both interfaces is short-range repulsion, consistent with the ideal behavior anticipated for PEGylated phospholipid coatings. However, we also observe unanticipated attractive behavior in a small number of scenarios for both interfaces. We attribute this anomaly to defective PEG coverage on a subset of the clusters, suggesting a possible strategy for enhancing cellular uptake by controlling the homogeneity of the PEG corona. In both scenarios, the shape of the apparent potential is modeled through the free or bound diffusion of the clusters near the confining interface.

  11. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    NASA Technical Reports Server (NTRS)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  12. The Impact of Alcohol Outlet Density on the Geographic Clustering of Underage Drinking Behaviors within Census Tracts

    PubMed Central

    Reboussin, Beth A.; Song, Eun-Young; Wolfson, Mark

    2011-01-01

    Background The regulation of alcohol outlet density has been considered as a potential means of reducing alcohol consumption and related harms among underage youth. Whereas prior studies have examined whether alcohol outlet density was associated with an individual’s alcohol consumption and related harms, this study examines whether it is related to the co-occurrence, or clustering, of these behaviors within geographic areas, specifically census tracts. Methods The Enforcing Underage Drinking Laws Randomized Community Trial provided cross-sectional telephone survey data in 2006 and 2007 from 10,754 youth aged 14–20 from 5 states residing in 1556 census tracts. The alternating logistic regression approach was used to estimate pairwise odds ratios between responses from youth residing in the same census tract and to model them as a function of alcohol outlet density. Results Riding with a drinking driver, making an alcohol purchase attempt and making a successful alcohol purchase attempt clustered significantly within census tracts with the highest off-premise alcohol outlet density while frequent drinking clustered within census tracts with the greatest on-premise density. Driving after drinking and experiencing non-violent alcohol-related consequences clustered marginally within census tracts with the greatest on-premise and off-premise alcohol outlet density, respectively. Conclusions Although youth primarily receive alcohol from social sources, commercial alcohol access is geographically concentrated within census tracts with the greatest off-premise outlet density. A potentially greater concern is the clustering of more frequent drinking and drinking and driving within census tracts with the greatest on-premise outlet density which may necessitate alternative census tract level initiatives to reduce these potentially harmful behaviors. PMID:21463343

  13. X-Ray Gas Temperatures in the Arc Clusters MS0440+204 and MS0302+1658

    NASA Technical Reports Server (NTRS)

    Gioia, Isabella M.; White, Nicholas

    1997-01-01

    The cluster of galaxies MS0440+02, originally discovered through its X-ray emission, was part of an optical observational program to search for arcs and arclets in a complete sample of X-ray luminous, medium-distant clusters of galaxies. Mauna Kea CCD images of MS0440+02 showed a remarkable optical morphology. The core of the cluster contains 6 bright galaxies and numerous fainter ones embedded in a low surface brightness halo. Besides, MS0440+02 is the most spectacular example that we have found of an arc system in a compact condensed cluster, with arcs symmetrically distributed to draw almost perfect circles around the cluster center. Giant arcs are magnified images of distant galaxies, gravitationally distorted by massive foreground clusters. It is of great importance to compare the results of the lensing studies with those derived from X-ray observations, as the two are independent methods of studying the mass distribution. Thus MS0440+02 was the ideal target to obtain temperature measurement with ASCA and good spatial resolution X-ray observations with ROSAT. The X-ray data have been used in conjunction with Hubble Space Telescope observations to put more stringent constrains on the mass estimates. Most of the different wavelength datasets have been reduced and analyzed. Mass determinations have been separately obtained from galaxy virial motions and X-ray profile fitting using the cluster gas temperature as measured by the ASCA satellite. Assuming that the hot gas is in hydrostatic equilibrium and in a spherical potential, we find from the X-ray data a mass distribution profile that is well described by a Beta model. From the multiple images formed by gravitational lensing (HST data) using the modelling of the gravitational lensed arcs, we have derived Beta model. To reconcile the mass estimates we have explored the possibility of having a supercluster surrounding the MOS0440 cluster, that is a model with two isothermal spheres, one embedded inside the other. These results have been published or are in press.

  14. Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists.

    PubMed

    Hamel, Sandra; Yoccoz, Nigel G; Gaillard, Jean-Michel

    2017-05-01

    Mixed models are now well-established methods in ecology and evolution because they allow accounting for and quantifying within- and between-individual variation. However, the required normal distribution of the random effects can often be violated by the presence of clusters among subjects, which leads to multi-modal distributions. In such cases, using what is known as mixture regression models might offer a more appropriate approach. These models are widely used in psychology, sociology, and medicine to describe the diversity of trajectories occurring within a population over time (e.g. psychological development, growth). In ecology and evolution, however, these models are seldom used even though understanding changes in individual trajectories is an active area of research in life-history studies. Our aim is to demonstrate the value of using mixture models to describe variation in individual life-history tactics within a population, and hence to promote the use of these models by ecologists and evolutionary ecologists. We first ran a set of simulations to determine whether and when a mixture model allows teasing apart latent clustering, and to contrast the precision and accuracy of estimates obtained from mixture models versus mixed models under a wide range of ecological contexts. We then used empirical data from long-term studies of large mammals to illustrate the potential of using mixture models for assessing within-population variation in life-history tactics. Mixture models performed well in most cases, except for variables following a Bernoulli distribution and when sample size was small. The four selection criteria we evaluated [Akaike information criterion (AIC), Bayesian information criterion (BIC), and two bootstrap methods] performed similarly well, selecting the right number of clusters in most ecological situations. We then showed that the normality of random effects implicitly assumed by evolutionary ecologists when using mixed models was often violated in life-history data. Mixed models were quite robust to this violation in the sense that fixed effects were unbiased at the population level. However, fixed effects at the cluster level and random effects were better estimated using mixture models. Our empirical analyses demonstrated that using mixture models facilitates the identification of the diversity of growth and reproductive tactics occurring within a population. Therefore, using this modelling framework allows testing for the presence of clusters and, when clusters occur, provides reliable estimates of fixed and random effects for each cluster of the population. In the presence or expectation of clusters, using mixture models offers a suitable extension of mixed models, particularly when evolutionary ecologists aim at identifying how ecological and evolutionary processes change within a population. Mixture regression models therefore provide a valuable addition to the statistical toolbox of evolutionary ecologists. As these models are complex and have their own limitations, we provide recommendations to guide future users. © 2016 Cambridge Philosophical Society.

  15. The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs.

    PubMed

    Pulley, Simon; Foster, Ian; Collins, Adrian L

    2017-06-01

    The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis based classification methods have the potential to reduce composite uncertainty significantly in future source tracing studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    PubMed

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be used to alter the transcriptional response to prevent the motor neurons from entering a state of hyper-excitability.

  17. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    PubMed Central

    2010-01-01

    Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be used to alter the transcriptional response to prevent the motor neurons from entering a state of hyper-excitability. PMID:20534130

  18. Spectra of helium clusters with up to six atoms using soft-core potentials

    NASA Astrophysics Data System (ADS)

    Gattobigio, M.; Kievsky, A.; Viviani, M.

    2011-11-01

    In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.

  19. Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density-functional theory.

    PubMed

    Likos, Christos N; Mladek, Bianca M; Gottwald, Dieter; Kahl, Gerhard

    2007-06-14

    We demonstrate the accuracy of the hypernetted chain closure and of the mean-field approximation for the calculation of the fluid-state properties of systems interacting by means of bounded and positive pair potentials with oscillating Fourier transforms. Subsequently, we prove the validity of a bilinear, random-phase density functional for arbitrary inhomogeneous phases of the same systems. On the basis of this functional, we calculate analytically the freezing parameters of the latter. We demonstrate explicitly that the stable crystals feature a lattice constant that is independent of density and whose value is dictated by the position of the negative minimum of the Fourier transform of the pair potential. This property is equivalent with the existence of clusters, whose population scales proportionally to the density. We establish that regardless of the form of the interaction potential and of the location on the freezing line, all cluster crystals have a universal Lindemann ratio Lf=0.189 at freezing. We further make an explicit link between the aforementioned density functional and the harmonic theory of crystals. This allows us to establish an equivalence between the emergence of clusters and the existence of negative Fourier components of the interaction potential. Finally, we make a connection between the class of models at hand and the system of infinite-dimensional hard spheres, when the limits of interaction steepness and space dimension are both taken to infinity in a particularly described fashion.

  20. Heat conduction in diatomic chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    Savin, Alexander V.; Zolotarevskiy, Vadim; Gendelman, Oleg V.

    2017-01-01

    The paper considers heat transport in diatomic one-dimensional lattices, containing equal amounts of particles with different masses. Ordering of the particles in the chain is governed by single correlation parameter - the probability for two neighboring particles to have the same mass. As this parameter grows from zero to unity, the structure of the chain varies from regular staggering chain to completely random configuration, and then - to very long clusters of particles with equal masses. Therefore, this correlation parameter allows a control of typical cluster size in the chain. In order to explore different regimes of the heat transport, two interatomic potentials are considered. The first one is an infinite potential wall, corresponding to instantaneous elastic collisions between the neighboring particles. In homogeneous chains such interaction leads to an anomalous heat transport. The other one is classical Lennard-Jones interatomic potential, which leads to a normal heat transport. The simulations demonstrate that the correlated disorder of the particle arrangement does not change the convergence properties of the heat conduction coefficient, but essentially modifies its value. For the collision potential, one observes essential growth of the coefficient for fixed chain length as the limit of large homogeneous clusters is approached. The thermal transport in these models remains superdiffusive. In the Lennard-Jones chain the effect of correlation appears to be not monotonous in the limit of low temperatures. This behavior stems from the competition between formation of long clusters mentioned above, and Anderson localization close to the staggering ordered state.

  1. Avulsion Clusters in Alluvial Systems: An Example of Large-Scale Self-Organization in Ancient and Experimental Basins

    NASA Astrophysics Data System (ADS)

    Hajek, E.; Heller, P.; Huzurbazar, S.; Sheets, B.; Paola, C.

    2006-12-01

    The stratigraphic record of at least some alluvial basins exhibits a spatial structure that may reflect long time- scale (103-105 yr in natural basins) autogenic organization of river avulsions. Current models of avulsion-dominated alluvial sequences emphasize the spatial and temporal distribution of coarse-grained channel-belt deposits amid fine-grained floodplain materials. These models typically assume that individual avulsions move, either randomly or deterministically, to low spots distributed throughout the model space. However, our observations of ancient deposits and experimental stratigraphy indicate a previously unrecognized pattern of channel-belt organization, where clusters of closely-spaced channel-belt deposits are separated from each other by extensive intervals of overbank deposits. We explore potential causes of and controls on avulsion clustering with outcrop and subsurface data from Late Cretaceous/Early Paleogene fluvial deposits in the Rocky Mountains (including the Ferris, Lance, and Fort Union formations of Wyoming) and results of physical stratigraphy experiments from the St. Anthony Falls Lab, University of Minnesota. We use Ripley's K-function to determine the degree and scales of clustering in these basins with results that show moderate statistical clustering in experimental deposits and strong clustering in the Ferris Formation (Hanna Basin, Wyoming). External controls (base level, subsidence rate, and sediment/water supplies) were not varied during the experiment, and therefore not factors in cluster formation. Likewise, the stratigraphic context of the ancient system (including the absence of incised valleys and lack of faulting) suggests that obvious extrinsic controls, such as base level change and local tectonics, were not major influences on the development of clusters. We propose that avulsion clusters, as seen in this study, reflect a scale of self-organization in alluvial basins that is not usually recognized in stratigraphy. However cursory examination of other ancient systems suggests that such structure may be common in the rock record. Understanding mechanisms driving avulsion clustering will shed light on the dominant processes in alluvial basins over long time scales. Furthermore, characterizing autogenic avulsion clusters will be an important factor to consider when interpreting allogenic signals in ancient basin fills.

  2. Primary damage formation in bcc iron

    NASA Astrophysics Data System (ADS)

    Stoller, R. E.; Odette, G. R.; Wirth, B. D.

    1997-11-01

    Primary defect formation in bee iron has been extensively investigated using the methods of molecular dynamics (MD) and Monte Carlo (MC) simulation. This research has employed a modified version of the Finnis-Sinclair interatomic potential. MD was used in the simulation of displacement cascades with energies up to 40 keV and to examine the migration of the interstitial clusters that were observed to form in the cascade simulations. Interstitial cluster binding energies and the stable cluster configurations were determined by structural relaxation and energy minimization using a MC method with simulated annealing. Clusters containing up to 19 interstitials were examined. Taken together with the previous work, these new simulations provide a reasonably complete description of primary defect formation in iron. The results of the displacement cascade simulations have been used to characterize the energy and temperature dependence of primary defect formation in terms of two parameters: (1) the number of surviving point defects and (2) the fraction of the surviving defects that are contained in clusters. The number of surviving point defects is expressed as a fraction of the atomic displacements calculated using the secondary displacement model of Norgett-Robinson-Torrens (NRT). Although the results of the high energy simulations are generally consistent with those obtained at lower energies, two notable exceptions were observed. The first is that extensive subcascade formation at 40 keV leads to a higher defect survival fraction than would be predicted from extrapolation of the results obtained for energies up to 20 keV. The stable defect fraction obtained from the MD simulations is a smoothly decreasing function up to 20 keV. Subcascade formation leads to a slight increase in this ratio at 40 keV, where the value is about the same as at 10 keV. Secondly, the potential for a significant level of in-cascade vacancy clustering was observed. Previous cascade studies employing this potential have reported extensive interstitial clustering, but little evidence of vacancy clustering. Interstitial clusters were found to be strongly bound, with binding energies in excess of 1 eV. The larger clusters exhibited a complex, 3D structure and were composed of <111> crowdions. These clusters were observed to migrate by collective <111> translations with an activation energy on the order of 0.1 eV.

  3. HIV-1 transmission networks in high risk fishing communities on the shores of Lake Victoria in Uganda: A phylogenetic and epidemiological approach

    PubMed Central

    Kiwuwa-Muyingo, Sylvia; Nazziwa, Jamirah; Ssemwanga, Deogratius; Ilmonen, Pauliina; Ndembi, Nicaise; Parry, Chris; Kitandwe, Paul Kato; Gershim, Asiki; Mpendo, Juliet; Neilsen, Leslie; Seeley, Janet; Seppälä, Heikki; Lyagoba, Fred; Kamali, Anatoli; Kaleebu, Pontiano

    2017-01-01

    Background Fishing communities around Lake Victoria in sub-Saharan Africa have been characterised as a population at high risk of HIV-infection. Methods Using data from a cohort of HIV-positive individuals aged 13–49 years, enrolled from 5 fishing communities on Lake Victoria between 2009–2011, we sought to identify factors contributing to the epidemic and to understand the underlying structure of HIV transmission networks. Clinical and socio-demographic data were combined with HIV-1 phylogenetic analyses. HIV-1 gag-p24 and env-gp-41 sub-genomic fragments were amplified and sequenced from 283 HIV-1-infected participants. Phylogenetic clusters with ≥2 highly related sequences were defined as transmission clusters. Logistic regression models were used to determine factors associated with clustering. Results Altogether, 24% (n = 67/283) of HIV positive individuals with sequences fell within 34 phylogenetically distinct clusters in at least one gene region (either gag or env). Of these, 83% occurred either within households or within community; 8/34 (24%) occurred within household partnerships, and 20/34 (59%) within community. 7/12 couples (58%) within households clustered together. Individuals in clusters with potential recent transmission (11/34) were more likely to be younger 71% (15/21) versus 46% (21/46) in un-clustered individuals and had recently become resident in the community 67% (14/21) vs 48% (22/46). Four of 11 (36%) potential transmission clusters included incident-incident transmissions. Independently, clustering was less likely in HIV subtype D (adjusted Odds Ratio, aOR = 0.51 [95% CI 0.26–1.00]) than A and more likely in those living with an HIV-infected individual in the household (aOR = 6.30 [95% CI 3.40–11.68]). Conclusions A large proportion of HIV sexual transmissions occur within house-holds and within communities even in this key mobile population. The findings suggest localized HIV transmissions and hence a potential benefit for the test and treat approach even at a community level, coupled with intensified HIV counselling to identify early infections. PMID:29023474

  4. HIV-1 transmission networks in high risk fishing communities on the shores of Lake Victoria in Uganda: A phylogenetic and epidemiological approach.

    PubMed

    Kiwuwa-Muyingo, Sylvia; Nazziwa, Jamirah; Ssemwanga, Deogratius; Ilmonen, Pauliina; Njai, Harr; Ndembi, Nicaise; Parry, Chris; Kitandwe, Paul Kato; Gershim, Asiki; Mpendo, Juliet; Neilsen, Leslie; Seeley, Janet; Seppälä, Heikki; Lyagoba, Fred; Kamali, Anatoli; Kaleebu, Pontiano

    2017-01-01

    Fishing communities around Lake Victoria in sub-Saharan Africa have been characterised as a population at high risk of HIV-infection. Using data from a cohort of HIV-positive individuals aged 13-49 years, enrolled from 5 fishing communities on Lake Victoria between 2009-2011, we sought to identify factors contributing to the epidemic and to understand the underlying structure of HIV transmission networks. Clinical and socio-demographic data were combined with HIV-1 phylogenetic analyses. HIV-1 gag-p24 and env-gp-41 sub-genomic fragments were amplified and sequenced from 283 HIV-1-infected participants. Phylogenetic clusters with ≥2 highly related sequences were defined as transmission clusters. Logistic regression models were used to determine factors associated with clustering. Altogether, 24% (n = 67/283) of HIV positive individuals with sequences fell within 34 phylogenetically distinct clusters in at least one gene region (either gag or env). Of these, 83% occurred either within households or within community; 8/34 (24%) occurred within household partnerships, and 20/34 (59%) within community. 7/12 couples (58%) within households clustered together. Individuals in clusters with potential recent transmission (11/34) were more likely to be younger 71% (15/21) versus 46% (21/46) in un-clustered individuals and had recently become resident in the community 67% (14/21) vs 48% (22/46). Four of 11 (36%) potential transmission clusters included incident-incident transmissions. Independently, clustering was less likely in HIV subtype D (adjusted Odds Ratio, aOR = 0.51 [95% CI 0.26-1.00]) than A and more likely in those living with an HIV-infected individual in the household (aOR = 6.30 [95% CI 3.40-11.68]). A large proportion of HIV sexual transmissions occur within house-holds and within communities even in this key mobile population. The findings suggest localized HIV transmissions and hence a potential benefit for the test and treat approach even at a community level, coupled with intensified HIV counselling to identify early infections.

  5. A GIS-based approach for comparative analysis of potential fire risk assessment

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Hu, Lieqiu; Liu, Huiping

    2007-06-01

    Urban fires are one of the most important sources of property loss and human casualty and therefore it is necessary to assess the potential fire risk with consideration of urban community safety. Two evaluation models are proposed, both of which are integrated with GIS. One is the single factor model concerning the accessibility of fire passage and the other is grey clustering approach based on the multifactor system. In the latter model, fourteen factors are introduced and divided into four categories involving security management, evacuation facility, construction resistance and fire fighting capability. A case study on campus of Beijing Normal University is presented to express the potential risk assessment models in details. A comparative analysis of the two models is carried out to validate the accuracy. The results are approximately consistent with each other. Moreover, modeling with GIS promotes the efficiency the potential risk assessment.

  6. Cluster structure and Coulomb shift in two-center mirror systems

    NASA Astrophysics Data System (ADS)

    Nakao, M.; Umehara, H.; Sonoda, S.; Ebata, S.; Ito, M.

    2017-11-01

    The α + 14C elastic scattering and the nuclear structure of its compound systems, 18O = α + 14C, are analyzed on the basis of the semi-microscopic model. The α + 14C interaction potential is constructed from the double folding (DF) model with the effective nucleon-nucleon interaction of the density-dependent Michigan 3-range Yukawa. The DF potential is applied to the α+14C elastic scattering in the energy range of Eα/Aα = 5.5 8.8 MeV, and the observed differential cross sections are reasonably reproduced. The energy spectra of 18O are calculated by employing the orthogonality condition model (OCM) plus the absorbing boundary condition (ABC). The OCM + ABC calculation predicts the formation of the 0+ resonance around E = 3MeV with respect to the α threshold, which seems to correspond to the resonance identified in the recent experiment. We also apply the OCM + ABC calculation to the mirror system, such as 18Ne = α+14O, and the Coulomb shift of 18O - 18Ne is evaluated. We have found that the Coulomb shift is clearly reduced in the excited 0+ state due to the development of the α cluster structure. This result strongly supports that the Coulomb shift is a candidate of new probe to identify the clustering phenomena.

  7. Dynamics of Multistable States during Ongoing and Evoked Cortical Activity

    PubMed Central

    Mazzucato, Luca

    2015-01-01

    Single-trial analyses of ensemble activity in alert animals demonstrate that cortical circuits dynamics evolve through temporal sequences of metastable states. Metastability has been studied for its potential role in sensory coding, memory, and decision-making. Yet, very little is known about the network mechanisms responsible for its genesis. It is often assumed that the onset of state sequences is triggered by an external stimulus. Here we show that state sequences can be observed also in the absence of overt sensory stimulation. Analysis of multielectrode recordings from the gustatory cortex of alert rats revealed ongoing sequences of states, where single neurons spontaneously attain several firing rates across different states. This single-neuron multistability represents a challenge to existing spiking network models, where typically each neuron is at most bistable. We present a recurrent spiking network model that accounts for both the spontaneous generation of state sequences and the multistability in single-neuron firing rates. Each state results from the activation of neural clusters with potentiated intracluster connections, with the firing rate in each cluster depending on the number of active clusters. Simulations show that the model's ensemble activity hops among the different states, reproducing the ongoing dynamics observed in the data. When probed with external stimuli, the model predicts the quenching of single-neuron multistability into bistability and the reduction of trial-by-trial variability. Both predictions were confirmed in the data. Together, these results provide a theoretical framework that captures both ongoing and evoked network dynamics in a single mechanistic model. PMID:26019337

  8. Astrophysical S-Factor of p 7Be Capture at Low Energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.; Burkova, N. A.; Dzhazairov-Kakhramanov, A. V.; Tkachenko, A. S.

    2018-04-01

    In the modified potential cluster model, the possibility of describing the astrophysical S-factor of radiative p7Be→8Bγ capture to the ground state of the 8B nucleus at energies from 10 keV to 1 MeV is considered. Potentials of intercluster interactions, matched to the spectra of the 8B nucleus for scattering processes, and the potential of the bound 3P2 ground state in the p7Be cluster channel are constructed. The resonance in the 3P1 scattering wave at the energy 0.722 MeV, which leads to an M1-transition to the ground state, is considered. Total cross sections and the reaction rate of p7Be capture are calculated in the temperature range from 0.01·T9 to 5·T9.

  9. The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach.

    PubMed

    Taha, Zahari; Musa, Rabiu Muazu; P P Abdul Majeed, Anwar; Alim, Muhammad Muaz; Abdullah, Mohamad Razali

    2018-02-01

    Support Vector Machine (SVM) has been shown to be an effective learning algorithm for classification and prediction. However, the application of SVM for prediction and classification in specific sport has rarely been used to quantify/discriminate low and high-performance athletes. The present study classified and predicted high and low-potential archers from a set of fitness and motor ability variables trained on different SVMs kernel algorithms. 50 youth archers with the mean age and standard deviation of 17.0 ± 0.6 years drawn from various archery programmes completed a six arrows shooting score test. Standard fitness and ability measurements namely hand grip, vertical jump, standing broad jump, static balance, upper muscle strength and the core muscle strength were also recorded. Hierarchical agglomerative cluster analysis (HACA) was used to cluster the archers based on the performance variables tested. SVM models with linear, quadratic, cubic, fine RBF, medium RBF, as well as the coarse RBF kernel functions, were trained based on the measured performance variables. The HACA clustered the archers into high-potential archers (HPA) and low-potential archers (LPA), respectively. The linear, quadratic, cubic, as well as the medium RBF kernel functions models, demonstrated reasonably excellent classification accuracy of 97.5% and 2.5% error rate for the prediction of the HPA and the LPA. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from a combination of the selected few measured fitness and motor ability performance variables examined which would consequently save cost, time and effort during talent identification programme. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A spectral clustering search algorithm for predicting shallow landslide size and location

    Treesearch

    Dino Bellugi; David G. Milledge; William E. Dietrich; Jim A. McKean; J. Taylor Perron; Erik B. Sudderth; Brian Kazian

    2015-01-01

    The potential hazard and geomorphic significance of shallow landslides depend on their location and size. Commonly applied one-dimensional stability models do not include lateral resistances and cannot predict landslide size. Multi-dimensional models must be applied to specific geometries, which are not known a priori, and testing all possible geometries is...

  11. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, P.; Suchyta, E.; Huff, E.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  12. Clustering and variable selection in the presence of mixed variable types and missing data.

    PubMed

    Storlie, C B; Myers, S M; Katusic, S K; Weaver, A L; Voigt, R G; Croarkin, P E; Stoeckel, R E; Port, J D

    2018-05-17

    We consider the problem of model-based clustering in the presence of many correlated, mixed continuous, and discrete variables, some of which may have missing values. Discrete variables are treated with a latent continuous variable approach, and the Dirichlet process is used to construct a mixture model with an unknown number of components. Variable selection is also performed to identify the variables that are most influential for determining cluster membership. The work is motivated by the need to cluster patients thought to potentially have autism spectrum disorder on the basis of many cognitive and/or behavioral test scores. There are a modest number of patients (486) in the data set along with many (55) test score variables (many of which are discrete valued and/or missing). The goal of the work is to (1) cluster these patients into similar groups to help identify those with similar clinical presentation and (2) identify a sparse subset of tests that inform the clusters in order to eliminate unnecessary testing. The proposed approach compares very favorably with other methods via simulation of problems of this type. The results of the autism spectrum disorder analysis suggested 3 clusters to be most likely, while only 4 test scores had high (>0.5) posterior probability of being informative. This will result in much more efficient and informative testing. The need to cluster observations on the basis of many correlated, continuous/discrete variables with missing values is a common problem in the health sciences as well as in many other disciplines. Copyright © 2018 John Wiley & Sons, Ltd.

  13. CXB surface brightness fluctuations: A new frontier of ICM structure and outskirts studies of (un)resolved galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Kolodzig, A.; Gilfanov, M.; Hutsi, G.; Sunyaev, R.

    2017-10-01

    Surface brightness fluctuations of the cosmic X-ray background (CXB) carry unique information about the intracluster-medium (ICM) structure of galaxy clusters and groups up to the virial radius, which is inaccessible by conventional observations of selected nearby resolved clusters. We present results of our CXB fluctuation analysis of the ˜5ks-deep, ˜9deg^2-large Chandra survey XBOOTES. We find that our fluctuation signal of resolved clusters is dominated by nearby, high-luminosity sources. The shape of its power spectrum suggests that for the brightest cluster we are sensitive to the ICM structure up to ˜2× R_{500};(˜2 Mpc/h). The energy spectrum of the fluctuation signal from resolved and unresolved clusters follows a typical ICM spectrum, where redshifts and temperatures are consistent with expectations. It also demonstrates that fluctuations of our unresolved CXB are dominated by unresolved clusters with an average z˜0.4 and T˜1.3keV, suggesting an average L_{0.5-2keV}˜3×10^{42} erg/s and M_{500}˜4×10^{13} M_{Sun}/h. Comparison with modeling suggests, that our fluctuation signal can be described with the one-halo-term of clusters and that it might be sensitive to the presence of substructures. Discrepancies between model and measurement could be utilized to improve our understanding of the ICM structure in a statistical manner. We briefly discuss the potential of larger surveys (e.g. Stripe82, XXL, SRG/eRosita).

  14. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2010-05-20

    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~ 200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits excludemore » large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~ 5 over a smooth-halo assumption. Here, we also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. Finally, in this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.« less

  15. New particle formation from sulfuric acid and amines: Comparison of monomethylamine, dimethylamine, and trimethylamine

    NASA Astrophysics Data System (ADS)

    Olenius, Tinja; Halonen, Roope; Kurtén, Theo; Henschel, Henning; Kupiainen-Määttä, Oona; Ortega, Ismael K.; Jen, Coty N.; Vehkamäki, Hanna; Riipinen, Ilona

    2017-07-01

    Amines are bases that originate from both anthropogenic and natural sources, and they are recognized as candidates to participate in atmospheric aerosol particle formation together with sulfuric acid. Monomethylamine, dimethylamine, and trimethylamine (MMA, DMA, and TMA, respectively) have been shown to enhance sulfuric acid-driven particle formation more efficiently than ammonia, but both theory and laboratory experiments suggest that there are differences in their enhancing potentials. However, as quantitative concentrations and thermochemical properties of different amines remain relatively uncertain, and also for computational reasons, the compounds have been treated as a single surrogate amine species in large-scale modeling studies. In this work, the differences and similarities of MMA, DMA, and TMA are studied by simulations of molecular cluster formation from sulfuric acid, water, and each of the three amines. Quantum chemistry-based cluster evaporation rate constants are applied in a cluster population dynamics model to yield cluster concentrations and formation rates at boundary layer conditions. While there are differences, for instance, in the clustering mechanisms and cluster hygroscopicity for the three amines, DMA and TMA can be approximated as a lumped species. Formation of nanometer-sized particles and its dependence on ambient conditions is roughly similar for these two: both efficiently form clusters with sulfuric acid, and cluster formation is rather insensitive to changes in temperature and relative humidity. Particle formation from sulfuric acid and MMA is weaker and significantly more sensitive to ambient conditions. Therefore, merging MMA together with DMA and TMA introduces inaccuracies in sulfuric acid-amine particle formation schemes.

  16. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE PAGES

    Melchior, P.; Suchyta, E.; Huff, E.; ...

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  17. Hierarchical modeling of cluster size in wildlife surveys

    USGS Publications Warehouse

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  18. Excess electrons in methanol clusters: Beyond the one-electron picture

    NASA Astrophysics Data System (ADS)

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-01

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  19. Excess electrons in methanol clusters: Beyond the one-electron picture.

    PubMed

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-28

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  20. The cosmological analysis of X-ray cluster surveys - I. A new method for interpreting number counts

    NASA Astrophysics Data System (ADS)

    Clerc, N.; Pierre, M.; Pacaud, F.; Sadibekova, T.

    2012-07-01

    We present a new method aimed at simplifying the cosmological analysis of X-ray cluster surveys. It is based on purely instrumental observable quantities considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio versus count rate). The basic principle is that even in rather shallow surveys, substantial information on cluster redshift and temperature is present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can be readily predicted from an ab initio cosmological modelling. We illustrate the methodology for the case of a 100-deg2XMM survey having a sensitivity of ˜10-14 erg s-1 cm-2 and fit at the same time, the survey selection function, the cluster evolutionary scaling relations and the cosmology; our sole assumption - driven by the limited size of the sample considered in the case study - is that the local cluster scaling relations are known. We devote special attention to the realistic modelling of the count-rate measurement uncertainties and evaluate the potential of the method via a Fisher analysis. In the absence of individual cluster redshifts, the count rate and hardness ratio (CR-HR) method appears to be much more efficient than the traditional approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts are available, our method performs similar to the traditional mass function (dn/dM/dz) for the purely cosmological parameters, but constrains better parameters defining the cluster scaling relations and their evolution. A further practical advantage of the CR-HR method is its simplicity: this fully top-down approach totally bypasses the tedious steps consisting in deriving cluster masses from X-ray temperature measurements.

  1. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    PubMed

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  2. Regression analysis on the variation in efficiency frontiers for prevention stage of HIV/AIDS.

    PubMed

    Kamae, Maki S; Kamae, Isao; Cohen, Joshua T; Neumann, Peter J

    2011-01-01

    To investigate how the cost effectiveness of preventing HIV/AIDS varies across possible efficiency frontiers (EFs) by taking into account potentially relevant external factors, such as prevention stage, and how the EFs can be characterized using regression analysis given uncertainty of the QALY-cost estimates. We reviewed cost-effectiveness estimates for the prevention and treatment of HIV/AIDS published from 2002-2007 and catalogued in the Tufts Medical Center Cost-Effectiveness Analysis (CEA) Registry. We constructed efficiency frontier (EF) curves by plotting QALYs against costs, using methods used by the Institute for Quality and Efficiency in Health Care (IQWiG) in Germany. We stratified the QALY-cost ratios by prevention stage, country of study, and payer perspective, and estimated EF equations using log and square-root models. A total of 53 QALY-cost ratios were identified for HIV/AIDS in the Tufts CEA Registry. Plotted ratios stratified by prevention stage were visually grouped into a cluster consisting of primary/secondary prevention measures and a cluster consisting of tertiary measures. Correlation coefficients for each cluster were statistically significant. For each cluster, we derived two EF equations - one based on the log model, and one based on the square-root model. Our findings indicate that stratification of HIV/AIDS interventions by prevention stage can yield distinct EFs, and that the correlation and regression analyses are useful for parametrically characterizing EF equations. Our study has certain limitations, such as the small number of included articles and the potential for study populations to be non-representative of countries of interest. Nonetheless, our approach could help develop a deeper appreciation of cost effectiveness beyond the deterministic approach developed by IQWiG.

  3. [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis.

    PubMed

    Rousset, M; Montet, Y; Guigliarelli, B; Forget, N; Asso, M; Bertrand, P; Fontecilla-Camps, J C; Hatchikian, E C

    1998-09-29

    The role of the high potential [3Fe-4S]1+,0 cluster of [NiFe] hydrogenase from Desulfovibrio species located halfway between the proximal and distal low potential [4Fe-4S]2+,1+ clusters has been investigated by using site-directed mutagenesis. Proline 238 of Desulfovibrio fructosovorans [NiFe] hydrogenase, which occupies the position of a potential ligand of the lacking fourth Fe-site of the [3Fe-4S] cluster, was replaced by a cysteine residue. The properties of the mutant enzyme were investigated in terms of enzymatic activity, EPR, and redox properties of the iron-sulfur centers and crystallographic structure. We have shown on the basis of both spectroscopic and x-ray crystallographic studies that the [3Fe-4S] cluster of D. fructosovorans hydrogenase was converted into a [4Fe-4S] center in the P238 mutant. The [3Fe-4S] to [4Fe-4S] cluster conversion resulted in a lowering of approximately 300 mV of the midpoint potential of the modified cluster, whereas no significant alteration of the spectroscopic and redox properties of the two native [4Fe-4S] clusters and the NiFe center occurred. The significant decrease of the midpoint potential of the intermediate Fe-S cluster had only a slight effect on the catalytic activity of the P238C mutant as compared with the wild-type enzyme. The implications of the results for the role of the high-potential [3Fe-4S] cluster in the intramolecular electron transfer pathway are discussed.

  4. From sticky-hard-sphere to Lennard-Jones-type clusters

    NASA Astrophysics Data System (ADS)

    Trombach, Lukas; Hoy, Robert S.; Wales, David J.; Schwerdtfeger, Peter

    2018-04-01

    A relation MSHS →LJ between the set of nonisomorphic sticky-hard-sphere clusters MSHS and the sets of local energy minima ML J of the (m ,n ) -Lennard-Jones potential Vmn LJ(r ) =ɛ/n -m [m r-n-n r-m] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N ≳10 . While the map from MSHS→MSHS →LJ is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N =13 , and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m ,n ) . Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  5. From sticky-hard-sphere to Lennard-Jones-type clusters.

    PubMed

    Trombach, Lukas; Hoy, Robert S; Wales, David J; Schwerdtfeger, Peter

    2018-04-01

    A relation M_{SHS→LJ} between the set of nonisomorphic sticky-hard-sphere clusters M_{SHS} and the sets of local energy minima M_{LJ} of the (m,n)-Lennard-Jones potential V_{mn}^{LJ}(r)=ɛ/n-m[mr^{-n}-nr^{-m}] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N≳10. While the map from M_{SHS}→M_{SHS→LJ} is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N=13, and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  6. Investigation of deformation effects on the decay properties of 12 C + α Cluster states in 16O

    NASA Astrophysics Data System (ADS)

    Soylu, A.; Koyuncu, F.; Coban, A.; Bayrak, O.; Freer, M.

    2018-04-01

    We have analyzed the elastic scattering angular distributions data of the α +12C reaction over a wide energy range (Elab = 28 . 2 to 35.5 MeV) within the framework of the Optical Model formalism. A double folding (DF) type real potential was used with a phenomenological Woods-Saxon-squared (WS2) type imaginary potential. Good agreement between the calculations and experimental data was obtained. By using the real DF potential we have calculated the properties of the α-cluster states in 16O by using the Gamow code as well as the α-decay widths by using the WKB method. We implemented a 12C + α cluster framework for the calculation of the excitation energies and decay widths of 16O as a function of the orientation of the planar 12C nucleus with respect to the α-particle. These calculations showed strong sensitivity of the widths and excitation energies to the orientation. Branching ratios were also calculated and though less sensitive to the 12C orientation, it was found that 12Cgs + α structure, with the α-particle orbiting the 12C in its ground state, is dominant. This work demonstrates that deformation, and the orientation, of 12C plays a crucial role in the understanding of the nature of the α-cluster states in 16O.

  7. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  8. Reconstruction of the mass distribution of galaxy clusters from the inversion of the thermal Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Majer, C. L.; Meyer, S.; Konrad, S.; Sarli, E.; Bartelmann, M.

    2016-07-01

    This paper continues a series in which we intend to show how all observables of galaxy clusters can be combined to recover the two-dimensional, projected gravitational potential of individual clusters. Our goal is to develop a non-parametric algorithm for joint cluster reconstruction taking all cluster observables into account. For this reason we focus on the line-of-sight projected gravitational potential, proportional to the lensing potential, in order to extend existing reconstruction algorithms. In this paper, we begin with the relation between the Compton-y parameter and the Newtonian gravitational potential, assuming hydrostatic equilibrium and a polytropic stratification of the intracluster gas. Extending our first publication we now consider a spheroidal rather than a spherical cluster symmetry. We show how a Richardson-Lucy deconvolution can be used to convert the intensity change of the CMB due to the thermal Sunyaev-Zel'dovich effect into an estimate for the two-dimensional gravitational potential. We apply our reconstruction method to a cluster based on an N-body/hydrodynamical simulation processed with the characteristics (resolution and noise) of the ALMA interferometer for which we achieve a relative error of ≲20 per cent for a large fraction of the virial radius. We further apply our method to an observation of the galaxy cluster RXJ1347 for which we can reconstruct the potential with a relative error of ≲20 per cent for the observable cluster range.

  9. Weak Lensing Results of the Merging Cluster A1758

    NASA Technical Reports Server (NTRS)

    Markevitch, M.; Gonzalez, A. H.; Bradac, M.

    2011-01-01

    Here we present the weak lensing results of A1758, which is known to have four cluster members undergoing two separate mergers, A1758N and A1758S. Weak lensing results of A1758N agree with previous weak lensing results of clusters lE0657-558 (Bullet cluster) and MACS J0025.4-1222, whose X-ray gas components were found to be largely separated from their clusters' gravitational potentials. A1758N has a geometry that is different from previously published mergers in that one of its X-ray peaks overlays the corresponding gravitational potential and the other X-ray peak is well separated from its cluster's gravitational potential.

  10. Clustering consumers based on trust, confidence and giving behaviour: data-driven model building for charitable involvement in the Australian not-for-profit sector.

    PubMed

    de Vries, Natalie Jane; Reis, Rodrigo; Moscato, Pablo

    2015-01-01

    Organisations in the Not-for-Profit and charity sector face increasing competition to win time, money and efforts from a common donor base. Consequently, these organisations need to be more proactive than ever. The increased level of communications between individuals and organisations today, heightens the need for investigating the drivers of charitable giving and understanding the various consumer groups, or donor segments, within a population. It is contended that `trust' is the cornerstone of the not-for-profit sector's survival, making it an inevitable topic for research in this context. It has become imperative for charities and not-for-profit organisations to adopt for-profit's research, marketing and targeting strategies. This study provides the not-for-profit sector with an easily-interpretable segmentation method based on a novel unsupervised clustering technique (MST-kNN) followed by a feature saliency method (the CM1 score). A sample of 1,562 respondents from a survey conducted by the Australian Charities and Not-for-profits Commission is analysed to reveal donor segments. Each cluster's most salient features are identified using the CM1 score. Furthermore, symbolic regression modelling is employed to find cluster-specific models to predict `low' or `high' involvement in clusters. The MST-kNN method found seven clusters. Based on their salient features they were labelled as: the `non-institutionalist charities supporters', the `resource allocation critics', the `information-seeking financial sceptics', the `non-questioning charity supporters', the `non-trusting sceptics', the `charity management believers' and the `institutionalist charity believers'. Each cluster exhibits their own characteristics as well as different drivers of `involvement'. The method in this study provides the not-for-profit sector with a guideline for clustering, segmenting, understanding and potentially targeting their donor base better. If charities and not-for-profit organisations adopt these strategies, they will be more successful in today's competitive environment.

  11. Clustering Consumers Based on Trust, Confidence and Giving Behaviour: Data-Driven Model Building for Charitable Involvement in the Australian Not-For-Profit Sector

    PubMed Central

    de Vries, Natalie Jane; Reis, Rodrigo; Moscato, Pablo

    2015-01-01

    Organisations in the Not-for-Profit and charity sector face increasing competition to win time, money and efforts from a common donor base. Consequently, these organisations need to be more proactive than ever. The increased level of communications between individuals and organisations today, heightens the need for investigating the drivers of charitable giving and understanding the various consumer groups, or donor segments, within a population. It is contended that `trust' is the cornerstone of the not-for-profit sector's survival, making it an inevitable topic for research in this context. It has become imperative for charities and not-for-profit organisations to adopt for-profit's research, marketing and targeting strategies. This study provides the not-for-profit sector with an easily-interpretable segmentation method based on a novel unsupervised clustering technique (MST-kNN) followed by a feature saliency method (the CM1 score). A sample of 1,562 respondents from a survey conducted by the Australian Charities and Not-for-profits Commission is analysed to reveal donor segments. Each cluster's most salient features are identified using the CM1 score. Furthermore, symbolic regression modelling is employed to find cluster-specific models to predict `low' or `high' involvement in clusters. The MST-kNN method found seven clusters. Based on their salient features they were labelled as: the `non-institutionalist charities supporters', the `resource allocation critics', the `information-seeking financial sceptics', the `non-questioning charity supporters', the `non-trusting sceptics', the `charity management believers' and the `institutionalist charity believers'. Each cluster exhibits their own characteristics as well as different drivers of `involvement'. The method in this study provides the not-for-profit sector with a guideline for clustering, segmenting, understanding and potentially targeting their donor base better. If charities and not-for-profit organisations adopt these strategies, they will be more successful in today's competitive environment. PMID:25849547

  12. The Gaia-ESO Survey: open clusters in Gaia-DR1 . A way forward to stellar age calibration

    NASA Astrophysics Data System (ADS)

    Randich, S.; Tognelli, E.; Jackson, R.; Jeffries, R. D.; Degl'Innocenti, S.; Pancino, E.; Re Fiorentin, P.; Spagna, A.; Sacco, G.; Bragaglia, A.; Magrini, L.; Prada Moroni, P. G.; Alfaro, E.; Franciosini, E.; Morbidelli, L.; Roccatagliata, V.; Bouy, H.; Bravi, L.; Jiménez-Esteban, F. M.; Jordi, C.; Zari, E.; Tautvaišiene, G.; Drazdauskas, A.; Mikolaitis, S.; Gilmore, G.; Feltzing, S.; Vallenari, A.; Bensby, T.; Koposov, S.; Korn, A.; Lanzafame, A.; Smiljanic, R.; Bayo, A.; Carraro, G.; Costado, M. T.; Heiter, U.; Hourihane, A.; Jofré, P.; Lewis, J.; Monaco, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2018-05-01

    Context. Determination and calibration of the ages of stars, which heavily rely on stellar evolutionary models, are very challenging, while representing a crucial aspect in many astrophysical areas. Aims: We describe the methodologies that, taking advantage of Gaia-DR1 and the Gaia-ESO Survey data, enable the comparison of observed open star cluster sequences with stellar evolutionary models. The final, long-term goal is the exploitation of open clusters as age calibrators. Methods: We perform a homogeneous analysis of eight open clusters using the Gaia-DR1 TGAS catalogue for bright members and information from the Gaia-ESO Survey for fainter stars. Cluster membership probabilities for the Gaia-ESO Survey targets are derived based on several spectroscopic tracers. The Gaia-ESO Survey also provides the cluster chemical composition. We obtain cluster parallaxes using two methods. The first one relies on the astrometric selection of a sample of bona fide members, while the other one fits the parallax distribution of a larger sample of TGAS sources. Ages and reddening values are recovered through a Bayesian analysis using the 2MASS magnitudes and three sets of standard models. Lithium depletion boundary (LDB) ages are also determined using literature observations and the same models employed for the Bayesian analysis. Results: For all but one cluster, parallaxes derived by us agree with those presented in Gaia Collaboration (2017, A&A, 601, A19), while a discrepancy is found for NGC 2516; we provide evidence supporting our own determination. Inferred cluster ages are robust against models and are generally consistent with literature values. Conclusions: The systematic parallax errors inherent in the Gaia DR1 data presently limit the precision of our results. Nevertheless, we have been able to place these eight clusters onto the same age scale for the first time, with good agreement between isochronal and LDB ages where there is overlap. Our approach appears promising and demonstrates the potential of combining Gaia and ground-based spectroscopic datasets. Based on observations collected with the FLAMES instrument at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Spectroscopic Survey (188.B-3002, 193.B-0936).Additional tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A99

  13. Spectroscopic Study of Local Interactions of Platinum in Small [CexOy]Ptx' - Clusters

    NASA Astrophysics Data System (ADS)

    Ray, Manisha; Kafader, Jared O.; Chick Jarrold, Caroline

    2016-06-01

    Cerium oxide is a good ionic conductor, and the conductivity can be enhanced with oxygen vacancies and doping. This conductivity may play an important role in the enhancement of noble or coinage metal toward the water-gas shift reaction when supported by cerium oxide. The ceria-supported platinum catalyst in particular has received much attention because of higher activity at lower temperatures (LT) compared to the most common commercial LT-WGS catalyst. We have used a combination of anion photoelectron spectroscopy and density functional theory calculations to study the interesting molecular and electronic structures and properties of cluster models of ceria-supported platinum. [CexOy]Ptx' - (x,x'=1,2 ; y≤2x') clusters exhibit evidence of ionic bonding possible because of the high electron affinity of Pt and the low ionization potential of cerium oxide clusters. In addition, Pt- is a common daughter ion resulting from photodissociation of [CexOy]Ptx' - clusters. Finally, several of the anion and neutral clusters have profoundly different structures. These features may play a role in the enhancement of catalytic activity toward the water-gas shift reaction.

  14. Theoretical and Experimental Insights into the Dissociation of 2-Hydroxyethylhydrazinium Nitrate Clusters Formed via Electrospray.

    PubMed

    Patrick, Amanda L; Vogelhuber, Kristen M; Prince, Benjamin D; Annesley, Christopher J

    2018-03-01

    Ionic liquids are used for myriad applications, including as catalysts, solvents, and propellants. Specifically, 2-hydroxyethylhydrazinium nitrate (HEHN) has been developed as a chemical propellant for space applications. The gas-phase behavior of HEHN ions and clusters is important in understanding its potential as an electrospray thruster propellant. Here, the unimolecular dissociation pathways of two clusters are experimentally observed, and theoretical modeling of hydrogen bonding and dissociation pathways is used to help rationalize those observations. The cation/deprotonated cation cluster [HEH 2 - H] + , which is observed from electrospray ionization, is calculated to be considerably more stable than the complementary cation/protonated anion adduct, [HEH + HNO 3 ] + , which is not observed experimentally. Upon collisional activation, a larger cluster [(HEHN) 2 HEH] + undergoes dissociation via loss of nitric acid at lower collision energies, as predicted theoretically. At higher collision energies, additional primary and secondary loss pathways open, including deprotonated cation loss, ion-pair loss, and double-nitric-acid loss. Taken together, these experimental and theoretical results contribute to a foundational understanding of the dissociation of protic ionic liquid clusters in the gas phase.

  15. The quantum structure of anionic hydrogen clusters

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Yurtsever, E.

    2018-03-01

    A flexible and polarizable interatomic potential has been developed to model hydrogen clusters interacting with one hydrogen anion, (H2)nH-, in a broad range of sizes n = 1-54 and parametrized against coupled cluster quantum chemical calculations. Using path-integral molecular dynamics simulations at 1 K initiated from the putative classical global minima, the equilibrium structures are found to generally rely on icosahedral shells with the hydrogen molecules pointing toward the anion, producing geometric magic numbers at sizes n = 12, 32, and 44 that are in agreement with recent mass spectrometry measurements. The energetic stability of the clusters is also connected with the extent of vibrational delocalization, measured here by the fluctuations among inherent structures hidden in the vibrational wave function. As the clusters grow, the outer molecules become increasingly free to rotate, and strong finite size effects are also found between magic numbers, associated with more prominent vibrational delocalization. The effective icosahedral structure of the 44-molecule cluster is found to originate from quantum nuclear effects as well, the classical structure showing no particular symmetry.

  16. Cluster dynamics of pulse coupled oscillators

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Kevin; Strogatz, Steven; Krapivsky, Paul

    2015-03-01

    We study the dynamics of networks of pulse coupled oscillators. Much attention has been devoted to the ultimate fate of the system: which conditions lead to a steady state in which all the oscillators are firing synchronously. But little is known about how synchrony builds up from an initially incoherent state. The current work addresses this question. Oscillators start to synchronize by forming clusters of different sizes that fire in unison. First pairs of oscillators, then triplets and so on. These clusters progressively grow by coalescing with others, eventually resulting in the fully synchronized state. We study the mean field model in which the coupling between oscillators is all to all. We use probabilistic arguments to derive a recursive set of evolution equations for these clusters. Using a generating function formalism, we derive simple equations for the moments of these clusters. Our results are in good agreement simulation. We then numerically explore the effects of non-trivial connectivity. Our results have potential application to ultra-low power ``impulse radio'' & sensor networks.

  17. Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…

  18. On the applicability of density dependent effective interactions in cluster-forming systems

    NASA Astrophysics Data System (ADS)

    Montes-Saralegui, Marta; Kahl, Gerhard; Nikoubashman, Arash

    2017-02-01

    We systematically studied the validity and transferability of the force-matching algorithm for computing effective pair potentials in a system of dendritic polymers, i.e., a particular class of ultrasoft colloids. We focused on amphiphilic dendrimers, macromolecules which can aggregate into clusters of overlapping particles to minimize the contact area with the surrounding implicit solvent. Simulations were performed for both the monomeric and coarse-grained models in the liquid phase at densities ranging from infinite dilution up to values close to the freezing point. The effective pair potentials for the coarse-grained simulations were computed from the monomeric simulations both in the zero-density limit (Φeff0) and at each investigated finite density (Φeff). Conducting the coarse-grained simulations with Φeff0 at higher densities is not appropriate as they failed at reproducing the structural properties of the monomeric simulations. In contrast, we found excellent agreement between the spatial dendrimer distributions obtained from the coarse-grained simulations with Φeff and the microscopically detailed simulations at low densities, where the macromolecules were distributed homogeneously in the system. However, the reliability of the coarse-grained simulations deteriorated significantly as the density was increased further and the cluster occupation became more polydisperse. Under these conditions, the effective pair potential of the coarse-grained model can no longer be computed by averaging over the whole system, but the local density needs to be taken into account instead.

  19. Assessing the performance of dispersionless and dispersion-accounting methods: helium interaction with cluster models of the TiO2(110) surface.

    PubMed

    de Lara-Castells, María Pilar; Stoll, Hermann; Mitrushchenkov, Alexander O

    2014-08-21

    As a prototypical dispersion-dominated physisorption problem, we analyze here the performance of dispersionless and dispersion-accounting methodologies on the helium interaction with cluster models of the TiO2(110) surface. A special focus has been given to the dispersionless density functional dlDF and the dlDF+Das construction for the total interaction energy (K. Pernal, R. Podeswa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 2009, 109, 263201), where Das is an effective interatomic pairwise functional form for the dispersion. Likewise, the performance of symmetry-adapted perturbation theory (SAPT) method is evaluated, where the interacting monomers are described by density functional theory (DFT) with the dlDF, PBE, and PBE0 functionals. Our benchmarks include CCSD(T)-F12b calculations and comparative analysis on the nuclear bound states supported by the He-cluster potentials. Moreover, intra- and intermonomer correlation contributions to the physisorption interaction are analyzed through the method of increments (H. Stoll, J. Chem. Phys. 1992, 97, 8449) at the CCSD(T) level of theory. This method is further applied in conjunction with a partitioning of the Hartree-Fock interaction energy to estimate individual interaction energy components, comparing them with those obtained using the different SAPT(DFT) approaches. The cluster size evolution of dispersionless and dispersion-accounting energy components is then discussed, revealing the reduced role of the dispersionless interaction and intramonomer correlation when the extended nature of the surface is better accounted for. On the contrary, both post-Hartree-Fock and SAPT(DFT) results clearly demonstrate the high-transferability character of the effective pairwise dispersion interaction whatever the cluster model is. Our contribution also illustrates how the method of increments can be used as a valuable tool not only to achieve the accuracy of CCSD(T) calculations using large cluster models but also to evaluate the performance of SAPT(DFT) methods for the physically well-defined contributions to the total interaction energy. Overall, our work indicates the excellent performance of a dlDF+Das approach in which the parameters are optimized using the smallest cluster model of the target surface to treat van der Waals adsorbate-surface interactions.

  20. Capturing the Interaction Potential of Amyloidogenic Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javid, Nadeem; Vogtt, Karsten; Winter, Roland

    2007-07-13

    Experimentally derived static structure factors obtained for the aggregation-prone protein insulin were analyzed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek potential. The data reveal that the protein self-assembles into equilibrium clusters already at low concentrations. Furthermore, striking differences regarding interaction forces between aggregation-prone proteins such as insulin in the preaggregated regime and natively stable globular proteins are found.

  1. Analysis of risk factors for cluster behavior of dental implant failures.

    PubMed

    Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-08-01

    Some studies indicated that implant failures are commonly concentrated in few patients. To identify and analyze cluster behavior of dental implant failures among subjects of a retrospective study. This retrospective study included patients receiving at least three implants only. Patients presenting at least three implant failures were classified as presenting a cluster behavior. Univariate and multivariate logistic regression models and generalized estimating equations analysis evaluated the effect of explanatory variables on the cluster behavior. There were 1406 patients with three or more implants (8337 implants, 592 failures). Sixty-seven (4.77%) patients presented cluster behavior, with 56.8% of all implant failures. The intake of antidepressants and bruxism were identified as potential negative factors exerting a statistically significant influence on a cluster behavior at the patient-level. The negative factors at the implant-level were turned implants, short implants, poor bone quality, age of the patient, the intake of medicaments to reduce the acid gastric production, smoking, and bruxism. A cluster pattern among patients with implant failure is highly probable. Factors of interest as predictors for implant failures could be a number of systemic and local factors, although a direct causal relationship cannot be ascertained. © 2017 Wiley Periodicals, Inc.

  2. [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis

    PubMed Central

    Rousset, Marc; Montet, Yael; Guigliarelli, Bruno; Forget, Nicole; Asso, Marcel; Bertrand, Patrick; Fontecilla-Camps, Juan C.; Hatchikian, E. Claude

    1998-01-01

    The role of the high potential [3Fe-4S]1+,0 cluster of [NiFe] hydrogenase from Desulfovibrio species located halfway between the proximal and distal low potential [4Fe-4S]2+,1+ clusters has been investigated by using site-directed mutagenesis. Proline 238 of Desulfovibrio fructosovorans [NiFe] hydrogenase, which occupies the position of a potential ligand of the lacking fourth Fe-site of the [3Fe-4S] cluster, was replaced by a cysteine residue. The properties of the mutant enzyme were investigated in terms of enzymatic activity, EPR, and redox properties of the iron-sulfur centers and crystallographic structure. We have shown on the basis of both spectroscopic and x-ray crystallographic studies that the [3Fe-4S] cluster of D. fructosovorans hydrogenase was converted into a [4Fe-4S] center in the P238 mutant. The [3Fe-4S] to [4Fe-4S] cluster conversion resulted in a lowering of approximately 300 mV of the midpoint potential of the modified cluster, whereas no significant alteration of the spectroscopic and redox properties of the two native [4Fe-4S] clusters and the NiFe center occurred. The significant decrease of the midpoint potential of the intermediate Fe-S cluster had only a slight effect on the catalytic activity of the P238C mutant as compared with the wild-type enzyme. The implications of the results for the role of the high-potential [3Fe-4S] cluster in the intramolecular electron transfer pathway are discussed. PMID:9751716

  3. Anisotropy of the Coulomb Interaction between Folded Proteins: Consequences for Mesoscopic Aggregation of Lysozyme

    PubMed Central

    Chan, Ho Yin; Lankevich, Vladimir; Vekilov, Peter G.; Lubchenko, Vassiliy

    2012-01-01

    Toward quantitative description of protein aggregation, we develop a computationally efficient method to evaluate the potential of mean force between two folded protein molecules that allows for complete sampling of their mutual orientation. Our model is valid at moderate ionic strengths and accounts for the actual charge distribution on the surface of the molecules, the dielectric discontinuity at the protein-solvent interface, and the possibility of protonation or deprotonation of surface residues induced by the electric field due to the other protein molecule. We apply the model to the protein lysozyme, whose solutions exhibit both mesoscopic clusters of protein-rich liquid and liquid-liquid separation; the former requires that protein form complexes with typical lifetimes of approximately milliseconds. We find the electrostatic repulsion is typically lower than the prediction of the Derjaguin-Landau-Verwey-Overbeek theory. The Coulomb interaction in the lowest-energy docking configuration is nonrepulsive, despite the high positive charge on the molecules. Typical docking configurations barely involve protonation or deprotonation of surface residues. The obtained potential of mean force between folded lysozyme molecules is consistent with the location of the liquid-liquid coexistence, but produces dimers that are too short-lived for clusters to exist, suggesting lysozyme undergoes conformational changes during cluster formation. PMID:22768950

  4. Exploring gravitational lensing model variations in the Frontier Fields galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harris James, Nicholas John; Raney, Catie; Brennan, Sean; Keeton, Charles

    2018-01-01

    Multiple groups have been working on modeling the mass distributions of the six lensing galaxy clusters in the Hubble Space Telescope Frontier Fields data set. The magnification maps produced from these mass models will be important for the future study of the lensed background galaxies, but there exists significant variation in the different groups’ models and magnification maps. We explore the use of two-dimensional histograms as a tool for visualizing these magnification map variations. Using a number of simple, one- or two-halo singular isothermal sphere models, we explore the features that are produced in 2D histogram model comparisons when parameters such as halo mass, ellipticity, and location are allowed to vary. Our analysis demonstrates the potential of 2D histograms as a means of observing the full range of differences between the Frontier Fields groups’ models.This work has been supported by funding from National Science Foundation grants PHY-1560077 and AST-1211385, and from the Space Telescope Science Institute.

  5. Spatial analysis of lung, colorectal, and breast cancer on Cape Cod: An application of generalized additive models to case-control data

    PubMed Central

    Vieira, Verónica; Webster, Thomas; Weinberg, Janice; Aschengrau, Ann; Ozonoff, David

    2005-01-01

    Background The availability of geographic information from cancer and birth defect registries has increased public demands for investigation of perceived disease clusters. Many neighborhood-level cluster investigations are methodologically problematic, while maps made from registry data often ignore latency and many known risk factors. Population-based case-control and cohort studies provide a stronger foundation for spatial epidemiology because potential confounders and disease latency can be addressed. Methods We investigated the association between residence and colorectal, lung, and breast cancer on upper Cape Cod, Massachusetts (USA) using extensive data on covariates and residential history from two case-control studies for 1983–1993. We generated maps using generalized additive models, smoothing on longitude and latitude while adjusting for covariates. The resulting continuous surface estimates disease rates relative to the whole study area. We used permutation tests to examine the overall importance of location in the model and identify areas of increased and decreased risk. Results Maps of colorectal cancer were relatively flat. Assuming 15 years of latency, lung cancer was significantly elevated just northeast of the Massachusetts Military Reservation, although the result did not hold when we restricted to residences of longest duration. Earlier non-spatial epidemiology had found a weak association between lung cancer and proximity to gun and mortar positions on the reservation. Breast cancer hot spots tended to increase in magnitude as we increased latency and adjusted for covariates, indicating that confounders were partly hiding these areas. Significant breast cancer hot spots were located near known groundwater plumes and the Massachusetts Military Reservation. Discussion Spatial epidemiology of population-based case-control studies addresses many methodological criticisms of cluster studies and generates new exposure hypotheses. Our results provide evidence for spatial clustering of breast cancer on upper Cape Cod. The analysis suggests further investigation of the potential association between breast cancer and pollution plumes based on detailed exposure modeling. PMID:15955253

  6. Spatial analysis of lung, colorectal, and breast cancer on Cape Cod: an application of generalized additive models to case-control data.

    PubMed

    Vieira, Verónica; Webster, Thomas; Weinberg, Janice; Aschengrau, Ann; Ozonoff, David

    2005-06-14

    The availability of geographic information from cancer and birth defect registries has increased public demands for investigation of perceived disease clusters. Many neighborhood-level cluster investigations are methodologically problematic, while maps made from registry data often ignore latency and many known risk factors. Population-based case-control and cohort studies provide a stronger foundation for spatial epidemiology because potential confounders and disease latency can be addressed. We investigated the association between residence and colorectal, lung, and breast cancer on upper Cape Cod, Massachusetts (USA) using extensive data on covariates and residential history from two case-control studies for 1983-1993. We generated maps using generalized additive models, smoothing on longitude and latitude while adjusting for covariates. The resulting continuous surface estimates disease rates relative to the whole study area. We used permutation tests to examine the overall importance of location in the model and identify areas of increased and decreased risk. Maps of colorectal cancer were relatively flat. Assuming 15 years of latency, lung cancer was significantly elevated just northeast of the Massachusetts Military Reservation, although the result did not hold when we restricted to residences of longest duration. Earlier non-spatial epidemiology had found a weak association between lung cancer and proximity to gun and mortar positions on the reservation. Breast cancer hot spots tended to increase in magnitude as we increased latency and adjusted for covariates, indicating that confounders were partly hiding these areas. Significant breast cancer hot spots were located near known groundwater plumes and the Massachusetts Military Reservation. Spatial epidemiology of population-based case-control studies addresses many methodological criticisms of cluster studies and generates new exposure hypotheses. Our results provide evidence for spatial clustering of breast cancer on upper Cape Cod. The analysis suggests further investigation of the potential association between breast cancer and pollution plumes based on detailed exposure modeling.

  7. Coupling microscopic and mesoscopic scales to simulate chemical equilibrium between a nanometric carbon cluster and detonation products fluid.

    PubMed

    Bourasseau, Emeric; Maillet, Jean-Bernard

    2011-04-21

    This paper presents a new method to obtain chemical equilibrium properties of detonation products mixtures including a solid carbon phase. In this work, the solid phase is modelled through a mesoparticle immersed in the fluid, such that the heterogeneous character of the mixture is explicitly taken into account. Inner properties of the clusters are taken from an equation of state obtained in a previous work, and interaction potential between the nanocluster and the fluid particles is derived from all-atoms simulations using the LCBOPII potential (Long range Carbon Bond Order Potential II). It appears that differences in chemical equilibrium results obtained with this method and the "composite ensemble method" (A. Hervouet et al., J. Phys. Chem. B, 2008, 112.), where fluid and solid phases are considered as non-interacting, are not significant, underlining the fact that considering the inhomogeneity of such system is crucial.

  8. Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters.

    PubMed

    Yang, Zhong-Zhi; Wu, Yang; Zhao, Dong-Xia

    2004-02-08

    Recently, experimental and theoretical studies on the water system are very active and noticeable. A transferable intermolecular potential seven points approach including fluctuation charges and flexible body (ABEEM-7P) based on a combination of the atom-bond electronegativity equalization and molecular mechanics (ABEEM/MM), and its application to small water clusters are explored and tested in this paper. The consistent combination of ABEEM and molecular mechanics (MM) is to take the ABEEM charges of atoms, bonds, and lone-pair electrons into the intermolecular electrostatic interaction term in molecular mechanics. To examine the charge transfer we have used two models coming from the charge constraint types: one is a charge neutrality constraint on whole water system and the other is on each water molecule. Compared with previous water force fields, the ABEEM-7P model has two characters: (1) the ABEEM-7P model not only presents the electrostatic interaction of atoms, bonds and lone-pair electrons and their changing in respond to different ambient environment but also introduces "the hydrogen bond interaction region" in which a new parameter k(lp,H)(R(lp,H)) is used to describe the electrostatic interaction of the lone-pair electron and the hydrogen atom which can form the hydrogen bond; (2) nonrigid but flexible water body permitting the vibration of the bond length and angle is allowed due to the combination of ABEEM and molecular mechanics, and for van der Waals interaction the ABEEM-7P model takes an all atom-atom interaction, i.e., oxygen-oxygen, hydrogen-hydrogen, oxygen-hydrogen interaction into account. The ABEEM-7P model based on ABEEM/MM gives quite accurate predictions for gas-phase state properties of the small water clusters (H(2)O)(n) (n=2-6), such as optimized geometries, monomer dipole moments, vibrational frequencies, and cluster interaction energies. Due to its explicit description of charges and the hydrogen bond, the ABEEM-7P model will be applied to discuss properties of liquid water, ice, aqueous solutions, and biological systems.

  9. Dark energy properties from large future galaxy surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basse, Tobias; Bjælde, Ole Eggers; Hannestad, Steen

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(w{sub p})σ(w{sub a})){sup −1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming amore » ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup −6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling and finite temperature effects can be probed with 1σ precision for the first time.« less

  10. Dark energy properties from large future galaxy surveys

    NASA Astrophysics Data System (ADS)

    Basse, Tobias; Eggers Bjælde, Ole; Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y. Y.

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(wp)σ(wa))-1, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w0 deviates from -1 by as much as is currently observationally allowed, models with hat cs2 = 10-6 and hat cs2 = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species Neffml is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of Neffml due to non-instantaneous decoupling and finite temperature effects can be probed with 1σ precision for the first time.

  11. Self-energy behavior away from the Fermi surface in doped Mott insulators.

    PubMed

    Merino, J; Gunnarsson, O; Kotliar, G

    2016-02-03

    We analyze self-energies of electrons away from the Fermi surface in doped Mott insulators using the dynamical cluster approximation to the Hubbard model. For large onsite repulsion, U, and hole doping, the magnitude of the self-energy for imaginary frequencies at the top of the band ([Formula: see text]) is enhanced with respect to the self-energy magnitude at the bottom of the band ([Formula: see text]). The self-energy behavior at these two [Formula: see text]-points is switched for electron doping. Although the hybridization is much larger for (0, 0) than for [Formula: see text], we demonstrate that this is not the origin of this difference. Isolated clusters under a downward shift of the chemical potential, [Formula: see text], at half-filling reproduce the overall self-energy behavior at (0, 0) and [Formula: see text] found in low hole doped embedded clusters. This happens although there is no change in the electronic structure of the isolated clusters. Our analysis shows that a downward shift of the chemical potential which weakly hole dopes the Mott insulator can lead to a large enhancement of the [Formula: see text] self-energy for imaginary frequencies which is not associated with electronic correlation effects, even in embedded clusters. Interpretations of the strength of electronic correlations based on self-energies for imaginary frequencies are, in general, misleading for states away from the Fermi surface.

  12. Polymer depletion-driven cluster aggregation and initial phase separation in charged nanosized colloids

    NASA Astrophysics Data System (ADS)

    Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K. G.

    2009-05-01

    We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.

  13. Polymer depletion-driven cluster aggregation and initial phase separation in charged nanosized colloids.

    PubMed

    Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K G

    2009-05-28

    We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.

  14. Constraints on Dark Energy from Baryon Acoustic Peak and Galaxy Cluster Gas Mass Measurements

    NASA Astrophysics Data System (ADS)

    Samushia, Lado; Ratra, Bharat

    2009-10-01

    We use baryon acoustic peak measurements by Eisenstein et al. and Percival et al., together with the Wilkinson Microwave Anisotropy Probe (WMAP) measurement of the apparent acoustic horizon angle, and galaxy cluster gas mass fraction measurements of Allen et al., to constrain a slowly rolling scalar field dark energy model, phiCDM, in which dark energy's energy density changes in time. We also compare our phiCDM results with those derived for two more common dark energy models: the time-independent cosmological constant model, ΛCDM, and the XCDM parameterization of dark energy's equation of state. For time-independent dark energy, the Percival et al. measurements effectively constrain spatial curvature and favor a close to the spatially flat model, mostly due to the WMAP cosmic microwave background prior used in the analysis. In a spatially flat model the Percival et al. data less effectively constrain time-varying dark energy. The joint baryon acoustic peak and galaxy cluster gas mass constraints on the phiCDM model are consistent with but tighter than those derived from other data. A time-independent cosmological constant in a spatially flat model provides a good fit to the joint data, while the α parameter in the inverse power-law potential phiCDM model is constrained to be less than about 4 at 3σ confidence level.

  15. Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster.

    PubMed

    Ruprecht, Jonathan; Iwata, So; Rothery, Richard A; Weiner, Joel H; Maklashina, Elena; Cecchini, Gary

    2011-04-08

    Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.

  16. Image-based quantification and mathematical modeling of spatial heterogeneity in ESC colonies.

    PubMed

    Herberg, Maria; Zerjatke, Thomas; de Back, Walter; Glauche, Ingmar; Roeder, Ingo

    2015-06-01

    Pluripotent embryonic stem cells (ESCs) have the potential to differentiate into cells of all three germ layers. This unique property has been extensively studied on the intracellular, transcriptional level. However, ESCs typically form clusters of cells with distinct size and shape, and establish spatial structures that are vital for the maintenance of pluripotency. Even though it is recognized that the cells' arrangement and local interactions play a role in fate decision processes, the relations between transcriptional and spatial patterns have not yet been studied. We present a systems biology approach which combines live-cell imaging, quantitative image analysis, and multiscale, mathematical modeling of ESC growth. In particular, we develop quantitative measures of the morphology and of the spatial clustering of ESCs with different expression levels and apply them to images of both in vitro and in silico cultures. Using the same measures, we are able to compare model scenarios with different assumptions on cell-cell adhesions and intercellular feedback mechanisms directly with experimental data. Applying our methodology to microscopy images of cultured ESCs, we demonstrate that the emerging colonies are highly variable regarding both morphological and spatial fluorescence patterns. Moreover, we can show that most ESC colonies contain only one cluster of cells with high self-renewing capacity. These cells are preferentially located in the interior of a colony structure. The integrated approach combining image analysis with mathematical modeling allows us to reveal potential transcription factor related cellular and intercellular mechanisms behind the emergence of observed patterns that cannot be derived from images directly. © 2015 International Society for Advancement of Cytometry.

  17. THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.

    2016-01-15

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% ofmore » the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections.« less

  18. Spreading of correlations in the Falicov-Kimball model

    NASA Astrophysics Data System (ADS)

    Herrmann, Andreas J.; Antipov, Andrey E.; Werner, Philipp

    2018-04-01

    We study dynamical properties of the one- and two-dimensional Falicov-Kimball model using lattice Monte Carlo simulations. In particular, we calculate the spreading of charge correlations in the equilibrium model and after an interaction quench. The results show a reduction of the light-cone velocity with interaction strength at low temperature, while the phase velocity increases. At higher temperature, the initial spreading is determined by the Fermi velocity of the noninteracting system and the maximum range of the correlations decreases with increasing interaction strength. Charge order correlations in the disorder potential enhance the range of the correlations. We also use the numerically exact lattice Monte Carlo results to benchmark the accuracy of equilibrium and nonequilibrium dynamical cluster approximation calculations. It is shown that the bias introduced by the mapping to a periodized cluster is substantial, and that from a numerical point of view, it is more efficient to simulate the lattice model directly.

  19. Cluster-guided imaging-based CFD analysis of airflow and particle deposition in asthmatic human lungs

    NASA Astrophysics Data System (ADS)

    Choi, Jiwoong; Leblanc, Lawrence; Choi, Sanghun; Haghighi, Babak; Hoffman, Eric; Lin, Ching-Long

    2017-11-01

    The goal of this study is to assess inter-subject variability in delivery of orally inhaled drug products to small airways in asthmatic lungs. A recent multiscale imaging-based cluster analysis (MICA) of computed tomography (CT) lung images in an asthmatic cohort identified four clusters with statistically distinct structural and functional phenotypes associating with unique clinical biomarkers. Thus, we aimed to address inter-subject variability via inter-cluster variability. We selected a representative subject from each of the 4 asthma clusters as well as 1 male and 1 female healthy controls, and performed computational fluid and particle simulations on CT-based airway models of these subjects. The results from one severe and one non-severe asthmatic cluster subjects characterized by segmental airway constriction had increased particle deposition efficiency, as compared with the other two cluster subjects (one non-severe and one severe asthmatics) without airway constriction. Constriction-induced jets impinging on distal bifurcations led to excessive particle deposition. The results emphasize the impact of airway constriction on regional particle deposition rather than disease severity, demonstrating the potential of using cluster membership to tailor drug delivery. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837. XSEDE.

  20. Structural and electronic properties for atomic clusters

    NASA Astrophysics Data System (ADS)

    Sun, Yan

    We have studied the structural and electronic properties for different groups of atomic clusters by doing a global search on the potential energy surface using the Taboo Search in Descriptors Space (TSDS) method and calculating the energies with Kohn-Sham Density Functional Theory (KS-DFT). Our goal was to find the structural and electronic principles for predicting the structure and stability of clusters. For Ben (n = 3--20), we have found that the evolution of geometric and electronic properties with size reflects a change in the nature of the bonding from van der Waals to metallic and then bulk-like. The cluster sizes with extra stability agree well with the predictions of the jellium model. In the 4d series of transition metal (TM) clusters, as the d-type bonding becomes more important, the preferred geometric structure changes from icosahedral (Y, Zr), to distorted compact structures (Nb, Mo), and FCC or simple cubic crystal fragments (Tc, Ru, Rh) due to the localized nature of the d-type orbital. Analysis of relative isomer energies and their electronic density of states suggest that these clusters tend to follow a maximum hardness principle (MHP). For A4B12 clusters (A is divalent, B is monovalent), we found unusually large (on average 1.95 eV) HOMO-LUMO gap values. This shows the extra stability at an electronic closed shell (20 electrons) predicted by the jellium model. The importance of symmetry, closed electronic and ionic shells in stability is shown by the relative stability of homotops of Mg4Ag12 which also provides support for the hypothesis that clusters that satisfy more than one stability criterion ("double magic") should be particularly stable.

  1. Alternative states of a semiarid grassland ecosystem: implications for ecosystem services

    USGS Publications Warehouse

    Miller, Mark E.; Belote, R. Travis; Bowker, Matthew A.; Garman, Steven L.

    2011-01-01

    Ecosystems can shift between alternative states characterized by persistent differences in structure, function, and capacity to provide ecosystem services valued by society. We examined empirical evidence for alternative states in a semiarid grassland ecosystem where topographic complexity and contrasting management regimes have led to spatial variations in levels of livestock grazing. Using an inventory data set, we found that plots (n = 72) cluster into three groups corresponding to generalized alternative states identified in an a priori conceptual model. One cluster (biocrust) is notable for high coverage of a biological soil crust functional group in addition to vascular plants. Another (grass-bare) lacks biological crust but retains perennial grasses at levels similar to the biocrust cluster. A third (annualized-bare) is dominated by invasive annual plants. Occurrence of grass-bare and annualized-bare conditions in areas where livestock have been excluded for over 30 years demonstrates the persistence of these states. Significant differences among all three clusters were found for percent bare ground, percent total live cover, and functional group richness. Using data for vegetation structure and soil erodibility, we also found large among-cluster differences in average levels of dust emissions predicted by a wind-erosion model. Predicted emissions were highest for the annualized-bare cluster and lowest for the biocrust cluster, which was characterized by zero or minimal emissions even under conditions of extreme wind. Results illustrate potential trade-offs among ecosystem services including livestock production, soil retention, carbon storage, and biodiversity conservation. Improved understanding of these trade-offs may assist ecosystem managers when evaluating alternative management strategies.

  2. Modelling baryonic effects on galaxy cluster mass profiles

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  3. A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Odette, G. R.; Wirth, B. D.

    1997-11-01

    Nanostructural features that form in reactor pressure vessel steels under neutron irradiation at around 300°C lead to significant hardening and embrittlement. Continuum thermodynamic-kinetic based rate theories have been very successful in modeling the general characteristics of the copper and manganese nickel rich precipitate evolution, often the dominant source of embrittlement. However, a more detailed atomic scale understanding of these features is needed to interpret experimental measurements and better underpin predictive embrittlement models. Further, other embrittling features, believed to be subnanometer defect (vacancy)-solute complexes and small regions of modest enrichment of solutes are not well understood. A general approach to modeling embrittlement nanostructures, based on the concept of a computational microscope, is described. The objective of the computational microscope is to self-consistently integrate atomic scale simulations with other sources of information, including a wide range of experiments. In this work, lattice Monte Carlo (LMC) simulations are used to resolve the chemically and structurally complex nature of CuMnNiSi precipitates. The LMC simulations unify various nanoscale analytical characterization methods and basic thermodynamics. The LMC simulations also reveal that significant coupled vacancy and solute clustering takes place during cascade aging. The cascade clustering produces the metastable vacancy-cluster solute complexes that mediate flux effects. Cascade solute clustering may also play a role in the formation of dilute atmospheres of solute enrichment and enhance the nucleation of manganese-nickel rich precipitates at low Cu levels. Further, the simulations suggest that complex, highly correlated processes (e.g. cluster diffusion, formation of favored vacancy diffusion paths and solute scavenging vacancy cluster complexes) may lead to anomalous fast thermal aging kinetics at temperatures below about 450°C. The potential technical significance of these phenomena is described.

  4. Assessing the Milky Way Satellites Associated with the Sagittarius Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Law, David R.; Majewski, Steven R.

    2010-08-01

    Numerical models of the tidal disruption of the Sagittarius (Sgr) dwarf galaxy have recently been developed that for the first time simultaneously satisfy most observational constraints on the angular position, distance, and radial velocity trends of both leading and trailing tidal streams emanating from the dwarf. We use these dynamical models in combination with extant three-dimensional position and velocity data for Galactic globular clusters and dSph galaxies to identify those Milky Way satellites that are likely to have originally formed in the gravitational potential well of the Sgr dwarf, and have been stripped from Sgr during its extended interaction with the Milky Way. We conclude that the globular clusters Arp 2, M 54, NGC 5634, Terzan 8, and Whiting 1 are almost certainly associated with the Sgr dwarf, and that Berkeley 29, NGC 5053, Pal 12, and Terzan 7 are likely to be as well (albeit at lower confidence). The initial Sgr system therefore may have contained five to nine globular clusters, corresponding to a specific frequency SN = 5-9 for an initial Sgr luminosity MV = -15.0. Our result is consistent with the 8 ± 2 genuine Sgr globular clusters expected on the basis of statistical modeling of the Galactic globular cluster distribution and the corresponding false-association rate due to chance alignments with the Sgr streams. The globular clusters identified as most likely to be associated with Sgr are consistent with previous reconstructions of the Sgr age-metallicity relation, and show no evidence for a second-parameter effect shaping their horizontal branch morphologies. We find no statistically significant evidence to suggest that any of the recently discovered population of ultrafaint dwarf galaxies are associated with the Sgr tidal streams, but are unable to rule out this possibility conclusively for all systems.

  5. A tripartite clustering analysis on microRNA, gene and disease model.

    PubMed

    Shen, Chengcheng; Liu, Ying

    2012-02-01

    Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.

  6. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    PubMed

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  7. Disruption of the Globular Cluster Pal 5

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Orbit calculations suggest that the sparse globular cluster, Pal 5, will pass within 7 kpc of the Galactic center the next time it crosses the plane, where it might be destroyed by tidal stresses. We study this problem, treating Pal 5 as a self-consistent dynamical system orbiting through an external potential that represents the Galaxy. The first part of the problem is to find suitable analytic approximations to the Galactic potential. They must be valid in all regions the cluster is likely to explore. Observed velocity and positional data for Pal 5 are used as initial conditions to determine the orbit. Methods we used for a different problem some 12 years ago have been adapted to this problem. Three experiments have been run, with M/L= 1, 3, and 10, for the cluster model. The cluster blew up shortly after passing through the Galactic plane (about 130 Myrs after the beginning of the run) with M/L=1. At M/L = 3 and 10 the cluster survived, although it got quite a kick in the fundamental mode on passing through the plane. But the fundamental mode oscillation died out in a couple of oscillation cycles at M/L=10. Pal 5 will probably be destroyed on its next crossing of the Galactic plane if M/L=1, but it can survive (albeit with fairly heavy damage) if NI/L=3. We haven't tried to trap the mass limits more closely than that. Pal 5 comes through pretty well unscathed at M/L=10. An interesting follow-up experiment would be to back the cluster up along its orbit to look at its previous passage through the Galactic plane, to see what kind of object it might have been at earlier times.

  8. Modeling of correlated data with informative cluster sizes: An evaluation of joint modeling and within-cluster resampling approaches.

    PubMed

    Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S

    2017-08-01

    Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.

  9. An opinion-driven behavioral dynamics model for addictive behaviors

    DOE PAGES

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; ...

    2015-04-08

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual’s behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Additionally, individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters providemore » targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. Furthermore, this has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.« less

  10. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Fernández-Perea, Ricardo; Madzharova, Fani

    2016-06-28

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet thismore » challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He–Mg pair potentials is also presented, as an improvement of the approximation using isolated He–Mg pairs.« less

  11. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-01

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs.

  12. Full-potential KKR calculations for vacancies in Al : Screening effect and many-body interactions

    NASA Astrophysics Data System (ADS)

    Hoshino, T.; Asato, M.; Zeller, R.; Dederichs, P. H.

    2004-09-01

    We give ab initio calculations for vacancies in Al . The calculations are based on the generalized-gradient approximation in the density-functional theory and employ the all-electron full-potential Korringa-Kohn-Rostoker Green’s function method for point defects, which guarantees the correct embedding of the cluster of point defects in an otherwise perfect crystal. First, we confirm the recent calculated results of Carling [Phys. Rev. Lett. 85, 3862 (2000)], i.e., repulsion of the first-nearest-neighbor (1NN) divacancy in Al , and elucidate quantitatively the micromechanism of repulsion. Using the calculated results for vacancy formation energies and divacancy binding energies in Na , Mg , Al , and Si of face-centered-cubic, we show that the single vacancy in nearly free-electron systems becomes very stable with increasing free-electron density, due to the screening effect, and that the formation of divacancy destroys the stable electron distribution around the single vacancy, resulting in a repulsion of two vacancies on 1NN sites, so that the 1NN divacancy is unstable. Second, we show that the cluster expansion converges rapidly for the binding energies of vacancy agglomerates in Al . The binding energy of 13 vacancies consisting of a central vacancy and its 12 nearest neighbors, is reproduced within the error of 0.002eV per vacancy, if many-body interaction energies up to the four-body terms are taken into account in the cluster expansion, being compared with the average error (>0.1eV) of the glue models which are very often used to provide interatomic potentials for computer simulations. For the cluster expansion of the binding energies of impurities, we get the same convergence as that obtained for vacancies. Thus, the present cluster-expansion approach for the binding energies of agglomerates of vacancies and impurities in Al may provide accurate data to construct the interaction-parameter model for computer simulations which are strongly requested to study the dynamical process in the initial stage of the formation of the so-called Guinier-Preston zones of low-concentrated Al -based alloys such as Al1-cXc ( X=Cu , Zn ; c<0.05 ).

  13. Partial synchronization of relaxation oscillators with repulsive coupling in autocatalytic integrate-and-fire model and electrochemical experiments

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi; Kiss, István Z.; Jain, Swati; Hudson, John L.

    2018-04-01

    Experiments and supporting theoretical analysis are presented to describe the synchronization patterns that can be observed with a population of globally coupled electrochemical oscillators close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode potential. While attractive coupling generates phase clusters and desynchronized states, repulsive coupling results in synchronized oscillations. The experiments are interpreted with a phenomenological model that captures the waveform of the oscillations (exponential increase) followed by a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the development of partially synchronized states that occur through attracting heteroclinic cycles between out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons.

  14. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  15. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S; Qian, Pei-Yuan

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning "plug-and-play" approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  16. Unveiling the Synchrotron Cosmic Web: Pilot Study

    NASA Astrophysics Data System (ADS)

    Brown, Shea; Rudnick, Lawrence; Pfrommer, Christoph; Jones, Thomas

    2011-10-01

    The overall goal of this project is to challenge our current theoretical understanding of the relativistic particle populations in the inter-galactic medium (IGM) through deep 1.4 GHz observations of 13 massive, high-redshift clusters of galaxies. Designed to compliment/extend the GMRT radio halo survey (Venturi et al. 2007), these observations will attempt to detect the peaks of the purported synchrotron cosmic-web, and place serious limits on models of CR acceleration and magnetic field amplification during large-scale structure formation. The primary goals of this survey are: 1) Confirm the bi-modal nature of the radio halo population, which favors turbulent re-acceleration of cosmic-ray electrons (CRe) during cluster mergers as the source of the diffuse radio emission; 2) Directly test hadronic secondary models which predict the presence of cosmic-ray protons (CRp) in the cores of massive X-ray clusters; 3) Search in polarization for shock structures, a potential source of CR acceleration in the IGM.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurgalin, S. D.; Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru; Churakova, T. A.

    A universal theoretical model intended for calculating internal-bremsstrahlung spectra is proposed. In this model, which can be applied to describing nuclear decays of various type (such as alpha decay, cluster decay, and proton emission), use is made of realistic nucleus–nucleus potentials. Theoretical internal-bremsstrahlung spectra were obtained for the alpha decay of the {sup 214}Po nucleus, as well as for the decay of the {sup 222}Ra nucleus via the emission of a {sup 14}C cluster and for the decay of the {sup 113}Cs nucleus via proton emission, and the properties of these spectra were studied. The contributions of various regions (internal,more » subbarrier, and external) to the internal-bremsstrahlung amplitude were analyzed in detail. It is shown that the contribution of the internal region to the amplitude for internal bremsstrahlung generated in nuclear decay via proton emission is quite large, but that this is not so for alpha decay and decay via cluster emission. Thus, a process in which strong interaction of nuclear particles affects the internal-bremsstrahlung spectrum if found.« less

  18. Cluster randomised crossover trials with binary data and unbalanced cluster sizes: application to studies of near-universal interventions in intensive care.

    PubMed

    Forbes, Andrew B; Akram, Muhammad; Pilcher, David; Cooper, Jamie; Bellomo, Rinaldo

    2015-02-01

    Cluster randomised crossover trials have been utilised in recent years in the health and social sciences. Methods for analysis have been proposed; however, for binary outcomes, these have received little assessment of their appropriateness. In addition, methods for determination of sample size are currently limited to balanced cluster sizes both between clusters and between periods within clusters. This article aims to extend this work to unbalanced situations and to evaluate the properties of a variety of methods for analysis of binary data, with a particular focus on the setting of potential trials of near-universal interventions in intensive care to reduce in-hospital mortality. We derive a formula for sample size estimation for unbalanced cluster sizes, and apply it to the intensive care setting to demonstrate the utility of the cluster crossover design. We conduct a numerical simulation of the design in the intensive care setting and for more general configurations, and we assess the performance of three cluster summary estimators and an individual-data estimator based on binomial-identity-link regression. For settings similar to the intensive care scenario involving large cluster sizes and small intra-cluster correlations, the sample size formulae developed and analysis methods investigated are found to be appropriate, with the unweighted cluster summary method performing well relative to the more optimal but more complex inverse-variance weighted method. More generally, we find that the unweighted and cluster-size-weighted summary methods perform well, with the relative efficiency of each largely determined systematically from the study design parameters. Performance of individual-data regression is adequate with small cluster sizes but becomes inefficient for large, unbalanced cluster sizes. When outcome prevalences are 6% or less and the within-cluster-within-period correlation is 0.05 or larger, all methods display sub-nominal confidence interval coverage, with the less prevalent the outcome the worse the coverage. As with all simulation studies, conclusions are limited to the configurations studied. We confined attention to detecting intervention effects on an absolute risk scale using marginal models and did not explore properties of binary random effects models. Cluster crossover designs with binary outcomes can be analysed using simple cluster summary methods, and sample size in unbalanced cluster size settings can be determined using relatively straightforward formulae. However, caution needs to be applied in situations with low prevalence outcomes and moderate to high intra-cluster correlations. © The Author(s) 2014.

  19. Prediction of sea ice thickness cluster in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Fuckar, Neven-Stjepan; Guemas, Virginie; Johnson, Nathaniel; Doblas-Reyes, Francisco

    2016-04-01

    Sea ice thickness (SIT) has a potential to contain substantial climate memory and predictability in the northern hemisphere (NH) sea ice system. We use 5-member NH SIT, reconstructed with an ocean-sea-ice general circulation model (NEMOv3.3 with LIM2) with a simple data assimilation routine, to determine NH SIT modes of variability disentangled from the long-term climate change. Specifically, we apply the K-means cluster analysis - one of nonhierarchical clustering methods that partition data into modes or clusters based on their distances in the physical - to determine optimal number of NH SIT clusters (K=3) and their historical variability. To examine prediction skill of NH SIT clusters in EC-Earth2.3, a state-of-the-art coupled climate forecast system, we use 5-member ocean and sea ice initial conditions (IC) from the same ocean-sea-ice historical reconstruction and atmospheric IC from ERA-Interim reanalysis. We focus on May 1st and Nov 1st start dates from 1979 to 2010. Common skill metrics of probability forecast, such as rank probability skill core and ROC (relative operating characteristics - hit rate versus false alarm rate) and reliability diagrams show that our dynamical model predominately perform better than the 1st order Marko chain forecast (that beats climatological forecast) over the first forecast year. On average May 1st start dates initially have lower skill than Nov 1st start dates, but their skill is degraded at slower rate than skill of forecast started on Nov 1st.

  20. A quasichemical approach for protein-cluster free energies in dilute solution

    NASA Astrophysics Data System (ADS)

    Young, Teresa M.; Roberts, Christopher J.

    2007-10-01

    Reversible formation of protein oligomers or small clusters is a key step in processes such as protein polymerization, fibril formation, and protein phase separation from dilute solution. A straightforward, statistical mechanical approach to accurately calculate cluster free energies in solution is presented using a cell-based, quasichemical (QC) approximation for the partition function of proteins in an implicit solvent. The inputs to the model are the protein potential of mean force (PMF) and the corresponding subcell degeneracies up to relatively low particle densities. The approach is tested using simple two and three dimensional lattice models in which proteins interact with either isotropic or anisotropic nearest-neighbor attractions. Comparison with direct Monte Carlo simulation shows that cluster probabilities and free energies of oligomer formation (ΔGi0) are quantitatively predicted by the QC approach for protein volume fractions ˜10-2 (weight/volume concentration ˜10gl-1) and below. For small clusters, ΔGi0 depends weakly on the strength of short-ranged attractive interactions for most experimentally relevant values of the normalized osmotic second virial coefficient (b2*). For larger clusters (i ≫2), there is a small but non-negligible b2* dependence. The results suggest that nonspecific, hydrophobic attractions may not significantly stabilize prenuclei in processes such as non-native aggregation. Biased Monte Carlo methods are shown to accurately provide subcell degeneracies that are intractable to obtain analytically or by direct enumeration, and so offer a means to generalize the approach to mixtures and proteins with more complex PMFs.

  1. Surface passivation for tight-binding calculations of covalent solids.

    PubMed

    Bernstein, N

    2007-07-04

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  2. Surface passivation for tight-binding calculations of covalent solids

    NASA Astrophysics Data System (ADS)

    Bernstein, N.

    2007-07-01

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  3. Electric-field-induced assembly and propulsion of chiral colloidal clusters.

    PubMed

    Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning

    2015-05-19

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.

  4. Stellar Wind Retention and Expulsion in Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  5. Probing the formation history of the nuclear star cluster at the Galactic Centre with millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Abbate, F.; Mastrobuono-Battisti, A.; Colpi, M.; Possenti, A.; Sippel, A. C.; Dotti, M.

    2018-01-01

    The origin of the nuclear star cluster in the centre of our Galaxy is still unknown. One possibility is that it formed after the disruption of stellar clusters that spiralled into the Galactic Centre due to dynamical friction. We trace the formation of the nuclear star cluster around the central black hole, using state-of-the-art N-body simulations, and follow the dynamics of the neutron stars born in the clusters. We then estimate the number of millisecond pulsars (MSPs) that are released in the nuclear star cluster during its formation. The assembly and tidal dismemberment of globular clusters lead to a population of MSPs distributed over a radius of about 20 pc, with a peak near 3 pc. No clustering is found on the subparsec scale. We simulate the detectability of this population with future radio telescopes like the MeerKAT radio telescope and SKA1, and find that about an order of 10 MSPs can be observed over this large volume, with a paucity of MSPs within the central parsec. This helps discriminating this scenario from the in situ formation model for the nuclear star cluster that would predict an overabundance of MSPs closer to the black hole. We then discuss the potential contribution of our MSP population to the gamma-ray excess at the Galactic Centre.

  6. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  7. Nanosecond laser-cluster interactions at 109-1012 W/cm 2

    NASA Astrophysics Data System (ADS)

    Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.

    2017-08-01

    An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.

  8. The `TTIME' Package: Performance Evaluation in a Cluster Computing Environment

    NASA Astrophysics Data System (ADS)

    Howe, Marico; Berleant, Daniel; Everett, Albert

    2011-06-01

    The objective of translating developmental event time across mammalian species is to gain an understanding of the timing of human developmental events based on known time of those events in animals. The potential benefits include improvements to diagnostic and intervention capabilities. The CRAN `ttime' package provides the functionality to infer unknown event timings and investigate phylogenetic proximity utilizing hierarchical clustering of both known and predicted event timings. The original generic mammalian model included nine eutherian mammals: Felis domestica (cat), Mustela putorius furo (ferret), Mesocricetus auratus (hamster), Macaca mulatta (monkey), Homo sapiens (humans), Mus musculus (mouse), Oryctolagus cuniculus (rabbit), Rattus norvegicus (rat), and Acomys cahirinus (spiny mouse). However, the data for this model is expected to grow as more data about developmental events is identified and incorporated into the analysis. Performance evaluation of the `ttime' package across a cluster computing environment versus a comparative analysis in a serial computing environment provides an important computational performance assessment. A theoretical analysis is the first stage of a process in which the second stage, if justified by the theoretical analysis, is to investigate an actual implementation of the `ttime' package in a cluster computing environment and to understand the parallelization process that underlies implementation.

  9. Optimal integrated abundances for chemical tagging of extragalactic globular clusters

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim; Shetrone, Matthew; Dotter, Aaron; Mackey, Dougal

    2014-09-01

    High-resolution integrated light (IL) spectroscopy provides detailed abundances of distant globular clusters whose stars cannot be resolved. Abundance comparisons with other systems (e.g. for chemical tagging) require understanding the systematic offsets that can occur between clusters, such as those due to uncertainties in the underlying stellar population. This paper analyses high-resolution IL spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006, and M15 to (1) quantify potential systematic uncertainties in Fe, Ca, Ti, Ni, Ba, and Eu and (2) identify the most stable abundance ratios that will be useful in future analyses of unresolved targets. When stellar populations are well modelled, uncertainties are ˜0.1-0.2 dex based on sensitivities to the atmospheric parameters alone; in the worst-case scenarios, uncertainties can rise to 0.2-0.4 dex. The [Ca I/Fe I] ratio is identified as the optimal integrated [α/Fe] indicator (with offsets ≲ 0.1 dex), while [Ni I/Fe I] is also extremely stable to within ≲ 0.1 dex. The [Ba II/Eu II] ratios are also stable when the underlying populations are well modelled and may also be useful for chemical tagging.

  10. Network formation and gelation in telechelic star polymers

    NASA Astrophysics Data System (ADS)

    Wadgaonkar, Indrajit; Chatterji, Apratim

    2017-02-01

    We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.

  11. Network formation and gelation in telechelic star polymers.

    PubMed

    Wadgaonkar, Indrajit; Chatterji, Apratim

    2017-02-28

    We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.

  12. Understanding the polypharmacological anticancer effects of Xiao Chai Hu Tang via a computational pharmacological model

    PubMed Central

    ZHENG, CHUN-SONG; WU, YIN-SHENG; BAO, HONG-JUAN; XU, XIAO-JIE; CHEN, XING-QIANG; YE, HONG-ZHI; WU, GUANG-WEN; XU, HUI-FENG; LI, XI-HAI; CHEN, JIA-SHOU; LIU, XIAN-XIANG

    2014-01-01

    Xiao Chai Hu Tang (XCHT), a traditional herbal formula, is widely administered as a cancer treatment. However, the underlying molecular mechanisms of its anticancer effects are not fully understood. In the present study, a computational pharmacological model that combined chemical space mapping, molecular docking and network analysis was employed to predict which chemical compounds in XCHT are potential inhibitors of cancer-associated targets, and to establish a compound-target (C-T) network and compound-compound (C-C) association network. The identified compounds from XCHT demonstrated diversity in chemical space. Furthermore, they occupied regions of chemical space that were the same, or close to, those occupied by drug or drug-like compounds that are associated with cancer, according to the Therapeutic Targets Database. The analysis of the molecular docking and the C-T network demonstrated that the potential inhibitors possessed the properties of promiscuous drugs and combination therapies. The C-C network was classified into four clusters and the different clusters contained various multi-compound combinations that acted on different targets. The study indicated that XCHT has a polypharmacological role in treating cancer and the potential inhibitory components of XCHT require further investigation as potential therapeutic strategies for cancer patients. PMID:24926384

  13. Electrons on a spherical surface: Physical properties and hollow spherical clusters

    NASA Astrophysics Data System (ADS)

    Cricchio, Dario; Fiordilino, Emilio; Persico, Franco

    2012-07-01

    We discuss the physical properties of a noninteracting electron gas constrained to a spherical surface. In particular we consider its chemical potentials, its ionization potential, and its electric static polarizability. All these properties are discussed analytically as functions of the number N of electrons. The trends obtained with increasing N are compared with those of the corresponding properties experimentally measured or theoretically evaluated for quasispherical hollow atomic and molecular clusters. Most of the properties investigated display similar trends, characterized by a prominence of shell effects. This leads to the definition of a scale-invariant distribution of magic numbers which follows a power law with critical exponent -0.5. We conclude that our completely mechanistic and analytically tractable model can be useful for the analysis of self-assembling complex systems.

  14. Projections of Temperature-Attributable Premature Deaths in 209 U.S. Cities Using a Cluster-Based Poisson Approach

    NASA Technical Reports Server (NTRS)

    Schwartz, Joel D.; Lee, Mihye; Kinney, Patrick L.; Yang, Suijia; Mills, David; Sarofim, Marcus C.; Jones, Russell; Streeter, Richard; St. Juliana, Alexis; Peers, Jennifer; hide

    2015-01-01

    Background: A warming climate will affect future temperature-attributable premature deaths. This analysis is the first to project these deaths at a near national scale for the United States using city and month-specific temperature-mortality relationships. Methods: We used Poisson regressions to model temperature-attributable premature mortality as a function of daily average temperature in 209 U.S. cities by month. We used climate data to group cities into clusters and applied an Empirical Bayes adjustment to improve model stability and calculate cluster-based month-specific temperature-mortality functions. Using data from two climate models, we calculated future daily average temperatures in each city under Representative Concentration Pathway 6.0. Holding population constant at 2010 levels, we combined the temperature data and cluster-based temperature-mortality functions to project city-specific temperature-attributable premature deaths for multiple future years which correspond to a single reporting year. Results within the reporting periods are then averaged to account for potential climate variability and reported as a change from a 1990 baseline in the future reporting years of 2030, 2050 and 2100. Results: We found temperature-mortality relationships that vary by location and time of year. In general, the largest mortality response during hotter months (April - September) was in July in cities with cooler average conditions. The largest mortality response during colder months (October-March) was at the beginning (October) and end (March) of the period. Using data from two global climate models, we projected a net increase in premature deaths, aggregated across all 209 cities, in all future periods compared to 1990. However, the magnitude and sign of the change varied by cluster and city. Conclusions: We found increasing future premature deaths across the 209 modeled U.S. cities using two climate model projections, based on constant temperature-mortality relationships from 1997 to 2006 without any future adaptation. However, results varied by location, with some locations showing net reductions in premature temperature-attributable deaths with climate change.

  15. Revision of empirical electric field modeling in the inner magnetosphere using Cluster data

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Torbert, R. B.; Spence, H. E.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.

    2013-07-01

    Using Cluster data from the Electron Drift (EDI) and the Electric Field and Wave (EFW) instruments, we revise our empirically-based, inner-magnetospheric electric field (UNH-IMEF) model at 22.662 mV/m; Kp<1, 1≤Kp<2, 2≤Kp<3, 3≤Kp<4, 4≤Kp<5, and Kp≥4+. Patterns consist of one set of data and processing for smaller activities, and another for higher activities. As activity increases, the skewed potential contour related to the partial ring current appears on the nightside. With the revised analysis, we find that the skewed potential contours get clearer and potential contours get denser on the nightside and morningside. Since the fluctuating components are not negligible, standard deviations from the modeled values are included in the model. In this study, we perform validation of the derived model more extensively. We find experimentally that the skewed contours are located close to the last closed equipotential, consistent with previous theories. This gives physical context to our model and serves as one validation effort. As another validation effort, the derived results are compared with other models/measurements. From these comparisons, we conclude that our model has some clear advantages over the others.

  16. Pattern analysis of schistosomiasis prevalence by exploring predictive modeling in Jiangling County, Hubei Province, P.R. China.

    PubMed

    Xia, Shang; Xue, Jing-Bo; Zhang, Xia; Hu, He-Hua; Abe, Eniola Michael; Rollinson, David; Bergquist, Robert; Zhou, Yibiao; Li, Shi-Zhu; Zhou, Xiao-Nong

    2017-04-26

    The prevalence of schistosomiasis remains a key public health issue in China. Jiangling County in Hubei Province is a typical lake and marshland endemic area. The pattern analysis of schistosomiasis prevalence in Jiangling County is of significant importance for promoting schistosomiasis surveillance and control in the similar endemic areas. The dataset was constructed based on the annual schistosomiasis surveillance as well the socio-economic data in Jiangling County covering the years from 2009 to 2013. A village clustering method modified from the K-mean algorithm was used to identify different types of endemic villages. For these identified village clusters, a matrix-based predictive model was developed by means of exploring the one-step backward temporal correlation inference algorithm aiming to estimate the predicative correlations of schistosomiasis prevalence among different years. Field sampling of faeces from domestic animals, as an indicator of potential schistosomiasis prevalence, was carried out and the results were used to validate the results of proposed models and methods. The prevalence of schistosomiasis in Jiangling County declined year by year. The total of 198 endemic villages in Jiangling County can be divided into four clusters with reference to the 5 years' occurrences of schistosomiasis in human, cattle and snail populations. For each identified village cluster, a predictive matrix was generated to characterize the relationships of schistosomiasis prevalence with the historic infection level as well as their associated impact factors. Furthermore, the results of sampling faeces from the front field agreed with the results of the identified clusters of endemic villages. The results of village clusters and the predictive matrix can be regard as the basis to conduct targeted measures for schistosomiasis surveillance and control. Furthermore, the proposed models and methods can be modified to investigate the schistosomiasis prevalence in other regions as well as be used for investigating other parasitic diseases.

  17. Breaking the Vainshtein screening in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Salzano, Vincenzo; Mota, David F.; Capozziello, Salvatore; Donahue, Megan

    2017-02-01

    In this work we will test an alternative model of gravity belonging to the large family of Galileon models. It is characterized by an intrinsic breaking of the Vainshtein mechanism inside large astrophysical objects, thus having possibly detectable observational signatures. We will compare theoretical predictions from this model with the observed total mass profile for a sample of clusters of galaxies. The profiles are derived using two complementary tools: x-ray hot intracluster gas dynamics, and strong and weak gravitational lensing. We find that a dependence with the dynamical internal status of each cluster is possible; for those clusters which are very close to be relaxed, and thus less perturbed by possible astrophysical local processes, the Galileon model gives a quite good fit to both x-ray and lensing observations. Both masses and concentrations for the dark matter halos are consistent with earlier results found in numerical simulations and in the literature, and no compelling statistical evidence for a deviation from general relativity is detectable from the present observational state. Actually, the characteristic Galileon parameter ϒ is always consistent with zero, and only an upper limit (≲0.086 at 1 σ , ≲0.16 at 2 σ , and ≲0.23 at 3 σ ) can be established. Some interesting distinctive deviations might be operative, but the statistical validity of the results is far from strong, and better data would be needed in order to either confirm or reject a potential tension with general relativity.

  18. CA II TRIPLET SPECTROSCOPY OF SMALL MAGELLANIC CLOUD RED GIANTS. III. ABUNDANCES AND VELOCITIES FOR A SAMPLE OF 14 CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, M. C.; Clariá, J. J.; Marcionni, N.

    2015-05-15

    We obtained spectra of red giants in 15 Small Magellanic Cloud (SMC) clusters in the region of the Ca ii lines with FORS2 on the Very Large Telescope. We determined the mean metallicity and radial velocity with mean errors of 0.05 dex and 2.6 km s{sup −1}, respectively, from a mean of 6.5 members per cluster. One cluster (B113) was too young for a reliable metallicity determination and was excluded from the sample. We combined the sample studied here with 15 clusters previously studied by us using the same technique, and with 7 clusters whose metallicities determined by other authorsmore » are on a scale similar to ours. This compilation of 36 clusters is the largest SMC cluster sample currently available with accurate and homogeneously determined metallicities. We found a high probability that the metallicity distribution is bimodal, with potential peaks at −1.1 and −0.8 dex. Our data show no strong evidence of a metallicity gradient in the SMC clusters, somewhat at odds with recent evidence from Ca ii triplet spectra of a large sample of field stars. This may be revealing possible differences in the chemical history of clusters and field stars. Our clusters show a significant dispersion of metallicities, whatever age is considered, which could be reflecting the lack of a unique age–metallicity relation in this galaxy. None of the chemical evolution models currently available in the literature satisfactorily represents the global chemical enrichment processes of SMC clusters.« less

  19. Identification of clusters of individuals relevant to temporomandibular disorders and other chronic pain conditions: the OPPERA study

    PubMed Central

    Bair, Eric; Gaynor, Sheila; Slade, Gary D.; Ohrbach, Richard; Fillingim, Roger B.; Greenspan, Joel D.; Dubner, Ronald; Smith, Shad B.; Diatchenko, Luda; Maixner, William

    2016-01-01

    The classification of most chronic pain disorders gives emphasis to anatomical location of the pain to distinguish one disorder from the other (eg, back pain vs temporomandibular disorder [TMD]) or to define subtypes (eg, TMD myalgia vs arthralgia). However, anatomical criteria overlook etiology, potentially hampering treatment decisions. This study identified clusters of individuals using a comprehensive array of biopsychosocial measures. Data were collected from a case–control study of 1031 chronic TMD cases and 3247 TMD-free controls. Three subgroups were identified using supervised cluster analysis (referred to as the adaptive, pain-sensitive, and global symptoms clusters). Compared with the adaptive cluster, participants in the pain-sensitive cluster showed heightened sensitivity to experimental pain, and participants in the global symptoms cluster showed both greater pain sensitivity and greater psychological distress. Cluster membership was strongly associated with chronic TMD: 91.5% of TMD cases belonged to the pain-sensitive and global symptoms clusters, whereas 41.2% of controls belonged to the adaptive cluster. Temporomandibular disorder cases in the pain-sensitive and global symptoms clusters also showed greater pain intensity, jaw functional limitation, and more comorbid pain conditions. Similar results were obtained when the same methodology was applied to a smaller case–control study consisting of 199 chronic TMD cases and 201 TMD-free controls. During a median 3-year follow-up period of TMD-free individuals, participants in the global symptoms cluster had greater risk of developing first-onset TMD (hazard ratio = 2.8) compared with participants in the other 2 clusters. Cross-cohort predictive modeling was used to demonstrate the reliability of the clusters. PMID:26928952

  20. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Rickard, David T.

    2005-10-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.

  1. GraphCrunch 2: Software tool for network modeling, alignment and clustering.

    PubMed

    Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša

    2011-01-19

    Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.

  2. Collective behavior in two-dimensional biological systems: Receptor clustering and beta-sheet aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Chinlin

    We studied two particular biomedical systems which exhibit collective molecular behavior. One is clustering of tumor necrosis factor receptor I (TNFR1), and another is β-sheet folding and aggregation. Receptor clustering has been shown to be a crucial step in many signaling events but its biological meaning has not been adequately addressed. Here, via a simple lattice model, we show how cells use this clustering machinery to enhance sensitivity as well as robustness. On the other hand, intracellular deposition of aggregated protein rich in β-sheet is a prominent cytopathological feature of most neurodegenerative diseases. How this aggregation occurs and how it responds to therapy is not completely understood. Here, we started from a reconstruction of the H-bond potential and carry out a full investigation of β-sheet thermodynamics as well as kinetics. We show that β-sheet aggregation is most likely due to molecular stacking and found that the minimal length of an aggregate mutant polymer corresponds well with the number observed in adult Huntington's disease. We have also shown that molecular agents such as dendrimers might fail at high-dose therapy; instead, a potential therapy strategy is to block β-turn formation. Our predictions can be used for future experimental tests and clinical trials.

  3. An adaptive tracker for ShipIR/NTCS

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2015-05-01

    A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and the gating of the selected target to further improve tracker performance. This paper will describe a new adaptive tracker algorithm added to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). The new adaptive tracking algorithm is an optional feature used with any of the existing internal NTCS or user-defined seeker algorithms (e.g., binary centroid, intensity centroid, and threshold intensity centroid). The algorithm segments the detected pixels into clusters, and the smallest set of clusters that meet the detection criterion is obtained by using a knapsack algorithm to identify the set of clusters that should not be used. The rectangular area containing the chosen clusters defines an inner boundary, from which a weighted centroid is calculated as the aim-point. A track-gate is then positioned around the clusters, taking into account the rate of change of the bounding area and compensating for any gimbal displacement. A sequence of scenarios is used to test the new tracking algorithm on a generic unclassified DDG ShipIR model, with and without flares, and demonstrate how some of the key seeker signals are impacted by both the ship and flare intrinsic signatures.

  4. A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast

    USGS Publications Warehouse

    Field, Edward; Milner, Kevin R.; Hardebeck, Jeanne L.; Page, Morgan T.; van der Elst, Nicholas; Jordan, Thomas H.; Michael, Andrew J.; Shaw, Bruce E.; Werner, Maximillan J.

    2017-01-01

    We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type aftershock sequence (ETAS) component to the previously published time‐independent and long‐term time‐dependent forecasts. This combined model, referred to as UCERF3‐ETAS, collectively represents a relaxation of segmentation assumptions, the inclusion of multifault ruptures, an elastic‐rebound model for fault‐based ruptures, and a state‐of‐the‐art spatiotemporal clustering component. It also represents an attempt to merge fault‐based forecasts with statistical seismology models, such that information on fault proximity, activity rate, and time since last event are considered in OEF. We describe several unanticipated challenges that were encountered, including a need for elastic rebound and characteristic magnitude–frequency distributions (MFDs) on faults, both of which are required to get realistic triggering behavior. UCERF3‐ETAS produces synthetic catalogs of M≥2.5 events, conditioned on any prior M≥2.5 events that are input to the model. We evaluate results with respect to both long‐term (1000 year) simulations as well as for 10‐year time periods following a variety of hypothetical scenario mainshocks. Although the results are very plausible, they are not always consistent with the simple notion that triggering probabilities should be greater if a mainshock is located near a fault. Important factors include whether the MFD near faults includes a significant characteristic earthquake component, as well as whether large triggered events can nucleate from within the rupture zone of the mainshock. Because UCERF3‐ETAS has many sources of uncertainty, as will any subsequent version or competing model, potential usefulness needs to be considered in the context of actual applications.

  5. Al4H7− is a resilient building block for aluminum hydrogen cluster materials

    PubMed Central

    Roach, P. J.; Reber, A. C.; Woodward, W. H.; Khanna, S. N.; Castleman, A. W.

    2007-01-01

    The formation and oxygen etching of AlnHm− clusters are characterized in a flow reactor experiment with first-principles theoretical investigations to demonstrate the exceptional stability of Al4H7−. The origin of the preponderance of Al4H7− in the mass spectra of hydrogenated aluminum anions and its resistance to O2 etching are discussed. Al4H7− is shown to have the ability to bond with ionic partners to form stable hydrides through addition of an alkali atom [XAl4H7 (X = Li-Cs)]. An intuitive model that can predict the existence of stable hydrogenated cluster species is proposed. The potential synthetic utility of the superatom assemblies built on these units is addressed. PMID:17823245

  6. How Many-Body Correlations and α Clustering Shape He 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navrátil, Petr

    The Borromean 6He nucleus is an exotic system characterized by two halo neutrons orbiting around a compact 4He (or α) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for ab initio theoretical calculations based on traditional bound-state methods. Using soft nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supplementing the model space with 4He + n + n cluster degrees of freedom largely solves this issue. Lastly, we analyze the role played by α clustering and many-body correlations,more » and study the dependence of the energy spectrum on the resolution scale of the interaction.« less

  7. Manipulation of visible-light polarization with dendritic cell-cluster metasurfaces.

    PubMed

    Fang, Zhen-Hua; Chen, Huan; An, Di; Luo, Chun-Rong; Zhao, Xiao-Peng

    2018-06-26

    Cross-polarization conversion plays an important role in visible light manipulation. Metasurface with asymmetric structure can be used to achieve polarization conversion of linearly polarized light. Based on this, we design a quasi-periodic dendritic metasurface model composed of asymmetric dendritic cells. The simulation indicates that the asymmetric dendritic structure can vertically rotate the polarization direction of the linear polarization wave in visible light. Silver dendritic cell-cluster metasurface samples were prepared by the bottom-up electrochemical deposition. It experimentally proved that they could realize the cross - polarization conversion in visible light. Cross-polarized propagating light is deflected into anomalous refraction channels. Dendritic cell-cluster metasurface with asymmetric quasi-periodic structure conveys significance in cross-polarization conversion research and features extensive practical application prospect and development potential.

  8. How Many-Body Correlations and α Clustering Shape He 6

    DOE PAGES

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navrátil, Petr; ...

    2016-11-23

    The Borromean 6He nucleus is an exotic system characterized by two halo neutrons orbiting around a compact 4He (or α) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for ab initio theoretical calculations based on traditional bound-state methods. Using soft nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supplementing the model space with 4He + n + n cluster degrees of freedom largely solves this issue. Lastly, we analyze the role played by α clustering and many-body correlations,more » and study the dependence of the energy spectrum on the resolution scale of the interaction.« less

  9. Resolving the problem of galaxy clustering on small scales: any new physics needed?

    NASA Astrophysics Data System (ADS)

    Kang, X.

    2014-02-01

    Galaxy clustering sets strong constraints on the physics governing galaxy formation and evolution. However, most current models fail to reproduce the clustering of low-mass galaxies on small scales (r < 1 Mpc h-1). In this paper, we study the galaxy clusterings predicted from a few semi-analytical models. We first compare two Munich versions, Guo et al. and De Lucia & Blaizot. The Guo11 model well reproduces the galaxy stellar mass function, but overpredicts the clustering of low-mass galaxies on small scales. The DLB07 model provides a better fit to the clustering on small scales, but overpredicts the stellar mass function. These seem to be puzzling. The clustering on small scales is dominated by galaxies in the same dark matter halo, and there is slightly more fraction of satellite galaxies residing in massive haloes in the Guo11 model, which is the dominant contribution to the clustering discrepancy between the two models. However, both models still overpredict the clustering at 0.1 < r < 10 Mpc h-1 for low-mass galaxies. This is because both models overpredict the number of satellites by 30 per cent in massive haloes than the data. We show that the Guo11 model could be slightly modified to simultaneously fit the stellar mass function and clusterings, but that cannot be easily achieved in the DLB07 model. The better agreement of DLB07 model with the data actually comes as a coincidence as it predicts too many low-mass central galaxies which are less clustered and thus brings down the total clustering. Finally, we show the predictions from the semi-analytical models of Kang et al. We find that this model can simultaneously fit the stellar mass function and galaxy clustering if the supernova feedback in satellite galaxies is stronger. We conclude that semi-analytical models are now able to solve the small-scales clustering problem, without invoking of any other new physics or changing the dark matter properties, such as the recent favoured warm dark matter.

  10. Fast clustering using adaptive density peak detection.

    PubMed

    Wang, Xiao-Feng; Xu, Yifan

    2017-12-01

    Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.

  11. Radiation-induced microcrystal shape change as a mechanism of wasteform degradation

    NASA Astrophysics Data System (ADS)

    Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.

    2018-04-01

    Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.

  12. The mond external field effect on the dynamics of the globular clusters: general considerations and application to NGC 2419

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derakhshani, Kamran, E-mail: kderakhshani@iasbs.ac.ir

    2014-03-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer partsmore » of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ{sup 2} of surface brightness and velocity dispersion.« less

  13. The MOND External Field Effect on the Dynamics of the Globular Clusters: General Considerations and Application to NGC 2419

    NASA Astrophysics Data System (ADS)

    Derakhshani, Kamran

    2014-03-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ2 of surface brightness and velocity dispersion.

  14. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice [How good is the MB-pol many-body potential for water?

    DOE PAGES

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; ...

    2016-11-17

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. Here, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. We investigate several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure through classical molecular dynamics simulations as amore » function of temperature. Furthermore, the structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.« less

  15. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice [How good is the MB-pol many-body potential for water?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. Here, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. We investigate several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure through classical molecular dynamics simulations as amore » function of temperature. Furthermore, the structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.« less

  16. Using concept mapping in the development of the EU-PAD framework (EUropean-Physical Activity Determinants across the life course): a DEDIPAC-study.

    PubMed

    Condello, Giancarlo; Ling, Fiona Chun Man; Bianco, Antonino; Chastin, Sebastien; Cardon, Greet; Ciarapica, Donatella; Conte, Daniele; Cortis, Cristina; De Craemer, Marieke; Di Blasio, Andrea; Gjaka, Masar; Hansen, Sylvia; Holdsworth, Michelle; Iacoviello, Licia; Izzicupo, Pascal; Jaeschke, Lina; Leone, Liliana; Manoni, Livia; Menescardi, Cristina; Migliaccio, Silvia; Nazare, Julie-Anne; Perchoux, Camille; Pesce, Caterina; Pierik, Frank; Pischon, Tobias; Polito, Angela; Puggina, Anna; Sannella, Alessandra; Schlicht, Wolfgang; Schulz, Holger; Simon, Chantal; Steinbrecher, Astrid; MacDonncha, Ciaran; Capranica, Laura

    2016-11-09

    A large proportion of European children, adults and older adults do not engage in sufficient physical activity (PA). Understanding individual and contextual factors associated with PA behaviours is essential for the identification and implementation of effective preventative environments, policies, and programmes that can promote an active lifestyle across life course and can potentially improve health. The current paper intends to provide 1) a multi-disciplinary, Pan-European and life course view of key determinants of PA behaviours and 2) a proposal of how these factors may cluster. After gathering a list of 183 potential PA behaviours-associated factors and a consensus meeting to unify/consolidate terminology, a concept mapping software was used to collate European experts' views of 106 identified factors for youth (<19 years), adults (19-64 years), and older adults (≥65 years). The analysis evaluated common trends in the clustering of factors and the ratings of the distinct factors' expected modifiability and population-level impact on PA behaviours across the life course. Priority for research was also assessed for each cluster. The concept mapping resulted in six distinct clusters, broadly merged in two themes: 1) the 'Person', which included clusters 'Intra-Personal Context and Wellbeing' and 'Family and Social Economic Status' (42 % of all factors) and 2) the 'Society', which included the remaining four clusters 'Policy and Provision', 'Cultural Context and Media', 'Social Support and Modelling', and 'Supportive Environment' (58 % of all factors). Overall, 25 factors were rated as the most impactful on PA behaviours across the life course and being the most modifiable. They were mostly situated in the 'Intra-Personal Context and Wellbeing' cluster. Furthermore, 16 of them were rated as top priority for research. The current framework provides a preliminary overview of factors which may account for PA behaviour across the life course and are most relevant to the European community. These insights could potentially be a foundation for future Pan-European research on how these factors might interact with each other, and assist policy makers to identify appropriate interventions to maximize PA behaviours and thus the health of European citizens.

  17. Comparison of transport pathways and potential sources of PM10 in two cities around a large Chinese lake using the modified trajectory analysis

    NASA Astrophysics Data System (ADS)

    Kong, Xiangzhen; He, Wei; Qin, Ning; He, Qishuang; Yang, Bin; Ouyang, Huiling; Wang, Qingmei; Xu, Fuliu

    2013-03-01

    Trajectory cluster analysis, including the two-stage cluster method based on Euclidean metrics and the one-stage clustering method based on Mahalanobis metrics and self-organizing maps (SOM), was applied and compared to identify the transport pathways of PM10 for the cities of Chaohu and Hefei, both located near Lake Chaohu in China. The two-stage cluster method was modified to further investigate the long trajectories in the second stage in order to eliminate the observed disaggregation among them. Twelve trajectory clusters were identified for both cities. The one-stage clustering method based on Mahalanobis metrics gives the best performance regarding the variances within clusters. The results showed that local PM10 emission was one of the most important sources in both cities and that the local emission in Hefei was higher than in Chaohu. In addition, Chaohu suffered greater effects from the eastern region (Yangtze River Delta, YRD) than Hefei. On the other hand, the long-range transportation from the northwestern pathway had a higher influence on the PM10 level in Hefei. Receptor models, including potential source contribution function (PSCF) and residence time weighted concentrations (RTWC), were utilized to identify the potential source locations of PM10 for both cities. However, the combined PSCF and RTWC results for the two cities provided PM10 source locations that were more consistent with the results of transport pathways and the total anthropogenic PM10 emission inventory. This indicates that the combined method's ability to identify the source regions is superior to that of the individual PSCF or RTWC methods. Henan and Shanxi Provinces and the YRD were important PM10 source regions for the two cities, but the Henan and Shanxi area was more important for Hefei than for Chaohu, while the YRD region was less important. In addition, the PSCF, RTWC and the combined results all had higher correlation coefficients with PM10 emission from traffic than from industry, electricity generation or residential sources, suggesting the relatively higher contribution of traffic emissions to the PM10 pollution in Lake Chaohu.

  18. An improved model of homogeneous nucleation for high supersaturation conditions: aluminum vapor.

    PubMed

    Savel'ev, A M; Starik, A M

    2016-12-21

    A novel model of stationary nucleation, treating the thermodynamic functions of small clusters, has been built. The model is validated against the experimental data on the nucleation rate of water vapor obtained in a broad range of supersaturation values (S = 10-120), and, at high supersaturation values, it reproduces the experimental data much better than the traditional classical nucleation model. A comprehensive analysis of the nucleation of aluminum vapor with the usage of developed stationary and non-stationary nucleation models has been performed. It has been shown that, at some value of supersaturation, there exists a double potential nucleation barrier. It has been revealed that the existence of this barrier notably delayed the establishment of a stationary distribution of subcritical clusters. It has also been demonstrated that the non-stationary model of the present work and the model of liquid-droplet approximation predict different values of nucleation delay time, τ s . In doing so, the liquid-droplet model can underestimate notably (by more than an order of magnitude) the value of τ s .

  19. Using Cluster Analysis to Compartmentalize a Large Managed Wetland Based on Physical, Biological, and Climatic Geospatial Attributes.

    PubMed

    Hahus, Ian; Migliaccio, Kati; Douglas-Mankin, Kyle; Klarenberg, Geraldine; Muñoz-Carpena, Rafael

    2018-04-27

    Hierarchical and partitional cluster analyses were used to compartmentalize Water Conservation Area 1, a managed wetland within the Arthur R. Marshall Loxahatchee National Wildlife Refuge in southeast Florida, USA, based on physical, biological, and climatic geospatial attributes. Single, complete, average, and Ward's linkages were tested during the hierarchical cluster analyses, with average linkage providing the best results. In general, the partitional method, partitioning around medoids, found clusters that were more evenly sized and more spatially aggregated than those resulting from the hierarchical analyses. However, hierarchical analysis appeared to be better suited to identify outlier regions that were significantly different from other areas. The clusters identified by geospatial attributes were similar to clusters developed for the interior marsh in a separate study using water quality attributes, suggesting that similar factors have influenced variations in both the set of physical, biological, and climatic attributes selected in this study and water quality parameters. However, geospatial data allowed further subdivision of several interior marsh clusters identified from the water quality data, potentially indicating zones with important differences in function. Identification of these zones can be useful to managers and modelers by informing the distribution of monitoring equipment and personnel as well as delineating regions that may respond similarly to future changes in management or climate.

  20. Chill, Be Cool Man: African American Men, Identity, Coping, and Aggressive Ideation

    PubMed Central

    Thomas, Alvin; Hammond, Wizdom Powell; Kohn-Wood, Laura P.

    2016-01-01

    Aggression is an important correlate of violence, depression, coping, and suicide among emerging young African American males. Yet most researchers treat aggression deterministically, fail to address cultural factors, or consider the potential for individual characteristics to exert an intersectional influence on this psychosocial outcome. Addressing this gap, we consider the moderating effect of coping on the relationship between masculine and racial identity and aggressive ideation among African American males (N = 128) drawn from 2 large Midwestern universities. Using the phenomenological variant of ecological systems theory and person-centered methodology as a guide, hierarchical cluster analysis grouped participants into profile groups based on their responses to both a measure of racial identity and a measure of masculine identity. Results from the cluster analysis revealed 3 distinct identity clusters: Identity Ambivalent, Identity Appraising, and Identity Consolidated. Although these cluster groups did not differ with regard to coping, significant differences were observed between cluster groups in relation to aggressive ideation. Further, a full model with identity profile clusters, coping, and aggressive ideation indicates that cluster membership significantly moderates the relationship between coping and aggressive ideation. The implications of these data for intersecting identities of African American men, and the association of identity and outcomes related to risk for mental health and violence, are discussed. PMID:25090145

  1. Chill, be cool man: African American men, identity, coping, and aggressive ideation.

    PubMed

    Thomas, Alvin; Hammond, Wizdom Powell; Kohn-Wood, Laura P

    2015-07-01

    Aggression is an important correlate of violence, depression, coping, and suicide among emerging young African American males. Yet most researchers treat aggression deterministically, fail to address cultural factors, or consider the potential for individual characteristics to exert an intersectional influence on this psychosocial outcome. Addressing this gap, we consider the moderating effect of coping on the relationship between masculine and racial identity and aggressive ideation among African American males (N = 128) drawn from 2 large Midwestern universities. Using the phenomenological variant of ecological systems theory and person-centered methodology as a guide, hierarchical cluster analysis grouped participants into profile groups based on their responses to both a measure of racial identity and a measure of masculine identity. Results from the cluster analysis revealed 3 distinct identity clusters: Identity Ambivalent, Identity Appraising, and Identity Consolidated. Although these cluster groups did not differ with regard to coping, significant differences were observed between cluster groups in relation to aggressive ideation. Further, a full model with identity profile clusters, coping, and aggressive ideation indicates that cluster membership significantly moderates the relationship between coping and aggressive ideation. The implications of these data for intersecting identities of African American men, and the association of identity and outcomes related to risk for mental health and violence, are discussed. (c) 2015 APA, all rights reserved).

  2. Path integral Monte Carlo study on the structure and absorption spectra of alkali atoms (Li, Na, K) attached to superfluid helium clusters

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Yamashita, Koichi

    2001-01-01

    Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].

  3. X-ray spectral observations of clusters of galaxies undergoing merger events

    NASA Astrophysics Data System (ADS)

    Henriksen, Mark J.

    1993-09-01

    We have analyzed the HEAO 1 A2 observations of two clusters whose optical and X-ray isophotes are suggestive of merging subclusters, A119 and A754, and find evidence of nonisothermal X-ray emission from both clusters. The X-ray spectrum of both clusters, when fitted with a single isothermal model, shows residual soft X-ray emission. There is a statistically significant reduction in chi-squared (98 percent probability based on the F-test) when a second temperature component is added. If the asymmetric isophotes seen in the soft X-ray image are indicative of merging subclusters, then our analysis of the Einstein IPC spectra and Solid State Spectrometer observations of A754, which provide some spatial and spectral resolution, suggests that the two temperature components seen in the HEAO 1 A2 spectra are associated with gas trapped in the subcluster potential wells. The implied subcluster isothermal masses suggest that a more massive cluster is accreting a less massive companion in A754. The present observations cannot rule out the alternative possibility that the cooler gas is associated with the outer cluster atmosphere rather than individual subclusters, as appears to be the case for A119. Astro D observations will be necessary to distinguish between these two possibilities for both clusters.

  4. Diffusion Monte Carlo simulations of gas phase and adsorbed D2-(H2)n clusters

    NASA Astrophysics Data System (ADS)

    Curotto, E.; Mella, M.

    2018-03-01

    We have computed ground state energies and analyzed radial distributions for several gas phase and adsorbed D2(H2)n and HD(H2)n clusters. An external model potential designed to mimic ionic adsorption sites inside porous materials is used [M. Mella and E. Curotto, J. Phys. Chem. A 121, 5005 (2017)]. The isotopic substitution lowers the ground state energies by the expected amount based on the mass differences when these are compared with the energies of the pure clusters in the gas phase. A similar impact is found for adsorbed aggregates. The dissociation energy of D2 from the adsorbed clusters is always much higher than that of H2 from both pure and doped aggregates. Radial distributions of D2 and H2 are compared for both the gas phase and adsorbed species. For the gas phase clusters, two types of hydrogen-hydrogen interactions are considered: one based on the assumption that rotations and translations are adiabatically decoupled and the other based on nonisotropic four-dimensional potential. In the gas phase clusters of sufficiently large size, we find the heavier isotopomer more likely to be near the center of mass. However, there is a considerable overlap among the radial distributions of the two species. For the adsorbed clusters, we invariably find the heavy isotope located closer to the attractive interaction source than H2, and at the periphery of the aggregate, H2 molecules being substantially excluded from the interaction with the source. This finding rationalizes the dissociation energy results. For D2-(H2)n clusters with n ≥12 , such preference leads to the desorption of D2 from the aggregate, a phenomenon driven by the minimization of the total energy that can be obtained by reducing the confinement of (H2)12. The same happens for (H2)13, indicating that such an effect may be quite general and impact on the absorption of quantum species inside porous materials.

  5. Study of Aggregation of Janus Ellipsoids

    NASA Astrophysics Data System (ADS)

    Ruth, Donovan; Li, Wei; Khadka, Shreeya; Rickman, Jeffrey; Gunton, James

    2013-03-01

    We perform numerical simulations of a quasi-square well potential model of one-patch colloidal particles to investigate the collective structure of a system of Janus ellipsoids. We show that for Janus ellipsoids such that one half is an attractive patch, while the entire ellipsoid has a hardcore repulsion, the system organizes into a distribution of orientationally ordered micelles and vesicles. We analyze the cluster distribution at several temperatures and low densities and show that below certain temperatures the system is populated by stable clusters and depending on temperature and density the system is populated by either vesicles or micelle structures.

  6. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    PubMed

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  7. Collision-induced evaporation of water clusters and contribution of momentum transfer

    NASA Astrophysics Data System (ADS)

    Calvo, Florent; Berthias, Francis; Feketeová, Linda; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel

    2017-05-01

    The evaporation of water molecules from high-velocity argon atoms impinging on protonated water clusters has been computationally investigated using molecular dynamics simulations with the reactive OSS2 potential to model water clusters and the ZBL pair potential to represent their interaction with the projectile. Swarms of trajectories and an event-by-event analysis reveal the conditions under which a specific number of molecular evaporation events is found one nanosecond after impact, thereby excluding direct knockout events from the analysis. These simulations provide velocity distributions that exhibit two main features, with a major statistical component arising from a global redistribution of the collision energy into intermolecular degrees of freedom, and another minor but non-ergodic feature at high velocities. The latter feature is produced by direct impacts on the peripheral water molecules and reflects a more complete momentum transfer. These two components are consistent with recent experimental measurements and confirm that electronic processes are not explicitly needed to explain the observed non-ergodic behavior. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  8. Hierarchical Regional Disparities and Potential Sector Identification Using Modified Agglomerative Clustering

    NASA Astrophysics Data System (ADS)

    Munandar, T. A.; Azhari; Mushdholifah, A.; Arsyad, L.

    2017-03-01

    Disparities in regional development methods are commonly identified using the Klassen Typology and Location Quotient. Both methods typically use the data on the gross regional domestic product (GRDP) sectors of a particular region. The Klassen approach can identify regional disparities by classifying the GRDP sector data into four classes, namely Quadrants I, II, III, and IV. Each quadrant indicates a certain level of regional disparities based on the GRDP sector value of the said region. Meanwhile, the Location Quotient (LQ) is usually used to identify potential sectors in a particular region so as to determine which sectors are potential and which ones are not potential. LQ classifies each sector into three classes namely, the basic sector, the non-basic sector with a competitive advantage, and the non-basic sector which can only meet its own necessities. Both Klassen Typology and LQ are unable to visualize the relationship of achievements in the development clearly of each region and sector. This research aimed to develop a new approach to the identification of disparities in regional development in the form of hierarchical clustering. The method of Hierarchical Agglomerative Clustering (HAC) was employed as the basis of the hierarchical clustering model for identifying disparities in regional development. Modifications were made to HAC using the Klassen Typology and LQ. Then, HAC which had been modified using the Klassen Typology was called MHACK while HAC which had been modified using LQ was called MACLoQ. Both algorithms can be used to identify regional disparities (MHACK) and potential sectors (MACLoQ), respectively, in the form of hierarchical clusters. Based on the MHACK in 31 regencies in Central Java Province, it is identified that 3 regencies (Demak, Jepara, and Magelang City) fall into the category of developed and rapidly-growing regions, while the other 28 regencies fall into the category of developed but depressed regions. Results of the MACLoQ implementation suggest that there is only 1 regency which falls into the basic-sector category (Banyumas), while the other regencies fall into the non-basic non-competitive sector category.

  9. Effects of cluster-shell competition and BCS-like pairing in 12C

    NASA Astrophysics Data System (ADS)

    Matsuno, H.; Itagaki, N.

    2017-12-01

    The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.

  10. Cluster-cluster clustering

    NASA Technical Reports Server (NTRS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.

  11. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, E. R.; Gomez, P. L.; Lee, H.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG),more » and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.« less

  12. Molecular dynamics study of Al and Ni 3Al sputtering by Al clusters bombardment

    NASA Astrophysics Data System (ADS)

    Zhurkin, Eugeni E.; Kolesnikov, Anton S.

    2002-06-01

    The sputtering of Al and Ni 3Al (1 0 0) surfaces induced by impact of Al ions and Al N clusters ( N=2,4,6,9,13,55) with energies of 100 and 500 eV/atom is studied at atomic scale by means of classical molecular dynamics (MD). The MD code we used implements many-body tight binding potential splined to ZBL at short distances. Special attention has been paid to model dense cascades: we used quite big computation cells with lateral periodic and damped boundary conditions. In addition, long simulation times (10-25 ps) and representative statistics (up to 1000 runs per each case) were considered. The total sputtering yields, energy and time spectrums of sputtered particles, as well as preferential sputtering of compound target were analyzed, both in the linear and non-linear regimes. The significant "cluster enhancement" of sputtering yield was found for cluster sizes N⩾13. In parallel, we estimated collision cascade features depending on cluster size in order to interpret the nature of observed non-linear effects.

  13. Hundred Thousand Degree Gas in the Virgo Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Pringle, J. E.; Carswell, R. F.; Donahue, M.; Martin, R.; Voit, M.; Cracraft, M.; Manset, N.; Hough, J. H.

    2012-05-01

    The physical relationship between low-excitation gas filaments at ~104 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~107 K in the centers of many galaxy clusters is not understood. It is unclear whether the ~104 K filaments have cooled and condensed from the ambient hot (~107 K) medium or have some other origin such as the infall of cold gas in a merger, or the disturbance of an internal cool reservoir of gas by nuclear activity. Observations of gas at intermediate temperatures (~105-106 K) can potentially reveal whether the central massive galaxies are gaining cool gas through condensation or losing it through conductive evaporation and hence identify plausible scenarios for transport processes in galaxy cluster gas. Here we present spectroscopic detection of ~105 K gas spatially associated with the Hα filaments in a central cluster galaxy, M87, in the Virgo Cluster. The measured emission-line fluxes from triply ionized carbon (C IV 1549 Å) and singly ionized helium (He II 1640 Å) are consistent with a model in which thermal conduction determines the interaction between hot and cold phases.

  14. Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking.

    PubMed

    Makeneni, Spandana; Thieker, David F; Woods, Robert J

    2018-03-26

    In this work, we developed a computational protocol that employs multiple molecular docking experiments, followed by pose clustering, molecular dynamic simulations (10 ns), and energy rescoring to produce reliable 3D models of antibody-carbohydrate complexes. The protocol was applied to 10 antibody-carbohydrate co-complexes and three unliganded (apo) antibodies. Pose clustering significantly reduced the number of potential poses. For each system, 15 or fewer clusters out of 100 initial poses were generated and chosen for further analysis. Molecular dynamics (MD) simulations allowed the docked poses to either converge or disperse, and rescoring increased the likelihood that the best-ranked pose was an acceptable pose. This approach is amenable to automation and can be a valuable aid in determining the structure of antibody-carbohydrate complexes provided there is no major side chain rearrangement or backbone conformational change in the H3 loop of the CDR regions. Further, the basic protocol of docking a small ligand to a known binding site, clustering the results, and performing MD with a suitable force field is applicable to any protein ligand system.

  15. Fuzzy C-mean clustering on kinetic parameter estimation with generalized linear least square algorithm in SPECT

    NASA Astrophysics Data System (ADS)

    Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan

    2006-03-01

    Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.

  16. Globular cluster systems as tracers of environmental effects on Virgo early-type dwarfs

    NASA Astrophysics Data System (ADS)

    Sánchez-Janssen, R.; Aguerri, J. A. L.

    2012-08-01

    Early-type dwarfs (dEs) are by far the most abundant galaxy population in nearby clusters. Whether these objects are primordial, or the recent end products of the different physical mechanisms that can transform galaxies once they enter these high-density environments, is still a matter of debate. Here we present a novel approach to test these scenarios by comparing the properties of the globular cluster systems (GCSs) of Virgo dEs and their potential progenitors with simple predictions from gravitational and hydrodynamical interaction models. We show that low-mass (M★ ≲ 2 × 108 M⊙) dEs have GCSs consistent with the descendants of gas-stripped late-type dwarfs. On the other hand, higher mass dEs have properties - including the high mass specific frequencies of their GCSs and their concentrated spatial distribution within Virgo - incompatible with a recent, environmentally driven evolution. They mostly comprise nucleated systems, but also dEs with recent star formation and/or disc features. Bright, nucleated dEs appear to be a population that has long resided within the cluster potential well, but have surprisingly managed to retain very rich and spatially extended GCSs - possibly an indication of high total masses. Our analysis does not favour violent evolutionary mechanisms that result in significant stellar mass-losses, but more gentle processes involving gas removal by a combination of internal and external factors, and highlights the relevant role of initial conditions. Additionally, we briefly comment on the origin of luminous cluster S0 galaxies.

  17. Percolation of the site random-cluster model by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Songsong; Zhang, Wanzhou; Ding, Chengxiang

    2015-08-01

    We propose a site random-cluster model by introducing an additional cluster weight in the partition function of the traditional site percolation. To simulate the model on a square lattice, we combine the color-assignation and the Swendsen-Wang methods to design a highly efficient cluster algorithm with a small critical slowing-down phenomenon. To verify whether or not it is consistent with the bond random-cluster model, we measure several quantities, such as the wrapping probability Re, the percolating cluster density P∞, and the magnetic susceptibility per site χp, as well as two exponents, such as the thermal exponent yt and the fractal dimension yh of the percolating cluster. We find that for different exponents of cluster weight q =1.5 , 2, 2.5 , 3, 3.5 , and 4, the numerical estimation of the exponents yt and yh are consistent with the theoretical values. The universalities of the site random-cluster model and the bond random-cluster model are completely identical. For larger values of q , we find obvious signatures of the first-order percolation transition by the histograms and the hysteresis loops of percolating cluster density and the energy per site. Our results are helpful for the understanding of the percolation of traditional statistical models.

  18. Global Identification of Genes Affecting Iron-Sulfur Cluster Biogenesis and Iron Homeostasis

    PubMed Central

    Hidese, Ryota; Kurihara, Tatsuo; Esaki, Nobuyoshi

    2014-01-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-14C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-14C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly. PMID:24415728

  19. Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters

    NASA Astrophysics Data System (ADS)

    Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid

    2014-04-01

    We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.

  20. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  1. Spatial analysis of under-5 mortality and potential risk factors in the Basse Health and Demographic Surveillance System, the Gambia.

    PubMed

    Quattrochi, John; Jasseh, Momodou; Mackenzie, Grant; Castro, Marcia C

    2015-07-01

    To describe the spatial pattern in under-5 mortality rates in the Basse Health and Demographic Surveillance System (BHDSS) and to test for associations between under-5 deaths and biodemographic and socio-economic risk factors. Using data on child survival from 2007 to 2011 in the BHDSS, we mapped under-5 mortality by km(2) . We tested for spatial clustering of high or low death rates using Kulldorff's spatial scan statistic. Associations between child death and a variety of biodemographic and socio-economic factors were assessed with Cox proportional hazards models, and deviance residuals from the best-fitting model were tested for spatial clustering. The overall death rate among children under 5 was 0.0195 deaths per child-year. We found two spatial clusters of high death rates and one spatial cluster of low death rates; children in the two high clusters died at a rate of 0.0264 and 0.0292 deaths per child-year, while in the low cluster, the rate was 0.0144 deaths per child-year. We also found that children born to Fula mothers experienced, on average, a higher hazard of death, whereas children born in the households in the upper two quintiles of asset ownership experienced, on average, a lower hazard of death. After accounting for the spatial distribution of biodemographic and socio-economic characteristics, we found no residual spatial pattern in child mortality risk. This study demonstrates that significant inequality in under-5 death rates can occur within a relatively small area (1100 km(2) ). Risks of under-5 mortality were associated with mother's ethnicity and household wealth. If high mortality clusters persist, then equity concerns may require additional public health efforts in those areas. © 2015 John Wiley & Sons Ltd.

  2. High energy neutrinos and gamma-ray emission from supernovae in compact star clusters

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Ellison, D. C.; Gladilin, P. E.; Osipov, S. M.

    2017-01-01

    Compact clusters of young massive stars are observed in the Milky Way and in starburst galaxies. The compact clusters with multiple powerful winds of young massive stars and supernova shocks are favorable sites for high-energy particle acceleration. We argue that expanding young supernova (SN) shells in compact stellar clusters can be very efficient PeV CR accelerators. At a stage when a supernova shock is colliding with collective fast winds from massive stars in a compact cluster the Fermi mechanism allows particle acceleration to energies well above the standard limits of diffusive shock acceleration in an isolated SNR. The energy spectrum of protons in such an accelerator is a hard power-law with a broad spectral upturn above TeV before a break at multi-PeV energies, providing a large energy flux in the high-energy end of the spectrum. The acceleration stage in the colliding shock flow lasts for a few hundred years after the supernova explosion producing high-energy CRs that escape the accelerator and diffuse through the ambient matter producing γ-rays and neutrinos in inelastic nuclear collisions. In starburst galaxies a sizeable fraction of core collapse supernovae is expected to occur in compact star clusters and therefore their high energy gamma-ray and neutrino spectra in the PeV energy regime may differ strongly from that of our Galaxy. To test the model with individual sources we briefly discuss the recent H.E.S.S. detections of gamma-rays from two potential candidate sources, Westerlund 1 and HESS J1806-204 in the Milky Way. We argue that this model of compact star clusters, with typical parameters, could produce a neutrino flux sufficient to explain a fraction of the recently detected IceCube South Pole Observatory neutrinos.

  3. Pancreatic islet-like clusters from bone marrow mesenchymal stem cells of human first-trimester abortus can cure streptozocin-induced mouse diabetes.

    PubMed

    Zhang, Yihua; Shen, Wenzheng; Hua, Jinlian; Lei, Anmin; Lv, Changrong; Wang, Huayan; Yang, Chunrong; Gao, Zhimin; Dou, Zhongying

    2010-12-01

    Bone marrow mesenchymal stem cells (BMSCs) have been reported to possess low immunogenicity and cause immunosuppression of recipients when allografted. They can differentiate into insulin-producing cells and may be a valuable source for islet formation. However, the extremely low differentiating rate of adult BMSCs toward insulin-producing cells and the insufficient insulin secretion of the differentiated BMSCs in vitro prevent their clinical use in diabetes treatment. Little is known about the potential of cell replacement therapy with human BMSCs. Previously, we isolated and identified human first-trimester fetal BMSCs (hfBMSCs). Under a novel four-step induction procedure established in this study, the hfBMSCs effectively differentiated into functional pancreatic islet-like cell clusters that contained 62 ± 14% insulin-producing cells, expressed a broad gene profile related to pancreatic islet β-cell development, and released high levels of insulin (2.245 ± 0.222 pmol/100 clusters per 30 min) and C-peptide (2.200 ± 0.468 pmol/100 clusters per 30 min) in response to 25 mmol/L glucose stimulus in vitro. The pancreatic islet-like cell clusters normalized the blood glucose level of diabetic model mice for at least 9 weeks when xenografted; blood glucose levels in these mice rose abnormally again when the grafts were removed. Examination of the grafts indicated that the transplanted cells survived in recipients and produced human insulin and C-peptide in situ. These results demonstrate that hfBMSCs derived from a human first-trimester abortus can differentiate into pancreatic islet-like cell clusters following an established four-step induction. The insulin-producing clusters present advantages in cell replacement therapy of type 1 diabetic model mice.

  4. Knowledge discovery from patients' behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services.

    PubMed

    Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi

    2016-01-01

    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers.

  5. Bulk tank milk prevalence and production losses, spatial analysis, and predictive risk mapping of Ostertagia ostertagi infections in Mexican cattle herds.

    PubMed

    Villa-Mancera, Abel; Pastelín-Rojas, César; Olivares-Pérez, Jaime; Córdova-Izquierdo, Alejandro; Reynoso-Palomar, Alejandro

    2018-05-01

    This study investigated the prevalence, production losses, spatial clustering, and predictive risk mapping in different climate zones in five states of Mexico. The bulk tank milk samples obtained between January and April 2015 were analyzed for antibodies against Ostertagia ostertagi using the Svanovir ELISA. A total of 1204 farm owners or managers answered the questionnaire. The overall herd prevalence and mean optical density ratio (ODR) of parasite were 61.96% and 0.55, respectively. Overall, the production loss was approximately 0.542 kg of milk per parasited cow per day (mean ODR = 0.92, 142 farms, 11.79%). The spatial disease cluster analysis using SatScan software indicated that two high-risk clusters were observed. In the multivariable analysis, three models were tested for potential association with the ELISA results supported by climatic, environmental, and management factors. The final logistic regression model based on both climatic/environmental and management variables included the factors rainfall, elevation, land surface temperature (LST) day, and parasite control program that were significantly associated with an increased risk of infection. Geostatistical kriging was applied to generate a risk map for the presence of parasite in dairy cattle herds in Mexico. The results indicate that climatic and meteorological factors had a higher potential impact on the spatial distribution of O. ostertagi than the management factors.

  6. Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

    PubMed Central

    Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi

    2016-01-01

    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers. PMID:27610177

  7. Quantum mechanical force field for water with explicit electronic polarization.

    PubMed

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes.

  8. Parameters of oscillation generation regions in open star cluster models

    NASA Astrophysics Data System (ADS)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  9. The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters.

    PubMed

    Goodwin, P J; Agar, J N; Roll, J T; Roberts, G P; Johnson, M K; Dean, D R

    1998-07-21

    The nifE and nifN gene products from Azotobacter vinelandii form an alpha2beta2 tetramer (NifEN complex) that is required for the biosynthesis of the nitrogenase FeMo cofactor. In the current model for NifEN complex organization and function, the complex is structurally analogous to the nitrogenase MoFe protein and provides an assembly site for a portion of FeMo cofactor biosynthesis. In this work, gene fusion and immobilized metal-affinity chromatography strategies were used to elevate the in vivo production of the NifEN complex and to facilitate its rapid and efficient purification. The NifEN complex produced and purified in this way exhibits an FeMo cofactor biosynthetic activity similar to that previously described for the NifEN complex purified by traditional chromatography methods. UV-visible, EPR, variable-temperature magnetic circular dichroism, and resonance Raman spectroscopies were used to show that the NifEN complex contains two identical [4Fe-4S]2+ clusters. These clusters have a predominantly S = 1/2 ground state in the reduced form, exhibit a reduction potential of -350 mV, and are likely to be coordinated entirely by cysteinyl residues on the basis of spectroscopic properties and sequence comparisons. A model is proposed where each NifEN complex [4Fe-4S] cluster is bridged between a NifE-NifN subunit interface at a position analogous to that occupied by the P clusters in the nitrogenase MoFe protein. In contrast to the MoFe protein P clusters, the NifEN complex [4Fe-4S] clusters are proposed to be asymmetrically coordinated to the NifEN complex where NifE cysteines-37, -62, and -124 and NifN cysteine-44 are the coordinating ligands. On the basis of a homology model of the three-dimensional structure of the NifEN complex, the [4Fe-4S] cluster sites are likely to be remote from the proposed FeMo cofactor assembly site and are unlikely to become incorporated into the FeMo cofactor during its assembly.

  10. Light {xi} hypernuclei in four-body cluster models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiyama, E.; Yamamoto, Y.; Motoba, T.

    Detailed structure calculations in {sub {xi}{sup -}}{sup 12}Be, {sub {xi}{sup -}}{sup 5}H, {sub {xi}{sup -}}{sup 9}Li, {sub {xi}{sup -}}{sup 7}H, and {sub {xi}{sup -}}{sup 10}Li are performed within the framework of the microscopic two-, three-, and four-body cluster models using the Gaussian expansion method. We adopted effective {xi}N interactions derived from the Nijmegen interaction models, which give rise to substantially attractive {xi}-nucleus potentials in accordance with the experimental indications. {sub {xi}{sup -}}{sup 7}H and {sub {xi}{sup -}}{sup 10}Li are predicted to have bound states. we propose to observe the bound states in future (K{sup -},K{sup +}) experiments using {sup 7}Limore » and {sup 10}B targets in addition to the standard {sup 12}C target. The experimental confirmation of these states will provide information on the spin- and isospin-averaged {xi}N interaction.« less

  11. Stationary and non-stationary occurrences of miniature end plate potentials are well described as stationary and non-stationary Poisson processes in the mollusc Navanax inermis.

    PubMed

    Cappell, M S; Spray, D C; Bennett, M V

    1988-06-28

    Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.

  12. An integrative model for in-silico clinical-genomics discovery science.

    PubMed

    Lussier, Yves A; Sarkar, Indra Nell; Cantor, Michael

    2002-01-01

    Human Genome discovery research has set the pace for Post-Genomic Discovery Research. While post-genomic fields focused at the molecular level are intensively pursued, little effort is being deployed in the later stages of molecular medicine discovery research, such as clinical-genomics. The objective of this study is to demonstrate the relevance and significance of integrating mainstream clinical informatics decision support systems to current bioinformatics genomic discovery science. This paper is a feasibility study of an original model enabling novel "in-silico" clinical-genomic discovery science and that demonstrates its feasibility. This model is designed to mediate queries among clinical and genomic knowledge bases with relevant bioinformatic analytic tools (e.g. gene clustering). Briefly, trait-disease-gene relationships were successfully illustrated using QMR, OMIM, SNOMED-RT, GeneCluster and TreeView. The analyses were visualized as two-dimensional dendrograms of clinical observations clustered around genes. To our knowledge, this is the first study using knowledge bases of clinical decision support systems for genomic discovery. Although this study is a proof of principle, it provides a framework for the development of clinical decision-support-system driven, high-throughput clinical-genomic technologies which could potentially unveil significant high-level functions of genes.

  13. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  14. Impacts of clustering on interacting epidemics.

    PubMed

    Wang, Bing; Cao, Lang; Suzuki, Hideyuki; Aihara, Kazuyuki

    2012-07-07

    Since community structures in real networks play a major role for the epidemic spread, we therefore explore two interacting diseases spreading in networks with community structures. As a network model with community structures, we propose a random clique network model composed of different orders of cliques. We further assume that each disease spreads only through one type of cliques; this assumption corresponds to the issue that two diseases spread inside communities and outside them. Considering the relationship between the susceptible-infected-recovered (SIR) model and the bond percolation theory, we apply this theory to clique random networks under the assumption that the occupation probability is clique-type dependent, which is consistent with the observation that infection rates inside a community and outside it are different, and obtain a number of statistical properties for this model. Two interacting diseases that compete the same hosts are also investigated, which leads to a natural generalization of analyzing an arbitrary number of infectious diseases. For two-disease dynamics, the clustering effect is hypersensitive to the cohesiveness and concentration of cliques; this illustrates the impacts of clustering and the composition of subgraphs in networks on epidemic behavior. The analysis of coexistence/bistability regions provides significant insight into the relationship between the network structure and the potential epidemic prevalence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.

    PubMed

    Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors.

  16. Return periods of losses associated with European windstorm series in a changing climate

    NASA Astrophysics Data System (ADS)

    Karremann, Melanie K.; Pinto, Joaquim G.; Reyers, Mark; Klawa, Matthias

    2015-04-01

    During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series affecting Europe are quantified based on potential losses using empirical models. Moreover, possible future changes of clustering and return periods of European storm series with high potential losses are quantified. Historical storm series are identified using 40 winters of NCEP reanalysis data (1973/1974 - 2012/2013). Time series of top events (1, 2 or 5 year return levels) are used to assess return periods of storm series both empirically and theoretically. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Additionally, 800 winters of ECHAM5/MPI-OM1 general circulation model simulations for present (SRES scenario 20C: years 1960- 2000) and future (SRES scenario A1B: years 2060- 2100) climate conditions are investigated. Clustering is identified for most countries in Europe, and estimated return periods are similar for reanalysis and present day simulations. Future changes of return periods are estimated for fixed return levels and fixed loss index thresholds. For the former, shorter return periods are found for Western Europe, but changes are small and spatially heterogeneous. For the latter, which combines the effects of clustering and event ranking shifts, shorter return periods are found everywhere except for Mediterranean countries. These changes are generally not statistically significant between recent and future climate. However, the return periods for the fixed loss index approach are mostly beyond the range of preindustrial natural climate variability. This is not true for fixed return levels. The quantification of losses associated with storm series permits a more adequate windstorm risk assessment in a changing climate.

  17. CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and prospects for cosmography

    NASA Astrophysics Data System (ADS)

    Caminha, G. B.; Grillo, C.; Rosati, P.; Balestra, I.; Karman, W.; Lombardi, M.; Mercurio, A.; Nonino, M.; Tozzi, P.; Zitrin, A.; Biviano, A.; Girardi, M.; Koekemoer, A. M.; Melchior, P.; Meneghetti, M.; Munari, E.; Suyu, S. H.; Umetsu, K.; Annunziatella, M.; Borgani, S.; Broadhurst, T.; Caputi, K. I.; Coe, D.; Delgado-Correal, C.; Ettori, S.; Fritz, A.; Frye, B.; Gobat, R.; Maier, C.; Monna, A.; Postman, M.; Sartoris, B.; Seitz, S.; Vanzella, E.; Ziegler, B.

    2016-03-01

    Aims: We perform a comprehensive study of the total mass distribution of the galaxy cluster RXC J2248.7-4431 (z = 0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models in which we use different samples of multiple image families, different parametrizations of the mass distribution and cosmological parameters. Methods: As input information for the strong lensing models, we use the Cluster Lensing And Supernova survey with Hubble (CLASH) imaging data and spectroscopic follow-up observations, with the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), to identify and characterize bona fide multiple image families and measure their redshifts down to mF814W ≃ 26. A total of 16 background sources, over the redshift range 1.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to ten individual sources. These also include a multiply lensed Lyman-α blob at z = 3.118. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. Bayesian Markov chain Monte Carlo techniques are used to quantify errors and covariances of the best-fit parameters. Results: We show that with a careful selection of a large sample of spectroscopically confirmed multiple images, the best-fit model can reproduce their observed positions with a rms scatter of 0.̋3 in a fixed flat ΛCDM cosmology, whereas the lack of spectroscopic information or the use of inaccurate photometric redshifts can lead to biases in the values of the model parameters. We find that the best-fit parametrization for the cluster total mass distribution is composed of an elliptical pseudo-isothermal mass distribution with a significant core for the overall cluster halo and truncated pseudo-isothermal mass profiles for the cluster galaxies. We show that by adding bona fide photometric-selected multiple images to the sample of spectroscopic families, one can slightly improve constraints on the model parameters. In particular, we find that the degeneracy between the lens total mass distribution and the underlying geometry of the Universe, which is probed via angular diameter distance ratios between the lens and sources and the observer and sources, can be partially removed. Allowing cosmological parameters to vary together with the cluster parameters, we find (at 68% confidence level) Ωm = 0.25+ 0.13-0.16 and w = -1.07+ 0.16-0.42 for a flat ΛCDM model, and Ωm = 0.31+ 0.12-0.13 and ΩΛ = 0.38+ 0.38-0.27 for a Universe with w = -1 and free curvature. Finally, using toy models mimicking the overall configuration of multiple images and cluster total mass distribution, we estimate the impact of the line-of-sight mass structure on the positional rms to be 0.̋3 ± 0. We argue that the apparent sensitivity of our lensing model to cosmography is due to the combination of the regular potential shape of RXC J2248, a large number of bona fide multiple images out to z = 6.1, and a relatively modest presence of intervening large-scale structure, as revealed by our spectroscopic survey.

  18. Spatiotemporal Clustering of Mycobacterium tuberculosis Complex Genotypes in Florida: Genetic Diversity Segregated by Country of Birth

    PubMed Central

    Séraphin, Marie Nancy; Lauzardo, Michael; Morris, J. Glenn; Blackburn, Jason K.

    2016-01-01

    Background Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts. Methods We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped using spoligotyping and 24-locus MIRU-VNTR. We mapped the genetic diversity to the centroid of patient residential zip codes using a geographic information system (GIS). We assessed transmission dynamics and the influence of immigration on genotype clustering using space-time permutation models adjusted for foreign-born population density and county-level HIV risk and multinomial models stratified by country of birth and timing of immigration in SaTScan. Principal Findings Among the 2,510 strains, 1,245 were reported among foreign-born persons; including 408 recent immigrants (<5 years). Strain allelic diversity (h) ranged from low to medium in most locations and was most diverse in urban centers where foreign-born population density was also high. Overall, 21.5% of cases among U.S.-born persons and 4.6% among foreign-born persons clustered genotypically and spatiotemporally and involved strains of the Haarlem family. One Haarlem space-time cluster identified in the mostly rural northern region of Florida included US/Canada-born individuals incarcerated at the time of diagnosis; two clusters in the mostly urban southern region of Florida were composed predominantly of foreign-born persons. Both groups had HIV prevalence above twenty percent. Conclusions/Significance Almost five percent of TB cases reported in Florida during 2009–2013 were potentially due to recent transmission. Improvements to TB screening practices among the prison population and recent immigrants are likely to impact TB control. Due to the monomorphic nature of available markers, whole genome sequencing is needed to conclusively delineate recent transmission events between U.S. and foreign-born persons. PMID:27093156

  19. Earthquake Predictability: Results From Aggregating Seismicity Data And Assessment Of Theoretical Individual Cases Via Synthetic Data

    NASA Astrophysics Data System (ADS)

    Adamaki, A.; Roberts, R.

    2016-12-01

    For many years an important aim in seismological studies has been forecasting the occurrence of large earthquakes. Despite some well-established statistical behavior of earthquake sequences, expressed by e.g. the Omori law for aftershock sequences and the Gutenburg-Richter distribution of event magnitudes, purely statistical approaches to short-term earthquake prediction have in general not been successful. It seems that better understanding of the processes leading to critical stress build-up prior to larger events is necessary to identify useful precursory activity, if this exists, and statistical analyses are an important tool in this context. There has been considerable debate on the usefulness or otherwise of foreshock studies for short-term earthquake prediction. We investigate generic patterns of foreshock activity using aggregated data and by studying not only strong but also moderate magnitude events. Aggregating empirical local seismicity time series prior to larger events observed in and around Greece reveals a statistically significant increasing rate of seismicity over 20 days prior to M>3.5 earthquakes. This increase cannot be explained by tempo-spatial clustering models such as ETAS, implying genuine changes in the mechanical situation just prior to larger events and thus the possible existence of useful precursory information. Because of tempo-spatial clustering, including aftershocks to foreshocks, even if such generic behavior exists it does not necessarily follow that foreshocks have the potential to provide useful precursory information for individual larger events. Using synthetic catalogs produced based on different clustering models and different presumed system sensitivities we are now investigating to what extent the apparently established generic foreshock rate acceleration may or may not imply that the foreshocks have potential in the context of routine forecasting of larger events. Preliminary results suggest that this is the case, but that it is likely that physically-based models of foreshock clustering will be a necessary, but not necessarily sufficient, basis for successful forecasting.

  20. Electric-field–induced assembly and propulsion of chiral colloidal clusters

    PubMed Central

    Ma, Fuduo; Wang, Sijia; Wu, David T.; Wu, Ning

    2015-01-01

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport. PMID:25941383

  1. Doubly stochastic Poisson process models for precipitation at fine time-scales

    NASA Astrophysics Data System (ADS)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  2. Simulating radiative feedback and star cluster formation in GMCs - II. Mass dependence of cloud destruction and cluster properties

    NASA Astrophysics Data System (ADS)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.

    2017-09-01

    The process of radiative feedback in giant molecular clouds (GMCs) is an important mechanism for limiting star cluster formation through the heating and ionization of the surrounding gas. We explore the degree to which radiative feedback affects early (≲5 Myr) cluster formation in GMCs having masses that range from 104 to 106 M⊙ using the flash code. The inclusion of radiative feedback lowers the efficiency of cluster formation by 20-50 per cent relative to hydrodynamic simulations. Two models in particular - 5 × 104 and 105 M⊙ - show the largest suppression of the cluster formation efficiency, corresponding to a factor of ˜2. For these clouds only, the internal energy, a measure of the energy injected by radiative feedback, exceeds the gravitational potential for a significant amount of time. We find a clear relation between the maximum cluster mass, Mc,max, formed in a GMC and the mass of the GMC itself, MGMC: Mc,max ∝ M_{GMC}^{0.81}. This scaling result suggests that young globular clusters at the necessary scale of 106 M⊙ form within host GMCs of masses near ˜5 × 107 M⊙. We compare simulated cluster mass distributions to the observed embedded cluster mass function [d log (N)/dlog (M) ∝ Mβ where β = -1] and find good agreement (β = -0.99 ± 0.14) only for simulations including radiative feedback, indicating this process is important in controlling the growth of young clusters. However, the high star formation efficiencies, which range from 16 to 21 per cent, and high star formation rates compared to locally observed regions suggest other feedback mechanisms are also important during the formation and growth of stellar clusters.

  3. Consensus-Based Sorting of Neuronal Spike Waveforms

    PubMed Central

    Fournier, Julien; Mueller, Christian M.; Shein-Idelson, Mark; Hemberger, Mike

    2016-01-01

    Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained “ground truth” data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data. PMID:27536990

  4. Consensus-Based Sorting of Neuronal Spike Waveforms.

    PubMed

    Fournier, Julien; Mueller, Christian M; Shein-Idelson, Mark; Hemberger, Mike; Laurent, Gilles

    2016-01-01

    Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained "ground truth" data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data.

  5. Calculations on the half-lives of Cluster decay in two-potential approach

    NASA Astrophysics Data System (ADS)

    Soylu, A.

    The half-lives of the cluster decay (CD) from the isotopes having the known experimental values, the half-lives of the α-decay (AD) of same nuclei and also the branching ratios are obtained, within the framework of two-potential approach with cosh potential including with and without the isospin effects. Using two-potential approach and taking into account the isospin effects in the calculations decrease the rms values and they improve the results. The obtained branching ratios are in good agreement with the experimental ones for some isotopes. It is obtained that the isospin-dependent potentials have an influence on the half-lives of the cluster decays of nuclei. Present calculations would be important for predicting the experimental half-lives and branching ratios for the cluster decays of different types of isotopes.

  6. (16) {C}16C-elastic scattering examined using several models at different energies

    NASA Astrophysics Data System (ADS)

    El-hammamy, M. N.; Attia, A.

    2018-05-01

    In the present paper, the first results concerning the theoretical analysis of the ^{16}C + p reaction by investigating two elastic scattering angular distributions measured at high energy compared to low energy for this system are reported. Several models for the real part of the nuclear potential are tested within the optical model formalism. The imaginary potential has a Woods-Saxon shape with three free parameters. Two types of density distribution and three different cluster structures for ^{16}C are assumed in the analysis. The results are compared with each other as well as with the experimental data to give evidence of the importance of these studied items.

  7. Properties of Vacancy Complexes with Hydrogen and Helium Atoms in Tungsten from First Principles

    DOE PAGES

    Samolyuk, German D.; Osetsky, Yury N.; Stoller, Roger E.

    2016-12-03

    Tungsten and its alloys are the primary candidate materials for plasma-facing components in fusion reactors. The material is exposed to high-energy neutrons and the high flux of helium and hydrogen atoms. In this paper, we have studied the properties of vacancy clusters and their interaction with H and He in W using density functional theory. Convergence of calculations with respect to modeling cell size was investigated. It is demonstrated that vacancy cluster formation energy converges with small cells with a size of 6 × 6 × 6 (432 lattice sites) enough to consider a microvoid of up to six vacanciesmore » with high accuracy. Most of the vacancy clusters containing fewer than six vacancies are unstable. Introducing He or H atoms increases their binding energy potentially making gas-filled bubbles stable. Finally, according to the results of the calculations, the H 2 molecule is unstable in clusters containing six or fewer vacancies.« less

  8. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    PubMed

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.

  9. Preliminary analysis of one year long space climate simulation

    NASA Astrophysics Data System (ADS)

    Facsko, G.; Honkonen, I. J.; Juusola, L.; Viljanen, A.; Vanhamäki, H.; Janhunen, P.; Palmroth, M.; Milan, S. E.

    2013-12-01

    One full year (155 Cluster orbits, from January 29, 2002 to February 2, 2003) is simulated using the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS) in the European Cluster Assimilation Technology project (ECLAT). This enables us to study the performance of a global magnetospheric model in an unprecedented scale both in terms of the amount of available observations and the length of the timeseries that can be compared. The solar wind for the simulated period, obtained from OMNIWeb, is used as input to GUMICS. We present an overview of various comparisons of GUMICS results to observations for the simulated year. Results along the Cluster reference spacecraft orbit to are compared to Cluster measurements. The Cross Polar Cap Potential (CPCP) results are compared to SuperDARN measurements. The IMAGE electrojet indicators (IU, IL) calculated from the ionospheric currents of GUMICS are compared to observations. Finally, Geomagnetically Induced Currents (GIC) calculated from GUMICS results along the Finnish mineral gas pipeline at Mätsälä are also compared to measurements.

  10. Cluster Analysis of Weighted Bipartite Networks: A New Copula-Based Approach

    PubMed Central

    Chessa, Alessandro; Crimaldi, Irene; Riccaboni, Massimo; Trapin, Luca

    2014-01-01

    In this work we are interested in identifying clusters of “positional equivalent” actors, i.e. actors who play a similar role in a system. In particular, we analyze weighted bipartite networks that describes the relationships between actors on one side and features or traits on the other, together with the intensity level to which actors show their features. We develop a methodological approach that takes into account the underlying multivariate dependence among groups of actors. The idea is that positions in a network could be defined on the basis of the similar intensity levels that the actors exhibit in expressing some features, instead of just considering relationships that actors hold with each others. Moreover, we propose a new clustering procedure that exploits the potentiality of copula functions, a mathematical instrument for the modelization of the stochastic dependence structure. Our clustering algorithm can be applied both to binary and real-valued matrices. We validate it with simulations and applications to real-world data. PMID:25303095

  11. Finding gene clusters for a replicated time course study

    PubMed Central

    2014-01-01

    Background Finding genes that share similar expression patterns across samples is an important question that is frequently asked in high-throughput microarray studies. Traditional clustering algorithms such as K-means clustering and hierarchical clustering base gene clustering directly on the observed measurements and do not take into account the specific experimental design under which the microarray data were collected. A new model-based clustering method, the clustering of regression models method, takes into account the specific design of the microarray study and bases the clustering on how genes are related to sample covariates. It can find useful gene clusters for studies from complicated study designs such as replicated time course studies. Findings In this paper, we applied the clustering of regression models method to data from a time course study of yeast on two genotypes, wild type and YOX1 mutant, each with two technical replicates, and compared the clustering results with K-means clustering. We identified gene clusters that have similar expression patterns in wild type yeast, two of which were missed by K-means clustering. We further identified gene clusters whose expression patterns were changed in YOX1 mutant yeast compared to wild type yeast. Conclusions The clustering of regression models method can be a valuable tool for identifying genes that are coordinately transcribed by a common mechanism. PMID:24460656

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Smith, Steven J.; Elvidge, Christopher

    Accurate information of urban areas at regional and global scales is important for both the science and policy-making communities. The Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable light data (NTL) provide a potential way to map urban area and its dynamics economically and timely. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the DMSP/OLS NTL data in five major steps, including data preprocessing, urban cluster segmentation, logistic model development, threshold estimation, and urban extent delineation. Different from previous fixed threshold method with over- and under-estimation issues, in ourmore » method the optimal thresholds are estimated based on cluster size and overall nightlight magnitude in the cluster, and they vary with clusters. Two large countries of United States and China with different urbanization patterns were selected to map urban extents using the proposed method. The result indicates that the urbanized area occupies about 2% of total land area in the US ranging from lower than 0.5% to higher than 10% at the state level, and less than 1% in China, ranging from lower than 0.1% to about 5% at the province level with some municipalities as high as 10%. The derived thresholds and urban extents were evaluated using high-resolution land cover data at the cluster and regional levels. It was found that our method can map urban area in both countries efficiently and accurately. Compared to previous threshold techniques, our method reduces the over- and under-estimation issues, when mapping urban extent over a large area. More important, our method shows its potential to map global urban extents and temporal dynamics using the DMSP/OLS NTL data in a timely, cost-effective way.« less

  13. CRISPR/Cas9: at the cutting edge of hepatology

    PubMed Central

    Pankowicz, Francis P; Jarrett, Kelsey E; Lagor, William R; Bissig, Karl-Dimiter

    2018-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome engineering has revolutionised biomedical science and we are standing on the cusp of medical transformation. The therapeutic potential of this technology is tremendous, however, its translation to the clinic will be challenging. In this article, we review recent progress using this genome editing technology and explore its potential uses in studying and treating diseases of the liver. We discuss the development of new research tools and animal models as well as potential clinical applications, strategies and challenges. PMID:28487442

  14. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  15. Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks.

    PubMed

    Taamneh, Madhar; Taamneh, Salah; Alkheder, Sharaf

    2017-09-01

    Artificial neural networks (ANNs) have been widely used in predicting the severity of road traffic crashes. All available information about previously occurred accidents is typically used for building a single prediction model (i.e., classifier). Too little attention has been paid to the differences between these accidents, leading, in most cases, to build less accurate predictors. Hierarchical clustering is a well-known clustering method that seeks to group data by creating a hierarchy of clusters. Using hierarchical clustering and ANNs, a clustering-based classification approach for predicting the injury severity of road traffic accidents was proposed. About 6000 road accidents occurred over a six-year period from 2008 to 2013 in Abu Dhabi were used throughout this study. In order to reduce the amount of variation in data, hierarchical clustering was applied on the data set to organize it into six different forms, each with different number of clusters (i.e., clusters from 1 to 6). Two ANN models were subsequently built for each cluster of accidents in each generated form. The first model was built and validated using all accidents (training set), whereas only 66% of the accidents were used to build the second model, and the remaining 34% were used to test it (percentage split). Finally, the weighted average accuracy was computed for each type of models in each from of data. The results show that when testing the models using the training set, clustering prior to classification achieves (11%-16%) more accuracy than without using clustering, while the percentage split achieves (2%-5%) more accuracy. The results also suggest that partitioning the accidents into six clusters achieves the best accuracy if both types of models are taken into account.

  16. Clustering of spontaneous recurrent seizures separated by long seizure-free periods: An extended video-EEG monitoring study of a pilocarpine mouse model.

    PubMed

    Lim, Jung-Ah; Moon, Jangsup; Kim, Tae-Joon; Jun, Jin-Sun; Park, Byeongsu; Byun, Jung-Ick; Sunwoo, Jun-Sang; Park, Kyung-Il; Lee, Soon-Tae; Jung, Keun-Hwa; Jung, Ki-Young; Kim, Manho; Jeon, Daejong; Chu, Kon; Lee, Sang Kun

    2018-01-01

    Seizure clustering is a common and significant phenomenon in patients with epilepsy. The clustering of spontaneous recurrent seizures (SRSs) in animal models of epilepsy, including mouse pilocarpine models, has been reported. However, most studies have analyzed seizures for a short duration after the induction of status epilepticus (SE). In this study, we investigated the detailed characteristics of seizure clustering in the chronic stage of a mouse pilocarpine-induced epilepsy model for an extended duration by continuous 24/7 video-EEG monitoring. A seizure cluster was defined as the occurrence of one or more seizures per day for at least three consecutive days and at least five seizures during the cluster period. We analyzed the cluster duration, seizure-free period, cluster interval, and numbers of seizures within and outside the seizure clusters. The video-EEG monitoring began 84.5±33.7 days after the induction of SE and continued for 53.7±20.4 days. Every mouse displayed seizure clusters, and 97.0% of the seizures occurred within a cluster period. The seizure clusters were followed by long seizure-free periods of 16.3±6.8 days, showing a cyclic pattern. The SRSs also occurred in a grouped pattern within a day. We demonstrate that almost all seizures occur in clusters with a cyclic pattern in the chronic stage of a mouse pilocarpine-induced epilepsy model. The seizure-free periods between clusters were long. These findings should be considered when performing in vivo studies using this animal model. Furthermore, this model might be appropriate for studying the unrevealed mechanism of ictogenesis.

  17. Course 4: Density Functional Theory, Methods, Techniques, and Applications

    NASA Astrophysics Data System (ADS)

    Chrétien, S.; Salahub, D. R.

    Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Kuang; Libisch, Florian; Carter, Emily A., E-mail: eac@princeton.edu

    We report a new implementation of the density functional embedding theory (DFET) in the VASP code, using the projector-augmented-wave (PAW) formalism. Newly developed algorithms allow us to efficiently perform optimized effective potential optimizations within PAW. The new algorithm generates robust and physically correct embedding potentials, as we verified using several test systems including a covalently bound molecule, a metal surface, and bulk semiconductors. We show that with the resulting embedding potential, embedded cluster models can reproduce the electronic structure of point defects in bulk semiconductors, thereby demonstrating the validity of DFET in semiconductors for the first time. Compared to ourmore » previous version, the new implementation of DFET within VASP affords use of all features of VASP (e.g., a systematic PAW library, a wide selection of functionals, a more flexible choice of U correction formalisms, and faster computational speed) with DFET. Furthermore, our results are fairly robust with respect to both plane-wave and Gaussian type orbital basis sets in the embedded cluster calculations. This suggests that the density functional embedding method is potentially an accurate and efficient way to study properties of isolated defects in semiconductors.« less

  19. BiP clustering facilitates protein folding in the endoplasmic reticulum.

    PubMed

    Griesemer, Marc; Young, Carissa; Robinson, Anne S; Petzold, Linda

    2014-07-01

    The chaperone BiP participates in several regulatory processes within the endoplasmic reticulum (ER): translocation, protein folding, and ER-associated degradation. To facilitate protein folding, a cooperative mechanism known as entropic pulling has been proposed to demonstrate the molecular-level understanding of how multiple BiP molecules bind to nascent and unfolded proteins. Recently, experimental evidence revealed the spatial heterogeneity of BiP within the nuclear and peripheral ER of S. cerevisiae (commonly referred to as 'clusters'). Here, we developed a model to evaluate the potential advantages of accounting for multiple BiP molecules binding to peptides, while proposing that BiP's spatial heterogeneity may enhance protein folding and maturation. Scenarios were simulated to gauge the effectiveness of binding multiple chaperone molecules to peptides. Using two metrics: folding efficiency and chaperone cost, we determined that the single binding site model achieves a higher efficiency than models characterized by multiple binding sites, in the absence of cooperativity. Due to entropic pulling, however, multiple chaperones perform in concert to facilitate the resolubilization and ultimate yield of folded proteins. As a result of cooperativity, multiple binding site models used fewer BiP molecules and maintained a higher folding efficiency than the single binding site model. These insilico investigations reveal that clusters of BiP molecules bound to unfolded proteins may enhance folding efficiency through cooperative action via entropic pulling.

  20. Role of Grain Crushing in the Alteration of Mechanical and Flow Properties of Sandstones during Mechanical Failure

    NASA Astrophysics Data System (ADS)

    Mirabolghasemi, M.; Prodanovic, M.; Choens, R. C., II; Dewers, T. A.

    2016-12-01

    We present a workflow to study the alteration of flow and mechanical characteristics of sandstones after shear failure, specifically modeling weakening of the formation due to CO2 injection. We use discrete elements method (DEM) to represent each sand grain as a cluster of bonded sub-particles, and model their potential crushing. We also introduce bonds between sand grain clusters to enable the modeling of the mechanical behavior of consolidated sandstones. The model is tuned by comparing our numerical compression tests on single sand grains with the experimental results reported in the literature. Once the mechanical behavior of individual grains is adequately captured by the model, a packing of such grains is subjected to shear stress. Once the packing fails under the imposed shear stress, its mechanical properties, permeability, and porosity are calculated. This test is repeated for various conditions by varying parameters such as the brittleness of single grains (the relative quartz-feldspar content of the grains), normal stress, and cement strength (assuming (chemical) weakening of the inter- and intra-grain-cluster bonds due to CO2 injection). We specifically compare the effect of cement/bond strength weakening on mechanical properties to triaxial compression experimental measurements before and after hydrous scCO2 and CO2-saturated brine injection in Boise sandstone performed in Sandia National Laboratory.

  1. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers in the local Universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. If black holes were born with significant natal kicks, comparable to those of neutron stars, then the merger rate of binary black holes from globular clusters would be comparable to that from the field, with approximately 1 /2 of mergers originating in clusters. Finally we point out that population synthesis results for the field may also be modified by dynamical interactions of binaries taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.

  2. Galaxy clusters and cold dark matter - A low-density unbiased universe?

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue

    1992-01-01

    Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.

  3. Elucidating the Role of Many-Body Forces in Liquid Water. I. Simulations of Water Clusters on the VRT (ASP-W) Potential Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, N; Saykally, R J

    We test the new VRT(ASP-W)II and VRT(ASP-W)III potentials by employing Diffusion Quantum Monte Carlo simulations to calculate the vibrational ground-state properties of water clusters. These potentials are fits of the highly detailed ASP-W ab initio potential to (D{sub 2}O){sub 2} microwave and far-IR data, and along with the SAPT5s potentials, are the most accurate water dimer potential surfaces in the literature. The results from VRT(ASP-W)II and III are compare to those from the original ASP-W potential, the SAPT5s family of potentials, and several bulk water potentials. Only VRT(ASP-W)II and the spectroscopically ''tuned'' SAPT5st (with N-body induction included) accurately reproduce themore » vibrational ground-state structures of water clusters up to the hexamer. Finally, the importance of many-body induction and three-body dispension are examined, and it is shown that the latter can have significant effects on water cluster properties despite its small magnitude.« less

  4. Microscopic analysis of Be,1110 elastic scattering on protons and nuclei, and breakup processes of 11Be within the 10Be +n cluster model

    NASA Astrophysics Data System (ADS)

    Lukyanov, V. K.; Kadrev, D. N.; Zemlyanaya, E. V.; Spasova, K.; Lukyanov, K. V.; Antonov, A. N.; Gaidarov, M. K.

    2015-03-01

    The density distributions of 10Be and 11Be nuclei obtained within the quantum Monte Carlo model and the generator coordinate method are used to calculate the microscopic optical potentials (OPs) and cross sections of elastic scattering of these nuclei on protons and 12C at energies E <100 MeV/nucleon. The real part of the OP is calculated using the folding model with the exchange terms included, while the imaginary part of the OP that reproduces the phase of scattering is obtained in the high-energy approximation. In this hybrid model of OP the free parameters are the depths of the real and imaginary parts obtained by fitting the experimental data. The well-known energy dependence of the volume integrals is used as a physical constraint to resolve the ambiguities of the parameter values. The role of the spin-orbit potential and the surface contribution to the OP is studied for an adequate description of available experimental elastic scattering cross-section data. Also, the cluster model, in which 11Be consists of a n -halo and the 10Be core, is adopted. Within the latter, the breakup cross sections of 11Be nucleus on 9Be,93Nb,181Ta , and 238U targets and momentum distributions of 10Be fragments are calculated and compared with the existing experimental data.

  5. A Wsbnd Ne interatomic potential for simulation of neon implantation in tungsten

    NASA Astrophysics Data System (ADS)

    Backman, Marie; Juslin, Niklas; Huang, Guiyang; Wirth, Brian D.

    2016-08-01

    An interatomic pair potential for Wsbnd Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.

  6. Line-of-sight structure toward strong lensing galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Johnson, Traci; Sharon, Keren

    2014-03-01

    We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 ≤ z ≤ 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines ofmore » sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ ≤ 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses.« less

  7. Galaxy evolution in the densest environments: HST imaging

    NASA Astrophysics Data System (ADS)

    Jorgensen, Inger

    2013-10-01

    We propose to process in a consistent fashion all available HST/ACS and WFC3 imaging of seven rich clusters of galaxies at z=1.2-1.6. The clusters are part of our larger project aimed at constraining models for galaxy evolution in dense environments from observations of stellar populations in rich z=1.2-2 galaxy clusters. The main objective is to establish the star formation {SF} history and structural evolution over this epoch during which large changes in SF rates and galaxy structure are expected to take place in cluster galaxies.The observational data required to meet our main objective are deep HST imaging and high S/N spectroscopy of individual cluster members. The HST imaging already exists for the seven rich clusters at z=1.2-1.6 included in this archive proposal. However, the data have not been consistently processed to derive colors, magnitudes, sizes and morphological parameters for all potential cluster members bright enough to be suitable for spectroscopic observations with 8-m class telescopes. We propose to carry out this processing and make all derived parameters publicly available. We will use the parameters derived from the HST imaging to {1} study the structural evolution of the galaxies, {2} select clusters and galaxies for spectroscopic observations, and {3} use the photometry and spectroscopy together for a unified analysis aimed at the SF history and structural changes. The analysis will also utilize data from the Gemini/HST Cluster Galaxy Project, which covers rich clusters at z=0.2-1.0 and for which we have similar HST imaging and high S/N spectroscopy available.

  8. Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.

    PubMed

    Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra

    2006-01-14

    We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.

  9. Data mining to support simulation modeling of patient flow in hospitals.

    PubMed

    Isken, Mark W; Rajagopalan, Balaji

    2002-04-01

    Spiraling health care costs in the United States are driving institutions to continually address the challenge of optimizing the use of scarce resources. One of the first steps towards optimizing resources is to utilize capacity effectively. For hospital capacity planning problems such as allocation of inpatient beds, computer simulation is often the method of choice. One of the more difficult aspects of using simulation models for such studies is the creation of a manageable set of patient types to include in the model. The objective of this paper is to demonstrate the potential of using data mining techniques, specifically clustering techniques such as K-means, to help guide the development of patient type definitions for purposes of building computer simulation or analytical models of patient flow in hospitals. Using data from a hospital in the Midwest this study brings forth several important issues that researchers need to address when applying clustering techniques in general and specifically to hospital data.

  10. Redox potential tuning by redox-inactive cations in nature's water oxidizing catalyst and synthetic analogues.

    PubMed

    Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A

    2016-04-28

    The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation.

  11. Cn(n=2-4): current status

    NASA Astrophysics Data System (ADS)

    Varandas, A. J. C.; Rocha, C. M. R.

    2018-03-01

    The major aspects of the C2, C3 and C4 elemental carbon clusters are surveyed. For C2, a brief analysis of its current status is presented. Regarding C3, the most recent results obtained in our group are reviewed with emphasis on modelling its potential energy surface which is particularly complicated due to the presence of multiple conical intersections. As for C4, the most stable isomeric forms of both triplet and singlet spin states and their possible interconversion pathways are examined afresh by means of accurate ab initio calculations. The main strategies for modelling the ground triplet C4 potential are also discussed. Starting from a truncated cluster expansion and a previously reported DMBE form for C3, an approximate four-body term is calibrated from the ab initio energies. The final six-dimensional global DMBE form so obtained reproduces all known topographical aspects while providing an accurate description of the C4 linear-rhombic isomerization pathway. It is therefore commended for both spectroscopic and reaction dynamics studies. This article is part of the theme issue `Modern theoretical chemistry'.

  12. Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing.

    PubMed

    Udrescu, Lucreţia; Sbârcea, Laura; Topîrceanu, Alexandru; Iovanovici, Alexandru; Kurunczi, Ludovic; Bogdan, Paul; Udrescu, Mihai

    2016-09-07

    Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications.

  13. Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing

    PubMed Central

    Udrescu, Lucreţia; Sbârcea, Laura; Topîrceanu, Alexandru; Iovanovici, Alexandru; Kurunczi, Ludovic; Bogdan, Paul; Udrescu, Mihai

    2016-01-01

    Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications. PMID:27599720

  14. Universal clustering of dark matter in phase space

    NASA Astrophysics Data System (ADS)

    Zavala, Jesús; Afshordi, Niayesh

    2016-03-01

    We have recently introduced a novel statistical measure of dark matter clustering in phase space, the particle phase-space average density (P2SAD). In a two-paper series, we studied the structure of P2SAD in the Milky Way-size Aquarius haloes, constructed a physically motivated model to describe it, and illustrated its potential as a powerful tool to predict signals sensitive to the nanostructure of dark matter haloes. In this work, we report a remarkable universality of the clustering of dark matter in phase space as measured by P2SAD within the subhaloes of host haloes across different environments covering a range from dwarf-size to cluster-size haloes (1010-1015 M⊙). Simulations show that the universality of P2SAD holds for more than seven orders of magnitude, over a 2D phase space, covering over three orders of magnitude in distance/velocity, with a simple functional form that can be described by our model. Invoking the universality of P2SAD, we can accurately predict the non-linear power spectrum of dark matter at small scales all the way down to the decoupling mass limit of cold dark matter particles. As an application, we compute the subhalo boost to the annihilation of dark matter in a wide range of host halo masses.

  15. From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147

    NASA Astrophysics Data System (ADS)

    Häberlen, Oliver D.; Chung, Sai-Cheong; Stener, Mauro; Rösch, Notker

    1997-03-01

    A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold-gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold-gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold-gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.

  16. Topical ketoprofen nanogel: artificial neural network optimization, clustered bootstrap validation, and in vivo activity evaluation based on longitudinal dose response modeling.

    PubMed

    Elkomy, Mohammed H; Elmenshawe, Shahira F; Eid, Hussein M; Ali, Ahmed M A

    2016-11-01

    This work aimed at investigating the potential of solid lipid nanoparticles (SLN) as carriers for topical delivery of Ketoprofen (KP); evaluating a novel technique incorporating Artificial Neural Network (ANN) and clustered bootstrap for optimization of KP-loaded SLN (KP-SLN); and demonstrating a longitudinal dose response (LDR) modeling-based approach to compare the activity of topical non-steroidal anti-inflammatory drug formulations. KP-SLN was fabricated by a modified emulsion/solvent evaporation method. Box-Behnken design was implemented to study the influence of glycerylpalmitostearate-to-KP ratio, Tween 80, and lecithin concentrations on particle size, entrapment efficiency, and amount of drug permeated through rat skin in 24 hours. Following clustered bootstrap ANN optimization, the optimized KP-SLN was incorporated into an aqueous gel and evaluated for rheology, in vitro release, permeability, skin irritation and in vivo activity using carrageenan-induced rat paw edema model and LDR mathematical model to analyze the time course of anti-inflammatory effect at various application durations. Lipid-to-drug ratio of 7.85 [bootstrap 95%CI: 7.63-8.51], Tween 80 of 1.27% [bootstrap 95%CI: 0.601-2.40%], and Lecithin of 0.263% [bootstrap 95%CI: 0.263-0.328%] were predicted to produce optimal characteristics. Compared with profenid® gel, the optimized KP-SLN gel exhibited slower release, faster permeability, better texture properties, greater efficacy, and similar potency. SLNs are safe and effective permeation enhancers. ANN coupled with clustered bootstrap is a useful method for finding optimal solutions and estimating uncertainty associated with them. LDR models allow mechanistic understanding of comparative in vivo performances of different topical formulations, and help design efficient dermatological bioequivalence assessment methods.

  17. REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, L G; Glaser, R E; Chin, H S

    2004-06-17

    The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goalmore » of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.« less

  18. Electron-induced hydrogen loss in uracil in a water cluster environment

    NASA Astrophysics Data System (ADS)

    Smyth, M.; Kohanoff, J.; Fabrikant, I. I.

    2014-05-01

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A'-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.

  19. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Terletska, Hanna; Moore, C.

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  20. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE PAGES

    Zhang, Yi; Terletska, Hanna; Moore, C.; ...

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  1. A Well-Posed, Objective and Dynamic Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Chetty, Krishna; Vaidheeswaran, Avinash; Sharma, Subash; Clausse, Alejandro; Lopez de Bertodano, Martin

    The transition from dispersed to clustered bubbly flows due to wake entrainment is analyzed with a well-posed and objective one-dimensional (1-D) Two-Fluid Model, derived from variational principles. Modeling the wake entrainment force using the variational technique requires formulation of the inertial coupling coefficient, which defines the kinetic coupling between the phases. The kinetic coupling between a pair of bubbles and the liquid is obtained from potential flow over two-spheres and the results are validated by comparing the virtual mass coefficients with existing literature. The two-body interaction kinetic coupling is then extended to a lumped parameter model for viscous flow over two cylindrical bubbles, to get the Two-Fluid Model for wake entrainment. Linear stability analyses comprising the characteristics and the dispersion relation and non-linear numerical simulations are performed with the 1-D variational Two-Fluid Model to demonstrate the wake entrainment instability leading to clustering of bubbles. Finally, the wavelengths, amplitudes and propagation velocities of the void waves from non-linear simulations are compared with the experimental data.

  2. A theoretical study of water equilibria: The cluster distribution versus temperature and pressure for (H2O)n, n=1-60, and ice

    NASA Astrophysics Data System (ADS)

    Lenz, Annika; Ojamäe, Lars

    2009-10-01

    The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (Cp, ΔH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.

  3. A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)n, n = 1-60, and ice.

    PubMed

    Lenz, Annika; Ojamäe, Lars

    2009-10-07

    The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (C(p), DeltaH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.

  4. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Chen, Guanrong

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding ormore » deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.« less

  5. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  6. Clustering high-dimensional mixed data to uncover sub-phenotypes: joint analysis of phenotypic and genotypic data.

    PubMed

    McParland, D; Phillips, C M; Brennan, L; Roche, H M; Gormley, I C

    2017-12-10

    The LIPGENE-SU.VI.MAX study, like many others, recorded high-dimensional continuous phenotypic data and categorical genotypic data. LIPGENE-SU.VI.MAX focuses on the need to account for both phenotypic and genetic factors when studying the metabolic syndrome (MetS), a complex disorder that can lead to higher risk of type 2 diabetes and cardiovascular disease. Interest lies in clustering the LIPGENE-SU.VI.MAX participants into homogeneous groups or sub-phenotypes, by jointly considering their phenotypic and genotypic data, and in determining which variables are discriminatory. A novel latent variable model that elegantly accommodates high dimensional, mixed data is developed to cluster LIPGENE-SU.VI.MAX participants using a Bayesian finite mixture model. A computationally efficient variable selection algorithm is incorporated, estimation is via a Gibbs sampling algorithm and an approximate BIC-MCMC criterion is developed to select the optimal model. Two clusters or sub-phenotypes ('healthy' and 'at risk') are uncovered. A small subset of variables is deemed discriminatory, which notably includes phenotypic and genotypic variables, highlighting the need to jointly consider both factors. Further, 7 years after the LIPGENE-SU.VI.MAX data were collected, participants underwent further analysis to diagnose presence or absence of the MetS. The two uncovered sub-phenotypes strongly correspond to the 7-year follow-up disease classification, highlighting the role of phenotypic and genotypic factors in the MetS and emphasising the potential utility of the clustering approach in early screening. Additionally, the ability of the proposed approach to define the uncertainty in sub-phenotype membership at the participant level is synonymous with the concepts of precision medicine and nutrition. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Return period estimates for European windstorm clusters: a multi-model perspective

    NASA Astrophysics Data System (ADS)

    Renggli, Dominik; Zimmerli, Peter

    2017-04-01

    Clusters of storms over Europe can lead to very large aggregated losses. Realistic return period estimates for such cluster are therefore of vital interest to the (re)insurance industry. Such return period estimates are usually derived from historical storm activity statistics of the last 30 to 40 years. However, climate models provide an alternative source, potentially representing thousands of simulated storm seasons. In this study, we made use of decadal hindcast data from eight different climate models in the CMIP5 archive. We used an objective tracking algorithm to identify individual windstorms in the climate model data. The algorithm also computes a (population density weighted) Storm Severity Index (SSI) for each of the identified storms (both on a continental and more regional basis). We derived return period estimates for the cluster seasons 1990, 1999, 2013/2014 and 1884 in the following way: For each climate model, we extracted two different exceedance frequency curves. The first describes the exceedance frequency (or the return period as the inverse of it) of a given SSI level due to an individual storm occurrence. The second describes the exceedance frequency of the seasonally aggregated SSI level (i.e. the sum of the SSI values of all storms in a given season). Starting from appropriate return period assumptions for each individual storm of a historical cluster (e.g. Anatol, Lothar and Martin in 1999) and using the first curve, we extracted the SSI levels at the corresponding return periods. Summing these SSI values results in the seasonally aggregated SSI value. Combining this with the second (aggregated) exceedance frequency curve results in return period estimate of the historical cluster season. Since we do this for each model separately, we obtain eight different return period estimates for each historical cluster. In this way, we obtained the following return period estimates: 50 to 80 years for the 1990 season, 20 to 45 years for the 1999 season, 3 to 4 years for the 2013/2014 season, and 14 to 16 years for the 1884 season. More detailed results show substantial variation between five different regions (UK, France, Germany, Benelux and Scandinavia), as expected from the path and footprints of the different events. For example, the 1990 season is estimated to be well beyond a 100-year season for Germany and Benelux. 1999 clearly was an extreme season for France, whereas the1884 was very disruptive for the UK. Such return period estimates can be used as an independent benchmark for other approaches quantifying clustering of European windstorms. The study might also serve as an example to derive similar risk measures also for other climate-related perils from a robust, publicly available data source.

  8. Validating clustering of molecular dynamics simulations using polymer models.

    PubMed

    Phillips, Joshua L; Colvin, Michael E; Newsam, Shawn

    2011-11-14

    Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers.

  9. Validating clustering of molecular dynamics simulations using polymer models

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers. PMID:22082218

  10. Bayesian hierarchical models for cost-effectiveness analyses that use data from cluster randomized trials.

    PubMed

    Grieve, Richard; Nixon, Richard; Thompson, Simon G

    2010-01-01

    Cost-effectiveness analyses (CEA) may be undertaken alongside cluster randomized trials (CRTs) where randomization is at the level of the cluster (for example, the hospital or primary care provider) rather than the individual. Costs (and outcomes) within clusters may be correlated so that the assumption made by standard bivariate regression models, that observations are independent, is incorrect. This study develops a flexible modeling framework to acknowledge the clustering in CEA that use CRTs. The authors extend previous Bayesian bivariate models for CEA of multicenter trials to recognize the specific form of clustering in CRTs. They develop new Bayesian hierarchical models (BHMs) that allow mean costs and outcomes, and also variances, to differ across clusters. They illustrate how each model can be applied using data from a large (1732 cases, 70 primary care providers) CRT evaluating alternative interventions for reducing postnatal depression. The analyses compare cost-effectiveness estimates from BHMs with standard bivariate regression models that ignore the data hierarchy. The BHMs show high levels of cost heterogeneity across clusters (intracluster correlation coefficient, 0.17). Compared with standard regression models, the BHMs yield substantially increased uncertainty surrounding the cost-effectiveness estimates, and altered point estimates. The authors conclude that ignoring clustering can lead to incorrect inferences. The BHMs that they present offer a flexible modeling framework that can be applied more generally to CEA that use CRTs.

  11. Active Galactic Nucleus Feedback with the Square Kilometre Array and Implications for Cluster Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Iqbal, Asif; Kale, Ruta; Majumdar, Subhabrata; Nath, Biman B.; Pandge, Mahadev; Sharma, Prateek; Malik, Manzoor A.; Raychaudhury, Somak

    2017-12-01

    Active Galactic Nuclei (AGN) feedback is regarded as an important non-gravitational process in galaxy clusters, providing useful constraints on large-scale structure formation. It modifies the structure and energetics of the intra-cluster medium (ICM) and hence its understanding is crucially needed in order to use clusters as high precision cosmological probes. In this context, particularly keeping in mind the upcoming high quality radio data expected from radio surveys like Square Kilometre Array (SKA) with its higher sensitivity, high spatial and spectral resolutions, we review our current understanding of AGN feedback, its cosmological implications and the impact that SKA can have in revolutionizing our understanding of AGN feedback in large-scale structures. Recent developments regarding the AGN outbursts and its possible contribution to excess entropy in the hot atmospheres of groups and clusters, its correlation with the feedback energy in ICM, quenching of cooling flows and the possible connection between cool core clusters and radio mini-halos, are discussed. We describe current major issues regarding modeling of AGN feedback and its impact on the surrounding medium. With regard to the future of AGN feedback studies, we examine the possible breakthroughs that can be expected from SKA observations. In the context of cluster cosmology, for example, we point out the importance of SKA observations for cluster mass calibration by noting that most of z>1 clusters discovered by eROSITA X-ray mission can be expected to be followed up through a 1000 hour SKA1-mid programme. Moreover, approximately 1000 radio mini halos and ˜ 2500 radio halos at z<0.6 can be potentially detected by SKA1 and SKA2 and used as tracers of galaxy clusters and determination of cluster selection function.

  12. Isotropic model for cluster growth on a regular lattice

    NASA Astrophysics Data System (ADS)

    Yates, Christian A.; Baker, Ruth E.

    2013-08-01

    There exists a plethora of mathematical models for cluster growth and/or aggregation on regular lattices. Almost all suffer from inherent anisotropy caused by the regular lattice upon which they are grown. We analyze the little-known model for stochastic cluster growth on a regular lattice first introduced by Ferreira Jr. and Alves [J. Stat. Mech. Theo. & Exp.1742-546810.1088/1742-5468/2006/11/P11007 (2006) P11007], which produces circular clusters with no discernible anisotropy. We demonstrate that even in the noise-reduced limit the clusters remain circular. We adapt the model by introducing a specific rearrangement algorithm so that, rather than adding elements to the cluster from the outside (corresponding to apical growth), our model uses mitosis-like cell splitting events to increase the cluster size. We analyze the surface scaling properties of our model and compare it to the behavior of more traditional models. In “1+1” dimensions we discover and explore a new, nonmonotonic surface thickness scaling relationship which differs significantly from the Family-Vicsek scaling relationship. This suggests that, for models whose clusters do not grow through particle additions which are solely dependent on surface considerations, the traditional classification into “universality classes” may not be appropriate.

  13. Dielectric aggregation kinetics of cells in a uniform AC electric field.

    PubMed

    Tada, Shigeru; Natsuya, Tomoyuki; Tsukamoto, Akira

    2014-01-01

    Cell manipulation and separation technologies have potential biological and medical applications, including advanced clinical protocols such as tissue engineering. An aggregation model was developed for a human carcinoma (HeLa) cell suspension exposed to a uniform AC electric field, in order to explore the field-induced structure formation and kinetics of cell aggregates. The momentum equations of cells under the action of the dipole-dipole interaction were solved theoretically and the total time required to form linear string-like cluster was derived. The results were compared with those of a numerical simulation. Experiments using HeLa cells were also performed for comparison. The total time required to form linear string-like clusters was derived from a simple theoretical model of the cell cluster kinetics. The growth rates of the average string length of cell aggregates showed good agreement with those of the numerical simulation. In the experiment, cells were found to form massive clusters on the bottom of a chamber. The results imply that the string-like cluster grows rapidly by longitudinal attraction when the electric field is first applied and that this process slows at later times and is replaced by lateral coagulation of short strings. The findings presented here are expected to enable design of methods for the organization of three-dimensional (3D) cellular structures without the use of micro-fabricated substrates, such as 3D biopolymer scaffolds, to manipulate cells into spatial arrangement.

  14. Statistical model and first-principles simulation on concentration of HenV cluster and He bubble formation in α-Fe and W

    NASA Astrophysics Data System (ADS)

    Liu, Yue-Lin; Yu, Yang; Dai, Zhen-Hong

    2015-01-01

    Using first-principles calculations, we investigate the stabilities of He and Hen-vacancy (HenV) clusters in α-Fe and W. Vacancy formation energies are 2.08 eV in α-Fe and 3.11 eV in W, respectively. Single He in both α-Fe and W prefers to occupy the tetrahedral interstitial site. We recalculated the He solution energy considering the effect of zero-point energy (ZPE). The ZPEs of He in α-Fe and W at the tetrahedral (octahedral) interstitial site are 0.072 eV (0.031 eV) and 0.078 eV (0.034 eV), respectively. The trapping energies of single He at vacancy in α-Fe and W are -2.39 eV and -4.55 eV, respectively. By sequentially adding He into vacancy, a monovacancy trap up to 10 He atoms distributing in the vacancy vicinity. Based on the above results combined with statistical model, we evaluate the concentrations of all relevant HenV clusters as a function of He chemical potential. The critical HenV concentration is found to be ∼10-40 (atomic) at the critical temperature T = 600 K in α-Fe and T = 1600 K in W, respectively. Beyond the critical HenV concentrations, considerable HenV aggregate to form HenVm clusters. By further growing of HenVm, the HenVm clusters grow bigger resulting in the larger He bubble formation.

  15. Self-confinement of finite dust clusters in isotropic plasmas.

    PubMed

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  16. Three-dimensional structural modelling and calculation of electrostatic potentials of HLA Bw4 and Bw6 epitopes to explain the molecular basis for alloantibody binding: toward predicting HLA antigenicity and immunogenicity.

    PubMed

    Mallon, Dermot H; Bradley, J Andrew; Winn, Peter J; Taylor, Craig J; Kosmoliaptsis, Vasilis

    2015-02-01

    We have previously shown that qualitative assessment of surface electrostatic potential of HLA class I molecules helps explain serological patterns of alloantibody binding. We have now used a novel computational approach to quantitate differences in surface electrostatic potential of HLA B-cell epitopes and applied this to explain HLA Bw4 and Bw6 antigenicity. Protein structure models of HLA class I alleles expressing either the Bw4 or Bw6 epitope (defined by sequence motifs at positions 77 to 83) were generated using comparative structure prediction. The electrostatic potential in 3-dimensional space encompassing the Bw4/Bw6 epitope was computed by solving the Poisson-Boltzmann equation and quantitatively compared in a pairwise, all-versus-all fashion to produce distance matrices that cluster epitopes with similar electrostatics properties. Quantitative comparison of surface electrostatic potential at the carboxyl terminal of the α1-helix of HLA class I alleles, corresponding to amino acid sequence motif 77 to 83, produced clustering of HLA molecules in 3 principal groups according to Bw4 or Bw6 epitope expression. Remarkably, quantitative differences in electrostatic potential reflected known patterns of serological reactivity better than Bw4/Bw6 amino acid sequence motifs. Quantitative assessment of epitope electrostatic potential allowed the impact of known amino acid substitutions (HLA-B*07:02 R79G, R82L, G83R) that are critical for antibody binding to be predicted. We describe a novel approach for quantitating differences in HLA B-cell epitope electrostatic potential. Proof of principle is provided that this approach enables better assessment of HLA epitope antigenicity than amino acid sequence data alone, and it may allow prediction of HLA immunogenicity.

  17. Re-examining the tetraphenyl-arsonium/tetraphenyl-borate (TATB) hypothesis for single-ion solvation free energies

    NASA Astrophysics Data System (ADS)

    Pollard, Travis P.; Beck, Thomas L.

    2018-06-01

    Attempts to establish an absolute single-ion hydration free energy scale have followed multiple strategies. Two central themes consist of (1) employing bulk pair thermodynamic data and an underlying interfacial-potential-free model to partition the hydration free energy into individual contributions [Marcus, Latimer, and tetraphenyl-arsonium/tetraphenyl-borate (TATB) methods] or (2) utilizing bulk thermodynamic and cluster data to estimate the free energy to insert a proton into water, including in principle an interfacial potential contribution [the cluster pair approximation (CPA)]. While the results for the hydration free energy of the proton agree remarkably well between the three approaches in the first category, the value differs from the CPA result by roughly +10 kcal/mol, implying a value for the effective electrochemical surface potential of water of -0.4 V. This paper provides a computational re-analysis of the TATB method for single-ion free energies using quasichemical theory. A previous study indicated a significant discrepancy between the free energies of hydration for the TA cation and the TB anion. We show that the main contribution to this large computed difference is an electrostatic artifact arising from modeling interactions in periodic boundaries. No attempt is made here to develop more accurate models for the local ion/solvent interactions that may lead to further small free energy differences between the TA and TB ions, but the results clarify the primary importance of interfacial potential effects for analysis of the various free energy scales. Results are also presented, related to the TATB assumption in the organic solvents dimethyl sulfoxide and 1,2-dichloroethane.

  18. Stepwise microhydration of aromatic amide cations: water solvation networks revealed by the infrared spectra of acetanilide+-(H2O)n clusters (n ≤ 3).

    PubMed

    Klyne, Johanna; Schmies, Matthias; Miyazaki, Mitsuhiko; Fujii, Masaaki; Dopfer, Otto

    2018-01-31

    The structure and activity of peptides and proteins strongly rely on their charge state and the interaction with their hydration environment. Here, infrared photodissociation (IRPD) spectra of size-selected microhydrated clusters of cationic acetanilide (AA + , N-phenylacetamide), AA + -(H 2 O) n with n ≤ 3, are analysed by dispersion-corrected density functional theory calculations at the ωB97X-D/aug-cc-pVTZ level to determine the stepwise microhydration process of this aromatic peptide model. The IRPD spectra are recorded in the informative X-H stretch (ν OH , ν NH , ν CH , amide A, 2800-3800 cm -1 ) and fingerprint (amide I-II, 1000-1900 cm -1 ) ranges to probe the preferred hydration motifs and the cluster growth. In the most stable AA + -(H 2 O) n structures, the H 2 O ligands solvate the acidic NH proton of the amide by forming a hydrogen-bonded solvent network, which strongly benefits from cooperative effects arising from the excess positive charge. Comparison with neutral AA-H 2 O reveals the strong impact of ionization on the acidity of the NH proton and the topology of the interaction potential. Comparison with related hydrated formanilide clusters demonstrates the influence of methylation of the amide group (H → CH 3 ) on the shape of the intermolecular potential and the structure of the hydration shell.

  19. Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team

    2017-01-01

    We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.

  20. Suicide Clusters: A Review of Risk Factors and Mechanisms

    ERIC Educational Resources Information Center

    Haw, Camilla; Hawton, Keith; Niedzwiedz, Claire; Platt, Steve

    2013-01-01

    Suicide clusters, although uncommon, cause great concern in the communities in which they occur. We searched the world literature on suicide clusters and describe the risk factors and proposed psychological mechanisms underlying the spatio-temporal clustering of suicides (point clusters). Potential risk factors include male gender, being an…

  1. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function.

    PubMed

    Goad, David M; Zhu, Chuanmei; Kellogg, Elizabeth A

    2017-10-01

    CLV3/ESR (CLE) proteins are important signaling peptides in plants. The short CLE peptide (12-13 amino acids) is cleaved from a larger pre-propeptide and functions as an extracellular ligand. The CLE family is large and has resisted attempts at classification because the CLE domain is too short for reliable phylogenetic analysis and the pre-propeptide is too variable. We used a model-based search for CLE domains from 57 plant genomes and used the entire pre-propeptide for comprehensive clustering analysis. In total, 1628 CLE genes were identified in land plants, with none recognizable from green algae. These CLEs form 12 groups within which CLE domains are largely conserved and pre-propeptides can be aligned. Most clusters contain sequences from monocots, eudicots and Amborella trichopoda, with sequences from Picea abies, Selaginella moellendorffii and Physcomitrella patens scattered in some clusters. We easily identified previously known clusters involved in vascular differentiation and nodulation. In addition, we found a number of discrete groups whose function remains poorly characterized. Available data indicate that CLE proteins within a cluster are likely to share function, whereas those from different clusters play at least partially different roles. Our analysis provides a foundation for future evolutionary and functional studies. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation

    PubMed Central

    Heidelberg, John F.; Tully, Benjamin J.

    2017-01-01

    Metagenomics has become an integral part of defining microbial diversity in various environments. Many ecosystems have characteristically low biomass and few cultured representatives. Linking potential metabolisms to phylogeny in environmental microorganisms is important for interpreting microbial community functions and the impacts these communities have on geochemical cycles. However, with metagenomic studies there is the computational hurdle of ‘binning’ contigs into phylogenetically related units or putative genomes. Binning methods have been implemented with varying approaches such as k-means clustering, Gaussian mixture models, hierarchical clustering, neural networks, and two-way clustering; however, many of these suffer from biases against low coverage/abundance organisms and closely related taxa/strains. We are introducing a new binning method, BinSanity, that utilizes the clustering algorithm affinity propagation (AP), to cluster assemblies using coverage with compositional based refinement (tetranucleotide frequency and percent GC content) to optimize bins containing multiple source organisms. This separation of composition and coverage based clustering reduces bias for closely related taxa. BinSanity was developed and tested on artificial metagenomes varying in size and complexity. Results indicate that BinSanity has a higher precision, recall, and Adjusted Rand Index compared to five commonly implemented methods. When tested on a previously published environmental metagenome, BinSanity generated high completion and low redundancy bins corresponding with the published metagenome-assembled genomes. PMID:28289564

  3. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    PubMed

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  4. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  5. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    DOE PAGES

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; ...

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN) 3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  6. Elucidating the role of many-body forces in liquid water. I. Simulations of water clusters on the VRT(ASP-W) potential surfaces.

    PubMed

    Goldman, Nir; Saykally, R J

    2004-03-08

    We test two new potentials for water, fit to vibration-rotation tunneling (VRT) data by employing diffusion quantum Monte Carlo simulations to calculate the vibrational ground-state properties of water clusters. These potentials, VRT(ASP-W)II and VRT(ASP-W)III, are fits of the highly detailed ASP-W (anisotropic site potential with Woermer dispersion) ab initio potential to (D(2)O)(2) microwave and far-infrared data, and along with the SAPT5s (five-site symmetry adapted perturbation theory) potentials, are the most accurate water dimer potential surfaces in the literature. The results from VRT(ASP-W)II and III are compared to those from the original ASP-W potential, the SAPT5s family of potentials, and several bulk water potentials. Only VRT(ASP-W)III and the spectroscopically "tuned" SAPT5st (with N-body induction included) accurately reproduce the vibrational ground-state structures of water clusters up to the hexamer. Finally, the importance of many-body induction and three-body dispersion are examined, and it is shown that the latter can have significant effects on water cluster properties despite its small magnitude.

  7. Elucidating the role of many-body forces in liquid water. I. Simulations of water clusters on the VRT(ASP-W) potential surfaces

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Saykally, R. J.

    2004-03-01

    We test two new potentials for water, fit to vibration-rotation tunneling (VRT) data by employing diffusion quantum Monte Carlo simulations to calculate the vibrational ground-state properties of water clusters. These potentials, VRT(ASP-W)II and VRT(ASP-W)III, are fits of the highly detailed ASP-W (anisotropic site potential with Woermer dispersion) ab initio potential to (D2O)2 microwave and far-infrared data, and along with the SAPT5s (five-site symmetry adapted perturbation theory) potentials, are the most accurate water dimer potential surfaces in the literature. The results from VRT(ASP-W)II and III are compared to those from the original ASP-W potential, the SAPT5s family of potentials, and several bulk water potentials. Only VRT(ASP-W)III and the spectroscopically "tuned" SAPT5st (with N-body induction included) accurately reproduce the vibrational ground-state structures of water clusters up to the hexamer. Finally, the importance of many-body induction and three-body dispersion are examined, and it is shown that the latter can have significant effects on water cluster properties despite its small magnitude.

  8. A user credit assessment model based on clustering ensemble for broadband network new media service supervision

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Cao, San-xing; Lu, Rui

    2012-04-01

    This paper proposes a user credit assessment model based on clustering ensemble aiming to solve the problem that users illegally spread pirated and pornographic media contents within the user self-service oriented broadband network new media platforms. Its idea is to do the new media user credit assessment by establishing indices system based on user credit behaviors, and the illegal users could be found according to the credit assessment results, thus to curb the bad videos and audios transmitted on the network. The user credit assessment model based on clustering ensemble proposed by this paper which integrates the advantages that swarm intelligence clustering is suitable for user credit behavior analysis and K-means clustering could eliminate the scattered users existed in the result of swarm intelligence clustering, thus to realize all the users' credit classification automatically. The model's effective verification experiments are accomplished which are based on standard credit application dataset in UCI machine learning repository, and the statistical results of a comparative experiment with a single model of swarm intelligence clustering indicates this clustering ensemble model has a stronger creditworthiness distinguishing ability, especially in the aspect of predicting to find user clusters with the best credit and worst credit, which will facilitate the operators to take incentive measures or punitive measures accurately. Besides, compared with the experimental results of Logistic regression based model under the same conditions, this clustering ensemble model is robustness and has better prediction accuracy.

  9. In vitro motility evaluation of aggregated cancer cells by means of automatic image processing.

    PubMed

    De Hauwer, C; Darro, F; Camby, I; Kiss, R; Van Ham, P; Decaesteker, C

    1999-05-01

    Set up of an automatic image processing based method that enables the motility of in vitro aggregated cells to be evaluated for a number of hours. Our biological model included the PC-3 human prostate cancer cell line growing as a monolayer on the bottom of Falcon plastic dishes containing conventional culture media. Our equipment consisted of an incubator, an inverted phase contrast microscope, a Charge Coupled Device (CCD) video camera, and a computer equipped with an image processing software developed in our laboratory. This computer-assisted microscope analysis of aggregated cells enables global cluster motility to be evaluated. This analysis also enables the trajectory of each cell to be isolated and parametrized within a given cluster or, indeed, the trajectories of individual cells outside a cluster. The results show that motility inside a PC-3 cluster is not restricted to slight motion due to cluster expansion, but rather consists of a marked cell movement within the cluster. The proposed equipment enables in vitro aggregated cell motility to be studied. This method can, therefore, be used in pharmacological studies in order to select anti-motility related compounds. The compounds selected by the equipment described could then be tested in vivo as potential anti-metastatic.

  10. Clustering of longitudinal data by using an extended baseline: A new method for treatment efficacy clustering in longitudinal data.

    PubMed

    Schramm, Catherine; Vial, Céline; Bachoud-Lévi, Anne-Catherine; Katsahian, Sandrine

    2018-01-01

    Heterogeneity in treatment efficacy is a major concern in clinical trials. Clustering may help to identify the treatment responders and the non-responders. In the context of longitudinal cluster analyses, sample size and variability of the times of measurements are the main issues with the current methods. Here, we propose a new two-step method for the Clustering of Longitudinal data by using an Extended Baseline. The first step relies on a piecewise linear mixed model for repeated measurements with a treatment-time interaction. The second step clusters the random predictions and considers several parametric (model-based) and non-parametric (partitioning, ascendant hierarchical clustering) algorithms. A simulation study compares all options of the clustering of longitudinal data by using an extended baseline method with the latent-class mixed model. The clustering of longitudinal data by using an extended baseline method with the two model-based algorithms was the more robust model. The clustering of longitudinal data by using an extended baseline method with all the non-parametric algorithms failed when there were unequal variances of treatment effect between clusters or when the subgroups had unbalanced sample sizes. The latent-class mixed model failed when the between-patients slope variability is high. Two real data sets on neurodegenerative disease and on obesity illustrate the clustering of longitudinal data by using an extended baseline method and show how clustering may help to identify the marker(s) of the treatment response. The application of the clustering of longitudinal data by using an extended baseline method in exploratory analysis as the first stage before setting up stratified designs can provide a better estimation of treatment effect in future clinical trials.

  11. Kinetics of copper growth on graphene revealed by time-resolved small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Hodas, M.; Siffalovic, P.; Jergel, M.; Pelletta, M.; Halahovets, Y.; Vegso, K.; Kotlar, M.; Majkova, E.

    2017-01-01

    Metal growth on graphene has many applications. Transition metals are known to favor three-dimensional (3D) cluster growth on graphene. Copper is of particular interest for cost-effective surface-supported catalysis applications and as a contact material in electronics. This paper presents an in situ real-time study of Cu growth kinetics on graphene covering all stages preceding formation of a continuous film performed by laboratory-based grazing-incidence small-angle x-ray scattering (GISAXS) technique. In particular, nucleation and 3D cluster growth, coalescence, and percolation stages were identified. The cluster nucleation saturates after reaching a density of 1012c m-2 at ≈1 monolayer thickness. A Kratky plot and a paracrystal model with cumulative structural disorder were necessary to evaluate properly cluster growth and coalescence, respectively. The power law scaling constants 0.27 ±0.05 and 0.81 ±0.02 of the temporal evolution of Cu cluster size suggest the growth of isolated clusters and dynamic cluster coalescence keeping the cluster shape, respectively. Coalescence and percolation thresholds occur at Cu thicknesses of 2 ±0.4 and 8.8 ±0.7 nm , respectively. This paper demonstrates the potential of laboratory-based in situ GISAXS as a vital diagnostic tool for tailoring a large variety of Cu nanostructures on graphene based on an in situ Cu growth monitoring which is applicable in a broad range of deposition times.

  12. MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO

    NASA Astrophysics Data System (ADS)

    Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.

    2018-04-01

    We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up observations due to its almost unique combination of high-mass and dark matter halo concentration, as well as having observed lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-Deep Field' (WMDF) GTO program.

  13. fast_protein_cluster: parallel and optimized clustering of large-scale protein modeling data.

    PubMed

    Hung, Ling-Hong; Samudrala, Ram

    2014-06-15

    fast_protein_cluster is a fast, parallel and memory efficient package used to cluster 60 000 sets of protein models (with up to 550 000 models per set) generated by the Nutritious Rice for the World project. fast_protein_cluster is an optimized and extensible toolkit that supports Root Mean Square Deviation after optimal superposition (RMSD) and Template Modeling score (TM-score) as metrics. RMSD calculations using a laptop CPU are 60× faster than qcprot and 3× faster than current graphics processing unit (GPU) implementations. New GPU code further increases the speed of RMSD and TM-score calculations. fast_protein_cluster provides novel k-means and hierarchical clustering methods that are up to 250× and 2000× faster, respectively, than Clusco, and identify significantly more accurate models than Spicker and Clusco. fast_protein_cluster is written in C++ using OpenMP for multi-threading support. Custom streaming Single Instruction Multiple Data (SIMD) extensions and advanced vector extension intrinsics code accelerate CPU calculations, and OpenCL kernels support AMD and Nvidia GPUs. fast_protein_cluster is available under the M.I.T. license. (http://software.compbio.washington.edu/fast_protein_cluster) © The Author 2014. Published by Oxford University Press.

  14. Composition formulas of binary eutectics

    PubMed Central

    Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  15. The Effects of Including Observed Means or Latent Means as Covariates in Multilevel Models for Cluster Randomized Trials

    ERIC Educational Resources Information Center

    Aydin, Burak; Leite, Walter L.; Algina, James

    2016-01-01

    We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…

  16. SPINE: SParse eIgengene NEtwork linking gene expression clusters in Dehalococcoides mccartyi to perturbations in experimental conditions

    DOE PAGES

    Mansfeldt, Cresten B.; Logsdon, Benjamin A.; Debs, Garrett E.; ...

    2015-02-25

    We present a statistical model designed to identify the effect of experimental perturbations on the aggregate behavior of the transcriptome expressed by the bacterium Dehalococcoides mccartyi strain 195. Strains of Dehalococcoides are used in sub-surface bioremediation applications because they organohalorespire tetrachloroethene and trichloroethene (common chlorinated solvents that contaminate the environment) to non-toxic ethene. However, the biochemical mechanism of this process remains incompletely described. Additionally, the response of Dehalococcoides to stress-inducing conditions that may be encountered at field-sites is not well understood. The constructed statistical model captured the aggregate behavior of gene expression phenotypes by modeling the distinct eigengenes of 100more » transcript clusters, determining stable relationships among these clusters of gene transcripts with a sparse network-inference algorithm, and directly modeling the effect of changes in experimental conditions by constructing networks conditioned on the experimental state. Based on the model predictions, we discovered new response mechanisms for DMC, notably when the bacterium is exposed to solvent toxicity. The network identified a cluster containing thirteen gene transcripts directly connected to the solvent toxicity condition. Transcripts in this cluster include an iron-dependent regulator (DET0096-97) and a methylglyoxal synthase (DET0137). To validate these predictions, additional experiments were performed. Continuously fed cultures were exposed to saturating levels of tetrachloethene, thereby causing solvent toxicity, and transcripts that were predicted to be linked to solvent toxicity were monitored by quantitative reverse-transcription polymerase chain reaction. Twelve hours after being shocked with saturating levels of tetrachloroethene, the control transcripts (encoding for a key hydrogenase and the 16S rRNA) did not significantly change. By contrast, transcripts for DET0137 and DET0097 displayed a 46.8±11.5 and 14.6±9.3 fold up-regulation, respectively, supporting the model. This is the first study to identify transcripts in Dehalococcoides that potentially respond to tetrachloroethene solvent-toxicity conditions that may be encountered near contamination source zones in sub-surface environments.« less

  17. Modeling tensional homeostasis in multicellular clusters.

    PubMed

    Tam, Sze Nok; Smith, Michael L; Stamenović, Dimitrije

    2017-03-01

    Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Decay properties of 256-339Ds superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Nithya, C.

    2017-09-01

    The decay properties of 84 isotopes of darmstadtium superheavy nuclei ( Z = 110) have been studied using various theoretical models. The proton emission half-lives, the alpha decay half-lives, the spontaneous fission half-lives and the cluster decay half-lives of all the isotopes are evaluated. The one-proton emission half-lives and the alpha decay half-lives are predicted using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated alpha half-lives are compared with the available experimental results as well as with the predictions of other theoretical models. The predicted half-lives matches well with the experimental results. The one-proton half-lives are also compared with the predictions using other formalisms. The shell-effect-dependent formula of Santhosh et al. has been employed for calculating the spontaneous fission half-lives. A theoretical comparison of spontaneous fission half-lives with four different formalisms is performed. By comparing the one-proton emission half-lives, the alpha decay half-lives and the spontaneous fission half-lives decay modes are predicted for all the isotopes of Ds. It is seen that the isotopes within the range 256 ≤ A ≤ 263 and 279 ≤ A ≤ 339 decay through spontaneous fission and the isotopes 264 ≤ A ≤ 278 exhibit alpha decay. Cluster decay half-lives are calculated using different models including the Coulomb and proximity potential (CPPM), for determining the magicities in the superheavy region. The effect of magicity at N = 184 and N = 202 were confirmed from the plot of log_{10}T_{1/2} versus neutron number of the daughter nuclei for the emission of different clusters. We hope that the systematic and detailed study of all the possible decay modes of 256-339Ds using various theoretical models will be helpful in the experimental identification of the isotopes of the element in the future.

  19. Variable selection based on clustering analysis for improvement of polyphenols prediction in green tea using synchronous fluorescence spectra.

    PubMed

    Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi

    2018-03-13

    Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.

  20. New particle formation from sulfuric acid and amines: Similarities and differences between mono-, di-, and trimethylamines

    NASA Astrophysics Data System (ADS)

    Olenius, Tinja; Halonen, Roope; Kurtén, Theo; Henschel, Henning; Kupiainen-Määttä, Oona; Ortega, Ismael K.; Vehkamäki, Hanna; Riipinen, Ilona

    2017-04-01

    Amines are organic base species that are emitted to the atmosphere from both anthropogenic and natural sources. Both theoretical and laboratory studies suggest that mono-, di-, and trimethylamines (MMA, DMA, and TMA, respectively) are capable of enhancing the initial steps of sulfuric acid-driven aerosol particle formation much more strongly than ammonia (Kurtén et al., 2008; Jen et al., 2014). Despite the potential importance for atmospheric new particle formation, quantitative estimates on the emissions and thermochemical properties of amines remain relatively uncertain. Because of this and also due to computational reasons, recent large-scale modeling studies have treated sulfuric acid-amine nucleation by introducing a single surrogate amine species, the total emissions of which combine together MMA, DMA and TMA but which resembles DMA or TMA in its various properties (e.g. Bergman et al., 2015). On the other hand, there are likely to be differences in the potentials of the three amines to enhance particle formation, causing uncertainties to the lumping approach. Systematic comparisons are needed to evaluate how to treat these species in atmospheric models and to assess what level of simplification is justifiable. In this work, we study the differences and similarities of MMA, DMA and TMA by modeling nanoparticle formation from sulfuric acid, water, and each of the three amines. We simulate molecular cluster concentrations and formation rates at boundary layer conditions with a dynamic cluster population model using quantum chemistry-based cluster evaporation rates, and study the dependence of particle formation rate on precursor vapor concentrations, temperature and relative humidity. The results suggest that for the three amines, there are differences in the nucleation mechanism and hygroscopicity of molecular clusters. However, for DMA and TMA, formation of nanometer-sized particles and its dependence on ambient conditions is roughly similar: both efficiently form molecular clusters with sulfuric acid, and cluster formation is rather insensitive to changes in temperature and relative humidity. For MMA, on the other hand, particle formation is weaker and more sensitive to ambient conditions. Therefore, the results indicate that DMA and TMA can be approximated as a lumped species, but merging MMA together with DMA and TMA introduces inaccuracies in sulfuric acid-amine particle formation schemes. Moreover, including MMA emissions in a surrogate amine approach which assumes that the amine has the thermochemical properties of DMA or TMA is likely to result in an overprediction of particle formation rate. References Bergman et al., J. Geophys. Res. Atmos., 120, 9606-9624, 2015 Jen et al., J. Geophys. Res. Atmos., 119, 7502-7514, 2014 Kurtén et al., Atmos. Chem. Phys., 8, 4095-4103, 2008

Top